Science.gov

Sample records for larval chironomid communities

  1. Bacterial Community Composition Associated with Chironomid Egg Masses

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2012-01-01

    Chironomids (Diptera: Chironomidae) are the most widely distributed and often the most abundant insect in freshwater. They undergo a complete metamorphosis of four life stages, of which the egg, larva, and pupae are aquatic and the adult is terrestrial. Chironomid egg masses were found to be natural reservoirs of Vibrio cholerae and Aeromonas species. To expand the knowledge of the endogenous bacterial community associated with chironomid egg masses, denaturing gradient gel electrophoresis and clone analysis of 16S rRNA gene libraries were used in this study. Bacterial community composition associated with chironomid egg masses was found to be stable among different sampling periods. Cloned libraries of egg masses revealed that about 40% of the clones were related to bacteria known to degrade various toxicants. These findings were further supported when bacterial species that showed resistance to different toxic metals were isolated from egg masses and larval samples. Chironomids are found under a wide range of water conditions and are able to survive pollutants. However, little is known about their protective mechanisms under these conditions. Chironomid egg masses are inhabited by a stable endogenous bacterial community, which may potentially play a role in protecting chironomids from toxicants in polluted environments. Further study is needed to support this hypothesis. PMID:23461272

  2. The protective role of endogenous bacterial communities in chironomid egg masses and larvae

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2013-01-01

    Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids. PMID:23804150

  3. The Vertical Dynamics of Larval Chironomids on Artificial Substrates in Lake Lido (Bogor, Indonesia)

    PubMed Central

    Wardiatno, Yusli; Krisanti, Majariana

    2013-01-01

    The composition and abundance of chironomid larval communities was studied on artificial substrates in Lido Lake, located in Bogor, West Java, Indonesia. The lake is organically enriched as a result of fish farming activity. Seventy two artificial substrates were deployed at three depths (2.0, 3.5 and 5.0 m) at two sites: a cage culture site and a non-cage culture site (control). Larval chironomid larvae were collected 7, 14, 28 and 56 days after the artificial substrates were deployed. In addition, selected physical and chemical parameters of the water were simultaneously measured. Three chironomid subfamilies, the Chironominae, Tanypodinae and Orthocladiinae, were found at both sites. At the cage culture site, both diversity and total abundance were significantly higher at the 2.0 and 3.5 m depths than at the 5.0 m depth, but this was not the case at the non-cage culture site. Based on pooling of the data from all depths, a Mann-Whitney U test showed that the non-cage culture site had a significantly higher diversity and total abundance than the cage culture site. Dissolved oxygen (DO) and turbidity showed significant differences between the 2.0 m depth and the 2 greater depths at the cage culture site, whereas none of the environmental parameters showed significant differences among the three depths at the non-cage culture site. A comparison of the environmental parameters at the same depth at the two sites showed significant differences in turbidity, pH and DO. A Spearman rank correlation analysis at the cage culture site showed that abundance and DO were positively correlated, whereas abundance and turbidity were negatively correlated. However, only pH was negatively correlated with abundance at the non-cage culture site. PMID:24575246

  4. Effects of summer drawdown on the fishes and larval chironomids in Beulah Reservoir, Oregon

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Matthew G.

    2013-01-01

    Summer drawdown of Beulah Reservoir, Oregon, could adversely affect fish and invertebrate production, limit sport fishing opportunities, and hinder the recovery of threatened species. To assess the impacts of drawdown, we sampled fish and Chironomidae larvae in Beulah Reservoir in the springs of 2006 to 2008. The reservoir was reduced to 68% of full pool in 2006 and to run-of-river level in 2007. From spring 2006 to spring 2007, the catch per unit effort (CPUE) of fyke nets decreased significantly for dace [Rhinichthys spp.] and northern pikeminnow [Ptychocheilus oregonensis], increased significantly for suckers [Catastomus spp.] and white crappies [Pomoxis nigromaculatus], and was similar for redside shiners [Richardsonius balteatus]. CPUE of gillnets either increased significantly or remained similar depending on genera, and the size structure of redside shiners, suckers, and white crappies changed appreciably. From 2007 to 2008, the CPUE of northern pikeminnow, redside shiners, suckers, and white crappies decreased significantly depending on gear and the size structure of most fishes changed. Springtime densities of chironomid larvae in the water column were significantly higher in 2006 than in 2008, but other comparisons were similar. The densities of benthic chironomids were significantly lower in substrates that were frequently dewatered compared to areas that were partially or usually not dewatered. Individuals from frequently dewatered areas were significantly smaller than those from other areas and the densities of benthic chironomids in 2008 were significantly lower than other years. Summer drawdown can reduce the catch and alter the size structure of fishes and chironomid larvae in Beulah Reservoir.

  5. Spatial variation in incidence of mouthpart deformities in larval chironomids (Diptera) from western Lake Erie

    SciTech Connect

    Hudson, L.A.; Ciborowski, J.J.H.; Corkum, L.D.

    1995-12-31

    The major source of contaminants to the sediments of the western basin of Lake Erie is the Detroit River. In order to determine if contaminant levels are reflected in incidences of genotoxicity of benthic invertebrates, the authors examined larvae of chironomids for mouthpart (mentum) deformities. Sediment genotoxicity is indicated when incidence of deformities in susceptible genera exceeds 5%. Samples were collected from three locations along the contaminant gradient extending from the Detroit River along the main shipping channel of the western basin. A composite sample was taken from several central locations in the western basin. Chironomids were hand-picked from ponar grab or box core samples. The heads were mounted, identified to genus and examined for mentum deformities (extra or missing teeth). Chironomus dominated all samples. The incidence of deformities ({+-}SE) in Chironomus was greatest in the Trenton Channel of the Detroit River (7.8 {+-} 2.2%, n = 153), declined to 5.2 {+-} 1.4% (n = 233) in the center of the basin and was the lowest off East Sister Island (1.9 {+-} 0.9%, n = 210). The incidence of deformities was 4.4 {+-} 0.8% (n = 610) at a reference site on the Canadian side of the Detroit River (Crystal Bay). The spatial pattern of chironomid mentum deformities suggests that sediment genotoxicity declines from west to east in western Lake Erie.

  6. The role of pH in structuring communities of Maine wetland macrophytes and chironomid larvae (Diptera)

    USGS Publications Warehouse

    Woodcock, T.S.; Longcore, J.R.; McAuley, D.G.; Mingo, T.M.; Bennatti, C.R.; Stromborg, K.L.

    2005-01-01

    Aquatic vascular plants, or macrophytes, are an important habitat component for many wetland organisms, and larvae of chironomid midges are ubiquitous components of wetland fauna. Many chironomids are primary consumers of algae and detritus and form an essential energetic link between allochthonous and autochthonous primary production and higher trophic levels, while others are predators and feed on smaller invertebrates. Live macrophytes serve mostly as habitat, whereas plant detritus serves as both habitat and as a food source. Assemblages of macrophytes and chironomid larvae were surveyed in ten Maine wetlands, five with low pH (5.5), and explained in terms of physical and chemical habitat variables. Macrophyte richness was significantly greater, and richness of chironomid larvae was lower, in low pH wetlands. There was no difference in chironomid abundance related to pH. However, community structure was related to pH, suggesting that competitive dominance of a few taxa was responsible for lower richness in low pH wetlands, whereas competition was weaker in high pH wetlands, making coexistence of more chironomid taxa possible. An examination of individual chironomid taxa by stepwise multiple regression showed that distribution of most taxa was controlled by water chemistry variables and macrophyte habit (i.e., floating, submergent).

  7. Effects of rotifers, copepods and chironomid larvae on microbial communities in peatlands.

    PubMed

    Mieczan, Tomasz; Niedźwiecki, Michał; Tarkowska-Kukuryk, Monika

    2015-10-01

    Interactions between the microbial loop and the classical grazing food chain are essential to ecosystem ecology. The goal of the present study was to examine the impact of chironomid larvae, rotifers and copepods on the major components of the microbial food web (algae, bacteria, heterotrophic flagellates, testate amoebae and ciliates) in peatlands. Two enclosure experiments were carried out in a Sphagnum peatland. In the experiments we manipulated rotifers, copepods and macroinvertebrates, i.e. chironomid larvae (Psectrocladius sordidellus gr). During the experiments variation was observed in the abundance of potential predators. The beginning of the first experiment was distinguished by dominance of rotifers, but five days later copepods were dominant. In the second experiment copepods dominated. The results of this study are the first to suggest a substantial impact of chironomid larvae, rotifers and copepods on microorganism communities in peatland ecosystems. The impact is reflected by both a decrease in the abundance and biomass of testate amoebae and ciliates and a transformation of the size structure of bacteria. Heterotrophic flagellates (HNF) were not controlled by metazoans, but rather by testate amoebae and ciliates, as HNF were more abundant in the control treatment. PMID:26322497

  8. Effects of rotifers, copepods and chironomid larvae on microbial communities in peatlands.

    PubMed

    Mieczan, Tomasz; Niedźwiecki, Michał; Tarkowska-Kukuryk, Monika

    2015-10-01

    Interactions between the microbial loop and the classical grazing food chain are essential to ecosystem ecology. The goal of the present study was to examine the impact of chironomid larvae, rotifers and copepods on the major components of the microbial food web (algae, bacteria, heterotrophic flagellates, testate amoebae and ciliates) in peatlands. Two enclosure experiments were carried out in a Sphagnum peatland. In the experiments we manipulated rotifers, copepods and macroinvertebrates, i.e. chironomid larvae (Psectrocladius sordidellus gr). During the experiments variation was observed in the abundance of potential predators. The beginning of the first experiment was distinguished by dominance of rotifers, but five days later copepods were dominant. In the second experiment copepods dominated. The results of this study are the first to suggest a substantial impact of chironomid larvae, rotifers and copepods on microorganism communities in peatland ecosystems. The impact is reflected by both a decrease in the abundance and biomass of testate amoebae and ciliates and a transformation of the size structure of bacteria. Heterotrophic flagellates (HNF) were not controlled by metazoans, but rather by testate amoebae and ciliates, as HNF were more abundant in the control treatment.

  9. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  10. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  11. FLUID AND ION SECRETION BY MALPIGHIAN TUBULES OF LARVAL CHIRONOMIDS, Chironomus riparius: EFFECTS OF REARING SALINITY, TRANSPORT INHIBITORS, AND SEROTONIN.

    PubMed

    Zadeh-Tahmasebi, Melika; Bui, Phuong; Donini, Andrew

    2016-10-01

    Larvae of Chironomus riparius respond to ion-poor and brackish water (IPW, BW) conditions by activating ion uptake mechanisms in the anal papillae and reducing ion absorption at the rectum, respectively. The role that the Malpighian tubules play in ion and osmoregulation under these conditions is not known in this species. This study examines rates of fluid secretion and major cation composition of secreted fluid from tubules of C. riparius reared in IPW, freshwater (FW) and BW. Fluid secretion of tubules from FW and BW larvae was similar but tubules from IPW larvae secrete fluid at higher rates, are more sensitive to serotonin stimulation, and the secreted fluid contains less Na(+) . Therefore in IPW, tubules work in concert with anal papillae to eliminate excess water while conserving Na(+) in the hemolymph. Tubules do not appear to play a significant role in ion/osmoregulation under BW. Serotonin immunoreactivity in the nervous system and gastrointestinal tract of larval C. riparius was similar to that seen in mosquito larvae with the exception that the hindgut was devoid of staining. Hemolymph serotonin titer was similar in FW and IPW; hence, serotonin is not responsible for the observed high rates of fluid secretion in IPW. Instead, it is suggested that serotonin may work in a synergistic manner with an unidentified hormonal factor in IPW. Ion transport mechanisms in the tubules of C. riparius are pharmacologically similar to those of other insects.

  12. New Records and Range Extensions for Several Chironomid Genera from Lake Superior

    EPA Science Inventory

    Five genera of chironomids have been reported for the first time in Lake Superior. Chironomids are small flying insects with a sediment-dwelling aquatic larval stage. The chironomids were collected by scientists at the Mid-Continent Ecology Division as part of a research program ...

  13. Effects of an experimental enrichment of instream habitat heterogeneity on the stream bed morphology and chironomid community of a straightened section in a sandy lowland stream.

    PubMed

    Spänhoff, Bernd; Riss, Wolfgang; Jäkel, Paul; Dakkak, Nadja; Meyer, Elisabeth I

    2006-02-01

    A straightened stream stretch with poor habitat heterogeneity was divided into a "control" section with a low amount of submerged woody debris and an experimentally "wood-enriched" downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9-10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon-Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon-Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 +/- 0.37) had turned into a pronounced V shape (V/U = 1.14 +/- 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62-0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris. PMID:16391966

  14. Chironomids' Relationship with Aeromonas Species.

    PubMed

    Laviad, Sivan; Halpern, Malka

    2016-01-01

    Chironomids (Diptera: Chironomidae), also known as non-biting midges, are one of the most abundant groups of insects in aquatic habitats. They undergo a complete metamorphosis of four life stages of which three are aquatic (egg, larva, and pupa), and the adult emerges into the air. Chironomids serve as a natural reservoir of Aeromonas and Vibrio cholerae species. Here, we review existing knowledge about the mutual relations between Aeromonas species and chironomids. Using 454-pyrosequencing of the 16S rRNA gene, we found that the prevalence of Aeromonas species in the insects' egg masses and larvae was 1.6 and 3.3% of the insects' endogenous microbiota, respectively. Aeromonas abundance per egg mass remained stable during a 6-month period of bacterial monitoring. Different Aeromonas species were isolated and some demonstrated the ability to degrade the insect's egg masses and to prevent eggs hatching. Chitinase was identified as the enzyme responsible for the egg mass degradation. Different Aeromonas species isolated from chironomids demonstrated the potential to protect their host from toxic metals. Aeromonas is a causative agent of fish infections. Fish are frequently recorded as feeding on chironomids. Thus, fish might be infected with Aeromonas species via chironomid consumption. Aeromonas strains are also responsible for causing gastroenteritis and wound infections in humans. Different virulence genes were identified in Aeromonas species isolated from chironomids. Chironomids may infest drinking water reservoirs, hence be the source of pathogenic Aeromonas strains in drinking water. Chironomids and Aeromonas species have a complicated mutual relationship. PMID:27242751

  15. Fossil chironomid d13C as a new proxy for past methanogenic contribution to benthic food-webs in lakes?

    NASA Astrophysics Data System (ADS)

    van Hardenbroek, M.; Heiri, O. M.; Grey, J.; Bodelier, P. L. E.; Lotter, A. F.

    2009-04-01

    Lake sediments are an important source of atmospheric methane. Methanogenic archaea in lake sediments produce 13C-depleted methane that is partly released to the water column and the atmosphere. Another part is utilized by methane oxidizing bacteria (MOB) that are an important food source for deposit-feeding chironomid larvae (Diptera: Chironomidae). If methane-derived carbon is a significant component of the chironomid diet this will lead to strongly negative d13C in the tissue and exoskeleton of chironomid larvae. Chironomid cuticles, especially the strongly sclerotized head capsules, are well preserved as fossils in lake sediments. If the relationship between modern methane fluxes in lakes and chironomid d13C can be established this would therefore provide an approach for estimating past methane fluxes based on d13C of fossil chironomid remains. Using culturing experiments we show that the stable carbon isotope signature of MOB and other food sources can be traced in chironomid muscle tissue as well as in the fossilizing exoskeleton. In addition we measured d13C in chironomid larval head capsules and other invertebrate remains from a range of surface and downcore sediment samples. Small intra-specific variability (-27.1 ± 0.08 permille) was measured in replicate samples of chironomid head capsules of Corynocera ambigua (n=7). d13C of chironomid head capsules from a several different taxa ranged from -28.0 to -25.8 permille, but in some instances we observed d13C values as low as -36.9 to -31.5 permille, suggesting that carbon from MOB can be successfully traced in fossil and subfossil chironomid remains. Our results demonstrate that the stable carbon isotope signature of MOB is incorporated into chironomid head capsules. Future research will focus on quantifying the relationship between methane fluxes, MOB, and head capsule d13C in order to reconstruct past methane fluxes based on the lake sediment record.

  16. CHIRONOMID EMERGENCE AND RELATIVE EMERGENT BIOMASS FROM TWO ALABAMA STREAMS

    EPA Science Inventory

    Chironomid pupal exuviae were sampled monthly using drift nets and hand sieves over an annual cycle from Hendrick Mill Branch (HMB; Blount County, AL) and Payne Creek (PC; Hale County, AL). Taxon richness, community composition, and emergence phonologies were similar despite mar...

  17. Using larval fish community structure to guide long-term monitoring of fish spawning activity

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.

    2015-01-01

    Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.

  18. Effects of Larval Mosquitoes (Aedes triseriatus) and Stemflow on Microbial Community Dynamics in Container Habitats†

    PubMed Central

    Kaufman, Michael G.; Walker, Edward D.; Smith, Tracy W.; Merritt, Richard W.; Klug, Michael J.

    1999-01-01

    The dynamics of the microbial food sources for Aedes triseriatus larvae in microcosms were found to be strongly influenced by larval presence. The total abundance of bacteria in water samples generally increased in response to larvae, including populations of cultivable, facultatively anaerobic bacteria. Additionally, a portion of the community shifted from Pseudomonaceae to Enterobacteriaceae. Bacterial abundance on leaf material was significantly reduced in the presence of actively feeding larvae. Principle-component analysis of whole community fatty acid methyl ester (FAME) profiles showed that larvae changed the microbial community structure in both the water column and the leaf material. Cyclopropyl FAMEs, typically associated with bacteria, were reduced in microcosms containing larvae; however, other bacterial fatty acids showed no consistent response. Long-chain polyunsaturated fatty acids characteristic of microeukaryotes (protozoans and meiofauna) declined in abundance when larvae were present, indicating that larval feeding reduced the densities of these microorganisms. However, presumed fungal lipid markers either increased or were unchanged in response to larvae. Larval presence also affected microbial nitrogen metabolism through modification of the physiochemical conditions or by grazing on populations of bacteria involved in nitrification-denitrification. Stemflow primarily influenced inorganic ion and organic compound concentrations in the microcosms and had less-pronounced effects on microbial community parameters than did larval presence. Stemflow treatments diluted concentrations of all inorganic ions (chloride, sulfate, and ammonium) and organic compounds (total dissolved organic carbon, soluble carbohydrates, and total protein) measured, with the exceptions of nitrite and nitrate. Stemflow addition did not measurably affect larval biomass in the microcosms but did enhance development rates and early emergence patterns of adults. PMID:10347058

  19. Unusual larval habitats and life history of chironomid (Diptera) genera

    USGS Publications Warehouse

    Hudson, Patrick L.

    1987-01-01

    Ninety-three genera, representing all subfamilies of Chironomidae, are organized into 9 categories of unusual habitats or life history including hygropetric, riparian (bank, floodplain, upland), hyporheic, symbiotic, and intertidal; others live in water held in plants or mine into unusual substrates. In riparian zones precise location of optimum habitat is difficult to determine as is definition of habitat within the continuum from shoreline to upland areas. The ecological importance of the riparian group appears to lie in its processing of coarse particulate matter along the floodplain of streams and rivers. All riparian genera are zoogeographically useful and can be used in reconstructing evolutionary dispersal pathways because they are adapted to unique habits that have remained largely undisturbed by human activities.

  20. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans.

    PubMed

    Chung, Hong Chun; Lee, On On; Huang, Yi-Li; Mok, Siu Yan; Kolter, Roberto; Qian, Pei-Yuan

    2010-06-01

    Earlier studies have shown that biofilms can mediate the larval settlement of the polychaete Hydroides elegans and that changes in the bacterial community structure and density of biofilms often alter the larval settlement response. However, the chemical cues that mediate this response remain unknown. In this study, both successional changes in the bacterial community structure and the chemical profiles of subtidal biofilms are described and related to the larval settlement response. Multispecies biofilms were developed on polystyrene Petri dishes and granite rock in the subtidal zone over a period of 20 days. The effects of the substratum and age on the bacterial community structure and chemical profiles of the biofilms were evaluated with two molecular methods (microarray (PhyloChip) and denaturing gradient gel electrophoresis) and with gas chromatography-mass spectrometry, respectively. Both age and substratum altered the bacterial community structures and chemical profiles of the biofilms. Age had a greater effect in shaping the bacterial community structure than did the substratum. In contrast, the type of substratum more strongly affected the chemical profile. Extracts of biofilms of different ages, which developed on different substrata, were tested for the settlement of H. elegans larvae. The extracts induced larval settlement in a biofilm-age-dependent manner, and extracts originating from different substrata of the same age showed no differences in larval settlement. Our results suggest that the larval settlement response cannot be predicted by the overall chemical composition of the biofilm alone.

  1. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut.

    PubMed

    McFrederick, Quinn S; Mueller, Ulrich G; James, Rosalind R

    2014-03-22

    Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata. To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health. PMID:24478297

  2. Chironomid Size Distributions in Constructed and Natural Ponds: Responses to Land use and Water Quality

    NASA Astrophysics Data System (ADS)

    Haro, R. J.; Campbell, B. D.; Richardson, W. B.

    2005-05-01

    Farm ponds in southeastern Minnesota are primarily constructed to prevent off-site soil erosion and to provide wildlife habitat in this predominantly agricultural landscape. Consequently, these ponds are subject to a variety of disturbances from agriculture, especially sedimentation and eutrophication. Natural ponds are rare and are located primarily at low elevations along tributaries to the Mississippi River. We examined chironomid richness, community structure and size-frequency distribution in response to a gradient of land use and water quality in 40 randomly selected ponds. Ponds were classified as natural or constructed; constructed ponds were further classified based on land use adjacent to the pond. Chironomid larvae and water quality were sampled 3 times in summer 2001. Chironomid generic richness significantly differed among pond type and community composition was strongly associated with adjacent land use. Size-frequency distributions were analyzed for the 10 most ubiquitous taxa: Polypedilum, Glyptotendipes, Chironomus, Tanytarsus, Procladius, Endochironomus, Ablabesmyia, Cricotopus, Dicrotendipes and Cladopelma. In general, slopes of normalized size-spectra for these taxa co-varied along the land use/water quality gradient. These results suggest that chironomid-body size may be a useful metric in biological assessments to evaluate the ecological integrity of constructed-pond ecosystems.

  3. Decapod crustacean larval communities in the Balearic Sea (western Mediterranean): Seasonal composition, horizontal and vertical distribution patterns

    NASA Astrophysics Data System (ADS)

    Torres, Asvin P.; Dos Santos, Antonina; Balbín, Rosa; Alemany, Francisco; Massutí, Enric; Reglero, Patricia

    2014-10-01

    Decapod crustaceans are the main target species of deep water bottom trawl fisheries in the Balearic Sea but little is known about their larval stages. This work focuses on the species composition of the decapod larval community, describing the main spatio-temporal assemblages and assessing their vertical distribution. Mesozooplankton sampling was carried out using depth-stratified sampling devices at two stations located over the shelf break and the mid slope, in the north-western and southern Mallorca in late autumn 2009 and summer 2010. Differences among decapod larvae communities, in terms of composition, adult's habitat such as pelagic or benthic, and distribution patterns were observed between seasons, areas and station. Results showed that for both seasons most species and developmental stages aggregated within the upper water column (above 75 m depth) and showed higher biodiversity in summer compared to late autumn. Most abundant species were pelagic prawns (e.g., Sergestidae) occurring in both seasons and areas. The larval assemblages' distributions were different between seasonal hydrographic scenarios and during situations of stratified and non-stratified water column. The vertical distribution patterns of different larval developmental stages in respect to the adult's habitat were analyzed in relation to environmental variables. Fluorescence had the highest explanatory power. Four clearly different vertical patterns were identified: two corresponding to late autumn, which were common for all the main larval groups and other two in summer, one corresponding to larvae of coastal benthic and the second to pelagic species larvae.

  4. The community structure of over-wintering larval and small juvenile fish in a large estuary

    NASA Astrophysics Data System (ADS)

    Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin

    2014-02-01

    The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.

  5. Microbial Communities Associated with the Larval Gut and Eggs of the Western Corn Rootworm

    PubMed Central

    Dematheis, Flavia; Kurtz, Benedikt; Vidal, Stefan; Smalla, Kornelia

    2012-01-01

    Background The western corn rootworm (WCR) is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi. Methodology/Principal Findings Total community (TC) DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii. Conclusion/Significance The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of the WCR. However

  6. Visualizing the population dynamics of microbial communities in the larval zebrafish gut

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    In each of our digestive tracts, trillions of microbes representing hundreds of different species colonize local environments, reproduce, and compete with one another. The resulting ecosystems influence many aspects their host's development and health. Little is known about how gut microbial communities vary in space and time: how they grow, fluctuate, and respond to various perturbations. To address this and investigate microbial colonization of the vertebrate gut, we apply light sheet fluorescence microscopy to a model system that combines a realistic in vivo environment with a high degree of experimental control: larval zebrafish with defined subsets of commensal bacterial species. Light sheet microscopy enables three-dimensional imaging with high resolution over the entire intestine, providing visualizations that would be difficult or impossible to achieve with other techniques. Quantitative analysis of image data enables measurement of bacterial abundances and distributions. I will describe this approach and focus especially on recent experiments in which a colonizing bacterial species is challenged by the invasion of a second species, which leads to the decline of the first group. Imaging reveals dramatic population collapses that differentially affect the two species due to their different biogeographies and morphologies. The collapses are driven by the peristaltic motion of the zebrafish intestine, indicating that the physical activity of the host environment can play a major role in mediating inter-species competition. role in mediating inter-species competition. Supported by the National Science Foundation under Grant No. 0922951 and the National Institutes of Health under Award Number 1P50GM098911.

  7. Aeromonas chitinase degrades chironomid egg masses.

    PubMed

    Laviad, Sivan; Golan, Amnon; Shaked, Tamar; Vaizel-Ohayon, Dalit; Halpern, Malka; Pick, Elah

    2016-02-01

    Chironomids are freshwater insects that undergo a complete metamorphosis of four life stages. Chironomid egg masses can be degraded by Vibrio cholerae and some Aeromonas species. Egg mass degradation by V. cholerae requires haemagglutinin protease activity. Our aim was to identify the egg mass degrading (EMD) factor secreted by Aeromonas dhkanesis 3K1C15. Following the hypothesis that the EMD factor of A. dhkanesis is also a protease, secreted proteases were screened, but none of them proved to have the same properties as the EMD factor. Using conventional protein purification methods, we found that the active fraction included chitinases. We further confirmed chitin as a building block of the egg masses. Interestingly, by supplementing bacterial growth media with chitin, we observed unexpected EMD factor activity in Aeromonas isolates that initially were not able to degrade egg masses. Accordingly, we concluded that although strain 3K1C15 secretes chitinases constitutively, most Aeromonas strains secrete chitinases inductively. Induction of chitinases in nature presumably occurs when bacteria are attached to the egg mass habitat, in which chitin is abundant. Considering that chitinases are highly conserved across bacteria phyla, we assume that the role of this enzyme in the bacteria-insect interplay could be wider than is currently thought. PMID:26472256

  8. Annual Survey of Horsehair Worm Cysts in Northern Taiwan, with Notes on a Single Seasonal Infection Peak in Chironomid Larvae (Diptera: Chironomidae).

    PubMed

    Chiu, Ming-Chung; Huang, Chin-Gi; Wu, Wen-Jer; Shiao, Shiuh-Feng

    2016-06-01

    The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected. PMID:26885875

  9. Chironomids (Insecta: Diptera) as Indicators of Ecological Status in Lakes

    NASA Astrophysics Data System (ADS)

    Marziali, L.; Lencioni, V.; Rossaro, B.

    2005-05-01

    Benthic communities are used in biological assessment and monitoring in lakes. Chironomids are considered indicators of oxygen level and trophic state. The taxocoenosis of 42 Italian lakes with different volume, depth, annual minimum hypolimnetic oxygen concentration, transparency and phosphorous concentration were investigated. Larvae were collected with a Petersen grab at different depths, pupal exuviae with a drift net near the outlet of lakes and adults with a sweep net along the shore. 334 species were identified: 41 Tanypodinae, 17 Diamesinae, 3 Prodiamesinae, 118 Orthocladiinae, 155 Chironominae (61 Tanytarsini, 93 Chironomini and 1 Pseudochironomini). Drift samples included many more taxa than grab samples, adult samples often included terrestrial species. Lake Garda, Como and Maggiore were the richest in species (78, 72 and 66 respectively), as expected because of their large size. Species richness did not result as good indicator: both oligotrophic (Monate 52 species, Toblino 33) and eutrophic lakes (Annone 57, Pusiano 42) were characterized by similar species numbers. Different species were more suitable indicators of oxygen concentration rather than of nutrients. A comparison of different lakes is preliminary because of: 1. different morphometric and trophic conditions; 2. different sampling effort; 3. lack of knowledge of species optima and tolerance.

  10. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone

    SciTech Connect

    Gaines, S.; Roughgarden, J.

    1985-06-01

    Field studies demonstrate that the population structure of the barnacle Balanus glandula differs between locations of high and low larval settlement rate. These observations, together with results from a model for the demography of an open, space-limited population, suggest that the settlement rate may be a more important determinant of rocky intertidal community structure than is presently realized. At the low-settlement location mortality of barnacles is independent of the area occupied by barnacles. At the high-settlement location mortality is cover-dependent due to increased predation by starfish on areas of high barnacle cover. In both locations the cover-independent component of mortality does not vary with age during the first 60 weeks. Generalizations that the highest species diversity in a rocky intertidal community is found at locations of intermediate disturbance, and that competition causes zonation between species of the barnacle genera Balanus and Chthamalus, seem to apply only to locations with high-settlement rates.

  11. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement.

    PubMed

    Lee, On On; Chung, Hong Chun; Yang, Jiangke; Wang, Yong; Dash, Swagatika; Wang, Hao; Qian, Pei-Yuan

    2014-07-01

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. PMID:24402362

  12. Anhydrobiosis vs. aging: comparative genomics of protein repair L-isoaspartyl methyltransferases in the sleeping chironomid. .

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Kikawada, Takahiro; Shagimardanova, Elena; Suetsugu, Yoshitaka; Ayupov, Rustam

    and larval stages. Finally, the expression of Pimt1 gene in both chironomids was not changed in response to desiccation, while the clustered PvPimt2-12 showed strong up-regulation in response to water loss and other abiotic stresses. The abundance of PvPimt2-12 mRNAs was maximal in anhydrobiotic larvae, and it resembles the case of plant seeds where accumulation of PIMT provides additional protection for proteins during long dry storage. Predicted proteins of PvPimT2-12 contain conservative L-isoaspartyl methyltransferase functional domain. At the same time the length and structure of N- and C- terminals of the predicted proteins show significant variation, suggesting different substrate preferences or other specific properties of different Pv-PIMT Furthermore, the multi-member family in Pv is the first observation of drastic expansion and evolution of Pimt genes in general, and particularly in a single insect species. This work was supported by Russian Foundation for Basic Research (№ 12-08-33157 mol_a_ved and № 14-04-01657_A).

  13. Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Williams, Natalia; Rieradevall, Maria; Añón Suárez, Diego; Rizzo, Andrea; Daga, Romina; Ribeiro Guevara, Sergio; Arribére, María Angélica

    2016-09-01

    Chironomid communities were studied in a sediment core collected from Lake Moreno Oeste, located in Nahuel Huapi National Park. A major change in midge assemblages occurred at ∼AD 1760, which was characterized by a decrease of "cold taxa" including Polypedilum sp.2 and Dicrotendipes, and an increase of "warm taxa" including Apsectrotanypus and Polypedilum sp.1. These taxa are likely related to climatic conditions concurrent with the end of a cold period at ∼AD 1500-1700 and the beginning of a drying climate at ∼AD 1740-1900 in northern Patagonia. Coarse tephra layers had low midge diversity; however they did not disrupt the climatic trend as the community recovered rapidly after the event. Since AD 1910, after the increase in suburban housing, fish introduction, and the construction of a road, there was an increase in the relative abundances of taxa typically associated with the littoral zone, such as Parapsectrocladius, Riethia, Apsectrotanypus, and some Tanytarsini morphotypes. The main change in the chironomid community appears to be associated with long-term climate change. At the beginning of the 20th century, other site-specific environmental factors (catchment change and fish introduction) altered the chironomid assemblages, making it more difficult to understand the relative importance of each driver of assemblage change.

  14. An Introduction to the Identification of Chironomid Larvae.

    ERIC Educational Resources Information Center

    Mason, William T., Jr.

    This publication is an introductory guide to the identification of Chironomid (Midge) larvae. The larvae of these small flies are an important link in the food chain between algae and microinvertebrates. As a family, the larvae exhibit a wide range of tolerance to environmental factors such as amounts and types of pollutants. Much of this…

  15. Vibrio cholerae Hemagglutinin/Protease Degrades Chironomid Egg Masses

    PubMed Central

    Halpern, Malka; Gancz, Hanan; Broza, Meir; Kashi, Yechezkel

    2003-01-01

    Cholera is a severe diarrheal disease caused by specific serogroups of Vibrio cholerae that are pathogenic to humans. The disease does not persist in a chronic state in humans or animals. The pathogen is naturally present as a free-living organism in the environment. Recently, it was suggested that egg masses of the nonbiting midge Chironomus sp. (Diptera) harbor and serve as a nutritive source for V. cholerae, thereby providing a natural reservoir for the organism. Here we report that V. cholerae O9, O1, and O139 supernatants lysed the gelatinous matrix of the chironomid egg mass and inhibited eggs from hatching. The extracellular factor responsible for the degradation of chironomid egg masses (egg mass degrading factor) was purified from V. cholerae O9 and O139 and was identified as the major secreted hemagglutinin/protease (HA/P) of V. cholerae. The substrate in the egg mass was characterized as a glycoprotein. These findings show that HA/P plays an important role in the interaction of V. cholerae and chironomid egg masses. PMID:12839800

  16. Temporal changes in the bacterial community of animal feces and their correlation with stable fly oviposition, larval development, and adult fitness.

    PubMed

    Albuquerque, Thais A; Zurek, Ludek

    2014-01-01

    Stable flies are blood-feeding insects with a great negative impact on animals world wide. Larvae develop primarily in animal manure and bacteria are essential for larval development; however, the principle of this dependence is not understood. We hypothesized that as the microbial community of animal manure changes over time, it plays an important role in stable fly fitness. Two-choice bioassays were conducted using 2 week old horse manure (control) and aging horse manure (fresh to 5 week old) to evaluate the effect of manure age on stable fly oviposition. Our data showed that fresh feces did not stimulate oviposition and that the attractiveness increased as manure aged but started to decline after 3 weeks. Bioassays assessing the effect of manure age at the time of oviposition on larval development demonstrated that 1-3 week old manure supported larval development significantly better than fresh, 4, and 5 week old manure. In addition, adult fitness (body size) was significantly higher in flies from 1 and 2 week old manure comparing to that of all other treatments. Analysis of the bacterial community of aging horse manure by 454-pyrosequencing of 16S rDNA revealed a great reduction in bacterial diversity and richness from fresh to 1-5 week old manure and a major shift from strict anaerobes in fresh manure to facultative anaerobes and strict aerobes in aged manure. Overall, the microbial community of 2 and 3 week old horse manure with its dominant bacterial taxa Rhizobium, Devosia, and Brevundimonas stimulated stable fly oviposition the most and provided a suitable habitat for larval development. These bacteria represent the candidates for studies focused on better understanding of stable fly - microbial interactions.

  17. Census of the Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture-Independent Methods

    PubMed Central

    Broderick, Nichole A.; Raffa, Kenneth F.; Goodman, Robert M.; Handelsman, Jo

    2004-01-01

    Little is known about bacteria associated with Lepidoptera, the large group of mostly phytophagous insects comprising the moths and butterflies. We inventoried the larval midgut bacteria of a polyphagous foliivore, the gypsy moth (Lymantria dispar L.), whose gut is highly alkaline, by using traditional culturing and culture-independent methods. We also examined the effects of diet on microbial composition. Analysis of individual third-instar larvae revealed a high degree of similarity of microbial composition among insects fed on the same diet. DNA sequence analysis indicated that most of the PCR-amplified 16S rRNA genes belong to the γ-Proteobacteria and low G+C gram-positive divisions and that the cultured members represented more than half of the phylotypes identified. Less frequently detected taxa included members of the α-Proteobacterium, Actinobacterium, and Cytophaga/Flexibacter/Bacteroides divisions. The 16S rRNA gene sequences from 7 of the 15 cultured organisms and 8 of the 9 sequences identified by PCR amplification diverged from previously reported bacterial sequences. The microbial composition of midguts differed substantially among larvae feeding on a sterilized artificial diet, aspen, larch, white oak, or willow. 16S rRNA analysis of cultured isolates indicated that an Enterococcus species and culture-independent analysis indicated that an Entbacter sp. were both present in all larvae, regardless of the feeding substrate; the sequences of these two phylotypes varied less than 1% among individual insects. These results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community. PMID:14711655

  18. Culturable and VBNC Vibrio cholerae: interactions with chironomid egg masses and their bacterial population.

    PubMed

    Halpern, Malka; Landsberg, Ori; Raats, Dina; Rosenberg, Eugene

    2007-02-01

    Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments. Recently, it was found that chironomid (nonbiting midges) egg masses serve as a reservoir for the cholera bacterium and that flying chironomid adults are possible windborne carriers of V. cholerae non-O1 non-O139. Chironomids are the most widely distributed insect in freshwater. Females deposit egg masses at the water's edge, and each egg mass contains eggs embedded in a gelatinous matrix. Hemagglutinin/protease, an extracellular enzyme of V. cholerae, was found to degrade chironomid egg masses and to prevent them from hatching. In a yearly survey, chironomid populations and the V. cholerae in their egg masses followed phenological succession and interaction of host-pathogen population dynamics. In this report, it is shown via FISH technique that most of the V. cholerae inhabiting the egg mass are in the viable but nonculturable (VBNC) state. The diversity of culturable bacteria from chironomid egg masses collected from two freshwater habitats was determined. In addition to V. cholerae, representatives of the following genera were isolated: Acinetobacter, Aeromonas, Klebsiella, Shewanella, Pseudomonas, Paracoccus, Exiguobacterium, and unidentified bacteria. Three important human pathogens, Aeromonas veronii, A. caviae, and A. hydrophila, were isolated from chironomid egg masses, indicating that chironomid egg masses may be a natural reservoir for pathogenic Aeromonas species in addition to V. cholerae. All isolates of V. cholerae were capable of degrading chironomid egg masses. This may help explain their host-pathogen relationship with chironomids. In contrast, almost none of the other bacteria that were isolated from the egg masses possessed this ability. Studying the interaction between chironomid egg masses, the bacteria inhabiting them, and V. cholerae could contribute to our understanding of the nature of the V. cholerae-egg mass interactions. PMID:17186156

  19. Sediment chemistries and chironomid deformities in the Buffalo River (NY)

    SciTech Connect

    Stewart, K.M.; Diggins, T.P.

    1994-12-31

    The authors examined the surficial sediment chemistry (heavy metals) and the frequency of chironomid (Diptera) larvae mouthpart deformities from multiple PONAR grabs samples at each of 20 sites along the Buffalo River (NY) area of concern (AOC). Because of the potential for patchy invertebrate distribution and high variance in sediment chemistry, repeated spatial and temporal sampling is important to obtain a better integrated picture of contamination in rivers. The findings suggest that the Buffalo River has one of the highest percentages of deformed chironomids in AOC`s of the Great Lakes basin. One river site that was traditionally thought to be a chemical hot spot was less contaminated than another downstream section. At another site, sediment concentrations for V., Mn and AS appeared to be strongly associated with the proximity of combined sewer overflows from a region which is primarily residential. Interestingly, a demonstration project of the US Army Corps of Engineers, during which three types of dredges were used to carefully remove upper sediments from two different short reaches along the river, seemed to have no significant impact on proximate sediment chemistries or biota.

  20. Hypersensitivity to larvae of chironomids (non-biting midges). Cross-sensitization with crustaceans.

    PubMed

    Eriksson, N E; Ryden, B; Jonsson, P

    1989-07-01

    In 2,368 consecutive adult patients with asthma and/or rhinitis the incidence of positive skin prick test (SPT) with a chironomid extract (CHIR) (produced from "red feather mosquito larvae" used as fish food) was 14% (26% in atopics and 4% in non-atopics). RAST with chironomid was positive in 4% of 110 consecutive sera (8% in atopic sera). Significant correlations were found between RAST and SPT results with chironomid and between SPT results with CHIR and with various crustaceans. Correlations were also found reciprocally among SPT results with different crustaceans and between some crustaceans and moluscs (clam and oyster) as well as among RAST results with chironomid, shrimp and crab. Inhibition experiments showed that chironomid extracts inhibited RAST with shrimp, and vice versa. It is concluded that Chironomidae might be allergens of clinical importance in asthma and rhinitis in Sweden, that cross-allergy exists between chironomids and shrimp and that cross-allergy also might occur among chironomids, crustaceans and molluscs.

  1. Environmental forcing and the larval fish community associated to the Atlantic bluefin tuna spawning habitat of the Balearic region (Western Mediterranean), in early summer 2005

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. M.; Alvarez, I.; Lopez-Jurado, J. L.; Garcia, A.; Balbin, R.; Alvarez-Berastegui, D.; Torres, A. P.; Alemany, F.

    2013-07-01

    The Balearic region is a highly dynamic area located in the Western Mediterranean, straddling the transition between the Algerian and Provencal basins and constitutes one of the main spawning grounds for the large, migratory Atlantic bluefin (Thunnus thynnus) and other medium and small tuna species (Thunnus alalunga, Auxis rochei, Euthynnus alleteratus and Katsuwonus pelamis). In summer, despite been considered an oligotrophic region as the whole Mediterranean Sea, it harbors a relatively abundant and diverse larval fish community (LFC). In this study, we analyze the composition, abundance and the influence of abiotic and biotic factors on the horizontal structure of the LFC in the Balearic region, in early summer 2005, during the spawning season of Atlantic bluefin tuna. Hydrographically, 2005 was an unusual year with a summer situation of relatively lack of mesoscale features, weak surface currents and a general situation of high stability. A total of 128 taxa of fish larvae, belonging to 52 families, were identified. The average abundance was 1770 larvae 1000 m-3. Multivariate statistical analysis revealed LFC to have a strong horizontal structure. Cluster analysis and non-metric multidimensional scaling ordination identified two larval fish assemblages. These assemblages were mainly delineated by depth and, therefore, by the spawning location of adult fish. Our results also suggest that anticyclonic eddy boundaries constitute favourable habitats for fish larvae. Also, the scenario of higher than unusual hydrographic stability found during the cruise would be responsible for the relatively lack of mesoscale features and, consequently, for the lack of influence of these features on the horizontal distribution of fish larvae and on the horizontal structure of the LFC.

  2. Institutional evolution of a community-based programme for malaria control through larval source management in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    2014-01-01

    Background Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. Case description The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. Discussion and evaluation The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. Conclusions The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam’s City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes. PMID

  3. Northern Russian chironomid-based modern summer temperature data set and inference models

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard

    2015-11-01

    West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.

  4. Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki

    PubMed Central

    Gusev, Oleg; Cornette, Richard

    2010-01-01

    In order to survive in extreme environments, organisms need to develop special adaptations both on physiological and molecular levels. The sleeping chironomid Polypedilum vanderplanki, inhabiting temporary water pools in semi-arid regions of Africa, is the only insect to have evolutionarily acquired the ability to withstand prolonged complete desiccation at larval stage, entering a state called anhydrobiosis. Even after years in a dry state, larvae are able to revive within a short period of time, completely restoring metabolism. Because of the possible involvement of stress proteins in the preservation of biomolecules during the anhydrobiosis of the sleeping chironomid, we have analyzed the expression of genes encoding six heat shock proteins (Pv-hsp90, Pv-hsp70, Pv-hsc70, Pv-hsp60, Pv-hsp20, and Pv-p23) and one heat shock factor (Pv-hsf1) in dehydrating, rehydrating, and heat-shocked larvae. All examined genes were significantly up-regulated in the larvae upon dehydration and several patterns of expression were detected. Gene transcript of Pv-hsf1 was up-regulated within 8 h of desiccation, followed by large shock proteins expression reaching peak at 24–48 h of desiccation. Heat-shock-responsive Pv-hsp70 and Pv-hsp60 showed a two-peak expression: in dehydrating and rehydrating larvae. Both small alpha-crystallin heat shock proteins (sHSP) transcripts were accumulated in the desiccated larvae, but showed different expression profiles. Both sHSP-coding genes were found to be heat-inducible, and Pv-hsp20 was up-regulated in the larvae at the early stage of desiccation. In contrast, expression of the second transcript, corresponding to Pv-p23, was limited to the late stages of desiccation, suggesting possible involvement of this protein in the glass-state formation in anhydrobiotic larvae. We discuss possible roles of proteins encoded by these stress genes during the different stages of anhydrobiosis in P. vanderplanki. Electronic supplementary material The

  5. Late Holocene climate and environmental changes in Kamchatka inferred from the subfossil chironomid record

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; de Hoog, Verena; Hoff, Ulrike; Dirksen, Oleg; Diekmann, Bernhard

    2013-05-01

    This study presents a reconstruction of the Late Holocene climate in Kamchatka based on chironomid remains from a 332 cm long composite sediment core recovered from Dvuyurtochnoe Lake (Two-Yurts Lake, TYL) in central Kamchatka. The oldest recovered sediments date to about 4500 cal years BP. Chironomid head capsules from TYL reflect a rich and diverse fauna. An unknown morphotype of Tanytarsini, Tanytarsus type klein, was found in the lake sediments. Our analysis reveals four chironomid assemblage zones reflecting four different climatic periods in the Late Holocene. Between 4500 and 4000 cal years BP, the chironomid composition indicates a high lake level, well-oxygenated lake water conditions and close to modern temperatures (˜13 °C). From 4000 to 1000 cal years BP, two consecutive warm intervals were recorded, with the highest reconstructed temperature reaching 16.8 °C between 3700 and 2800 cal years BP. Cooling trend, started around 1100 cal years BP led to low temperatures during the last stage of the Holocene. Comparison with other regional studies has shown that termination of cooling at the beginning of late Holocene is relatively synchronous in central Kamchatka, South Kurile, Bering and Japanese Islands and take place around 3700 cal years BP. From ca 3700 cal years BP to the last millennium, a newly strengthened climate continentality accompanied by general warming trend with minor cool excursions led to apparent spatial heterogeneity of climatic patterns in the region. Some timing differences in climatic changes reconstructed from chironomid record of TYL sediments and late Holocene events reconstructed from other sites and other proxies might be linked to differences in local forcing mechanisms or caused by the different degree of dating precision, the different temporal resolution, and the different sensitive responses of climate proxies to the climate variations. Further high-resolution stratigraphic studies in this region are needed to understand

  6. The sleeping chironomid: an insect survived 18 months of exposure to outer space

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Sakashita, Tetsuya; Sychev, Vladimir; Novikova, Nataliya; Sugimoto, Manabu; Malyutina, Ludmila; Kikawada, Takahiro; Okuda, Takashi

    Anhydrobiosis is an ametabolic state of life entered by an organism in response to desiccation. There are only few groups of higher invertebrates capable to survival complete water loss. An African chironomid Polypedilum vanderpalnki is the only anhydrobiotic insect. Larvae of this sleeping chironomid living in temporary pools in semi-arid areas on the African continent become completely desiccated upon drought, but can revive after water becomes available upon the next rain. Dry larvae can revive after several decades of anhydrobiosis and show cross-resistance to different environmental stresses, including temperature fluctuation, high doses of ionizing radiation and organic solvents. This enormous resistance of the sleeping chironomid to extreme environments points to the high probability of their survival and transfer across outer space and makes this species promising model organism for astrobiological studies. In period from 2005 to 2010 the sleeping chironomid was utilized as a model organism in experiments on resistance of resting stages of invertebrates to space environment both inside of ISS ("Aquarium" research program) and on the outer side of ISS ("Biorisk-2" and "EXPOSE-R" experiments) . In the present report we mainly focus on results of "Biorisk-2" experiment where there containers with anhydrobiotic larvae were continuously exposed to outer space environment. Container 1 (FC1) remained exposed to outer space for 405 days (from June 6, 2007 to July 15, 2008), Container 2 (FC2) for 566 days (from June 6, 2007 to December 23, 2008), and Container 3 (FC3) is expected to be returning to the Earth later this year. First analysis of the larvae from the first two containers FC1 and FC2 showed that the sleeping chironomid have succesfully survived the continous space exposure comparable with duration of interpanetary spaceflight and recovered both biomolecules and cells complexes upon rehydration

  7. Larval mosquito communities in discarded vehicle tires in a forested and unforested site: detritus type, amount, and water nutrient differences

    PubMed Central

    Kling, Lindsey J.; Juliano, Steven A.

    2008-01-01

    Discarded tires are an important habitat for larvae of multiple species of disease-transmitting mosquitoes. Although tire locations likely influence composition and abundance of vectors, there are few data linking vector populations to the characteristics of the aquatic tire environment. We sampled water-filled tires at three times at a forested and an unforested site to evaluate how differences in detritus inputs or nutrients in these two macrohabitats may be associated with composition of mosquito-dominated invertebrate communities. The forested site had significantly greater inputs of leaves, twigs, seeds, and fine detritus at the first sampling, but subsequent sampling indicated no differences in inputs of any detritus type. Total phosphorous levels were significantly greater in the forested site, but there was no difference in total nitrogen or total ion concentrations during any sampling. Chlorophyll a levels were not different between sites, even though light levels were greater and canopy cover was less at the unforested site. Culex restuans dominated at the unforested site, and Ochlerotatus triseriatus, Anopheles barberi, and Orthopodomyia signifera were found primarily in the forest. Tires at the forested site had significantly more species but not more individuals than at the unforested site. Leaf amount was a good predictor of densities of Oc. triseriatus and overall abundance of mosquitoes in the forest, whereas the amount of seeds was a good predictor of overall invertebrate richness and of Oc. triseriatus numbers in the unforested site. Differences in mosquito assemblage composition between forested and unforested locations may be explained by greater inputs of plant-based detritus and some nutrients, but other factors, such as macrohabitat or host preferences of adult mosquitoes, also may be important. PMID:18260510

  8. [Studies on the massive flights of chironomid midges (Diptera: Chironomidae) as nuisance insects and plans for their control in the Lake Suwa area, central Japan. 2. Quantitative evaluations of the nuisance of chironomid midges].

