Science.gov

Sample records for larval development evaluacion

  1. Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among larval body plans.

    PubMed

    Santagata, Scott

    2004-03-01

    Morphological variation among larval body plans must be placed into a phylogenetic and ecological context to assess whether similar morphologies are the result of phylogenetic constraints or convergent selective pressures. Investigations are needed of the diverse larval forms within the Lophotrochozoa, especially the larvae of phoronids and brachiopods. The actinotroch larva of Phoronis pallida (Phoronida) was reared in the laboratory to metamorphic competence. Larval development and growth were followed with video microscopy, SEM, and confocal microscopy. Early developmental features were similar to other phoronid species. Gastrulation was accomplished by embolic invagination of the vegetal hemisphere. Mesenchymal cells were found in the remaining blastocoelic space after invagination began. Mesenchymal cells formed the body wall musculature during the differentiation of larval features. Body wall musculature served as the framework from which all other larval muscles proliferated. Larval growth correlated best with developmental stage rather than age. Consistent with other phoronid species, differentiation of juvenile tissues occurred most rapidly at the latest stages of larval development. The minimum precompetency period of P. pallida was estimated to be approximately 4-6 weeks. Previously published studies have documented that the planktonic embryos of P. pallida develop faster than the brooded embryos of P. vancouverensis. However, these data showed that the difference in developmental rate between the two species decreased in succeeding larval stages. There may be convergent selective pressures that result in similar timing to metamorphic competence among phoronid and brachiopod planktotrophic larval types. Morphological differences between these larval types result from heterochronic developmental shifts in the differentiation of juvenile tissue. Similarities in the larval morphology of phoronids and basal deuterostomes are likely the result of functional

  2. Larval development and settlement of a whale barnacle.

    PubMed

    Nogata, Yasuyuki; Matsumura, Kiyotaka

    2006-03-22

    Larval development and settlement of whale barnacles have not previously been described, unlike intertidal barnacles. Indeed, the mechanisms of the association between barnacles and whales have not been studied. Here we describe the larval development and settlement of the whale barnacle, Coronula diadema, and possible involvement of a cue from the host in inducing larval settlement. Eight-cell stage embryos were collected from C. diadema on a stranded humpback whale, incubated in filtered seawater for 7 days, and nauplius larvae hatched out. When fed with Chaetoceros gracilis, the nauplii developed to stage VI, and finally metamorphosed to the cypris stage. The larval development looked similar to that of intertidal barnacles with planktotrophic larval stages. The cyprids did not settle in normal seawater, but did settle in polystyrene Petri dishes when incubated in seawater with a small piece of skin tissue from the host whale. This strongly suggests the involvement of a chemical cue from the host whale tissue to induce larval settlement.

  3. Larval development of Evermannia zosterura (Perciformes: Gobiidae).

    PubMed

    González-Navarro, Enrique; Saldierna-Martínez, Ricardo Javier; Aceves-Medina, Gerardo

    2014-06-01

    Gobiidae is the most specious fish family in the world with almost 2 000 species, however only 11% of them have been described for their larval stages. The entire life cycle information is essential to understand the biology and ecology of this important fish group. Previous studies on zooplankton samples from Ensenada de La Paz, México, have shown the presence of several Gobiidae larvae and juveniles which were identified as Evermania zosterura. The main objective of this work was to describe the larval stages of this species, widely distributed in the Eastern tropical Pacific. The development of E. zosterura larvae was described based on 66 specimens. A total of 53 specimens were used to describe morphometrics and pigmentation patterns, while 13 specimens were cleared and stained, to obtain meristic characteristics. Cleared specimens had 30 to 31 total vertebrae; dorsal-fin elements: IV; 1, 13-14, anal-fin elements: 1, 13-14, and most had pterygiophore formula 4-111100. The combination of these characteristics confirmed these specimens as E. zosterura. The pigment pattern is similar throughout ontogeny. Larvae are characterized by having three to five dendritic melanophores along the post-anal ventral margin, four to nine smaller melanophores along the ventral margin between the isthmus and anus, and one on the midpoint of the dorsal margin of the tail. There is one small pigment spot on the angle of the jaw, and other on the tip of lower lip. There is an elongated internal pigment under the notochord, between the head and gas bladder. Notochord flexion starts near 3.5mm BL and ends at 4.6mm BL; transformalion to the juvenile stage is at about 13.6mm BL. Our conclusion is that the most useful characters to distinguish this species early-larval stages from those of similar species in the area, are the number of myomeres, the large melanophores (approximately uniformly in size) on the post anal ventral margin, and the elongate internal pigment under the notochord

  4. Arrested larval development in cattle nematodes.

    PubMed

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  5. Suspended sediment prolongs larval development in a coral reef fish.

    PubMed

    Wenger, Amelia S; McCormick, Mark I; Endo, Geoffrey G K; McLeod, Ian M; Kroon, Frederieke J; Jones, Geoffrey P

    2014-04-01

    Increasing sediment input into coastal environments is having a profound influence on shallow marine habitats and associated species. Coral reef ecosystems appear to be particularly sensitive, with increased sediment deposition and re-suspension being associated with declines in the abundance and diversity of coral reef fishes. While recent research has demonstrated that suspended sediment can have negative impacts on post-settlement coral reef fishes, its effect on larval development has not been investigated. In this study, we tested the effects of different levels of suspended sediment on larval growth and development time in Amphiprion percula, a coral reef damselfish. Larvae were subjected to four experimental concentrations of suspended sediment spanning the range found around coastal coral reefs (0-45 mg l(-1)). Larval duration was significantly longer in all sediment treatments (12 days) compared with the average larval duration in the control treatment (11 days). Approximately 75% of the fish in the control had settled by day 11, compared with only 40-46% among the sediment treatments. In the highest sediment treatment, some individuals had a larval duration twice that of the median duration in the control treatment. Unexpectedly, in the low sediment treatment, fish at settlement were significantly longer and heavier compared with fish in the other treatments, suggesting delayed development was independent of individual condition. A sediment-induced extension of the pelagic larval stage could significantly reduce numbers of larvae competent to settle and, in turn, have major effects on adult population dynamics.

  6. Development of the larval amphibian growth and development ...

    EPA Pesticide Factsheets

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in model amphibian species Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg/L BP-2 until two months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg/L treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genotypic males showing both testis and ovary tissues (1.5 mg/L) and 100% of the genotypic males in the higher treatments (3.0 and 6.0 mg/L) experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin (Vtg) induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely Vtg

  7. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region.

  8. Larval diet affects mosquito development and permissiveness to Plasmodium infection

    PubMed Central

    Linenberg, Inbar; Christophides, George K.; Gendrin, Mathilde

    2016-01-01

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke’s Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing. PMID:27910908

  9. Larval development of Brachiopod Coptothyris grayi (Davidson, 1852) (Brachiopoda, Rhynchonelliformea).

    PubMed

    Kuzmina, T V; Temereva, E N; Malakhov, V V

    2016-11-01

    The larval development of the Brachiopod Coptothyris grayi (Davidson, 1852) from the Sea of Japan is described for the first time. Ciliated blastula proved to represent the first free-swimming stage. The blastopore is initially formed as a rounded hole stretching later along the anteroposterior axis. The larva is first divided into two lobes (the apical lobe and the trunk); the mantle lobe is formed later as two lateral folds. Two pairs of seta bundles appear in the late stage larvae. The apical larval lobe in brachiopods is supposed to match the pre-oral lobe and anterior part of the trunk with tentacles in phoronids.

  10. [Larval development of Hypsophrys nicaraguensis (Pisces: Cichlidae) under laboratory conditions].

    PubMed

    Molina Arias, Alex

    2011-12-01

    The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet.

  11. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-01-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spa ceflight, and show that extensive degrees of development can take place in this microgravity environment.

  12. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight.

    PubMed

    Spooner, B S; DeBell, L; Armbrust, L; Guikema, J A; Metcalf, J; Paulsen, A

    1994-01-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spaceflight, and show that extensive degrees of development can take place in this microgravity environment.

  13. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Astrophysics Data System (ADS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-08-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by intrduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spaceflight, and show that extensive degress of development can take place in this microgravity environment.

  14. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-01-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spa ceflight, and show that extensive degrees of development can take place in this microgravity environment.

  15. Development of the larval amphibian growth and development ...

    EPA Pesticide Factsheets

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thyroid-mediated amphibian metamorphosis and reproductive development. To evaluate the assay’s performance, two model chemicals targeting the hypothalamic-pituitary-gonadal (HPG) axis were tested; a weak estrogen receptor agonist, 4-tert-octylphenol (tOP), and an androgen receptor agonist, 17β-trenbolone (TB). Xenopus laevis embryos were constantly exposed in flow-through conditions to various test concentrations of tOP (nominal: 6.25, 12.5, 25, 50 μg/L) or TB (nominal: 12.5, 25, 50, 100 ng/L) and clean water controls until 8 weeks post-metamorphosis, at which time growth measurements were taken and histopathology assessments were made on gonads, reproductive ducts, liver and kidneys. There were no effects on growth in either study and no signs of overt toxicity, sex reversal or gonad dysgenesis at the concentrations tested. Exposure to tOP caused a treatment-related decrease in circulating thyroxine and an increase in thyroid follicular cell hypertrophy and hyperplasia (25, 50 μg/L). Müllerian duct development was clearly affected following exposure to both chemicals; tOP exposure caused dose-dependent maturation of oviducts in both male and female frogs, whereas TB exposure ca

  16. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  17. Development of larval motor circuits in Drosophila.

    PubMed

    Kohsaka, Hiroshi; Okusawa, Satoko; Itakura, Yuki; Fushiki, Akira; Nose, Akinao

    2012-04-01

    How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.

  18. Inhibition of Haemonchus contortus larval development by fungal lectins.

    PubMed

    Heim, Christian; Hertzberg, Hubertus; Butschi, Alex; Bleuler-Martinez, Silvia; Aebi, Markus; Deplazes, Peter; Künzler, Markus; Štefanić, Saša

    2015-08-19

    Lectins are carbohydrate-binding proteins that are involved in fundamental intra- and extracellular biological processes. They occur ubiquitously in nature and are especially abundant in plants and fungi. It has been well established that certain higher fungi produce lectins in their fruiting bodies and/or sclerotia as a part of their natural resistance against free-living fungivorous nematodes and other pests. Despite relatively high diversity of the glycan structures in nature, many of the glycans targeted by fungal lectins are conserved among organisms of the same taxon and sometimes even among different taxa. Such conservation of glycans between free-living and parasitic nematodes is providing us with a useful tool for discovery of novel chemotherapeutic and vaccine targets. In our study, a subset of fungal lectins emanating from toxicity screens on Caenorhabditis elegans was tested for their potential to inhibit larval development of Haemonchus contortus. The effect of Coprinopsis cinerea lectins - CCL2, CGL2, CGL3; Aleuria aurantia lectin - AAL; Marasmius oreades agglutinin - MOA; and Laccaria bicolor lectin - Lb-Tec2, on cultivated Haemonchus contortus larval stages was investigated using a larval development test (LDT). To validate the results of the toxicity assay and determine lectin binding capacity to the nematode digestive tract, biotinylated versions of lectins were fed to pre-infective larval stages of H. contortus and visualized by fluorescent microscopy. Lectin histochemistry on fixed adult worms was performed to investigate the presence and localisation of lectin binding sites in the disease-relevant developmental stage. Using an improved larval development test we found that four of the six tested lectins: AAL, CCL2, MOA and CGL2, exhibited a dose-dependent toxicity in LDT, as measured by the number of larvae developing to the L3 stage. In the case of AAL, CGL2 and MOA lectin, doses as low as 5 μg/ml caused >95 % inhibition of larval

  19. Structural and ultrastructural description of larval development in Zungaro jahu.

    PubMed

    Marques, Camila; Faustino, Francine; Bertolucci, Bruno; Paes, Maria do Carmo Faria; Valentin, Fernanda Nogueira; Nakaghi, Laura Satiko Okada

    2017-01-31

    The Zungaro jahu is an important large catfish of the order Siluriformes that is in danger of extinction due to habitat destruction. Studies on its biology are scarce and the majority relates only to nutrition or parasitology. In order to provide greater information on its morphology and aid husbandry and larviculture studies, the aim of this study was to characterize larval development in Z. jahu from hatching to total yolk absorption. Samples were collected at pre-established times, processed, stained, and analyzed under stereomicroscopy, light microscopy, and scanning electron microscopy. Total yolk absorption was observed by 60 hours post-hatching (hph) at 28.75 ± 0.59°C. The newly hatched larvae showed slightly pigmented body, the outline of the digestive tract, evident eyes, and the first swimming movements. Mouth opening took place at 12 hph and the connection between the oral cavity and the rudimentary intestine was observed at 24 hph. Were analyzed the main larval organs and systems: digestive organs, heart, gill arches, sensory system, thyroid, kidney, and swim bladder. As the larvae grew, these organs became more mature and functional. The development of the sensory and feeding structures was observed at the start of larval development, and thus before depletion of endogenous energy reserves, the strategy for this species is to increase its chances of survival in the environment.

  20. Food selection in larval fruit flies: dynamics and effects on larval development

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  1. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora).

    PubMed

    Voronezhskaya, Elena E; Tyurin, Sergei A; Nezlin, Leonid P

    2002-02-25

    Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores.

  2. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development

    PubMed Central

    Rowbottom, Raylea; Carver, Scott; Barmuta, Leon A.; Weinstein, Philip; Foo, Dahlia; Allen, Geoff R.

    2015-01-01

    Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level). To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission. PMID:26558896

  3. Development and plasticity of the Drosophila larval neuromuscular junction.

    PubMed

    Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai

    2013-01-01

    The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type GluRs in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: (1) genes that positively and negatively regulate growth of the NMJ, (2) genes required for maintenance of NMJ bouton structure, (3) genes that modulate neuronal activity and alter NMJ growth, (4) genes involved in transsynaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. As this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes. Copyright © 2013 Wiley Periodicals, Inc.

  4. Proteomic analysis through larval development of Solea senegalensis flatfish.

    PubMed

    Chicano-Gálvez, Eduardo; Asensio, Esther; Cañavate, José Pedro; Alhama, José; López-Barea, Juan

    2015-12-01

    The post-embryonic development of the Senegalese sole, Solea senegalensis, a flatfish of growing interest in fisheries and aquaculture, is associated with drastic morpho-physiological changes during metamorphosis. Although in the last two decades knowledge on sole culture has notably increased, especially in Southern Europe, its progress was restricted due to lack of methods to control reproduction, improve larval quality and increase juvenile disease resistance. A limited knowledge of the physiological, molecular and genetic mechanisms involved is at the base of such limitation. A proteomic study was carried out to explore the molecular events that occur during S. senegalensis ontogenesis. Protein expression changes were monitored in larvae from 5 to 21 dph by combining 2DE and protein identification with de novo MS/MS sequencing. An average of 6177 ± 282 spots was resolved in 2DE gels. Hierarchical cluster analysis of the 705 selected spots grouped them in eight patterns. Thirty-four proteins were identified and assigned biological functions including structure, metabolism highlighting energy metabolism, transport, protein folding, stress response, chromatin organization and regulation of gene expression. These changes provide a sequential description of the molecular events associated with the biochemical and biological transformations that occur during sole larval development.

  5. Development of environmental tools for anopheline larval control

    PubMed Central

    2011-01-01

    Background Malaria mosquitoes spend a considerable part of their life in the aquatic stage, rendering them vulnerable to interventions directed to aquatic habitats. Recent successes of mosquito larval control have been reported using environmental and biological tools. Here, we report the effects of shading by plants and biological control agents on the development and survival of anopheline and culicine mosquito larvae in man-made natural habitats in western Kenya. Trials consisted of environmental manipulation using locally available plants, the introduction of predatory fish and/or the use of Bacillus thuringiensis var. israelensis (Bti) in various combinations. Results Man-made habitats provided with shade from different crop species produced significantly fewer larvae than those without shade especially for the malaria vector Anopheles gambiae. Larval control of the African malaria mosquito An. gambiae and other mosquito species was effective in habitats where both predatory fish and Bti were applied, than where the two biological control agents were administered independently. Conclusion We conclude that integration of environmental management techniques using shade-providing plants and predatory fish and/or Bti are effective and sustainable tools for the control of malaria and other mosquito-borne disease vectors. PMID:21733150

  6. Development of environmental tools for anopheline larval control.

    PubMed

    Imbahale, Susan S; Mweresa, Collins K; Takken, Willem; Mukabana, Wolfgang R

    2011-07-06

    Malaria mosquitoes spend a considerable part of their life in the aquatic stage, rendering them vulnerable to interventions directed to aquatic habitats. Recent successes of mosquito larval control have been reported using environmental and biological tools. Here, we report the effects of shading by plants and biological control agents on the development and survival of anopheline and culicine mosquito larvae in man-made natural habitats in western Kenya. Trials consisted of environmental manipulation using locally available plants, the introduction of predatory fish and/or the use of Bacillus thuringiensis var. israelensis (Bti) in various combinations. Man-made habitats provided with shade from different crop species produced significantly fewer larvae than those without shade especially for the malaria vector Anopheles gambiae. Larval control of the African malaria mosquito An. gambiae and other mosquito species was effective in habitats where both predatory fish and Bti were applied, than where the two biological control agents were administered independently. We conclude that integration of environmental management techniques using shade-providing plants and predatory fish and/or Bti are effective and sustainable tools for the control of malaria and other mosquito-borne disease vectors.