    PubMed

    Hirabayashi, K

    1991-06-01

    In order to make clear the present "nuisance" caused by chironomid midges around a eutrophic lake, a questionnaire survey of 249 leaders of the Hygiene Self-governing Association of the cities of Suwa and Okaya and the town of Shimosuwa near Lake Suwa was conducted. The results are as follows: 1. More than 90% of the respondents had specific knowledge about the chironomid midge, but 40% of them didn't know about its role as a purifier in the lake. 2. More than 10% of respondents answered that they were "can not able to stand any more" massive flights of chironomid midges, and about half of them lived within 500 m of the lake shore. The damages "nuisances" were "running laundry or defacing walls (67.1%) and "contamination of food (15.3%)", suggesting that chironomid midges influenced the daily life of the residents. 3. The selected causes of massive flights of chironomid midges were "pollution in Lake Suwa" and "decreases in the numbers of birds and dragonflies" as well as others. This means that the deterioration of the environmental situation around the lake may cause the "nuisance" of chironomid midges. 4. The respondents were more strongly interested in counterplans for the control of the chironomid midges made by administrative authorities than in plans made by each family. 5. "The distance from the lake shore" was the major factor contributing to the impression of chironomid damage. "The occupation of the respondent" was the second important factor. To redirect the insect flights away from the residential area, and to decrease the number of adult midges coming from the lake, are thought to be the most important measures for the resolution of this problem. PMID:1890774

  9. Studies on the chironomid midges (Diptera, Chironomidae) of the Nansei Islands, southern Japan.

    PubMed

    Sasa, M

    1990-06-01

    The Nansei Islands are located in the subtropical zone of the western Pacific Ocean between Kyushu and Taiwan, and are composed of the two main island groups, the Amami and the Ryukyu Archipelagoes. This area has been known for the presence of a number of indigenous animal species. Prior to the present studies, collections of the chironomids mainly in the urban areas of the three main islands of the Ryukyus were carried out by Sasa and Hasegawa, and a total of 42 species, including 25 new species, were recorded. Additional collections of the chironomids mainly in the mountainous areas of this region were carried out by the present author during 1988 and 1989, and a total of 26 species (including 12 new species) were recorded from Amami Island, and a total of 27 species (including 10 new species) were recorded from the Ryukyu Islands. Eight species among them, including 3 new species, were common to the two archipelagos. PMID:2214255

  10. Studies on the chironomid midges (Diptera, Chironomidae) of the Nansei Islands, southern Japan.

    PubMed

    Sasa, M

    1990-06-01

    The Nansei Islands are located in the subtropical zone of the western Pacific Ocean between Kyushu and Taiwan, and are composed of the two main island groups, the Amami and the Ryukyu Archipelagoes. This area has been known for the presence of a number of indigenous animal species. Prior to the present studies, collections of the chironomids mainly in the urban areas of the three main islands of the Ryukyus were carried out by Sasa and Hasegawa, and a total of 42 species, including 25 new species, were recorded. Additional collections of the chironomids mainly in the mountainous areas of this region were carried out by the present author during 1988 and 1989, and a total of 26 species (including 12 new species) were recorded from Amami Island, and a total of 27 species (including 10 new species) were recorded from the Ryukyu Islands. Eight species among them, including 3 new species, were common to the two archipelagos.

  11. Starvation metabolism of two common species of chironomids in Biandantang Lake

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Yan, Yunjun

    2006-12-01

    Starvation metabolism is one of the important parts of respiration for normal activities of chironomids. During April 1996 to March 1997, the relationships of starvation metabolism and temperature, body weight of two common chironomids in Biandantang Lake were carefully investigated. The results showed relationship between starvation metabolism ( R, mgO2/ind.d) and body weight ( Ww, mg wet wt) was: Chironomus plumosus lg R=-2.573+1.0211g Ww (5°C), lg R=-2.710+1.354lg Ww (10°C), lg R=-1.824+0.823 lg Ww (15°C), lg R=-1.364+0.442lg, Ww (20°C), lg R=-2.763+1.517lg Ww (25°C); and Tokunagayusurika akamusi, lg R=-2.390+0.752lg Ww (5°C), lg R=-1.978+0.710lg Ww (10°C), lg R=-1.676+0.648lg Ww (15°C), lg R=-1.517+0.650lg Ww (20°C), lg R=-2.434+1.290lg Ww (25°C). Relationship of starvation metabolism and temperature ( T, °C) was: C. plumosus, R=-0.051+0.021 T-0.0006 T 2; T. akamusi, R=-0.051+0.021 T-0.0006 T 2. The complex relationship of the three parameters was: C. plumosus, R=0.0098 Ww 0.3882e0.1068 T ; T. akamusi, R=0.0012 Ww 1.1936e0.0711 T . With the above regressions, the estimated annual starvation metabolisms of the two chironomid species in Biandantang Lake were: C. plumosus, 24.2791 kJ/m2.a; T. akamusi, 8.7864 kJ/m2.a, respectively. This provides a firm foundation for the comparative study of bioenergetics of the chironomids.

  12. Use of chironomid deformities in field and laboratory assessments of contaminated sediments

    SciTech Connect

    Canfield, T.J.; Kemble, N.E.; Ingersoll, C.G.

    1995-12-31

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR), the Saint Croix River (SCR), Wisconsin, the Clark Fork River (CFR)/Milltown Reservoir (MR) Superfund Site, Montana, and three Great Lakes rivers classified as Areas of Concern (AOC). Contamination consisted of organic and inorganic contaminants at the UMR and AOC sites, and primarily heavy metals in the CFR/MR sites. Samples were collected with a ponar grab sampler from stations in Indiana Harbor, IN (n = 7), Buffalo River, NY (n = 10), Saginaw River, MI (1989 n = 7; 1990, n = 7), Upper Mississippi River (n = 24), Clark Fork River (n = 6), and Milltown Reservoir (n = 7). Compared to literature values for incidence of deformities in uncontaminated sediments, frequency of chironomid mouthpart deformities was significantly greater at most stations sampled from the AOC sites, with only a few stations sampled from the CFR/MR and UMR sites having significantly greater incidence of mouthpart deformities. Occurrence of mouthpart deformities ranged from 0 to 100% at stations from the AOC`S, 0 to 18% at CFR/MR stations, and 0 to 13% at UMR stations. Sediment contamination was generally lowest in UMR samples and highest in AOC samples. These data show organic contaminants may have a greater potential for causing teratogenic effects in chironomid mouthparts. Frequency of mouthpart deformities in Chironomus riparius laboratory exposures to contaminated sediments from all AOC and CFR sites were evaluated and analysis shows that frequency of mouthpart deformities from laboratory-exposed chironomids are generally lower than those found in field-collected samples. Additional analysis of chironomid laboratory cultures background deformity levels which must be addressed before laboratory evaluations can be used with reliability.

  13. Sediment toxicity and deformities of chironomid larvae in Lake Piediluco (Central Italy).

    PubMed

    Di Veroli, Alessandra; Selvaggi, Roberta; Pellegrino, Roberto Maria; Goretti, Enzo

    2010-03-01

    The chemical analysis of the bottom sediments of the Lake Piediluco (Central Italy) has been carried out in order to individuate the potential correlation between the sediment toxicity and the high incidence of mouthpart deformities in chironomid larvae (biological indicators) found in this lake. The environmental contamination has been analyzed by determining the concentrations of the main heavy metals (lead, copper, cadmium, chromium, zinc and nickel), and the concentrations of organic compounds of anthropic source: PAHs, NPPs and OCPs. Heavy metals concentrations have pointed out a non-elevated contamination grade for the Lake Piediluco. The highest level of metals has been detected in the western area that feels the effect of the continuous tributaries incoming load. Also, concerning PAHs, NPPs and OCPs the lake does not present high values of pollution. The highest concentrations of the organic toxicants has been observed in the eastern sector of the lake, which presents typical lentic characteristics. A clear relationship has not found between the toxic substances present in the lacustrine sediments and the deformities incidence for chironomid larvae, which represent an index of environmental alteration. Probably, the mouthpart deformities found in the chironomid larvae of Chironomus plumosus are affected by a synergic action due to the whole toxic mixture present in the sediments of the Lake Piediluco. PMID:20172586

  14. Use of chironomids (Diptera: Chironomidae) as bioindicators of contaminant stress: Biochemical, chromosomal and developmental measures

    SciTech Connect

    Ciborowski, J.J.H.; Cervi, L.; Sinasac, D.; Pardalis, G.; Day, K.

    1995-12-31

    Sublethal environmental stresses produce effects ranging from subtle biochemical changes that protect an organism from damage, through developmental effects that interfere with growth and compromise fitness. Benthic chironomids live in intimate contact with the sediments to which most persistent chemicals are bound. Their short life cycle and unique developmental and genetic structure make them excellent candidates as biological indicators of stress. The authors evaluated the short and long-term responses of Chironomus riparius larvae to contaminants. To determine short-term stress responses, third and fourth instar Chironomus larvae were exposed to up to 1.5 {micro}L/g creosote or up to 100 {micro}g/g Cd for 12 h. Creosote-exposed larvae exhibited proteins of a molecular weight consistent with production of heat shock proteins of the HSP 70 family. Exposure to Cd induced significant enlargement of Balbiani Rings of the 4th chromosome in chironomid salivary glands, indicative of increased transcription of RNA precursors to salivary mucoproteins. Chironomus larvae individually reared from second instar larvae at [Cd] up to 40 {micro}g/g sediment exhibited increased incidence of mentum deformities, and delayed development that resulted in larger size at pupation. Thus deformities are biologically relevant indicators of stress. Overall, the results confirm the potential of chironomids as relevant bioindicators of contaminant stress.

  15. Holocene lake level fluctuations of a small alpine lake in the Qilian Mountains, NW China: a comparison of chironomid, ostracod, pollen and geochemistry data.

    NASA Astrophysics Data System (ADS)

    Mischke, S.; Herzschuh, U.

    2003-04-01

    A core of 14 m length was drilled in a small alpine lake in the Qilian Mountains, NW China. The lake Luanhaizi has a drainage area of about 30 km2 and is situated at an altitude of 3200 m which represents the altitude of the present regional upper timberline. Due to the small size of the open-basin lake (surface area about 1 km2) and the sharply outlined catchment area the lake is regarded as a very sensitively and rapidly responding ecosystem. Analyses of ostracod shells, head capsules of larval chironomids and pollen and spores were conducted and the organic and carbonate content (LOI), element concentrations and magnetic susceptibility of core samples determined. Ostracod taxa mainly comprise Candona candida, C. neglecta, C. rawsoni, Cyclocypris ovum, Cypridopsis vidua, Fabaeformiscandona caudata, F. danielopoli, F. hyalina, Herpetocypris chevreuxi, Heterocypris salina, Ilyocypris cf. bradyi, I. echinata, I. lacustris and Limnocythere inopinata. They may be used to distinguish periods of low lake levels corresponding to a dense cover of aquatic plants at the lake bottom from stages of higher lake levels and a corresponding decrease in macrophytes at the core site. Chironomid taxa belonging to Chironomus, Cladopelma, Glyptotendipes, Micropsectra, Paratanytarsus, Polypedilum, Psectrocladius and Tanytarsus further provide information on variations in benthic oxygen availability and lake level fluctuations. Several units of the core show high abundances of pollen and spores of higher aquatic and wetland plants and fungi (Cyperaceae, Hippuris, Myriophyllum and Glomus) indicating low lake levels. In contrast, algae such as Botryococcus, Pediastrum and Tetraedron were regarded to reflect higher water levels. Typha angustifolia-type, Typha latifolia, Alisma and Potamogeton were recorded in low abundances as well. The organic content of core samples averages 6 % displaying four alternating stages of distinct minima and maxima. Lowest values of about 1 % occur at the core

  16. Larvae of Chironomids (Insecta, Diptera) Encountered in the Mantle Cavity of Zebra Mussels, Dreissena polymorpha (Bivalvia, Dreissenidae)

    NASA Astrophysics Data System (ADS)

    Mastitsky, Sergey E.; Samoilenko, Vera M.

    2005-02-01

    The paper includes data on species composition of chironomid larvae which were encountered in the mantle cavity of zebra mussels (Dreissena polymorpha) within 7 waterbodies in the Republic of Belarus. All were found to be free-living species commonly present in periphyton and/or benthos. A long-term study of the seasonal dynamics of these larvae in Dreissena did not reveal any typical pattern. Our data suppose that chironomids do not have an obligate association with zebra mussels and possibly enter their mantle cavity inadvertently.

  17. Chironomid assemblages along environmental gradients in New York City's drinking water tributaries, New York, USA.

    NASA Astrophysics Data System (ADS)

    Kratzer, E. B.; Jackson, J. K.; Arscott, D. B.; Aufdenkampe, A. K.; Dow, C. L.; Kaplan, L. A.; Newbold, J. D.; Sweeney, B. W.

    2005-05-01

    Chironomidae are diverse and abundant in streams and rivers and are often included in water quality and pollution evaluations. We examined distribution patterns of chironomid genera from 60 sites in the 2 regions (East and West of the Hudson River) that are the source of New York City's drinking water. These watersheds range from forested to urbanized. Average midge density ranged from 3320-68813/m2 across all sites, and a total of 75 genera were identified over 3 years. Orthocladius and Cricotopus were the most abundant genera in both regions. Tanytarsus and Sublettea were also abundant in the West whereas Micropsectra and Eukiefferiella were abundant in the East. Multivariate analyses suggest that midge assemblages differed along land cover gradients. Nonmetric Multidimensional Scaling explained 73% of the spatial variation in chironomid assemblages from the western region, and 86% of the spatial variation from the eastern region. Western axes were correlated with population density and total roads in the watershed, percent cropland and farmsteads, and numerous other variables associated with agriculture and development. Eastern axes were correlated with wastewater treatment plant discharge, chlorophyll, total roads, and transportation land cover. Some genera-specific abundance responses were associated with certain land cover gradients.

  18. Chironomid larvae inhabiting bromeliad phytotelmata in a fragment of the Atlantic Rainforest in Rio de Janeiro State.

    PubMed

    Sodré, V M; Rocha, O; Messias, M C

    2010-08-01

    A study of chironomids (Diptera, Chironomidae) occurring in phytotelmata of Bromeliaceae was carried out in a fragment of the Atlantic Rain Forest in an area of the city of Magé, Pau Grande, one of the metropolitan areas of Rio de Janeiro City, during a period of 13 months between September 2006 and September 2007. Eight samplings were performed at intervals of 1 (1/2) months and the content of the phytotelmata of the bromeliad species Neoregelia concentrica (Vellozo) L.B. Smith, 1934 and Aechmea nudicaulis (Linnaeus) Grisebach, 1864, were examined. A taxonomical inventory and evaluation of the numerical abundance of Chironomidae larvae were performed in 50 specimens of the bromeliads, being 13 individuals of N. concentrica and 37 of A. nudicaulis. Three taxa of Chironomidae belonging to three distinct subfamilies were recorded: Polypedilum sp., Orthocladiinae genus A and Monopelopia sp. A total of 293 individuals of Chironomidae, were recorded, being 9 Polypedilum sp., 233 Orthocladiinae genus A, and 51 Monopelopia sp., the latter representing the first record of Monopelopia in phytotelmata in Rio de Janeiro State. Considering all samples, a mean density of 3.32 +/- 2.62 chironomid larvae per phytotelmata was recorded. There was a positive relationship between the chironomid abundance and both precipitation and the volume of water in the phytotelmata. Apparently there is no preference by the chironomids regarding the colonistion of the bromeliad species.

  19. Metacommunity patterns in larval odonates.

    PubMed

    McCauley, Shannon J; Davis, Christopher J; Relyea, Rick A; Yurewicz, Kerry L; Skelly, David K; Werner, Earl E

    2008-11-01

    The growth of metacommunity ecology as a subdiscipline has increased interest in how processes at different spatial scales structure communities. However, there is still a significant knowledge gap with respect to relating the action of niche- and dispersal-assembly mechanisms to observed species distributions across gradients. Surveys of the larval dragonfly community (Odonata: Anisoptera) in 57 lakes and ponds in southeast Michigan were used to evaluate hypotheses about the processes regulating community structure in this system. We considered the roles of both niche- and dispersal-assembly processes in determining patterns of species richness and composition across a habitat gradient involving changes in the extent of habitat permanence, canopy cover, area, and top predator type. We compared observed richness patterns and species distributions in this system to patterns predicted by four general community models: species sorting related to adaptive trade-offs, a developmental constraints hypothesis, dispersal assembly, and a neutral community assemblage. Our results supported neither the developmental constraints nor the neutral-assemblage models. Observed patterns of richness and species distributions were consistent with patterns expected when adaptive tradeoffs and dispersal-assembly mechanisms affect community structure. Adaptive trade-offs appeared to be important in limiting the distributions of species which segregate across the habitat gradient. However, dispersal was important in shaping the distributions of species that utilize habitats with a broad range of hydroperiods and alternative top predator types. Our results also suggest that the relative importance of these mechanisms may change across this habitat gradient and that a metacommunity perspective which incorporates both niche- and dispersal-assembly processes is necessary to understand how communities are organized. PMID:18781330

  20. Rehydration of forensically important larval Diptera specimens.

    PubMed

    Sanford, Michelle R; Pechal, Jennifer L; Tomberlin, Jeffery K

    2011-01-01

    Established procedures for collecting and preserving evidence are essential for all forensic disciplines to be accepted in court and by the forensic community at large. Entomological evidence, such as Diptera larvae, are primarily preserved in ethanol, which can evaporate over time, resulting in the dehydration of specimens. In this study, methods used for rehydrating specimens were compared. The changes in larval specimens with respect to larval length and weight for three forensically important blow fly (Diptera: Calliphoridae) species in North America were quantified. Phormia regina (Meigen), Cochliomyia macellaria (F.), and Chrysomya rufifacies (Macquart) third-instar larvae were collected from various decomposing animals and preserved with three preservation methods (80% ethanol, 70% isopropyl alcohol, and hot-water kill then 80% ethanol). Preservative solutions were allowed to evaporate. Rehydration was attempted with either of the following: 80% ethanol, commercial trisodium phosphate substitute solution, or 0.5% trisodium phosphate solution. All three methods partially restored weight and length of specimens recorded before preservation. Analysis of variance results indicated that effects of preservation, rehydration treatment, and collection animal were different in each species. The interaction between preservative method and rehydration treatment had a significant effect on both P. regina and C. macellaria larval length and weight. In addition, there was a significant interaction effect of collection animal on larval C. macellaria measurements. No significant effect was observed in C. rufifacies larval length or weight among the preservatives or treatments. These methods could be used to establish a standard operating procedure for dealing with dehydrated larval specimens in forensic investigations.

  1. Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with Radioresistance

    PubMed Central

    Vanyagina, Veronica; Malutina, Ludmila; Cornette, Richard; Sakashita, Tetsuya; Hamada, Nobuyuki; Kikawada, Takahiro; Kobayashi, Yasuhiko; Okuda, Takashi

    2010-01-01

    Anhydrobiotic chironomid larvae can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Furthermore, while the larvae had restored physiological activity within an hour following rehydration, nuclear DNA restoration typically took 72 to 96 h. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated larvae after anhydrobiosis were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He). In contrast, low-LET radiation (gamma-rays) of the same dose caused less initial damage to the larvae, and DNA was completely repaired within within 24 h. The expression of genes encoding the DNA repair enzymes occurred upon entering anhydrobiosis and exposure to high- and low-LET radiations, indicative of DNA damage that includes double-strand breaks and their subsequent repair. The expression of antioxidant enzymes-coding genes was also elevated in the anhydrobiotic and the gamma-ray-irradiated larvae that probably functions to reduce the negative effect of reactive oxygen species upon exposure to these stresses. Indeed the mature antioxidant proteins accumulated in the dry larvae and the total activity of antioxidants increased by a 3–4 fold in association with anhydrobiosis. We conclude that one of the factors explaining the relationship between radioresistance and the ability to undergo anhydrobiosis in the sleeping chironomid could be an adaptation to desiccation-inflicted nuclear DNA damage. There were also similarities in the molecular response of the larvae to damage caused by

  2. Variation in salinity tolerance among larval anurans: implications for community composition and the spread of an invasive, non-native species

    USGS Publications Warehouse

    Brown, Mary E.; Walls, Susan C.

    2013-01-01

    Amphibians in freshwater coastal wetlands periodically experience acute exposure to salinity from hurricane-related overwash events, as well as chronic exposure associated with rising sea levels. In a comparative experimental approach, we examined whether seven species of anuran amphibians vary in their tolerance to changes in salinity. In a laboratory study, we exposed larval Hyla cinerea (Green Treefrog), H. squirella (Squirrel Treefrog), Lithobates catesbeianus (American Bullfrog), L. sphenocephalus (Southern Leopard Frog), Anaxyrus terrestris (Southern Toad), and Gastrophryne carolinensis (Eastern Narrow-mouthed Toad) from an inland population in north central Florida, USA, and Osteopilus septentrionalis (Cuban Treefrog) tadpoles from an inland population in southwest Florida, to acute salinity for 72 h. For each species, we replicated trials in which tadpoles were exposed to salinities of 0.2 (control), 5, 10, 12, 14, and 16 ppt. For all species, tadpoles reared in the control and 5 ppt treatments had 96.7–100% survival. No individuals of G. carolinensis survived at salinities exceeding 5 ppt and no individuals of any species survived in the 14 or 16 ppt treatments. For all other native species, survival at 10 ppt ranged from 46.7 to 80%, but declined to 0% at 12 ppt (except for H. cinerea, of which only 3.3% survived at 12 ppt). In contrast, all individuals of the invasive, non-native O. septentrionalis survived exposure to a salinity of 10 ppt, and survival in this species remained relatively high at 12 ppt. Our results illustrate that the non-native O. septentrionalis has a higher salinity tolerance than the native species tested, which may contribute to its invasion potential. Moreover, species commonly associated with coastal freshwater wetlands differ in their salinity tolerances, suggesting that salt water intrusion due to storm surges and sea level rise may affect the species composition of these ecosystems.

  3. Using Chironomid-Based Transfer Function and Stable Isotopes for Reconstructing Past Climate in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Chang, J.; Shulmeister, J.; Woodward, C.

    2014-12-01

    A transfer-function based on chironomids was created to reconstruct past summer temperatures from a training set comprised of 33 south eastern Australian lakes. Statistical analyses show that mean February temperature (MFT) is the most robust and independent variable explaining chironomid species variability. The best MFT transfer function was a partial least squares (PLS) model with a coefficient of determination (r2Jackknifed) of 0.69, a root mean squared error of prediction (RMSEP) of 2.33˚C, and maximum bias of 2.15°C. The transfer function was tested by applying it to a Late Glacial to Holocene record from Blue Lake, New South Wales using published data. The reconstruction displays an overall pattern very similar to the Milankovitch driven summer insolation curve for 30°S and to the chironomid based summer temperature reconstruction from Eagle Tarn, Tasmania (Rees and Cwynar 2010) suggesting that the model is robust. The transfer function was also applied to reconstruct the Last Glacial Maxium (LGM) summer temperature from Welsby Lagoon, North Stradbroke Island (Queensland). Preliminary results show a c. 4.2~8.6˚C of cooling in summer temperatures during the LGM from south east Australia. Stable oxygen and deuterium isotope composition (δ18O and δD) of the chitnous subfossil head capsules from Australian chironomids were also measured to explore the opportunity developing them as an independent temperature proxy. This is the first application of this technique in the Southern Hemisphere. The modern range of chironomid δ18O values were measured based on the same 33 lakes sampled for the transfer function. For these lakes, head capsules of single genera were picked to avoid complications from 'vital effects'. The relationship of chironomid δ18O to modern lake temperatures has been investigated. Deuterium (δD) on the head capsules has been measured concurrently and the relationship to climate and environment will be explored based on the latest available

  4. A numerical analysis of carbon dynamics of the Southern Ocean phytoplankton community: the roles of light and grazing in effecting both sequestration of atmospheric CO 2 and food availability to larval krill

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Dieterle, Dwight A.; Lenes, Jason

    2001-01-01

    Reduced ice extent within coastal regions of the Southern Ocean may lead to deeper surface mixed layers (SML), as prevail in offshore areas. A future decline of ice melt-induced stability of the water column may be associated with a shift in dominant food webs, from larger, sun-adapted diatoms grazed by euphausiids to smaller, shade-adapted flagellates consumed by salps. A basically one-dimensional numerical model of three dominant groups of the Antarctic phytoplankton community (diatoms, cryptophytes, and colonial prymnesiophytes) and four types of herbivore (protozoans, salps, copepods, and euphausiids) is used to explore the seasonal importance of both light limitation and grazing pressure on the amount of annual carbon sequestration and larval krill survival within contrasting oceanic and neritic waters, where respective validation data have been gathered during austral spring by the European JGOFS and RACER programs. With imposition of moderate and large grazing stresses, thought to be typical of offshore waters, we were able to replicate the European JGOFS 1992 observations of light penetration, phytoplankton biomass, primary production, pCO 2, bacterial biomass, labile DOC, ammonium, and total particle effluxes at 100 m within the deep SML of our model. The fidelity of such a large set of simulated state variables suggests that multiple limiting factors are indeed operating on different components of the oceanic phytoplankton community — selective grazing losses on the flagellates, but light limitation of diatoms. Release of protozoan grazing pressure in our model instead leads to unobserved spring blooms of cryptophytes, found only in laboratory enclosures. On an annual basis, weak sequestration of atmospheric CO 2 is simulated in a habitat typical of the Polar Front, while evasion of carbon dioxide occurs under biophysical conditions of the Antarctic Circumpolar Current. Stratification in shallow SML and the same absolute grazing demands by krill and

  5. Late Quaternary paleoclimate of western Alaska inferred from fossil chironomids and its relation to vegetation histories

    USGS Publications Warehouse

    Kurek, Joshua; Cwynar, Les C.; Ager, Thomas A.; Abbott, Mark B.; Edwards, Mary E.

    2009-01-01

    Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000-34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5C° below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.

  6. Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki

    PubMed Central

    Sakurai, Minoru; Furuki, Takao; Akao, Ken-ichi; Tanaka, Daisuke; Nakahara, Yuichi; Kikawada, Takahiro; Watanabe, Masahiko; Okuda, Takashi

    2008-01-01

    Anhydrobiosis is an extremely dehydrated state in which organisms show no detectable metabolism but retain the ability to revive after rehydration. Thus far, two hypotheses have been proposed to explain how cells are protected during dehydration: (i) water replacement by compatible solutes and (ii) vitrification. The present study provides direct physiological and physicochemical evidence for these hypotheses in an African chironomid, Polypedilum vanderplanki, which is the largest multicellular animal capable of anhydrobiosis. Differential scanning calorimetry measurements and Fourier-transform infrared (FTIR) analyses indicated that the anhydrobiotic larvae were in a glassy state up to as high as 65°C. Changing from the glassy to the rubbery state by either heating or allowing slight moisture uptake greatly decreased the survival rate of dehydrated larvae. In addition, FTIR spectra showed that sugars formed hydrogen bonds with phospholipids and that membranes remained in the liquid-crystalline state in the anhydrobiotic larvae. These results indicate that larvae of P. vanderplanki survive extreme dehydration by replacing the normal intracellular medium with a biological glass. When entering anhydrobiosis, P. vanderplanki accumulated nonreducing disaccharide trehalose that was uniformly distributed throughout the dehydrated body by FTIR microscopic mapping image. Therefore, we assume that trehalose plays important roles in water replacement and intracellular glass formation, although other compounds are surely involved in these phenomena. PMID:18362351

  7. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies.

    PubMed

    Di Veroli, A; Santoro, F; Pallottini, M; Selvaggi, R; Scardazza, F; Cappelletti, D; Goretti, E

    2014-10-01

    Mouthpart deformities of Chironomus riparius larvae (Diptera) have been investigated to evaluate the toxic effects of contamination by heavy metals in the Genna Stream (Central Italy), situated in an area subjected to intensive swine farms (40000 heads). The livestock farming (fertirrigation) contributes to metal pollution of the Genna Stream with an increase of copper, zinc, cadmium, chromium and nickel in the sediments of the downstream stations. The incidence of mentum deformities was very high at all sampling stations, about 56%. The highest values of deformities were found in the intermediate river reach (St. 3: 65%) and in March (66%), mainly due to an increase in severe deformities. The high incidence of severe deformities (30%) is attributed to the high pollution level by heavy metals in the sediments, in particular to copper and zinc, which showed the highest average value at St. 3 and in March. This field study reflected the relationships between sediment metal concentrations and chironomid mouthpart deformities, previously observed in laboratory tests, and highlighted these deformities as toxicity endpoints. This feature paves the way for their use as an effective tool in freshwater bioassessment monitoring programs to evaluate the toxic effects of metal contamination in freshwater ecosystems. PMID:25048882

  8. Chironomid egg masses harbour the clinical species Aeromonas taiwanensis and Aeromonas sanarellii.

    PubMed

    Beaz-Hidalgo, Roxana; Shakèd, Tamar; Laviad, Sivan; Halpern, Malka; Figueras, María J

    2012-12-01

    Bacteria of the genus Aeromonas are found worldwide in aquatic environments and may produce human infections. In 2010, two new clinical species, Aeromonas sanarellii and Aeromonas taiwanensis, were described on the basis of one strain recovered from wounds of hospitalized patients in Taiwan. So far, only four environmental isolates of A. sanarellii and one of A. taiwanensis have been recorded from waste water in Portugal and an additional clinical strain of A. taiwanensis from the faeces of a patient with diarrhoea in Israel. In the present study, strains belonging to these two species were identified from chironomid egg masses from the same area in Israel by sequencing the rpoD gene. This represents a new environmental habitat for these novel species. The first data on the virulence genes and antibiotic susceptibility are provided. The isolates of these two new species possess multiple virulence genes and are sensitive to amikacin, aztreonam, cefepime, cefoxatime, ceftazidime, ciprofloxacin, gentamicin, piperacillin-tazobactam, tigecycline, tobramycin, trimethoprim-sulfamethoxazole and imipenem. The key phenotypic tests for the differentiation of these new species from their closest relative Aeromonas caviae included the utilization of citrate, growth at 45 °C in sheep blood agar and acid production of cellobiose.

  9. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies.

    PubMed

    Di Veroli, A; Santoro, F; Pallottini, M; Selvaggi, R; Scardazza, F; Cappelletti, D; Goretti, E

    2014-10-01

    Mouthpart deformities of Chironomus riparius larvae (Diptera) have been investigated to evaluate the toxic effects of contamination by heavy metals in the Genna Stream (Central Italy), situated in an area subjected to intensive swine farms (40000 heads). The livestock farming (fertirrigation) contributes to metal pollution of the Genna Stream with an increase of copper, zinc, cadmium, chromium and nickel in the sediments of the downstream stations. The incidence of mentum deformities was very high at all sampling stations, about 56%. The highest values of deformities were found in the intermediate river reach (St. 3: 65%) and in March (66%), mainly due to an increase in severe deformities. The high incidence of severe deformities (30%) is attributed to the high pollution level by heavy metals in the sediments, in particular to copper and zinc, which showed the highest average value at St. 3 and in March. This field study reflected the relationships between sediment metal concentrations and chironomid mouthpart deformities, previously observed in laboratory tests, and highlighted these deformities as toxicity endpoints. This feature paves the way for their use as an effective tool in freshwater bioassessment monitoring programs to evaluate the toxic effects of metal contamination in freshwater ecosystems.

  10. Macroinvertebrate Community Responses to the Chemical Removal of Phragmites in a Lake Erie Coastal Wetland

    NASA Astrophysics Data System (ADS)

    Kulesza, A. E.; Holomuzki, J. R.; Klarer, D. M.

    2005-05-01

    The invasive giant reed, Phragmites australis, can quickly form near-monotypic stands in North American wetlands, and as a result, sometimes reduce system biodiversity. However, the effects of Phragmites, and of the glyphosate herbicides used to control it, on trophic structure in benthic communities in these systems are less well known. Our study compares macroinvertebrate, algal, and juvenile fish diversity in replicate 10 x 5 m stands of Typha angustifolia (narrow-leaf cattail), glyphosate-sprayed Phragmites, and unsprayed Phragmites in a Lake Erie coastal wetland in Huron, Ohio. Macroinvertebrate diversity and proportions of functional feeding groups did not differ among stand types. However, overall densities of macroinvertebrates did vary among stands. Snails and larval chironomids and odonates were typically higher in Phragmites than in Typha stands. Interactions between changing water levels, algal densities, and prevailing flow patterns partly explain these outcomes. Ovipositing adult odonates did not prefer a particular stand type. Similarly, captures of juvenile fish did not vary among stands. Our results suggest that Phragmites, at least in small to moderately sized-patches, and herbicide application to these patches, does not detrimentally affect diversity in wetland, benthic communities.

  11. A larval Devonian lungfish.

    PubMed

    Thomson, Keith S; Sutton, Mark; Thomas, Bethia

    2003-12-18

    Perhaps the most enduring of puzzles in palaeontology has been the identity of Palaeospondylus gunni Traquair, a tiny (5-60-mm) vertebrate fossil from the Middle Devonian period (approximately 385 Myr ago) of Scotland, first discovered in 1890 (refs 1-3). It is known principally from a single site (Achanarras Quarry, Caithness) where, paradoxically, it is extremely abundant, preserved in varved lacustrine deposits along with 13 other genera of fishes. Here we show that Palaeospondylus is the larval stage of a lungfish, most probably Dipterus valenciennesi Sedgwick and Murchison 1828 (ref. 5), and that development of the adult form requires a distinct metamorphosis. Palaeospondylus is the oldest known true larva of a vertebrate.

  12. Use of chironomid mentum deformities to assess environmental degradation: A perspective

    SciTech Connect

    Bird, G.A.

    1995-12-31

    The frequency of chironomid mentum deformities was used to assess environmental degradation (ED) at 12 sites in the Yamaska River (YR), Quebec, that were known to be either impacted by agriculture or urban centers, or were relatively clean. Higher frequencies of deformities were associated with the level of pollution at the sites and were in general agreement with the total biotic index of ED. Temporal variation occurred in the incidence of deformities (a difficulty also encountered with other bioassays), including those at a clean site. In the laboratory, Chironomus tentans larvae reared in YR sediment had substantial wear of their mentum teeth compared to larvae reared in four reference substrates. Mentum deformities were observed in the cultured larvae, presumably because of inbreeding and not the effect of treatment. A subsequent study investigated whether exposure to ionizing radiation or a heavy metal would induce deformities. C. tentans larvae were exposed to {sup 210}Pb at 100, 1,000 and 2,000 Bq{center_dot}g{sup {minus}1} dry sediment. No effect was observed on survival, growth or frequency of deformities. Exposure to stable Pb at 0.5 and 5.0 mg{center_dot}g{sup {minus}1} dry sediment also had no effect, but higher concentrations resulted in 100% mortality. However, deformities were present in each treatment, including controls (1 to 8% deformed), and were confined to the median tooth. Similar deformities, as high as 16% of the population, were observed in five remote Canadian Shield lakes at the Experimental Lakes Area, northwestern Ontario. These deformities can be considered natural abnormalities and are of common occurrence. Natural abnormalities must be considered when using this system as an index of environmental degradation.

  13. The use of chironomid deformation in an in situ test for sediment toxicity.

    PubMed

    Meregalli, G; Vermeulen, A C; Ollevier, F

    2000-11-01

    An in situ bioassay using mouthpart deformities in Chironomus riparius larvae was developed to monitor sediment toxicity. Second-instar larvae, along with a standardized amount of food and sediment taken from the study locations, were enclosed in cages that were placed on the sediment surface of rivers. Mouthpart deformities were screened after larval molting to the fourth instar (exposure time: 7-10 days). Mouthpart deformities of caged and field larvae (when present) were related to the estimated sediment toxicity. By summing toxicant concentrations and normalizing them to the organic matter and clay contents, a significant relationship between toxicity levels and mouthpart deformities in the mentum was revealed. Results suggest that the pattern of observed deformities was indicative of site toxicity rather than a characteristic of the laboratory larval population used. The main advantage of the proposed in situ bioassay is the possibility to assess the incidence of deformities at sites where C. riparius does not occur naturally. PMID:11139175

  14. Assessing chironomid deformities in field- and laboratory-exposed organisms from organic- and metal-contaminated sediments

    SciTech Connect

    Canfield, T.J.; Kemble, N.E.; Ingersoll, C.G.

    1994-12-31

    Benthic invertebrate samples were collected from three Great Lakes harbors classified as Areas of concern (AOC) and from the Clark Fork River Superfund Site (CFR) in Montana. Contamination consists of organic and inorganic contaminants at the AOC sites and primarily heavy metal tailings and mining wastes in the CFR sites. Samples were collected with a ponar grab sampler from stations in Indiana Harbor, IN (1989, n = 7), the Buffalo River, NY (1989, n = 10), the Saginaw River, MI (1989, n = 7; 1990, n = 7), and the Clark Fork River (1991, n = 13). Compared to literature values for incidence of deformities in uncontaminated sediments, frequency of Chironomid mouthpart deformities was significantly greater at most stations sampled from the AOC sites. In contrast, only a few stations sampled from the CFR sites had significantly greater incidence of mouthpart deformities. Occurrence of mouthpart deformities ranged from 0 to 100% at the stations from the AOC`s and from 0 to 18% at the CFR stations. These mouthpart deformities in Chironomus riparius laboratory exposures to contaminated sediments from all AOC and CFR sites were evaluated and compared to frequencies found in field collected samples. Preliminary analysis indicates that frequency of mouthpart deformities from laboratory exposed chironomids are generally lower than those found in field collected samples.

  15. Potential use of acetylcholinesterase, glutathione-S-transferase and metallothionein for assessment of contaminated sediment in tropical chironomid, Chironomus javanus.

    PubMed

    Somparn, A; Iwai, C B; Noller, B

    2015-11-01

    Heavy metals and organophosphorus insecticide is known to act as disruptors for the enzyme system, leading to physiologic disorders. The present study was conducted to investigate the potential use of these enzymes as biomarkers in assessment of contaminated sediments on tropical chironomid species. Acetylcholinesterase (AChE), glutathione-S-transferase (GST) and metallothionein (MT) activity was measured in the fourth-instar chironomid larvae, Chironomus javanus, Kieffer, after either 48-hr or 96-hr exposure to organophosphorus insecticide, chlorpyrifos (0.01- 0.25 mg kg(-1)) or heavy metal cadmium (0.1-25 mg kg(-1)). Exposure to chlorpyrifos (0.01 mg kg(-1)) at 48 and 96 hr significantly of AChE activity (64.2%-85.9%) and induced GST activity (33.9-63.8%) when compared with control (P < 0.05). Moreover, exposure to cadmium (0.1 mg kg(-1)) at 48 and 96 hr also showed significant increas GST activity (11.7-40%) and MT level (9.0%-70.5%) when compared with control (P < 0.05). The results indicated the impact of enzyme activity on chlorpyrifos and cadmium contamination. Activity of AChE, GST and MT could serve as potential biomarkers for assessment and biomonitoring the effects of insecticide and heavy metal contamination in tropical aquatic ecosystems. PMID:26688973

  16. Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake Gilltjärnen, northern central Sweden

    NASA Astrophysics Data System (ADS)

    Antonsson, Karin; Brooks, Stephen J.; Seppä, Heikki; Telford, Richard J.; Birks, H. John B.

    2006-12-01

    Palaeotemperature reconstructions based on radiocarbon-dated fossil pollen and chironomid stratigraphies obtained from Lake Gilltjärnen provide evidence of climate changes during the last 11 000 years in the boreal zone of northern central Sweden. The records show consistent trends during the early and mid-Holocene, indicating low temperatures at 11 000-10 000 cal. yr BP, followed by a rising trend and a period of maximum values from about 7000 to 4000 cal. yr BP. At 3000 cal. yr BP the chironomid-inferred temperature values rise abruptly, deviating from the late-Holocene cooling trend indicated by the pollen-based reconstruction and most of the other palaeotemperature records from central Scandinavia, probably as a result of local limnological changes in Lake Gilltjärnen and its catchment. Comparison of the present results with a lake-level reconstruction from Lake Ljustjärnen, ca. 100 km southwest of Lake Gilltjärnen, shows that the low early-Holocene temperatures were associated with high lake-levels at 10 500-8500 cal. yr BP, whereas low lake-levels and dry conditions prevailed during the period of high temperatures at between 7500 and 5000 cal.yrBP, probably due to high summer evapotranspiration and lower precipitation. Copyright

  17. Crustacean biodiversity as an important factor for mosquito larval control.

    PubMed

    Kroeger, Iris; Duquesne, Sabine; Liess, Matthias

    2013-12-01

    Newly established ponds, which are highly dynamic systems with changing levels of biological interactions among species, are common larval mosquito habitats. We investigated the impact of crustacean abundance and taxa diversity on mosquito oviposition and larval development. The effects of the biological larvicide Bacillus thuringiensis israelensis (Bti) on mosquito larvae were monitored according to fluctuations in crustacean communities. Populations of the mosquito Culex pipiens colonized artificial ponds that contained crustacean communities at different time points of colonization by crustaceans: 1) 'no colonization' (no crustaceans), 2) 'simultaneous colonization' by crustaceans and mosquitoes, and 3) 'head-start colonization' by crustaceans (preceding colonization by mosquitoes). All types of ponds were treated with three concentrations of Bti (10, 100, or 1,000 µg/liter). Colonization of all ponds by Cx. pipiens (in terms of oviposition, larval abundance, and larval development) decreased significantly with increasing diversity of crustacean taxa. The total abundance of crustaceans had a minor effect on colonization by Cx. pipiens. The presence of crustaceans increased the sensitivity of Cx. pipiens larvae to Bti treatment by a factor of 10 and delayed the time of recolonization. This effect of Bti was relevant in the short term. In the long term, the presence of Cx. pipiens was determined by crustacean biodiversity.

  18. An evaluation of benthic community measures using laboratory-derived sediment effect concentrations

    SciTech Connect

    Dwyer, F.J.; Canfield, T.J.; Ingersoll, C.G.; Kemble, N.E.; Mount, D.R.

    1995-12-31

    Sediment effect concentrations (SECs) are contaminant sediment concentrations which are frequently associated with sediment toxicity. Recently, a number of different SECs have been calculated from laboratory toxicity tests with field collected sediments using Chironomus tentans, Chironomus riparius, and Hyalella azteca. Toxicity endpoints included (depending upon species) lethality, growth and sexual maturation. The authors selected the Effect Range Median (ERM) calculated for 28-d Hyalella azteca as an SEC for evaluating six different benthic community measures as indicators of contaminated sediment. The benthic measures included: taxa richness, chironomid genera richness, percent chironomid deformity, chironomid biotic index, ratio of chironomids/oligochaetes, and oligochaete biotic index. Benthic measures were obtained for 31 stations from the Great Lakes and 13 stations from Milltown Reservoir and Clark Fork River, MT. Each benthic measure was ranked from 1 to 100 and individual ranks and various combinations of ranks were plotted against the ratio of chemical concentration at the site/ERM calculated for that chemical (similar to a toxic unit approach) and the sum of the ERM ratios (sum of toxic units). Preliminary analysis indicates that, in general, benthic measures varied widely in relatively uncontaminated stations, confounding any underlying relationship that may have existed. The absence of chironomids, in areas with suitable habitat, seems to be indicative of grossly contaminated stations, but not an endpoint useful for discriminating stations with contaminant concentrations closer to the SEC. The usefulness of benthic measures as diagnostic tools for contaminated sediments and potential ways to improve these measures will be discussed.

  19. Influences of acid mine drainage and thermal enrichment on stream fish reproduction and larval survival

    USGS Publications Warehouse

    Hafs, Andrew W.; Horn, C.D.; Mazik, P.M.; Hartman, K.J.

    2010-01-01

    Potential effects of acid mine drainage (AMD) and thermal enrichment on the reproduction of fishes were investigated through a larval-trapping survey in the Stony River watershed, Grant County, WV. Trapping was conducted at seven sites from 26 March to 2 July 2004. Overall larval catch was low (379 individuals in 220 hours of trapping). More larval White Suckers were captured than all other species. Vectors fitted to nonparametric multidimensional scaling ordinations suggested that temperature was highly correlated to fish communities captured at our sites. Survival of larval Fathead Minnows was examined in situ at six sites from 13 May to 11 June 2004 in the same system. Larval survival was lower, but not significantly different between sites directly downstream of AMD-impacted tributaries (40% survival) and non-AMD sites (52% survival). The lower survival was caused by a significant mortality event at one site that coincided with acute pH depression in an AMD tributary immediately upstream of the site. Results from a Cox proportional hazard test suggests that low pH is having a significant negative influence on larval fish survival in this system. The results from this research indicate that the combination of low pH events and elevated temperature are negatively influencing the larval fish populations of the Stony River watershed. Management actions that address these problems would have the potential to substantially increase both reproduction rates and larval survival, therefore greatly enhancing the fishery.

  20. Toxicity of CeO2 nanoparticles at different trophic levels--effects on diatoms, chironomids and amphibians.

    PubMed

    Bour, Agathe; Mouchet, Florence; Verneuil, Laurent; Evariste, Lauris; Silvestre, Jérôme; Pinelli, Eric; Gauthier, Laury

    2015-02-01

    The aim of the present work is to provide wider information on the toxicity of cerium dioxide nanoparticles (CeO2 NPs) in aquatic environments, by studying the toxicity of two types of CeO2 NPs for four species (diatoms Nitzschia palea, the sediment-dwelling invertebrate Chironomus riparius, and the amphibian larvae Xenopus laevis and Pleurodeles waltl.). The two types of CeO2 NPs have different intrinsic properties: some of them are small citrate-coated spheres (2-5 nm), and the others are larger uncoated plates (20-60 nm). Acute toxicity (mortality at 48 or 96 h, depending on the test-organism) was assessed for the four species, from 0.1 to 100 mg L(-1) of NPs. Sub-lethal effects were assessed on chironomids exposed between 0.01 and 1 mg L(-1) of NPs. Mortality, growth inhibition and genotoxic effects were evaluated on amphibian larvae from 0.1 to 10 mg L(-1). Results reveal that no acute toxicity occurs on any species after short exposures, even at the highest concentrations. Mortality (35%) is observed on Xenopus larvae after 12d of exposure at the highest concentration of one type of NPs. No significant effects were observed on chironomids during chronic exposure. Xenopus larvae growth was inhibited from 1 mg L(-1) of both NPs while growth inhibition is observed on Pleurodeles only at the highest concentration of one type of NPs. No genotoxicity was observed on Xenopus but Pleurodeles exhibited dose-dependent genotoxic effects when exposed to one type of NPs. Observed differences in toxicity are discussed focusing on the studied compartment, routes of exposure, species and NPs.

  1. Diet of first-feeding larval and young-of-the-year white sturgeon in the lower Columbia River

    USGS Publications Warehouse

    Muir, W.D.; McCabe, G.T.; Parsley, M.J.; Hinton, S.A.

    2000-01-01

    In some Snake and Columbia River reservoirs, adult white sturgeon (Acipenser transmontanus) are common but few juvenile fish are found, indicating a lack of spawning success or poor survival of larvae. In contrast, recruitment of young-of-the-year white sturgeon to juvenile and adult stages is successful in the unimpounded Columbia River downstream of Bonneville Dam. The availability and size of preferred prey during the period when white sturgeon larvae begin exogenous feeding could be an important determinant of year-class strength. To explore this issue, we examined the diet composition of 352 larval and young-of-the year white sturgeon collected from 1989 through 1991 in the lower Columbia River. Samples were collected downstream from Bonneville Dam and upstream from the dam in Bonneville and The Dalles Reservoirs. Fish that ranged in size from 15 to 290 mm in total length fed primarily on gammarid amphipods (Corophium spp.) during all months. This diet item became increasingly important to all sizes of white sturgeon examined as they grew. The length of Corophium spp. eaten by larval and young-of-the-year white sturgeon increased with increasing fish length (r2 = 45.6%, P < 0.0001). Copepods (Cyclopoida), Ceratopogonidae larvae, and Diptera pupae and larvae (primarily chironomids) were also consumed, especially at the onset of exogenous feeding. A small percentage of white sturgeon were found with empty stomachs during June (1.6% downstream from Bonneville Dam) and July (4.5% downstream and 2.6% in the reservoirs). Diets of larval and young-of-the year white sturgeon from both impounded and free-flowing sections of the Columbia River were similar and we found no evidence of larval starvation in the areas investigated, areas currently supporting healthy white sturgeon populations.

  2. Holocene temperature variations at a high-altitude site in the Eastern Alps: a chironomid record from Schwarzsee ob Sölden, Austria

    PubMed Central

    Ilyashuk, Elena A.; Koinig, Karin A.; Heiri, Oliver; Ilyashuk, Boris P.; Psenner, Roland

    2011-01-01

    Few well-dated, quantitative Holocene temperature reconstructions exist from high-altitude sites in the Central Eastern Alps. Here, we present a chironomid-based quantitative reconstruction of mean July air temperatures (TJuly) throughout the Holocene for a remote high-mountain lake, Schwarzsee ob Sölden, situated above the treeline at 2796 m a.s.l. in the Austrian Alps. Applying a chironomid-temperature inference model developed from lakes of the Alpine region to a high-resolution chironomid record from the lake provides evidence for early Holocene (ca 10000–8600 cal yr BP) TJuly of up to 8.5 °C, i.e. >4 °C above the modern (1977–2006) mean July temperature. The reconstruction reveals the so-called ‘8.2-ka cold event’ centered at ca 8250–8000 cal yr BP with temperatures ca 3 °C below the early-Holocene thermal maximum. Rather warm (ca 6 °C) and productive conditions prevailed during ca 7900–4500 cal yr BP. The chironomid record suggests a climate transition between ca 5200 and 4500 cal yr BP to cooler TJuly. A distinct cooling trend is evident from ca 4500 until ca 2500 cal yr BP. Thereafter, the study site experienced its coldest conditions (around 4 °C or less) throughout the rest of the Holocene, with the exception of the warming trend during the late 20th century. Beside other factors, the Northern Hemisphere summer insolation seems to be the major driving force for the long-term trends in TJuly at high altitudes in the Eastern Alps. Due to the extreme location of the lake and the limited temperature range represented by the applied calibration data set, the chironomid-based temperature reconstruction fails to track phases of the late-Holocene climatic history with TJuly cooler than 4 °C. Further chironomid-based palaeoclimate model and down-core studies are required to address this problem, provide more realistic TJuly estimates from undisturbed high-altitude lakes in the Alps, and extract a reliable regional

  3. Exposure to 17 alpha-ethinylestradiol and bisphenol A--effects on larval moulting and mouthpart structure of Chironomus riparius.

    PubMed

    Watts, Matthew M; Pascoe, David; Carroll, Kathleen

    2003-02-01

    The effects of the endocrine-disrupting chemicals 17alpha-ethinylestradiol (EE) and bisphenol A (BPA) on the development of the aquatic life-cycle stages (eggs to pupa) of Chironomus riparius were investigated. The test species was exposed to sublethal concentrations of EE and BPA (10 ng/L-1mg/L) and effects on larval weight and moulting success were recorded. In addition, three mouthpart structures (mentum, mandibles, and pecten epipharyngis) present on the head capsules of fourth-instar larvae were examined for structural deformities. Moulting was delayed and larval wet weight significantly reduced (P<0.05) at the highest treatment concentration (1mg/L) of both chemicals. No significant effect on either of these parameters was noted in the remaining treatments. However, deformities in the mouthparts of C. riparius were observed at very low exposure concentrations (10 ng/L), although the incidence of deformities was greater in the chironomids exposed to EE than BPA. Effects were mainly associated with the mentum, with statistically significant differences in median deformity score (Kruskal-Wallis P<0.001) recorded for both chemicals. At similar effect concentrations, an increased percentage of exposed animals had deformities of the pecten epipharyngis; however, little evidence of deformity was noted for the mandibles. At high concentrations, where moulting and wet weight were affected, no incidence of mouthpart deformity was noted. The relevance of these results in relation to the identification of an "endocrine-sensitive" endpoint for invertebrates is discussed. PMID:12550099

  4. Quantitative summer and winter temperature reconstructions from pollen and chironomid data in the Baltic-Belarus area

    NASA Astrophysics Data System (ADS)

    Veski, Siim; Seppä, Heikki; Stančikaitė, Migle; Zernitskaya, Valentina; Reitalu, Triin; Gryguc, Gražyna; Heinsalu, Atko; Stivrins, Normunds; Amon, Leeli; Vassiljev, Jüri; Heiri, Oliver

    2015-04-01

    Quantitative reconstructions based on fossil pollen and chironomids are widely used and useful for long-term climate variability estimations. The Lateglacial and early Holocene period (15-8 ka BP) in the Baltic-Belarus (BB) area between 60°-51° N was characterized by sudden shifts in climate due to various climate forcings affecting the climate of the northern hemisphere and North Atlantic, including the proximity of receding ice sheets. Climate variations in BB during the LG were eminent as the southern part of the region was ice free during the Last Glacial Maximum over 19 ka BP, whereas northern Estonia became ice free no sooner than 13 ka BP. New pollen based reconstructions of summer (May-to-August) and winter (December-to-February) temperatures between 15-8 ka BP along a S-N transect in the BB area display trends in temporal and spatial changes in climate variability. These results are completed by two chironomid-based July mean temperature reconstructions (Heiri et al. 2014). The magnitude of change compared with modern temperatures was more prominent in the northern part of BB area than in the southern part. The 4 °C winter and 2 °C summer warming at the start of GI-1 was delayed in the BB area and Lateglacial maximum temperatures were reached at ca 13.6 ka BP, being 4 °C colder than the modern mean. The Younger Dryas cooling in the area was 5 °C colder than present as inferred by all proxies (Veski et al. in press). In addition, our analyses show an early Holocene divergence in winter temperature trends with modern values reaching 1 ka earlier (10 ka BP) in southern BB compared to the northern part of the region (9 ka BP). Heiri, O., Brooks, S.J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E.S., Lang, B., Kirilova, E., Kuiper, S., Millet, L., Samartin, S., Toth, M., Verbruggen, F., Watson, J.E., van Asch, N., Lammertsma, E., Amon, L., Birks, H.H., Birks, J.B., Mortensen, M.F., Hoek, W.Z., Magyari, E., Muñoz Sobrino, C., Seppä, H

  5. The Parthenogenetic Cosmopolitan Chironomid, Paratanytarsus grimmii, as a New Standard Test Species for Ecotoxicology: Culturing Methodology and Sensitivity to Aqueous Pollutants.

    PubMed

    Gagliardi, Bryant S; Long, Sara M; Pettigrove, Vincent J; Hoffmann, Ary A

    2015-09-01

    Chironomids from the genus Chironomus are widely used in laboratory ecotoxicology, but are prone to inbreeding depression, which can compromise test results. The standard Chironomus test species (C. riparius, C. dilutus and C. yoshimatsui) are also not cosmopolitan, making it difficult to compare results between geographic regions. In contrast, the chironomid Paratanytarsus grimmii is cosmopolitan, and not susceptible to inbreeding depression because it reproduces asexually by apomictic parthenogenesis. However, there is no standardised culturing methodology for P. grimmii, and a lack of acute toxicity data for common pollutants (metals and pesticides). In this study, we developed a reliable culturing methodology for P. grimmii. We also determined 24-h first instar LC50s for the metals Cu, Pb, Zn, Cd and the insecticide imidacloprid. By developing this culturing methodology and generating the first acute metal and imidacloprid LC50s for P. grimmii, we provide a basis for using P. grimmii in routine ecotoxicological testing.

  6. Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model

    NASA Astrophysics Data System (ADS)

    Matthews-Bird, Frazer; Brooks, Stephen J.; Holden, Philip B.; Montoya, Encarni; Gosling, William D.

    2016-06-01

    Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17° S and 64-78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 = 1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack = 0.890; RMSEPjack = 2.404 °C, RMSEP - root mean squared error of prediction; mean biasjack = -0.017 °C; max biasjack = 4.665 °C). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373 °C, mean biasjack = 0.598 °C, and max biasjack = 3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000-2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. -7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. -3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only

  7. Measuring thigmotaxis in larval zebrafish.

    PubMed

    Schnörr, S J; Steenbergen, P J; Richardson, M K; Champagne, D L

    2012-03-17

    One of the most commonly used behavioral endpoints measured in preclinical studies using rodent models is thigmotaxis (or "wall-hugging"). Thigmotaxis is a well-validated index of anxiety in animals and humans. While assays measuring thigmotaxis in adult zebrafish have been developed, a thigmotaxis assay has not yet been validated in larval zebrafish. Here we present a novel assay for measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination (i.e. sudden light-to-darkness transition) and performed in a standard 24-well plate. We show that zebrafish larvae as young as 5 days post fertilization respond to this challenge by engaging in thigmotaxis. Thigmotaxis was significantly attenuated by anxiolytic (diazepam) and significantly enhanced by anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. We also show that exposure to sudden darkness per se may represent an anxiogenic situation for larval zebrafish since less contrasting light-to-darkness transitions (achieved by lowering darkness degrees) significantly decreased thigmotaxis levels in a manner similar to what was achieved with diazepam. These findings suggest that stimuli such as exposure to sudden darkness could be used proficiently to trigger the expression of anxiety-like behaviors in laboratory settings. In sum, this is a versatile protocol allowing testing of both anxiolytic and anxiogenic drugs in a cost-effective manner (only 10 min). This assay is also amenable to medium to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery. PMID:22197677

  8. The influence of substrate material on ascidian larval settlement.

    PubMed

    Chase, Anna L; Dijkstra, Jennifer A; Harris, Larry G

    2016-05-15

    Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field. PMID:27039957

  9. The influence of substrate material on ascidian larval settlement.

    PubMed

    Chase, Anna L; Dijkstra, Jennifer A; Harris, Larry G

    2016-05-15

    Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field.

  10. Effects of hypoxia on biofilms and subsequently larval settlement of benthic invertebrates.

    PubMed

    Cheung, S G; Chan, C Y S; Po, B H K; Li, A L; Leung, J Y S; Qiu, J W; Ang, P O; Thiyagarajan, V; Shin, P K S; Chiu, J M Y

    2014-08-30

    Biofilms on submerged surfaces are important in determining larval settlement of most marine benthic invertebrates. We investigated if exposure of biofilms to hypoxia would alter the larval settlement pattern and result in a shift in benthic invertebrate community structure in the field. Biofilms were first exposed to hypoxia or normoxia in laboratory microcosms for 7 days, and then deployed in the field for another 7 days to allow for larval settlement and recruitment to occur. Using terminal-restriction fragment length polymorphism of the 16S rRNA gene, this study showed that hypoxia altered the biofilm bacterial community composition, and the difference between the hypoxic and normoxic treatments increased with the time of exposure period. This study also demonstrated significantly different benthic invertebrate community structures as a result of biofilm exposure to hypoxia and that the hypoxic and normoxic treatments were dominated by Hydroides sp. and Folliculina sp., respectively.

  11. Mouthpart deformities and community composition of Chironomidae (Diptera) larvae downstream of metal mines in New Brunswick, Canada.

    PubMed

    Swansburg, Erin O; Fairchild, Wayne L; Fryer, Brian J; Ciborowski, Jan J H

    2002-12-01

    The effect of metal enrichment on chironomid communities was examined in streams receiving mine drainage from metal mining operations in New Brunswick, Canada. At five sites receiving mine drainage, metal concentrations were significantly (p < 0.05) elevated in water (Zn), periphyton (Cd, Co, Cu, and Zn), and chironomid tissue (Cu, Cd, and Zn) relative to five paired reference locations. Metal concentrations in chironomid larvae were significantly correlated with concentrations in both water and periphyton. Chironomid communities were severely affected at sites receiving mine drainage as demonstrated by reduced genera richness and altered community composition. Sites receiving mine drainage exhibited an increased abundance of metal-tolerant Orthocladiinae and a reduced abundance of metal-sensitive Tanytarsini relative to reference sites. The incidence of mentum deformities was significantly elevated at sites receiving mine drainage (1.43 +/- 0.24%), with the mean percentage approaching a doubling of that observed at reference sites (0.79 +/- 0.22%). Trace metal concentrations at mine-associated streams in New Brunswick significantly affected the benthic community and have the potential to alter the structure and function of these aquatic ecosystems. PMID:12463564

  12. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu

    PubMed Central

    Xue, Qingju; Su, Xiaomei; Steinman, Alan D.; Cai, Yongjiu; Zhao, Yanyan; Xie, Liqiang

    2016-01-01

    Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer. PMID:27499175

  13. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu.

    PubMed

    Xue, Qingju; Su, Xiaomei; Steinman, Alan D; Cai, Yongjiu; Zhao, Yanyan; Xie, Liqiang

    2016-01-01

    Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer. PMID:27499175

  14. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu

    NASA Astrophysics Data System (ADS)

    Xue, Qingju; Su, Xiaomei; Steinman, Alan D.; Cai, Yongjiu; Zhao, Yanyan; Xie, Liqiang

    2016-08-01

    Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer.

  15. Larval dispersal drives trophic structure across Pacific coral reefs.

    PubMed

    Stier, Adrian C; Hein, Andrew M; Parravicini, Valeriano; Kulbicki, Michel

    2014-01-01

    Top predators are a critical part of healthy ecosystems. Yet, these species are often absent from spatially isolated habitats leading to the pervasive view that fragmented ecological communities collapse from the top down. Here we study reef fish from coral reef communities across the Pacific Ocean. Our analysis shows that species richness of reef fish top predators is relatively stable across habitats that vary widely in spatial isolation and total species richness. In contrast, species richness of prey reef fish declines rapidly with increasing isolation. By consequence, species-poor communities from isolated islands have three times as many predator species per prey species as near-shore communities. We develop and test a colonization-extinction model to reveal how larval dispersal patterns shape this ocean-scale gradient in trophic structure. PMID:25412873

  16. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio).

    PubMed

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge.

  17. The terminology of larval cestodes or metacestodes.

    PubMed

    2002-05-01

    The terminology associated with the nomenclature of larval or metacestodes is reviewed as well as the various morphological and developmental characters used to define different types of larval cestodes. Based on a review of the literature, the key characters differentiating the types of larval cestodes are the presence of a primary lacuna and the invagination/retraction of the scolex. The presence of a cercomer and of a bladder-like enlargement of the larval cestode were considered to be useful secondary characteristics. Using these characters, six basic types of larval cestodes were identified: the procercoid, an alacunate form which cannot develop further until ingested by a second intermediate host; the plerocercus, an alacunate form with a retracted scolex; the plerocercoid, an alacunate form with an everted scolex; the merocercoid, an alacunate form with an invaginated scolex; the cysticercoid, a lacunate form with a retracted scolex; and the cysticercus, a lacunate form with an invaginated scolex. The diversity of larval types within the broad classifications of cysticercoid and cysticercus can be differentiated by the use of appropriate prefixes. Deficiencies in knowledge of specific types of larval cestodes are identified and further avenues of research are indicated.

  18. Domestic Larval Control Practices and Malaria Prevalence among Under-Five Children in Burkina Faso

    PubMed Central

    Diabaté, Souleymane; Druetz, Thomas; Millogo, Tiéba; Ly, Antarou; Fregonese, Federica; Kouanda, Seni; Haddad, Slim

    2015-01-01

    malaria control programs to include or reinforce training activities for community health workers aimed at promoting domestic larval control practices. PMID:26517727

  19. Antennal deformities of chironomid larvae and their use in biomonitoring of heavy metal pollutants in the river Damodar of West Bengal, India.

    PubMed

    Bhattacharyay, G; Sadhu, A K; Mazumdar, A; Chaudhuri, P K

    2005-09-01

    Analyses of sediment and water indicate the presence of heavy metal pollutants like lead, zinc, copper, mercury and cadmium of the river Damodar of India. These metals are responsible for causing morphological deformities of antennae and other parts of chironomid larvae. Percentage of deformity correlated positively with the concentrations of Pb in water and sediment (r > 0.6) at the confluence point. A new severity index, SISS((antenna)) has been proposed here to assess deformity at the family or subfamily level. PMID:16160779

  20. Aquatic community response in a groundwater-fed desert lake to Holocene desiccation of the Sahara

    NASA Astrophysics Data System (ADS)

    Eggermont, Hilde; Verschuren, Dirk; Fagot, Maureen; Rumes, Bob; Van Bocxlaer, Bert; Kröpelin, Stefan

    2008-12-01

    The finely laminated sediment record of a permanent, hypersaline, desert oasis lake in the Ounianga region of northeastern Chad presents a unique opportunity to document the hydrological evolution of this groundwater-fed aquatic ecosystem during mid- and late-Holocene desiccation of the Sahara. In this study we reconstruct long-term changes in zoobenthos and zooplankton communities of Lake Yoa as their early-Holocene freshwater habitat changed into the hypersaline conditions prevailing today. Chironomid production peaked during the fresh-to-saline transition period, then stabilized at about half that of the earlier freshwater ecosystem. Quantitative salinity inferences based on fossil chironomid assemblages indicate that the fresh-to-saline transition occurred fairly abruptly between ˜4100 and 3400 cal yr BP, but that the ecosystem was buffered against shorter-term climate fluctuations due to continuous inflow of fossil groundwater. The mixture of tropical-African and southern Palaearctic chironomid faunas in the Lake Yoa fossil record required us to address several methodological issues concerning chironomid-based salinity reconstruction, and the applicability of a calibration dataset based on tropical East and West African lakes to this Sahara desert locality. The most coherent reconstruction was obtained with an inference model that applies a weighted best-modern-analogue (WMAT) transfer function to the African calibration dataset expanded with six Sahara lakes.

  1. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    PubMed

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  2. Larval nervous systems: true larval and precocious adult.

    PubMed

    Nielsen, Claus

    2015-02-15

    The apical organ of ciliated larvae of cnidarians and bilaterians is a true larval organ that disappears before or at metamorphosis. It appears to be sensory, probably involved in metamorphosis, but knowledge is scant. The ciliated protostome larvae show ganglia/nerve cords that are retained as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords and a small perianal loop. The anterior loop becomes part of the brain. This has been well documented through cell-lineage studies in a number of spiralians, and homologies with similar structures in the ecdysozoans are strongly indicated. The deuterostomes are generally difficult to interpret, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence of 'deuterostomian' blastopore fates both in an annelid and in a mollusk, which are both placed in families with the 'normal' spiralian gastrulation type, and in the chaetognaths demonstrates that the chordate type of gastrulation could easily have evolved from the spiralian type. This indicates that the latest common ancestor of the deuterostomes was very similar to the latest common pelago-benthic ancestor of the protostomes as described by the trochaea theory, and that the neural tube of the chordates is morphologically ventral.

  3. Detecting larval export from marine reserves

    PubMed Central

    Pelc, R. A.; Warner, R. R.; Gaines, S. D.; Paris, C. B.

    2010-01-01

    Marine reserve theory suggests that where large, productive populations are protected within no-take marine reserves, fished areas outside reserves will benefit through the spillover of larvae produced in the reserves. However, empirical evidence for larval export has been sparse. Here we use a simple idealized coastline model to estimate the expected magnitude and spatial scale of larval export from no-take marine reserves across a range of reserve sizes and larval dispersal scales. Results suggest that, given the magnitude of increased production typically found in marine reserves, benefits from larval export are nearly always large enough to offset increased mortality outside marine reserves due to displaced fishing effort. However, the proportional increase in recruitment at sites outside reserves is typically small, particularly for species with long-distance (on the order of hundreds of kilometers) larval dispersal distances, making it very difficult to detect in field studies. Enhanced recruitment due to export may be detected by sampling several sites at an appropriate range of distances from reserves or at sites downcurrent of reserves in systems with directional dispersal. A review of existing empirical evidence confirms the model's suggestion that detecting export may be difficult without an exceptionally large differential in production, short-distance larval dispersal relative to reserve size, directional dispersal, or a sampling scheme that encompasses a broad range of distances from the reserves. PMID:20181570

  4. Patterns, causes, and consequences of marine larval dispersal

    PubMed Central

    D’Aloia, Cassidy C.; Bogdanowicz, Steven M.; Francis, Robin K.; Majoris, John E.; Harrison, Richard G.; Buston, Peter M.

    2015-01-01

    Quantifying the probability of larval exchange among marine populations is key to predicting local population dynamics and optimizing networks of marine protected areas. The pattern of connectivity among populations can be described by the measurement of a dispersal kernel. However, a statistically robust, empirical dispersal kernel has been lacking for any marine species. Here, we use genetic parentage analysis to quantify a dispersal kernel for the reef fish Elacatinus lori, demonstrating that dispersal declines exponentially with distance. The spatial scale of dispersal is an order of magnitude less than previous estimates—the median dispersal distance is just 1.7 km and no dispersal events exceed 16.4 km despite intensive sampling out to 30 km from source. Overlaid on this strong pattern is subtle spatial variation, but neither pelagic larval duration nor direction is associated with the probability of successful dispersal. Given the strong relationship between distance and dispersal, we show that distance-driven logistic models have strong power to predict dispersal probabilities. Moreover, connectivity matrices generated from these models are congruent with empirical estimates of spatial genetic structure, suggesting that the pattern of dispersal we uncovered reflects long-term patterns of gene flow. These results challenge assumptions regarding the spatial scale and presumed predictors of marine population connectivity. We conclude that if marine reserve networks aim to connect whole communities of fishes and conserve biodiversity broadly, then reserves that are close in space (<10 km) will accommodate those members of the community that are short-distance dispersers. PMID:26508628

  5. Patterns, causes, and consequences of marine larval dispersal.

    PubMed

    D'Aloia, Cassidy C; Bogdanowicz, Steven M; Francis, Robin K; Majoris, John E; Harrison, Richard G; Buston, Peter M

    2015-11-10

    Quantifying the probability of larval exchange among marine populations is key to predicting local population dynamics and optimizing networks of marine protected areas. The pattern of connectivity among populations can be described by the measurement of a dispersal kernel. However, a statistically robust, empirical dispersal kernel has been lacking for any marine species. Here, we use genetic parentage analysis to quantify a dispersal kernel for the reef fish Elacatinus lori, demonstrating that dispersal declines exponentially with distance. The spatial scale of dispersal is an order of magnitude less than previous estimates-the median dispersal distance is just 1.7 km and no dispersal events exceed 16.4 km despite intensive sampling out to 30 km from source. Overlaid on this strong pattern is subtle spatial variation, but neither pelagic larval duration nor direction is associated with the probability of successful dispersal. Given the strong relationship between distance and dispersal, we show that distance-driven logistic models have strong power to predict dispersal probabilities. Moreover, connectivity matrices generated from these models are congruent with empirical estimates of spatial genetic structure, suggesting that the pattern of dispersal we uncovered reflects long-term patterns of gene flow. These results challenge assumptions regarding the spatial scale and presumed predictors of marine population connectivity. We conclude that if marine reserve networks aim to connect whole communities of fishes and conserve biodiversity broadly, then reserves that are close in space (<10 km) will accommodate those members of the community that are short-distance dispersers.

  6. Community.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1995-01-01

    Art in context of community is the theme of this newsletter. The theme is introduced in an editorial "Community-Enlarging the Definition" (Kit Grauer). Related articles include: (1) "The Children's Bridge is not Destroyed: Heart in the Middle of the World" (Emil Robert Tanay); (2) "Making Bridges: The Sock Doll Project" (Anami Naths); (3)…

  7. Novel methodologies in marine fish larval nutrition.

    PubMed

    Conceição, Luis E C; Aragão, Cláudia; Richard, Nadège; Engrola, Sofia; Gavaia, Paulo; Mira, Sara; Dias, Jorge

    2010-03-01

    Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of (14)C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for

  8. Feeding ecology of pelagic larval Burbot in Northern Lake Huron, Michigan

    USGS Publications Warehouse

    George, Ellen M.; Roseman, Edward F.; Davis, Bruce M.; O'Brien, Timothy P.

    2013-01-01

    Burbot Lota lota are a key demersal piscivore across the Laurentian Great Lakes whose populations have declined by about 90% in recent decades. Larval Burbot typically hatch in the early spring and rely on abundant crustacean zooplankton prey. We examined the stomach contents of larval Burbot from inshore (≤15 m) and offshore sites (37 and 91 m) in northern Lake Huron, Michigan. Concurrent zooplankton vertical tows at the same sites showed that the prey community was dominated by calanoid copepods, dreissenid mussel veligers, and rotifers. Burbot consumed mostly cyclopoid copepods, followed by copepod nauplii and calanoid copepods. Chesson's index of selectivity was calculated and compared among sites and months for individual Burbot. According to this index, larval Burbot exhibited positive selection for cyclopoid copepods and copepod nauplii and negative selection for calanoid copepods, cladocerans, rotifers, and dreissenid veligers. This selectivity was consistent across sites and throughout the sampling period. Burbot displayed little variation in their prey preferences during the larval stage, which suggests that the recent shifts in zooplankton abundance due to the invasion of the predatory zooplankter Bythotrephes longimanus and competition from invasive Rainbow Smelt Osmerus mordax could negatively impact larval Burbot populations.

  9. Anopheline Larval Habitats Seasonality and Species Distribution: A Prerequisite for Effective Targeted Larval Habitats Control Programmes

    PubMed Central

    Kweka, Eliningaya J.; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E.; Nyindo, Mramba; Githeko, Andrew K.; Yan, Guiyun

    2012-01-01

    Background Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. Methods and Findings A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. Conclusion These findings suggest that implementation of effective larval control

  10. Linking Planktonic Larval Abundance to Internal Bores at the Head of the Monterey Submarine Canyon.

    NASA Astrophysics Data System (ADS)

    Phelan, J.; Walter, R. K.; Steinbeck, J. R.

    2015-12-01

    Variability in the physical coastal environment can play an important role in determining the spatio-temporal variation in abundance of planktonic organisms. Combining planktonic larval abundance estimates over the course of a year with concurrent temperature and current data, this study provides empirical data linking a locally predominant internal tidal feature to patterns of biological abundance in the very nearshore environment at the head of Monterey Submarine Canyon. The physical observations indicate the presence of seasonally-variable semidiurnal internal bores that result in the pumping of cold (subthermocline) waters onto the adjacent shelf. Analysis of the larval abundance data indicates an assemblage shift from a relatively abundant shelf assemblage of larval fishes to a reduced abundance assemblage that is concurrent with the semidiurnal cold water intrusions driven by the tidal pumping. Results suggest that the tidal period pumping of subthermocline waters by internal bores dilutes or displaces shelf waters and their associated planktonic larval community. This could have important ecological implications at these scales and may also be of interest when siting industrial facilities that require seawater for cooling or desalination, as it would potentially reduce their impact on regional planktonic communities by diluting their rates of entrainment.

  11. Emergence flux declines disproportionately to larval density along a stream metals gradient

    USGS Publications Warehouse

    Schmidt, Travis S.; Kraus, Johanna M.; Walters, David M.; Wanty, Richard B.

    2013-01-01

    Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (Cumulative Criterion Accumulation Ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.

  12. Quantitative proteomics study of larval settlement in the Barnacle Balanus amphitrite.

    PubMed

    Chen, Zhang-Fan; Zhang, Huoming; Wang, Hao; Matsumura, Kiyotaka; Wong, Yue Him; Ravasi, Timothy; Qian, Pei-Yuan

    2014-01-01

    Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite.

  13. Quantitative Proteomics Study of Larval Settlement in the Barnacle Balanus amphitrite

    PubMed Central

    Wang, Hao; Matsumura, Kiyotaka; Wong, Yue Him; Ravasi, Timothy; Qian, Pei-Yuan

    2014-01-01

    Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite. PMID:24551147

  14. Emergence flux declines disproportionately to larval density along a stream metals gradient.

    PubMed

    Schmidt, Travis S; Kraus, Johanna M; Walters, David M; Wanty, Richard B

    2013-08-01

    Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (cumulative criterion accumulation ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.

  15. Factors Associated with Larval Control Practices in a Dengue Outbreak Prone Area

    PubMed Central

    Mohamad, Mariam; Selamat, Mohamad Ikhsan; Ismail, Zaliha

    2014-01-01

    In order to reduce the risk of dengue outbreak recurrence in a dengue outbreak prone area, the members of the community need to sustain certain behavior to prevent mosquito from breeding. Our study aims to identify the factors associated with larval control practices in this particular community. A cross-sectional study involves 322 respondents living in a dengue outbreak prone area who were interviewed using a pretested questionnaire. The level of knowledge about Aedes mosquitoes, dengue transmission, its symptoms, and personal preventive measures ranges from fair to good. The level of attitude towards preventive measures was high. However, reported level of personal larval control practices was low (33.2%). Our multiple logistic regression analysis showed that only those with a good level of attitude towards personal preventive measure and frequent attendance to health campaigns were significantly associated with the good larval control practices. We conclude that, in a dengue outbreak prone area, having a good attitude towards preventive measures and frequent participation in health campaigns are important factors to sustain practices on larval control. PMID:25309602

  16. Technique for surveying larval populations of Coquillettidia perturbans.

    PubMed

    Batzer, D P

    1993-09-01

    A dipper with a 1-mm mesh screen bottom was used to sample larval populations of Coquillettidia perturbans from plant roots in Minnesota wetlands. This sampling technique was especially useful for large-scale larval surveys because the sampler was portable, individual sample collection and processing could be completed in < 10 min and data collected were appropriate for statistical analyses. Sampling indicated that larval populations were clumped, with a negative binomial model closely describing larval distributions.

  17. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  18. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.

    PubMed

    Krynak, Katherine L; Burke, David J; Benard, Michael F

    2015-01-01

    Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to

  19. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations

    PubMed Central

    2015-01-01

    Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to

  20. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.

    PubMed

    Krynak, Katherine L; Burke, David J; Benard, Michael F

    2015-01-01

    Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to

  1. Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River

    NASA Astrophysics Data System (ADS)

    Odume, O. N.; Muller, W. J.

    The Swartkops River is an important freshwater ecosystem in South Africa. But owing to its location, it suffers varying degrees of human induced impacts which include industrial and domestic effluent discharges, deforestation as well as agricultural land use which have negatively impacted on the water quality. Diversity and community composition of aquatic insects are frequently used to assess environmental water quality status. Chironomids occupy extremely varied biotopes. Their extraordinary ecological range and environmental sensitivity make them particularly useful for assessing and interpreting changes in water quality of aquatic ecosystems. The community structure of chironomid larvae was investigated at four sites in the Swartkops River and effects of different chemical and physical variables on their distribution were explored. Chironomid larvae were collected using the South African Scoring System version 5 (SASS5) protocol. A total of 26 taxa from four sampling sites in the Swartkops River were identified. Margalef’s species richness index, equitability, Shannon and Simpson diversity indices were highest at site 1 (reference site). The downstream sites contained 6-20 taxa compared to the 25 taxa at site 1. Site 1 was characterised by the subfamilies Orthocladiinae, Tanypodinae and the tribe Tanytarsini while the impacted sites were characterised by Orthocladiinae and Chironomini. Chironomus spp., Dirotendipes sp., Kiefferulus sp. and Tanypus sp. seemed to be tolerant to pollution, occurring in high abundance at sites 2, 3 and 4. In contrast, Polypedilum sp., Tanytarsus sp., Orthocladius sp., Cricotopus spp. and Ablabesmyia sp. appeared to be more sensitive taxa, being less common at the impacted sites (sites 2, 3 and 4). Five days biochemical oxygen demand, dissolved oxygen, electrical conductivity, orthophosphate-phosphorus and total inorganic nitrogen were among the important variables that determine the observed chironomid community structure

  2. Integrated control of peridomestic larval habitats of Aedes and Culex mosquitoes (Diptera: Culicidae) in atoll villages of French Polynesia.

    PubMed

    Lardeux, Frederic; Sechan, Yves; Loncke, Stepiiane; Deparis, Xavier; Cheffort, Jules; Faaruia, Marc

    2002-05-01

    An integrated larval mosquito control program was carried out in Tiputa village on Rangiroa atoll of French Polynesia. Mosquito abundance before and after treatment was compared with the abundance in an untreated village. Mosquito larval habitats consisted of large concrete or polyurethane cisterns, wells, and 200-liter drums. Depending on the target species, larval habitat category, its configuration, and purpose (drinking consumption or not), abatement methods consisted of sealing the larval habitats with mosquito gauze, treating them with 1% Temephos, covering the water with a 10-cm thick layer of polystyrene beads or introducing fish (Poecillia reticulata Rosen & Bailey). All premises of the chosen village were treated and a health education program explained basic mosquito ecology and the methods of control. A community health agent was trained to continue the control program at the end of the experiment. Entomological indices from human bait collections and larval surveys indicated that mosquito populations were reduced significantly, compared with concurrent samples from the untreated control village, and that mosquito control remained effective for 6 mo after treatment. Effects of the treatment were noticed by the inhabitants in terms of a reduction in the number of mosquito bites. In the Polynesian context, such control programs may succeed in the long-term only if strong political decisions are taken at the village level, if a community member is designated as being responsible for maintaining the program, and if the inhabitants are motivated sufficiently by the mosquito nuisance to intervene.

  3. Detection, identification, and classification of mosquito larval habitats using remote sensing scanners in earth-orbiting satellites*

    PubMed Central

    Hayes, Richard O.; Maxwell, Eugene L.; Mitchell, Carl J.; Woodzick, Thomas L.

    1985-01-01

    A method of identifying mosquito larval habitats associated with fresh-water plant communities, wetlands, and other aquatic locations at Lewis and Clark Lake in the states of Nebraska and South Dakota, USA, using remote sensing imagery obtained by multispectral scanners aboard earth-orbiting satellites (Landsat 1 and 2) is described. The advantages and limitations of this method are discussed. PMID:2861917

  4. Microbial gut diversity of Africanized and European honey bee larval instars.

    PubMed

    Vojvodic, Svjetlana; Rehan, Sandra M; Anderson, Kirk E

    2013-01-01

    The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae. PMID:23991051

  5. Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars

    PubMed Central

    Vojvodic, Svjetlana; Rehan, Sandra M.; Anderson, Kirk E.

    2013-01-01

    The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae. PMID:23991051

  6. Microbial gut diversity of Africanized and European honey bee larval instars.

    PubMed

    Vojvodic, Svjetlana; Rehan, Sandra M; Anderson, Kirk E

    2013-01-01

    The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae.

  7. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.

    PubMed

    Dananay, Kacey L; Krynak, Katherine L; Krynak, Timothy J; Benard, Michael F

    2015-10-01

    Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments.

  8. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.

    PubMed

    Dananay, Kacey L; Krynak, Katherine L; Krynak, Timothy J; Benard, Michael F

    2015-10-01

    Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments. PMID:26033303

  9. Effect of massing on larval growth rate.

    PubMed

    Johnson, Aidan P; Wallman, James F

    2014-08-01

    Estimation of minimum postmortem interval commonly relies on predicting the age of blowfly larvae based on their size and an estimate of the temperatures to which they have been exposed throughout their development. The majority of larval growth rate data have been developed using small larval masses in order to avoid excess heat generation. The current study collected growth rate data for larvae at different mass volumes, and assessed the temperature production of these masses, for two forensically important blow fly species, Chrysomya rufifacies and Calliphora vicina. The growth rate of larvae in a small mass, exposed to the higher temperatures equivalent to those experienced by large masses, was also assessed to determine if observed differences were due to the known temperature effects of maggot masses. The results showed that temperature production increased with increasing mass volume, with temperature increases of 11 °C observed in the large Ch. rufifacies masses and increases of 5 °C in the large C. vicina masses. Similarly, the growth rate of the larvae was affected by mass size. The larvae from small masses grown at the higher temperatures experienced by large masses displayed an initial delay in growth, but then grew at a similar rate to those larvae at a constant 23 °C. Since these larvae from masses of equivalent sizes displayed similar patterns of growth rate, despite differing temperatures, and these growth rates differed from larger masses exposed to the same temperatures, it can be concluded that larval growth rate within a mass may be affected by additional factors other than temperature. Overall, this study highlights the importance of understanding the role of massing in larval development and provides initial developmental data for mass sizes of two forensically important blowfly species commonly encountered in Australian forensic casework.

  10. Eco-mechanics of lamellar autotomy in larval damselflies.

    PubMed

    Gleason, Jennifer E; Fudge, Douglas S; Robinson, Beren W

    2014-01-15

    In larval damselflies, the self-amputation (autotomy) of the caudal lamellae permits escape from predatory larval dragonflies. Lamellar joint size declines among populations with increasing risk of dragonfly predation, but the breaking force required for autotomy and the biomechanical factors that influence breaking force are unknown. If autotomy enhances survival in larval damselflies, then predation by larval dragonflies should select for joints that require less force to break. We test this adaptive hypothesis by evaluating whether breaking force is negatively related to local predation risk from larval dragonflies. We also test a cuticle structure hypothesis, which predicts that breaking force is positively related to joint size and to joint cuticle thickness because of a structural support relationship between joint and lamella. The peak force necessary for lamellar autotomy was assessed on individual larval Enallagma damselflies collected from populations that varied in risk of predation. Easier lamellar autotomy occurred in larvae from sites with higher predation risk because damselflies from fishless ponds (where predatory larval dragonflies are likely more abundant) had lower breaking forces than those from ponds with fish (where larval dragonfly predation is likely reduced). Furthermore, breaking force was a positive function of joint size and also of total cuticle cross-sectional area after controlling for joint size. This suggests that autotomy may evolve in larval damselflies under selection from small grasping predators such as larval dragonflies by favouring smaller joint size or reduced cuticle area of lamellar joints.

  11. Eco-mechanics of lamellar autotomy in larval damselflies.

    PubMed

    Gleason, Jennifer E; Fudge, Douglas S; Robinson, Beren W

    2014-01-15

    In larval damselflies, the self-amputation (autotomy) of the caudal lamellae permits escape from predatory larval dragonflies. Lamellar joint size declines among populations with increasing risk of dragonfly predation, but the breaking force required for autotomy and the biomechanical factors that influence breaking force are unknown. If autotomy enhances survival in larval damselflies, then predation by larval dragonflies should select for joints that require less force to break. We test this adaptive hypothesis by evaluating whether breaking force is negatively related to local predation risk from larval dragonflies. We also test a cuticle structure hypothesis, which predicts that breaking force is positively related to joint size and to joint cuticle thickness because of a structural support relationship between joint and lamella. The peak force necessary for lamellar autotomy was assessed on individual larval Enallagma damselflies collected from populations that varied in risk of predation. Easier lamellar autotomy occurred in larvae from sites with higher predation risk because damselflies from fishless ponds (where predatory larval dragonflies are likely more abundant) had lower breaking forces than those from ponds with fish (where larval dragonfly predation is likely reduced). Furthermore, breaking force was a positive function of joint size and also of total cuticle cross-sectional area after controlling for joint size. This suggests that autotomy may evolve in larval damselflies under selection from small grasping predators such as larval dragonflies by favouring smaller joint size or reduced cuticle area of lamellar joints. PMID:24431142

  12. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  13. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  14. Climate change and larval transport in the ocean: fractional effects from physical and physiological factors.

    PubMed

    Kendall, Matthew S; Poti, Matt; Karnauskas, Kristopher B

    2016-04-01

    Changes in larval import, export, and self-seeding will affect the resilience of coral reef ecosystems. Climate change will alter the ocean currents that transport larvae and also increase sea surface temperatures (SST), hastening development, and shortening larval durations. Here, we use transport simulations to estimate future larval connectivity due to: (1) physical transport of larvae from altered circulation alone, and (2) the combined effects of altered currents plus physiological response to warming. Virtual larvae from islands throughout Micronesia were moved according to present-day and future ocean circulation models. The Hybrid Coordinate Ocean Model (HYCOM) spanning 2004-2012 represented present-day currents. For future currents, we altered HYCOM using analysis from the National Center for Atmospheric Research Community Earth System Model, version 1-Biogeochemistry, Representative Concentration Pathway 8.5 experiment. Based on the NCAR model, regional SST is estimated to rise 2.74 °C which corresponds to a ~17% decline in larval duration for some taxa. This reduction was the basis for a separate set of simulations. Results predict an increase in self-seeding in 100 years such that 62-76% of islands experienced increased self-seeding, there was an average domainwide increase of ~1-3% points in self-seeding, and increases of up to 25% points for several individual islands. When changed currents alone were considered, approximately half (i.e., random) of all island pairs experienced decreased connectivity but when reduced PLD was added as an effect, ~65% of connections were weakened. Orientation of archipelagos relative to currents determined the directional bias in connectivity changes. There was no universal relationship between climate change and connectivity applicable to all taxa and settings. Islands that presently export large numbers of larvae but that also maintain or enhance this role into the future should be the focus of conservation

  15. Climate change and larval transport in the ocean: fractional effects from physical and physiological factors.

    PubMed

    Kendall, Matthew S; Poti, Matt; Karnauskas, Kristopher B

    2016-04-01

    Changes in larval import, export, and self-seeding will affect the resilience of coral reef ecosystems. Climate change will alter the ocean currents that transport larvae and also increase sea surface temperatures (SST), hastening development, and shortening larval durations. Here, we use transport simulations to estimate future larval connectivity due to: (1) physical transport of larvae from altered circulation alone, and (2) the combined effects of altered currents plus physiological response to warming. Virtual larvae from islands throughout Micronesia were moved according to present-day and future ocean circulation models. The Hybrid Coordinate Ocean Model (HYCOM) spanning 2004-2012 represented present-day currents. For future currents, we altered HYCOM using analysis from the National Center for Atmospheric Research Community Earth System Model, version 1-Biogeochemistry, Representative Concentration Pathway 8.5 experiment. Based on the NCAR model, regional SST is estimated to rise 2.74 °C which corresponds to a ~17% decline in larval duration for some taxa. This reduction was the basis for a separate set of simulations. Results predict an increase in self-seeding in 100 years such that 62-76% of islands experienced increased self-seeding, there was an average domainwide increase of ~1-3% points in self-seeding, and increases of up to 25% points for several individual islands. When changed currents alone were considered, approximately half (i.e., random) of all island pairs experienced decreased connectivity but when reduced PLD was added as an effect, ~65% of connections were weakened. Orientation of archipelagos relative to currents determined the directional bias in connectivity changes. There was no universal relationship between climate change and connectivity applicable to all taxa and settings. Islands that presently export large numbers of larvae but that also maintain or enhance this role into the future should be the focus of conservation

  16. Larval Connectivity and the International Management of Fisheries

    PubMed Central

    Kough, Andrew S.; Paris, Claire B.; Butler, Mark J.

    2013-01-01

    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries. PMID:23762273

  17. Larval connectivity and the international management of fisheries.

    PubMed

    Kough, Andrew S; Paris, Claire B; Butler, Mark J

    2013-01-01

    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries.

  18. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    USGS Publications Warehouse

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  19. Modern and fossilized biological communities from sediments of Bolshoy Harbei lake (Bolshezemelskaya tundra, Russia) and their response to climate change

    NASA Astrophysics Data System (ADS)

    Tumanov, Oleg; Nazarova, Larisa; Fefilova, Elena; Baturina, Maria; Loskutova, Olga; Frolova, Larisa; Palagushkina, Olga

    2013-04-01

    High-altitude regions are subjected to the threats of global warming. During the last decade the depth of seasonal melting of permafrost in Northern Russia, significantly increased. Investigation of lake sediments from polar regions has an extreme importance for understanding of the modern environmental processes and their influence on northern ecosystems and biological diversity of these regions. Invertebrate communities are used for diagnostic of lake ecosystems because they have a great sensitivity to climatic changes (Andronnikova, 1996; Lazareva, 2008; O'Brien et al., 2005). The data can be used as well as a basis for inference models for reconstruction of the paleoclimatic conditions. Chironomid-based, Cladocera-based and diatom models have successfully been developed (Nazarova et al., 2008, 2011; Self et al., 2011) and can be used for precise paleotemperature reconstructions (Kienast et al., 2011). In summer 2012, we investigated complex of Kharbei lakes, located in the interfluve of Korotaiha and Bolshaya Rogovaya rivers in the east side of Bolshezemelskaya tundra, Russia (67°33'22″ N, 62°53'23″ E). Six different lakes were investigated using modern hydrobiological and palaeoecological methods. In total 9 cores were obtained, cut, dated and further investigated using sedimenthological, geochemical, and paleobiological methods. The standard hydrobiological methods have shown that the modern zooplankton communities did not change significantly during the last 40 years. Taxonomic composition and structure of planktonic communities didn't change, except for appearance of crustaceans Polyarthra euryptera and Daphnia cucullata. In planktonic communities of Bolshoy Harbei lake we revealed 39 species and forms of Rotifera, 19 - Cladocera and 11 - Copepoda. In zoobenthic communities we registered 24 taxonomical groups characteristic for large tundra lakes of the North East of Russia. Chironomids and Oligochaeta are dominant groups of invertebrates. 103 taxa of

  20. Burrowing activities of the larval lamprey

    USGS Publications Warehouse

    Sawyer, Philip J.

    1959-01-01

    Since the appearance in 1950 of Applegate's work on the sea lamprey in Michigan (U. S. Fish and Wildl. Serv., Spec. Sci. Rept.; Fish, No. 55) and the subsequent development of means to control lampreys in the Great Lakes, biologists have accumulated much additional information on adult lampreys. Larval lampreys, however, are difficult animals to observe in the field, and many facets of their behavior are still unknown. While working with the U. S. Fish and Wildlife Service, I kept ammocetes in captivity, and was able to observe their burrowing activities.

  1. Maternal diet and larval diet influence survival skills of larval red drum Sciaenops ocellatus.

    PubMed

    Perez, K O; Fuiman, L A

    2015-04-01

    Larval red drum Sciaenops ocellatus survival, turning rate, routine swimming speed, escape response latency and escape response distance were significantly correlated with essential fatty-acid (EFA) concentrations in eggs. Of the five traits that varied with egg EFA content, two (escape response latency and routine swimming speed) were significantly different when larvae were fed enriched diets compared with the low fatty-acid diet, indicating that the larval diet can compensate for some imbalances in egg composition. Turning rate during routine swimming and escape response distance, however, did not change when larvae predicted to have low performance (based on egg composition) were fed an enriched diet, indicating that these effects of egg composition may be irreversible. Escape response distances and survival rates of larvae predicted to perform well (based on egg composition) and fed highly enriched diets were lower than expected, suggesting that high levels of EFA intake can be detrimental. Altogether, these results suggest that both maternal diet, which is responsible for egg EFA composition, and larval diet may play a role in larval survivorship and recruitment. PMID:25740661

  2. Characteristics of Anopheles arabiensis larval habitats in Tubu village, Botswana.

    PubMed

    Chirebvu, Elijah; Chimbari, Moses J

    2015-06-01

    Documented information on the ecology of larval habitats in Botswana is lacking but is critical for larval control programs. Therefore, this study determined the characteristics of these habitats and the influences of biotic and abiotic factors in Tubu village, Botswana. Eight water bodies were sampled between January and December, 2013. The aquatic vegetation and invertebrate species present were characterized. Water parameters measured were turbidity (NTU), conductivity (μS/cm), oxygen (mg/l), and pH. Larval densities of Anopheles arabiensis mosquitoes and their correlation with abiotic factors were determined. Larval breeding was associated with 'short' aquatic vegetation, a variety of habitats fed by both rainfall and flood waters and sites with predators and competitors. The monthly mean (± SE(mean)) larval density was 8.16±1.33. The monthly mean (±SE(mean)) pH, conductivity, oxygen, and turbidity were 7.65±0.13, 1152.834±69.171, 5.59±1.33, and 323.421±33.801, respectively. There was a significant negative correlation between larval density and conductivity (r = -0.839; p < 0.01), while a significant positive correlation occurred between turbidity and larval density (r = 0.685; p < 0.05). Oxygen (r = 0.140; p > 0.05) and pH (r = 0.252; p > 0.05) were not correlated with larval density. Floods and diversified breeding sites contributed to prolonged and prolific larval breeding. 'Short' aquatic vegetation and predator-infested waters offered suitable environments for larval breeding. Turbidity and conductivity were good indicators for potential breeding places and can be used as early warning indices for predicting larval production levels.

  3. Phototaxis of larval and juvenile northern pike

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.

    1995-01-01

    Age- Phi northern pike Esox lucius prefer vegetated habitats that are difficult to sample with standard towed gears. Light traps can be effective for sampling larval fishes in dense vegetation, given positive phototaxis of fish. We evaluated the phototactic response of young northern pike by comparing the catches of larvae and juveniles obtained with plexiglass traps deployed with a chemical light stick versus traps deployed without a light source (controls) in a laboratory raceway and in a vegetated pond. In the laboratory tests, catches of protolarvae and mesolarvae in lighted traps were 11-35 times greater than catches in control traps. The catches of juvenile northern pike in field and laboratory experiments were 3-15 times greater in lighted traps than in control traps, even though the maximum body width of the larger juveniles was similar to the width of the entrance slots of the traps (5 mm). Larval and juvenile northern pike were photopositive; thus, light traps should effectively sample age-0 northern pike for at least 6 weeks after hatching.

  4. Dietary antioxidants enhance immunocompetence in larval amphibians.

    PubMed

    Szuroczki, Dorina; Koprivnikar, Janet; Baker, Robert L

    2016-11-01

    Dietary antioxidants have been shown to confer a variety of benefits through their ability to counter oxidative stress, including increased immunocompetence and reduced susceptibility to both infectious and non-infectious diseases. However, little is known about the effects of dietary antioxidants on immune function in larval amphibians, a group experiencing worldwide declines driven by factors that likely involve altered immunocompetence. We investigated the effects of dietary antioxidants (quercetin, vitamin E, and β-carotene) on two components of the immune system, as well as development and growth. Lithobates pipiens tadpoles fed diets with supplemental β-carotene or vitamin E exhibited an enhanced swelling response as measured with a phytohemagglutinin assay (PHA), but there was no induced antibody response. Effects were often dose-dependent, with higher antioxidant levels generally conferring stronger swelling that possibly corresponds to the innate immune response. Our results indicate that the antioxidant content of the larval amphibian diets not only had a detectable effect on their immune response capability, but also promoted tadpole growth (mass gain), although developmental stage was not affected. Given that many environmental perturbations may cause oxidative stress or reduce immunocompetence, it is critical to understand how nutrition may counter these effects. PMID:27475300

  5. Larval fish distribution in the St. Louis River estuary

    EPA Science Inventory

    Our objective was to determine what study design, environmental, and habitat variables contribute to the distribution and abundance of larval fish in the St. Louis River estuary. Larval fish habitat associations are poorly understood in Great Lakes coastal wetlands, yet critical ...

  6. Similarities and Differences for Swimming in Larval and Adult Lampreys.

    PubMed

    McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad

    2016-01-01

    The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for

  7. Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawai'i.

    PubMed

    Wren, Johanna L K; Kobayashi, Donald R

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

  8. Effects of hatching time for larval ambystomatid salamanders

    USGS Publications Warehouse

    Boone, M.D.; Scott, D.E.; Niewiarowski, P.H.

    2002-01-01

    In aquatic communities, the phenology of breeding may influence species interactions. In the early-breeding marbled salamander, Ambystoma opacum, timing of pond filling may determine whether interactions among larvae are competitive or predatory. The objectives of our studies were to determine how time of egg hatching affected size, larval period, and survival to metamorphosis in A. opacum, and if early-hatching in A. opacum influenced the competitive and predator-prey relationships with smaller larvae of the mole salamander, Ambystoma talpoideum. Salamander larvae were reared from hatching through metamorphosis in large, outdoor enclosures located in a natural temporary pond in Aiken County, South Carolina, in two experiments. In study 1, we reared early- and late-hatching A. opacum larvae separately from hatching through metamorphosis. In study 2, we examined how early- versus late-hatching A. opacum affected a syntopic species, A. talpoideum. In general, early-hatching A. opacum were larger and older at metamorphosis, had greater survival, and left the pond earlier than late-hatching larvae. Ambystoma talpoideum reared in the presence of early-hatching A. opacum had lower survival than in controls, suggesting that A. opacum may predate upon A. talpoideum when they gain a growth advantage over later-hatching larvae. Our studies demonstrate that time of pond filling and phenology of breeding may influence population dynamics and alter the nature of relationships that develop among species.

  9. Coastal pollution limits pelagic larval dispersal.

    PubMed

    Puritz, Jonathan B; Toonen, Robert J

    2011-01-01

    The ecological impact of large coastal human populations on marine ecosystems remains relatively unknown. Here, we examine the population structure of Patiria miniata, the bat star, and correlate genetic distances with a model based on flow rates and proximity to P. miniata populations for the four major stormwater runoff and wastewater effluent sources of the Southern California Bight. We show that overall genetic connectivity is high (F(ST)~0.005); however, multivariate analyses show that genetic structure is highly correlated with anthropogenic inputs. The best models included both stormwater and wastewater variables and explained between 26.55 and 93.69% of the observed structure. Additionally, regressions between allelic richness and distance to sources show that populations near anthropogenic pollution have reduced genetic diversity. Our results indicate that anthropogenic runoff and effluent are acting as barriers to larval dispersal, effectively isolating a high gene flow species that is virtually free of direct human impact.