  7. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  8. Larval crowding accelerates C. elegans development and reduces lifespan

    PubMed Central

    Ludewig, Andreas H.; Gimond, Clotilde; Judkins, Joshua C.; Thornton, Staci; Pulido, Dania C.; Micikas, Robert J.; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C.

    2017-01-01

    Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity. PMID:28394895

  9. Divergent patterns of neural development in larval echinoids and asteroids.

    PubMed

    Nakajima, Yoko; Kaneko, Hiroyuki; Murray, Greg; Burke, Robert D

    2004-01-01

    The development and organization of the nervous systems of echinoderm larvae are incompletely described. We describe the development and organization of the larval nervous systems of Strongylocentrotus purpuratus and Asterina pectinifera using a novel antibody, 1E11, that appears to be neuron specific. In the early pluteus, the antibody reveals all known neural structures: apical ganglion, oral ganglia, lateral ganglia, and an array of neurons and neurites in the ciliary band, the esophagus, and the intestine. The antibody also reveals several novel features, such as neurites that extend to the posterior end of the larva and additional neurons in the apical ganglion. Similarly, in asteroid larvae the antibody binds to all known neural structures and identifies novel features, including large numbers of neurons in the ciliary bands, a network of neurites under the oral epidermis, cell bodies in the esophagus, and a network of neurites in the intestine. The 1E11 antigen is expressed during gastrulation and can be used to trace the ontogenies of the nervous systems. In S. purpuratus, a small number of neuroblasts arise in the oral ectoderm in late gastrulae. The cells are adjacent to the presumptive ciliary bands, where they project neurites with growth cone-like endings that interconnect the neurons. In A. pectinifera, a large number of neuroblasts appear scattered throughout the ectoderm of gastrulae. The cells aggregate in the developing ciliary bands and then project neurites under the oral epidermis. Although there are several shared features of the larval nervous systems of echinoids and asteroids, the patterns of development reveal fundamental differences in neural ontogeny.

  10. Correlated Evolution between Mode of Larval Development and Habitat in Muricid Gastropods

    PubMed Central

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Abstract Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids

  11. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    PubMed

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.

  12. La Evaluacion del Desarrollo de los Alumnos Preescolares (Assessing the Development of Preschoolers). ERIC Digest.

    ERIC Educational Resources Information Center

    Katz, Lilian G.

    To help parents address those aspects of their child's development which may need special encouragement, support, or intervention, this digest delineates 11 categories of behavior for assessment. Parents should not be alarmed if their children are having difficulty in only a few categories, and they should not judge their children's permanent…

  13. Effects of Disinfectants on Larval Development of Ascaris suum Eggs

    PubMed Central

    Oh, Ki-Seok; Kim, Geon-Tae; Ahn, Kyu-Sung; Shin, Sung-Shik

    2016-01-01

    The objective of this study was to evaluate the effects of several different commercial disinfectants on the embryogenic development of Ascaris suum eggs. A 1-ml aliquot of each disinfectant was mixed with approximately 40,000 decorticated or intact A. suum eggs in sterile tubes. After each treatment time (at 0.5, 1, 5, 10, 30, and 60 min), disinfectants were washed away, and egg suspensions were incubated at 25˚C in distilled water for development of larvae inside. At 3 weeks of incubation after exposure, ethanol, methanol, and chlorohexidin treatments did not affect the larval development of A. suum eggs, regardless of their concentration and treatment time. Among disinfectants tested in this study, 3% cresol, 0.2% sodium hypochlorite and 0.02% sodium hypochlorite delayed but not inactivated the embryonation of decorticated eggs at 3 weeks of incubation, because at 6 weeks of incubation, undeveloped eggs completed embryonation regardless of exposure time, except for 10% povidone iodine. When the albumin layer of A. suum eggs remained intact, however, even the 10% povidone iodine solution took at least 5 min to reasonably inactivate most eggs, but never completely kill them with even 60 min of exposure. This study demonstrated that the treatment of A. suum eggs with many commercially available disinfectants does not affect the embryonation. Although some disinfectants may delay or stop the embryonation of A. suum eggs, they can hardly kill them completely. PMID:26951988

  14. Effects of Disinfectants on Larval Development of Ascaris suum Eggs.

    PubMed

    Oh, Ki-Seok; Kim, Geon-Tae; Ahn, Kyu-Sung; Shin, Sung-Shik

    2016-02-01

    The objective of this study was to evaluate the effects of several different commercial disinfectants on the embryogenic development of Ascaris suum eggs. A 1-ml aliquot of each disinfectant was mixed with approximately 40,000 decorticated or intact A. suum eggs in sterile tubes. After each treatment time (at 0.5, 1, 5, 10, 30, and 60 min), disinfectants were washed away, and egg suspensions were incubated at 25˚C in distilled water for development of larvae inside. At 3 weeks of incubation after exposure, ethanol, methanol, and chlorohexidin treatments did not affect the larval development of A. suum eggs, regardless of their concentration and treatment time. Among disinfectants tested in this study, 3% cresol, 0.2% sodium hypochlorite and 0.02% sodium hypochlorite delayed but not inactivated the embryonation of decorticated eggs at 3 weeks of incubation, because at 6 weeks of incubation, undeveloped eggs completed embryonation regardless of exposure time, except for 10% povidone iodine. When the albumin layer of A. suum eggs remained intact, however, even the 10% povidone iodine solution took at least 5 min to reasonably inactivate most eggs, but never completely kill them with even 60 min of exposure. This study demonstrated that the treatment of A. suum eggs with many commercially available disinfectants does not affect the embryonation. Although some disinfectants may delay or stop the embryonation of A. suum eggs, they can hardly kill them completely.

  15. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species.

  16. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni

    NASA Astrophysics Data System (ADS)

    Criales, M. M.; Anger, K.

    1986-09-01

    Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.

  17. Immunostaining of the developing embryonic and larval Drosophila brain.

    PubMed

    Diaper, Danielle C; Hirth, Frank

    2014-01-01

    Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced throughout development. This method reveals insights into gene regulation, cell-type specification, neuron and glial differentiation, and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain's axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in mutant embryos and larvae. Several antibodies, combined with different labels, can be used concurrently to examine protein co-localization. This protocol spans over 3-4 days.

  18. Larval development of Culex quinquefasciatus in water with low to moderate.

    PubMed

    Noori, Navideh; Lockaby, B Graeme; Kalin, Latif

    2015-12-01

    Population growth and urbanization have increased the potential habitats, and consequently the abundance of Culex quinquefasciatus, the southern house mosquito, a vector of West Nile Virus in urban areas. Water quality is critical in larval habitat distribution and in providing microbial food resources for larvae. A mesocosm experiment was designed to demonstrate which specific components of water chemistry are conducive to larval Culex mosquitoes. Dose-response relationships between larval development and NO3 , NH4 , and PO4 concentrations in stream water were developed through this experiment to describe the isolated effects of each nutrient on pre-adult development. The emergence pattern of Culex mosquitoes was found to be strongly related to certain nutrients, and results showed that breeding sites with higher PO4 or NO3 concentrations had higher larval survival rates. High NO3 concentrations favor the development of male mosquitoes and suppress the development of female mosquitoes, but those adult females that do emerge develop faster in containers with high NO3 levels compared to the reference group. The addition of PO4 in the absence of nitrogen sources to the larval habitat slowed larval development, however, it took fewer days for larvae to reach the pupal stage in containers with combinations of NO3 and PO4 or NH4 and PO4 nutrients. Results from this study may bolster efforts to control WNV in urban landscapes by exploring water quality conditions of Culex larval habitats that produce adult mosquitoes.

  19. Larval and juvenile development of Tatia intermedia (Siluriformes: Auchenipteridae).

    PubMed

    Pereira, L H A; Bialetzki, A; Bonecker, A C T

    2017-03-01

    This study describes the morphology, morphometry and meristic characters of larval and juvenile Tatia intermedia collected in the middle Tocantins River and some of its tributaries. Six larvae of T. intermedia were examined and they have a moderately elongate body, head slightly dorso-ventrally depressed with a convex snout, small and round eyes and a subterminal mouth. In five juvenile stages observed, the head and eye are relatively smaller than in the larval stage and the snout remains convex and mouth becomes terminal.

  20. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development.

    PubMed

    Modica, Maria Vittoria; Russini, Valeria; Fassio, Giulia; Oliverio, Marco

    2017-06-01

    In marine environments, connectivity among populations of benthic invertebrates is provided primarily by dispersion of larvae, with the duration of pelagic larval phase (PLD) supposed to represent one of the major factor affecting connectivity. In marine gastropods, PLD is linked to specific larval development types, which may be entirely intracapsular (thus lacking a pelagic dispersal), or include a short pelagic lecithotrophic or a long planktotrophic phase. In the present study, we investigated two sibling species of the cosmopolitan neogastropod genus Columbella (commonly known as dove shells): Columbella adansoni Menke, 1853, from the Macaronesian Atlantic archipelagos, with planktotrophic development, and Columbella rustica Linnaeus, 1758, from the Mediterranean Sea, with intracapsular development. We expected to find differences between these two sister species, in terms of phylogeographic structure, levels of genetic diversification and spatial distribution of genetic diversity, if PLD was actually a relevant factor affecting connectivity. By analysing the sequence variation at the cytochrome c oxidase subunit I (COI) in 167 specimens of the two species, collected over a comparable geographic range, we found that Columbella adansoni, the species with planktotrophic development, and thus longer PLD, showed no phylogeographic structure, lower levels of genetic diversity, interpopulational variance lower than the intrapopulational one and no spatial structure in the distribution of the genetic diversity; Columbella rustica, the species with intracapsular development, thus with evidently lower dispersal abilities, showed a clear phylogeographic structure, higher levels of genetic diversity, high interpopulational and low intrapopulational variance, and a clear signature of global spatial structure in the distribution of the genetic diversity. Thus, in this study, two sibling species differing almost only in their larval ecology (and PLD), when compared for

  1. Larval development of the subantarctic king crabs Lithodes santolla and Paralomis granulosa reared in the laboratory

    NASA Astrophysics Data System (ADS)

    Calcagno, J. A.; Anger, K.; Lovrich, G. A.; Thatje, S.; Kaffenberger, A.

    2004-02-01

    The larval development and survival in the two subantarctic lithodid crabs Lithodes santolla (Jaquinot) and Paralomis granulosa (Molina) from the Argentine Beagle Channel were studied in laboratory cultures. In L. santolla, larval development lasted about 70 days, passing through three zoeal stages and the megalopa stage, with a duration of approximately 4, 7, 11 and 48 days, respectively. The larval development in P. granulosa is more abbreviated, comprising only two zoeal stages and the megalopa stage, with 6, 11 and 43 days' duration, respectively. In both species, we tested for effects of presence versus absence of food (Artemia nauplii) on larval development duration and survival rate. In P. granulosa, we also studied effects of different rearing conditions, such as individual versus mass cultures, as well as aerated versus unaerated cultures. No differences in larval development duration and survival were observed between animals subjected to those different rearing conditions. The lack of response to the presence or absence of potential food confirms, in both species, a complete lecithotrophic mode of larval development. Since lithodid crabs are of high economic importance in the artisanal fishery in the southernmost parts of South America, the knowledge of optimal rearing conditions for lithodid larvae is essential for future attempts at repopulating the collapsing natural stocks off Tierra del Fuego.

  2. Larval and metamorphic development of the foregut and proboscis in the caenogastropod Marsenina (Lamellaria) stearnsii.

    PubMed

    Page, L R

    2002-05-01

    The specialized, postmetamorphic feeding structures of predatory caenogastropods evolved by changes to an ancestral caenogastropod developmental program that generated a planktotrophic larval stage followed by a herbivorous postmetamorphic stage. As part of a program of comparative studies aimed at reconstructing these developmental changes, I studied the development of the postmetamorphic feeding system of Marsenina stearnsii using histological sections for light microscopy and scanning and transmission electron microscopy. The feeding system of this species has two very different designs during ontogeny. The larval system uses ciliary effectors to capture and ingest microalgae, whereas the juvenile/adult system includes a proboscis, jaws, and radular apparatus for predation on ascidian zooids. The postmetamorphic foregut begins to develop during the early larval phase, but the anlagen does not interfere with larval feeding because it develops as an increasingly elaborate outpocketing from the ventral wall of the larval esophagus. At metamorphosis, an opening is created in the anterior tip of the prospective, postmetamorphic buccal cavity and the margins of this opening anneal with the metamorphically remodeled lips of the larval mouth. This process exposes the jaws, which differentiate within the buccal cavity prior to metamorphosis. As a working hypothesis, I suggest that rupture of the buccal cavity to the outside at metamorphosis was selected as a mechanism to allow precocious development of jaws in species where jaws enhanced feeding performance by young juveniles. The larval esophagus of M. stearnsii appears to be completely destroyed at metamorphosis. Larval esophageal cells have distinctive apical characteristics (cilia, blebbed microvilli, stacks of lamellae within the glycocalyx) and no cells having this signature persist through metamorphosis. Development of the proboscis and proboscis sac, which begins prior to metamorphosis, conforms to previous

  3. Major muscle systems in the larval caenogastropod, Ilyanassa obsoleta, display different patterns of development.

    PubMed

    Evans, Carol C E; Dickinson, Amanda J G; Croll, Roger P

    2009-10-01

    This study describes the anatomical and developmental aspects of muscular development from the early embryo to competent larval stage in the gastropod Ilyanassa obsoleta. Staining of F-actin revealed differential spatial and temporal patterns of several muscles. In particular, two major muscles, the larval retractor and pedal retractor muscles originate independently and display distinct developmental patterns similar to observations in other gastropod species. Additionally, together with the larval retractor muscle, the accessory larval muscle developed in the embryo at the trochophore stage. Therefore, both these muscles develop prior to ontogenetic torsion. The pedal retractor muscle marked the most abundant growth in the mid veliger stage. Also during the middle stage, the metapodial retractor muscle and opercular retractor muscle grew concurrently with development of the foot. We show evidence that juvenile muscles, such as the buccal mass muscle and siphon muscle develop initially during the late veliger stage. Collectively, these findings substantiate that larval myogenesis involves a complex sequence of events that appear evolutionary conserved within the gastropods, and set the stage for future studies using this model species to address issues concerning the evolution and eventual fates of larval musculature in molluscs.

  4. Development and functional morphology of the larval foregut of two brachyuran species from Northern Brazil.

    PubMed

    Abrunhosa, Fernando A; Simith, Darlan J B; Monteiro, Joely R C; Souza Junior, Antonio N de; Oliva, Pedro A C

    2011-12-01

    Feeding is an important factor for the successful rearing of larvae of the crab species. Further information on the morphological features of the foregut may to reveal larval feeding behaviour and or/whether there is a lecithotrophy in some or even in all stages of the larval cycle. In the present study, the structural development of the foregut and their digestive functions were examined in larvae of two brachyurans, Uca vocator and Panopeus occidentalis, reared in the laboratory. During larval development, the foreguts of the larvae in the first and last zoeal stages and in the megalopa stage were microscopically examined, described and illustrated. The zoeal foreguts of both species were well developed, showing specialization with a functional cardiopyloric valve and a filter press. The megalopa stage had a complex and specialized gastric mill similar to that found in adult crabs with the appearance of rigidly calcified structures. These results support the hypothesis that the feeding behaviour of each larval stage is directly related to the morphological structure of the foregut. Such facts strongly indicate that all larval stages of both U. vocator and P. occidentalis need an external food source before completing the larval development in a planktonic environment.

  5. Influence of generation and photoperiod on larval development of Lobesia botrana (Lepidoptera: Tortricidae).

    PubMed

    Pavan, Francesco; Floreani, Chiara; Barro, Paola; Zandigiacomo, Pietro; Montà, Laura Dalla

    2010-10-01

    The influence of generation (under field conditions) and photoperiod (under laboratory conditions) on Lobesia botrana larvae development was studied. Some larvae were collected during three annual generations in two grape-growing areas of northeastern Italy, and others were individually reared in the laboratory from egg to pupa on an artificial diet under two different photoperiod conditions (respectively, daylight 16 h/d [long day {LD}] and 14 h/d [short day {SD}]). The mandible lengths of collected larvae were measured and the data analyzed morphometrically to determine the number of larval instars. In the laboratory study, the number of larval moultings, the mandible length of each instar, the development time from hatching larva to pupa, and the pupal weight were considered. The measurement of mandible lengths of larvae collected in the field indicated the existence of five larval instars in all three annual generations, but the size of the two oldest larval instars was significantly higher for third-generation larvae than for the previous generations. Under laboratory conditions, the larvae usually exhibited five instars, but the mandible lengths of larvae and the pupa size were greater for individuals reared under SD. These also took a greater number of days to develop from hatching larvae to pupae. Because a larger size of the final larval instar occurs in individuals that produce diapausing pupae under SD in both the laboratory and the field, a positive association between larval size and the probability of surviving the winter can be inferred.

  6. Larval development and emergence sites of farm-associated Culicoides in the United Kingdom.

    PubMed

    Harrup, L E; Purse, B V; Golding, N; Mellor, P S; Carpenter, S

    2013-12-01

    Culicoides biting midges (Diptera: Ceratopogonidae) are the biological vectors of internationally important arboviruses of livestock including bluetongue virus (BTV). Information on the habitats used by Culicoides for larval development is valuable for establishing targeted vector control strategies and for improving local scale models of vector abundance. This study combines emergence trap collections of adult Culicoides identified using molecular markers and physiochemical measurements of habitats to investigate larval development sites of Palaearctic Culicoides in South East England. The known range of larval habitats for several Culicoides species is extended and the potential BTV vector species C. obsoletus and C. scoticus are confirmed to co-occur in many larval habitats. The presence of emerging C. obsoletus was favoured by increasing substrate moisture level [odds ratio (OR) 6.94 (2.30; 20.90)] and substrate pH [OR 4.80 (1.66; 13.90)] [bias-corrected Dxy : 0.68; area under the curve (AUC): 0.86] rather than any particular larval habitat type, as expected for a species with relatively wide larval habitat preference. Of the newly emerged sub-genus Avaritia individuals collected, 23% were observed to have a degree of abdominal pigmentation commonly inferred to indicate parity. If consistent across species and locations, this observation represents a potential source of error for age structure analyses of Culicoides populations.

  7. Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawai'i.

    PubMed

    Wren, Johanna L K; Kobayashi, Donald R

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

  8. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  9. Expression of two actin genes during larval development in the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Cameron, R A; Britten, R J; Davidson, E H

    1989-01-01

    We report the first measurements of cell number, total RNA, and transcript accumulations for two actin genes during larval development of the sea urchin Strongylocentrotus purpuratus. At 5 weeks of feeding, when development of laboratory-raised larvae is completed, the cell number has increased about 100-fold with respect to the pluteus-stage embryo to about 150,000 +/- 50,000, and the total RNA has increased 46-fold to about 130 ng per larva. The transcripts of the Cylla cytoskeletal actin gene, which is expressed in adult tissues, continue to accumulate throughout larval development. A contrasting pattern of transcript accumulation is observed for Cyllla, a different cytoskeletal actin gene that in the embryo is expressed only in aboral ectoderm. These transcripts increase in number early in larval development, when the larval epidermis is differentiating, and then decline in quantity. It is known that at metamorphosis the larval epidermis is largely histolyzed and that the Cyllla gene is not expressed in the juvenile or adult.

  10. Hox C6 expression during development and regeneration of forelimbs in larval Notophthalmus viridescens.

    PubMed

    Khan, P A; Tsilfidis, C; Liversage, R A

    1999-06-01

    A central theme concerning the epimorphic regenerative potential of urodele amphibian appendages is that limb regeneration in the adult parallels larval limb development. Results of previous research have led to the suggestion that homeobox containing genes are "re-expressed" during the epimorphic regeneration of forelimbs of adult Notophthalmus viridescens in patterns which retrace larval limb development. However, to date no literature exists concerning expression patterns of any homeobox containing genes during larval development of this species. The lack of such information has been a hindrance in exploring the similarities as well as differences which exist between limb regeneration in adults and limb development in larvae. Here we report the first such results of the localization of Hox C6 (formerly, NvHBox-1) in developing and regenerating forelimbs of N. viridescens larvae as demonstrated by whole-mount in situ hybridization. Inasmuch as the pattern of Hox C6 expression is similar in developing forelimb buds of larvae and epimorphically regenerating forelimb blastemata of both adults and larvae, our results support the paradigm that epimorphic regeneration in adult newts parallels larval forelimb development. However, in contrast with observations which document the presence of Hox C6 in both intact, as well as regenerating hindlimbs and tails of adult newts, our results reveal no such Hox C6 expression during larval development of hindlimbs or the tail. As such, our findings indicate that critical differences in larval hindlimb and tail development versus adult expression patterns of this gene in these two appendages may be due primarily to differences in gene regulation as opposed to gene function. Thus, the apparent ability of urodeles to regulate genes in such a highly co-ordinated fashion so as to replace lost, differentiated, appendicular structures in adult animals may assist, at least in part, in better elucidating the phenomenon of epimorphic

  11. Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzhong; Haidvogel, Dale; Munroe, Daphne; Powell, Eric N.; Klinck, John; Mann, Roger; Castruccio, Frederic S.

    2015-02-01

    To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The model results show a typical along-shore connectivity pattern from the northeast to the southwest among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. Continuous surfclam larval input into regions off Delmarva (DMV) and New Jersey (NJ) suggests that insufficient larval supply is unlikely to be the factor causing the failure of the population to recover after the observed decline of the surfclam populations in DMV and NJ from 1997 to 2005. The GBK surfclam population is relatively more isolated than populations to the west and south in the MAB; model results suggest substantial inter-population connectivity from southern New England to the Delmarva region. Simulated surfclam larvae generally drift for over one hundred kilometers along the shelf, but the distance traveled is highly variable in space and over time. Surfclam larval growth and transport are strongly impacted by the physical environment. This suggests the need to further examine how the interaction between environment, behavior, and physiology affects inter-population connectivity. Larval vertical swimming and sinking behaviors have a significant net effect of increasing larval drifting distances when compared with a purely passive model, confirming the need to include larval behavior.

  12. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae).

    PubMed

    Puggioli, Arianna; Balestrino, F; Damiens, D; Lees, R S; Soliban, S M; Madakacherry, O; Dindo, M L; Bellini, R; Gilles, J R L

    2013-07-01

    A fundamental step in establishing a mass production system is the development of a larval diet that promotes high adult performance at a reasonable cost. To identify a suitable larval diet for Aedes albopictus (Skuse), three diets were compared: a standard laboratory diet used at the Centro Agricoltura Ambiente, Italy (CAA) and two diets developed specifically for mosquito mass rearing at the FAO/IAEA Laboratory, Austria. The two IAEA diets, without affecting survival to the pupal stage, resulted in a shorter time to pupation and to emergence when compared with the CAA diet. At 24 h from pupation onset, 50 and 90% of the male pupae produced on the CAA and IAEA diets, respectively, had formed and could be collected. The diet received during the larval stage affected the longevity of adult males with access to water only, with best results observed when using the CAA larval diet. However, similar longevity among diet treatments was observed when males were supplied with sucrose solution. No differences were observed in the effects of larval diet on adult male size or female fecundity and fertility. Considering these results, along with the relative costs of the three diets, the IAEA 2 diet is found to be the preferred choice for mass rearing of Aedes albopictus, particularly if a sugar meal can be given to adult males before release, to ensure their teneral reserves are sufficient for survival, dispersal, and mating in the field.

  13. Circulation constrains the evolution of larval development modes and life histories in the coastal ocean.

    PubMed

    Pringle, James M; Byers, James E; Pappalardo, Paula; Wares, John P; Marshall, Dustin

    2014-04-01

    The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyzed the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and documented a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.

  14. Comparison of two versions of larval development test to detect anthelmintic resistance in Haemonchus contortus.

    PubMed

    Várady, Marián; Corba, Július; Letková, Valéria; Kovác, Gabriel

    2009-03-23

    Larval development (LDT) and micro-agar larval development tests (MALDT) were used to compare the reliability and sensitivity of two methods for detecting anthelmintic resistance in Haemonchus contortus. The tests were conducted using three resistant and four susceptible isolates of H. contortus. Both versions of the tests provided comparable results with regard to the characterization of benzimidazole and levamisole susceptibility but neither test was sufficiently sensitive to discrimination between an ivermectin (IVM) susceptible and an IVM resistant isolate. Each test has its own merits with the LDT having the advantage of being less time-consuming.

  15. Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos

    ERIC Educational Resources Information Center

    Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.

    2014-01-01

    This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…

  16. Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos

    ERIC Educational Resources Information Center

    Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.

    2014-01-01

    This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…

  17. [BIO-INSECTICIDAL ACTIVITY OF ALPINIA GALANGA (L.) ON LARVAL DEVELOPMENT OF SPODOPTERA LITURA (LEPIDOPTERA: NOCTUIDAE).

    PubMed

    Pumchan, A; Puangsomchit, A; Temyarasilp, P; Pluempanupat, W; Bullangpoti, V

    2015-01-01

    The aim of the study was to assess the bio-efficacy of four Alpinia galanga rhizome crude extracts against the second and third instars of Spodoptera litura, an important field pest. The growth of younger larvae was significantly affected while that of the older larval stage was less influenced. In both stages, the methanol crude extract showed the greatest efficiency which caused the highest number of abnormal adults to occur and produced a large LD₅₀ value (12.816 µg/ larvae) pupicidal percentage after treatment, whereas, hexane extract caused the highest mortality during the larval-pupal stage after treatment with an LD₅₀ value of 6.354 µg/ larvae. However, the larval development was not significantly different among all treated larvae compared to the control. This study suggests that secondary larval instars of S. litura are more susceptible to the larval growth inhibitory action of Alpinia galanga extracts and these extracts could also be applied for use in the management of pests.

  18. Larval development of Japanese "conchostracans": Part 3, larval development of Lynceus biformis (crustacea, branchiopoda, laevicaudata) based on scanning electron microscopy and fluorescence microscopy.

    PubMed

    Olesen, Jørgen; Fritsch, Martin; Grygier, Mark J

    2013-02-01

    For comparison with the remarkable larvae of the laevicaudatan (clam shrimp) Lynceus brachyurus, a basic description of the larval sequence of another laevicaudatan branchiopod, the Japanese Lynceus biformis, is provided. Four larval stages have been identified, ranging in size from 258 to 560 μm in length. The first stage has no flattened dorsal shield, in contrast to the three following stages, in which such a shield is present. During development, the only significant changes to the naupliar appendages occur in the antenna at the molt from stage 1 to 2, with the addition of a fourth apical seta to the endopod and a change in the form of the naupliar process, used for food manipulation, from a long, unbranched, pointed spine to a bifid structure. In addition, buds of trunk limbs (five pairs) first appear externally in stage 4 but can be recognized through the cuticle in the previous stage. The larval sequence and larval morphology of L. biformis differ from those of L. brachyurus in at least two respects. L. brachyurus has a dorsal shield in the earliest known stages, but such a shield is lacking in the first stage of L. biformis. Another difference is that L. brachyurus has a huge, flattened, kidney-shaped labrum, whereas that of L. biformis is smaller and bears four robust, denticulate spines on the distal margin. Based on out-group comparison, the morphology of L. biformis, at least in these respects, is likely to represent the ancestral morphology. Despite the partly peculiar morphology of the larvae of Lynceus species, they share many similarities with other branchiopod larvae, at least two of which, the naupliar swimming/feeding apparatus and the mode of development of the trunk limbs, could be considered synapomorphies for the Branchiopoda.

  19. Larval development with transitory epidermis in Paranemertes peregrina and other hoplonemerteans.

    PubMed

    Maslakova, Svetlana A; von Döhren, Jörn

    2009-06-01

    We describe development of the hoplonemertean Paranemertes peregrina from fertilization to juvenile, using light, confocal, and electron microscopy. We discovered that the uniformly ciliated lecithotrophic larva of this species has a transitory epidermis, which is gradually replaced by the definitive epidermis during the course of planktonic development. The approximately 90 large multiciliated cleavage-arrested cells of the transitory larval epidermis become separated from each other by intercalating cells of the definitive epidermis, then gradually diminish in size and disappear more or less simultaneously. Rudiments of all major adult structures-the gut, proboscis, cerebral ganglia, lateral nerve cords, and cerebral organs-are already present in 4-day-old larvae. Replacement of the epidermis is the only overt metamorphic transformation of larval tissue; larval structures otherwise prefigure the juvenile body, which is complete in about 10 days at 7-10 degrees C. Our findings on development of digestive system, nervous system, and proboscis differ in several ways from previous descriptions of hoplonemertean development. We report development with transitory epidermis in two other species, review evidence from the literature, and suggest that this developmental type is the rule for hoplonemerteans. The hoplonemertean planuliform larva is fundamentally different both from the pilidium larva of the sister group to the Hoplonemertea, the Pilidiophora, and from the hidden trochophore of palaeonemerteans. We discuss the possible function and homology of the larval epidermis in development of other nemerteans and spiralians in general.

  20. The larval development of Habronema muscae (Nematoda: Habronematidae) affects its intermediate host, Musca domestica (Diptera: Muscidae).

    PubMed

    Schuster, Rolf Karl; Sivakumar, Saritha

    2017-02-01

    Although the life cycle of the equid stomach parasite Habronema muscae was disclosed more than 100 years ago, little is known about the effect of the developing nematode larvae in its intermediate host, Musca domestica. In a series of experiments, freshly hatched M. domestica larvae were exposed to H. muscae eggs contained in a faecal sample of a naturally infected horse. In daily intervals, 50 fly larvae were removed and transferred on a parasite-free larval rearing medium where they completed their development. Hatched flies were examined for the presence of Habronema third-stage larvae. In two subsequent control groups, flies spend their entire larval life in contaminated horse faeces and in a parasite-free larval rearing medium, respectively. Out of the 700 fly larvae used in the infection experiments, 304 developed into adult flies of which 281 were infected. The average nematode larval burden rose from 3.6 in the group with the shortest exposure to more than 25 in the groups with the longest exposure. The proportion of larvae that developed into the adult insect fell from 82 % in the uninfected control group to 27 % in the positive control group. The pupae of the positive control group were smaller and lighter than those of the uninfected control group. Lower pupal size and weight in the positive control group as well as a lower insect developing rate might be attributed to the destruction of adipose cells in the maggots by Habronema larvae.

  1. The complete larval development of Pagurus lanuginosus De Haan, 1849 (Decapoda, Anomura, Paguridae) reared in the laboratory, with emphasis on the post-larval stage.

    PubMed

    Sultana, Zakea; Asakura, Akira

    2015-02-03

    The complete larval development of Pagurus lanuginosus is described and illustrated including the first description of the post-larval stage. Specimens were reared in the laboratory at 15°C and 33.5-35.02 PSU. Newly hatched larvae passed through a short prezoeal stage (10 minutes to 2 hours), four zoeal stages (6, 6, 6, 8 days), and one megalopal stage (10 days). We compared the morphological features of each larval stage with those of the preceding two descriptions on the same species, and found many differences in morphology and the duration between zoeal stages. We concluded that significant diagnostic characters separating this species from other congeners in Japanese waters include the presence of two pairs of yellowish chromatophores on the carapace in the zoeal stages, a translucent body flecked with red chromatophores, and two pairs of red chromatophores on the carapace in the megalopal stage. 

  2. Development of a larval diet for the South American fruit fly Anastrepha fraterculus (Diptera:Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Mass-rearing protocols must be developed. In particular, a cost-effective larval diet, to implement the sterile insect technique against Anastrepha fratercculus (Wiedemann). The key elements of this diet are the optimal nutrients and their concentrations, diet supports or bulking agents, and the pH ...

  3. Development of the Acoustically Evoked Behavioral Response in Larval Plainfin Midshipman Fish, Porichthys notatus

    PubMed Central

    Alderks, Peter W.; Sisneros, Joseph A.

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages. PMID:24340003

  4. Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly.

    PubMed

    Goverde, Marcel; Bazin, Alain; Kéry, Marc; Shykoff, Jacqui A; Erhardt, Andreas

    2008-09-01

    Cyanogenesis is a widespread chemical defence mechanism in plants against herbivory. However, some specialised herbivores overcome this protection by different behavioural or metabolic mechanisms. In the present study, we investigated the effect of presence or absence of cyanogenic glycosides in birdsfoot trefoil (Lotus corniculatus, Fabaceae) on oviposition behaviour, larval preference, larval development, adult weight and nectar preference of the common blue butterfly (Polyommatus icarus, Lycaenidae). For oviposition behaviour there was a female-specific reaction to cyanogenic glycoside content; i.e. some females preferred to oviposit on cyanogenic over acyanogenic plants, while other females behaved in the opposite way. Freshly hatched larvae did not discriminate between the two plant morphs. Since the two plant morphs differed not only in their content of cyanogenic glycoside, but also in N and water content, we expected these differences to affect larval growth. Contrary to our expectations, larvae feeding on cyanogenic plants showed a faster development and stronger weight gain than larvae feeding on acyanogenic plants. Furthermore, female genotype affected development time, larval and pupal weight of the common blue butterfly. However, most effects detected in the larval phase disappeared for adult weight, indicating compensatory feeding of larvae. Adult butterflies reared on the two cyanogenic glycoside plant morphs did not differ in their nectar preference. But a gender-specific effect was found, where females preferred amino acid-rich nectar while males did not discriminate between the two nectar mimics. The presented results indicate that larvae of the common blue butterfly can metabolise the surplus of N in cyanogenic plants for growth. Additionally, the female-specific behaviour to oviposit preferably on cyanogenic or acyanogenic plant morphs and the female-genotype-specific responses in life history traits indicate the genetic flexibility of this

  5. Complete larval development of the hermit crabs Clibanarius aequabilis and Clibanarius erythropus (Decapoda: Anomura: Diogenidae), under laboratory conditions, with a revision of the larval features of genus Clibanarius

    NASA Astrophysics Data System (ADS)

    Bartilotti, Cátia; Calado, Ricardo; Dos Santos, Antonina

    2008-06-01

    The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5-11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.

  6. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development.