  10. Modelling larval movement data from individual bioassays.

    PubMed

    McLellan, Chris R; Worton, Bruce J; Deasy, William; Birch, A Nicholas E

    2015-05-01

    We consider modelling the movements of larvae using individual bioassays in which data are collected at a high-frequency rate of five observations per second. The aim is to characterize the behaviour of the larvae when exposed to attractant and repellent compounds. Mixtures of diffusion processes, as well as Hidden Markov models, are proposed as models of larval movement. These models account for directed and localized movements, and successfully distinguish between the behaviour of larvae exposed to attractant and repellent compounds. A simulation study illustrates the advantage of using a Hidden Markov model rather than a simpler mixture model. Practical aspects of model estimation and inference are considered on extensive data collected in a study of novel approaches for the management of cabbage root fly. PMID:25764283

  11. Neuroendocrine Control of Drosophila Larval Light Preference

    PubMed Central

    Yamanaka, Naoki; Romero, Nuria M.; Martin, Francisco A.; Rewitz, Kim F.; Sun, Mu; O’Connor, Michael B.; Léopold, Pierre

    2014-01-01

    Animal development is coupled with innate behaviors that maximize chances of survival. Here we show that the prothoracicotropic hormone (PTTH), a neuropeptide that controls the developmental transition from juvenile stage to sexual maturation, also regulates light avoidance in Drosophila melanogaster larvae. PTTH, through its receptor Torso, acts on two light sensors, the Bolwig’s organ and the peripheral class IV dendritic arborization neurons, to regulate light avoidance. We find that PTTH concomitantly promotes steroidogenesis and light avoidance at the end of larval stage, thereby driving animals towards a darker environment to initiate the immobile maturation phase. Thus, PTTH controls the decisions of when and where animals undergo metamorphosis, optimizing conditions for adult development. PMID:24009394

  12. Spontaneous larval Gnathostoma nipponicum infection in frogs.

    PubMed

    Oyamada, T; Hirata, T; Hara, M; Kudo, M; Oyamada, T; Yoshikawa, H; Yoshikawa, T; Suzuki, N

    1998-09-01

    From June 1993 to September 1997, a survey was carried out for the prevalence of larval Gnathostoma nipponicum infection in several kinds of frogs, toads, and their tadpoles collected from an endemic area of this nematode in Aomori Prefecture. Two frog species, one of 436 (0.2%) Rana nigromaculata and 51 of 147 (34.7%) R. catesbeiana were infected, and a total of 446 advanced third-stage larvae (AdL3) of G. nipponicum were recovered. These results confirmed that two frog species which can serve as the second intermediate and/or paratenic hosts in the life cycle of G. nipponicum exist in nature. This report is the first record of spontaneous infection of frogs with AdL3 of G. nipponicum.

  13. Modelling larval movement data from individual bioassays.

    PubMed

    McLellan, Chris R; Worton, Bruce J; Deasy, William; Birch, A Nicholas E

    2015-05-01

    We consider modelling the movements of larvae using individual bioassays in which data are collected at a high-frequency rate of five observations per second. The aim is to characterize the behaviour of the larvae when exposed to attractant and repellent compounds. Mixtures of diffusion processes, as well as Hidden Markov models, are proposed as models of larval movement. These models account for directed and localized movements, and successfully distinguish between the behaviour of larvae exposed to attractant and repellent compounds. A simulation study illustrates the advantage of using a Hidden Markov model rather than a simpler mixture model. Practical aspects of model estimation and inference are considered on extensive data collected in a study of novel approaches for the management of cabbage root fly.

  14. Mosquito larval source management for controlling malaria

    PubMed Central

    Tusting, Lucy S; Thwing, Julie; Sinclair, David; Fillinger, Ulrike; Gimnig, John; Bonner, Kimberly E; Bottomley, Christian; Lindsay, Steven W

    2015-01-01

    Background Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). Objectives To evaluate the effectiveness of mosquito LSM for preventing malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. Selection criteria We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. Data collection and analysis At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software

  15. Bean Type Modifies Larval Competition in Zabrotes subfasciatus (Chrysomelidae: Bruchinae).

    PubMed

    Oliveira, S O D; Rodrigues, A S; Vieira, J L; Rosi-Denadai, C A; Guedes, N M P; Guedes, R N C

    2015-08-01

    Larval competition is particularly prevalent among grain beetles that remain within their mother-selected grain throughout development, and the behavioral process of competition is usually inferred by the competition outcome. The Mexican bean weevil Zabrotes subfasciatus (Boheman) is subjected to resource availability variation because of the diversity of common bean types and sizes, from small (e.g., kidney beans) to large (e.g., cranberry beans). The competition process was identified in the Mexican bean weevil reared on kidney and cranberry beans by inference from the competition outcome and by direct observation through digital X-ray imaging. Increased larval density negatively affected adult emergence in kidney beans and reduced adult body mass in both kidney and cranberry beans. Developmental time was faster in cranberry beans. The results allowed for increased larval fitness (i.e., higher larval biomass produced per grain), with larval density reaching a maximum plateau >5 hatched larvae per kidney bean, whereas in cranberry beans, larval fitness linearly increased with density to 13 hatched larvae per bean. These results, together with X-ray imaging without evidence of direct aggressive interaction among larvae, indicate scramble competition, with multiple larvae emerging per grain. However, higher reproductive output was detected for adults from lower density competition with better performance on cranberry beans. Larger populations and fitter adults are expected in intermediate larval densities primarily in cranberry beans where grain losses should be greater.

  16. Fitness consequences of larval traits persist across the metamorphic boundary.

    PubMed

    Crean, Angela J; Monro, Keyne; Marshall, Dustin J

    2011-11-01

    Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits.

  17. Bean Type Modifies Larval Competition in Zabrotes subfasciatus (Chrysomelidae: Bruchinae).

    PubMed

    Oliveira, S O D; Rodrigues, A S; Vieira, J L; Rosi-Denadai, C A; Guedes, N M P; Guedes, R N C

    2015-08-01

    Larval competition is particularly prevalent among grain beetles that remain within their mother-selected grain throughout development, and the behavioral process of competition is usually inferred by the competition outcome. The Mexican bean weevil Zabrotes subfasciatus (Boheman) is subjected to resource availability variation because of the diversity of common bean types and sizes, from small (e.g., kidney beans) to large (e.g., cranberry beans). The competition process was identified in the Mexican bean weevil reared on kidney and cranberry beans by inference from the competition outcome and by direct observation through digital X-ray imaging. Increased larval density negatively affected adult emergence in kidney beans and reduced adult body mass in both kidney and cranberry beans. Developmental time was faster in cranberry beans. The results allowed for increased larval fitness (i.e., higher larval biomass produced per grain), with larval density reaching a maximum plateau >5 hatched larvae per kidney bean, whereas in cranberry beans, larval fitness linearly increased with density to 13 hatched larvae per bean. These results, together with X-ray imaging without evidence of direct aggressive interaction among larvae, indicate scramble competition, with multiple larvae emerging per grain. However, higher reproductive output was detected for adults from lower density competition with better performance on cranberry beans. Larger populations and fitter adults are expected in intermediate larval densities primarily in cranberry beans where grain losses should be greater. PMID:26470357

  18. Does fish larval dispersal differ between high and low latitudes?

    PubMed

    Leis, Jeffrey M; Caselle, Jennifer E; Bradbury, Ian R; Kristiansen, Trond; Llopiz, Joel K; Miller, Michael J; O'Connor, Mary I; Paris, Claire B; Shanks, Alan L; Sogard, Susan M; Swearer, Stephen E; Treml, Eric A; Vetter, Russell D; Warner, Robert R

    2013-05-22

    Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of 'off the shelf' information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.

  19. Dimethylsulfoniopropionate (DMSP) Increases Survival of Larval Sablefish, Anoplopoma fimbria.

    PubMed

    Lee, Jonathan S F; Poretsky, Rachel S; Cook, Matthew A; Reyes-Tomassini, Jose J; Berejikian, Barry A; Goetz, Frederick W

    2016-06-01

    High concentrations of dimethylsulfoniopropionate (DMSP), a chemical compound released by lysed phytoplankton, may indicate high rates of grazing by zooplankton and may thus be a foraging cue for planktivorous fishes. Previous studies have shown that some planktivorous fishes and birds aggregate or alter locomotory behavior in response to this chemical cue, which is likely adaptive because it helps them locate prey. These behavioral responses have been demonstrated in juveniles and adults, but no studies have tested for effects on larval fish. Larvae suffer from high mortality rates and are vulnerable to starvation. While larvae are generally thought to be visual predators, they actually have poor vision and cryptic prey. Thus, larval fish should benefit from a chemical cue that provides information on prey abundance. We reared larval sablefish, Anoplopoma fimbria, for one week and supplemented feedings with varying concentrations of DMSP to test the hypothesis that DMSP affects larval survival. Ecologically relevant DMSP concentrations increased larval survival by up to 70 %, which has implications for production in aquaculture and recruitment in nature. These results provide a new tool for increasing larval production in aquaculture and also suggest that larvae may use DMSP as an olfactory cue. The release of DMSP may be a previously unappreciated mechanism through which phytoplankton affect larval survival and recruitment. PMID:27306913

  20. Mosquito larval source management for controlling malaria

    PubMed Central

    Tusting, Lucy S; Thwing, Julie; Sinclair, David; Fillinger, Ulrike; Gimnig, John; Bonner, Kimberly E; Bottomley, Christian; Lindsay, Steven W

    2015-01-01

    Background Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). Objectives To evaluate the effectiveness of mosquito LSM for preventing malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. Selection criteria We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. Data collection and analysis At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software

  1. Inter- and intra-specific density-dependent effects on life history and development strategies of larval mosquitoes.

    PubMed

    Tsurim, Ido; Silberbush, Alon; Ovadia, Ofer; Blaustein, Leon; Margalith, Yoel

    2013-01-01

    We explored how inter- and intra-specific competition among larvae of two temporary-pool mosquito species, Culiseta longiareolata and Ochlerotatus caspius, affect larval developmental strategy and life history traits. Given that their larvae have similar feeding habits, we expected negative reciprocal inter-specific interactions. In a microcosm experiment, we found sex-specific responses of larval survival and development to both intra- and inter-specific larval competition. C. longiareolata was the superior competitor, reducing adult size and modifying larval developmental time of O. caspius. We observed two distinct waves of adult emergence in O. caspius, with clear sex-specific responses to its inter-specific competitor. In males, this pattern was not affected by C. longiareolata, but in females, the timing and average body size of the second wave strongly varied with C. longiareolata density. Specifically, in the absence of C. longiareolata, the second wave immediately followed the first wave. However, as C. longiareolata abundance increased, the second wave was progressively delayed and the resulting females tended to be larger. This study improves our understanding of the way intra- and inter-specific competition combine to influence the life histories of species making up temporary pond communities. It also provides strong evidence that not all individuals of a cohort employ the same strategies in response to competition.

  2. Larval growth, development, and survival of laboratory-reared Aplysia californica: Effects of diet and veliger density*

    PubMed Central

    Capo, Thomas R.; Bardales, Ana T.; Gillette, Phillip R.; Lara, Monica R.; Schmale, Michael C.; Serafy, Joseph E.

    2009-01-01

    Over the last three decades, the California sea hare, Aplysia californica, has played an increasingly important role as a model organism in the neurosciences. Since 1995, the National Resource for Aplysia has supported a growing research community by providing a consistent supply of laboratory-reared individuals of known age, reproductive status, and environmental history. The purpose of the present study was to resolve the key biological factors necessary for successful culture of large numbers of high quality larval Aplysia. Data from a sequence of five experiments demonstrated that algal diet, food concentration, and veliger density significantly affected growth, attainment of metamorphic competency, and survival of Aplysia larvae. The highest growth and survival were achieved with a mixed algal diet of 1:1 Isochrysis sp (TISO) and Chaetoceros muelleri (CHGRA) at a total concentration of 250 x 103 cells/mL and a larval density of 0.5 – 1.0 per mL. Rapid growth was always correlated with faster attainment of developmental milestones and increased survival, indicating that the more rapidly growing larvae were healthier. Trials conducted with our improved protocol resulted in larval growth rates of >14 μm/d, which yielded metamorphically competent animals within 21 days with survival rates in excess of 90%. These data indicate the important effects of biotic factors on the critical larval growth period in the laboratory and show the advantages of developing optimized protocols for culture of such marine invertebrates. PMID:19000779

  3. Behavioral analysis of the escape response in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    The behavior of larval zebrafish is of great interest because the limited number of locomotor neurons in larval zebrafish couples with its rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their swimming behavior while our lab has built a parameter-free model based on singular value decomposition analysis to characterize it. Our previous work has analyzed the free swimming of larval zebrafish and presented a different picture from the current classification of larval zebrafish locomotion. Now we are extending this work to the studies of their escape response to acoustic stimulus. Analysis has shown intrinsic difference in the locomotion between escape response and free swimming.

  4. Maximising the secondary beneficial effects of larval debridement therapy.

    PubMed

    Pritchard, D I; Nigam, Y

    2013-11-01

    Laboratory-based clinical investigations have shown that maggots and their secretions promote, among other activities, fibroblast motogenesis and angiogenesis. These events would contribute to re-granulation if translated to the wound environment. Maggot secretions also have ascribed antibacterial actions and may exhibit anti-inflammatory effects. Many of these biological events would be lost in the presence of necrotic tissue, making debridement a prerequisite for the release of larval-secreted secondary beneficial effects on the wound. We argue that Larval Debridement Therapy (LDT) should be considered as a primary and secondary treatment in wound management, with the primary application designed to debride the wound, and with subsequent applications to the debrided wound targeted to cellular events that promote healing. This review lends support to a re-evaluation of larval application protocols, in order to optimally harness the potential secondary beneficial clinical effects of larval therapy.

  5. Imaging fictive locomotor patterns in larval Drosophila

    PubMed Central

    Bayley, Timothy G.; Taylor, Adam L.; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-01-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  6. Live Imaging of Drosophila Larval Neuroblasts

    PubMed Central

    Lerit, Dorothy A.; Plevock, Karen M.; Rusan, Nasser M.

    2014-01-01

    Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications. PMID:25046336

  7. Imaging fictive locomotor patterns in larval Drosophila.

    PubMed

    Pulver, Stefan R; Bayley, Timothy G; Taylor, Adam L; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-11-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca(2+) indicators. The Ca(2+) signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca(2+) signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca(2+) signals were normally initiated did not eliminate production of Ca(2+) waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  8. Basic Gravitational Reflexes in the Larval Frog

    NASA Technical Reports Server (NTRS)

    Cochran, Stephen L.

    1996-01-01

    This investigation was designed to determine how a primitive vertebrate, the bullfrog tadpole, is able to sense and process gravitational stimuli. Because of the phylogenetic similarities of the vestibular systems in all vertebrates, the understanding of the gravitational reflexes in this relatively simple vertebrate should elucidate a skeletal framework on a elementary level, upon which the more elaborate reflexes of higher vertebrates may be constructed. The purpose of this study was to understand how the nervous system of the larval amphibian processes gravitational information. This study involved predominantly electrophysiological investigations of the isolated, alert (forebrain removed) bullfrog tadpole head. The focus of these experiments is threefold: (1) to understand from whole extraocular nerve recordings the signals sent to the eye following static gravitational tilt of the head; (2) to localize neuronal centers responsible for generating these signals through reversible pharmacological ablation of these centers; and (3) to record intracellularly from neurons within these centers in order to determine the single neuron's role in the overall processing of the center. This study has provided information on the mechanisms by which a primitive vertebrate processes gravitational reflexes.

  9. Romanomermis culicivorax: penetration of larval mosquitoes.

    PubMed

    Shamseldean, M M; Platzer, E G

    1989-09-01

    In the presence of second larval instars of three mosquito species the preparasites of Romanomermis culicivorax swam near the water surface in an orthokinetic manner. When the preparasites were ca. 1 mm from the host, they stopped and swam klinotactically toward the host. During this phase, the preparasites secreted a small amount of a putative adhesive material from the anterior region and host contact was completed. The adhesive appeared to aid in attachment of the preparasites to the host and initiation of the search-boring phase. The preparasites glided over the host until a suitable penetration site was found. The penetration phase was initiated by probing with the odontostyle. This was followed by partial paralysis, decreased intestinal peristaltic movement, and temporary cardiac arrest in all host mosquitoes which was probably related to injection of esophageal secretions. SEM observations showed that the abdominal walls were the most frequent site for penetration. As the preparasites entered through the penetration hole, microorganisms adhering to the cuticle of the preparasites were retained by the adhesive which accumulated around the penetration site. Thus, microbial contamination of the host was avoided by a mechanical cleansing mechanism. Penetration was usually completed in less than 10 min.

  10. Immunoregulation in larval Echinococcus multilocularis infection.

    PubMed

    Wang, J; Gottstein, B

    2016-03-01

    Alveolar echinococcosis (AE) is a clinically very severe zoonotic helminthic disease, characterized by a chronic progressive hepatic damage caused by the continuous proliferation of the larval stage (metacestode) of Echinococcus multilocularis. The proliferative potential of the parasite metacestode tissue is dependent on the nature/function of the periparasitic immune-mediated processes of the host. Immune tolerance and/or down-regulation of immunity are a marked characteristic increasingly observed when disease develops towards its chronic (late) stage of infection. In this context, explorative studies have clearly shown that T regulatory (Treg) cells play an important role in modulating and orchestrating inflammatory/immune reactions in AE, yielding a largely Th2-biased response, and finally allowing thus long-term parasite survival, proliferation and maturation. AE is fatal if not treated appropriately, but the current benzimidazole chemotherapy is far from optimal, and novel options for control are needed. Future research should focus on the elucidation of the crucial immunological events that lead to anergy in AE, and focus on providing a scientific basis for the development of novel and more effective immunotherapeutical options to support cure AE by abrogating anergy, anticipating also that a combination of immuno- and chemotherapy could provide a synergistic therapeutical effect. PMID:26536823

  11. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Lin, Xiao-Li; Kang, Zhi-Wei; Pan, Qin-Jian; Liu, Tong-Xian

    2015-10-01

    Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method.

  12. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Lin, Xiao-Li; Kang, Zhi-Wei; Pan, Qin-Jian; Liu, Tong-Xian

    2015-10-01

    Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method. PMID:25183343

  13. A simple approximation for larval retention around reefs

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, Paulina; Connolly, Sean R.

    2011-09-01

    Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.

  14. Can Georges Bank larval cod survive on a calanoid diet?

    NASA Astrophysics Data System (ADS)

    Lynch, Daniel R.; Lewis, Craig V. W.; Werner, Francisco E.

    A simple conceptual model is developed for larval fish feeding on stage-structured prey populations, in an Eulerian framework. The model combines simplified contemporary models of larval fish trophodynamics, zooplankton population dynamics, and hydrodynamic turbulence. The Eulerian view allows instructive maps of larval feeding and growth rates for individual prey species, alone or in combination. Decadally averaged MARMAP surveys of Calanus finmarchicus and Pseudocalanus spp. are analyzed for the March-April period. Quasi-static population dynamics are used to infer the abundance of the smallest stages from adult female abundance. Computed growth rates show that Calanus alone is insufficient to support the smallest cod larvae (4 and 6 mm), but provides good growth (⩾10%/day) for large larvae (10, 12 mm). Pseudocalanus alone provides generally good growth for all larvae but is mismatched spatially with observed cod spawning and subsequent larval advection. Both species together provide good growth, matched spatially with larval cod, for 6 mm and larger larvae. A dietary supplement beyond these two species is needed for the smallest larvae. The procedure provides a general method for mapping observations of zooplankton abundance, distribution and reproductive status, and their relevance to larval fish survival, when the smallest stages are not observable.

  15. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River.

    PubMed

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3-N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish

  16. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River

    PubMed Central

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3–N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish

  17. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River.

    PubMed

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3-N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish

  18. Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzhong; Haidvogel, Dale; Munroe, Daphne; Powell, Eric N.; Klinck, John; Mann, Roger; Castruccio, Frederic S.

    2015-02-01

    To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The model results show a typical along-shore connectivity pattern from the northeast to the southwest among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. Continuous surfclam larval input into regions off Delmarva (DMV) and New Jersey (NJ) suggests that insufficient larval supply is unlikely to be the factor causing the failure of the population to recover after the observed decline of the surfclam populations in DMV and NJ from 1997 to 2005. The GBK surfclam population is relatively more isolated than populations to the west and south in the MAB; model results suggest substantial inter-population connectivity from southern New England to the Delmarva region. Simulated surfclam larvae generally drift for over one hundred kilometers along the shelf, but the distance traveled is highly variable in space and over time. Surfclam larval growth and transport are strongly impacted by the physical environment. This suggests the need to further examine how the interaction between environment, behavior, and physiology affects inter-population connectivity. Larval vertical swimming and sinking behaviors have a significant net effect of increasing larval drifting distances when compared with a purely passive model, confirming the need to include larval behavior.

  19. The effect of nitrogen loading on a brackish estuarine faunal community: A stable isotope approach

    USGS Publications Warehouse

    Keats, R.A.; Osher, L.J.; Neckles, H.A.

    2004-01-01

    Coastal ecosystems worldwide face increased nutrient enrichment from shoreline and watershed development and atmospheric pollution. We investigated the response of the faunal community of a small microtidal estuary dominated by Ruppia maritima (widgeon grass) in Maine, United States, to increased nitrogen loading using an in situ mesocosm enrichment experiment. Community response was characterized by assessing quantitative shifts in macroin-vertebrate community composition and identifying changes in food web structure using stable carbon and nitrogen isotope ratios of producers and consumers. The community was dominated by brackish water invertebrates including midge larvae, oligochaetes, damselfly larvae, amphipods, and ostracods. Experimental nutrient additions resulted in significantly lower densities of herbivorous chironomids and predatory damselflies and greater densities of deposit feeding oligochaetes. Grazing midge larvae (Chironomidae: Dicrotendipes, Cricotopus) consumed epiphytic algae under both natural and enriched conditions. Deposit feeding Chironomus was dependent on allochthonous sources of detritus under natural conditions and exhibited a shift to autochthonous sources of detritus under enriched conditions. Predatory Enallagma primarily consumed grazing chironomids under all but the highest loading conditions. Experimental nutrient loading resulted in an increase in generalist deposit feeders dependent on autochthonous sources of detritus.

  20. Behaviorally plastic host-plant use by larval Lepidoptera in tri-trophic food webs.

    PubMed

    Singer, Michael S

    2016-04-01

    Plant-insect interactions research emphasizes adaptive plasticity of plants and carnivores, such as parasitoids, implying a relatively passive role of herbivores. Current work is addressing this deficit, with exciting studies of behavioral plasticity of larval Lepidoptera (caterpillars). Here I use select examples to illustrate the diversity of behaviorally plastic host-plant use by caterpillars, including anti-predator tactics, self-medication, and evasion of dynamic plant defenses, as proof of the agency of caterpillar behavior in plant-insect interactions. I emphasize the significance of adaptive behavioral plasticity of caterpillars in the context of tri-trophic interactions. Recent research on trait-mediated indirect interactions places adaptive behavioral plasticity of herbivores at the center of community and food web dynamics, with far-reaching consequences of issues such as community stability. PMID:27436647

  1. Behaviorally plastic host-plant use by larval Lepidoptera in tri-trophic food webs.

    PubMed

    Singer, Michael S

    2016-04-01

    Plant-insect interactions research emphasizes adaptive plasticity of plants and carnivores, such as parasitoids, implying a relatively passive role of herbivores. Current work is addressing this deficit, with exciting studies of behavioral plasticity of larval Lepidoptera (caterpillars). Here I use select examples to illustrate the diversity of behaviorally plastic host-plant use by caterpillars, including anti-predator tactics, self-medication, and evasion of dynamic plant defenses, as proof of the agency of caterpillar behavior in plant-insect interactions. I emphasize the significance of adaptive behavioral plasticity of caterpillars in the context of tri-trophic interactions. Recent research on trait-mediated indirect interactions places adaptive behavioral plasticity of herbivores at the center of community and food web dynamics, with far-reaching consequences of issues such as community stability.

  2. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology.

    PubMed

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-09-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655

  3. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology

    PubMed Central

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-01-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655

  4. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology.

    PubMed

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-09-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.

  5. Conserved MIP receptor–ligand pair regulates Platynereis larval settlement

    PubMed Central

    Conzelmann, Markus; Williams, Elizabeth A.; Tunaru, Sorin; Randel, Nadine; Shahidi, Réza; Asadulina, Albina; Berger, Jürgen; Offermanns, Stefan; Jékely, Gáspár

    2013-01-01

    Life-cycle transitions connecting larval and juvenile stages in metazoans are orchestrated by neuroendocrine signals including neuropeptides and hormones. In marine invertebrate life cycles, which often consist of planktonic larval and benthic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory–neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not yet understood. Here we show that myoinhibitory peptide (MIP)/allatostatin-B, a pleiotropic neuropeptide widespread among protostomes, regulates larval settlement in the marine annelid Platynereis dumerilii. MIP is expressed in chemosensory–neurosecretory cells in the annelid larval apical organ and signals to its receptor, an orthologue of the Drosophila sex peptide receptor, expressed in neighboring apical organ cells. We demonstrate by morpholino-mediated knockdown that MIP signals via this receptor to trigger settlement. These results reveal a role for a conserved MIP receptor–ligand pair in regulating marine annelid settlement. PMID:23569279

  6. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  7. [Larval stages of Ascaris lumbricoides: hyaluronan-binding capacity].

    PubMed

    Ponce-León, Patricia; Foresto, Patricia; Valverde, Juana

    2009-03-01

    Hyaluronic acid has important functions in inflammatory and tissue reparation processes. Owing to the varied strategies of the parasites to evade the host's immune response, as well as the multiple functions and physiological importance of hyaluronic acid, the aim was to study the hyaluronan binding capacity by Ascaris lumbricoides larval stages. Larval concentrates were prepared by hatching A. lumbricoides eggs. The larvae were collected by the Baermann method. The test of serum soluble CD44 detection by Agregation Inhibition was modified. All the larval concentrates presented hyaluronan binding capacity. The obtained results allow to suppose the existence of an hyaluronic acid specific receptor in A. lumbricoides. This receptor eventually might compete with the usual receptors of the host. The parasite might use this mechanism to evade the immune response.

  8. Effects of coastal transport on larval patches: Models and observations

    NASA Astrophysics Data System (ADS)

    Tilburg, Charles E.; Houser, Letise T.; Steppe, Cecily N.; Garvine, Richard W.; Epifanio, Charles E.

    2006-03-01

    We used a combination of field observations and numerical modeling to examine the physical mechanisms responsible for the evolution and transport of patches of blue crab larvae in the mouth of Delaware Bay. The observations consisted of larval collections and surface salinity measurements taken along a moving spatial grid whose origin was determined by a satellite-tracked drifter. Examination of field observations revealed a slender larval patch that was aligned with salinity contours. Measurement of the salting rate of the larval patch indicated that the patch moved through the offshore edge of a buoyant plume due to wind-driven upwelling circulation. A numerical model that provided realistic simulations of the flow field at the mouth of Delaware Bay and the adjoining coastal ocean was used to examine the physical mechanisms responsible for the movement and evolution of the patch. We conducted a series of simulations in which we separately examined the effects of tides, buoyancy-driven flow, and wind-driven transport. Results showed that both tides and buoyancy-driven flow tend to elongate an initially square fluid element. Although winds alone have little effect on the shape of a patch, wind-driven flow can effectively move a patch through a complex flow field in which the deformation by tides and buoyancy-driven circulation can have significant effects. This study represents the first observation and analysis of a larval patch that remains intact while moving through the edge of a buoyant plume. It provides new insight into the shape of larval patches in Delaware Bay and any region with strong buoyancy- and tidally-driven flow, suggesting that typical larval patches may not be characterized by equal across- and alongshelf dimensions but instead tend to be slender shapes that are aligned with the flow field.

  9. Effects of beach morphology and waves on onshore larval transport

    NASA Astrophysics Data System (ADS)

    Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.

    2015-12-01

    Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.

  10. A merganser die-off associated with larval eustrongylides

    USGS Publications Warehouse

    Locke, L.N.; DeWitt, J.B.; Menzie, C.M.; Kerwin, J.A.

    1964-01-01

    A die-off of red-breasted mergansers on Lake Holly, Virginia Beach, Virginia, was found to be due to a larval Eustrongylides. Massive tissue destruction and hemorrhage was produced by the migration of the larval Eustrongylides. Earlier stages of the same Eustrongylides were found in eastern mosquitofish and silversides upon which the mergansers had been feeding. In addition, residues of DDT were found in mosquitofish, gizzard shad, and five mergansers collected from Lake Holly, and in the tissues of two mergansers from Back Bay, Virginia. However, the information available was insufficient to establish the significance of these residue levels.

  11. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs.

  12. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs. PMID:26611041

  13. Same but different: Larval development and gall-inducing process of a non-pollinating fig wasp compared to that of pollinating fig-wasps

    NASA Astrophysics Data System (ADS)

    Jansen-González, Sergio; Teixeira, Simone de Padua; Kjellberg, Finn; Pereira, Rodrigo A. Santinelo

    2014-05-01

    The receptacles of fig trees (Ficus spp.) can harbor a highly diversified and complex community of chalcid wasps. Functional groups of fig wasps (e.g. gallers, cleptoparasites and parasitoids) oviposit into the fig at different developmental stages, reflecting different feeding regimes for these insect larvae. There are few direct data available on larval feeding regimes and access to resources. We studied the gall induction and larval feeding strategy of an Idarnes (group flavicollis) species, a non-pollinating fig wasp (NPFW) associated to Ficus citrifolia P. Miller in Brazil. This Idarnes species shares with the pollinator characteristics such as time of oviposition, ovipositor insertion through flower and location of the egg inside plant ovaries. Nevertheless, we show that the gall induction differs considerably from that of the pollinating species. This Idarnes species relies on the induction of nucellus cell proliferation for gall formation and as the main larval resource. This strategy enables it to develop in both pollinated and unpollinated figs. The large differences between this NPFW and other fig wasps in how ovules are galled suggest that there are different ways to be a galler. A functional analysis of NPFW community structure may require descriptions of the histological processes associated with larval development.

  14. Can benthic algae mediate larval behavior and settlement of the coral Acropora muricata?

    NASA Astrophysics Data System (ADS)

    Denis, V.; Loubeyres, M.; Doo, S. S.; de Palmas, S.; Keshavmurthy, S.; Hsieh, H. J.; Chen, C. A.

    2014-06-01

    The resilience of coral reefs relies significantly on the ability of corals to recover successfully in algal-dominated environments. Larval settlement is a critical but highly vulnerable stage in the early life history of corals. In this study, we analyzed how the presence of two upright fleshy algae, Sargassum mcclurei (SM) and Padina australis (PA), and one crustose coralline algae, Mesophyllum simulans (MS), affects the settlement of Acropora muricata larvae. Coral larvae were exposed to seawater flowing over these algae at two concentrations. Larval settlement and mortality were assessed daily through four variables related to their behavior: swimming, substratum testing, metamorphosis, and stresses. Temperature, dissolved oxygen, pH, algal growth, and photosynthetic efficiency were monitored throughout the experiment. Results showed that A. muricata larvae can settle successfully in the absence of external stimuli (63 ± 6 % of the larvae settled in control treatments). While algae such as MS may stimulate substrate testing and settlement of larvae in the first day after competency, they ultimately had a lower settlement rate than controls. Fleshy algae such as PA, and in a lesser measure SM, induced more metamorphosis than controls and seemed to eventually stimulate settlement. A diverse combination of signals and/or modifications of microenvironments by algae and their associated microbial communities may explain the pattern observed in coral settlement. Overall, this study contributes significantly to the knowledge of the interaction between coral and algae, which is critical for the resilience of the reefs.

  15. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.

    PubMed

    Rossi, Tullio; Nagelkerken, Ivan; Pistevos, Jennifer C A; Connell, Sean D

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. While ocean acidification is known to affect a wide range of marine organisms and processes, its effect on marine soundscapes and its reception by navigating oceanic larvae remains unknown. Here, we show that ocean acidification causes a switch in role of present-day soundscapes from attractor to repellent in the auditory preferences in a temperate larval fish. Using natural CO2 vents as analogues of future ocean conditions, we further reveal that ocean acidification can impact marine soundscapes by profoundly diminishing their biological sound production. An altered soundscape poorer in biological cues indirectly penalizes oceanic larvae at settlement stage because both control and CO2-treated fish larvae showed lack of any response to such future soundscapes. These indirect and direct effects of ocean acidification put at risk the complex processes of larval dispersal and settlement.

  16. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.

    PubMed

    Rossi, Tullio; Nagelkerken, Ivan; Pistevos, Jennifer C A; Connell, Sean D

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. While ocean acidification is known to affect a wide range of marine organisms and processes, its effect on marine soundscapes and its reception by navigating oceanic larvae remains unknown. Here, we show that ocean acidification causes a switch in role of present-day soundscapes from attractor to repellent in the auditory preferences in a temperate larval fish. Using natural CO2 vents as analogues of future ocean conditions, we further reveal that ocean acidification can impact marine soundscapes by profoundly diminishing their biological sound production. An altered soundscape poorer in biological cues indirectly penalizes oceanic larvae at settlement stage because both control and CO2-treated fish larvae showed lack of any response to such future soundscapes. These indirect and direct effects of ocean acidification put at risk the complex processes of larval dispersal and settlement. PMID:26763221

  17. Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea?

    PubMed Central

    Metaxas, Anna; Kelly, Noreen E.

    2010-01-01

    Background The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. Methodology/Principal Findings We use data from the published scientific literature to: (1) compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2) explore factors that affect these life history processes, when information is available; and (3) explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm−2 d−1 across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood falls. Vents also

  18. Larval therapy for leg ulcers (VenUS II): randomised controlled trial

    PubMed Central

    Worthy, Gill; Bland, J Martin; Cullum, Nicky; Dowson, Christopher; Iglesias, Cynthia; Mitchell, Joanne L; Nelson, E Andrea; Soares, Marta O; Torgerson, David J

    2009-01-01

    Objective To compare the clinical effectiveness of larval therapy with a standard debridement technique (hydrogel) for sloughy or necrotic leg ulcers. Design Pragmatic, three armed randomised controlled trial. Setting Community nurse led services, hospital wards, and hospital outpatient leg ulcer clinics in urban and rural settings, United Kingdom. Participants 267 patients with at least one venous or mixed venous and arterial ulcer with at least 25% coverage of slough or necrotic tissue, and an ankle brachial pressure index of 0.6 or more. Interventions Loose larvae, bagged larvae, and hydrogel. Main outcome measures The primary outcome was time to healing of the largest eligible ulcer. Secondary outcomes were time to debridement, health related quality of life (SF-12), bacterial load, presence of meticillin resistant Staphylococcus aureus, adverse events, and ulcer related pain (visual analogue scale, from 0 mm for no pain to 150 mm for worst pain imaginable). Results Time to healing was not significantly different between the loose or bagged larvae group and the hydrogel group (hazard ratio for healing using larvae v hydrogel 1.13, 95% confidence interval 0.76 to 1.68; P=0.54). Larval therapy significantly reduced the time to debridement (2.31, 1.65 to 3.2; P<0.001). Health related quality of life and change in bacterial load over time were not significantly different between the groups. 6.7% of participants had MRSA at baseline. No difference was found between larval therapy and hydrogel in their ability to eradicate MRSA by the end of the debridement phase (75% (9/12) v 50% (3/6); P=0.34), although this comparison was underpowered. Mean ulcer related pain scores were higher in either larvae group compared with hydrogel (mean difference in pain score: loose larvae v hydrogel 46.74 (95% confidence interval 32.44 to 61.04), P<0.001; bagged larvae v hydrogel 38.58 (23.46 to 53.70), P<0.001). Conclusions Larval therapy did not improve the rate of healing of sloughy

  19. Benthic community of the Savannah River below a peaking hydropower station

    USGS Publications Warehouse

    Hudson, Patrick L.; Nichols, S. Jerrine

    1986-01-01

    The Savannah River below Hartwell Dam, on the South Carolina-Georgia border, contains at least 206 benthic invertebrate taxa, even though this tailwater undergoes substantial daily fluctuations in water flow, temperature, and dissolved oxygen. Oligochaetes, chironomids, and amphipods dominate the community immediately below the dam. Farther downstream, larger organisms (i.e., Ephemeroptera, Trichoptera, etc.) dominate the benthic community. The high diversity of this system is primarily attributed to the intensive effort we expended to identify invertebrates to species level. We conclude that tailwaters associated with peaking hydropower stations may in fact have the diverse community assemblages found in natural streams and that this has not been recognized by other investigators because the bulk of the fauna is made up of small forms that are easily overlooked. Comparisons of tailwater fauna communities with those in control areas should be limited to rivers of similar size.

  20. Larval myogenesis in Echinodermata: conserved features and morphological diversity between class-specific larval forms of Echinoidae, Asteroidea, and Holothuroidea.

    PubMed

    Dyachuk, Vyacheslav; Odintsova, Nelly

    2013-01-01

    The myogenesis of class-specific larval forms of three classes belonging to the phylum Echinodermata (Echinoidae, Asteroidea, and Holothuroidea) was investigated via gross-anatomy and comparative morphology of larval muscles. Using staining with phalloidin and antibodies against the muscle proteins, with subsequent CLSM and 3D imaging, we have examined myogenesis in the larvae from the gastrula stage to pre-metamorphosis larval stages. We have shown that temporal and spatial expression of muscle proteins is similar in echinoidea and asteroidea larvae but differs in holothuroidea larvae at early developmental stages. New insights regarding the protein composition of maturing muscular fibrils during development in echinoderm larvae were detected. The first differentiating muscle structures in all tested classes have been found to be circular esophageal muscles that are associated with larval feeding. During early differentiation of echinoderm larval muscle cells, we observed that the expression patterns of the muscle proteins were not uniform but with a characteristic diffuse distribution, which is typical for smooth muscle. An unusual pattern of expression of the muscle proteins was detected in larval sphincters: the thick muscle proteins were first expressed during the early developmental stages, whereas F-actin appeared at later stages. In addition, paired star-shaped muscles were revealed in the mature Echinoidae plutei, but were absent in the Asteroidea, and Holothuroidea larvae. All tested species of Echinodermata exhibited both conserved features of muscle morphology during development indicating a common life history strategy and a planktonic habitat, and also an extensive morphological diversity representing specific anatomical adaptations during development.

  1. Cryptic biodiversity in streams - a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications

    EPA Science Inventory

    Aquatic ecologists and entomologists have long known that species-level identifications were difficult, if not impossible, for many larval macroinvertebrates collected in streams. This study describes macroinvertebrate (primarily insect) communities from five coastal streams dist...

  2. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications

    EPA Science Inventory

    Species-level identifications are difficult or impossible for many larval aquatic macroinvertebrates. We described the taxonomic composition of macroinvertebrate communities from 5 coastal streams in 3 neighboring catchments in southern California. We compared taxonomic identific...

  3. [Larval development of Hypsophrys nicaraguensis (Pisces: Cichlidae) under laboratory conditions].

    PubMed

    Molina Arias, Alex

    2011-12-01

    The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet.

  4. Swimming behavior of larval Medaka fish under microgravity

    NASA Astrophysics Data System (ADS)

    Furukawa, R.; Ijiri, K.

    Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish ( Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.

  5. Larval fish dynamics in spring pools in middle Tennessee

    USGS Publications Warehouse

    Bettoli, Phillip William; Goldsworthy, C.A.

    2011-01-01

    We used lighted larval traps to assess reproduction by fishes inhabiting nine spring pools in the Barrens Plateau region of middle Tennessee between May and September 2004. The traps (n = 162 deployments) captured the larval or juvenile forms of Etheostoma crossopterum (Fringed Darter) (n = 188), Gambusia affinis (Western Mosquitofish) (n = 139), Hemitremia flammea (Flame Chub) (n = 55), the imperiled Fundulus julisia (Barrens Topminnow) (n = 10), and Forbesichthys agassizii (Spring Cavefish) (n = 1). The larval forms of four other species (Families Centrarchidae, Cyprinidae, and Cottidae) were not collected, despite the presence of adults. Larval Barrens Topminnow hatched over a protracted period (early June through late September); in contrast, hatching intervals were much shorter for Fringed Darter (mid-May through early June). Flame Chub hatching began before our first samples in early May and concluded by late-May. Juvenile Western Mosquitofish were collected between early June and late August. Our sampling revealed that at least two species (Flame Chub and Fringed Darter) were able to reproduce and recruit in habitats harboring the invasive Western Mosquitofish, while Barrens Topminnow could not.

  6. A sampler for capturing larval and juvenile Atlantic menhaden

    USGS Publications Warehouse

    Hedrick, J.D.; Hedrick, L.R.; Margraf, F.J.

    2005-01-01

    Interest in capturing larval and juvenile Atlantic menhaden Brevoortia tyrannus for use in laboratory studies required the design and construction of a sampling device that would allow us to make collections of live fish from open-water areas. Our device for capturing 1-2.5-in larval-juvenile fish was constructed of a stainless steel frame that supported a 9.84-ft-long (3-m-long)5 cone plankton net with a 3.28-ft-diameter (1-m-diameter) opening and a 0.04-in (1-mm) mesh size. Although the plankton net was similar to that used during typical larval fish collections, the cod end was constructed of Plexiglas and was nearly watertight; this prevented impingement and injury to larval fish and provided a calm-water environment. The cod end was designed for quick release from the plankton net, and the entire cod end could be submerged into a 75-gal onboard holding tank. This design and technique obviated the netting or emerging of fish from the water until they were returned to the laboratory. ?? Copyright by the American Fisheries Society 2005.

  7. Maternal effects and larval survival of marbled sole Pseudopleuronectes yokohamae

    NASA Astrophysics Data System (ADS)

    Higashitani, Tomomi; Takatsu, Tetsuya; Nakaya, Mitsuhiro; Joh, Mikimasa; Takahashi, Toyomi

    2007-07-01

    Maternal effects of animals are the phenotypic influences of age, size, and condition of spawners on the survival and phenotypic traits of offspring. To clarify the maternal effects for marbled sole Pseudopleuronectes yokohamae, we investigated the effects of body size, nutrient condition, and growth history of adult females on egg size, larval size, and starvation tolerance, growth, and feeding ability of offspring. The fecundity of adult females was strongly dependent on body size. Path analysis revealed that the mother's total length positively affected mean egg diameter, meaning that large females spawned large eggs. In contrast, the relative growth rate of adult females negatively affected egg diameter. Egg diameters positively affected both notochord length and yolk sac volume of the larvae at hatching. Under starvation conditions, notochord length at hatching strongly and positively affected days of survival at 14 °C but not at 9 °C. Under adequate food conditions (1000 rotifers L - 1 ), the notochord length of larvae 5 days after hatching positively affected feeding rate, implying that large larvae have high feeding ability. In addition, the mean growth rate of larvae between 0 and 15 days increased with increasing egg diameter under homogenous food conditions, suggesting that larvae hatched from large eggs might have a growth advantage for at least to 15 days after hatching. In marbled sole, these relationships (i.e., mother's body size-egg size-larval size-larval resistance to starvation-larval feeding ability) may help explain recruitment variability.

  8. New larval trematodes in Biomphalaria species (Planorbidae) from Northeastern Argentina.

    PubMed

    Fernández, María Virginia; Hamann, Monika Inés; de Núñez, Margarita Ostrowski

    2016-09-01

    Larval trematodes infecting Biomphalaria tenagophila and B. occidentalis were surveyed in a suburban and semipermanent pond of Corrientes province, Northeastern Argentina. A total of 1,409 snails were examined between spring 2011 to winter 2013, and 8 different larval trematodes were studied morphologically. Three of these species-Echinocercaria sp. IV, Ribeiroia sp. and Echinocercaria sp. XIV-have been previously found in Corrientes province. Six other trematodes belonging to Strigeidae (Furcocercaria sp. III), Clinostomidae (Cercaria Clinostomidae sp.), Spirorchiidae (Cercaria Spirorchiidae sp.) and Echinostomatidae (Echinocercaria sp. 1, Echinocercaria sp. 2, Echinocercaria sp. 3) are new species parasitizing Biomphalaria snails. Cercaria Spirorchiidae sp. is the third larval trematode related to Spirorchiidae recorded in South America and the first one for Argentina. Cercaria Clinostomidae sp. is the first one related to Clinostomidae in northeastern Argentina. The prevalence of larval trematodes infecting B. tenagophila and B. occidentalis in the environment studied was low (<5%) with the echinostome group better represented in terms of prevalence and species richness. Drought periods could affect the dynamics of parasitic transmission due to the absence of trematodes in the autumn and winter of the first seasonal cycle. However, in humid periods parasite transmission can occur throughout the year due to the presence of larvae in all seasons of the second seasonal cycle, although the less-warm seasons showed higher prevalence than the summer period probably related to the subtropical climate of Corrientes province. PMID:27447210

  9. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    PubMed

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program.

  10. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  11. LARVAL FISH HABITAT QUALITY : THE EFFECTS OF FRESHWATER FLOW

    EPA Science Inventory

    We sampled larval fish in Suisun Marsh, in the San Francisco Bay estuary from February to June 1994-1999. We used principal components analysis (PCA) and canonical correspondence analysis (CCA) on 13 taxonomic groups making up 99.7% of the catch and several environmental variable...

  12. Effects of Vegetation Microclimate on Larval Cattle Fever Tick Survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle Fever Ticks (CFT), Rhipicephalus annulatus and R. microplus, have been a threat to the livestock industry for many years. These ticks are vectors of cattle fever, a disease produced by the hemoparasite Babesia bovis and B. bigemina. Laboratory research on CFT larval survival has shown that co...

  13. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  14. [Larval development of Hypsophrys nicaraguensis (Pisces: Cichlidae) under laboratory conditions].

    PubMed

    Molina Arias, Alex

    2011-12-01

    The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet. PMID:22208084

  15. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    PubMed

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program. PMID:26468514

  16. Rainbow smelt - larval lake herring interactions: competitors or casual acquaintances?

    USGS Publications Warehouse

    Selgeby, James H.; MacCallum, Wayne R.; Hoff, Michael H.

    1994-01-01

    We examined the hypothesis that competition for food between rainbow smelt (Osmerus mordax) and larval lake herring (Coregonus artedi) was a cause for the declines of lake herring stocks in Lake Superior. We studied the diet of larval lake herring and of larval, juvenile, and adult rainbow smelt during 1974 in Black Bay, Ontario, where both species were abundant, and in the Apostle Islands Region, Wisconsin, where rainbow smelt was abundant but lake herring was scarce. No evidence of competition for food was found between larval lake herring and rainbow smelt. Spawning and hatching times of the two species were separate enough that most larvae of the two species did not occupy the study areas simultaneously. Juvenile and adult rainbow smelt were found with lake herring larvae, but their diets differed. Therefore, we concluded that rainbow smelt did not compete with lake herring larvae for food and that competition for food between rainbow smelt and lake herring larvae was not the factor that caused lake herring population declines in Lake Superior.

  17. Phenology of larval fish in the St. Louis River estuary

    EPA Science Inventory

    Little work has been done on the phenology of fish larvae in Great Lakes coastal wetlands. As part of an aquatic invasive species early detection study, we conducted larval fish surveys in the St. Louis River estuary (SLRE) in 2012 and 2013. Using multiple gears in a spatially ba...

  18. Rapid recovery of genetic diversity of stomatopod populations on Krakatau: temporal and spatial scales of marine larval dispersal.

    PubMed

    Barber, P H; Moosa, M K; Palumbi, S R

    2002-08-01

    Although the recovery of terrestrial communities shattered by the massive eruption of Krakatau in 1883 has been well chronicled, the fate of marine populations has been largely ignored. We examined patterns of genetic diversity in populations of two coral reef-dwelling mantis shrimp, Haptosquilla pulchella and Haptosquilla glyptocercus (Stomatopoda: Protosquillidae), on the islands of Anak Krakatau and Rakata. Genetic surveys of mitochondrial cytochrome oxidase c (subunit 1) in these populations revealed remarkably high levels of haplotypic and nucleotide diversity that were comparable with undisturbed populations throughout the Indo-Pacific. Recolonization and rapid recovery of genetic diversity in the Krakatau populations indicates that larval dispersal from multiple and diverse source populations contributes substantially to the demographics of local populations over intermediate temporal (tens to hundreds of years) and spatial scales (tens to hundreds of kilometres). Natural experiments such as Krakatau provide an excellent mechanism to investigate marine larval dispersal and connectivity. Results from stomatopods indicate that marine reserves should be spaced no more than 50-100 km apart to facilitate ecological connectivity via larval dispersal. PMID:12184829

  19. Vibrio anguillarum and larval mortality in a California coastal shellfish hatchery.

    PubMed

    DiSalvo, L H; Blecka, J; Zebal, R

    1978-01-01

    Vibrio anguillarum was isolated as a pathogen in the commercial culture of oyster spat at Pigeon Point, Calif. A water-soluble, heat-stable exotoxin extracted from cultures of the vibrio inhibited larval swimming and contributed to larval mortality. Although the vibrio was insensitive to penicillin in standard plate testing, this antibiotic proved useful in preventing mass larval mortalities in the hatchery.

  20. Food selection in larval fruit flies: dynamics and effects on larval development

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  1. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  2. Community responses of aquatic macroinvertebrates to heavy metals in laboratory and outdoor experimental streams

    SciTech Connect

    Clements, W.H.

    1988-01-01

    Laboratory experiments conducted over three seasons showed that acute exposure to copper significantly reduced macroinvertebrate abundance and number of taxa during each season. Owing to differences in sensitivity among taxa, the percent composition of dominant groups varied between control and dosed streams. Mayflies were quite sensitive to Cu, particularly during the summer when water temperatures were higher. Community responses to Cu and Zn in outdoor experimental streams were similar to those observed at metal-impacted sites in the field. Control streams and field reference stations were dominated by mayflies and Tanytarsini chironomids. In contrast, treated streams and impacted field sites were dominated by net-spinning caddisflies (Hydropsychidae) and Orthocladiini chironomids. Responses of these communities to Cu were greatly influenced by water quality. Effects were more severe in New River streams, where water hardness and alkalinity were low, compared to Clinch River streams, where hardness and alkalinity were higher. In soft water streams, abundance was reduced by 84% after 10 d exposure to Cu (measured concentration = 13 ug/L). In contrast, abundance was reduced by only 45% in hard water streams after 10 d at similar Cu levels.

  3. Using larval trematodes that parasitize snails to evaluate a saltmarsh restoration project

    USGS Publications Warehouse

    Huspeni, Todd C.; Lafferty, Kevin D.