    PubMed

    Nguyen, Trinh T X; Tomberlin, Jeffery K; Vanlaerhoven, Sherah

    2013-07-01

    Arthropod development can be used to determine the time of colonization of human remains to infer a minimum postmortem interval. The black soldier fly, Hermetia illucens L. (Diptera. Stratiomyidae) is native to North America and is unique in that its larvae can consume a wide range of decomposing organic material, including carrion. Larvae development was observed on six resources: control poultry feed, liver, manure, kitchen waste, fruits and vegetables, and fish rendering. Larvae fed manure were shorter, weighed less, and took longer to develop. Kitchen waste produced longer and heavier larvae, whereas larvae fed fish had almost 100% mortality. Black soldier flies can colonize human remains, which in many instances can coincide with food and organic wastes. Therefore, it is necessary to understand black soldier fly development on different food resources other than carrion tissue to properly estimate their age when recovered from human remains.

  7. Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni.

    PubMed

    Moran, Amy L; Manahan, Donal T

    2003-06-01

    An understanding of the biochemical and physiological energetics of lecithotrophic development is useful for interpreting patterns of larval development, dispersal potential, and life-history evolution. This study investigated the metabolic rates and use of biochemical reserves in two species of abalone, Haliotis fulgens (the green abalone) and H. sorenseni (the white abalone). Larvae of H. fulgens utilized triacylglycerol as a primary source of endogenous energy reserves for development ( approximately 50% depletion from egg to metamorphic competence). Amounts of phospholipid remained constant, and protein dropped by about 30%. After embryogenesis, larvae of H. fulgens had oxygen consumption rates of 81.7 +/- 5.9 (SE) pmol larva(-1) h(-1) at 15 degrees C through subsequent development. The loss of biochemical reserves fully met the needs of metabolism, as measured by oxygen consumption. Larvae of H. sorenseni were examined during later larval development and were metabolically and biochemically similar to H. fulgens larvae at a comparable stage. Metabolic rates of both species were very similar to previous data for a congener, H. rufescens, suggesting that larval metabolism and energy utilization may be conserved among closely related species that also share similar developmental morphology and feeding modes.

  8. Development of the larval lymphatic system in zebrafish.

    PubMed

    Jung, Hyun Min; Castranova, Daniel; Swift, Matthew R; Pham, Van N; Venero Galanternik, Marina; Isogai, Sumio; Butler, Matthew G; Mulligan, Timothy S; Weinstein, Brant M

    2017-06-01

    The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)(y251) transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly. © 2017. Published by The Company of Biologists Ltd.

  9. Influence of (+)- to (-)-gossypol ratio on Helicoverpa zea larval development

    USDA-ARS?s Scientific Manuscript database

    Gossypol enantiomer ratios vary considerably among Gossypium species and between different plant tissues. Breeding efforts have focused on the development of germplasm lines with a high (+)- to (-)-gossypol ratio due to the toxicity (-)-gossypol to non-ruminant animals. Interestingly, a previous s...

  10. Linking ocean acidification and warming to the larval development of the American lobster (Homarus americanus)

    NASA Astrophysics Data System (ADS)

    Waller, J. D.; Fields, D.; Wahle, R.; Mcveigh, H.; Greenwood, S.

    2016-02-01

    The American lobster upholds the most culturally and economically iconic fishery in New England. Over the past three decades lobster landings have risen steadily in northern New England as lobster populations have shifted northward, leaving policy makers and coastal communities wondering what the future of this fishery may hold. The underlying causes of this population shift are likely due to a suite of environmental stressors including increasing temperature and ocean acidification. In this study we investigated the interactive effects of IPCC predicted temperature and pH on key aspects of larval lobster development (size, survival, development time, respiration rate, swimming speed, prey consumption and gene expression). Our experiments showed that larvae raised in the high temperature treatments (19 °C) experienced significantly higher mortality than larvae in our control treatments (16 °C) with 50% mortality occurring in the high temperature treatment one week after hatching. The larvae in these high temperature treatments developed twice as fast and experienced respiration rates that were three times higher in the third and fourth larval stages. While temperature had a distinct effect, pH treatment had few significant effects on any of our measured parameters. These data suggest that projected end-century warming will have greater adverse effects than acidification on early larval survival, despite the hurrying effect of higher temperatures on lobster larval development and increase in physiological activity. There were no significant treatment effects on carapace length, dry weight, or carbon and nitrogen content. Analysis of swimming speed and gene expression (through RNA sequencing) are in progress. Understanding how the most vulnerable life stages of the lobster life cycle responds to climate change is essential in connecting the northward geographic shifts projected by habitat quality models, and the underlying physiological and genetic mechanisms that

  11. Larval Development of Two N. E. Pacific Pilidiophoran Nemerteans (Heteronemertea; Lineidae).

    PubMed

    Hiebert, Terra C; Maslakova, Svetlana A

    2015-12-01

    Unique to the phylum Nemertea, the pilidium is an unmistakable planktonic larva found in one group of nemerteans, the Pilidiophora. Inside the pilidium, the juvenile develops from a series of epidermal invaginations in the larval body, called imaginal discs. The discs grow and fuse around the larval gut over the course of weeks to months in the plankton. Once complete, the juvenile breaks free from the larval body in a catastrophic metamorphosis, and often devours the larva as its first meal. One third of nemertean species are expected to produce a pilidium, but the larvae are known for very few species; development from fertilization to metamorphosis has been described in only one species, Micrura alaskensis. Known pilidia include both planktotrophic and lecithotrophic forms, and otherwise exhibit great morphological diversity. Here, we describe the complete development in two lineiform species that are common to the northeast Pacific coast, Micrura wilsoni and Lineus sp. "red." Both species possess typical, cap-shaped planktotrophic pilidia, and the order of emergence of imaginal discs is similar to that which is described in M. alaskensis. The pilidium of Lineus sp. "red" resembles pilidia of several other species, such as Lineus flavescens, and potentially characterizes a pilidiophoran clade. M. wilsoni has relatively transparent oocytes and a pilidium with what appears to be a unique pattern of pigmentation. The adults of both species are more commonly observed in intertidal zones than their larvae are in the plankton. © 2015 Marine Biological Laboratory.

  12. Individual and mixture effects of selected pharmaceuticals on larval development of the estuarine shrimp Palaemon longirostris.

    PubMed

    González-Ortegón, Enrique; Blasco, Julian; Nieto, Elena; Hampel, Miriam; Le Vay, Lewis; Giménez, Luis

    2016-01-01

    Few ecotoxicological studies incorporate within the experimental design environmental variability and mixture effects when assessing the impact of pollutants on organisms. We have studied the combined effects of selected pharmaceutical compounds and environmental variability in terms of salinity and temperature on survival, development and body mass of larvae of the estuarine shrimp Palaemon longirostris. Drug residues found in coastal waters occur as mixture, and the evaluation of combined effects of simultaneously occurring compounds is indispensable for their environmental risk assessment. All larval stages of P. longirostris were exposed to the nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium (DS: 40 and 750 μg L(-1)), the lipid regulator clofibric acid (CA: 17 and 361 μg L(-1)) and the fungicide clotrimazole (CLZ: 0.14 and 4 μg L(-1)). We observed no effect on larval survival of P. longirostris with the tested pharmaceuticals. However, and in contrast to previous studies on larvae of the related marine species Palaemon serratus, CA affected development through an increase in intermoult duration and reduced growth without affecting larval body mass. These developmental effects in P. longirostris larvae were similar to those observed in the mixture of DS and CA confirming the toxic effects of CA. In the case of CLZ, its effects were similar to those observed previously in P. serratus: high doses affected development altering intermoult duration, tended to reduce the number of larval instars and decreased significantly the growth rate. This study suggests that an inter-specific life histories approach should be taken into account to assess the effect of emergent compounds in coastal waters.

  13. Effect of purified condensed tannins from pine bark on larval motility, egg hatching and larval development of Teladorsagia circumcincta and Trichostrongylus colubriformis (Nematoda: Trichostrongylidae).

    PubMed

    Molan, Abdul-Lateef

    2014-08-01

    The effects of condensed tannins (CTs) extracted from pine bark on egg hatching, larval development and the viability of infective L3 larvae of Trichostrongylus colubriformis (Giles, 1892) and Teladorsagia circumcincta (Stadelmann, 1894) (syn. Ostertagia circumcincta) were evaluated using in vitro bioassays. Significant inhibitory effects of CTs were obtained on the viability of the infective larvae, egg hatching and larval development of both nematodes. In all bioassays, the larval stages of Te. circumcincta were significantly (P < 0.05) more susceptible to the inhibitory effects of CT than those of Tr. colubriformis. At 1 000 microg/ml, CTs from pine bark inhibited 48% and 69% of the infective larvae of Tr. colubriformis and Te. circumcincta, respectively, from passing through the sieve relative to the control incubations (no CT added; P < 0.0001). At the same concentration, CTs were able to inhibit 36% and 47% of the eggs of the two parasites, respectively, from hatching relative to the control incubations without CTs. Moreover, at 150 microg/ml, the CTs were able to inhibit 88% and 95% (P < 0.0001 relative to control incubation) of L1 larvae of the two nematodes, respectively, from attaining the full development to L3 larvae in comparison with the control incubations without CTs. At 200 microg/ml, CTs were able to inhibit completely the larval development in both nematodes. Addition of 2 microg polyethylene glycol (PEG; tannin inhibitor) per microg CT eliminated up to 87% of the CT activity (P < 0.0001) compared to incubations without PEG. In conclusion, this study shows that CTs are able to disrupt the life cycle of nematodes and their effects varied according to the parasite species and stage.

  14. Leachate from microplastics impairs larval development in brown mussels.

    PubMed

    Gandara E Silva, Pablo Pena; Nobre, Caio Rodrigues; Resaffe, Pryscila; Pereira, Camilo Dias Seabra; Gusmão, Felipe

    2016-12-01

    Microplastic debris is a pervasive type of contaminant in marine ecosystems, being considered a major threat to marine biota. One of the problems of microplastics is that they can adsorb contaminants in extremely high concentrations. When released from the particle, these contaminants have the potential to cause toxic effects in the biota. So far, reports of toxic effects are mostly linked with the direct exposure of organisms through ingestion of contaminated microplastics. There is little information on the toxicity of leachates from microplastics to marine organisms. In this study, we conducted experiments to evaluate the toxicity of leachates from virgin and beached plastic pellets to embryo development of the brown mussel (Perna perna). We compared the efficiency of two test procedures, and evaluated the toxicity of beached pellets collected in a coastal marine protected area. We observed that mussel embryo is sensitive to leachate from both virgin and beached pellets. However, the toxicity of the leachate from beached pellets was much higher than that of virgin pellets. We suggest contaminants adsorbed onto the surface of beached pellets were responsible for the high toxicity of leachate from beached pellets, while the toxicity of leachate from virgin pellets was mainly due to plastic additives. Our results suggest microplastic debris may be harmful even if ingestion is not the only or main pathway of interaction of marine organisms with contaminated plastic debris.

  15. UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency.

    PubMed

    Martin, Mélissa; Théry, Marc; Rodgers, Gwendolen; Goven, Delphine; Sourice, Stéphane; Mège, Pascal; Secondi, Jean

    2016-02-01

    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment.

  16. Spawning, fertilization, and larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California

    USGS Publications Warehouse

    Nicolini, M.H.; Penry, D.L.

    2000-01-01

    In Potamocorbula amurensis time for development to the straight-hinge larval stage is 48 hr at 15??C. Potamocorbula amurensis settles at a shell length of approximately 135 ??m 17 to 19 days after fertilization. Our observations of timing of larval devdlopment in P. amurensis support the hypothesis of earlier workers that its route of initial introduction to San Francisco Bay was as veliger larvae transported in ballast water by trans-Pacific cargo ships. The length of the larval period of P. amurensis relative to water mass residence times in San Francisco Bay suggests that it is sufficient to allow substantial dispersal from North Bay to South Bay populations in concordance with previous observations that genetic differentiation among populations of P. amurensis in San Francisco Bay is low. Potamocorbula amurensis is markedly euryhaline at all stages of development. Spawning and fertilization can occur at salinities from 5 to 25 psu, and eggs and sperms can each tolerance at least a 10-psu step increase or decrease in salinity. Embryos that are 2 hr old can tolerate the same range of salinities from (10 to 30 psu), and by the time they are 24 hr old they can tolerate the same range of salinities (2 to 30 psu) that adult clams can. The ability of P. amurensis larvae to tolerate substantial step changes in salinity suggests a strong potential to survive incomplete oceanic exchanges of ballast water and subsequent discharge into receiving waters across a broad range of salinities.

  17. Larval development of the oriental lancelet, Branchiostoma belcheri, in laboratory mass culture.

    PubMed

    Urata, Makoto; Yamaguchi, Nobuo; Henmi, Yasuhisa; Yasui, Kinya

    2007-08-01

    We are successfully maintaining a laboratory colony of the lancelet Branchiostoma belcheri bred in the laboratory. Based on living individuals in this mass culture, morphological characteristics from the seven-day larval to benthic juvenile stages have been studied. Most striking was that later larval development of B. belcheri showed great individual variation even in a rather stable culture environment. Metamorphosis first occurred on 60 days post fertilization (dpf) and was continuously observed throughout the present study up to 100 dpf. Morphological traits such as the number of primary gill slits and body size at the start of metamorphosis are apparently affected by culture condition. Body size measured in the largest individuals showed nearly linear growth at 0.087 mm/day. The variability found in larval development calls for caution when developmental stages and chronological ages are compared between populations. However, the developmental flexibility of this animal also raises the possibility that growth and sexual maturation could be controlled artificially in captivity.

  18. Development of the compound eyes of dragonflies (Odonata). II. Development of the larval compound eyes.

    PubMed

    Sherk, T E

    1978-01-01

    The development of the compound eye was analyzed by marking individual ommatidia and by studying naturally occurring pigment band patterns. New ommatidia are added to the eye along its anterior margin. This changes the directions of view of the older ommatidia with the greatest change occurring in the fovea. New ommatidia are added to the fovea medially, and old ones are removed laterally as their interommatidial angles and directions of view in the visual field change. Over one-third of the aeshnid ommatidia are foveal during at least one of the early larval instars, and are then used for peripheral vision later in development. The design of each ommatidium is a compromise so that it is adapted for all stages of development, but sometimes better adapted for one instar than for others. Factors which are balanced for best vision are lens diameter, facet admission function, interommatidial angle, and inclination of the optic axis to the eye surface. Ommatidia are described in terms of these factors throughout their life history, from initial differentiation anteriorly, through passage through the fovea, to their final relatively posterior location.

  19. Temperature- and sex-related effects of serine protease alleles on larval development in the Glanville fritillary butterfly.

    PubMed

    Ahola, V; Koskinen, P; Wong, S C; Kvist, J; Paulin, L; Auvinen, P; Saastamoinen, M; Frilander, M J; Lehtonen, R; Hanski, I

    2015-12-01

    The body reserves of adult Lepidoptera are accumulated during larval development. In the Glanville fritillary butterfly, larger body size increases female fecundity, but in males fast larval development and early eclosion, rather than large body size, increase mating success and hence fitness. Larval growth rate is highly heritable, but genetic variation associated with larval development is largely unknown. By comparing the Glanville fritillary population living in the Åland Islands in northern Europe with a population in Nantaizi in China, within the source of the post-glacial range expansion, we identified candidate genes with reduced variation in Åland, potentially affected by selection under cooler climatic conditions than in Nantaizi. We conducted an association study of larval growth traits by genotyping the extremes of phenotypic trait distributions for 23 SNPs in 10 genes. Three genes in clip-domain serine protease family were associated with larval growth rate, development time and pupal weight. Additive effects of two SNPs in the prophenoloxidase-activating proteinase-3 (ProPO3) gene, related to melanization, showed elevated growth rate in high temperature but reduced growth rate in moderate temperature. The allelic effects of the vitellin-degrading protease precursor gene on development time were opposite in the two sexes, one genotype being associated with long development time and heavy larvae in females but short development time in males. Sexually antagonistic selection is here evident in spite of sexual size dimorphism.

  20. Aspects of embryonic and larval development in bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix.

    PubMed

    George, Amy E; Chapman, Duane C

    2013-01-01

    As bighead carp Hypophthalmichthysnobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region's economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one "cold" and one "warm". Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and "warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.

  1. Effect of Salinity on Embryo and Larval Development of Oyster Crassostrea iredalei

    PubMed Central

    Fang, Amelia Ng Phei; Peng, Teh Chiew; Yen, Poi Khoy; Yasin, Zulfigar; Hwai, Aileen Tan Shau

    2016-01-01

    The effects of salinity on the embryonic and larvae stage of Crassostrea iredalei were investigated. Fertilised eggs and one day old D-larvae were subjected to salinities ranging from 0 to 30 ppt at temperature of 30±2°C. At salinity lower than 10 ppt, 100% mortality was observed. For embryo development, the highest survival was observed at salinity 25 ppt with 80.9±2.2% survival with no significant difference compared to 15 and 30 ppt. Shell height and length were both greatest at salinity 30 ppt. Throughout the 11 days culture, the highest larval survival occurred at salinity 15 ppt with no significant difference compared to all other salinities except 10 ppt. Larval shell sizes showed no significant differences between salinities, except for 10 ppt. Optimum culture condition for larvae growth are salinities ranging from 15 to 30 ppt whereby the larval of this species can tolerate wider range of salinity compared to other oyster species and thus, making it a competitive species to be cultured. PMID:27965737

  2. Development of inexpensive and globally available larval diet for rearing Anopheles stephensi (Diptera: Culicidae) mosquitoes.

    PubMed

    Khan, Inamullah; Farid, Abid; Zeb, Alam

    2013-04-09

    Success of sterile insect technique (SIT) is dependent upon the mass rearing and release of quality insects, the production of which is directly related to the suitability of the diet ingredients used. Commercial diets used for small-scale culture of mosquitoes are expensive and thus not feasible for mass production. A series of low cost globally available diet ingredients including, wheat, rice, corn, chickpeas, and beans along with liver, were provided to 4 h larvae (L1) of Anopheles stephensi (Liston) to see their effect on fitness parameters including larval duration, percent emergence, survival, adult wing size and female fecundity. Different quantities of the candidate diet ingredients were then mixed together to work out a combination diet with a balanced nutritive value that can be used for efficient rearing of the mosquito larvae at relatively lower costs. Fastest larval and pupal development and highest survival rates were recorded using a combination diet of bean, corn, wheat, chickpea, rice, and bovine liver at 5 mg/day. The diet is easy to prepare, and much cheaper than the diets reported earlier. The estimated cost of the reported diet is 14.7 US$/ 1.3 kg for rearing one million larvae. A combination diet with ingredients from cereals and legumes mixed with liver is a low cost balanced larval diet with the potential for use in both small scale laboratory rearing and mass production of Anopheles in SIT control programs.

  3. Artificial substrates for oviposition and larval development of the pepper weevil (Coleoptera: Curculionidae).

    PubMed

    Addesso, K M; McAuslane, H J; Stansly, P A; Slansky, F; Schuster, D J

    2009-02-01

    The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is a major pest of cultivated peppers (Capsicum spp.) and other cultivated and wild species within the family Solanaceae. Laboratory study of this insect, as well as its biological control agents, will be greatly facilitated by an artificial rearing system that does not rely on pepper fruit. An egg collection method and amendments to a standard larval diet were investigated for use in the rearing of this weevil. Spherical sachets made of Parafilm or netting enclosing leaves of pepper, American black nightshade, eggplant, tomato, potato, and jasmine tobacco induced oviposition. Tomato, potato, and jasmine tobacco leaves were accepted despite the fact that these are not oviposition hosts for pepper weevils in the wild. A standard larval diet formula was modified in an attempt to improve egg hatch, larval survival, developmental time, and adult mass. The diet formula was modified with the addition of freeze-dried jalapeño pepper powder, an additional lipid source, alternate protein sources, and the removal of methyl paraben. None of the aforementioned treatments resulted in a significant improvement over the standard diet. Egg hatch was greater when eggs were incubated on moist paper towels rather than in diet; thus, placement of neonates rather than eggs into diet improved production of adults. Suggestions for more efficient rearing of weevils on the currently available diet and future directions for the development of an artificial rearing system for pepper weevil are discussed.

  4. Effect of Salinity on Embryo and Larval Development of Oyster Crassostrea iredalei.

    PubMed

    Fang, Amelia Ng Phei; Peng, Teh Chiew; Yen, Poi Khoy; Yasin, Zulfigar; Hwai, Aileen Tan Shau

    2016-11-01

    The effects of salinity on the embryonic and larvae stage of Crassostrea iredalei were investigated. Fertilised eggs and one day old D-larvae were subjected to salinities ranging from 0 to 30 ppt at temperature of 30±2°C. At salinity lower than 10 ppt, 100% mortality was observed. For embryo development, the highest survival was observed at salinity 25 ppt with 80.9±2.2% survival with no significant difference compared to 15 and 30 ppt. Shell height and length were both greatest at salinity 30 ppt. Throughout the 11 days culture, the highest larval survival occurred at salinity 15 ppt with no significant difference compared to all other salinities except 10 ppt. Larval shell sizes showed no significant differences between salinities, except for 10 ppt. Optimum culture condition for larvae growth are salinities ranging from 15 to 30 ppt whereby the larval of this species can tolerate wider range of salinity compared to other oyster species and thus, making it a competitive species to be cultured.

  5. CCDC-55 is required for larval development and distal tip cell migration in C. elegans

    PubMed Central

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J.

    2012-01-01

    The C. elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. PMID:22285439

  6. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.

    PubMed

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J

    2012-01-01

    The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Development of osmoregulatory tissues in the Lake van fish (Alburnus tarichi) during larval development.

    PubMed

    Oğuz, Ahmet R

    2017-09-27

    Lake Van is one of the largest alkaline lakes worldwide and Lake Van Fish (Alburnus tarichi Güldenstädt, 1814) is the only vertebrate species inhabiting it. Lake Van Fish is an anadromous species that migrates to the streams (salinity 0.02%, pH 8.42) flowing into Lake Van (salinity 0.22%, pH 9.8) during the spawning period (April-July). Following spawning, fish return to Lake Van while larvae remain in fresh water. This study examined the development of osmoregulatory organs and the distribution of ionocytes in Lake Van Fish larvae adapting to the highly alkaline water characterizing the lake. Ionocytes were marked immunohistochemically and observed in whole mounts with immunofluorescence staining using the Na(+)/K(+) ATPase antibody. Ionocytes were first identified in the yolk sac membrane and skin, and then in the gills, digestive tract, and kidneys of larvae. The number of ionocytes on yolk sac membrane and skin decreased during larval development, indicating ionocytes on these tissues have a role in larvae osmoregulation. Larvae hatched from eggs in stream waters die when transferred to Lake Van water but survived in lake water diluted with deionized water. Thus, larvae need to go through certain alterations at the cellular and organ levels in order to adapt to the conditions of Lake Van water, indicating they do not enter this lake immediately after hatching.

  8. Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system

    PubMed Central

    2012-01-01

    Background Larval features such as the apical organ, apical ciliary tuft, and ciliated bands often complicate the evaluation of hypotheses regarding the origin of the adult bilaterian nervous system. Understanding how neurogenic domains form within the bilaterian head and larval apical organ requires expression data from animals that exhibit aspects of both centralized and diffuse nervous systems at different life history stages. Here, we describe the expression of eight neural-related genes during the larval development of the brachiopod, Terebratalia transversa. Results Radially symmetric gastrulae broadly express Tt-Six3/6 and Tt-hbn in the animal cap ectoderm. Tt-NK2.1 and Tt-otp are restricted to a central subset of these cells, and Tt-fez and Tt-FoxQ2 expression domains are already asymmetric at this stage. As gastrulation proceeds, the spatial expression of these genes is split between two anterior ectodermal domains, a more dorsal region comprised of Tt-Six3/6, Tt-fez, Tt-FoxQ2, and Tt-otp expression domains, and an anterior ventral domain demarcated by Tt-hbn and Tt-NK2.1 expression. More posteriorly, the latter domains are bordered by Tt-FoxG expression in the region of the transverse ciliated band. Tt-synaptotagmin 1 is expressed throughout the anterior neural ectoderm. All genes are expressed late into larval development. The basiepithelial larval nervous system includes three neurogenic domains comprised of the more dorsal apical organ and a ventral cell cluster in the apical lobe as well as a mid-ventral band of neurons in the mantle lobe. Tt-otp is the only gene expressed in numerous flask-shaped cells of the apical organ and in a subset of neurons in the mantle lobe. Conclusions Our expression data for Tt-Six3/6, Tt-FoxQ2, and Tt-otp confirm some aspects of bilaterian-wide conservation of spatial partitioning within anterior neurogenic domains and also suggest a common origin for central otp-positive cell types within the larval apical organs of

  9. Role of bacteria in the oviposition behaviour and larval development of stable flies.

    PubMed

    Romero, A; Broce, A; Zurek, L

    2006-03-01

    Stable flies, Stomoxys calcitrans (L.), are the most important pests of cattle in the United States. However, adequate management strategies for stable flies, especially for pastured cattle, are lacking. Microbial/symbiont-based approaches offer novel venues for management of insect pests and/or vector-borne human and animal pathogens. Unfortunately, the fundamental knowledge of stable fly-microbial associations and their effect on stable fly biology is lacking. In this study, stable flies laid greater numbers of eggs on a substrate with an active microbial community (> 95% of total eggs oviposited) than on a sterilized substrate. In addition, stable fly larvae could not develop in a sterilized natural or artificial substrate/medium. Bacteria were isolated and identified from a natural stable fly oviposition/developmental habitat and their individual effect on stable fly oviposition response and larval development was evaluated in laboratory bioassays. Of nine bacterial strains evaluated in the oviposition bioassays, Citrobacter freundii stimulated oviposition to the greatest extent. C. freundii also sustained stable fly development, but to a lesser degree than Serratia fanticola. Serratia marcescens and Aeromonas spp. neither stimulated oviposition nor supported stable fly development. These results demonstrate a stable fly bacterial symbiosis; stable fly larval development depends on a live microbial community in the natural habitat, and stable fly females are capable of selecting an oviposition site based on the microbially derived stimuli that indicate the suitability of the substrate for larval development. This study shows a promising starting point for exploiting stable fly-bacterial associations for development of novel approaches for stable fly management.

  10. Grass Pollen Affects Survival and Development of Larval Anopheles arabiensis (Diptera: Culicidae)

    PubMed Central

    Asmare, Yelfwagash; Hopkins, Richard J; Tekie, Habte; Hill, Sharon R

    2017-01-01

    Abstract Nutrients in breeding sites are critical for the survival and development of malaria mosquitoes, having a direct impact on vectorial capacity. Yet, there is a limited understanding about the natural larval diet and its impact on the individual fitness of mosquitoes. Recent studies have shown that gravid Anopheles arabiensis Patton (Diptera: Culicidae) are attracted by and oviposit in grass-associated habitats. The pollen provided by these grasses is a potential source of nutrients for the larvae. Here, we assess the effect of Typha latifolia L. (Poales: Typhaceae), Echinochloa pyramidalis Lamarck, Pennisetum setaceum Forsskål, and Zea mays L. pollen on larval survival and rate of development in An. arabiensis under laboratory conditions. In addition, we characterize the carbon to nitrogen ratio and the size of pollen grains as a measure of diet quality. Carbon-rich pollen with a small grain size (T. latifolia and P. setaceum; 9.7 ± 0.3 × 103 and 5.5 ± 0.2 × 104 µm3, respectively) resulted in enhanced rates of development of An. arabiensis. In contrast, the larva fed on the nitrogen-rich control diet (TetraMin) was slower to develop, but demonstrated the highest larval survival. Larvae fed on carbon-rich and large-grained Z. mays pollen (4.1 ± 0.2 × 105 µm3) survived at similar levels as those fed on the control diet and also took a longer time to develop compared with larvae fed on the other pollens. While males and females did not appear to develop differently on the different pollen diets, males consistently emerged faster than their female counterparts. These results are discussed in relation to integrated vector management. PMID:28922900

  11. Scymnus camptodromus (Coleoptera: Coccinellidae) Larval Development and Predation of Hemlock Woolly Adelgid (Hemiptera: Adelgidae).

    PubMed

    Limbu, Samita; Keena, Melody A; Long, David; Ostiguy, Nancy; Hoover, Kelli

    2015-02-01

    Development time and prey consumption of Scymnus (Neopullus) camptodromus Yu and Liu (Coleoptera: Coccinellidae) larvae by instar, strain, and temperature were evaluated. S. camptodromus, a specialist predator of hemlock woolly adelgid Adelges tsugae (Annand) (Hemiptera: Adelgidae), was brought to the United States from China as a potential biological control agent for A. tsugae. This beetle has been approved for removal from quarantine but has not yet been field released. We observed that temperature had significant effects on the predator's life history. The larvae tended to develop faster and consume more eggs of A. tsugae per day as rearing temperature increased. Mean egg consumption per day of A. tsugae was less at 15°C than at 20°C. However, as larvae took longer to develop at the lower temperature, the total number of eggs consumed per instar during larval development did not differ significantly between the two temperatures. The lower temperature threshold for predator larval development was estimated to be 5°C, which closely matches the developmental threshold of A. tsugae progrediens. Accumulated degree-days for 50% of the predator neonates to reach adulthood was estimated to be 424. Although temperature had a significant effect on larval development and predation, it did not impact survival, size, or sex ratio of the predator at 15 and 20°C. Furthermore, no remarkable distinctions were observed among different geographical populations of the predator. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis.

    PubMed

    Peterkova-Koci, Kamila; Robles-Murguia, Maricela; Ramalho-Ortigao, Marcelo; Zurek, Ludek

    2012-07-24

    Microbial ecology of phlebotomine sand flies is not well understood although bacteria likely play an important role in the sand fly biology and vector capacity for Leishmania parasites. In this study, we assessed the significance of the microbial community of rabbit feces in oviposition and larval development of Lutzomyia longipalpis as well as bacterial colonization of the gut of freshly emerged flies. Sterile (by autoclaving) and non-sterile (control) rabbit feces were used in the two-choice assay to determine their oviposition attractiveness to sand fly females. Bacteria were identified by amplification and sequencing of the 16S rRNA gene with universal eubacterial primers. Sterile, control (non-sterile), and sterilized and inoculated rabbit feces were used to assess the significance of bacteria in L. longipalpis development. Newly emerged adult flies were surface-sterilized and screened for the bacterial population size and diversity by the culturing approach. The digestive tract of L4 sterile and control larvae was incubated with Phalloidin to visualize muscle tissues and DAPI to visualize nuclei. Two-choice behavioural assays revealed a great preference of L. longipalpis to lay eggs on rabbit feces with an active complex bacterial community (control) (85.8 % of eggs) in comparison to that of sterile (autoclaved) rabbit feces (14.2 %). Bioassays demonstrated that L. longipalpis larvae can develop in sterile rabbit feces although development time to adult stage was greatly extended (47 days) and survival of larvae was significantly lower (77.8 %) compared to that of larvae developing in the control rabbit feces (32 days and 91.7 %). Larval survival on sterilized rabbit feces inoculated with the individual bacterial isolates originating from this substrate varied greatly depending on a bacterial strain. Rhizobium radiobacter supported larval development to adult stage into the greatest extent (39 days, 88.0 %) in contrast to that of Bacillus spp

  13. Larval development and allometric growth of the black-faced blenny Tripterygion delaisi.

    PubMed

    Solomon, F N; Rodrigues, D; Gonçalves, E J; Serrão, E A; Borges, R

    2017-06-01

    Larval development and allometric growth patterns of the black-faced blenny Tripterygion delaisi are described from a larval series (body length, LB  = 3·30-12·10 mm) caught by light traps at the Arrábida Marine Park, Portugal. Larvae of T. delaisi possess distinctive morphometric and meristic characteristics which can be used to identify this species from related taxa. Pigmentation is sparse but characteristic, consisting of pigmented eyes, gas bladder pigmentation in the dorsal region, anal pigmentation and a row of regularly spaced postanal ventral melanophores. This pattern is present from as early as the yolk-sac stage and persists throughout all stages with just the addition of head and caudal pigmentation during the flexion and postflexion stages, respectively. The majority of fin development (with the exception of the caudal fin), occurs in the later stages of development. Myomere counts range between 37 and 45 for all stages. Growth is allometric during larval development. When inflexion points of growth were detected, growth was found to be biphasic with the inflexion points occurring within a very narrow range of LB (8·70-8·90 mm) close to the mean ± s.d. (9·44 ± 1·48 mm LB ) of postflexion larvae. Considering allometric growth patterns and ontogenetic descriptions together, the first developmental phase includes the preflexion and flexion stage larvae, while the second phase characterises the postflexion larvae prior to the transition from larvae to juvenile. © 2017 The Fisheries Society of the British Isles.

  14. Suitability of monotypic and mixed diets for Anopheles hermsi larval development.

    PubMed

    Beasley, Donald A; Walton, William E

    2016-06-01

    The developmental time and survival to eclosion of Anopheles hermsi Barr & Guptavanij fed monotypic and mixed diets of ten food types were examined in laboratory studies. Larvae fed monotypic diets containing animal detritus (freeze-dried rotifers, freeze-dried Daphnia pulicaria, and TetraMin® fish food flakes) and the mixotrophic protistan Cryptomonas ovata developed faster and survived better than larvae that were fed other monotypic diets. Survival to adulthood of larvae fed several concentrations of the diatom Planothidium (=Achnanthes) lanceolatum was poor (<13%) and larval development time was approximately twice that of larvae fed TetraMin® fish food flakes, the standard laboratory diet. Larvae fed monotypic diets containing prokaryotes (bacteria [Bacillus cereus] and cyanobacteria [Oscillatoria prolifera]) and brewer's yeast (Saccharomyces cerevisiae) failed to survive beyond the 1(st) and 2(nd) instar, respectively. Larvae fed only chlorophytes, single-celled Chlamydomonas reinhardtii and filamentous Spirogyra communis, failed to complete larval development, regardless of the concentration tested. Cohorts fed a combination of food types (mixed diets) usually developed better than cohorts fed monotypic diets. Food types that failed to support complete development when fed alone often facilitated development to adulthood when fed in combination with food types containing >1% C20 polyunsaturated fatty acids as total fat, but regardless of essential fatty acid content, algae that produced mucilage and filaments that sank out of the feeding zone were poor quality diets.

  15. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta.