    2004-01-01

    We conducted a Before-After-Control-Impact (BACI) study using larval digeneans infecting the California horn snail, Cerithidea californica, to evaluate the success of an ecological restoration project at Carpinteria Salt Marsh in California, USA. Digenean trematodes are parasites with complex life cycles requiring birds and other vertebrates as final hosts. We tested two hypotheses for prevalence and species richness of larval trematodes in C. californica: (1) prior to the restoration, sites to be restored would have lower trematode prevalence and species richness relative to unimpacted control sites, and (2) that these differences would diminish after restoration. The sites to be restored were initially degraded for trematode species. They had a mean trematode prevalence (12%) and species richness (4.5 species) that were lower than control sites (28% trematode prevalence and 7 species). Despite the differences in prevalence, the proportional representation of each trematode species in the total community was similar between sites to be restored and control sites. Over the six years following restoration, trematode prevalence nearly quadrupled at restored sites (43%) while the prevalence at control sites (26%) remained unchanged. In addition, species richness at restored sites doubled (9 species), while species richness at the control sites (7.8 species) did not change. Immediately after restoration, the relative abundance of trematode species using fishes as second intermediate hosts declined while those using molluscs as second intermediate hosts increased. Trematode communities at restored and control sites gradually returned to being similar. We interpret the increase in trematode prevalence and species richness at restored sites to be a direct consequence of changes in bird use of the restored habitat. This study demonstrates a new comparative technique for assessing wetlands, and while it does not supplant biotic surveys, it informs such taxonomic lists. Most

  4. Linking River Morphology to Larval Drift of an Endangered Sturgeon

    NASA Astrophysics Data System (ADS)

    Bazzetta, L.; Jacobson, R. B.; Braaten, P. J.; Elliott, C. M.; Reuter, J. M.

    2009-12-01

    Computational models developed to calculate longitudinal advection and dispersion of contaminants in rivers have potential application in predicting larval drift. A critical component of this family of models is the longitudinal dispersion coefficient which parameterizes the processes that retain and distribute a contaminant along the river. Here we evaluate the potential for longitudinal dispersion coefficients to characterize larval drift of the endangered pallid sturgeon (Scaphirhynchus albus) in various segments of the free-flowing Missouri River ranging from Missouri to Montana. We randomly selected transects of acoustic Doppler current profiler (ADCP) flow velocity data from reach-scale datasets that were collected in the Missouri River from 2002-2008 under comparable discharge conditions. We used previously developed equations (Kim and others, 2007) to calculate a one-dimensional longitudinal dispersion coefficient for each ADCP transect. We compared the statistical distributions of these coefficients for 2 to 6 reaches chosen from each of six geomorphic segments of the Missouri. Distributional patterns indicate that dispersion coefficients relate to observed variation in hydrology and geomorphology of the channel at the segment scale. Although one-dimensional dispersion analysis demonstrates potential as a tool for estimating pallid sturgeon larval drift and habitat suitability in unchannelized portions of the Missouri River, the large spatial variation in calculated dispersion coefficients resulting from river-training structures (wing dikes) in the Lower Missouri complicates selection of appropriate values. Recent data indicating that pallid sturgeon larvae occur in greater concentration in the thalweg indicate that the majority of larvae may bypass these structures and their associated retentive eddies. A two-dimensional space-averaged dispersion calculation and analysis may more accurately characterize the potential drift times and distances of larval

  5. Changes in lipid and fatty acid composition of late larval and puerulus stages of the spiny lobster (Panulirus cygnus) across the continental shelf of Western Australia.

    PubMed

    Phillips, Bruce F; Jeffs, Andrew G; Melville-Smith, Roy; Chubb, Chris F; Nelson, Matthew M; Nichols, Peter D

    2006-02-01

    The feeding of the late larval stages of the spiny lobster, Panulirus cygnus, and the energy reserves used by the non-feeding post-larvae for crossing the continental shelf of Western Australia were examined through their lipid composition. Lipid was a significant component of the biomass of all larval and post-larval samples (range 63-213 mg g(-1) of dry biomass). The fatty acid profiles of late stage larvae (8-9) suggest that they were feeding on salps and small crustaceans, such as euphausids, from oligotrophic pelagic communities where herbivorous and microbial grazing is an important basis to the food web. There was a marked decrease in lipid content of post-larvae progressively across the continental shelf, and this corresponded closely with decreasing dry mass, suggesting that post-larvae were using lipid as an energy source during cross-shelf movement at a rate of 1.6 J km(-1). This is considerably lower than for other spiny lobster species, suggesting that the post-larvae of the western rock lobster may use physical processes as well as active swimming for onshore transport. This may help to explain the large inter-annual variability in the post-larval settlement of this species, which is closely related to differences in weather patterns capable of greatly varying onshore advection processes.

  6. Numerical simulations of barnacle larval dispersion coupled with field observations on larval abundance, settlement and recruitment in a tropical monsoon influenced coastal marine environment

    NASA Astrophysics Data System (ADS)

    Gaonkar, Chetan A.; Samiksha, S. V.; George, Grinson; Aboobacker, V. M.; Vethamony, P.; Anil, Arga Chandrashekar

    2012-06-01

    Larval abundance in an area depends on various factors which operate over different spatial and temporal scales. Identifying the factors responsible for variations in larval supply and abundance is important to understand the settlement and recruitment variability of their population in a particular area. In view of this, observations were carried out to monitor the larval abundance, settlement and recruitment of barnacles on a regular basis for a period of two years. The results were then compared with the numerical modelling studies carried out along the west coast of India. Field observations of larval abundance showed temporal variations. The least abundance of larvae was mostly observed during the monsoon season and the peak in abundance was mostly observed during the pre-monsoon season. Numerical simulations also showed a seasonal change in larval dispersion and retention patterns. During pre-monsoon season the larval movement was mostly found towards south and the larvae released from the northern release sites contributed to larval abundance within the estuaries, whereas during the monsoon season the larval movement was mostly found towards north and the larvae released from southern release sites contributed to larval abundance within the estuary. During post-monsoon season, the larval movement was found towards the north in the beginning of the season and is shifted towards the south at the end of the season, but the movement was mostly restricted near to the release sites. Larval supply from the adjacent rocky sites to the estuaries was higher during the pre-monsoon season and the retention of larvae released from different sites within the estuaries was found to be highest during the late post-monsoon and early pre-monsoon season. Maximum larval supply and retention during the pre-monsoon season coincided with maximum larval abundance, settlement and recruitment of barnacles observed in the field studies. These observations showed that the pattern of

  7. Learning the specific quality of taste reinforcement in larval Drosophila.

    PubMed

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-27

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain.

  8. Learning the specific quality of taste reinforcement in larval Drosophila.

    PubMed

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-01

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain. PMID:25622533

  9. Learning the specific quality of taste reinforcement in larval Drosophila

    PubMed Central

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-01

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain. DOI: http://dx.doi.org/10.7554/eLife.04711.001 PMID:25622533

  10. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  11. Social coercion of larval development in an ant species.

    PubMed

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults. PMID:26874941

  12. Cost effectiveness analysis of larval therapy for leg ulcers

    PubMed Central

    Iglesias, Cynthia P; Bland, J Martin; Cullum, Nicky; Dumville, Jo C; Nelson, E Andrea; Torgerson, David J; Worthy, Gill

    2009-01-01

    Objective To assess the cost effectiveness of larval therapy compared with hydrogel in the management of leg ulcers. Design Cost effectiveness and cost utility analyses carried out alongside a pragmatic multicentre, randomised, open trial with equal randomisation. Population Intention to treat population comprising 267 patients with a venous or mixed venous and arterial ulcers with at least 25% coverage of slough or necrotic tissue. Interventions Patients were randomly allocated to debridement with bagged larvae, loose larvae, or hydrogel. Main outcome measure The time horizon was 12 months and costs were estimated from the UK National Health Service perspective. Cost effectiveness outcomes are expressed in terms of incremental costs per ulcer-free day (cost effectiveness analysis) and incremental costs per quality adjusted life years (cost utility analysis). Results The larvae arms were pooled for the main analysis. Treatment with larval therapy cost, on average, £96.70 (€109.61; $140.57) more per participant per year (95% confidence interval −£491.9 to £685.8) than treatment with hydrogel. Participants treated with larval therapy healed, on average, 2.42 days before those in the hydrogel arm (95% confidence interval −0.95 to 31.91 days) and had a slightly better health related quality of life, as the annual difference in QALYs was 0.011 (95% confidence interval −0.067 to 0.071). However, none of these differences was statistically significant. The incremental cost effectiveness ratio for the base case analysis was estimated at £8826 per QALY gained and £40 per ulcer-free day. Considerable uncertainty surrounds the outcome estimates. Conclusions Debridement of sloughy or necrotic leg ulcers with larval therapy is likely to produce similar health benefits and have similar costs to treatment with hydrogel. Trial registration Current Controlled Trials ISRCTN55114812 and National Research Register N0484123692. PMID:19304578

  13. Rapid Effects of Marine Reserves via Larval Dispersal

    PubMed Central

    Cudney-Bueno, Richard; Lavín, Miguel F.; Marinone, Silvio G.; Raimondi, Peter T.; Shaw, William W.

    2009-01-01

    Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. PMID:19129910

  14. Oceanography promotes self-recruitment in a planktonic larval disperser

    PubMed Central

    Teske, Peter R.; Sandoval-Castillo, Jonathan; van Sebille, Erik; Waters, Jonathan; Beheregaray, Luciano B.

    2016-01-01

    The application of high-resolution genetic data has revealed that oceanographic connectivity in marine species with planktonic larvae can be surprisingly limited, even in the absence of major barriers to dispersal. Australia’s southern coast represents a particularly interesting system for studying planktonic larval dispersal, as the hydrodynamic regime of the wide continental shelf has potential to facilitate onshore retention of larvae. We used a seascape genetics approach (the joint analysis of genetic data and oceanographic connectivity simulations) to assess population genetic structure and self-recruitment in a broadcast-spawning marine gastropod that exists as a single meta-population throughout its temperate Australian range. Levels of self-recruitment were surprisingly high, and oceanographic connectivity simulations indicated that this was a result of low-velocity nearshore currents promoting the retention of planktonic larvae in the vicinity of natal sites. Even though the model applied here is comparatively simple and assumes that the dispersal of planktonic larvae is passive, we find that oceanography alone is sufficient to explain the high levels of genetic structure and self-recruitment. Our study contributes to growing evidence that sophisticated larval behaviour is not a prerequisite for larval retention in the nearshore region in planktonic-developing species. PMID:27687507

  15. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-01-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spa ceflight, and show that extensive degrees of development can take place in this microgravity environment.

  16. Sexual differences in larval life history traits of acanthocephalan cystacanths.

    PubMed

    Benesh, Daniel P; Valtonen, E Tellervo

    2007-02-01

    Sexual differences in life history traits, such as size dimorphism, presumably arise via sexual selection and are most readily observed in adults. For complex life-cycle parasites, however, sexual selection may also have consequences for larval traits, e.g., growth in intermediate hosts. Two acanthocephalan species (Acanthocephalus lucii and Echinorhynchus borealis) were studied to determine, whether larval life histories differ between males and females. The size of female A. lucii cystacanths had a much stronger relationship with intermediate host size than males, suggesting females invest more in growth and are consequently more limited by resources. No relationship between host size and cystacanth size was observed for E. borealis. For both species, female cystacanths survived longer in a culture medium composed entirely of salts, which could suggest that females have greater energy reserves than males. A comparative analysis across acanthocephalan species indicated that sexual size dimorphism at the adult stage correlates with cystacanth dimorphism. However, the relationship was not isometric; cystacanths do not reach the same level of sexual dimorphism as adults, possibly due to resource constraints. Our results suggest that larval life histories diverge between males and females in some acanthocephalans, and this is seemingly a consequence of sexual selection acting on adults.

  17. Changes in protein expression during honey bee larval development

    PubMed Central

    Chan, Queenie WT; Foster, Leonard J

    2008-01-01

    Background The honey bee (Apis mellifera), besides its role in pollination and honey production, serves as a model for studying the biochemistry of development, metabolism, and immunity in a social organism. Here we use mass spectrometry-based quantitative proteomics to quantify nearly 800 proteins during the 5- to 6-day larval developmental stage, tracking their expression profiles. Results We report that honey bee larval growth is marked by an age-correlated increase of protein transporters and receptors, as well as protein nutrient stores, while opposite trends in protein translation activity and turnover were observed. Levels of the immunity factors prophenoloxidase and apismin are positively correlated with development, while others surprisingly were not significantly age-regulated, suggesting a molecular explanation for why bees are susceptible to major age-associated bee bacterial infections such as American Foulbrood or fungal diseases such as chalkbrood. Previously unreported findings include the reduction of antioxidant and G proteins in aging larvae. Conclusion These data have allowed us to integrate disparate findings in previous studies to build a model of metabolism and maturity of the immune system during larval development. This publicly accessible resource for protein expression trends will help generate new hypotheses in the increasingly important field of honey bee research. PMID:18959778

  18. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Astrophysics Data System (ADS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-08-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by intrduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spaceflight, and show that extensive degress of development can take place in this microgravity environment.

  19. Hydrodynamic starvation in first-feeding larval fishes

    PubMed Central

    China, Victor; Holzman, Roi

    2014-01-01

    Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this “critical period” of low survival to the larvae’s inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1–228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience “hydrodynamic starvation,” in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters. PMID:24843180

  20. Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Tomoyasu, Yoshinori

    2014-01-01

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485

  1. Larval RNA interference in the red flour beetle, Tribolium castaneum.

    PubMed

    Linz, David M; Clark-Hachtel, Courtney M; Borràs-Castells, Ferran; Tomoyasu, Yoshinori

    2014-10-13

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle's body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.

  2. Larval defense against attack from parasitoid wasps requires nociceptive neurons.

    PubMed

    Robertson, Jessica L; Tsubouchi, Asako; Tracey, W Daniel

    2013-01-01

    Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist the attack of the wasps through somatosensory-triggered behavioral responses. Here we describe the full range of behaviors performed by the larval prey in immediate response to attacks by the wasps. Our results suggest that Drosophila larvae primarily sense the wasps using their mechanosensory systems. The range of behavioral responses included both "gentle touch" like responses as well as nociceptive responses. We found that the precise larval response depended on both the somatotopic location of the attack, and whether or not the larval cuticle was successfully penetrated during the course of the attack. Interestingly, nociceptive responses are more likely to be triggered by attacks in which the cuticle had been successfully penetrated by the wasp. Finally, we found that the class IV neurons, which are necessary for mechanical nociception, were also necessary for a nociceptive response to wasp attacks. Thus, the class IV neurons allow for a nociceptive behavioral response to a naturally occurring predator of Drosophila.

  3. Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons

    PubMed Central

    Robertson, Jessica L.; Tsubouchi, Asako; Tracey, W. Daniel

    2013-01-01

    Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist the attack of the wasps through somatosensory-triggered behavioral responses. Here we describe the full range of behaviors performed by the larval prey in immediate response to attacks by the wasps. Our results suggest that Drosophila larvae primarily sense the wasps using their mechanosensory systems. The range of behavioral responses included both “gentle touch” like responses as well as nociceptive responses. We found that the precise larval response depended on both the somatotopic location of the attack, and whether or not the larval cuticle was successfully penetrated during the course of the attack. Interestingly, nociceptive responses are more likely to be triggered by attacks in which the cuticle had been successfully penetrated by the wasp. Finally, we found that the class IV neurons, which are necessary for mechanical nociception, were also necessary for a nociceptive response to wasp attacks. Thus, the class IV neurons allow for a nociceptive behavioral response to a naturally occurring predator of Drosophila. PMID:24205297

  4. Exploration of the “larval pool”: development and ground-truthing of a larval transport model off leeward Hawai‘i

    PubMed Central

    Kobayashi, Donald R.

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai‘i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai‘i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai‘i, and the dispersal of larvae throughout the Hawaiian archipelago. PMID:26855873

  5. Characterisation of Culex quinquefasciatus (Diptera: Culicidae) larval habitats at ground level and temporal fluctuations of larval abundance in Córdoba, Argentina.

    PubMed

    Grech, Marta; Sartor, Paolo; Estallo, Elizabet; Ludueña-Almeida, Francisco; Almirón, Walter

    2013-09-01

    The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase. PMID:24037200

  6. Larval and Post-Larval Stages of Pacific Oyster (Crassostrea gigas) Are Resistant to Elevated CO2

    PubMed Central

    R, Dineshram; Dennis, Choi K. S.; Adela, Li J.; Yu, Ziniu; Thiyagarajan, Vengatesen

    2013-01-01

    The average pH of surface oceans has decreased by 0.1 unit since industrialization and is expected to decrease by another 0.3–0.7 units before the year 2300 due to the absorption of anthropogenic CO2. This human-caused pH change is posing serious threats and challenges to the Pacific oyster (Crassostrea gigas), especially to their larval stages. Our knowledge of the effect of reduced pH on C. gigas larvae presently relies presumptively on four short-term (<4 days) survival and growth studies. Using multiple physiological measurements and life stages, the effects of long-term (40 days) exposure to pH 8.1, 7.7 and 7.4 on larval shell growth, metamorphosis, respiration and filtration rates at the time of metamorphosis, along with the juvenile shell growth and structure of the C. gigas, were examined in this study. The mean survival and growth rates were not affected by pH. The metabolic, feeding and metamorphosis rates of pediveliger larvae were similar, between pH 8.1 and 7.7. The pediveligers at pH 7.4 showed reduced weight-specific metabolic and filtration rates, yet were able to sustain a more rapid post-settlement growth rate. However, no evidence suggested that low pH treatments resulted in alterations to the shell ultrastructures (SEM images) or elemental compositions (i.e., Mg/Ca and Sr/Ca ratios). Thus, larval and post-larval forms of the C. gigas in the Yellow Sea are probably resistant to elevated CO2 and decreased near-future pH scenarios. The pre-adapted ability to resist a wide range of decreased pH may provide C. gigas with the necessary tolerance to withstand rapid pH changes over the coming century. PMID:23724027

  7. Larval and post-larval stages of Pacific oyster (Crassostrea gigas) are resistant to elevated CO2.

    PubMed

    Ginger, Ko W K; Vera, Chan B S; R, Dineshram; Dennis, Choi K S; Adela, Li J; Yu, Ziniu; Thiyagarajan, Vengatesen

    2013-01-01

    The average pH of surface oceans has decreased by 0.1 unit since industrialization and is expected to decrease by another 0.3-0.7 units before the year 2300 due to the absorption of anthropogenic CO2. This human-caused pH change is posing serious threats and challenges to the Pacific oyster (Crassostrea gigas), especially to their larval stages. Our knowledge of the effect of reduced pH on C. gigas larvae presently relies presumptively on four short-term (<4 days) survival and growth studies. Using multiple physiological measurements and life stages, the effects of long-term (40 days) exposure to pH 8.1, 7.7 and 7.4 on larval shell growth, metamorphosis, respiration and filtration rates at the time of metamorphosis, along with the juvenile shell growth and structure of the C. gigas, were examined in this study. The mean survival and growth rates were not affected by pH. The metabolic, feeding and metamorphosis rates of pediveliger larvae were similar, between pH 8.1 and 7.7. The pediveligers at pH 7.4 showed reduced weight-specific metabolic and filtration rates, yet were able to sustain a more rapid post-settlement growth rate. However, no evidence suggested that low pH treatments resulted in alterations to the shell ultrastructures (SEM images) or elemental compositions (i.e., Mg/Ca and Sr/Ca ratios). Thus, larval and post-larval forms of the C. gigas in the Yellow Sea are probably resistant to elevated CO2 and decreased near-future pH scenarios. The pre-adapted ability to resist a wide range of decreased pH may provide C. gigas with the necessary tolerance to withstand rapid pH changes over the coming century.

  8. Temporal and spatial distributions of larval fish assemblages in the Lima estuary (Portugal)

    NASA Astrophysics Data System (ADS)

    Ramos, Sandra; Cowen, Robert K.; Ré, Pedro; Bordalo, Adriano A.

    2006-01-01

    The Lima estuary (NW Portugal) is at the end of an international watershed, whose potential role as a spawning and nursery habitat for local fish populations has not been previously examined. To address this knowledge gap, fortnightly plankton surveys were conducted between April 2002 and April 2004. A total of 12,903 larvae, belonging to 20 families and 50 taxa were collected, with a mean abundance of 8 individuals per 100 m 3. Gobiidae was the most abundant family comprising 71% of the total catch, followed by Clupeidae with 12% of the total. The top six abundant taxa ( Pomatoschistus spp., Sardina pilchardus, Ammodytes tobianus, unidentified Clupeidae, Symphodus melops and Solea senegalensis) represented 91% of the total catch. Fish larvae showed a seasonal trend with abundances increasing during spring and summer. Diversity was generally low ( H' = 0.65) with high dominance of very few taxa. Near the ocean, the larval fish assemblage was more diverse due to the presence of marine species. In the lower estuary Channel zone, abundance was lower than in the two upstream salt marsh zones (North and South zones) and no statistical differences in abundance or diversity values were found within the latter zones. ANOSIM results demonstrated seasonal differences in the species composition, mainly during the second winter period which was typified by a pelagic species A. tobianus. The community in the Channel zone was more diverse in comparison with the other zones, which were highly dominated by the most abundant species. The spatial and temporal trends of the most abundant species were typical for Iberian estuaries, with the exception of the low abundance of anchovy larvae and the unusually high numbers and frequency of S. pilchardus, usually mentioned as accidental in estuarine systems. Overall results suggest that the Lima estuary larval fish assemblage has a strong seasonality and affinity to the salt marsh zones. It seems that spawning seasonality controlled the

  9. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem

    PubMed Central

    Asch, Rebecca G.

    2015-01-01

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  10. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

    PubMed

    Asch, Rebecca G

    2015-07-28

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends.

  11. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

    PubMed

    Asch, Rebecca G

    2015-07-28

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  12. Different key roles of mesoscale oceanographic structures and ocean bathymetry in shaping larval fish distribution pattern: A case study in Sicilian waters in summer 2009

    NASA Astrophysics Data System (ADS)

    Cuttitta, Angela; Quinci, Enza Maria; Patti, Bernardo; Bonomo, Sergio; Bonanno, Angelo; Musco, Marianna; Torri, Marco; Placenti, Francesco; Basilone, Gualtiero; Genovese, Simona; Armeri, Grazia Maria; Spanò, Antonina; Arculeo, Marco; Mazzola, Antonio; Mazzola, Salvatore

    2016-09-01

    Fish larvae data collected in year 2009 were used to examine the effects of particular environmental conditions on the structure of larval assemblages in two oligotrophic Mediterranean areas (the Southern Tyrrhenian Sea and the Strait of Sicily). For this purpose, relationships with environmental variables (temperature, salinity and fluorescence), zooplankton biomass, water circulation and bathymetry are discussed. Hydrodynamic conditions resulted very differently between two study areas. The Southern Tyrrhenian Sea was characterized by moderate shallow circulation compared to the Strait of Sicily. In this framework, distribution pattern of larval density in the Tyrrhenian Sea was mainly driven by bathymetry, due to spawning behavior of adult fish. There, results defined four assemblages: two coastal assemblages dominated by pelagic and demersal families and two oceanic assemblages dominated by mesopelagic species more abundant in western offshore and less abundant in eastern offshore. The assemblage variations in the western side was related to the presence of an anti-cyclonic gyre in the northern side of the Gulf of Palermo, while in the eastern side the effect of circulation was not very strong and the environmental conditions rather than the dispersal of species determined the larval fish communities structure. Otherwise in the Strait of Sicily the currents were the main factor governing the concentration and the assemblage structure. In fact, the distribution of larvae was largely consistent with the branch of the Atlantic Ionian Stream (AIS). Moreover, very complex oceanographic structures (two cyclonic circulations in the western part of the study area and one anti-cyclonic circulation in the eastern part) caused the formation of uncommon spatial distribution of larval fish assemblages, only partially linked to bathymetry of the study area. Typically coastal larvae (pelagic families: Engraulidae and Clupeidae) were mostly concentrated in the offshore areas

  13. The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs.

    PubMed

    Relyea, Rick A; Hoverman, Jason T

    2003-03-01

    Studies of phenotypic plasticity typically focus on traits in single ontogenetic stages. However, plastic responses can be induced in multiple ontogenetic stages and traits induced early in ontogeny may have lasting effects. We examined how gray treefrog larvae altered their morphology in four different larval environments and whether different larval environments affected the survival, growth, development, and morphology of juvenile frogs at metamorphosis. We then reared these juveniles in terrestrial environments under high and low intraspecific competition to determine whether the initial differences in traits at metamorphosis affected subsequent survival and growth, whether the initial phenotypic differences converged over time, and whether competition in the terrestrial environment induced further phenotypic changes. Larval and juvenile environments both affected treefrog traits. Larval predators induced relatively deep tail fins and short bodies, but there was no impact on larval development. In contrast, larval competitors induced relatively short tails and long bodies, reduced larval growth, and slowed larval development. At metamorphosis, larval predators had no effect on juvenile growth or relative morphology while larval competitors produced juveniles that were smaller and possessed relatively shorter limbs and shorter bodies. After 1 month of terrestrial competition among the juvenile frogs, the initial differences in juvenile morphology did not converge. There were no differences in growth due to larval treatment but there were differences in survival. Individuals that experienced low competition as tadpoles experienced near perfect survival as juvenile frogs but individuals that experienced high competition as tadpoles suffered an 18% decrease in survival as juvenile frogs. There were also morphological responses to juvenile competition, but these changes appear to be due, at least in part, to allometric effects. Collectively, these results

  14. Duration of larval development of Simulium yahense (Diptera: Simuliidae) under natural conditions.

    PubMed

    Davis, J R; Barbiero, V K; Trpis, M

    1992-01-01

    The duration of Simulium yahense Vajime & Dunbar larval development on a dam spillway in Harbel, Liberia, was observed to make accurate decisions regarding the frequency of larvicide treatments against this onchocerciasis vector. Larval development required a minimum of 10-12 d from eclosion to first pupation. Initial larvicidal treatment for S. yahense control would require a treatment cycle of 7 d. Once suppression of adult and larval populations is achieved, a 9-12-9-12 day treatment cycle could be adopted.

  15. Ecology of Culex tarsalis (Diptera: Culicidae): factors influencing larval abundance in mesocosms in southern California.

    PubMed

    Walton, W E; Tietze, N S; Mulla, M S

    1990-01-01

    Colonization and succession of mosquitoes and macroinvertebrate predators were studied in 30-m2 ponds (mesocosms) during summer and fall 1987. Larval abundance of Cx. tarsalis Coquillette was lower during the hot, summer months than during the fall. In all studies, larval populations declined markedly 2-3 wk after habitat flooding. Although predator abundances differed in these studies, sometimes by an order of magnitude, the common predators colonized mesocosms in the following order: Triops, hydrophilid beetle larvae, dytiscid beetle larvae, mesoveliids, dragonfly and damselfly naiads, and notonectids. The similarity of the colonization phenologies probably resulted from the vagility of the adult insects and species-specific developmental rates. Stepwise multiple regression was used to identify factors potentially affecting larval mosquito populations. For most studies, coleopteran larvae were related inversely to per capita change in the entire larval population and the third- and fourth-instar subpopulation (i.e., large coleopteran larval populations were associated with large declines in the Cx. trasalis larval population). Maximum water temperatures and pond age (days after flooding) also were identified as significant factors affecting larval abundance and per capita change of mosquitoes. Potentially lethal water temperatures (greater than or equal to 35 degrees C) occurred during the summer; however, the declines in larval abundance of Cx. tarsalis were not restricted to (or obviously associated with) periods of high water temperature. Our results indicated that predation by coleopteran larvae and factor(s) associated with pond age, such as mosquito ovipositional preferences, significantly affected Cx. tarsalis larval populations.

  16. Butterfly oviposition preference is not related to larval performance on a polyploid herb.

    PubMed

    König, Malin A E; Wiklund, Christer; Ehrlén, Johan

    2016-05-01

    The preference-performance hypothesis predicts that female insects maximize their fitness by utilizing host plants which are associated with high larval performance. Still, studies with several insect species have failed to find a positive correlation between oviposition preference and larval performance. In the present study, we experimentally investigated the relationship between oviposition preferences and larval performance in the butterfly Anthocharis cardamines. Preferences were assessed using both cage experiments and field data on the proportion of host plant individuals utilized in natural populations. Larval performance was experimentally investigated using larvae descending from 419 oviposition events by 21 females on plants from 51 populations of two ploidy types of the perennial herb Cardamine pratensis. Neither ploidy type nor population identity influenced egg survival or larval development, but increased plant inflorescence size resulted in a larger final larval size. There was no correlation between female oviposition preference and egg survival or larval development under controlled conditions. Moreover, variation in larval performance among populations under controlled conditions was not correlated with the proportion of host plants utilized in the field. Lastly, first instar larvae added to plants rejected for oviposition by butterfly females during the preference experiment performed equally well as larvae growing on plants chosen for oviposition. The lack of a correlation between larval performance and oviposition preference for A. cardamines under both experimental and natural settings suggests that female host choice does not maximize the fitness of the individual offspring. PMID:27217940

  17. Location Isn't Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment.

    PubMed

    Donahue, Megan J; Karnauskas, Mandy; Toews, Carl; Paris, Claire B

    2015-01-01

    Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162

  18. Expression and light-triggered movement of rhodopsins in the larval visual system of mosquitoes

    PubMed Central

    Rocha, Manuel; Kimler, Kyle J.; Leming, Matthew T.; Hu, Xiaobang; Whaley, Michelle A.; O'Tousa, Joseph E.

    2015-01-01

    ABSTRACT During the larval stages, the visual system of the mosquito Aedes aegypti contains five stemmata, often referred to as larval ocelli, positioned laterally on each side of the larval head. Here we show that stemmata contain two photoreceptor types, distinguished by the expression of different rhodopsins. The rhodopsin Aaop3 (GPROP3) is expressed in the majority of the larval photoreceptors. There are two small clusters of photoreceptors located within the satellite and central stemmata that express the rhodopsin Aaop7 (GPROP7) instead of Aaop3. Electroretinogram analysis of transgenic Aaop7 Drosophila indicates that Aaop3 and Aaop7, both classified as long-wavelength rhodopsins, possess similar but not identical spectral properties. Light triggers an extensive translocation of Aaop3 from the photosensitive rhabdoms to the cytoplasmic compartment, whereas light-driven translocation of Aaop7 is limited. The results suggest that these photoreceptor cell types play distinct roles in larval vision. An additional component of the larval visual system is the adult compound eye, which starts to develop at the anterior face of the larval stemmata during the 1st instar stage. The photoreceptors of the developing compound eye show rhodopsin expression during the 4th larval instar stage, consistent with indications from previous reports that the adult compound eye contributes to larval and pupal visual capabilities. PMID:25750414

  19. Larval descriptions of the family Porcellanidae: A worldwide annotated compilation of the literature (Crustacea, Decapoda)

    PubMed Central

    Vela, María José; González-Gordillo, Juan Ignacio

    2016-01-01

    Abstract For most of the family Porcellanidae, which comprises 283 species, larval development remains to be described. Full development has been only described for 52 species, while part of the larval cycle has been described for 45 species. The importance of knowing the complete larval development of a species goes beyond allowing the identification of larval specimens collected in the plankton. Morphological larval data also constitute a support to cladistic techniques used in the establishment of the phylogenetic status (see Hiller et al. 2006, Marco-Herrero et al. 2013). Nevertheless, the literature on the larval development of this family is old and widely dispersed and in many cases it is difficult to collect the available information on a particular taxon. Towards the aim of facilitating future research, all information available on the larval development of porcellanids has been compiled. Following the taxonomic checklist of Porcellanidae proposed by Osawa and McLaughlin (2010), a checklist has been prepared that reflects the current knowledge about larval development of the group including larval stages and the method used to obtain the larvae, together with references. Those species for which the recognised names have been changed according to Osawa and McLaughlin (2010) are indicated. PMID:27081332

  20. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Ruff, Nicole; Battaglene, Stephen C

    2015-06-01

    Cardiorespiratory function is vital to an organism's ability to respond to environmental stress and analysis of cardiorespiratory capacity of species or life stages can elucidate vulnerability to climate change. Spiny lobsters have one of the most complex pelagic larval life cycles of any invertebrate and recently there has been an unexplained decline in post-larval recruitment for a number of species. We conducted the first analysis of the larval ontogeny of oxygen consumption, heart rate, maxilla 2 ventilation rate and oxyregulatory capacity of the spiny lobster, Sagmariasus verreauxi, to gain insight into their vulnerability to ocean change and to investigate life stage specific sensitivity to temperature-dependent oxygen limitation. In normoxia, heart and maxilla 2 ventilation rates increased in early larval development before declining, which we hypothesise is related to the transition from myogenic to neurogenic cardiac control. Maxilla 2 ventilation rate was sensitive to hypoxia at all larval stages, while heart rate was only sensitive to hypoxia in the late phyllosoma stages. Oxygen consumption conformed to environmental hypoxia at all larval stages. Spiny lobster larvae have limited respiratory control due to immature gas exchange physiology, compounded by their exceptionally large size. The lack of oxyregulatory ability suggests that all development stages are vulnerable to changes in sea temperature and oxygen availability. The synergetic stressors of increased temperature and reduced dissolved oxygen in the marine environment will diminish spiny lobster larval performance, increasing the challenge to achieve their extended larval life cycle, which may contribute to declines in post-larval recruitment.

  1. [Systematic value of the larval structure and details of postlarval morphogenesis in Bryozoa gymnolaemates].

    PubMed

    d'Hondt, J L

    1977-01-01

    Among the various species of Bryozoa Gymnolaemata, the larvae and their development were studied, comparing the larval structure and the evolution of their cellular categories during the post-larval morphogenesis the existence of nine well-defined larval types could be revealed. Cases of insufficiently described larvae are discussed. The present systematic of Bryozoa Gymnolaemata is compared with the classification of various larval types. For the major part of cases, each systematic family is marked by a precise type of larva; however there are some exceptions, especially in the ordre Ctenostomata. These discordances may suggest some rearrangements of the classification utilized at the present time.

  2. Spatial and temporal heterogeneity of Larval Shad in a large impoundment

    SciTech Connect

    Allen, M.S.; DeVries, D.R. )

    1993-11-01

    Factors that affect recruitment of threadfin shad Dorosoma petenense and gizzard shad D. cepedianum, two important prey species in southern reservoirs, are not well understood. Larval shad typically have not been identified to species, though interactions between shad larvae likely affect their recruitment and that of their predators. Using myomere counts to identify larval shad to species, the authors quantified spatial and temporal variation in species distributions in West Point Reservoir, Alabama-Georgia. They sampled larvae every 3-4 at three distances from shore (inshore and 25 and 50 m offshore) at each of three sites. Larval threadfin shad migrated offshore in all three sites, whereas larval gizzard shad were evenly distributed across distances from shore. Because of these movement differences, larval gizzard shad and larval threadfin shad may encounter different habitat-specific predation rates, climatic effects, and food availability. In addition, larval gizzard shad were present before larval threadfin shad and grew beyond the size vulnerable to our capture techniques before threadfin shad abundance peaked. If zooplankton densities are reduced by young-of-year shad, as documented in other systems, later-hatched threadfin shad would encounter fewer zooplankton than were available to the earlier larval gizzard shad. Threadfin shad would have reduced growth and greater vulnerability to predation and starvation. 36 refs., 8 figs., 2 tabs.

  3. [Larval Anisakidae in musculature of Pagrus pagrus from the State of Rio de Janeiro, Brazil].

    PubMed

    Saad, Caroline D R; Luque, José L

    2009-12-01

    Musculature of 36 specimens of Pagrus pagrus from the coastal zone of the State of Rio de Janeiro were examined to study larval of anisakid nematodes between January and May 2008. A total of 24 larval of Anisakis sp., Contracaecum sp., Hysterothylacium sp. and Raphidascaris sp. were collected infecting seven fishes (19.4%). Larval Hysterothylacium sp. and Contracaecum sp. showed highest prevalence and Hysterothylacium sp. highest parasite abundance. This is the first record of larval anisakids in the somatic musculature of P. pagrus. PMID:20040196

  4. Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment

    PubMed Central

    Donahue, Megan J.; Karnauskas, Mandy; Toews, Carl; Paris, Claire B.

    2015-01-01

    Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162

  5. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Ruff, Nicole; Battaglene, Stephen C

    2015-06-01

    Cardiorespiratory function is vital to an organism's ability to respond to environmental stress and analysis of cardiorespiratory capacity of species or life stages can elucidate vulnerability to climate change. Spiny lobsters have one of the most complex pelagic larval life cycles of any invertebrate and recently there has been an unexplained decline in post-larval recruitment for a number of species. We conducted the first analysis of the larval ontogeny of oxygen consumption, heart rate, maxilla 2 ventilation rate and oxyregulatory capacity of the spiny lobster, Sagmariasus verreauxi, to gain insight into their vulnerability to ocean change and to investigate life stage specific sensitivity to temperature-dependent oxygen limitation. In normoxia, heart and maxilla 2 ventilation rates increased in early larval development before declining, which we hypothesise is related to the transition from myogenic to neurogenic cardiac control. Maxilla 2 ventilation rate was sensitive to hypoxia at all larval stages, while heart rate was only sensitive to hypoxia in the late phyllosoma stages. Oxygen consumption conformed to environmental hypoxia at all larval stages. Spiny lobster larvae have limited respiratory control due to immature gas exchange physiology, compounded by their exceptionally large size. The lack of oxyregulatory ability suggests that all development stages are vulnerable to changes in sea temperature and oxygen availability. The synergetic stressors of increased temperature and reduced dissolved oxygen in the marine environment will diminish spiny lobster larval performance, increasing the challenge to achieve their extended larval life cycle, which may contribute to declines in post-larval recruitment. PMID:25683612

  6. The use of immunostimulants in fish larval aquaculture.

    PubMed

    Bricknell, Ian; Dalmo, Roy A

    2005-11-01

    The production of fish larvae is often hampered by high mortality rates, and it is believed that most of this economic loss due to infectious diseases is ca. 10% in Western European aquaculture sector. The development of strategies to control the pathogen load and immuno-prophylactic measures must be addressed further to realise the economic "potential" production of marine fish larvae and thus improve the overall production of adult fish. The innate defence includes both humoral and cellular defence mechanisms such as the complement system and the processes played by granulocytes and macrophages. A set of different substances such as beta-glucans, bacterial products, and plant constituents may directly initiate activation of the innate defence mechanisms acting on receptors and triggering intracellular gene activation that may result in production of anti-microbial molecules. These immunostimulants are often obtained from bacterial sources, brown or red algae and terrestrial fungi are also exploited as source of novel potentiating substances. The use of immunostimulants, as dietary supplements, can improve the innate defence of animals providing resistance to pathogens during periods of high stress, such as grading, reproduction, sea transfer and vaccination. The immunomodulation of larval fish has been proposed as a potential method for improving larval survival by increasing the innate responses of the developing animals until its adaptive immune response is sufficiently developed to mount an effective response to the pathogen. To this end it has been proposed that the delivery of immunostimulants as a dietary supplement to larval fish could be of considerable benefit in boosting the animals innate defences with little detriment to the developing animal. Conversely, there is a school of thought that raises the concern of immunomodulating a neotanous animal before its immune system is fully formed as this may adversely affect the development of a normal immune

  7. Integrin adhesions suppress syncytium formation in the Drosophila larval epidermis

    PubMed Central

    Wang, Yan; Antunes, Marco; Anderson, Aimee E.; Kadrmas, Julie L.; Jacinto, Antonio; Galko, Michael J.

    2015-01-01

    Summary Integrins are critical for barrier epithelial architecture. Integrin loss in vertebrate skin leads to blistering and wound healing defects. However, how Integrins and associated proteins maintain the regular morphology of epithelia is not well understood. We found that targeted knockdown of the integrin focal adhesion (FA) complex components βIntegrin, PINCH, and Integrin-linked kinase (ILK), caused formation of multinucleate epidermal cells within the Drosophila larval epidermis. This phenotype was specific to the Integrin FA complex and not due to secondary effects on polarity or junctional structures. The multinucleate cells resembled the syncytia caused by physical wounding. Live imaging of wound-induced syncytium formation in the pupal epidermis suggested direct membrane breakdown leading to cell-cell fusion and consequent mixing of cytoplasmic contents. Activation of Jun N-terminal kinase (JNK) signaling, which occurs upon wounding, also correlated with syncytium formation induced by PINCH knockdown. Further, ectopic JNK activation directly caused epidermal syncytium formation. No mode of syncytium formation including that induced by wounding, genetic loss-of FA-proteins, or local JNK hyperactivation, involved misregulation of mitosis or apoptosis. Finally, the mechanism of epidermal syncytium formation following JNK hyperactivation and wounding appeared to be direct disassembly of FA complexes. In conclusion, the loss of function phenotype of Integrin FA components in the larval epidermis resembles a wound. Integrin FA loss in mouse and human skin also causes a wound-like appearance. Our results reveal a novel and unexpected role for proper Integrin-based adhesion in suppressing larval epidermal cell-cell fusion– a role that may be conserved in other epithelia. PMID:26255846

  8. Development of the larval ovary in the moth, Plodia interpunctella.

    PubMed

    Beckemeyer, E F; Shirk, P D

    2004-11-01

    The morphogenesis of ovaries and the organization of germ cells within them were visualized during the larval stages of the moth, Plodia interpunctella. The germ cells were observed by utilizing confocal microscopy coupled with immuno-fluorescent staining for the alpha-crystallin protein 25 (alphaCP25). The alphaCP25 was previously shown to be specific to germ cells of pupae and adults, and this study shows that alphaCP25 is present in larval germ cells as well. A cluster of 28 germ cells that stain for alphaCP25 was found in the gonads of newly hatched first instar larvae. The founding germ cells became segregated into four clusters, most likely by somatic cell intrusion, around the beginning of the second instar. Division of the primary germ cells began by the end of the second instar and the formation of all cystoblasts appeared to be completed within the four ovarioles by the end of the third instar. Within the ovarioles of third instar larvae, the germ cells were organized with a distal cap of seven germ cells which was segregated from the majority of the germ cells. The main body of germ cells was arranged around a central germ cell-free core as a spiral. Divisions of the cystoblasts to form cystocyte clusters were nearly completed during the fourth (last) larval instar. These features suggest that the strategy to produce follicles in moths is fundamentally different from the fruitfly, Drosophila. It appears that during the initial stages of ovary development in P. interpunctella, the primary germ cells undergo stage-complete divisions that are completed prior to the onset of the next set of divisions, which results in a complete complement of follicles available by the time of adult eclosion, while in Drosophila the primary germ cell divisions are initiated in the adult stage, and follicles are produced individually as resources are available.

  9. Integrin Adhesions Suppress Syncytium Formation in the Drosophila Larval Epidermis.

    PubMed

    Wang, Yan; Antunes, Marco; Anderson, Aimee E; Kadrmas, Julie L; Jacinto, Antonio; Galko, Michael J

    2015-08-31

    Integrins are critical for barrier epithelial architecture. Integrin loss in vertebrate skin leads to blistering and wound healing defects. However, how integrins and associated proteins maintain the regular morphology of epithelia is not well understood. We found that targeted knockdown of the integrin focal adhesion (FA) complex components β-integrin, PINCH, and integrin-linked kinase (ILK) caused formation of multinucleate epidermal cells within the Drosophila larval epidermis. This phenotype was specific to the integrin FA complex and not due to secondary effects on polarity or junctional structures. The multinucleate cells resembled the syncytia caused by physical wounding. Live imaging of wound-induced syncytium formation in the pupal epidermis suggested direct membrane breakdown leading to cell-cell fusion and consequent mixing of cytoplasmic contents. Activation of Jun N-terminal kinase (JNK) signaling, which occurs upon wounding, also correlated with syncytium formation induced by PINCH knockdown. Further, ectopic JNK activation directly caused epidermal syncytium formation. No mode of syncytium formation, including that induced by wounding, genetic loss of FA proteins, or local JNK hyperactivation, involved misregulation of mitosis or apoptosis. Finally, the mechanism of epidermal syncytium formation following JNK hyperactivation and wounding appeared to be direct disassembly of FA complexes. In conclusion, the loss-of-function phenotype of integrin FA components in the larval epidermis resembles a wound. Integrin FA loss in mouse and human skin also causes a wound-like appearance. Our results reveal a novel and unexpected role for proper integrin-based adhesion in suppressing larval epidermal cell-cell fusion--a role that may be conserved in other epithelia.

  10. Rising CO2 concentrations affect settlement behaviour of larval damselfishes

    NASA Astrophysics Data System (ADS)

    Devine, B. M.; Munday, P. L.; Jones, G. P.

    2012-03-01

    Reef fish larvae actively select preferred benthic habitat, relying on olfactory, visual and acoustic cues to discriminate between microhabitats at settlement. Recent studies show exposure to elevated carbon dioxide (CO2) impairs olfactory cue recognition in larval reef fishes. However, whether this alters the behaviour of settling fish or disrupts habitat selection is unknown. Here, the effect of elevated CO2 on larval behaviour and habitat selection at settlement was tested in three species of damselfishes (family Pomacentridae) that differ in their pattern of habitat use: Pomacentrus amboinensis (a habitat generalist), Pomacentrus chrysurus (a rubble specialist) and Pomacentrus moluccensis (a live coral specialist). Settlement-stage larvae were exposed to current-day CO2 levels or CO2 concentrations that could occur by 2100 (700 and 850 ppm) based on IPCC emission scenarios. First, pair-wise choice tests were performed using a two-channel flume chamber to test olfactory discrimination between hard coral, soft coral and coral rubble habitats. The habitat selected by settling fish was then compared among treatments using a multi-choice settlement experiment conducted overnight. Finally, settlement timing between treatments was compared across two lunar cycles for one of the species, P. chrysurus. Exposure to elevated CO2 disrupted the ability of larvae to discriminate between habitat odours in olfactory trials. However, this had no effect on the habitats selected at settlement when all sensory cues were available. The timing of settlement was dramatically altered by CO2 exposure, with control fish exhibiting peak settlement around the new moon, whereas fish exposed to 850 ppm CO2 displaying highest settlement rates around the full moon. These results suggest larvae can rely on other sensory information, such as visual cues, to compensate for impaired olfactory ability when selecting settlement habitat at small spatial scales. However, rising CO2 could cause larvae

  11. Habitat Suitability Index Models: Larval and juvenile red drum

    USGS Publications Warehouse

    Buckley, Jack

    1984-01-01

    A review and synthesis of existing information were used to develop a habitat model for larval and juvenile red drum. The model is scaled to produce an index of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat) for estuarine areas along the Gulf of Mexico and Atlantic coasts. Habitat suitability indices are designed for use with habitat evaluation procedures developed by the U.S. Fish and Wildlife Service. Guidelines for model application and techniques for estimating model variables are provided.

  12. Habitat Suitability Index Models: Larval and Juvenile Red Drum

    USGS Publications Warehouse

    Buckley, Jack

    1984-01-01

    A review and synthesis of existing information were used to develop a habitat model for larval and juvenile red drum. The model is scaled to produce an index of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat) for estuarine areas along the Gulf of Mexico and Atlantic coasts. Habitat suitability indices are designed for use with habitat evaluation procedures developed by the U.S. Fish and Wildlife Service. Guidelines for model application and techniques for estimating model variables are provided.

  13. Environmentally relevant concentrations of microplastic particles influence larval fish ecology.

    PubMed

    Lönnstedt, Oona M; Eklöv, Peter

    2016-06-01

    The widespread occurrence and accumulation of plastic waste in the environment have become a growing global concern over the past decade. Although some marine organisms have been shown to ingest plastic, few studies have investigated the ecological effects of plastic waste on animals. Here we show that exposure to environmentally relevant concentrations of microplastic polystyrene particles (90 micrometers) inhibits hatching, decreases growth rates, and alters feeding preferences and innate behaviors of European perch (Perca fluviatilis) larvae. Furthermore, individuals exposed to microplastics do not respond to olfactory threat cues, which greatly increases predator-induced mortality rates. Our results demonstrate that microplastic particles operate both chemically and physically on larval fish performance and development.

  14. Pesticide alters habitat selection and aquatic community composition.

    PubMed

    Vonesh, James R; Kraus, Johanna M

    2009-05-01

    Anthropogenic chemical contamination is an important issue for conservation of aquatic ecosystems. While recent research highlights that community context can mediate the consequences of contaminant exposure, little is known about how contaminants themselves might determine this context by altering habitat selection and thus initial community composition. Here we show that the insecticide carbaryl and its commercial counterpart Sevin can affect aquatic community composition by differentially altering oviposition and colonization of experimental pools by amphibians and insects. On average, contaminated pools received 20-fold more adult beetle and heteropteran colonists and 12-fold more Culex mosquito and chironomid midge egg masses. On the other hand, ovipositing Anopheles mosquitoes and cricket frogs showed no preference and we have shown previously that gray treefrogs strongly avoid contaminated pools. Overall, initial richness doubled in contaminated pools compared with controls. By affecting colonizing taxa differently and increasing richness, the contaminant may alter the ecological context under which subsequent effects of exposure will unfold. Given that community context is important for evaluating toxicity effects, understanding the net effects of contaminants in natural systems requires an understanding of their effects on community assembly via shifts in habitat selection.

  15. Distribution and diets of larval and juvenile fishes: Influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shahidul; Hibino, Manabu; Tanaka, Masaru

    2006-06-01

    We investigated the fish assemblage and distribution, diversity, and diets in relation to copepod prey communities along the Chikugo estuarine gradient in the Ariake Bay, Japan. Larval and juvenile fish samples, ambient copepod samples were collected and major hydrographic parameters were recorded at seven selected sampling stations (salinity range: 0.4-28.8 psu) during four sampling cruises in spring 2001. A zone of estuarine turbidity maximum (ETM) was identified in the upper part of the estuary which was characterized by low salinity. Two different fish and copepod communities based on the spatial distribution patterns were identified: the oligohaline community in the upper estuary, which was associated with the ETM; and the euryhaline community in the lower estuary, downstream of the ETM. The oligohaline fish community was composed of Acanthogobius flavimanus, Acanthogobius hasta, Coilia nasus, Neosalanx reganius, and Trachidermus fasciatus while the euryhaline community was composed of Engraulis japonicus and Sebastes inermis. Lateolabrax japonicus was distributed over wide spatial areas. Sinocalanus sinensis was the single dominant member of the oligohaline copepod community while the euryhaline community was dominated by Oithona davisae, Acartia omorii and Paracalanus parvus. Strong dietary relationships were identified between fishes and copepods in the same community. ETM appears to have significant influence on the distribution and abundance of the oligohaline copepod S. sinensis and this prey copepod appears to have strong influence on the fishes in the oligohaline regions. Most of the fishes were distributed in the low saline upper estuary where they foraged on the single dominant copepod S. sinensis which contributes the majority of the copepod standing biomass of the estuary and thus appear to support nursery for fishes. It was concluded that the ETM-based copepod S. sinensis plays a key role in survival and distribution of larval and juvenile fishes

  16. Sea urchin larvae decipher the epiphytic bacterial community composition when selecting sites for attachment and metamorphosis.