    PubMed

    Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C

    2015-01-01

    Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during

  16. Does Atrazine Influence Larval Development and Sexual Differentiation in Xenopus laevis?

    PubMed Central

    Kloas, Werner; Lutz, Ilka; Springer, Timothy; Krueger, Henry; Wolf, Jeff; Holden, Larry; Hosmer, Alan

    2009-01-01

    Debate and controversy exists concerning the potential for the herbicide atrazine to cause gonadal malformations in developing Xenopus laevis. Following review of the existing literature the U.S. Environmental Protection Agency required a rigorous investigation conducted under standardized procedures. X. laevis tadpoles were exposed to atrazine at concentrations of 0.01, 0.1, 1, 25, or 100 μg/l from day 8 postfertilization (dpf) until completion of metamorphosis or dpf 83, whichever came first. Nearly identical experiments were performed in two independent laboratories: experiment 1 at Wildlife International, Ltd. and experiment 2 at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB). Both experiments employed optimized animal husbandry procedures and environmental conditions in validated flow-through exposure systems. The two experiments demonstrated consistent survival, growth, and development of X. laevis tadpoles, and all measured parameters were within the expected ranges and were comparable in negative control and atrazine-treated groups. Atrazine, at concentrations up to 100 μg/l, had no effect in either experiment on the percentage of males or the incidence of mixed sex as determined by histological evaluation. In contrast, exposure of larval X. laevis to 0.2 μg 17β-estradiol/l as the positive control resulted in gonadal feminization. Instead of an even distribution of male and female phenotypes, percentages of males:females:mixed sex were 19:75:6 and 22:60:18 in experiments 1 and 2, respectively. These studies demonstrate that long-term exposure of larval X. laevis to atrazine at concentrations ranging from 0.01 to 100 μg/l does not affect growth, larval development, or sexual differentiation. PMID:19008211

  17. Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa).

    PubMed

    Kulakova, Milana; Bakalenko, Nadezhda; Novikova, Elena; Cook, Charles E; Eliseeva, Elena; Steinmetz, Patrick R H; Kostyuchenko, Roman P; Dondua, Archil; Arendt, Detlev; Akam, Michael; Andreeva, Tatiana

    2007-01-01

    The bilaterian animals are divided into three great branches: the Deuterostomia, Ecdysozoa, and Lophotrochozoa. The evolution of developmental mechanisms is less studied in the Lophotrochozoa than in the other two clades. We have studied the expression of Hox genes during larval development of two lophotrochozoans, the polychaete annelids Nereis virens and Platynereis dumerilii. As reported previously, the Hox cluster of N. virens consists of at least 11 genes (de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G, Nature, 399:772-776, 1999; Andreeva TF, Cook C, Korchagina NM, Akam M, Dondua AK, Ontogenez 32:225-233, 2001); we have also cloned nine Hox genes of P. dumerilii. Hox genes are mainly expressed in the descendants of the 2d blastomere, which form the integument of segments, ventral neural ganglia, pre-pygidial growth zone, and the pygidial lobe. Patterns of expression are similar for orthologous genes of both nereids. In Nereis, Hox2, and Hox3 are activated before the blastopore closure, while Hox1 and Hox4 are activated just after this. Hox5 and Post2 are first active during the metatrochophore stage, and Hox7, Lox4, and Lox2 at the late nectochaete stage only. During larval stages, Hox genes are expressed in staggered domains in the developing segments and pygidial lobe. The pattern of expression of Hox cluster genes suggests their involvement in the vectorial regionalization of the larval body along the antero-posterior axis. Hox gene expression in nereids conforms to the canonical patterns postulated for the two other evolutionary branches of the Bilateria, the Ecdysozoa and the Deuterostomia, thus supporting the evolutionary conservatism of the function of Hox genes in development.

  18. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship.

    PubMed

    Li, Yiji; Kamara, Fatmata; Zhou, Guofa; Puthiyakunnon, Santhosh; Li, Chunyuan; Liu, Yanxia; Zhou, Yanhe; Yao, Lijie; Yan, Guiyun; Chen, Xiao-Guang

    2014-11-01

    Aedes albopictus is a very invasive and aggressive insect vector that causes outbreaks of dengue fever, chikungunya disease, and yellow fever in many countries. Vector ecology and disease epidemiology are strongly affected by environmental changes. Urbanization is a worldwide trend and is one of the most ecologically modifying phenomena. The purpose of this study is to determine how environmental changes due to urbanization affect the ecology of Aedes albopictus. Aquatic habitats and Aedes albopictus larval population surveys were conducted from May to November 2013 in three areas representing rural, suburban, and urban settings in Guangzhou, China. Ae. albopictus adults were collected monthly using BG-Sentinel traps. Ae. albopictus larva and adult life-table experiments were conducted with 20 replicates in each of the three study areas. The urban area had the highest and the rural area had the lowest number of aquatic habitats that tested positive for Ae. albopictus larvae. Densities in the larval stages varied among the areas, but the urban area had almost two-fold higher densities in pupae and three-fold higher in adult populations compared with the suburban and rural areas. Larvae developed faster and the adult emergence rate was higher in the urban area than in suburban and rural areas. The survival time of adult mosquitoes was also longer in the urban area than it was in suburban and rural areas. Study regions, surface area, water depth, water clearance, surface type, and canopy coverage were important factors associated with the presence of Ae. albopictus larvae. Urbanization substantially increased the density, larval development rate, and adult survival time of Ae. albopictus, which in turn potentially increased the vector capacity, and therefore, disease transmissibility. Mosquito ecology and its correlation with dengue virus transmission should be compared in different environmental settings.

  19. Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship

    PubMed Central

    Li, Yiji; Kamara, Fatmata; Zhou, Guofa; Puthiyakunnon, Santhosh; Li, Chunyuan; Liu, Yanxia; Zhou, Yanhe; Yao, Lijie; Yan, Guiyun; Chen, Xiao-Guang

    2014-01-01

    Introduction Aedes albopictus is a very invasive and aggressive insect vector that causes outbreaks of dengue fever, chikungunya disease, and yellow fever in many countries. Vector ecology and disease epidemiology are strongly affected by environmental changes. Urbanization is a worldwide trend and is one of the most ecologically modifying phenomena. The purpose of this study is to determine how environmental changes due to urbanization affect the ecology of Aedes albopictus. Methods Aquatic habitats and Aedes albopictus larval population surveys were conducted from May to November 2013 in three areas representing rural, suburban, and urban settings in Guangzhou, China. Ae. albopictus adults were collected monthly using BG-Sentinel traps. Ae. albopictus larva and adult life-table experiments were conducted with 20 replicates in each of the three study areas. Results The urban area had the highest and the rural area had the lowest number of aquatic habitats that tested positive for Ae. albopictus larvae. Densities in the larval stages varied among the areas, but the urban area had almost two-fold higher densities in pupae and three-fold higher in adult populations compared with the suburban and rural areas. Larvae developed faster and the adult emergence rate was higher in the urban area than in suburban and rural areas. The survival time of adult mosquitoes was also longer in the urban area than it was in suburban and rural areas. Study regions, surface area, water depth, water clearance, surface type, and canopy coverage were important factors associated with the presence of Ae. albopictus larvae. Conclusions Urbanization substantially increased the density, larval development rate, and adult survival time of Ae. albopictus, which in turn potentially increased the vector capacity, and therefore, disease transmissibility. Mosquito ecology and its correlation with dengue virus transmission should be compared in different environmental settings. PMID:25393814

  20. Plant microRNAs in larval food regulate honeybee caste development

    PubMed Central

    Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie

    2017-01-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution. PMID:28859085

  1. Plant microRNAs in larval food regulate honeybee caste development.

    PubMed

    Zhu, Kegan; Liu, Minghui; Fu, Zheng; Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie; Chen, Xi

    2017-08-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution.

  2. Embryonic and larval development of the sonic motor nucleus in the oyster toadfish

    SciTech Connect

    Galeo, A.J.; Fine, M.L.; Stevenson, J.A.

    1987-07-01

    The sonic motor nucleus (SMN), a likely homologue of the hypoglossal nucleus, provides the final common pathway for sound production in the oyster toadfish (Opsanus tau). SMN neurons increase in size and number for 7-8 years postnatally, and the swimbladder-sonic muscle complex grows throughout life. This study describes the normal embryonic and larval development of the SMN from its initial differentiation on about day 19 through day 40, when the yolk sac is resorbed and the fish is free swimming. In contrast to the rapid development of CNS nuclei in mammals, the SMN gradually increased in maturity with more active growth at the beginning and end of the observation period and a relatively static period in the middle. Consistent with a hypoglossal homology, the SMN differentiated within the spinal cord, added cells rostrally, and eventually extended into the medulla. Immature neurons appeared to originate from precursor cells in the ventral portion of the ventricular zone of the central canal. Such cells were initially round with little cytoplasmic development and later added processes and Nissl substance. The number of neurons increased 10-fold from a median of 35 to 322 cells, and no evidence of cell death was observed. Soma area approximately doubled from 20.6 to 41.2 micron 2, and cell nucleus area followed a similar pattern. (/sup 3/H)-thymidine autoradiography demonstrated that neurons were added continuously throughout the nucleus during embryonic and larval development.

  3. Development of the embryonic and larval peripheral nervous system of Drosophila

    PubMed Central

    Singhania, Aditi; Grueber, Wesley B.

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. The many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development. PMID:24896657

  4. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts

    PubMed Central

    2012-01-01

    Background In recent years, acetic acid bacteria have been shown to be frequently associated with insects, but knowledge on their biological role in the arthropod host is limited. The discovery that acetic acid bacteria of the genus Asaia are a main component of the microbiota of Anopheles stephensi makes this mosquito a useful model for studies on this novel group of symbionts. Here we present experimental results that provide a first evidence for a beneficial role of Asaia in An. stephensi. Results Larvae of An. stephensi at different stages were treated with rifampicin, an antibiotic effective on wild-type Asaia spp., and the effects on the larval development were evaluated. Larvae treated with the antibiotic showed a delay in the development and an asynchrony in the appearance of later instars. In larvae treated with rifampicin, but supplemented with a rifampicin-resistant mutant strain of Asaia, larval development was comparable to that of control larvae not exposed to the antibiotic. Analysis of the bacterial diversity of the three mosquito populations confirmed that the level of Asaia was strongly decreased in the antibiotic-treated larvae, since the symbiont was not detectable by PCR-DGGE (denaturing gradient gel electrophoresis), while Asaia was consistently found in insects supplemented with rifampicin plus the antibiotic-resistant mutant in the diet, and in those not exposed to the antibiotic. Conclusions The results here reported indicate that Asaia symbionts play a beneficial role in the normal development of An. stephensi larvae. PMID:22375964

  5. Development of the embryonic and larval peripheral nervous system of Drosophila.

    PubMed

    Singhania, Aditi; Grueber, Wesley B

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.

  6. Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide

    USGS Publications Warehouse

    Boone, M.D.; Bridges, C.M.; Rothermel, B.B.

    2001-01-01

    Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-1 ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.

  7. Effect of Two Oil Dispersants on Larval Grass Shrimp (Palaemonetes pugio) Development.

    NASA Astrophysics Data System (ADS)

    Betancourt, P.; Key, P. B.; Chung, K. W.; DeLorenzo, M. E.

    2015-12-01

    The study focused on the effects that two oil dispersants, Corexit® EC9500A and Finasol® OSR52, have on the development of larval grass shrimp, (Palaemonetes pugio). The hypothesis was that Finasol would have a greater effect on larval grass shrimp development than Corexit. The experiment was conducted using 300 grass shrimp larvae that were 24 hours old. Each larva was exposed individually. In total, five sub-lethal concentrations were tested for each dispersant (control, 1.25, 2.50, 5.0,10.0 mg/L). The larvae were exposed for five days then transferred to clean seawater until metamorphosis into the juvenile stage. Key data measurements recorded included number of days to become juveniles, number of instars, length, dry weight, and mortality. Data from exposed shrimp was compared to the results of the control for each dispersant concentration. Corexit and Finasol exposure treatments of 5 mg/L and 10 mg/L showed significantly higher values for number of days and number of instars to reach juvenile status than values obtained from unexposed, control shrimp. Overall, mortality was higher in the Finasol treatments but the two dispersants did not respond significantly different from one another. Future studies are needed to determine the long term effects of dispersant exposure on all grass shrimp life stages and how any dispersant exposure impacts grass shrimp populations. Grass shrimp serve as excellent toxicity indicators of estuaries, and further studies will help to develop better oil spill mitigation techniques.

  8. Reusing larval rearing water and its effect on development and quality of Anopheles arabiensis mosquitoes.

    PubMed

    Mamai, Wadaka; Lees, Rosemary Susan; Maiga, Hamidou; Gilles, Jeremie R L

    2016-03-16

    There is growing interest in applying the sterile insect technique (SIT) against mosquitoes. Mass production of mosquitoes for large-scale releases demands a huge amount of water. Yet, many arid and/or seasonally arid countries face the difficulties of acute water shortage, deterioration of water quality and environmental constraints. The re-use of water to rear successive generations of larvae is attractive as a way to reduce water usage and running costs, and help to make this control method viable. To determine whether dirty larval water was a suitable rearing medium for Anopheles arabiensis, in place of the 'clean' dechlorinated water routinely used, a series of three experiments was carried out to evaluate the effect of dirty water or mixed clean and dirty water on several parameters of insect quality. Batches of 100 fresh eggs were distributed in dirty water or added to clean water to test the effect of dirty water on egg hatching, whereas first-instar larvae were used to determine the effect on immature development time, pupation, adult emergence, body size, and longevity. Moreover, to assess the effect of dirty water on larval mortality, pupation rate, adult emergence, and longevity, L4 larvae collected after the tilting or larvae/pupae separation events were returned either to the dirty water or added to clean water. Results indicated that reusing dirty water or using a 50:50 mix of clean and dirty water did not affect egg hatching. Moreover, no difference was found in time to pupation, larval mortality or sex ratio when first-instar larvae were added to clean water, dirty water, or a 75:25, 50:50 or 25:75 mix of clean and dirty water and reared until emergence. When late-instar larvae were put back into their own rearing water, there was no effect on pupation rate, emergence rate or female longevity, though male longevity was reduced. When reared from first-instar larvae, however, dirty water decreased pupation rate, emergence rate, body size, and adult

  9. Aspects of embryonic and larval development in bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2013-01-01

    As bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.

  10. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong

    2016-01-01

    Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.

  11. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits.

    PubMed

    Kvist, Jouni; Wheat, Christopher W; Kallioniemi, Eveliina; Saastamoinen, Marjo; Hanski, Ilkka; Frilander, Mikko J

    2013-02-01

    Little is known about variation in gene expression that affects life history traits in wild populations of outcrossing species. Here, we analyse heritability of larval development traits and associated variation in gene expression in the Glanville fritillary butterfly (Melitaea cinxia) across three ecologically relevant temperatures. We studied the development of final-instar larvae, which is greatly affected by temperature, and during which stage larvae build up most of the resources for adult life. Larval development time and weight gain varied significantly among families sampled from hundreds of local populations, indicating substantial heritable variation segregating in the large metapopulation. Global gene expression analysis using common garden-reared F2 families revealed that 42% of the >8000 genes surveyed exhibited significant variation among families, 39% of the genes showed significant variation between the temperature treatments, and 18% showed a significant genotype-by-environment interaction. Genes with large family and temperature effects included larval serum protein and cuticle-binding protein genes, and the expression of these genes was closely correlated with the rate of larval development. Significant expression variation in these same categories of genes has previously been reported among adult butterflies originating from newly established versus old local populations, supporting the notion of a life history syndrome put forward based on ecological studies and involving larval development and adult dispersal capacity. These findings suggest that metapopulation dynamics in heterogeneous environments maintain heritable gene expression variation that affects the regulation of life history traits.

  12. Chiton myogenesis: perspectives for the development and evolution of larval and adult muscle systems in molluscs.

    PubMed

    Wanninger, Andreas; Haszprunar, Gerhard

    2002-02-01

    We investigated muscle development in two chiton species, Mopalia muscosa and Chiton olivaceus, from embryo hatching until 10 days after metamorphosis. The anlagen of the dorsal longitudinal rectus muscle and a larval prototroch muscle ring are the first detectable muscle structures in the early trochophore-like larva. Slightly later, a ventrolaterally situated pair of longitudinal muscles appears, which persists through metamorphosis. In addition, the anlagen of the putative dorsoventral shell musculature and the first fibers of a muscular grid, which is restricted to the pretrochal region and consists of outer ring and inner diagonal muscle fibers, are generated. Subsequently, transversal muscle fibers form underneath each future shell plate and the ventrolateral enrolling muscle is established. At metamorphic competence, the dorsoventral shell musculature consists of numerous serially repeated, intercrossing muscle fibers. Their concentration into seven (and later eight) functional shell plate muscle bundles starts after the completion of metamorphosis. The larval prototroch ring and the pretrochal muscle grid are lost at metamorphosis. The structure of the apical grid and its atrophy during metamorphosis suggests ontogenetic repetition of (parts of) the original body-wall musculature of a proposed worm-shaped molluscan ancestor. Moreover, our data show that the "segmented" character of the polyplacophoran shell musculature is a secondary condition, thus contradicting earlier theories that regarded the Polyplacophora (and thus the entire phylum Mollusca) as primarily eumetameric (annelid-like). Instead, we propose an unsegmented trochozoan ancestor at the base of molluscan evolution. Copyright 2002 Wiley-Liss, Inc.

  13. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development

    PubMed Central

    Flores, Victoria

    2012-01-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole’s dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40–200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole’s vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient “deaf period” of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories. PMID:22198742

  14. Toxicity of endosulfan on embryo-larval development of the South American toad Rhinella arenarum.

    PubMed

    Svartz, Gabriela V; Wolkowicz, Ianina R Hutler; Coll, Cristina S Pérez

    2014-04-01

    Endosulfan is a widely used pesticide despite its extreme toxicity to a variety of taxa and its worldwide ban. The aim of the present study was to evaluate the acute and chronic toxicity of endosulfan on the embryonic-larval development of the common South American toad Rhinella arenarum. The results showed that lethal and sublethal effects increased with concentration and exposure time. The sensitivity to endosulfan increased during the larval period, the complete operculum stage (S.25) being the most sensitive (504-h median lethal concentration [LC50] = 0.01 mg endosulfan/L; 10% lethal concentration [LC10] = 0.004 mg endosulfan/L). Endosulfan exposure caused morphological abnormalities such as general underdevelopment, edema, gill malformations, and cellular dissociation as well as neurotoxicity. Our results also showed that larvae exposed to concentrations of 0.005 mg endosulfan/L and 0.01 mg endosulfan/L completed metamorphosis earlier than controls, but with underdevelopment. The 240-h teratogenic index was 6.13, implying a high risk for embryos to be malformed in the absence of significant embryonic lethality. Because the hazard quotients for chronic exposure were over 1, the level of concern value and toxicity endpoints obtained in the present study for R. arenarum occurred at concentrations lower than the levels of endosulfan reported in the environment, this pesticide should be considered a potential risk for this species.

  15. Inner Ear Formation during the Early Larval Development of Xenopus Laevis

    PubMed Central

    Quick, Quincy A.; Serrano, Elba E.

    2010-01-01

    The formation of the eight independent endorgan compartments (sacculus, utricle, horizontal canal, anterior canal, posterior canal, lagena, amphibian papilla, and basilar papilla) of the Xenopus laevis inner ear is illlustrated as the otic vesicle develops into a complex labyrinthine structure. The morphology of transverse sections and whole mounts of the inner ear was assessed in seven developmental stages (28, 31, 37, 42, 45, 47, 50) using brightfield and laser scanning confocal microscopy. The presence of mechanosensory hair cells in the sensory epithelia was determined by identification of stereociliary bundles in cryosectioned tissue and whole mounts of the inner ear labeled with the fluorescent F-actin probe, Alexa-488 phalloidin. Between stages 28 and 45 the otic vesicle grows in size, stereociliary bundles appear and increase in number, and the pars inferior and pars superior become visible. The initial formation of vestibular compartments with their nascent stereociliary bundles is seen by larval stage 47, and all eight vestibular and auditory compartments with their characteristic sensory fields are present by larval stage 50. Thus in Xenopus, inner ear compartments are established between stages 45 and 50, a two week period during which the ear quadruples in length in the anteroposterior dimension. The anatomical images presented here demonstrate the morphological changes that occur as the otic vesicle forms the auditory and vestibular endorgans of the inner ear. These images provide a resource for investigations of gene expression patterns in Xenopus during inner ear compartmentalization and morphogenesis. PMID:16217737

  16. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development.

    PubMed

    Simmons, Andrea Megela; Flores, Victoria

    2012-04-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole's dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40-200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole's vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient "deaf period" of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories.

  17. Development and larval feeding in the capitellid annelid Notomastus cf. tenuis.

    PubMed

    Pernet, Bruno; Harris, Leslie H; Schroeder, Paul

    2015-02-01

    Making inferences about the evolution of larval nutritional mode and feeding mechanisms in annelids requires data on the form and function of the larvae, but such data are lacking for many taxa. Though some capitellid annelids are known or suspected to have planktotrophic larvae, these larvae have not previously been described in sufficient detail to understand how they feed. Here we describe embryos and larvae of the capitellid Notomastus cf. tenuis from San Juan Island, Washington State. Fertilized oocytes average about 58 μm in equivalent spherical diameter. Early embryos undergo spiral cleavage and develop into larvae that feed for about 5 weeks before metamorphosis. Larvae of N. cf. tenuis capture food particles between prototrochal and metatrochal ciliary bands and transport them to the mouth in an intermediate food groove; this arrangement is typical of "opposed band" larval feeding systems. Surprisingly, however, larvae of N. cf. tenuis appeared to have only simple cilia in the prototrochal ciliary band; among planktotrophic larvae of annelids, simple cilia in the prototroch were previously known only from members of Oweniidae. The anteriormost tier of prototrochal cilia in N. cf. tenuis appears to be non-motile; its role in swimming or particle capture is unclear. Like some planktotrophic larvae in the closely related Echiuridae and Opheliidae, larvae of N. cf. tenuis can capture relatively large particles (up to at least 45 μm in diameter), suggesting that they may use an alternative particle capture mechanism in addition to opposed bands of cilia. © 2015 Marine Biological Laboratory.

  18. Post-larval development of the commercial sponge Spongia officinalis L. (Porifera, Demospongiae).

    PubMed

    Gaino, E; Baldacconi, R; Corriero, G

    2007-10-01

    This study investigated the development of the larvae of Spongia officinalis in experimental conditions, after settlement on plastic substrates, using electron and light microscopy. The released larvae show a dark pigmented ring distinguishes the posterior larval pole. The youngest larvae, covered with a flagellate epithelium, move onwards by rotating on their longitudinal axis. Over time a creeping-like motion prevails, probably linked to the need for settlement. After a free-swimming period of 24-48 h, larvae settle on the artificial substrate by the anterior pole. At settlement, the flagellate epithelium is substituted by flattened cells, which delimit the outermost surface. Post-larvae were reared to about three months. The early phase of post-larval differentiation shows a solid interior mainly consisting of granular cells varying in shape and size. They are included in a dense collagen matrix that contains a conspicuous amount of bacteria. Lacunae are already evident in the initial phase of metamorphosis. In several of them, cell debris and nucleate cells are visible. This feature is consistent with a progressive reduction of the cell mass (autolysis). Neither choanocyte chambers nor canals differentiate. The morphogenetic process leads to a metamorph only consisting of vacuolated cells and collagen fibrils included in a thin fibrous coat.

  19. Tcmof regulates larval/pupal development and female fecundity in red flour beetle, Tribolium castaneum.

    PubMed

    Wang, Yanyun; Li, Chengjun; Sang, Ming; Li, Bin

    2015-02-01

    Males absent on the first (MOF) was originally identified as an essential component of the X chromosome dosage compensation system in Drosophila melanogaster, and is also a member of the MYST family of histone acetyltransferases. MOF has been extensively studied in D. melanogaster and mammals. However, whether MOF is involved in dosage compensation and/or other vital functions for newly emerging model insects such as Tribolium castaneum, is unclear. We cloned the mof from T. castaneum, named Tcmof. Phylogenetic analysis revealed that mof is highly conserved in eukaryotes but lost in birds. qPCR showed that Tcmof was most highly expressed in the early embryo stage and equally expressed in males and females. Treating larvae with ds-Tcmof led 79.1% of the insects to arrest during its eclosion; the remaining insects died either in the larval stage or immediately following eclosion. Treating pupae with the same construct eliminated the fertility of T. castaneum. This effect was rescued by reciprocal crosses with wild-type females, but not males. We infer that the mof gene is essential for larval/pupal development and female fertility in T. castaneum.

  20. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity.

    PubMed

    Chung, J Sook; Maurer, Leah; Bratcher, Meagan; Pitula, Joseph S; Ogburn, Matthew B

    2012-09-03

    Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5' and 3' RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. We report the ontogenetic variation in CasAQP-1 expression during the larval development

  1. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity

    PubMed Central

    2012-01-01

    Background Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. Results A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5′ and 3′ RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. Conclusions We report the ontogenetic variation in CasAQP-1

  2. Early development and organization of the retinopetal system in the larval sea lamprey, Petromyzon marinus L. An HRP study.

    PubMed

    Rodicio, M C; Pombal, M A; Anadón, R

    1995-12-01

    Development of the retinopetal system of the larval sea lamprey, Petromyzon marinus, was investigated following labelling of this system by injection of horseradish peroxidase into the orbit. This study extends our previous report on larval stages and provides a detailed description of the development of this system. We present quantitative and qualitative evidence suggesting that the retinopetal nuclei of Schober's M2-M5 nucleus, the mesencephalic reticular area and the tectum arise sequentially in that order, that the three retinopetal nuclei originate from a common anlage in the ventricular zone of the mesencephalic tegmentum and that the retinopetal cell population increases throughout the larval period. No neuronal death was observed. We also describe and discuss the significance of a transitory phase of retinopetal cell differentiation characterized by the presence of ventricular dendrites. Finally, we compare the development of retinopetal and retinofungal systems.

  3. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development.

  4. Brain plasticity over the metamorphic boundary: carry-over effect of larval environment on froglet brain development.

    PubMed

    Trokovic, N; Gonda, A; Herczeg, G; Laurila, A; Merilä, J

    2011-06-01

    Brain development shows high plasticity in response to environmental heterogeneity. However, it is unknown how environmental variation during development may affect brain architecture across life history switch points in species with complex life cycles. Previously, we showed that predation and competition affect brain development in common frog (Rana temporaria) tadpoles. Here, we studied whether larval environment had carry-over effects in brains of metamorphs. Tadpoles grown at high density had large optic tecta at metamorphosis, whereas tadpoles grown under predation risk had small diencephala. We found that larval density had a carry-over effect on froglet optic tectum size, whereas the effect of larval predation risk had vanished by metamorphosis. We discuss the possibility that the observed changes may be adaptive, reflecting the needs of an organism in given environmental and developmental contexts. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  5. Anatomy and development of the larval nervous system in Echinococcus multilocularis.

    PubMed

    Koziol, Uriel; Krohne, Georg; Brehm, Klaus

    2013-05-04

    The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of

  6. Anatomy and development of the larval nervous system in Echinococcus multilocularis

    PubMed Central

    2013-01-01

    Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system

  7. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.

    PubMed

    Bishop, Cory D; MacNeil, Katelyn E A; Patel, Digna; Taylor, Valerie J; Burke, Robert D

    2013-05-01

    The structure and development of the larval nervous systems of all classes of echinoderms have been described and details of embryonic signaling mechanisms patterning neurogenesis have been revealed experimentally in sea urchins. Several features of neuroanatomy and neural development indicate that echinoids are the most derived group. Here we describe the development and organization of the nervous system of a cidaroid, Eucidaris tribuloides. The cidaroids are one of two major clades of echinoids, and are considered to have features of anatomy and development that represent the common ancestor to all echinoids. The embryos of E. tribuloides lack a thickened animal plate and serotonergic neurons arise laterally, associated with the ciliary band. Although lacking a discrete apical organ, plutei have serotonergic neurons associated with the pre-oral ciliary band joined by a few diffusely arranged connecting axons. Chordin and Hnf6, early markers for oral ectoderm and ciliary band, are expressed in similar patterns to euechinoids. However, an animal pole domain marker, Nk2.1, is expressed in a broader region of anterior ectoderm than in euechinoids. Six3, a proneural marker that is restricted to the animal plate of euechinoids, is expressed laterally in the preoral ciliary band at the same location as the serotonergic neurons. We conclude that the organization and development of the larval nervous system of E. tribuloides retains features shared with other echinoderm larvae, but not with euechinoids. These data support a model in which several distinctive features of euechinoid neural organization are derived, having arisen after the divergence of the two clades of echinoids about 265 million years ago. We hypothesize that differences in the developmental mechanisms that restrict neurogenesis to the animal pole forms the basis for the distinctive neuroanatomy of euechinoids.

  8. Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea).

    PubMed

    Martínez-Lagos, R; Tovar-Ramírez, D; Gracia-López, V; Lazo, J P

    2014-06-01

    The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine-alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine-alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.

  9. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development.

    PubMed

    De Marco, Rodrigo J; Groneberg, Antonia H; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging.

  10. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  11. Development of a larval bioassay for susceptibility of cat fleas (Siphonaptera: Pulicidae) to imidacloprid.

    PubMed

    Rust, M K; Waggoner, M; Hinkle, N C; Mencke, N; Hansen, O; Vaughn, M; Dryden, M W; Payne, P; Blagburn, B L; Jacobs, D E; Bach, T; Bledsoe, D; Hopkins, T; Mehlhorn, H; Denholm, I

    2002-07-01

    Strategies for controlling cat fleas, Ctenocephalidesfelisfelis (Bouché), have undergone dramatic changes in the past 5 yr. With the advent of on-animal treatments with residual activity the potential for the development of insecticide resistance increases. A larval bioassay was developed to determine the baseline susceptibility of field-collected strains of cat fleas to imidacloprid. All four laboratory strains tested showed a similar level of susceptibility to imidacloprid. Advantages of this bioassay are that smaller numbers of fleas are required because flea eggs are collected for the test. Insect growth regulators and other novel insecticides can also be evaluated. Using a discriminating dose, the detection of reduced susceptibility in field strains can be determined with as few as 40 eggs.

  12. The importance of feeding in the larval development of the ghost shrimp Callichirus major (Decapoda: Callianassidae).

    PubMed

    Abrunhosa, Fernando A; Arruda, Danielle C B; Simith, Darlan J B; Palmeira, Carlos A M

    2008-09-01

    The present study investigated whether the callianassid Callichirus major shows a lecithotrophic behaviour during larval development. Two experiments were carried out. In the first experiment, larvae were subjected to an initial period of feeding, while in the second they were subjected to an initial period of starvation. In Experiment 1, 80% of C. major larvae succeeded moulting to juvenile stage in treatment with larvae fed every day. In the treatments with larvae fed for 1, 2 and 3 days there was total mortality before they reached the megalopal stage. In Experiment 2, zoea larvae showed more resistance when subjected to an initial period of starvation in which larvae starved for 1, 2 and 3 days and had survival rates of 100, 60 and 80%, respectively. But, a delay in the development duration of the zoeal stages was observed. Total mortality was observed for larvae reared in the treatment with entire starvation. The results suggest that zoeal stages of C. major are not lecithotrophic.

  13. The presence of predators modifies the larval development of Fasciola hepatica in surviving Lymnaea truncatula.

    PubMed

    Rondelaud, D; Vignoles, P; Dreyfuss, G

    2002-06-01

    Experimental infections of Lymnaea truncatula with Fasciola hepatica were performed to study the consequences of the presence of predators (sciomyzid larvae or zonitid snails) on the characteristics of larval F. hepatica development in surviving snails. Controls consisted of infected snails that were not subjected to predators. Compared to controls, the survival rate at day 30 post-exposure, the duration of cercarial shedding, and the number of cercariae shed by surviving snails were significantly lower when predators were present in snail breeding boxes, whatever the type of predator used. In contrast, the prevalences of Fasciola infections in snails, and the length of time between exposure and the onset of cercarial shedding showed no significant variation. The progressive development of a stress reaction in surviving snails against predators during the first 30 days of experimental exposure to F. hepatica would influence snail survival during the cercarial shedding period and, consequently, the number of cercariae shed by the snails.

  14. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  15. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Shamsudin, Mariana Nor; Amin, S. M. N.

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  16. [Larval development of some Bregmaceros species (Pisces: Bregmacerotidae) from the southeast Gulf of Mexico].

    PubMed

    Blas-Cabrera, Jorge; Sánchez-Ramírez, Marina; Ocaña-Luna, Alberto

    2006-06-01

    We redescribe the larval development of Bregmaceros cantori based on 925 specimens ranging from 1.1 to 20.2 mm in standard length (SL), and describe the larvae of B. atlanticus (27 larvae, 1.7-7.5 mm), B. houdei (six, 1.5-1.9 mm) and B. macclellandi (three, 2.4, 3.4 and 5.4 mm). All specimens were collected in the southern Gulf of Mexico from November 27 through December 6, 1998. Larvae were identified to species, and descriptions were made based on pigmentation, and morphometric and meristic characteristics. We defined five development stages: preflexion, flexion, postflexion, transformation and juvenile. In the preflexion stage B. cantori displayed a greater growth in mouth size and head length relative to SL (positive allometry); there was negative allometry from the flexion to juvenile stage. B. cantori have the shortest body height and head length, thus being the thinnest; whereas B. macclellandi larvae are the most robust ones. From the four species reported from the southern Gulf of Mexico, B. atlanticus larvae are the most pigmented in both head and body, with an homogeneous pattern; B. macclellandi presents a different pigmentation pattern consisting in large melanophore groups with a body arrangement that changes from one stage to the next; additionally, from the preflexion stage it develops both the occipital radius and pelvic fins. B. houdei larvae measuring 1.5 to 1.9 mm have melanophores at the tip of the lower jaw and the head, as well as at the pectoral fin base. Larval development was more pronounced in this B. cantori and B. atlanticus than in specimens from higher latitudes.