    PubMed

    Nielsen, Shaun J; Harder, Tilmann; Steinberg, Peter D

    2015-01-01

    Most marine invertebrates have dispersive larvae and relatively immobile adults. These developmental stages are linked by a settlement event, which is often mediated by specific cues in bacterial biofilms. While larvae distinguish between biofilms from different environments, it remains unknown if they receive information from all, only a few or even just a single bacterial species in natural biofilms. Here we asked how specific is larval settlement to the bacterial community structure and/or taxonomically distinguishable groups of bacteria in epiphytic marine biofilms? We used novel multivariate statistical approaches to investigate if larval settlement of two sea urchins correlated with the microbial community composition. Larval settlement of Heliocidaris erythrogramma revealed a strong correlation with the community composition, highlighted by canonical analysis of principle components, a constrained ordination technique. Using this technique, the importance of operational taxonomic units (OTUs) within communities relative to larval settlement was investigated. Larval settlement not only correlated, both positively and negatively, with the epiphytic bacterial community composition but also with the relative abundance of few OTUs within these communities. In contrast, no such correlation was observed for the other urchin, Holopneustes purpurascens, whose larvae likely respond to bacterial biofilms in a more general way and specifically respond to a defined settlement cue of algal origin. PMID:25764535

  17. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Morales-Ramos, Juan A; Rojas, M Guadalupe

    2015-10-01

    Crowding conditions of larvae may have a significant impact on commercial production efficiency of some insects, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, no reports were found on the effects of crowding on food utilization. The effect of larval density on food utilization efficiency of T. molitor larvae was studied by measuring efficiency of ingested food conversion (ECI), efficiency of digested food conversion (EDC), and mg of larval weight gain per gram of food consumed (LWGpFC) at increasing larval densities (12, 24, 36, 48, 50, 62, 74, and 96 larvae per dm(2)) over four consecutive 3-wk periods. Individual larval weight gain and food consumption were negatively impacted by larval density. Similarly, ECI, ECD, and LWGpFC were negatively impacted by larval density. Larval ageing, measured as four consecutive 3-wk periods, significantly and independently impacted ECI, ECD, and LWGpFC in a negative way. General linear model analysis showed that age had a higher impact than density on food utilization parameters of T. molitor larvae. Larval growth was determined to be responsible for the age effects, as measurements of larval mass density (in grams of larvae per dm(2)) had a significant impact on food utilization parameters across ages and density treatments (in number of larvae per dm(2)). The importance of mass versus numbers per unit of area as measurements of larval density and the implications of negative effects of density on food utilization for insect biomass production are discussed. PMID:26453714

  18. Hookworm (Necator americanus) larval enzymes disrupt human vascular endothelium.

    PubMed

    Souadkia, Nahed; Brown, Alan; Leach, Lopa; Pritchard, David I

    2010-09-01

    Knowledge of the molecular mechanisms used by Necator americanus larvae to penetrate the human skin and the vasculature would aid the development of effective vaccines against this important pathogen. In this work, the impact of N. americanus exsheathing fluid (EF) and excretory/secretory products (ES) on the endothelial barrier was examined using human umbilical vein endothelial cells (HUVEC). Cellular responses were assessed by investigating molecular changes at cell-cell junctions and by determining levels of secreted IL-6, IL-8, and vascular endothelial growth factor (VEGF) in the culture medium. It would appear that a repertoire of larval proteases caused a dose-related increase in endothelial permeability as characterized by a decrease in monolayer resistance with increased permeation of tracer-albumin. These barrier changes were associated with disruption of junctional vascular endothelial cadherin (VE-cadherin) and F-actin and an increase in endothelial secretion of IL-6 and IL-8. Our data suggest that larval proteases play an important role in negotiating the endothelium.

  19. Standardized Laboratory Feeding of Larval Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    Bock, Friederike; Kuch, Ulrich; Pfenninger, Markus; Müller, Ruth

    2015-01-01

    The Asian bush mosquito (Aedes japonicus japonicus, Theobald 1901) is an invasive culicid species which originates in Asia but is nowadays present in northern America and Europe. It is a competent vector for several human disease pathogens. In addition to the public health threat, this invasive species may also be an ecological threat for native container-breeding mosquitoes which share a similar larval habitat. Therefore, it is of importance to gain knowledge on ecological and eco-toxicological features of the Asian bush mosquito. However, optimal laboratory feeding conditions have not yet been established. Standardized feeding methods will be needed in assessing the impact of insecticides or competitional strength of this species. To fill this gap, we performed experiments on food quality and quantity for Ae. j. japonicus larvae. We found out that the commercial fish food TetraMin (Tetra, Melle, Germany) in a dose of 10 mg per larva is the most suitable food tested. We also suggest a protocol with a feeding sequence of seven portions for all larval stages of this species. PMID:26452522

  20. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development.

    PubMed

    Rowbottom, Raylea; Carver, Scott; Barmuta, Leon A; Weinstein, Philip; Foo, Dahlia; Allen, Geoff R

    2015-01-01

    Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level). To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission. PMID:26558896

  1. Multilevel control of run orientation in Drosophila larval chemotaxis

    PubMed Central

    Gomez-Marin, Alex; Louis, Matthieu

    2014-01-01

    Chemotaxis is a powerful paradigm to study how orientation behavior is driven by sensory stimulation. Drosophila larvae navigate odor gradients by controlling the duration of their runs and the direction of their turns. Straight runs and wide-amplitude turns represent two extremes of a behavioral continuum. Here we establish that, on average, runs curl toward the direction of higher odor concentrations. We find that the orientation and strength of the local odor gradient perpendicular to the direction of motion modulates the orientation of individual runs in a gradual manner. We discuss how this error-correction mechanism, called weathervaning, contributes to larval chemotaxis. We use larvae with a genetically modified olfactory system to demonstrate that unilateral function restricted to a single olfactory sensory neuron (OSN) is sufficient to direct weathervaning. Our finding that bilateral sensing is not necessary to control weathervaning highlights the role of temporal sampling. A correlational analysis between sensory inputs and behavioral outputs suggests that weathervaning results from low-amplitude head casts implemented without interruption of the run. In addition, we report the involvement of a sensorimotor memory arising from previous reorientation events. Together, our results indicate that larval chemotaxis combines concurrent orientation strategies that involve complex computations on different timescales. PMID:24592220

  2. System for maintaining sediment suspensions during larval fish studies

    USGS Publications Warehouse

    Chilton, E.W.

    1991-01-01

    A new system was developed for maintaining suspensions of inorganic solids during laboratory studies on early life stages of fish. Microfine bentonite was successfully held in suspension in specially constructed units during a 21-d fishless test, a 28-d experiment with juvenile green sunfish (lepomis cyanellus), and four shorter experiments (5-9 d) with four species of larval fishes, white sucker (catostomus commersoni), northern pike (esox lucius), channel catfish (ictalurus punctatus), and walleye (stizostedion vitreum). Each experiment on larval fish was conducted until the yolk-sac had been absorbed. Concentrations of bentonite ranged from 0 to 728 mg/l. Each unit consisted of a holding chamber set in a stainless steel bowl and two submersible pumps that recirculated the suspension. Turbidity readings remained nearly constant throughout each experiment. Because the turbidity of suspensions was well correlated with bentonite concentration (r2 = 0.989) And easy to measure, turbidity was used as an indicator of concentration. The system is inexpensive, easy to assemble, and does not require a diluter system to maintain constant concentrations of suspended material.

  3. Proteomic analysis through larval development of Solea senegalensis flatfish.

    PubMed

    Chicano-Gálvez, Eduardo; Asensio, Esther; Cañavate, José Pedro; Alhama, José; López-Barea, Juan

    2015-12-01

    The post-embryonic development of the Senegalese sole, Solea senegalensis, a flatfish of growing interest in fisheries and aquaculture, is associated with drastic morpho-physiological changes during metamorphosis. Although in the last two decades knowledge on sole culture has notably increased, especially in Southern Europe, its progress was restricted due to lack of methods to control reproduction, improve larval quality and increase juvenile disease resistance. A limited knowledge of the physiological, molecular and genetic mechanisms involved is at the base of such limitation. A proteomic study was carried out to explore the molecular events that occur during S. senegalensis ontogenesis. Protein expression changes were monitored in larvae from 5 to 21 dph by combining 2DE and protein identification with de novo MS/MS sequencing. An average of 6177 ± 282 spots was resolved in 2DE gels. Hierarchical cluster analysis of the 705 selected spots grouped them in eight patterns. Thirty-four proteins were identified and assigned biological functions including structure, metabolism highlighting energy metabolism, transport, protein folding, stress response, chromatin organization and regulation of gene expression. These changes provide a sequential description of the molecular events associated with the biochemical and biological transformations that occur during sole larval development.

  4. Mosquito Population Regulation and Larval Source Management in Heterogeneous Environments

    PubMed Central

    Smith, David L.; Perkins, T. Alex; Tusting, Lucy S.; Scott, Thomas W.; Lindsay, Steven W.

    2013-01-01

    An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM). We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats’ carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%). Unsurprisingly, targeting (i.e. treating a subset of the most productive pools) gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides. PMID:23951118

  5. Small nonnative fishes as predators of larval razorback suckers

    USGS Publications Warehouse

    Carpenter, J.; Mueller, G.A.

    2008-01-01

    The razorback sucker (Xyrauchen texanus), an endangered big-river fish of the Colorado River basin, has demonstrated no sustainable recruitment in 4 decades, despite presence of spawning adults and larvae. Lack of adequate recruitment has been attributed to several factors, including predation by nonnative fishes. Substantial funding and effort has been expended on mechanically removing nonnative game fishes, typically targeting large predators. As a result, abundance of larger predators has declined, but the abundance of small nonnative fishes has increased in some areas. We conducted laboratory experiments to determine if small nonnative fishes would consume larval razorback suckers. We tested adults of three small species (threadfin shad, Dorosoma petenense; red shiner, Cyprinella lutrensis; fathead minnow, Pimephales promelas) and juveniles of six larger species (common carp, Cyprinus carpio; yellow bullhead, Ameiurus natalis; channel catfish, Ictalurus punctatus; rainbow trout, Oncorhynchus mykiss; green sunfish, Lepomis cyanellus; bluegill, L. macrochirus). These nonnative fishes span a broad ecological range and are abundant within the historical range of the razorback sucker. All nine species fed on larval razorback suckers (total length, 9-16 mm). Our results suggest that predation by small nonnative fishes could be responsible for limiting recovery of this endangered species.

  6. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora).

    PubMed

    Voronezhskaya, Elena E; Tyurin, Sergei A; Nezlin, Leonid P

    2002-02-25

    Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores.

  7. Chemical mediation of coral larval settlement by crustose coralline algae

    PubMed Central

    Tebben, J.; Motti, C. A; Siboni, Nahshon; Tapiolas, D. M.; Negri, A. P.; Schupp, P. J.; Kitamura, Makoto; Hatta, Masayuki; Steinberg, P. D.; Harder, T.

    2015-01-01

    The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds – glycoglycerolipids and polysaccharides – as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples. PMID:26042834

  8. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development

    PubMed Central

    Rowbottom, Raylea; Carver, Scott; Barmuta, Leon A.; Weinstein, Philip; Foo, Dahlia; Allen, Geoff R.

    2015-01-01

    Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level). To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission. PMID:26558896

  9. An electric beam trawl for the capture of larval lampreys

    USGS Publications Warehouse

    McLain, Alberton; Dahl, Frederick H.

    1968-01-01

    The chemicals used to control the sea lamprey, Petromyzon marinus, in the Great Lakes have drastically reduced populations of larval lampreys in tributary streams. These larvicides are too costly and difficult to apply, however, in inland lakes, estuaries, and bays. Populations of sea lampreys in these areas constitute a threat to the refinement of the control. The gear available to locate, ample, and evaluate larval populations in deep water are inefficient. Electric shockers, satisfactory for collecting ammocoetes in streams, are limited to shallow water. The use of mechanical devices such as the Petersen dredge, anchor dredge, and the orange-peel dredge is time consuming, inefficient, and relatively ineffective in providing reliable quantitative evaluation of population size and composition over large areas of bottom. A device was required to sample adequately many areas in a short period of time, regardless of the depth of water. Mobility also was essential to permit operation of the unit in the various Great Lakes and in inland waters. An electrified beam trawl has been developed that most nearly meets these requirements. It has been used successfully to collect larvae of the sea lamprey, American brook lamprey (Lampetra lamottei), northern brook lamprey (Ichthyomyzon fossor), and silver lamprey (I. unicuspis). Effectiveness of the trawl did not appear to differ with species.

  10. Predictability of littoral-zone fish communities through ontogeny in Lake Texoma, Oklahoma-Texas, USA

    USGS Publications Warehouse

    Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.

    2005-01-01

    We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.

  11. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania

    PubMed Central

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Fillinger, Ulrike; Drescher, Axel W; Tanner, Marcel; Castro, Marcia C; Killeen, Gerry F

    2007-01-01

    Background Half of the population of Africa will soon live in towns and cities where it can be protected from malaria by controlling aquatic stages of mosquitoes. Rigorous but affordable and scaleable methods for mapping and managing mosquito habitats are required to enable effective larval control in urban Africa. Methods A simple community-based mapping procedure that requires no electronic devices in the field was developed to facilitate routine larval surveillance in Dar es Salaam, Tanzania. The mapping procedure included (1) community-based development of sketch maps and (2) verification of sketch maps through technical teams using laminated aerial photographs in the field which were later digitized and analysed using Geographical Information Systems (GIS). Results Three urban wards of Dar es Salaam were comprehensively mapped, covering an area of 16.8 km2. Over thirty percent of this area were not included in preliminary community-based sketch mapping, mostly because they were areas that do not appear on local government residential lists. The use of aerial photographs and basic GIS allowed rapid identification and inclusion of these key areas, as well as more equal distribution of the workload of malaria control field staff. Conclusion The procedure developed enables complete coverage of targeted areas with larval control through comprehensive spatial coverage with community-derived sketch maps. The procedure is practical, affordable, and requires minimal technical skills. This approach can be readily integrated into malaria vector control programmes, scaled up to towns and cities all over Tanzania and adapted to urban settings elsewhere in Africa. PMID:17784963

  12. Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.; Huspeni, T.C.; Brooks, A.J.; Kuris, A.M.

    2007-01-01

    Measuring biodiversity is difficult. This has led to efforts to seek taxa whose species richness correlates with the species richness of other taxa. Such indicator taxa could then reduce the time and cost of assessing the biodiversity of the more extensive community. The search for species richness correlations has yielded mixed results, however. This may be primarily because of the lack of functional relationships between the taxa studied. Trematode parasites are highly promising bioindicators. Diverse assemblages of larval trematode parasites are easily sampled in intermediate host snails. Through their life cycles these parasites are functionally coupled with the surrounding free-living diversity of vertebrate and invertebrate animals. It has been shown that larval trematodes in snails correlate positively with bird diversity and abundance. Here, we explore whether trematodes also correlate with standard measures of fishes, and large and small benthos, for 32 sites in three wetlands. We found associations between trematodes and benthic communities that were not consistent across wetlands. The associations were, however, consistently positive for large benthic species richness and density. Some of the contrasting associations between trematode and benthos may be explained by negative associations between large and small benthos. We found no associations with fish communities (probably because of the inadequacy of standard "snapshot" sampling methods for highly mobile fishes). The results support further exploration of trematodes as bioindicators of diversity and abundance of animal communities. ?? 2006 Springer-Verlag.

  13. Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes.

    PubMed

    Hechinger, Ryan F; Lafferty, Kevin D; Huspeni, Todd C; Brooks, Andrew J; Kuris, Armand M

    2007-02-01

    Measuring biodiversity is difficult. This has led to efforts to seek taxa whose species richness correlates with the species richness of other taxa. Such indicator taxa could then reduce the time and cost of assessing the biodiversity of the more extensive community. The search for species richness correlations has yielded mixed results, however. This may be primarily because of the lack of functional relationships between the taxa studied. Trematode parasites are highly promising bioindicators. Diverse assemblages of larval trematode parasites are easily sampled in intermediate host snails. Through their life cycles these parasites are functionally coupled with the surrounding free-living diversity of vertebrate and invertebrate animals. It has been shown that larval trematodes in snails correlate positively with bird diversity and abundance. Here, we explore whether trematodes also correlate with standard measures of fishes, and large and small benthos, for 32 sites in three wetlands. We found associations between trematodes and benthic communities that were not consistent across wetlands. The associations were, however, consistently positive for large benthic species richness and density. Some of the contrasting associations between trematode and benthos may be explained by negative associations between large and small benthos. We found no associations with fish communities (probably because of the inadequacy of standard "snapshot" sampling methods for highly mobile fishes). The results support further exploration of trematodes as bioindicators of diversity and abundance of animal communities. PMID:17024376

  14. Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes.

    PubMed

    Hechinger, Ryan F; Lafferty, Kevin D; Huspeni, Todd C; Brooks, Andrew J; Kuris, Armand M

    2007-02-01

    Measuring biodiversity is difficult. This has led to efforts to seek taxa whose species richness correlates with the species richness of other taxa. Such indicator taxa could then reduce the time and cost of assessing the biodiversity of the more extensive community. The search for species richness correlations has yielded mixed results, however. This may be primarily because of the lack of functional relationships between the taxa studied. Trematode parasites are highly promising bioindicators. Diverse assemblages of larval trematode parasites are easily sampled in intermediate host snails. Through their life cycles these parasites are functionally coupled with the surrounding free-living diversity of vertebrate and invertebrate animals. It has been shown that larval trematodes in snails correlate positively with bird diversity and abundance. Here, we explore whether trematodes also correlate with standard measures of fishes, and large and small benthos, for 32 sites in three wetlands. We found associations between trematodes and benthic communities that were not consistent across wetlands. The associations were, however, consistently positive for large benthic species richness and density. Some of the contrasting associations between trematode and benthos may be explained by negative associations between large and small benthos. We found no associations with fish communities (probably because of the inadequacy of standard "snapshot" sampling methods for highly mobile fishes). The results support further exploration of trematodes as bioindicators of diversity and abundance of animal communities.

  15. Effect of ace inhibitors and TMOF on growth, development, and trypsin activity of larval Spodoptera littoralis.

    PubMed

    Lemeire, Els; Borovsky, Dov; Van Camp, John; Smagghe, Guy

    2008-12-01

    Angiotensin converting enzyme (ACE) is a zinc metallopeptidase capable of cleaving dipeptide or dipeptideamide moieties at the C-terminal end of peptides. ACE is present in the hemolymph and reproductive tissues of insects. The presence of ACE in the hemolymph and its broad substrate specificity suggests an important role in processing of bioactive peptides. This study reports the effects of ACE inhibitors on larval growth in the cotton leafworm Spodoptera littoralis. Feeding ACE inhibitors ad lib decreased the growth rate, inhibited ACE activity in the larval hemolymph, and down-regulated trypsin activity in the larval gut. These results indicate that S. littoralis ACE may influence trypsin biosynthesis in the larval gut by interacting with a trypsin-modulating oostatic factor (TMOF). Injecting third instar larvae with a combination of Aea-TMOF and the ACE inhibitor captopril, down-regulated trypsin biosynthesis in the larval gut indicating that an Aea-TMOF gut receptor analogue could be present. Injecting captopril and enalapril into newly molted fifth instar larvae stopped larval feeding and decreased weight gain. Together, these results indicate that ACE inhibitors are efficacious in stunting larval growth and ACE plays an important role in larval growth and development. PMID:18949805

  16. The effect of larval density on adult demographic traits in Ambystoma opacum

    SciTech Connect

    Scott, D.E. )

    1994-07-01

    Factors that affect traits of aquatic larvae of amphibians may have long-lasting effects on terrestrial juveniles and adults. I manipulated larval densities of marbled salamanders, Ambystoma opacum, in large-scale field enclosures during 2 yr, released the juveniles that metamorphosed from these enclosures, and tested for effects on adults that returned to the pond during 6-7 subsequent breeding seasons. Individuals from low larval density treatments tended to have greater lipid stores at metamorphosis than those from high densities and survived longer in a laboratory inanition study. In the field, individuals that experienced low larval density returned for their first reproductive bout as larger adults than those from high-density treatments. For 5-yr-old females released in 1986, low larval density was linked to greater clutch size; clutch size in 4-yr-old animals from the 1987 cohort did not differ between larval treatment groups. Larval density also influenced age at first reproduction, as animals rared at low densities returned to breed at younger ages. Averaged across both cohorts, the proportion of animals that returned to breed at least once was 21% for low-density groups compared to 6% for the high density groups. The larval environment exerted a strong influence on postmetamorphic traits, and thus larval density likely plays an important role of population regulation in both the aquatic and terrestrial phase of the life cycle. 81 refs., 4 figs., 6 tabs.

  17. Larval therapy from antiquity to the present day: mechanisms of action, clinical applications and future potential

    PubMed Central

    Whitaker, Iain S; Twine, Christopher; Whitaker, Michael J; Welck, Mathew; Brown, Charles S; Shandall, Ahmed

    2007-01-01

    When modern medicine fails, it is often useful to draw ideas from ancient treatments. The therapeutic use of fly larvae to debride necrotic tissue, also known as larval therapy, maggot debridement therapy or biosurgery, dates back to the beginnings of civilisation. Despite repeatedly falling out of favour largely because of patient intolerance to the treatment, the practice of larval therapy is increasing around the world because of its efficacy, safety and simplicity. Clinical indications for larval treatment are varied, but, in particular, are wounds infected with multidrug‐resistant bacteria and the presence of significant co‐morbidities precluding surgical intervention. The flies most often used in larval therapy are the facultative calliphorids, with the greenbottle blowfly (Lucilia sericata) being the most widely used species. This review summarises the fascinating and turbulent history of larval therapy from its origin to the present day, including mechanisms of action and evidence for its clinical applications. It also explores future research directions. PMID:17551073

  18. [Relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree].

    PubMed

    Yang, Yao-Jun; Wang, Shu-Fang; Gong, Jia-Wen; Liu, Chao; Mu, Chi; Qin, Hong

    2009-08-01

    In August of 2007 and 2008, a field investigation was made to study the relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree in Sichuan Province. The three pairs of variables, i. e., C. buqueti larval density and wormhole number, C. buqueti larval density and bamboo shoot damage degree, and C. buqueti wormhole number and bamboo shoot damage degree, fitted cubic equations well, with the correlation coefficients at P = 0.001. Based on these mathematical models, the forecast tables for C. buqueti larval density and bamboo shoot damage degree were established, and the thresholds of C. buqueti larval density and wormhole number were 0.13 and 0.40 individual per bamboo, respectively.

  19. Surface ultrastructure of larval Anisakidae (Nematoda: Ascaridoidea) and its identification by mensuration.

    PubMed

    Fukuda, T; Aji, T; Tongu, Y

    1988-04-01

    The surface ultrastructure of larval Anisakis type I, Anisakis type II, Raphidascaris, Contracaecum type A, Thynnascaris type A and Thynnascaris type B was examined by scanning electron microscopy. These species were identified clearly by the presence of a boring tooth, a mucron, and other morphological features. The means of the distances between transverse striations (DBTS) of larval Anisakis type I (5.45 +/- 0.125 micron), larval Raphidascaris (2.92 +/- 0.051 micron), and larval Contracaecum type A (1.68 +/- 0.056 micron) are significantly different (p less than 0.05). There was a correlation between the diameter of worm trunk (DOWT) and DBTS among these three larval types. In most cases a larva could be identified from the mean value of DBTS and DOWT even if obtained as a fragment from a patient.

  20. Modelling larval transport in a axial convergence front

    NASA Astrophysics Data System (ADS)

    Robins, P.

    2010-12-01

    Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval

  1. Freezing resistance of antifreeze-deficient larval Antarctic fish.

    PubMed

    Cziko, Paul A; Evans, Clive W; Cheng, Chi-Hing C; DeVries, Arthur L

    2006-02-01

    Antarctic notothenioids, along with many other polar marine fishes, have evolved biological antifreeze proteins (AFPs) to survive in their icy environments. The larvae of Antarctic notothenioid fish hatch into the same frigid environment inhabited by the adults, suggesting that they must also be protected by sufficient AFPs, but this has never been verified. We have determined the contribution of AFPs to the freezing resistance of the larvae of three species: Gymnodraco acuticeps, Pagothenia borchgrevinki and Pleuragramma antarcticum. Of the three, only P. borchgrevinki larvae are protected by high, adult levels of AFPs. Hatchling G. acuticeps and P. antarcticum have drastically inadequate AFP concentrations to avoid freezing at the ambient seawater temperature (-1.91 degrees C). We raised G. acuticeps larvae and measured the AFP levels in their blood for approximately 5 months post hatching. Larval serum freezing point was -1.34+/-0.04 degrees C at the time of hatch; it began to decrease only after 30 days post hatch (d.p.h.), and finally reached the adult value (-2.61+/-0.03 degrees C) by 147 d.p.h. Additionally, AFP concentrations in their intestinal fluids were very low at hatching, and did not increase with age throughout a sampling period of 84 d.p.h. Surviving in a freezing environment without adequate AFP protection suggests that other mechanisms of larval freezing resistance exist. Accordingly, we found that G. acuticeps hatchlings survived to -3.6+/-0.1 degrees C while in contact with external ice, but only survived to -1.5+/-0.0 degrees C when ice was artificially introduced into their tissues. P. antarcticum larvae were similarly resistant to organismal freezing. The gills of all three species were found to be underdeveloped at the time of hatch, minimizing the risk of ice introduction through these delicate structures. Thus, an intact integument, underdeveloped gill structures and other physical barriers to ice propagation may contribute significantly

  2. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    PubMed

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods

  3. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    PubMed

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.

  4. Correlated Evolution between Mode of Larval Development and Habitat in Muricid Gastropods

    PubMed Central

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Abstract Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids

  5. Larval development of Angiostrongylus vasorum in the land snail Helix aspersa.

    PubMed

    Di Cesare, Angela; Crisi, Paolo Emidio; Bartolini, Roberto; Iorio, Raffaella; Talone, Tonino; Filippi, Laura; Traversa, Donato

    2015-10-01

    The metastrongyloid nematode Angiostrongylus vasorum affects the heart and pulmonary arteries of dogs and wild animals. Over the recent years, dog angiostrongylosis has gained great attention in the veterinary community for the expansion of its geographic range and for a rise in the number of clinical cases. Global warming, changes in phenology of mollusc intermediate hosts and movements of wild reservoirs have been evocated in the spreading of mollusc-borne parasites, including A. vasorum. The land snail Helix aspersa, a vector of other respiratory metastrongyloids, is endemic in most regions of the World, where it is a pest outside its native Mediterranean range. In the present study, the susceptibility and suitability of H. aspersa as an intermediate host of A. vasorum were investigated along with the characteristics of larval recovery and development following two different ways of inoculation, i.e. experimental (group A) vs natural infection (group B). After infections, the snails were kept at environmental conditions for 2 months. Five snails from groups A and B were randomly selected, digested and examined at 15-day intervals for 2 months. L1s, L2s and L3s were microscopically identified based on key morphological and morphometric characteristics and their identity was genetically confirmed. The results showed that A. vasorum may reach the infective stage in H. aspersa and that uptake of larvae and parasitic burden within the snails depend on the grazing capability of the molluscs. Biological and epidemiological implications are discussed.

  6. Larval development of Angiostrongylus vasorum in the land snail Helix aspersa.

    PubMed

    Di Cesare, Angela; Crisi, Paolo Emidio; Bartolini, Roberto; Iorio, Raffaella; Talone, Tonino; Filippi, Laura; Traversa, Donato

    2015-10-01

    The metastrongyloid nematode Angiostrongylus vasorum affects the heart and pulmonary arteries of dogs and wild animals. Over the recent years, dog angiostrongylosis has gained great attention in the veterinary community for the expansion of its geographic range and for a rise in the number of clinical cases. Global warming, changes in phenology of mollusc intermediate hosts and movements of wild reservoirs have been evocated in the spreading of mollusc-borne parasites, including A. vasorum. The land snail Helix aspersa, a vector of other respiratory metastrongyloids, is endemic in most regions of the World, where it is a pest outside its native Mediterranean range. In the present study, the susceptibility and suitability of H. aspersa as an intermediate host of A. vasorum were investigated along with the characteristics of larval recovery and development following two different ways of inoculation, i.e. experimental (group A) vs natural infection (group B). After infections, the snails were kept at environmental conditions for 2 months. Five snails from groups A and B were randomly selected, digested and examined at 15-day intervals for 2 months. L1s, L2s and L3s were microscopically identified based on key morphological and morphometric characteristics and their identity was genetically confirmed. The results showed that A. vasorum may reach the infective stage in H. aspersa and that uptake of larvae and parasitic burden within the snails depend on the grazing capability of the molluscs. Biological and epidemiological implications are discussed. PMID:26122991

  7. 'Like sugar and honey': the embedded ethics of a larval control project in The Gambia.

    PubMed

    Kelly, Ann H; Ameh, David; Majambere, Silas; Lindsay, Steve; Pinder, Margaret

    2010-06-01

    This paper describes a malaria research project in The Gambia to provoke thinking on the social value of transnational research. The Larval Control Project (LCP) investigated the efficacy of a microbial insecticide to reduce vector density and, ultimately, clinical malaria in Gambian children. The LCP's protocol delineated a clinical surveillance scheme that involved Village Health Workers (VHWs) supported by project nurses. Combining insights from ethnographic fieldwork conducted at the Medical Research Council (MRC) Laboratories in Farafenni from 2005 to 2009, open-ended interviews with project nurses, and eight focus group discussions held with participant mothers in October 2007, we consider the social impact of the LCP's investigative method against the backdrop of several years of research activity. We found that while participants associated the LCP with the clinical care it provided, they also regarded the collaboration between the nurses and VHWs added additional benefits. Organised around the operational functions of the trial, small-scale collaborations provided the platform from which to build local capacity. While ethical guidelines emphasise the considerations that must be added to experimental endeavour in southern countries (e.g. elaborating processes of informed consent, developing strategies of community engagement or providing therapeutic access to participants after the trial concludes), these findings suggest that shifting attention from supplementing ethical protocols to the everyday work of research -embedding ethics through scientific activity - may provide a sounder basis to reinforce the relationship between scientific rigour and social value. PMID:20362381

  8. Distribution and Abundance of Larval Fishes at Two North Carolina Inlets

    NASA Astrophysics Data System (ADS)

    Hettler, W. F.; Barker, D. L.

    1993-08-01

    Two major barrier island inlets that connect Pamlico Sound with the Atlantic Ocean were quantitatively sampled for larvae at new moon monthly intervals during 1988-89. Simultaneous tows of bottom and surface 1 m, 500 micron mesh nets were made day and night at single stations inside of Oregon Inlet and Ocracoke Inlet. Oregon Inlet, located in a more temperate marine province, was expected to have a different taxonomic community than Ocracoke Inlet, but, of 77 taxa collected from both inlets, 54 occurred at both inlets. Clupeoids and sciaenids were the dominant taxa in both inlets. At Oregon Inlet the lowest abundance of larvae occurred in February and the highest occurred in late August, whereas at Ocracoke Inlet, November and June were the lowest and highest months of larval abundance. At Oregon Inlet, 63% of the total number of larvae were caught near the bottom, but at Ocracoke Inlet, only 38% were caught near the bottom. Atlantic menhaden, Brevoortia tyrannus, were 40 times more abundant at the surface than at the bottom at Ocracoke Inlet. Most larvae were caught at night at both inlets. The times of occurrence and peak abundance for most species did not appear linked between inlets. Twenty-one species were significantly different in mean length between the two inlets.

  9. Biochemical composition and fatty acid content of zooplankton from tropical lagoon for larval rearing.

    PubMed

    Lokman, H S

    1993-01-01

    Zooplankton samples were collected from the indigenous tropical brackish water lagoon during the wet monsoon (January and February 1990) and the dry monsoon (April and May 1990). The dominant copepod species in the zooplankton community comprising of Oithona sp (especially O. nana and O. robusta) accounted for more than 70% of the zooplankton in January and was gradually replaced by other zooplanktonic species later in the dry season. The lipid contents in zooplankton varied from 0.18 to 1.04% wet weight or 1.14 to 5.92% dry weight respectively. The major fatty acid contents of the zooplankton showed high concentration of 14:0, 16:0, 18:1, 20:5 omega 3 and 22:6 omega 3 especially in the wet season. It also contained high omega-3 highly unsaturated fatty acid series necessary for the growth of commercial fish larvae. It has a better food value than the normally use food organism, brine shrimp; thus reflecting its potential use as food organism for fish larval rearing. PMID:7508281

  10. Larval microhabitats of Lutzomyia longipalpis (Diptera: Psychodidae) in an endemic focus of visceral leishmaniasis in Colombia.

    PubMed

    Ferro, C; Pardo, R; Torres, M; Morrison, A C

    1997-11-01

    An intensive search for the larval habitats of Lutzomyia longipalpis (Lutz & Neiva) was conducted from November 1992 to October 1993 at a small rural community in Colombia where American visceral leishmaniasis is endemic. Emergence traps constructed from polyvinyl chloride pipes were used to sample a variety of soil microhabitats that included edge areas of covered pigpens, cattle corrals, the base of trees, and leaf litter at sites within 40 m of a house, rocks in fields located between 50 and 500 m from houses, and sites within a patch of secondary forest (rocks, base of palm trees, and leaf litter). The teneral status of the sand flies captured in the emergence traps was confirmed by laboratory studies that determined the rate of terminalia rotation in male L. longipalpis and the rate of cuticular growth layer formation of the thoracic phragma in both sexes of this species. A total of 58 teneral sand flies was captured during the study period (49 wk). Fifteen specimens were L. longipalpis; of these 11 (5 sand flies per square meter) were captured near pigpens, 3 (1.4 sand flies per square meter) were captured near rock resting sites, and 1 (1.6 sand flies per square meter) was collected at the base of a tree. The remainder of the sand flies were either L. trinidadensis (Newstead) or L. cayennensis (Flock & Abonnenc). Our results indicate that L. longipalpis larvae were dispersed widely in sites near houses, rather than concentrated in a few optimal microhabitats.

  11. [Clinical and radiologic manifestations of larval paragonimiasis in children].

    PubMed

    Perelśhteĭn, N N; Sipukhin, Ia M; Siuzeva, N A; Apukhtina, T P

    1991-01-01

    Investigation of 60 children with acute types and 45 children with latent types of larval paragonimiasis (LP) has revealed various clinical and x-ray manifestations of this disease, spread in the southern Primorski Territory. Three syndromes of this disease were singled out: toxico-allergic, abdominal and pulmonary. X-ray investigation showed characteristic LP symptoms: exudate in the pleural cavity, thickening of the wall, diaphragmatic and interlobular pleura, sometimes--pneumothorax. Pathology of the bronchopulmonary system manifested itself in focal and infiltrative shadows, enhanced and deformed lung markings, and bullous inflation. Diagnosis and differential diagnosis must be based on analysis of clinical and x-ray data and the results of serological reactions.

  12. Environmentally relevant concentrations of microplastic particles influence larval fish ecology.

    PubMed

    Lönnstedt, Oona M; Eklöv, Peter

    2016-06-01

    The widespread occurrence and accumulation of plastic waste in the environment have become a growing global concern over the past decade. Although some marine organisms have been shown to ingest plastic, few studies have investigated the ecological effects of plastic waste on animals. Here we show that exposure to environmentally relevant concentrations of microplastic polystyrene particles (90 micrometers) inhibits hatching, decreases growth rates, and alters feeding preferences and innate behaviors of European perch (Perca fluviatilis) larvae. Furthermore, individuals exposed to microplastics do not respond to olfactory threat cues, which greatly increases predator-induced mortality rates. Our results demonstrate that microplastic particles operate both chemically and physically on larval fish performance and development. PMID:27257256

  13. Inter-individual stereotypy of the Platynereis larval visual connectome.

    PubMed

    Randel, Nadine; Shahidi, Réza; Verasztó, Csaba; Bezares-Calderón, Luis A; Schmidt, Steffen; Jékely, Gáspár

    2015-01-01

    Developmental programs have the fidelity to form neural circuits with the same structure and function among individuals of the same species. It is less well understood, however, to what extent entire neural circuits of different individuals are similar. Previously, we reported the neuronal connectome of the visual eye circuit from the head of a Platynereis dumerilii larva (Randel et al., 2014). We now report a full-body serial section transmission electron microscopy (ssTEM) dataset of another larva of the same age, for which we describe the connectome of the visual eyes and the larval eyespots. Anatomical comparisons and quantitative analyses of the two circuits reveal a high inter-individual stereotypy of the cell complement, neuronal projections, and synaptic connectivity, including the left-right asymmetry in the connectivity of some neurons. Our work shows the extent to which the eye circuitry in Platynereis larvae is hard-wired. PMID:26061864

  14. Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish.

    PubMed

    Dunn, Timothy W; Gebhardt, Christoph; Naumann, Eva A; Riegler, Clemens; Ahrens, Misha B; Engert, Florian; Del Bene, Filippo

    2016-02-01

    Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  15. Feeding competition between larval lake whitefish and lake herring

    USGS Publications Warehouse

    Savino, Jacqueline F.; Hudson, Patrick L.

    1995-01-01

    The potential for competition for food between larval lake whitefish (Coregonus clupeaformis) and lake herring (C. artedi) 1- to 8-wk of age was explored in a series of 1-h laboratory feeding studies. Feeding started at 2-wk post-hatch. Learning and fish size appear to be more important than prey density at the onset of feeding. Species differed in their feeding behavior and consumption noticeably by 5-wk and substantially by 8-wk. Lake whitefish generally were more aggressive foragers than lake herring, attacking and capturing more prey. At high plankton density at 8-wk, lake herring feeding was depressed in mixed-fish treatments. This difference in competitive food consumption between the two coregonids occurs at a critical life stage, and when combined with other biotic and abiotic factors, may have a significant impact on recruitment.

  16. Agreement among observers classifying larval sea lamprey (Petromyzon marinus) habitat

    USGS Publications Warehouse

    Mullett, Katherine M.; Bergstedt, Roger A.

    2003-01-01

    Estimates of larval sea lamprey (Petromyzon marinus) abundance are used to rank Great Lakes tributaries for lampricide treatment. Observers subjectively stratify habitat into three categories: type I = preferred, type II = acceptable, type III = unacceptable. Agreement was evaluated among eight observers classifying habitats in small discrete plots in two Lake Superior tributaries, the Rock and Chocolay rivers, and among four observers classifying and measuring the amount of each habitat type along random transects in the Rock River. Agreement among the eight observers classifying habitat plots was high (Chocolay, k = 0.742 and Rock, k = 0.785). The amounts of types I, II, and III habitat estimated were statistically different among observers. However, the amount of variability found in the classification and measurement of habitat by observers had little effect on the ranking of 51 streams considered for lampricide treatment.

  17. Embryonic and larval development of Brycon amazonicus (SPIX & AGASSIZ, 1829).

    PubMed

    Nakauth, A C S Sampaio; Villacorta-Correa, M A; Figueiredo, M R; Bernardino, G; França, J M

    2016-02-01

    The objective of this study was to describe the embryonic and larval development of Brycon amazonicus, featuring the main events up to 50 hours after fertilization (AF). The material was provided by the Aquaculture Training, Technology and Production Center, Presidente Figueiredo (AM). The characterization was based on stereomicroscopic examination of the morphology of eggs, embryos and larvae and comparison with the literature. Matrinxã eggs are free, transparent, and spherical, with a perivitelline space of 0.56 ± 0.3 mm. The successive divisions give rise to cells with 64 blastomeres during the first hour AF. The gastrula stage, beginning 02 h 40 min AF, was characterized by progressive regression cells and the formation of the embryonic axis, leading to differentiation of the head and tail 05 h 30 min AF. From 06 to 09 h AF the somites, notochord, otic and optic vesicles and otoliths were observed, in addition to heart rate and the release of the tail. The larvae hatched at 10 h 30 min AF (29.9 °C), with a total length of 3.56 ± 0.46 mm. Between 19 and 30 h AF, we observed 1) pigmentation and gut formation, 2) branchial arches, 3) pectoral fins, 4) a mouth opening and 5) teeth. Cannibalism was initiated earlier (34 h AF) which was associated with rapid yolk absorption (more than 90% until 50 h AF), signaling the need for an exogenous nutritional source. The environmental conditions (especially temperature) influenced the time course of some events throughout the embryonic and larval development, suggesting the need for further studies on this subject.

  18. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species.

  19. Embryonic and larval development of Brycon amazonicus (SPIX & AGASSIZ, 1829).

    PubMed

    Nakauth, A C S Sampaio; Villacorta-Correa, M A; Figueiredo, M R; Bernardino, G; França, J M

    2016-02-01

    The objective of this study was to describe the embryonic and larval development of Brycon amazonicus, featuring the main events up to 50 hours after fertilization (AF). The material was provided by the Aquaculture Training, Technology and Production Center, Presidente Figueiredo (AM). The characterization was based on stereomicroscopic examination of the morphology of eggs, embryos and larvae and comparison with the literature. Matrinxã eggs are free, transparent, and spherical, with a perivitelline space of 0.56 ± 0.3 mm. The successive divisions give rise to cells with 64 blastomeres during the first hour AF. The gastrula stage, beginning 02 h 40 min AF, was characterized by progressive regression cells and the formation of the embryonic axis, leading to differentiation of the head and tail 05 h 30 min AF. From 06 to 09 h AF the somites, notochord, otic and optic vesicles and otoliths were observed, in addition to heart rate and the release of the tail. The larvae hatched at 10 h 30 min AF (29.9 °C), with a total length of 3.56 ± 0.46 mm. Between 19 and 30 h AF, we observed 1) pigmentation and gut formation, 2) branchial arches, 3) pectoral fins, 4) a mouth opening and 5) teeth. Cannibalism was initiated earlier (34 h AF) which was associated with rapid yolk absorption (more than 90% until 50 h AF), signaling the need for an exogenous nutritional source. The environmental conditions (especially temperature) influenced the time course of some events throughout the embryonic and larval development, suggesting the need for further studies on this subject. PMID:26909629

  20. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species. PMID:27327181

  1. Rapid declines in metabolism explain extended coral larval longevity

    NASA Astrophysics Data System (ADS)

    Graham, E. M.; Baird, A. H.; Connolly, S. R.; Sewell, M. A.; Willis, B. L.

    2013-06-01

    Lecithotrophic, or non-feeding, marine invertebrate larvae generally have shorter pelagic larval durations (PLDs) than planktotrophic larvae. However, non-feeding larvae of scleractinian corals have PLDs far exceeding those of feeding larvae of other organisms and predictions of PLD based on energy reserves and metabolic rates, raising questions about how such longevity is achieved. Here, we measured temporal changes in metabolic rates and total lipid content of non-feeding larvae of four species of reef corals to determine whether changes in energy utilization through time contribute to extended larval durations. The temporal dynamics of both metabolic rates and lipid content were highly consistent among species. Prior to fertilization, metabolic rates were low (2.73-8.63 nmol O2 larva-1 h-1) before rapidly increasing to a peak during embryogenesis and early development 1-2 days after spawning. Metabolic rates remained high until shortly after larvae first became competent to metamorphose and then declined by up to two orders of magnitude to levels at or below rates seen in unfertilized eggs over the following week. Larvae remained in this state of low metabolic activity for up to 2 months. Consistent with temporal patterns in metabolic rates, depletion of lipids was extremely rapid during early development and then slowed dramatically from 1 week onward. Despite the very low metabolic rates in these species, larvae continued to swim and retained competence for at least 2 months. The capacity of non-feeding coral larvae to enter a state of low metabolism soon after becoming competent to metamorphose significantly extends dispersal potential, thereby accruing advantages typically associated with planktotrophy, notably enhanced population connectivity.

  2. Characterization of stable fly (Diptera: Muscidae) larval developmental habitat at round hay bale feeding sites.

    PubMed

    Talley, Justin; Broce, Alberto; Zurek, Ludek

    2009-11-01

    In this study, we examined the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), larval developmental habitat within the round hay bale feeding sites on cattle pastures, and we identified three zones with distinct characteristics around two types of hay feeders (ring and cone). The parameters monitored in each zone included stable fly emergence, substrate temperature, moisture, pH, thickness of hay-manure layer, and concentration of fecal coliform bacteria (Escherichia coli and Klebsiella oxytoca) as indicators of fecal material. All measurements were conducted during the period of high stable fly prevalence (HSF) in May-June and low stable fly prevalence (LSF) in July-August to better understand the environmental factors influencing stable fly seasonality. Substrate temperature and fecal coliform concentration were the only two significantly different factors between HSF and LSF. Temperatures ranged from 21 to 25 degrees C during HSF versus 25-30 degrees C in LSF but all were within the range for successful stable fly development. Fecal coliform concentrations ranged from 4.2 x 10(3) to 4.1 x 10(4) colony-forming units (CFU)/g of the substrate during HSF and from undetectable (<10) to 100 CFU/g during LSF. Furthermore, we evaluated the effect of different hay:manure ratios (0:1, 1:1, 2:1, and 5:1) on stable fly development (egg to adult). Temperature was significantly higher and stable fly developmental time significantly shorter in all substrates containing hay when compared with that of manure alone, but no significant differences were detected in stable fly emergence among the substrates. These results strongly indicate that the fecal microbial community plays an important role in stable fly larval development in hay feeding sites and that it is the main factor behind stable fly developmental seasonality on pastures. Our results also demonstrate that animal manure mixed with hay provides conditions for faster stable fly development than manure alone

  3. The effects of exposure in sandy beach surf zones on larval fishes.

    PubMed

    Pattrick, P; Strydom, N A

    2014-05-01

    The influence of wind and wave exposure on larval fish assemblages within a large bay system was investigated. Larval fishes were sampled from two areas with vastly different exposure to waves and wind, namely the windward and leeward sectors of Algoa Bay. In total, 5702 larval fishes were collected using a modified larval seine. Of these, 4391 were collected in the leeward and 1311 in the windward sector of the bay, representing a total of 23 families and 57 species. Dominant fish families included Clinidae, Engraulidae, Kyphosidae, Mugilidae, Soleidae and Sparidae, similar to the situation elsewhere, highlighting continuity in the composition of larval fish assemblages and the utilization of surf zones by a specific group of larval fishes. Nineteen estuary-associated marine species occurred within the surf zones of Algoa Bay and dominated catches (86·7%) in terms of abundance. Postflexion larvae comprised > 80% of the catch, indicating the importance of the seemingly inhospitable surf zone environment for the early life stages of many fish species. The greatest species diversity was observed within the windward sector of the bay. Distance-based linear modelling identified wave period as the environmental variable explaining the largest proportion of the significant variation in the larval fish assemblage. The physical disturbance generated by breaking waves could create a suitable environment for fish larvae, sheltered from predators and with an abundance of food resources.

  4. Larval development of Culex quinquefasciatus in water with low to moderate.

    PubMed

    Noori, Navideh; Lockaby, B Graeme; Kalin, Latif

    2015-12-01

    Population growth and urbanization have increased the potential habitats, and consequently the abundance of Culex quinquefasciatus, the southern house mosquito, a vector of West Nile Virus in urban areas. Water quality is critical in larval habitat distribution and in providing microbial food resources for larvae. A mesocosm experiment was designed to demonstrate which specific components of water chemistry are conducive to larval Culex mosquitoes. Dose-response relationships between larval development and NO3 , NH4 , and PO4 concentrations in stream water were developed through this experiment to describe the isolated effects of each nutrient on pre-adult development. The emergence pattern of Culex mosquitoes was found to be strongly related to certain nutrients, and results showed that breeding sites with higher PO4 or NO3 concentrations had higher larval survival rates. High NO3 concentrations favor the development of male mosquitoes and suppress the development of female mosquitoes, but those adult females that do emerge develop faster in containers with high NO3 levels compared to the reference group. The addition of PO4 in the absence of nitrogen sources to the larval habitat slowed larval development, however, it took fewer days for larvae to reach the pupal stage in containers with combinations of NO3 and PO4 or NH4 and PO4 nutrients. Results from this study may bolster efforts to control WNV in urban landscapes by exploring water quality conditions of Culex larval habitats that produce adult mosquitoes. PMID:26611953

  5. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    PubMed

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  6. Effects of larval density in Ambystoma opacum: An experiment in large-scale field enclosures

    SciTech Connect

    Scott, D.E. )

    1990-02-01

    This experiment was designed to measure the effects of larval density on larval traits in the salamander Ambystoma opacum, and to ascertain whether previous studies conducted at smaller spatial scales or higher densities produced artifactual results. Density effects on larval growth, body size at metamorphosis, length of larval period, and survival to metamorphosis were studied in A. opacum in large-scale (41 m{sup 2} and 23 m{sup 2}) field enclosures in two temporary ponds. Each enclosure contained indigenous populations of prey (zooplankton and insects) and predators, as well as the range of microhabitats present in these natural ponds. Initial larval densities were chosen to represent high and low levels of naturally occurring mean densities. The results suggest that, in natural ponds, the importance of intraspecific competition is dependent upon hydroperiod, and the intensity of competition influences predation risk. Thus, both density-dependent and density-independent factors affect body size and recruitment of larval A. opacum into the adult population. The use of large-scale field enclosures has advantages and disadvantages: it allows the examination of density-dependent processes under natural conditions and provides high statistical power because of low variability in larval traits; however, experimental designs must be simple and underlying mechanisms are difficult to identify.

  7. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  8. Optimizing larval assessment to support sea lamprey control in the Great Lakes

    USGS Publications Warehouse

    Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam

    2003-01-01

    Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.

  9. Does White Clover (Trifolium repens) Abundance in Temperate Pastures Determine Sitona obsoletus (Coleoptera: Curculionidae) Larval Populations?

    PubMed Central

    McNeill, Mark R.; van Koten, Chikako; Cave, Vanessa M.; Chapman, David; Hodgson, Hamish

    2016-01-01

    To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown in ryegrass (Lolium perenne) (cv. Nui) sown at either 6 or 30 kg/ha and white clover (Trifolium repens) sown at a uniform rate of 8 kg/ha. This provided a range of % white clover content to investigate CRW population establishment and impacts on white clover survival. Larval sampling was carried out in spring (October) when larval densities are near their spring peak at Lincoln (Canterbury, New Zealand) with % clover measured in autumn (April) and spring (September) of each year. Overall, mean larval densities measured in spring 2012–2015 were 310, 38, 59, and 31 larvae m-2, respectively. There was a significant decline in larval populations between 2012 and 2013, but spring populations were relatively uniform thereafter. The mean % white clover measured in autumns of 2012 to 2015 was 17, 10, 3, and 11%, respectively. In comparison, mean spring % white clover from 2012 to 2015, averaged c. 5% each year. Analysis relating spring (October) larval populations to % white clover measured in each plot in autumn (April) found the 2012 larval population to be statistically significantly larger in the ryegrass 6 kg/ha plots than 30 kg/ha plots. Thereafter, sowing rate had no significant effect on larval populations. From 2013 to 2015, spring larval populations had a negative relationship with the previous autumn % white clover with the relationship highly significant for the 2014 data. When CRW larval populations in spring 2013 to 2015 were predicted from the 2013 to 2015 autumn % white clover, respectively, based on their positive relationship in 2012, the predicted densities were substantially larger than those observed. Conversely, when 2015 spring larval data and % clover was regressed against 2012–2014 larval populations, observed densities tended to be higher than predicted, but the numbers came

  10. Does White Clover (Trifolium repens) Abundance in Temperate Pastures Determine Sitona obsoletus (Coleoptera: Curculionidae) Larval Populations?

    PubMed Central

    McNeill, Mark R.; van Koten, Chikako; Cave, Vanessa M.; Chapman, David; Hodgson, Hamish

    2016-01-01

    To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown in ryegrass (Lolium perenne) (cv. Nui) sown at either 6 or 30 kg/ha and white clover (Trifolium repens) sown at a uniform rate of 8 kg/ha. This provided a range of % white clover content to investigate CRW population establishment and impacts on white clover survival. Larval sampling was carried out in spring (October) when larval densities are near their spring peak at Lincoln (Canterbury, New Zealand) with % clover measured in autumn (April) and spring (September) of each year. Overall, mean larval densities measured in spring 2012–2015 were 310, 38, 59, and 31 larvae m-2, respectively. There was a significant decline in larval populations between 2012 and 2013, but spring populations were relatively uniform thereafter. The mean % white clover measured in autumns of 2012 to 2015 was 17, 10, 3, and 11%, respectively. In comparison, mean spring % white clover from 2012 to 2015, averaged c. 5% each year. Analysis relating spring (October) larval populations to % white clover measured in each plot in autumn (April) found the 2012 larval population to be statistically significantly larger in the ryegrass 6 kg/ha plots than 30 kg/ha plots. Thereafter, sowing rate had no significant effect on larval populations. From 2013 to 2015, spring larval populations had a negative relationship with the previous autumn % white clover with the relationship highly significant for the 2014 data. When CRW larval populations in spring 2013 to 2015 were predicted from the 2013 to 2015 autumn % white clover, respectively, based on their positive relationship in 2012, the predicted densities were substantially larger than those observed. Conversely, when 2015 spring larval data and % clover was regressed against 2012–2014 larval populations, observed densities tended to be higher than predicted, but the numbers came

  11. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is the second, only to honey bees, as a crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphae...

  12. Bacterial communities associated with larval development of stable flies (Diptera: Muscidae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Adult stable flies are hematophagous parasites that preferentially feed on cattle. Persistent attacks and painful bites of the adults contribute to an economic impact of ~$2 billion/yr on the US cattle industry. Although stable flies are important livestock pests, relatively little is ...

  13. Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae).

    PubMed

    Bartlett-Healy, Kristen; Unlu, Isik; Obenauer, Peter; Hughes, Tony; Healy, Sean; Crepeau, Taryn; Farajollahi, Ary; Kesavaraju, Banu; Fonseca, Dina; Schoeler, George; Gaugler, Randy; Strickman, Daniel

    2012-07-01

    Aedes albopictus (Skuse) and Ae. japonicus (Theobald) are important container-inhabiting mosquitoes that transmit disease agents, outcompete native species, and continue to expand their range in the United States. Both species deposit eggs in natural and artificial containers and thrive in peridomestic environments. The goal of our study was to examine the types and characteristics of containers that are most productive for these species in the northeastern United States. In total, 306 containers were sampled in urban, suburban, and rural areas of New Jersey. Multiple biotic and abiotic factors were recorded in an attempt to identify variables associated with the productivity of each species. Based on pupal abundance and density of container types, results showed that tires, trash cans, and planter dishes were the most important containers for Ae. albopictus, while planter dishes were the most important containers for Ae. japonicus. Container color (black and gray), material (rubber), and type (tires) were correlated with species presence for Ae. albopictus and Ae. japonicus. These factors may play a role in the selection of oviposition sites by female mosquitoes or in the survival of their progeny. Differences in species composition and abundance were detected between areas classified as urban, suburban, and rural. In urban and suburban areas, Ae. albopictus was more abundant in container habitats than Ae. japonicus; however, Ae. japonicus was more abundant in rural areas, and when water temperatures were below 14 degrees C. Our results suggest many variables can influence the presence of Ae. albopictus and Ae. japonicus in container habitats in northeastern United States.

  14. Community Links

    ERIC Educational Resources Information Center

    Nelson, Mary

    1975-01-01

    At Moraine Valley Community College (Illinois), a chain of events, programs, activities, and services has linked the college and community in such areas as fine arts, ethnic groups, public services, community action, community service, and community education. (Author/NHM)

  15. Community regulation: the relative importance of recruitment and predation intensity of an intertidal community dominant in a seascape context.

    PubMed

    Rilov, Gil; Schiel, David R

    2011-01-01

    Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure. PMID:21887351

  16. Community Regulation: The Relative Importance of Recruitment and Predation Intensity of an Intertidal Community Dominant in a Seascape Context

    PubMed Central

    Rilov, Gil; Schiel, David R.

    2011-01-01

    Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure. PMID:21887351

  17. Feedbacks between community assembly and habitat selection shape variation in local colonization

    USGS Publications Warehouse

    Kraus, J.M.; Vonesh, J.R.

    2010-01-01

    1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.

  18. Teratogenic and genotoxic responses of larval Chironomus (Diptera) to contaminated sediments

    SciTech Connect

    Hudson, L.A.; Muir, K.; Ciborowski, J.J.H.

    1994-12-31

    Sediment-associated contaminants can produce developmental or genotoxic stresses independently of their cytotoxic effects. In the laboratory, the authors exposed Chironomus larvae to mixtures of polluted (either Detroit R., MI, or cadmium or benzo-[a]-pyrene-spiked) sediment diluted with uncontaminated, formulated sediment. Second-instar Chironomus nr. salinarius were grown to 4th star in water filled 1-L jars containing 300 mL of contaminated:formulated sediment mixture in ratios of 1:0, 1:1, 1:3, 1:7, 1:15 or 0:1. Surviving larvae were preserved in Carnoy`s solution. Each larva`s head was slide-mounted and examined for deformities of the mentum. Polytene chromosome preparations were made from salivary glands of the same animals using acid fuschin staining and examined for reduced relative size of the nuclear organizer (NO) indicative of inhibition of RNA synthesis activity. Incidence of chironomid deformities from control (0:1) sediments ({plus_minus}I SE) was 7.9 {plus_minus} 1.6% (N = 268): 4.0 {plus_minus} 1.5% of 178 control larvae examined displayed NO reduction. Incidence of mentum deformities and of NO reduction increased linearly with each doubling of Detroit R. concentration at 1:0 for deformities; 12.2 {plus_minus} 3.5% (N = 149) for NO reductions. Reduction of NO in a larva was unrelated to mentum condition, indicating that these are independent responses to contaminant stress. Equivalent results were obtained for exposure to single-compound sediments. This is the first documentation of controlled dose-response effects of contaminants on chironomid deformities.

  19. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    USGS Publications Warehouse

    Michael Fraker,; Eric J. Anderson,; Cassandra J. May,; Kuan-Yu Chen,; Jeremiah J. Davis,; Kristen M. DeVanna,; Mark R. DuFour,; Elizabeth A. Marschall,; Christine M. Mayer,; Jeffrey G. Miner,; Kevin L. Pangle,; Jeremy J. Pritt,; Roseman, Edward F.; Jeffrey T. Tyson,; Yingming Zhao,; Stuart Ludsin,

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  20. Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa

    EPA Science Inventory

    The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...

  1. A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans.

    PubMed

    Olmedo, María; Geibel, Mirjam; Artal-Sanz, Marta; Merrow, Martha

    2015-10-01

    Caenorhabditis elegans postembryonic development consists of four discrete larval stages separated by molts. Typically, the speed of progression through these larval stages is investigated by visual inspection of the molting process. Here, we describe an automated method to monitor the timing of these discrete phases of C. elegans maturation, from the first larval stage through adulthood, using bioluminescence. The method was validated with a lin-42 mutant strain that shows delayed development relative to wild-type animals and with a daf-2 mutant that shows an extended second larval stage. This new method is inherently high-throughput and will finally allow dissecting the molecular machinery governing the speed of the developmental clock, which has so far been hampered by the lack of a method suitable for genetic screens.

  2. Morphological features to distinguish the larval stage of invasive Ruffe from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  3. A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans

    PubMed Central

    Olmedo, María; Geibel, Mirjam; Artal-Sanz, Marta; Merrow, Martha

    2015-01-01

    Caenorhabditis elegans postembryonic development consists of four discrete larval stages separated by molts. Typically, the speed of progression through these larval stages is investigated by visual inspection of the molting process. Here, we describe an automated method to monitor the timing of these discrete phases of C. elegans maturation, from the first larval stage through adulthood, using bioluminescence. The method was validated with a lin-42 mutant strain that shows delayed development relative to wild-type animals and with a daf-2 mutant that shows an extended second larval stage. This new method is inherently high-throughput and will finally allow dissecting the molecular machinery governing the speed of the developmental clock, which has so far been hampered by the lack of a method suitable for genetic screens. PMID:26294666

  4. Communication ecology of webbing clothes moth: 1. Semiochemical-mediated location and suitability of larval habitat.

    PubMed

    Takács, S; Gries, G; Gries, R

    2001-08-01

    We tested two hypotheses: 1) that there is semiochemical-mediated attraction of male and female webbing clothes moth (WCM), Tineola bisselliella (Hum.) (Lepidoptera: Tineidae) to suitable larval habitat; and 2) that selection of optimal larval habitat has fitness consequences. In binary or ternary choice arena bioassay experiments that prevented WCM from contacting test stimuli, males and females were attracted to dried but untanned animal pelts (red squirrel, muskrat, beaver, coyote, red fox and bobcat) and preserved horseshoe crab but not to unprocessed sheep's wool, demonstrating semiochemical-based recognition of, and discrimination between, potential larval habitats. Selection of habitat has fitness consequences for ovipositing females, because significantly more male and female WCM completed development when the larval diet consisted of intact animal pelt (hide plus hair) rather than hide or hair alone. Equal attraction of male WCM to muskrat pelt volatiles in Porapak Q or solvent extracts of muskrat pelts indicated that volatile semiochemicals could be obtained by both methods.

  5. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    EPA Science Inventory

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  6. Morphological features to distinguish the larval stage of invasive Ruffe (Gymnocephalus cernuus) from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  7. Interactions between introduced trout and larval salamanders (Ambystoma macrodactylum) in high-elevation lakes

    USGS Publications Warehouse

    Tyler, T.; Liss, W.J.; Ganio, L.; Larson, Gary L.; Hoffman, Robert L.; Deimling, E.; Lomnicky, G.A.

    1998-01-01

    The larval stage of the long-toed salamander (Ambystoma macrodactylum) is the top vertebrate predator in high-elevation fishless lakes in the North Cascades National Park Service Complex, Washington (U.S.A.). Although most of these high-elevation lakes were naturally fishless, trout have been stocked in many of them. We sought to determine the effects of physicochemical factors and introduced trout on abundance and behavior of A. macrodactylum larvae. Larval salamander densities were estimated by snorkeling. Snorkelers carefully searched through substrate materials within 2 m of the shoreline and recorded the number of larvae observed and if larvae were hidden in benthic substrates. Physicochemical factors were measured in each lake on the same day that snorkel surveys were conducted. In fishless lakes, larval salamander densities were positively related to total Kjeldahl-N concentration and negatively related to lake elevation. Crustacean zooplankton, especially cladocerans, were important food resources for larval A. macrodactylum. Crustacean zooplankton and cladoceran densities were positively related to total Kjeldahl-N, suggesting that increased food resources contributed to increased densities of larval A. macrodactylum. Differences in larval salamander densities between fish and fishless lakes were related to total Kjeldahl-N concentrations and the reproductive status of trout. Mean larval salamander densities for fishless lakes with total Kjeldahl-N < 0.045 mg/L were not significantly different from mean larval densities in lakes with reproducing trout or in lakes with nonreproducing trout. In fishless lakes with total Kjeldahl-N a?Y 0.045 mg/L, however, mean larval densities were significantly higher than in lakes with reproducing trout where fish reached high densities. In fishless lakes with total Kjeldahl-N a?Y 0.095 mg/L, mean larval densities were significantly higher than in lakes with nonreproducing trout where trout fry were stocked at low

  8. Two Hemocyte Lineages Exist in Silkworm Larval Hematopoietic Organ

    PubMed Central

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-01-01

    Background Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. Methodology/Principal Findings To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. Conclusions/Significance From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori. PMID:20676370

  9. Cannibalistic feeding of larval Trichogramma carverae parasitoids in moth eggs

    NASA Astrophysics Data System (ADS)

    Heslin, Leeane M.; Merritt, David J.

    2005-09-01

    Wasps of the genus Trichogramma parasitise the eggs of Lepidoptera. They may deposit one or many eggs in each host. Survival is high at low density but reaches a plateau as density increases. To reveal the mechanism by which excess larvae die we chose a lepidopteran host that has flattened, transparent eggs and used video microscopy to record novel feeding behaviours and interactions of larval Trichogramma carverae (Oatman and Pinto) at different densities. Single larvae show a rapid food ingestion phase, followed by a period of extensive saliva release. Ultimately the host egg is completely consumed. The larva then extracts excess moisture from the egg, providing a dry environment for pupation. When multiple larvae are present, the initial scramble for food results in the larvae consuming all of the egg contents early in development. All larvae survive if there is sufficient food for all to reach a threshold developmental stage. If not, physical proximity results in attack and consumption of others, continuing until the surviving larvae reach the threshold stage beyond which attacks seem to be no longer effective. The number of larvae remaining at the end of rapid ingestion dictates how many will survive to emerge as adults.

  10. Whole-central nervous system functional imaging in larval Drosophila.

    PubMed

    Lemon, William C; Pulver, Stefan R; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J

    2015-08-11

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

  11. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species.

  12. Immunostaining of the developing embryonic and larval Drosophila brain.

    PubMed

    Diaper, Danielle C; Hirth, Frank

    2014-01-01

    Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced throughout development. This method reveals insights into gene regulation, cell-type specification, neuron and glial differentiation, and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain's axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in mutant embryos and larvae. Several antibodies, combined with different labels, can be used concurrently to examine protein co-localization. This protocol spans over 3-4 days.

  13. Population admixture and high larval viability among urban toads

    PubMed Central

    Hase, Kazuko; Nikoh, Naruo; Shimada, Masakazu

    2013-01-01

    In terms of evolutionary biology, a population admixture of more than two distinct lineages may lead to strengthened genetic variation through hybridization. However, a population admixture arising from artificial secondary contact poses significant problems in conservation biology. In urban Tokyo, a population admixture has emerged from two lineages of Japanese common toad: native Bufo japonicus formosus and nonnative B. japonicus japonicus, of which the latter was introduced in the early 20th century. To evaluate the degree of genetic disturbance in the admixed population of these two subspecies, we analyzed genotypes of toads distributed within and outside Tokyo by assessing mtDNA and seven microsatellite loci. We found that the introduced B. japonicus japonicus genotype dominates six local populations in the Tokyo admixture zone and was clearly derived from past introgressive hybridization between the two subspecies. These observations were supported by morphological assessments. Furthermore, the average larval survival rate in Tokyo was significantly higher than that outside Tokyo, suggesting that the temporary contribution of introduced toads occurred through introgression. The fitness of toads in urban Tokyo may thus be increasing with the assistance of nonnative individuals. PMID:23789077

  14. The larval parasitoid Microplitis croceipes oviposits in conspecific adults

    NASA Astrophysics Data System (ADS)

    Takasu, Keiji; Hoang Le, K.

    2007-03-01

    Microplitis croceipes (Hymenoptera: Braconidae) is a larval parasitoid of Helicoverpa/Heliothis spp. In the course of mass rearing of M. croceipes, we found that females oviposited in the conspecific adults in rearing cages. When 20 pairs of inexperienced females and males or of experienced females and males were reared in a cage, the males lived for 14-15 days and the females for 18-20 days on average. At their death, 37-42% of the males and 50-57% of the females contained conspecific eggs or first instar larvae in their abdominal cavity. When two of inexperienced females met on a host-infested leaf of soybean, they attempted to sting each other. Of the attacked females, 30% contained a conspecific egg laid in their abdomen. In abdominal cavity of the adults parasitized by a conspecific female, the majority of the parasitoid eggs laid disappeared within 1 day after oviposition. Only 10-30% of the parasitoid eggs laid in conspecific adults hatched 3-4 days after oviposition, but those larvae never molted to second instar. When the adults were stung by one or two conspecific females, their subsequent longevity was significantly shorter than that for the control adults. Oviposition in conspecific adults may be prevalent in other parasitic wasps that quickly oviposit without intensive host examination, and have cuticle and size of abdomen to be stung by conspeicifcs.

  15. Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish.

    PubMed

    Meyer, Michaela; Dhamne, Sameer C; LaCoursiere, Christopher M; Tambunan, Dimira; Poduri, Annapurna; Rotenberg, Alexander

    2016-01-01

    Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development. PMID:27281339

  16. Inter-individual stereotypy of the Platynereis larval visual connectome

    PubMed Central

    Randel, Nadine; Shahidi, Réza; Verasztó, Csaba; Bezares-Calderón, Luis A; Schmidt, Steffen; Jékely, Gáspár

    2015-01-01

    Developmental programs have the fidelity to form neural circuits with the same structure and function among individuals of the same species. It is less well understood, however, to what extent entire neural circuits of different individuals are similar. Previously, we reported the neuronal connectome of the visual eye circuit from the head of a Platynereis dumerilii larva (Randel et al., 2014). We now report a full-body serial section transmission electron microscopy (ssTEM) dataset of another larva of the same age, for which we describe the connectome of the visual eyes and the larval eyespots. Anatomical comparisons and quantitative analyses of the two circuits reveal a high inter-individual stereotypy of the cell complement, neuronal projections, and synaptic connectivity, including the left-right asymmetry in the connectivity of some neurons. Our work shows the extent to which the eye circuitry in Platynereis larvae is hard-wired. DOI: http://dx.doi.org/10.7554/eLife.08069.001 PMID:26061864

  17. Cannibalistic feeding of larval Trichogramma carverae parasitoids in moth eggs.

    PubMed

    Heslin, Leeane M; Merritt, David J

    2005-09-01

    Wasps of the genus Trichogramma parasitise the eggs of Lepidoptera. They may deposit one or many eggs in each host. Survival is high at low density but reaches a plateau as density increases. To reveal the mechanism by which excess larvae die we chose a lepidopteran host that has flattened, transparent eggs and used video microscopy to record novel feeding behaviours and interactions of larval Trichogramma carverae (Oatman and Pinto) at different densities. Single larvae show a rapid food ingestion phase, followed by a period of extensive saliva release. Ultimately the host egg is completely consumed. The larva then extracts excess moisture from the egg, providing a dry environment for pupation. When multiple larvae are present, the initial scramble for food results in the larvae consuming all of the egg contents early in development. All larvae survive if there is sufficient food for all to reach a threshold developmental stage. If not, physical proximity results in attack and consumption of others, continuing until the surviving larvae reach the threshold stage beyond which attacks seem to be no longer effective. The number of larvae remaining at the end of rapid ingestion dictates how many will survive to emerge as adults. PMID:16133105

  18. Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish

    PubMed Central

    Meyer, Michaela; Dhamne, Sameer C.; LaCoursiere, Christopher M.; Tambunan, Dimira; Poduri, Annapurna; Rotenberg, Alexander

    2016-01-01

    Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development. PMID:27281339

  19. Costs and benefits of larval jumping behaviour of Bathyplectes anurus.

    PubMed

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species. PMID:26687130

  20. Effects of Disinfectants on Larval Development of Ascaris suum Eggs

    PubMed Central

    Oh, Ki-Seok; Kim, Geon-Tae; Ahn, Kyu-Sung; Shin, Sung-Shik

    2016-01-01

    The objective of this study was to evaluate the effects of several different commercial disinfectants on the embryogenic development of Ascaris suum eggs. A 1-ml aliquot of each disinfectant was mixed with approximately 40,000 decorticated or intact A. suum eggs in sterile tubes. After each treatment time (at 0.5, 1, 5, 10, 30, and 60 min), disinfectants were washed away, and egg suspensions were incubated at 25˚C in distilled water for development of larvae inside. At 3 weeks of incubation after exposure, ethanol, methanol, and chlorohexidin treatments did not affect the larval development of A. suum eggs, regardless of their concentration and treatment time. Among disinfectants tested in this study, 3% cresol, 0.2% sodium hypochlorite and 0.02% sodium hypochlorite delayed but not inactivated the embryonation of decorticated eggs at 3 weeks of incubation, because at 6 weeks of incubation, undeveloped eggs completed embryonation regardless of exposure time, except for 10% povidone iodine. When the albumin layer of A. suum eggs remained intact, however, even the 10% povidone iodine solution took at least 5 min to reasonably inactivate most eggs, but never completely kill them with even 60 min of exposure. This study demonstrated that the treatment of A. suum eggs with many commercially available disinfectants does not affect the embryonation. Although some disinfectants may delay or stop the embryonation of A. suum eggs, they can hardly kill them completely. PMID:26951988

  1. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species. PMID:25307284

  2. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  3. Larval survival of Anocentor nitens under simulated natural conditions.

    PubMed

    Díaz, G; de la Vega, R

    2000-01-01

    Basic knowledge about the survival of free living stages of ticks is of great importance as a practical tool to improve control methods. For Anocentor nitens there is little information on this subject. Eighty-four engorged females were incubated at 30 degrees C and 100% relative humidity. After 17 days, groups of 5,500 eggs each were collected and isolated in vials. Age zero was defined as 10 days after eclosion had begun. At this time vials with larvae were attached to 40 Sorghum halepense plants sowed in clay pots, under outdoor conditions, and separated from one another by 30 cm in order to prevent the larvae from mixing. Four hours later vials were retired and the larvae remaining in the vials were counted. The next day four plants were sampled and this survival considered as 100%. Each week for eight weeks the same sampling procedure was performed. The remaining four plants were used to determine the maximum larval survival (MLS). Four repetitions of the procedure were performed, two in March 1989 and two in September 1989.

  4. Positive Effects of Nonnative Invasive Phragmites australis on Larval Bullfrogs

    PubMed Central

    Rogalski, Mary Alta; Skelly, David Kiernan

    2012-01-01

    Background Nonnative Phragmites australis (common reed) is one of the most intensively researched and managed invasive plant species in the United States, yet as with many invasive species, our ability to predict, control or understand the consequences of invasions is limited. Rapid spread of dense Phragmites monocultures has prompted efforts to limit its expansion and remove existing stands. Motivation for large-scale Phragmites eradication programs includes purported negative impacts on native wildlife, a view based primarily on observational results. We took an experimental approach to test this assumption, estimating the effects of nonnative Phragmites australis on a native amphibian. Methodology/Principal Findings Concurrent common garden and reciprocal transplant field experiments revealed consistently strong positive influences of Phragmites on Rana catesbeiana (North American bullfrog) larval performance. Decomposing Phragmites litter appears to contribute to the effect. Conclusions/Significance Positive effects of Phragmites merit further research, particularly in regions where both Phragmites and R. catesbeiana are invasive. More broadly, the findings of this study reinforce the importance of experimental evaluations of the effects of biological invasion to make informed conservation and restoration decisions. PMID:22952976

  5. Aedes aegypti larval indices and risk for dengue epidemics.

    PubMed

    Sanchez, Lizet; Vanlerberghe, Veerle; Alfonso, Lázara; Marquetti, Maria del Carmen; Guzman, Maria Guadalupe; Bisset, Juan; van der Stuyft, Patrick

    2006-05-01

    We assessed in a case-control study the test-validity of Aedes larval indices for the 2000 Havana outbreak. "Cases" were blocks where a dengue fever patient lived during the outbreak. "Controls" were randomly sampled blocks. Before, during, and after the epidemic, we calculated Breteau index (BI) and house index at the area, neighborhood, and block level. We constructed receiver operating characteristic (ROC) curves to determine their performance as predictors of dengue transmission. We observed a pronounced effect of the level of measurement. The BI(max) (maximum block BI in a radius of 100 m) at 2-month intervals had an area under the ROC curve of 71%. At a cutoff of 4.0, it significantly (odds ratio 6.00, p<0.05) predicted transmission with 78% sensitivity and 63% specificity. Analysis of BI at the local level, with human-defined boundaries, could be introduced in control programs to identify neighborhoods at high risk for dengue transmission.

  6. Costs and benefits of larval jumping behaviour of Bathyplectes anurus

    NASA Astrophysics Data System (ADS)

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.

  7. Using post-settlement demography to estimate larval survivorship: a coral reef fish example.

    PubMed

    Johnson, D W; Christie, M R; Stallings, C D; Pusack, T J; Hixon, M A

    2015-11-01

    Many species have multi-stage life cycles in which the youngest stages (e.g., larvae) are small, dispersive, and abundant, whereas later stages are sessile or sedentary. Quantifying survival throughout such early stages is critical for understanding dispersal, population dynamics, and life history evolution. However, dispersive stages can be very difficult to sample in situ, and estimates of survival through the entire duration of these stages are typically poor. Here we describe how demographic information from juveniles and adults can be used to estimate survival throughout a dispersive larval stage that was not sampled directly. Using field measurements of demography, we show that detailed information on post-settlement growth, survival, and reproduction can be used to estimate average larval survivorship under the assumption that a typical individual replaces itself over its lifetime. Applying this approach to a common coral reef fish (bicolor damselfish, Stegastes partitus), we estimated average larval survivorship to be 0.108% (95% CI 0.025-0.484). We next compared this demography-based estimate to an expected value derived from published estimates of larval mortality rates. Our estimate of larval survivorship for bicolor damselfish was approximately two orders of magnitude greater than what would be expected if larval mortality of this species followed the average, size-dependent pattern of mortality inferred from a published sample of marine fishes. Our results highlight the importance of understanding mortality during the earliest phases of larval life, which are typically not sampled, as well as the need to understand the details of how larval mortality scales with body size. PMID:26093629

  8. A 5000-year fossil record of larval shell morphology of submarine cave microshells.

    PubMed

    Ubukata, Takao; Kitamura, Akihisa; Hiramoto, Mayumi; Kase, Tomoki

    2009-01-01

    A 5000-year fossil series of minute submarine cave bivalves was studied using morphometric and evolutionary analyses. The obtained results indicate that the shapes of larval shells of studied species were labile, whereas the size of the larval shell was stable in each species studied. This result is different than that previously reported in most other studies in which size change is more common than shape change. This unique evolutionary pattern of these bivalves might be attributed to their refugial lifestyle. PMID:19146597

  9. Larval history influences post-metamorphic condition in a coral-reef fish.

    PubMed

    Hamilton, Scott L

    2008-12-01

    Upon settlement, many fishes undergo an energetically costly metamorphic period that requires substantial nutritional reserves. Larval growth and the accumulation of lipids prior to metamorphosis are likely to influence growth and survival following this critical period. On the Caribbean island of St. Croix, I investigated relationships between larval growth, early life-history characteristics, and post-metamorphic lipid content in the bluehead wrasse Thalassoma bifasciatum. Lipid reserves remaining after metamorphosis were positively related (r2 = 0.62) to the width of the metamorphic band; thus, this otolith-derived trait may be used to estimate the condition at emergence of survivors collected at some later time. In contrast, pelagic larval duration, average larval growth, and otolith size at settlement were negatively related to post-metamorphic lipid content. Interestingly, the trend for slower growth among fish in good condition was not consistent over the entire pelagic larval duration. Analyses of daily larval growth histories indicated that fish with high lipid reserves grew rapidly in the last week prior to settlement, but relatively slowly during the early phases of larval life; those emerging with low lipid concentrations, however, displayed strikingly opposite patterns. These contrasting patterns of growth and energy storage were consistent at two sites and over three recruitment events. Otolith chemistry data suggested that differences in growth histories and body condition were consistent with the hypothesis of larval development in distinct oceanic environments (characterized by Pb concentration); but, within a water mass, differences reflected life-history trade-offs between growth and energy storage. The results have implications for understanding the processes driving juvenile survival, which may be condition dependent.

  10. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton

    PubMed Central

    Koga, Hiroyuki; Fujitani, Haruka; Morino, Yoshiaki; Miyamoto, Norio; Tsuchimoto, Jun; Shibata, Tomoko F.; Nozawa, Masafumi; Shigenobu, Shuji; Ogura, Atsushi; Tachibana, Kazunori; Kiyomoto, Masato; Amemiya, Shonan; Wada, Hiroshi

    2016-01-01

    Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms. PMID:26866800

  11. Mechanistic insights into the effects of climate change on larval cod.

    PubMed

    Kristiansen, Trond; Stock, Charles; Drinkwater, Kenneth F; Curchitser, Enrique N

    2014-05-01

    Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual-based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM-projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950-1999 and 2050-2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050-2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold-water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large-scale assessment of the impacts of climate change on larval cod in the North Atlantic.

  12. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.

    PubMed

    Koga, Hiroyuki; Fujitani, Haruka; Morino, Yoshiaki; Miyamoto, Norio; Tsuchimoto, Jun; Shibata, Tomoko F; Nozawa, Masafumi; Shigenobu, Shuji; Ogura, Atsushi; Tachibana, Kazunori; Kiyomoto, Masato; Amemiya, Shonan; Wada, Hiroshi

    2016-01-01

    Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms. PMID:26866800

  13. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.

    PubMed

    Koga, Hiroyuki; Fujitani, Haruka; Morino, Yoshiaki; Miyamoto, Norio; Tsuchimoto, Jun; Shibata, Tomoko F; Nozawa, Masafumi; Shigenobu, Shuji; Ogura, Atsushi; Tachibana, Kazunori; Kiyomoto, Masato; Amemiya, Shonan; Wada, Hiroshi

    2016-01-01

    Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.

  14. Larval and metamorphic development of the foregut and proboscis in the caenogastropod Marsenina (Lamellaria) stearnsii.

    PubMed

    Page, L R

    2002-05-01

    The specialized, postmetamorphic feeding structures of predatory caenogastropods evolved by changes to an ancestral caenogastropod developmental program that generated a planktotrophic larval stage followed by a herbivorous postmetamorphic stage. As part of a program of comparative studies aimed at reconstructing these developmental changes, I studied the development of the postmetamorphic feeding system of Marsenina stearnsii using histological sections for light microscopy and scanning and transmission electron microscopy. The feeding system of this species has two very different designs during ontogeny. The larval system uses ciliary effectors to capture and ingest microalgae, whereas the juvenile/adult system includes a proboscis, jaws, and radular apparatus for predation on ascidian zooids. The postmetamorphic foregut begins to develop during the early larval phase, but the anlagen does not interfere with larval feeding because it develops as an increasingly elaborate outpocketing from the ventral wall of the larval esophagus. At metamorphosis, an opening is created in the anterior tip of the prospective, postmetamorphic buccal cavity and the margins of this opening anneal with the metamorphically remodeled lips of the larval mouth. This process exposes the jaws, which differentiate within the buccal cavity prior to metamorphosis. As a working hypothesis, I suggest that rupture of the buccal cavity to the outside at metamorphosis was selected as a mechanism to allow precocious development of jaws in species where jaws enhanced feeding performance by young juveniles. The larval esophagus of M. stearnsii appears to be completely destroyed at metamorphosis. Larval esophageal cells have distinctive apical characteristics (cilia, blebbed microvilli, stacks of lamellae within the glycocalyx) and no cells having this signature persist through metamorphosis. Development of the proboscis and proboscis sac, which begins prior to metamorphosis, conforms to previous

  15. Plastic hatching timing by red-eyed treefrog embryos interacts with larval predator identity and sublethal predation to affect prey morphology but not performance.

    PubMed

    Touchon, Justin C; Wojdak, Jeremy M

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles' tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation.

  16. Plastic hatching timing by red-eyed treefrog embryos interacts with larval predator identity and sublethal predation to affect prey morphology but not performance.

    PubMed

    Touchon, Justin C; Wojdak, Jeremy M

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles' tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation

  17. Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance

    PubMed Central

    Touchon, Justin C.; Wojdak, Jeremy M.

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles’ tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation

  18. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.

  19. Drosophila Food-Associated Pheromones: Effect of Experience, Genotype and Antibiotics on Larval Behavior

    PubMed Central

    Thibert, Julien; Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2016-01-01

    Animals ubiquitously use chemical signals to communicate many aspects of their social life. These chemical signals often consist of environmental cues mixed with species-specific signals—pheromones—emitted by conspecifics. During their life, insects can use pheromones to aggregate, disperse, choose a mate, or find the most suitable food source on which to lay eggs. Before pupariation, larvae of several Drosophila species migrate to food sources depending on their composition and the presence of pheromones. Some pheromones derive from microbiota gut activity and these food-associated cues can enhance larval attraction or repulsion. To explore the mechanisms underlying the preference (attraction/repulsion) to these cues and clarify their effect, we manipulated factors potentially involved in larval response. In particular, we found that the (i) early exposure to conspecifics, (ii) genotype, and (iii) antibiotic treatment changed D. melanogaster larval behavior. Generally, larvae—tested either individually or in groups—strongly avoided food processed by other larvae. Compared to previous reports on larval attractive pheromones, our data suggest that such attractive effects are largely masked by food-associated compounds eliciting larval aversion. The antagonistic effect of attractive vs. aversive compounds could modulate larval choice of a pupariation site and impact the dispersion of individuals in nature. PMID:26987117

  20. Maternal influences on egg and larval characteristics of plaice ( Pleuronectes platessa L.)

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Geffen, A. J.; Nash, R. D. M.

    2007-07-01

    Maternal influences on various egg and larval characteristics were examined using plaice from the Irish Sea and Norwegian coastal waters. Thirty-nine batches of eggs were incubated during the spawning season of 2004 and 2005. Thirty-seven larvae from one batch were also monitored individually to examine the influence of egg size on larval size at hatching, yolk sac volume and growth at the individual level. The relationship between egg dry weight (EDW) and egg diameter (ED) differed between the fish from different origins. Egg size increased with maternal size and decreased with progression through spawning. Eggs from the Norwegian coast hatched on average two days earlier than eggs from the Irish Sea. This resulted in the larvae from the Norwegian coast hatching at a smaller size and with larger yolk sac volumes. Larger eggs gave rise to larvae with larger yolk sac volumes at hatching (independent of incubation period) both at the batch and individual level. Larval growth rate was influenced by larval hatching size and yolk sac volume with smaller larvae and larvae with larger yolk sacs having a greater growth rate between hatching and two weeks after hatching. The effects of egg size on larval plaice were present until the end of the yolk sac stage due to differences in the time taken to absorb the yolk sac. Neither hatching rate, age at first feeding nor larval survival was related to maternal size or egg dry weight.

  1. Larval development of the subantarctic king crabs Lithodes santolla and Paralomis granulosa reared in the laboratory

    NASA Astrophysics Data System (ADS)

    Calcagno, J. A.; Anger, K.; Lovrich, G. A.; Thatje, S.; Kaffenberger, A.

    2004-02-01

    The larval development and survival in the two subantarctic lithodid crabs Lithodes santolla (Jaquinot) and Paralomis granulosa (Molina) from the Argentine Beagle Channel were studied in laboratory cultures. In L. santolla, larval development lasted about 70 days, passing through three zoeal stages and the megalopa stage, with a duration of approximately 4, 7, 11 and 48 days, respectively. The larval development in P. granulosa is more abbreviated, comprising only two zoeal stages and the megalopa stage, with 6, 11 and 43 days' duration, respectively. In both species, we tested for effects of presence versus absence of food (Artemia nauplii) on larval development duration and survival rate. In P. granulosa, we also studied effects of different rearing conditions, such as individual versus mass cultures, as well as aerated versus unaerated cultures. No differences in larval development duration and survival were observed between animals subjected to those different rearing conditions. The lack of response to the presence or absence of potential food confirms, in both species, a complete lecithotrophic mode of larval development. Since lithodid crabs are of high economic importance in the artisanal fishery in the southernmost parts of South America, the knowledge of optimal rearing conditions for lithodid larvae is essential for future attempts at repopulating the collapsing natural stocks off Tierra del Fuego.

  2. Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen

    PubMed Central

    2013-01-01

    Background In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species. Methods We used naturally occurring stable isotope ratios of carbon and nitrogen to identify resource partitioning among co-occurring larval species in microcosms and natural habitats in western Kenya. We used two and three source mixing models to estimate resource utilization (i.e. bacteria, algae, organic matter) by larvae. Results Laboratory experiments revealed larval δ13C and δ15N composition to reflect the food sources they were reared on. Resource partitioning was demonstrated between An. gambiae and Culex quinquefasciatus larvae sharing the same microcosms. Differences in larval δ13C and δ15N content was also evident in natural habitats, and Anopheles species were consistently more enriched in δ13C when compared to culicine larvae. Conclusions These observations demonstrate inter-specific resource partitioning between Cx. quinquefasciatus and An. gambiae larvae in natural habitats in western Kenya. This information may be translated into opportunities for targeted larval control efforts by limiting specific larval food resources, or through bio-control utilizing competitors at the same trophic level. PMID:24330747

  3. Horizontal Trends in Larval Fish Diversity and Abundance Along an Ocean-Estuarine Gradient on the Northern KwaZulu-Natal Coast, South Africa

    NASA Astrophysics Data System (ADS)

    Harris, S. A.; Cyrus, D. P.; Beckley, L. E.

    2001-08-01

    which explained the larval fish community patterns was turbidity on its own, with the relationship of larval densities to the physical variables being species-specific. The present study indicates that a number of factors must play a role in determining the structure and composition of larval fish assemblages occurring in different types of environments along an ocean-estuarine gradient. It is suggested that these distinct assemblages might be considered indicators for the different environments which they inhabit.

  4. Characterisation of Ascaridoid larvae from marine fish off New Caledonia, with description of new Hysterothylacium larval types XIII and XIV.

    PubMed

    Shamsi, Shokoofeh; Poupa, Anita; Justine, Jean-Lou

    2015-10-01

    Here we report occurrence of six different morphotypes of ascaridoid type larvae from 28 species of fish collected from New Caledonian waters. The larvae were morphologically identified as Anisakis type I, Hysterothylacium type VI and new larval types XIII and XIV, Raphidascaris larval type and Terranova larval type II. Representatives of each morphotype were subjected to the amplification of the second internal transcribed spacers (ITS-2) of ribosomal DNA (rDNA) and those sequences were compared with ITS-2 sequences of other ascaridoid nematodes previously deposited in GenBank. ITS-2 sequences of Anisakis larval type I were identical to those of A. typica. ITS-2 sequences of Hysterothylacium larval type VI in the present study were identical to those previously found in Eastern Australian waters. No match was found for ITS-2 sequences of Hysterothylacium larval types XIII and XIV; therefore, the specific identities of these larval types remain unclear. ITS-2 sequences of Raphidascaris larval type were identical to those of R. trichiuri, which have previously been reported in Taiwanese waters. Terranova larval type II in the present study had identical ITS-2 sequences with Terranova larval types reported from Australian waters, however, the specific identity is unknown. This taxonomic work is essential if further research on these zoonotic parasites is to be effective. This includes investigations into such aspects as life cycle studies, impacts on human health and risk assessment for their transmission to humans. PMID:26014853

  5. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.

    PubMed

    Braschler, Brigitte; Hill, Jane K

    2007-05-01

    1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the

  6. Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability

    PubMed Central

    McLeod, Ian M.; Rummer, Jodie L.; Clark, Timothy D.; Jones, Geoffrey P.; McCormick, Mark I.; Wenger, Amelia S.; Munday, Philip L.

    2013-01-01

    Climate-change models predict that tropical ocean temperatures will increase by 2–3°C this century and affect plankton communities that are food for marine fish larvae. Both temperature and food supply can influence development time, growth, and metabolism of marine fishes, particularly during larval stages. However, little is known of the relative importance and potential interacting effects of ocean warming and changes to food supply on the performance of larval fishes. We tested this for larvae of the coral reef anemonefish, Amphiprion percula, in an orthogonal experiment comprising three temperatures and three feeding schedules. Temperatures were chosen to represent present-day summer averages (29.2°C) and end-of-century climate change projections of +1.5°C (30.7°C) and +3°C (32.2°C). Feeding schedules were chosen to represent a reduction in access to food (fed daily, every 2 days, or every 3 days). Overall, larvae took longer to settle at higher temperatures and with less frequent feeding, and there was a significant interaction between these factors. Time to metamorphosis was fastest in the 30.7oC and high food availability treatment (10.5 ± 0.2 days) and slowest in the 32.2oC and low food availability treatment (15.6 ± 0.5 days; i.e. 50% faster). Fish from the lower feeding regimens had a lower body condition and decreased survivorship to metamorphosis. Routine oxygen consumption rates were highest for fish raised at 32.2°C and fed every third day (162 ± 107 mg O2  kg−1 h−1) and lowest for fish raised at 29.2°C and fed daily (122 ± 101 mg O2 kg−1 h−1; i.e. 35% lower). The elevated routine oxygen consumption rate, and therefore greater energy use at higher temperatures, may leave less energy available for growth and development, resulting in the longer time to metamorphosis. Overall, these results suggest that larval fishes will be severely impacted by climate-change scenarios that predict both

  7. Metamorphosis of a Butterfly-Associated Bacterial Community

    PubMed Central

    Hammer, Tobin J.; McMillan, W. Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies. PMID:24466308

  8. Metamorphosis of a butterfly-associated bacterial community.

    PubMed

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  9. Structure of the Tortricid-Parasitoid Community in a Recently Introduced Crop.

    PubMed

    Rocca, M; Greco, N M

    2015-12-01

    The introduction of exotic commercial plants represents a change in the food resources for the communities of herbivores. The blueberry is native to the northern hemisphere and was recently introduced in Argentina, so we expect to find polyphagous tortricids and a low complexity in the tortricid-parasitoid community. Tortricids are exophytic leaf-rollers and flower and fruit feeders, they can feed on different plant structures, and they may be present in every blueberry phenological stage. The aims of this study were (a) to estimate the relative abundance of tortricids in different plant structures and phenological stages of blueberry, (b) to evaluate the relative importance of the different parasitoid guilds, and (c) to describe the tortricid-parasitoid community in blueberry fields of Argentina. The abundance of tortricids in blueberries was low and mainly localized to flowers and fruits. Five parasitoid guilds were identified: early larval endoparasitoids (Apanteles sp. and Dolichogenidea m1 and m2), larval-prepupal endoparasitoids (Austroearinus sp.), larval-pupal endoparasitoids (Ichneumonidae), larval ectoparasitoids (Eulophidae), and pupal endoparasitoids (Brachymeria sp. and Conura sp.). Most parasitoids were koinobiont larval endoparasitoids. The tortricid-parasitoid food web was very simple in comparison to those of other systems, with high values of vulnerability and connectance. The results of this study suggest that the abundance of tortricids in blueberry crop in Argentina is low. From the point of view of production, the risk of economic losses and the likelihood of direct damage to the fruit would be very low. PMID:26385238

  10. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya

    PubMed Central

    Keating, Joseph; Macintyre, Kate; Mbogo, Charles M; Githure, John I; Beier, John C

    2004-01-01

    Background This study characterized Anopheles mosquito larval habitats in relation to ecological attributes about the habitat and community-level drainage potential, and investigated whether agricultural activities within or around urban households increased the probability of water body occurrence. Malindi, a city on the coast of Kenya, was mapped using global positioning system (GPS) technology, and a geographic information system (GIS) was used to overlay a measured grid, which served as a sampling frame. Grid cells were stratified according to the level of drainage in the area, and 50 cells were randomly selected for the study. Cross-sectional household and entomological surveys were conducted during November and December 2002 within the 50 grid cells. Chi-square analysis was used to test whether water bodies differed fundamentally between well and poorly drained areas, and multi-level logistic regression was used to test whether household-level agricultural activity increased the probability of water body occurrence in the grid cell. Results Interviews were conducted with one adult in 629 households. A total of 29 water bodies were identified within the sampled areas. This study found that characteristics of water bodies were fundamentally the same in well and poorly drained areas. This study also demonstrated that household-level urban agriculture was not associated with the occurrence of water bodies in the grid cell, after controlling for potential confounders associated with distance to the city center, drainage, access to resources, and population density. Conclusions Household-level urban agricultural activity may be less important than the other types of human perturbation in terms of mosquito larval habitat creation. The fact that many larvae were coming from few sites, and few sites in general were found under relatively dry conditions suggests that mosquito habitat reduction is a reasonable and attainable goal in Malindi. PMID:15125778

  11. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    PubMed

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post

  12. Is the Schwabe Organ a Retained Larval Eye? Anatomical and Behavioural Studies of a Novel Sense Organ in Adult Leptochiton asellus (Mollusca, Polyplacophora) Indicate Links to Larval Photoreceptors

    PubMed Central

    Sumner-Rooney, Lauren H.; Sigwart, Julia D.

    2015-01-01

    The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans. PMID:26366861

  13. Complete larval development of the hermit crabs Clibanarius aequabilis and Clibanarius erythropus (Decapoda: Anomura: Diogenidae), under laboratory conditions, with a revision of the larval features of genus Clibanarius

    NASA Astrophysics Data System (ADS)

    Bartilotti, Cátia; Calado, Ricardo; Dos Santos, Antonina

    2008-06-01

    The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5-11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.

  14. Is the Schwabe Organ a Retained Larval Eye? Anatomical and Behavioural Studies of a Novel Sense Organ in Adult Leptochiton asellus (Mollusca, Polyplacophora) Indicate Links to Larval Photoreceptors.

    PubMed

    Sumner-Rooney, Lauren H; Sigwart, Julia D

    2015-01-01

    The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans. PMID:26366861

  15. Is the Schwabe Organ a Retained Larval Eye? Anatomical and Behavioural Studies of a Novel Sense Organ in Adult Leptochiton asellus (Mollusca, Polyplacophora) Indicate Links to Larval Photoreceptors.

    PubMed

    Sumner-Rooney, Lauren H; Sigwart, Julia D

    2015-01-01

    The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans.

  16. Ecology of larval trematodes in three marine gastropods.

    PubMed

    Curtis, Lawrence A

    2002-01-01

    To comprehend natural host-parasite systems, ecological knowledge of both hosts and parasites is critical. Here I present a view of marine systems based on the snail Ilyanassa obsoleta and its trematodes. This system is reviewed and two others, those of the snails Cerithidea californica and Littorina littorea, are then summarized and compared. Trematodes can profoundly affect the physiology, behaviour and spatial distribution of hosts. Studying these systems is challenging because trematodes are often embedded in host populations in unappreciated ways. Trematode prevalence is variable, but can be high in populations of all three hosts. Conditions under which single- and multiple-species infections can accumulate are considered. Adaptive relations between species are likely the most important and potentials for adaptation of parasites to hosts, hosts to parasites, and parasites to other parasites are also considered. Even if colonization rate is low, a snail population can develop high trematode prevalence, if infections persist long and the host is long-lived and abundant. Trematodes must be adapted to use their snail hosts. However, both I. obsoleta and L. littorea possess highly dispersed planktonic larvae and trematode prevalence is variable among snail populations. Host adaptation to specific infections, or even to trematodes in general, is unlikely because routine exposure to trematodes is improbable. Crawl-away juveniles of C. californica make adaptation to trematodes in that system a possibility. Trematode species in all three systems are not likely adapted to each other. Multiple-species infections are rare and definitive hosts scatter parasite eggs among snail populations with variable prevalences. Routine co-occurrence of trematodes in snails is thus unlikely. Adaptations of these larval trematodes to inhabit the snail host must, then, be the basis for what happens when they do co-occur. PMID:12396215

  17. Transcriptomic Characterization of Temperature Stress Responses in Larval Zebrafish

    PubMed Central

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28°C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16°C) or heat (34°C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish. PMID:22666345

  18. Benthic macroinvertebrate and periphyton community responses to a complex mixture in landfill leachate seep discharge

    SciTech Connect

    Gill, M.A.; Kusnier, J. Jr.; Lowe, R.L.

    1995-12-31

    Typically, the composition of sanitary landfill leachate is a complex mixture of organic and inorganic chemicals. The existence of landfill facilities which operated prior to current solid waste disposal regulations, has resulted in the need for evaluation of potential risks/hazards to the environment, due to leaching of this complex mixture of contaminants to surface and/or subsurface media. Evaluation an a chemical specific basis is tedious at best, and gives little information about the effects of the mixture of chemicals present. Therefore, an evaluation of in-situ community response was conducted. This paper focuses on the response of the macroinvertebrate and periphyton communities, in terms of dominant taxa and community structure, in a small pond adjacent to a former sanitary landfill facility, which receives leachate seep discharge via groundwater flow from an unconfined aquifer. The pond, created during use of the landfill, is actually an area where cover material was obtained for landfill construction. Macroinvertebrate and periphyton community structure was assessed at three shallow, sandy locations in the pond, at varying distances from the areas of known leachate seeps. General water quality and laboratory toxicity testing with Pimephales promelas, Ceriodaphnia dubia, and Chironomus tentans was also conducted using ambient water and sediment from the three locations. Differences between locations are distinct in both the periphyton and macroinvertebrate communities, and in the results of the aquatic toxicity testing. No difference between locations was observed, however, in terms of toxicity testing with chironomids.

  19. Weak and habitat-dependent effects of nutrient pollution on macrofaunal communities of southeast Australian estuaries.

    PubMed

    Nicastro, Andrea; Bishop, Melanie J

    2013-01-01

    Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed. PMID:23799037

  20. Weak and Habitat-Dependent Effects of Nutrient Pollution on Macrofaunal Communities of Southeast Australian Estuaries

    PubMed Central

    Nicastro, Andrea; Bishop, Melanie J.

    2013-01-01

    Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed. PMID:23799037

  1. Weak and habitat-dependent effects of nutrient pollution on macrofaunal communities of southeast Australian estuaries.

    PubMed

    Nicastro, Andrea; Bishop, Melanie J

    2013-01-01

    Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed.

  2. Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen-worker dimorphism.

    PubMed

    Linksvayer, T A; Kaftanoglu, O; Akyol, E; Blatch, S; Amdam, G V; Page, R E

    2011-09-01

    Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental programme includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary timescales. Our results indicate that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary size allometry may disrupt queen development and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.

  3. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  4. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

    NASA Astrophysics Data System (ADS)

    Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.

    2009-06-01

    The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

  5. Predicting crappie recruitment in Ohio reservoirs with spawning stock size, larval density, and chlorophyll concentrations

    USGS Publications Warehouse

    Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.

    2006-01-01

    Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.

  6. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  7. Bacteria Associated with the Gut Tract of Larval Stages of the Aquatic Cranefly Tipula abdominalis (Diptera; Tipulidae) †

    PubMed Central

    Klug, M. J.; Kotarski, S.

    1980-01-01

    Scanning electron microscopy, light microscopy, and direct isolations were used to examine the distribution and diversity of bacteria in the gut tracts of larval stages of Tipula abdominalis. The animal had an enlarged hindgut which housed a diverse bacterial community in the lumen and directly attached to the gut wall. Distinct localization was noted, with the most dense and most diverse community anterior to the rectum. A distinct architecture of bacteria occurred in this region, characterized by a layering or a “weblike” array of filamentous bacteria overlying mats of bacteria closely associated with the gut wall. Although morphological diversity was high in the hindgut, filamentous bacteria were the dominant morphology observed. The attached microbiota, sloughed during ecdysis, recolonized to the same density and diversity observed before the molt. The majority of the isolatable bacterial types were facultatively anaerobic. The distinct localization and attached nature of the hindgut bacteria and the recolonization after each molt suggest they are indigenous to this region of the gut tract. Images PMID:16345618

  8. Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage

    USGS Publications Warehouse

    Ross, R.M.; Long, E.S.; Dropkin, D.S.

    2008-01-01

    We compared naturally alkaline streams with limestone lithology to freestone streams with and without acid mine drainage (AMD) to predict benthic macroinvertebrate community recovery from AMD in limestone-treated watersheds. Surrogate-recovered (limestone) and, in many cases, freestone systems had significantly higher macroinvertebrate densities; diversity; taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; EPT/chironomid ratios; scraper/collector - gatherer ratios; herbivores; collector - filterers; and scrapers. AMD-influenced systems had significantly greater numbers of Diptera and collector - gatherers. An entire trophic level (herbivores) was 'restored' in surrogate-recovered streams, which also showed greater trophic specialization. Indicator analysis identified seven taxa (within Crustacea, Diptera, Nematoda, Trichoptera, and Ephemeroptera) as significant indicators of limestone systems and six taxa (within Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, and Mollusca) as significant freestone indicators, all useful as biological indicators of recovery from AMD. ?? Springer Science+Business Media B.V. 2007.

  9. Bacterial Communities Associated with Culex Mosquito Larvae and Two Emergent Aquatic Plants of Bioremediation Importance

    PubMed Central

    Duguma, Dagne; Rugman-Jones, Paul; Kaufman, Michael G.; Hall, Michael W.; Neufeld, Josh D.; Stouthamer, Richard; Walton, William E.

    2013-01-01

    Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis), the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus), and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae), was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species. PMID:23967314

  10. Condition of larval red snapper (Lutjanus campechanus) relative to environmental variability and the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Hernandez, F. J., Jr.; Filbrun, J. E.; Fang, J.; Ransom, J. T.

    2016-09-01

    The Deepwater Horizon oil spill (DWHOS) spatially and temporally overlapped with the spawning of many fish species, including Red Snapper, one of the most economically important reef fish in the Gulf of Mexico. To investigate potential impacts of the DWHOS on larval Red Snapper, data from a long-term ichthyoplankton survey off the coast of Alabama were used to examine: (1) larval abundances among pre-impact (2007-2009), impact (2010), and post-impact (2011, 2013) periods; (2) proxies for larval condition (size-adjusted morphometric relationships and dry weight) among the same periods; and (3) the effects of background environmental variation on larval condition. We found that larval Red Snapper were in poorer body condition during 2010, 2011, and 2013 as compared to the 2007-2009 period, a trend that was strongly (and negatively) related to variation in Mobile Bay freshwater discharge. However, larvae collected during and after 2010 were in relatively poor condition even after accounting for variation in freshwater discharge and other environmental variables. By contrast, no differences in larval abundance were detected during these survey years. Taken together, larval supply did not change relative to the timing of the DWHOS, but larval condition was negatively impacted. Even small changes in condition can affect larval survival, so these trends may have consequences for recruitment of larvae to juvenile and adult life stages.

  11. Role of circulation scales and water mass distributions on larval fish habitats in the Eastern Tropical Pacific off Mexico

    NASA Astrophysics Data System (ADS)

    León-Chávez, Cristina A.; Beier, Emilio; Sánchez-Velasco, Laura; Barton, Eric Desmond; Godínez, Victor M.

    2015-06-01

    On the basis of five oceanographic cruises carried out in the Eastern Tropical Pacific off Mexico, relationships between the larval fish habitats (areas inhabited by larval fish assemblages) and the environmental circulation scales (mesoscale, seasonal, and interannual) were examined. Analysis of in situ data over a grid of hydrographic stations and oblique zooplankton hauls with bongo net (505 µm) was combined with orthogonal robust functions decomposition applied to altimetry anomalies obtained from satellite. During both cool (March and June) and warm (August and November) periods, Bray-Curtis dissimilarity Index defined three recurrent larval fish habitats which varied in species composition and extent as a function of the environmental scales. The variability of the Tropical larval fish habitat (characterized by high species richness, and dominated by Vinciguerria lucetia, Diogenichthys laternatus, and Diaphus pacificus) was associated with the seasonal changes. The Transitional-California Current larval fish habitat (dominated by V. lucetia and D. laternatus, with lower mean abundance and lower species richness than in the Tropical habitat) and Coastal-and-Upwelling larval fish habitat (dominated by Bregmaceros bathymaster) was associated mainly with mesoscale activity induced by eddies and with coastal upwelling. During February 2010, the Tropical larval fish habitat predominated offshore and the Transitional-California Current larval fish habitat was not present, which we attribute to the effect of El Niño conditions. Thus, the mesoscale, seasonal, and interannual environmental scales affect the composition and extension of larval fish habitats.

  12. Predator-induced larval cloning in the sand dollar Dendraster excentricus: might mothers matter?

    PubMed

    Vaughn, Dawn

    2009-10-01

    Predator-induced cloning in echinoid larvae, with reduced size a consequence of cloning, is a dramatic modification of development and a novel response to risks associated with prolonged planktonic development. Recent laboratory studies demonstrate that exposure to stimuli from predators (i.e., fish mucus) induces cloning in the pluteus larvae (plutei) of Dendraster excentricus. However, the timing and incidence of cloning and size reduction of unrelated conspecific plutei differed across experiments. A variable cloning response suggests the effects of such factors as cue quality, egg provisioning, maternal experience, and genetic background, indicating that the potential advantages of cloning as an adaptive response to predators are not available to all larvae. This study tested the hypothesis that cloning in D. excentricus plutei is maternally influenced. Plutei from three half-sibling larval families (different mothers, same father) were exposed to fish mucus for 9 days during early development. Cloning was inferred in a percentage of plutei from each family; however, the rate and success of cloning differed significantly among the larval half-siblings. Unexpectedly, all mucus-treated plutei were smaller and developmentally delayed when compared to all plutei reared in the absence of a mucus stimulus. Thus, while the results from this study support the hypothesis of an influence of mothers on cloning of larval offspring, reduced larval size was a uniform response to fish mucus and did not indicate an effect of mothers. Hypotheses of the developmental effects of fish mucus on larval size with or without successful cloning are discussed.

  13. Low larval abundance in the Sargasso Sea: new evidence about reduced recruitment of the Atlantic eels.

    PubMed

    Hanel, Reinhold; Stepputtis, Daniel; Bonhommeau, Sylvain; Castonguay, Martin; Schaber, Matthias; Wysujack, Klaus; Vobach, Michael; Miller, Michael J

    2014-12-01

    The European eel Anguilla anguilla has shown decreased recruitment in recent decades. Despite increasing efforts to establish species recovery measures, it is unclear if the decline was caused by reduced numbers of reproductive-stage silver eels reaching the spawning area, low early larval survival, or increased larval mortality during migration to recruitment areas. To determine if larval abundances in the spawning area significantly changed over the past three decades, a plankton trawl sampling survey for anguillid leptocephali was conducted in March and April 2011 in the spawning area of the European eel that was designed to directly compare to collections made in the same way in 1983 and 1985. The catch rates of most anguilliform leptocephali were lower in 2011, possibly because of the slightly smaller plankton trawl used, but the relative abundances of European eel and American eel, Anguilla rostrata, leptocephali were much lower in 2011 than in 1983 and 1985 when compared to catches of other common leptocephali. The leptocephali assemblage was the same in 2011 as in previous years, but small larvae of mesopelagic snipe eels, Nemichthys scolopaceus, which spawn sympatrically with anguillid eels, were less abundant. Temperature fronts in the spawning area were also poorly defined compared to previous years. Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawning area.

  14. Patterning the dorsal longitudinal flight muscles (DLM) of Drosophila: insights from the ablation of larval scaffolds

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1996-01-01

    The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.

  15. Soundscape manipulation enhances larval recruitment of a reef-building mollusk

    PubMed Central

    Bohnenstiehl, DelWayne R.; Eggleston, David B.

    2015-01-01

    Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.e., the “soundscape”) influence larval settlement and habitat selection; however, the significance of acoustic cues is rarely tested. Here we show in a field experiment that the free-swimming larvae of an estuarine invertebrate, the eastern oyster, respond to the addition of replayed habitat-related sounds. Oyster larval recruitment was significantly higher on larval collectors exposed to oyster reef sounds compared to no-sound controls. These results provide the first field evidence that soundscape cues may attract the larval settlers of a reef-building estuarine invertebrate. PMID:26056624

  16. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    PubMed

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli.

  17. Low larval abundance in the Sargasso Sea: new evidence about reduced recruitment of the Atlantic eels.

    PubMed

    Hanel, Reinhold; Stepputtis, Daniel; Bonhommeau, Sylvain; Castonguay, Martin; Schaber, Matthias; Wysujack, Klaus; Vobach, Michael; Miller, Michael J

    2014-12-01

    The European eel Anguilla anguilla has shown decreased recruitment in recent decades. Despite increasing efforts to establish species recovery measures, it is unclear if the decline was caused by reduced numbers of reproductive-stage silver eels reaching the spawning area, low early larval survival, or increased larval mortality during migration to recruitment areas. To determine if larval abundances in the spawning area significantly changed over the past three decades, a plankton trawl sampling survey for anguillid leptocephali was conducted in March and April 2011 in the spawning area of the European eel that was designed to directly compare to collections made in the same way in 1983 and 1985. The catch rates of most anguilliform leptocephali were lower in 2011, possibly because of the slightly smaller plankton trawl used, but the relative abundances of European eel and American eel, Anguilla rostrata, leptocephali were much lower in 2011 than in 1983 and 1985 when compared to catches of other common leptocephali. The leptocephali assemblage was the same in 2011 as in previous years, but small larvae of mesopelagic snipe eels, Nemichthys scolopaceus, which spawn sympatrically with anguillid eels, were less abundant. Temperature fronts in the spawning area were also poorly defined compared to previous years. Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawning area. PMID:25307845

  18. Low larval abundance in the Sargasso Sea: new evidence about reduced recruitment of the Atlantic eels

    NASA Astrophysics Data System (ADS)

    Hanel, Reinhold; Stepputtis, Daniel; Bonhommeau, Sylvain; Castonguay, Martin; Schaber, Matthias; Wysujack, Klaus; Vobach, Michael; Miller, Michael J.

    2014-12-01

    The European eel Anguilla anguilla has shown decreased recruitment in recent decades. Despite increasing efforts to establish species recovery measures, it is unclear if the decline was caused by reduced numbers of reproductive-stage silver eels reaching the spawning area, low early larval survival, or increased larval mortality during migration to recruitment areas. To determine if larval abundances in the spawning area significantly changed over the past three decades, a plankton trawl sampling survey for anguillid leptocephali was conducted in March and April 2011 in the spawning area of the European eel that was designed to directly compare to collections made in the same way in 1983 and 1985. The catch rates of most anguilliform leptocephali were lower in 2011, possibly because of the slightly smaller plankton trawl used, but the relative abundances of European eel and American eel, Anguilla rostrata, leptocephali were much lower in 2011 than in 1983 and 1985 when compared to catches of other common leptocephali. The leptocephali assemblage was the same in 2011 as in previous years, but small larvae of mesopelagic snipe eels, Nemichthys scolopaceus, which spawn sympatrically with anguillid eels, were less abundant. Temperature fronts in the spawning area were also poorly defined compared to previous years. Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawning area.

  19. Larval settlement: the role of surface topography for sessile coral reef invertebrates.

    PubMed

    Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.

  20. Opposite shifts in size at metamorphosis in response to larval and metamorph predators.

    PubMed

    Vonesh, James R; Warkentin, Karen M

    2006-03-01

    Predation risk can cause organisms to alter the timing of life history switch points. Theory suggests that increased risk in an early life stage should select for switching earlier and smaller, while increased risk in the subsequent stage should select for switching later and larger. This framework has frequently been applied to metamorphosis in amphibians, with mixed results. Few studies examining the effect of larval predation risk on metamorphosis have observed the predicted pattern, and no studies, to our knowledge, have examined the effect of increased risk during and after metamorphosis on the timing of this switch point. Here we examine the effect of larval and post-metamorphic predation risk on metamorphosis in the red-eyed treefrog, Agalychnis callidryas. We raised tadpoles in the presence or absence of cues from caged water bugs fed larvae and cues from spiders fed emerging metamorphs. Water bugs are effective larval predators, while spiders are poor larval predators but prey on metamorphs. Furthermore, since spiders forage on the water surface it is possible that tadpoles could assess future risk from this predator. Predators induced opposite shifts in life history. Tadpoles emerged smaller and less developed in response to water bugs, but later and larger in response to spiders. Interestingly, predator effects on larval duration were not independent; tadpoles delayed emerging in response to spiders, but only in the absence of water bugs.

  1. Identification of genes differentially expressed during larval molting and metamorphosis of Helicoverpa armigera

    PubMed Central

    Dong, Du-Juan; He, Hong-Juan; Chai, Lian-Qin; Jiang, Xiao-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2007-01-01

    Background Larval molting and metamorphosis are important physiological processes in the life cycle of the holometabolous insect. We used suppression subtractive hybridization (SSH) to identify genes differentially expressed during larval molting and metamorphosis. Results We performed SSH between tissues from a variety of developmental stages, including molting 5th and feeding 6th instar larvae, metamorphically committed and feeding 5th instar larvae, and feeding 5th instar and metamorphically committed larvae. One hundred expressed sequence tags (ESTs) were identified and included 73 putative genes with similarity to known genes, and 27 unknown ESTs. SSH results were further characterized by dot blot, Northern blot, and RT-PCR. The expression levels of eleven genes were found to change during larval molting or metamorphosis, suggesting a functional role during these processes. Conclusion These results provide a new set of genes expressed specifically during larval molt or metamorphosis that are candidates for further studies into the regulatory mechanisms of those stage-specific genes during larval molt and metamorphosis PMID:17588272

  2. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    PubMed

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. PMID:26769100

  3. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    PubMed Central

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  4. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density.

    PubMed Central

    Leips, J; Mackay, T F

    2000-01-01

    The genetic architecture of variation in adult life span was examined for a population of recombinant inbred lines, each of which had been crossed to both inbred parental strains from which the lines were derived, after emergence from both high and low larval density. QTL affecting life span were mapped within each sex and larval density treatment by linkage to highly polymorphic roo-transposable element markers, using a composite interval mapping method. We detected a total of six QTL affecting life span; the additive effects and degrees of dominance for all were highly sex- and larval environment-specific. There were significant epistatic interactions between five of the life span QTL, the effects of which also differed according to genetic background, sex, and larval density. Five additional QTL were identified that contributed to differences among lines in their sensitivity to variation in larval density. Further fine-scale mapping is necessary to determine whether candidate genes within the regions to which the QTL map are actually responsible for the observed variation in life span. PMID:10924473

  5. Connectivity in the Intra-American Seas and implications for potential larval transport

    NASA Astrophysics Data System (ADS)

    Qian, H.; Li, Y.; He, R.; Eggleston, D. B.

    2015-06-01

    A major challenge in marine ecology is to describe patterns of larval dispersal and population connectivity, as well as their underlying processes. We re-assessed broad-scale population connectivity with a focus on the 18 coral reef hot spots in the Intra-American Seas described in Roberts (Science 278:1454-1457, 1997), by including seasonal and inter-annual variability in potential larval dispersal. While overall dispersal patterns were in agreement with previous findings, further statistical analyses show that dispersal patterns driven by mean circulation initially described by Roberts (Science 278:1454-1457, 1997) can significantly underestimate particle connectivity envelopes. The results from this study indicate that seasonal and inter-annual variability in circulation are crucial in modulating both dispersal distance and directional anisotropy of virtual larvae over most coral reef sites and that certain larval hotspots are likely more strongly connected than originally thought. Improved larval dispersal transport envelopes can enhance the accuracy of probability estimates which, in turn, may help to explain episodic larval settlement in certain times and places, and guide spatial management such as marine protected areas.

  6. Larval Bradysia impatiens (Diptera: Sciaridae) potential for vectoring Pythium root rot pathogens.

    PubMed

    Braun, S E; Sanderson, J P; Wraight, S P

    2012-03-01

    A series of laboratory experiments were conducted to investigate the capacity of Bradysia impatiens (Johannsen) larvae to ingest propagules from two strains each of Pythium aphanidermatum (Edson) Fitzp. and P. ultimum Trow and transmit the pathogens to healthy geranium seedlings on a filter-paper substrate in petri dishes. The capacity of fungus gnat larvae to transmit P. aphanidermatum to seedlings rooted in a commercial peat-based potting mix and germination of Pythium oospores and hyphal swellings before and after passage through the guts of larval fungus gnats were also examined. Assays revealed that Pythium spp. transmission by larval fungus gnats varied greatly with the assay substrate and also with the number and nature of ingested propagules. Transmission was highest (65%) in the petri dish assays testing larvae fed P. aphanidermatum K-13, a strain that produced abundant oospores. Transmission of strain K-13 was much lower (<6%) in plug cells with potting mix. Larvae were less efficient at vectoring P. ultimum strain PSN-1, which produced few oospores, and no transmission was observed with two non-oospore-producing strains: P. aphanidermatum Pa58 and P. ultimum P4. Passage of P. aphanidermatum K-13 through larval guts significantly increased oospore germination. However, decreased germination of hyphal swellings was observed following larval gut passage for strains of P. ultimum. These results expand previous studies suggesting that larval fungus gnats may vector Pythium spp. PMID:22085299

  7. Low larval vector survival explains unstable malaria in the western Kenya highlands.

    PubMed

    Koenraadt, C J M; Paaijmans, K P; Schneider, P; Githeko, A K; Takken, W

    2006-08-01

    Several highland areas in eastern Africa have recently suffered from serious malaria epidemics. Some models predict that, in the short term, these areas will experience more epidemics as a result of global warming. However, the various processes underlying these changes are poorly understood. We therefore investigated malaria prevalence, malaria vector densities and malaria vector survival in a highland area in western Kenya, ranging from approximately 1,550-1,650 m altitude. Although only five adult malaria vectors were collected during 180 light traps and 180 resting collections over a 23-month study period, malaria was prevalent among school children (average parasite prevalence: 10%). During an extensive survey of potential larval habitats, we identified only seven habitats containing Anopheles gambiae Giles s.l. larvae. Their limited number and low larval densities suggested that their contribution to the adult vector population was small. Experiments on adult and larval survival showed that at this altitude, adult mosquitoes survived inside local houses, but that larval development was severely retarded: only 2 of 500 A. gambiae s.l. larvae developed to the pupal stage, whereas all other larvae died prior to pupation. At present, high vector densities are unlikely because of unfavourable abiotic conditions in the area. However, temporary favourable conditions, such as during El Niño years, may increase larval vector survival and may lead to malaria epidemics.

  8. Evidence and population consequences of shared larval dispersal histories in a marine fish.

    PubMed

    Shima, Jeffrey S; Swearer, Stephen E

    2016-01-01

    Larval dispersal is disproportionately important for marine population ecolgy and evolution, yet our inability to track individuals severely constrains our understanding of this key process. We analyze otoliths of a small reef fish, the common triplefin (Forsterygion lapillum), to reconstruct individual dispersal histories and address the following questions: (1) How many discrete sets of dispersal histories (dispersal cohorts) contribute to replenishment of focal populations; (2) When do dispersal cohorts converge (a metric of shared dispersal histories among cohorts); and (3) Do these patterns predict spatiotemporal variation in larval supply? We used light traps to quantify larval supply, and otolith microstructure and microchemistry (using laser ablation inductively coupled plasma mass spectrometry; LA-ICP-MS) to reconstruct daily environmental histories of individuals in their 30-d lead-up to settlement. Our results indicate that a variable number of dispersal cohorts replenish focal populations (range of 2-8, mean of 4.3, standard deviation of 2.8). Convergence times varied (from 0 to > 30 d prior to settlement), and larval supply was negatively correlated with cohort evenness but not with the number of cohorts, or when they converged, indicating disproportionately large contributions from some cohorts (i.e., sweepstakes events). Collectively, our results suggest that larval reef fishes may variably disperse in shoals, to drive local replenishment and connectivity within a metapopulation.

  9. Larval starvation reduces responsiveness to feeding stimuli and does not affect feeding preferences in a butterfly.

    PubMed

    Kehl, Tobias; Fischer, Klaus

    2012-07-01

    It is commonly assumed that holometabolic insects such as Lepidoptera rely primarily on larval storage reserves for reproduction. Recent studies though have documented a prominent role of adult-derived carbohydrates for butterfly reproduction. Moreover, a few studies have shown that adult butterflies may also benefit from adult-derived amino acids, at least when larval storage reserves are reduced. Given that in holometabolous insects larval deficiencies are carried over into the adult stage, reduced storage reserves have the potential to modulate adult feeding preferences and responses in order to allow for a successful compensation. We tested this hypothesis here in the fruit-feeding butterfly Bicyclus anynana using larval food stress to manipulate storage reserves. Alcohols (methanol, ethanol, butanol, propanol), sugars (maltose, glucose, fructose, sucrose), and acetic acid acted as feeding stimuli, while butterflies did not respond to other substances such as amino acids, yeast, salts, or vitamins. Contrary to expectations, stressed butterflies showed a weaker response than controls to several feeding stimuli. In preference tests, butterflies preferred sugar solutions containing proline, arginine, glutamic acid, acetic acid, or ethanol over plain sugar solutions, but discriminated against salts. However, there were no general differences among starved and control butterflies. We conclude that larval food-stress does not elicit compensatory feeding behavior such as a stronger preference for amino acids or other essential nutrients in B. anynana. Instead, the stress imposed by a period of starvation yielded negative effects.

  10. Fast versus slow larval growth in an invasive marine mollusc: does paternity matter?

    PubMed

    Le Cam, Sabrina; Pechenik, Jan A; Cagnon, Mathilde; Viard, Frédérique

    2009-01-01

    Reproductive strategies and parental effects play a major role in shaping early life-history traits. Although polyandry is a common reproductive strategy, its role is still poorly documented in relation to paternal effects. Here, we used as a case study the invasive sessile marine gastropod Crepidula fornicata, a mollusc with polyandry and extreme larval growth variation among sibling larvae. Based on paternity analyses, the relationships between paternal identity and the variations in a major early life-history trait in marine organisms, that is, larval growth, were investigated. Using microsatellite markers, paternities of 437 fast- and slow-growing larvae from 6 broods were reliably assigned to a set of 20 fathers. No particular fathers were found responsible for the specific growth performances of their offspring. However, the range of larval growth rates within a brood was significantly correlated to 1) an index of sire diversity and 2) the degree of larvae relatedness within broods. Multiple paternity could thus play an important role in determining the extent of pelagic larval duration and consequently the range of dispersal distances achieved during larval life. This study also highlighted the usefulness of using indices based on fathers' relative contribution to the progeny in paternity studies.

  11. [Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster].

    PubMed

    Rovenko, B M; Lushchak, V I; Lushchak, O V

    2013-01-01

    The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.

  12. Characterization of Arginine Kinase in the Barnacle Amphibalanus Amphitrite and Its Role in the Larval Settlement.

    PubMed

    Zhang, Gen; Yan, Guo-Yong; Yang, Xiao-Xue; Wong, Yue-Him; Sun, Jin; Zhang, Yu; He, Li-Sheng; Xu, Ying; Qian, Pei-Yuan

    2016-06-01

    Energy metabolism is a key process in larval settlement of barnacles, but the underlying molecular mechanisms remain ambiguous. Arginine kinase (AK) mainly participates in energy metabolism in invertebrates. So far, its roles in barnacles have not been studied. In the present study, we raised an antibody against AK from Amphibalanus amphitrite Darwin to characterize the roles of AK in the larval settlement process. Among the developmental stages, AK was highly expressed during the cypris stage. Along with the aging process in cyprids, the level of AK decreased. The immunostaining results showed that AK was localized to muscular tissues in cyprids, including antennules, antennular muscles, and thoracic limbs. The larval settlement rate decreased and larval movement was inhibited in response to treatments with high concentrations of AK inhibitors (rutin and quercetin). These results demonstrated that AK was involved in the larval settlement of A. amphitrite through mediating energy supply in muscle tissues. Moreover, further analysis indicated that both the p38 MAPK and NO/cGMP pathways positively mediated the expression of AK in cyprids. PMID:27245369

  13. Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa

    PubMed Central

    Strömberg, Susanna M.; Dahl, Mikael P.; Lundälv, Tomas; Brooke, Sandra

    2014-01-01

    Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼160 µm large neutral or negatively buoyant eggs, to 120–270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6–8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s−1) initially residing in the upper part of the water column, with bottom probing behavior starting 3–5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations. PMID:25028936

  14. Circulation constrains the evolution of larval development modes and life histories in the coastal ocean.

    PubMed

    Pringle, James M; Byers, James E; Pappalardo, Paula; Wares, John P; Marshall, Dustin

    2014-04-01

    The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyzed the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and documented a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.

  15. Can salinity-induced mortality explain larval vertical distribution with respect to a halocline?

    PubMed

    Sameoto, Jessica A; Metaxas, Anna

    2008-06-01

    For the larvae of two echinoderm species that coexist in Atlantic Canada (bipinnaria of the sea star Asterias rubens and 4- and 6-arm echinoplutei of the sea urchin Strongylocentrotus droebachiensis), we examined the effect of short- and long-term exposure to salinity (ranging from 18 to 35) on the probability of larval survival in laboratory experiments. We also related larval vertical distributions in response to sharp haloclines generated in the laboratory to survival probability in the salinity of different layers in the water column. For both species and developmental stages, survival probability decreased with decreasing salinity, and a salinity range of 24-27 emerged as the critical threshold for larval tolerance. The relationship between the proportion of larvae that crossed a halocline into the top water layer and the survival probability of larvae in the salinity of that layer was significant for both species. Interestingly, the shape of this response was species-specific but not stage-specific for S. droebachiensis. Our findings suggest that larval avoidance of low-salinity water layers may be an adaptive behavior that increases survival and indirectly influences larval distribution. PMID:18574109

  16. [BIO-INSECTICIDAL ACTIVITY OF ALPINIA GALANGA (L.) ON LARVAL DEVELOPMENT OF SPODOPTERA LITURA (LEPIDOPTERA: NOCTUIDAE).

    PubMed

    Pumchan, A; Puangsomchit, A; Temyarasilp, P; Pluempanupat, W; Bullangpoti, V

    2015-01-01

    The aim of the study was to assess the bio-efficacy of four Alpinia galanga rhizome crude extracts against the second and third instars of Spodoptera litura, an important field pest. The growth of younger larvae was significantly affected while that of the older larval stage was less influenced. In both stages, the methanol crude extract showed the greatest efficiency which caused the highest number of abnormal adults to occur and produced a large LD₅₀ value (12.816 µg/ larvae) pupicidal percentage after treatment, whereas, hexane extract caused the highest mortality during the larval-pupal stage after treatment with an LD₅₀ value of 6.354 µg/ larvae. However, the larval development was not significantly different among all treated larvae compared to the control. This study suggests that secondary larval instars of S. litura are more susceptible to the larval growth inhibitory action of Alpinia galanga extracts and these extracts could also be applied for use in the management of pests.

  17. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae).

    PubMed

    Puggioli, Arianna; Balestrino, F; Damiens, D; Lees, R S; Soliban, S M; Madakacherry, O; Dindo, M L; Bellini, R; Gilles, J R L

    2013-07-01

    A fundamental step in establishing a mass production system is the development of a larval diet that promotes high adult performance at a reasonable cost. To identify a suitable larval diet for Aedes albopictus (Skuse), three diets were compared: a standard laboratory diet used at the Centro Agricoltura Ambiente, Italy (CAA) and two diets developed specifically for mosquito mass rearing at the FAO/IAEA Laboratory, Austria. The two IAEA diets, without affecting survival to the pupal stage, resulted in a shorter time to pupation and to emergence when compared with the CAA diet. At 24 h from pupation onset, 50 and 90% of the male pupae produced on the CAA and IAEA diets, respectively, had formed and could be collected. The diet received during the larval stage affected the longevity of adult males with access to water only, with best results observed when using the CAA larval diet. However, similar longevity among diet treatments was observed when males were supplied with sucrose solution. No differences were observed in the effects of larval diet on adult male size or female fecundity and fertility. Considering these results, along with the relative costs of the three diets, the IAEA 2 diet is found to be the preferred choice for mass rearing of Aedes albopictus, particularly if a sugar meal can be given to adult males before release, to ensure their teneral reserves are sufficient for survival, dispersal, and mating in the field.

  18. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    NASA Astrophysics Data System (ADS)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  19. Distribution and Feeding Preferences of Newfoundland larval Hydropsychidae

    NASA Astrophysics Data System (ADS)

    Fietsch, C.; Colbo, M.

    2005-05-01

    Caddisflies of the family Hydropsychidae (Trichoptera) are widely distributed across North America (145 species), however the large scale distribution of the impoverished Newfoundland fauna (8 species) is unknown. Low species diversity and irregular stream profiles on the island provide a template for community distribution. Sampling a variety of rivers at lake outlets and downstream in forested and barren habitats revealed the influence of landscape on Hydropsychidae distribution and abundance. Forested and barren streams supported the same species of hydropsychids but barren streams generally had much lower densities. Community composition changed on a longitudinal gradient. Extensive measurements of nutrient quantity (phytoplankton, zooplankton, periphyton) did not strongly correlate with community composition or landscape effects. The literature suggests that nutrient quality may have a stronger influence due to premised resource partitioning. One method of investigation is lipid analysis, where nutrient composition is determined via free fatty acid biomarkers. Preliminary results indicate that the fauna are general opportunists, feeding over a range of trophic levels, with outlet community feeding habits being distinctive from downstream. Current trophic categorizations of hydropsychids are questioned.

  20. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  1. The perfect storm: Match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys

    NASA Astrophysics Data System (ADS)

    Vaz, Ana C.; Paris, Claire B.; Olascoaga, M. Josefina; Kourafalou, Villy H.; Kang, Heesook; Reed, John K.

    2016-08-01

    Mesophotic coral reef ecosystems are remote from coastal stressors, but are still vulnerable to over-exploitation, and remain mostly unprotected. They may be the key to coral reefs resilience, yet little is known about the pattern of larval subsidies from deeper to shallower coral reef habitats. Here we use a biophysical modeling approach to test the hypothesis that fishes from mesophotic coral reef ecosystems may replenish shallow reef populations. We aim at identifying the spatio-temporal patterns and underlying mechanisms of larval connections between Pulley Ridge, a mesophotic reef in the Gulf of Mexico hosting of a variety of shallow-water tropical fishes, and the Florida Keys reefs. A new three-dimensional (3D) polygon habitat module is developed for the open-source Connectivity Modeling System to simulate larval movement behavior of the bicolor damselfish, Stegastes partitus, in a realistic 3D representation of the coral reef habitat. Biological traits such as spawning periodicity, mortality, and vertical migration are also incorporated in the model. Virtual damselfish larvae are released daily from the Pulley Ridge at 80 m depth over 60 lunar spawning cycles and tracked until settlement within a fine resolution (~900 m) hydrodynamic model of the region. Such probabilistic simulations reveal mesophotic-shallow connections with large, yet sporadic pulses of larvae settling in the Florida Keys. Modal and spectral analyses on the spawning time of successful larvae, and on the position of the Florida Current front with respect to Pulley Ridge, demonstrate that specific physical-biological interactions modulate these "perfect storm" events. Indeed, the co-occurrence of (1) peak spawning with frontal features, and (2) cyclonic eddies with ontogenetic vertical migration, contribute to high settlement in the Florida Keys. This study demonstrates that mesophotic coral reef ecosystems can also serve as refugia for coral reef fish and suggests that they have a critical

  2. Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: Roles of vertical diel migration, water column, bedload transport and biological traits' expression

    NASA Astrophysics Data System (ADS)

    Pacheco, Aldo S.; Uribe, Roberto A.; Thiel, Martin; Oliva, Marcelo E.; Riascos, Jose M.

    2013-03-01

    Post-larval dispersal along the sediment-water interface is an important process in the dynamics of macrobenthic populations and communities in marine sublittoral sediments. However, the modes of post-larval dispersal in low energy sublittoral habitats have been poorly documented. Herein we examined the specific dispersal mechanisms (diel vertical migration, water column, and bedload transport) and corresponding biological traits of the dispersing assemblage. At two sublittoral sites (sheltered and exposed) along the northern coast of Chile, we installed different trap types that capture benthic organisms with specific modes of dispersal (active emergence and passive water column drifting) and also by a combination of mechanisms (bedload transport, passive suspension and settlement from the water column). Our results show that even though there were common species in all types of traps, the post-larval macrobenthic assemblage depended on specific mechanisms of dispersal. At the sheltered site, abundant emerging taxa colonized sediments that were placed 0.5 m above the bottom and bedload-transported invertebrates appeared to be associated to the passive drifting of macroalgae. At the exposed site, assemblage dispersal was driven by specific mechanisms e.g. bedload transport and active emergence. At both sites the biological traits "small size, swimming, hard exoskeleton, free living and surface position" were associated to water column and bedload dispersal. This study highlights the importance of (i) the water-sediment interface for dispersal of post-larvae in sublittoral soft-bottom habitat, and (ii) a specific set of biological traits when dispersing either along the bottom or through the water column.

  3. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  4. Mosquito Larval Habitats, Land Use, and Potential Malaria Risk in Northern Belize from Satellite Image Analyses

    NASA Technical Reports Server (NTRS)

    Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald

    2004-01-01

    The distribution of Anopheles mosquito habitats and land use in northern Belize is examined with satellite data. -A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats. Eleocharis spp. marsh is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of T-ha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. This expansion of Anopheles vestitipennis larval habitat may in turn cause an increase in malaria risk in the region.

  5. [Establishment of an anesthesia model induced by etomidate in larval zebrafish].

    PubMed

    DU, Wen-Jie; DU, Jiu-Lin; Yu, Tian

    2016-06-25

    Despite the wide application of general anesthetic drugs in clinic, it is still unclear how these drugs induce the state of general anesthesia. Larval zebrafish has emerged as an ideal model for dissecting the mechanism of neural systems due to the conserved and simple brain structure. In the present study, we established an anesthesia model from behavioral to electrophysiological levels using larval zebrafish for the first time. Bath application of etomidate, as a kind of intravenous anesthetic drugs, suppressed the spontaneous locomotion of zebrafish in a concentration-dependent manner. Consistently, in vivo fictive motor patterns of spinal motoneurons recorded extracellularly were significantly inhibited as well. Furthermore, using in vivo extracellular recording and whole-cell recording, we found that etomidate application suppressed local field potentials (LFP) of the brain and blocked visually evoked responses of optic tectal neurons. The study indicates that larval zebrafish can serve as an ideal vertebrate animal model for studying neural mechanisms underlying general anesthesia. PMID:27350203

  6. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures.

    PubMed

    Donovan, S E; Hall, M J R; Turner, B D; Moncrieff, C B

    2006-03-01

    Blowfly larvae (Diptera: Calliphoridae) fulfil an important ecological function in the decomposition of animal remains. They are also used extensively in forensic entomology, predominantly to establish a minimum time since death, or a minimum post-mortem interval, using the larval length as a 'biological clock'. This study examined the larval growth rate of a forensically important fly species, Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) at temperatures of between 4 degrees C and 30 degrees C, under controlled laboratory conditions. The laboratory flies had been trapped initially in London, U.K. The minimum developmental temperature was estimated to be 1 degrees C and 4700 accumulated degree hours (ADH) were required for development from egg hatch to the point of pupariation. Lines fitted to the laboratory larval growth data were found to adequately explain the growth of larvae in the field. The nature of variation in growth rates from geographically isolated populations is discussed.

  7. The optic vesicle promotes cornea to lens transdifferentiation in larval Xenopus laevis

    PubMed Central

    Cannata, Stefano M; Bernardini, Sergio; Filoni, Sergio; Gargioli, Cesare

    2008-01-01

    The outer cornea and pericorneal epidermis (lentogenic area) of larval Xenopus laevis are the only epidermal regions competent to regenerate a lens under the influence of the retinal inducer. However, the head epidermis of the lentogenic area can acquire the lens-regenerating competence following transplantation of an eye beneath it. In this paper we demonstrate that both the outer cornea and the head epidermis covering a transplanted eye are capable of responding not only to the retinal inducer of the larval eye but also to the inductive action of the embryonic optic vesicle by synthesizing crystallins. As the optic vesicle is a very weak lens inductor, which promotes crystallin synthesis only on the lens biased ectoderm of the embryo, these results indicate that the lens-forming competence in the outer cornea and epidermis of larval X. laevis corresponds to the persistence and acquisition of a condition similar to that of the embryonic biased ectoderm. PMID:18430089

  8. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations.

    PubMed

    Jablonski, David; Hunt, Gene

    2006-10-01

    The observation that geographic range size in Cretaceous mollusks is correlated with species survivorship and is heritable at the species level has figured repeatedly in discussions of species selection over the past two decades. However, some authors have suggested that the relationship between mode of larval development and geographic range supports the reduction of this example to selection on organismic properties. Our reanalysis of Jablonski's work on heritability at the species level finds that geographic range is significantly heritable (using a randomization test) in both bivalves and gastropods, even within a single larval mode. Further, generalized linear models show that geographic range size is more important than larval mode in predicting extinction probability in both gastropods and bivalves. These results reaffirm the role and heritability of geographic range as a species-level property that can promote species selection; the model-based approach applied here may help to operationalize "screening off " and related approaches to evaluating hierarchical explanations in evolution.

  9. Diel periodicity of drift of larval fishes in tributaries of Lake Ontario

    USGS Publications Warehouse

    Johnson, J.H.; McKenna, J.E., Jr.

    2007-01-01

    Diel patterns of downstream drift were examined during mid-June in three tributaries of Lake Ontario. Larval fishes were collected in drift nets that were set in each stream for 72 consecutive hours and emptied at 4-h intervals. Fantail darter (Ethostoma flabellare) and blacknose dace (Rhinichthys atractulus) were the two most abundant native stream fishes and were two of the three species collected in the ichthyoplankton drift. Fantail darter larvae comprised 100%, 98.9%, and 70.2% of the ichthyoplankton in the three streams. Most larval fishes (96%) drifted at night with peak catches occurring at 2400h in Orwell Brook and Trout Brook and 0400h in Little Sandy Creek. Based on stream temperatures, peak spawning and larval drift of blacknose dace probably occurred later in the season.

  10. Predation by odonate nymphs on larval razorback suckers (Xyrauchen texanus) under laboratory conditions

    USGS Publications Warehouse

    Horn, Michael J.; Marsh, Paul C.; Mueller, Gordon; Burke, Tom

    1994-01-01

    High larval mortality has plagued efforts to raise razorback suckers (Xyrauchen texanus) in a Lake Mohave, Arizona-Nevada backwater. Observations indicate odonate nymph densities may be high enough to impact larval survival. In laboratory tests conducted in aquaria, damselfly (Coenagrionidae: Enallagma sp.) and dragonfly (Libellulidae: Tramea sp.) nymphs consumed 81% and 76% respectively of 11.8 ± 0.7 mm total length larval razorbacks in 7 days compared to 12% mortality in controls. Larger razorback larvae (14 to 15 mm TL) were less susceptible than smaller fish, showing 53% mortality versus 18% in controls. Extensive growth of sago pondweed (Potamogeton pectinatus) may exacerbate predation effects in the backwater, by allowing odonates access to more of the water column.

  11. Inhibition of larval swimming activity of the coral (Platygyra acuta) by interactive thermal and chemical stresses.

    PubMed

    Kwok, C K; Ang, P O

    2013-09-15

    This study examined the interactive effects of copper and elevated temperature and subsequent depuration on Platygyra acuta coral larvae. Larval mortality and motility were significantly affected by copper alone (70% and 100% inhibition respectively). Their respective lethal/inhibitory concentration (LC50/IC50) were 10-130% and 86-193% higher than those reported for other larvae. Temperature (ambient, 27°C and elevated, 30°C) alone and the combination of temperature and copper did not significantly affect both endpoints. This study provides the first quantitative data on depuration effect on resumption of larval motility after copper exposure, although no sign of larval recovery was observed. These findings suggest that the effects of copper pollution outweigh the thermal tolerance of coral larvae. High LC50 and IC50 recorded may be unique for corals from marginal reefs like Hong Kong which have already been exposed to high levels of copper pollution.

  12. A description of the larval development of Megabalanus azoricus (Pilsbry, 1916) reared in the laboratory

    NASA Astrophysics Data System (ADS)

    Dionísio, Maria; Rodrigues, Armindo; Costa, Ana

    2014-03-01

    This study provides the first description of the larval development of the commercially exploited barnacle Megabalanus azoricus. It describes the changes in larval size and shape as well as the general morphology and duration of each larval stage. Embryos were obtained from gravid specimens collected at São Miguel Island and reared through six naupliar stages to the cypris stage in laboratory conditions. The planktotrophic nauplii reached the cypris stage after 14 days of hatching in individual cultures at 20 °C under natural illumination and fed with phytoplankton ( Chaetoceros gracilis, Isochrysis sp., and Tetraselmis sp.). The nauplius of M. azoricus has a normal size compared with nauplii of other congeneric species, ranging between the 261 μm (nauplius I) and 912 μm (nauplius VI). This work provides the first description of larvae of the genus Megabalanus for the Portuguese oceanic islands and provides comparisons with congeneric species in other parts of the world.

  13. Description of the ontogenic and larval period of discus fish (Symphysodon aequifasciatus).

    PubMed

    Mattos, Douglas da Cruz; Cardoso, Leonardo Demier; Fosse, Paulo José; Radael, Marcella Costa; Fosse Filho, João Carlos; Manhães, João Vitor de Azevedo; de Andrade, Dalcio Ricardo; Vidal, Manuel Vazquez

    2015-06-01

    The aim of this study was to describe the embryonic and larval development of discus fish (Symphysodon aequifasciatus), and to determine the time required, hours post fertilization (hpf), for the emergence of various structures. To describe embryonic and larval stages, observations were made at regular periods under an optical microscope and images were taken with a digital camera attached to a microscope. The average temperature reached in the experimental tank was 27.9°C. Important facts in embryonic and larval development are described, such as the closure of the blastopore, which occurred at 31.5 hpf; a period of eruption, which occurred at 58.5 hpf; and a mouth opening, which occurred at 90.5 hpf; and larvae that exhibited oriented swimming and eating exogenous food at 136.5 hpf.

  14. Larval feeding behavior and ant association in frosted elfin, Callophrys irus (Lycaenidae)

    USGS Publications Warehouse

    Albanese, G.; Nelson, M.W.; Vickery, P.D.; Sievert, P.R.

    2007-01-01

    Callophrys irus is a rare and declining lycaenid found in the eastern U.S., inhabiting xeric and open habitats maintained by disturbance. Populations are localized and monophagous. We document a previously undescribed larval feeding behavior in both field and lab reared larvae in which late instar larvae girdled the main stem of the host plant. Girdled stems provide a unique feeding sign that was useful in detecting the presence of larvae in the field. We also observed frequent association of field larvae with several species of ants and provide a list of ant species. We suggest two hypotheses on the potential benefits of stem-girdling to C. irus larvae: 1) Stem girdling provides phloem sap as a larval food source and increases the leaf nutrient concentration, increasing larval growth rates and providing high quality honeydew for attending ants; 2) Stem girdling reduces stem toxicity by inhibiting transport of toxins from roots to the stem.

  15. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae.

    PubMed

    Vlahović, Milena; Lazarević, Jelica; Perić-Mataruga, Vesna; Ilijin, Larisa; Mrdaković, Marija

    2009-05-01

    Biochemical analyses can point to toxicant presence before its effects can be detected at higher organizational levels. We investigated responses of larval mass and alkaline phosphatase (ALP) to different cadmium treatments in 4th instar gypsy moth larvae from 20 full-sib families. Changes in trait values and trait plasticities as well as their variation were monitored after acute and chronic exposure or recovery from two cadmium concentrations (Cd(1)=10microg and Cd(2)=30microg Cd/g dry food). Larval mass only decreased, without returning to the control level at recovery stage following chronic cadmium challenge. Acute stress did not change trait value but increased genetic variance of larval mass. Significant ALP activity changes, sensitivity of isozyme patterns (Mr of 60, 64, and 85kDa) and increased variation in ALP plasticity during acute exposure to cadmium point to its possible aplication as an exposure biomarker.

  16. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity

    NASA Astrophysics Data System (ADS)

    Waldbusser, George G.; Brunner, Elizabeth L.; Haley, Brian A.; Hales, Burke; Langdon, Christopher J.; Prahl, Frederick G.

    2013-05-01

    Acidified waters are impacting commercial oyster production in the U.S. Pacific Northwest, and favorable carbonate chemistry conditions are predicted to become less frequent. Within 48 h of fertilization, unshelled Pacific oyster (Crassostrea gigas) larvae precipitate roughly 90% of their body weight as calcium carbonate. We measured stable carbon isotopes in larval shell and tissue and in algal food and seawater dissolved inorganic carbon in a longitudinal study of larval development and growth. Using these data and measured biochemical composition of larvae, we show that sensitivity of initial shell formation to ocean acidification results from diminished ability to isolate calcifying fluid from surrounding seawater, a limited energy budget and a strong kinetic demand for calcium carbonate precipitation. Our results highlight an important link between organism physiology and mineral kinetics in larval bivalves and suggest the consideration of mineral kinetics may improve understanding winners and losers in a high CO2 world.

  17. Roles of hesC and gcm in echinoid larval mesenchyme cell development.

    PubMed

    Yamazaki, Atsuko; Minokawa, Takuya

    2016-04-01

    To understand the roles of hesC and gcm during larval mesenchyme specification and differentiation in echinoids, we performed perturbation experiments for these genes in two distantly related euechinoids, Hemicentrotus pulcherrimus and Scaphechinus mirabilis. The number of larval mesenchyme cells increased when the translation of hesC was inhibited, thereby suggesting that hesC has a general role in larval mesenchyme development. We confirmed previous results by demonstrating that gcm is involved in pigment cell differentiation. Simultaneous inhibition of the translation of hesC and gcm induced a significant increase in the number of skeletogenic cells, which suggests that gcm functions in skeletogenic fate repression. Based on these observations, we suggest that: (i) hesC participates in some general aspects of mesenchymal cell development; and (ii) gcm is involved in the mechanism responsible for the binary specification of skeletogenic and pigment cell fates. PMID:27046223

  18. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain.

    PubMed

    Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J

    2015-04-01

    Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces. PMID:25920713

  19. Dose-dependent impact of larval Ascaris suum on host body weight in the mouse model.

    PubMed

    Lewis, R; Behnke, J M; Stafford, P; Holland, C V

    2009-03-01

    Ascaris lumbricoides and Ascaris suum are important helminth parasites of humans and pigs, respectively. Although it is now well established that the presence of mature adult worms in the host intestine contributes to significant nutritional morbidity, the impact of larval migratory ascariasis is far less well understood. The development of a mouse model to explore susceptibility and resistance to larval ascariasis in the lungs provided an opportunity to observe the impact of larval migration on host growth during the course of infection. Changes in body weight were monitored in two strains of inbred mice, the susceptible C57BL/6j and the resistant CBA/Ca. Groups of mice received one of four doses: 100, 500, 1000 and 3000 fully embryonated A. suum ova. Infected mice underwent post-mortem on days 6, 7 and 8 post-infection. Control mice received a placebo dose of intubation medium and underwent post-mortem on day 7 post-infection. Mice were weighed pre-infection (day 0) and post-infection on the day of post-mortem. At post-mortem, the lungs of each mouse were removed for enumeration of Ascaris larval burdens by means of the modified Baermann method. Control mice of each strain showed an increase in weight from pre-infection to post-infection day. Within the C57BL/6j strain, mice infected with higher doses of Ascaris eggs experienced a reduction in body weight; for those given 3000 eggs this was on all three post-mortem days, and for those given 1000, on days 7 and 8. For CBA/Ca mice, only mice receiving the 3000 dose demonstrated a reduction in body weight. These findings suggest that larval migratory ascariasis has a significant negative impact upon host growth and that this is related to infective dose and larval burden.

  20. Divergence of larval resource acquisition for water conservation and starvation resistance in Drosophila melanogaster.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal; Ranga, Poonam; Singh, Divya

    2012-07-01

    Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40 h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150 h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.

  1. Fauna and Larval Habitat Characteristics of Mosquitoes in Neka County, Northern Iran

    PubMed Central

    Nikookar, Seyed Hassan; Moosa-Kazemi, Seyed Hassan; Yaghoobi-Ershadi, Mohammad Reza; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Ataei, Abolfazl; Anjamrooz, Mehdi

    2015-01-01

    Background: Ecological studies on mosquitoes are very important in vector control programs. There are a few studies about the ecology of mosquitoes in northern Iran. This study was carried out to detect fauna and larval habitat characteristics of mosquitoes. Methods: This study aimed to determine fauna and the ecology of mosquitoes in Neka County, Mazandaran Province, northern Iran from April to December, 2009. The larval collection was conducted using standard dipper, and the characteristics of larval habitat were investigated based on degree of transparency of water, type of water (stagnant or running), plant vegetation, sunny or shady, temperature and altitude of the natural or artificial breeding places. Results: The mosquito larvae were collected from 72 habitats and identified using systematic keys. Nine species of mosquitoes were identified: Anopheles claviger (0.31%), An. maculipennis (0.54%), An. plumbeus (10.28%), An. superpictus (0.01%), Culiseta annulata (1.07%), Cs. longiareolata (8.91%), Culex mimeticus (0.03%), Cx. pipiens (63.99%), and Ochlerotatus geniculatus (14.85%). The range of temperature in the larval habitats was 19.6–22.5 °C. Significant difference was observed in the rate of temperature among the species in the larval habitats (P< 0.05). A checklist of mosquitoes including seven genera and 32 species has been provided for Mazandaran Province. Conclusion: The most dominant species were Cx. pipiens. They were collected from the larval habitats like Border Rivers, ponds, rain water pools, discarded tires and tree holes. Culiseta annulata was included to the checklist of mosquitoes in Mazandaran Province. PMID:26623437

    </