  17. Proteomic Analysis of Oesophagostomum dentatum (Nematoda) during Larval Transition, and the Effects of Hydrolase Inhibitors on Development

    PubMed Central

    Ondrovics, Martina; Silbermayr, Katja; Mitreva, Makedonka; Young, Neil D.; Razzazi-Fazeli, Ebrahim; Gasser, Robin B.; Joachim, Anja

    2013-01-01

    In this study, in vitro drug testing was combined with proteomic and bioinformatic analyses to identify and characterize proteins involved in larval development of Oesophagostomum dentatum, an economically important parasitic nematode. Four hydrolase inhibitors ο-phenanthroline, sodium fluoride, iodoacetamide and 1,2-epoxy-3-(pnitrophenoxy)-propane (EPNP) significantly inhibited (≥90%) larval development. Comparison of the proteomic profiles of the development-inhibited larvae with those of uninhibited control larvae using two-dimensional gel electrophoresis, and subsequent MALDI-TOF mass spectrometric analysis identified a down-regulation of 12 proteins inferred to be involved in various larval developmental processes, including post-embryonic development and growth. Furthermore, three proteins (i.e. intermediate filament protein B, tropomyosin and peptidyl-prolyl cis-trans isomerase) inferred to be involved in the moulting process were down-regulated in moulting- and development-inhibited O. dentatum larvae. This first proteomic map of O. dentatum larvae provides insights in the protein profile of larval development in this parasitic nematode, and significantly improves our understanding of the fundamental biology of its development. The results and the approach used might assist in developing new interventions against parasitic nematodes by blocking or disrupting their key biological pathways. PMID:23717515

  18. Effects of food limitation and pharmaceutical compounds on the larval development and morphology of Palaemon serratus.

    PubMed

    González-Ortegón, Enrique; Giménez, Luis; Blasco, Julian; Le Vay, Lewis

    2015-01-15

    Few ecotoxicological studies consider the roles of maternal influences and suboptimal environmental conditions when assessing the impact of pollutants on organisms. We studied the combined effects of pharmaceutical compounds, food condition and maternal body size on growth, development, body mass and morphology of larvae of the marine shrimp Palaemon serratus. Limited food availability is considered a factor leading to reduced survival and growth in marine crustacean larvae. It is known that P. serratus responses to food limitation vary among larvae hatched from females of different body length. The pharmaceuticals tested were the anti-inflammatory and analgesic diclofenac sodium (DS: at 77 μg L-1 and 720 μg L-1) the lipid regulator clofibric acid (CA: at 42 μg L-1 and 394 μg L-1) and the fungicide clotrimazole (CLZ: at 0.07 μg L-1 and 3.16 μg L-1). We observed morphological abnormalities in larvae exposed to CLZ. In addition, effects of this compound were stronger under food limitation leading to (1) reduced survival by 30%, (2) reduced juvenile body mass (22%) and (3) reduction in the number of molt stages (from 13 to 9) during larval development. This latter effect may indicate that CLZ reduced the larval capacity to respond to food limitation because development through a longer route, with additional stages, is considered an adaptive response to prioritize maintenance over morphogenesis. CA and DS affected developmental rate under food limitation but not growth or body mass. The toxic effects of CLZ, at lower concentrations than CA and DS, were stronger in larvae with higher body mass, hatched from the largest females. This suggests that maternal influences and suboptimal environmental conditions should be further studied to inform modeling of the effects of emergent compounds on larvae of marine coastal species.

  19. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century.

  20. Combined endosulfan and cypermethrin-induced toxicity to embryo-larval development of Rhinella arenarum.

    PubMed

    Svartz, Gabriela V; Aronzon, Carolina M; Pérez Coll, Cristina S

    2016-01-01

    The combined effects of two widely used pesticides, endosulfan and cypermethrin, on survival of embryo-larval development of the South American toad (Rhinella arenarum) were examined. The toxicity bioassays were performed according to the AMPHITOX test. Embryos and larvae were exposed to mixtures of these pesticides at equitoxic ratios from acute or chronic exposure to evaluate interaction effects. The results were analyzed using both Marking's additive index and combination index (CI)-isobologram methods. Acute (96-h) and intermediate (168-h) toxicity of endosulfan-cypermethrin mixtures remained almost constant for larvae and embryos, but when exposure duration was increased, there was a significant elevation in toxicity, obtaining chronic (240-h) no-observed-effect concentrations (NOEC) values of 0.045 and 0.16 mg/L for embryos and larvae, respectively. These are environmentally relevant concentrations that reflect a realistic risk of this pesticide mixture to this native amphibian species. The toxicity increment with the exposure duration was coincident with the central nervous system development on embryos reaching the larval period, the main target organ of these pesticides. The interactions of the pesticide mixtures at acute and chronic exposure were antagonistic for embryo development (CI > 1), and additive (CI = 1) for larvae, while chronic exposure interactions were synergistic (CI < 1) for both developmental periods. Data indicated that endosulfan-cypermethrin mixtures resulted in different interaction types depending on duration and developmental stage exposed. As a general pattern and considering conditions of overall developmental period and chronic exposure, this pesticide mixture usually applied in Argentine crop fields is synergistic with respect to toxicity for this native amphibian species.

  1. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  2. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature.

  3. Trenbolone causes mortality and altered sexual differentiation in Xenopus tropicalis during larval development.

    PubMed

    Olmstead, Allen W; Kosian, Patricia A; Johnson, Rodney; Blackshear, Pamela E; Haselman, Jonathan; Blanksma, Chad; Korte, Joseph J; Holcombe, Gary W; Burgess, Emily; Lindberg-Livingston, Annelie; Bennett, Blake A; Woodis, Kacie K; Degitz, Sigmund J

    2012-10-01

    Trenbolone is an androgen agonist used in cattle production and has been measured in aquatic systems associated with concentrated animal-feeding operations. In this study, the authors characterized the effects of aqueous exposure to 17β-trenbolone during larval Xenopus tropicalis development. Trenbolone exposure resulted in increased mortality of post-Nieuwkoop-Faber stage 58 tadpoles at concentrations ≥100 ng/L. Morphological observations and the timing of this mortality are consistent with hypertrophy of the larynx. Development of nuptial pads, a male secondary sex characteristic, was induced in tadpoles of both sexes at 100 ng/L. Effects on time to complete metamorphosis or body sizes were not observed; however, grow-outs placed in clean media for six weeks were significantly smaller in body size at 78 ng/L. Effects on sex ratios were equivocal, with the first experiment showing a significant shift in sex ratio toward males at 78 ng/L. In the second experiment, no significant effects were observed up to 100 ng/L, although overall sex ratios were similar. Histological assessment of gonads at metamorphosis showed half with normal male phenotypes and half that possessed a mixed-sex phenotype at 100 ng/L. Hypertrophy of the Wolffian ducts was also observed at this concentration. These results indicate that larval 17β-trenbolone exposure results in effects down to 78 ng/L, illustrating potential effects from exposure to androgenic compounds in anurans. Copyright © 2012 SETAC.

  4. The formation of the nervous system during larval development in Triops cancriformis (Bosc) (crustacea, Branchiopoda): An immunohistochemical survey.

    PubMed

    Fritsch, Martin; Richter, Stefan

    2010-12-01

    We provide data of the development of thenervous system during the first five larval stages of Triops cancriformis. We use immunohistochemical labeling (against acetylated α-tubulin, serotonin, histamine, and FMRFamide), confocal laser scanning microscopy analysis, and 3D-reconstruction. The development of the nervous system corresponds with the general anamorphic development in T. cancriformis. In larval stage I (L I), all brain parts (proto-, deuto-, and tritocerebrum), the circumoral connectives, and the mandibular neuromere are already present. Also, the frontal filaments and the developing nauplius eye are already present. However, until stage L III, the nauplius eye only consists of three cups. Throughout larval development, the protocerebral network differentiates into distinct subdivisions. In the postnaupliar region, additional neuromeres and their commissures emerge in an anteroposterior gradient. The larval nervous system in L V consists of a differentiated protocerebrum including a central body, a nauplius eye comprising four cups, a circumoral nerve ring, mandibular- and postnaupliar neuromeres up to the seventh thoracic segment, each featuring an anterior and a posterior commissure, and two parallel connectives. The presence of a protocerebral bridge is questionable. The distribution of neurotransmitters in L I is restricted to the naupliar nervous system. Over the course of the five stages of development, neurotransmitter distribution also follows an anteroposterior gradient. Each neuromere is equipped with two ganglia innervating the locomotional appendages and possesses a specific neurotransmitter distribution pattern. We suggest a correlation between neurotransmitter expression and locomotion. © 2010 Wiley-Liss, Inc.

  5. Nonconsumptive effects of predatory Chrysomya rufifacies (Diptera: Calliphoridae) larval cues on larval Cochliomyia macellaria (Diptera: Calliphoridae) growth and development

    USDA-ARS?s Scientific Manuscript database

    Forensic entomologists often rely on development data associated with a given species to estimate when it colonized human or other vertebrate remains. In most instances, these development studies are based on single species reared in isolation in the laboratory. This study examined the impact of e...

  6. Fine-scale temperature fluctuation and modulation of Dirofilaria immitis larval development in Aedes aegypti.

    PubMed

    Ledesma, Nicholas; Harrington, Laura

    2015-04-15

    We evaluated degree-day predictions of Dirofilaria immitis development (HDU) under constant and fluctuating temperature treatments of equal average daily temperature. Aedes aegypti mosquitoes were infected with D. immitis microfilariae and parasite development was recorded at set time points in dissected mosquitoes. Time to L3 development in Malpighian tubules and detection in mosquito heads was shorter for larvae experiencing a daily regime of 19±9°C than larvae at constant 19°C; larval development rate in Malpighian tubules was slower in fluctuating regimes maintained above the 14°C developmental threshold than larvae under constant temperatures. We showed that hourly temperature modeling more accurately predicted D. immitis development to infective L3 stage. Development time differed between fluctuating and constant temperature treatments spanning the 14°C development threshold, implicating a physiological basis for these discrepancies. We conclude that average daily temperature models underestimate L3 development-and consequently dog heartworm transmission risk-at colder temperatures, and spatiotemporal models of D. immitis transmission risk should use hourly temperature data when analyzing high daily temperature ranges spanning 14°C. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Exploration of the “larval pool”: development and ground-truthing of a larval transport model off leeward Hawai‘i

    PubMed Central

    Kobayashi, Donald R.

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai‘i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai‘i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai‘i, and the dispersal of larvae throughout the Hawaiian archipelago. PMID:26855873

  8. Fine-scale temperature fluctuation and modulation of Dirofilaria immitis larval development in Aedes aegypti

    PubMed Central

    Ledesma, Nicholas; Harrington, Laura

    2015-01-01

    We evaluated degree-day predictions of Dirofilaria immitis development (HDU) under constant and fluctuating temperature treatments of equal average daily temperature. Aedes aegypti mosquitoes were infected with D. immitis microfilariae and parasite development was recorded at set time points in dissected mosquitoes. Time to L3 development in Malpighian tubules and detection in mosquito heads was shorter for larvae experiencing a daily regime of 19±9°C than larvae at constant 19°C; larval development rate in Malpighian tubules was slower in fluctuating regimes maintained above the 14°C developmental threshold than larvae under constant temperatures. We showed that hourly temperature modeling more accurately predicted D. immitis development to infective L3 stage. Development time differed between fluctuating and constant temperature treatments spanning the 14°C development threshold, implicating a physiological basis for these discrepancies. We conclude that average daily temperature models underestimate L3 development—and consequently dog heartworm transmission risk—at colder temperatures, and spatio-temporal models of D. immitis transmission risk should use hourly temperature data when analyzing high daily temperature ranges spanning 14°C. PMID:25747489

  9. Nonconsumptive Effects of Predatory Chrysomya rufifacies (Diptera: Calliphoridae) Larval Cues on Larval Cochliomyia macellaria (Diptera: Calliphoridae) Growth and Development.

    PubMed

    Flores, Micah; Crippen, Tawni L; Longnecker, Michael; Tomberlin, Jeffery K

    2017-09-01

    Forensic entomologists often rely on development data associated with a given species to estimate when it colonized human or other vertebrate remains. In most instances, these development studies are based on single species reared in isolation in the laboratory. This study examined the impact of excretions and secretions (ES) associated with third-instar Chrysomya rufifacies (Macquart), a predator, on the development of its prey, Cochliomyia macellaria (F.). Not surprisingly, Ch. rufifacies ES did not impact the development of first- or second-instar C. macellaria, which are typically not preyed on by Ch. rufifacies. However, development of third-instar C. macellaria, which do experience predation, was impacted. First, larvae were longer than those in the control (deionized water, dH2O). Filtering the ES and removing the associated bacteria and byproducts >0.2 µm dampened the previous impact observed by the unfiltered ES on third-instar C. macellaria. Second, third-instar C. macellaria treated with unfiltered ES completed pupariation 8 h quicker than the controls. Filtering the ES lessened this effect by 50%. And finally, third-instar C. macellaria treated with filtered or unfiltered Ch. rufifacies ES reached adulthood ∼5 h faster than controls treated with dH2O. In summary, these data have large ramifications for forensic entomology, as multiple species being present on decomposing remains is not uncommon. Understanding the impact of associated ES produced by interspecific cohorts on associated development could lead to more precise estimates of the minimum postmortem interval for forensic investigation of decomposing remains. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella.

    PubMed

    Kwon, Bowon; Song, Seongbaeck; Choi, Jae Young; Je, Yeon Ho; Kim, Yonggyun

    2010-06-01

    A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged

  11. GROWTH AND CHANGES IN BIOCHEMICAL COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in Menippe adina was associated with changes in weight and biochemical composition. Larvae of the stone crab, M. adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in M. adina is exponential througho...

  12. Oviposition and larval development of a stem borer, Eoreuma loftini, on rice and non-crop grass hosts

    USDA-ARS?s Scientific Manuscript database

    A greenhouse study compared oviposition preference and larval development duration of a stem borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), on rice, Oryza sativa L. (cv. Cocodrie), and four primary non-crop hosts of Gulf Coast Texas rice agroecosystems. Rice and two perennials, johnsongrass...

  13. GROWTH AND CHANGES IN BIOCHEMICAL COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in Menippe adina was associated with changes in weight and biochemical composition. Larvae of the stone crab, M. adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in M. adina is exponential througho...

  14. Estuarine Larval Development and Upstream Post-Larval Migration of Freshwater Shrimps in Two Tropical Rivers of Puerto Rico

    Treesearch

    Jonathan P. Benstead; James G. March; Catherine M. Pringle

    2000-01-01

    Migratory freshwater shrimps represent important links between the headwaters and estuaries of many tropical rivers. These species exhibit amphidromous life cycles in which larvae are released by females in upper reaches of rivers; first stage (i.e., newly hatched) larvae drift passively to coastal environments where they develop and metamorphose into postlarvae...

  15. Embryonic and larval development in the caecilian Ichthyophis kohtaoensis (Amphibia, gymnophiona): a staging table.

    PubMed

    Dünker, N; Wake, M H; Olson, W M

    2000-01-01

    Little is known about the developmental biology of caecilians-tropical, elongate, limbless, mostly fossorial amphibians that are members of the Order Gymnophiona. Ichthyophis kohtaoensis (Family Ichthyophiidae; southeast Asia) is an oviparous species in which maternal care of the clutch is provided. The clutch is laid in a burrow on land, and the embryos develop in their egg membranes, curved around a large yolk mass. Larvae are aquatic and exhibit characteristic features that are not present in the terrestrial adults. Because accurate descriptions of ontogenies and the establishment of standardized stages of embryonic and larval development are useful for both experimental and comparative embryology, a staging table for I.kohtaoensis was developed based on external morphological features. Development from the end of neurulation to metamorphosis was divided into 20 stages. Principal diagnostic features include development of the lateral line organs, formation of three pairs of external gills, development of the eyes, changes in yolk structure, changes in the structure of the cloacal aperture and growth of the tail, including the formation and regression of the tail fin. This study provides a comparison with descriptions of embryonic stages of I.glutinosus and Hypogeophis rostratus and with a recent staging table for the aquatic, viviparous caecilian Typhlonectes compressicauda, the only other caecilians for which reasonably complete ontogenetic information exists in the literature. Comparisons with established staging tables for selected frogs and salamanders are also presented.

  16. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    PubMed Central

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin∷GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin∷GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment. PMID:16415365

  17. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis

    PubMed Central

    Richter-Boix, Alex; Tejedo, Miguel; Rezende, Enrico L

    2011-01-01

    Anurans breed in a variety of aquatic habitats with contrasting levels of desiccation risk, which may result in selection for faster development during larval stages. Previous studies suggest that species in ephemeral ponds reduce their developmental times to minimize desiccation risks, although it is not clear how variation in desiccation risk affects developmental strategies in different species. Employing a comparative phylogenetic approach including data from published and unpublished studies encompassing 62 observations across 30 species, we tested if species breeding in ephemeral ponds (High risk) develop faster than those from permanent ponds (Low risk) and/or show increased developmental plasticity in response to drying conditions. Our analyses support shorter developmental times in High risk, primarily by decreasing body mass at metamorphosis. Plasticity in developmental times was small and did not differ between groups. However, accelerated development in High risk species generally resulted in reduced sizes at metamorphosis, while some Low risk species were able compensate this effect by increasing mean growth rates. Taken together, our results suggest that plastic responses in species breeding in ephemeral ponds are constrained by a general trade-off between development and growth rates. PMID:22393479

  18. Development of larval Schistosoma japonicum blocked in Oncomelania hupensis by pre-infection with larval Exorchis sp.

    PubMed

    Tang, Chong-Ti; Lu, Ming-Ke; Guo, Yue; Wang, Yi-Nan; Peng, Jin-Yong; Wu, Wei-Bao; Li, Wen-Hong; Weimer, Bart C; Chen, Dong

    2009-12-01

    Schistosomiasis continues to be a significant public health threat in the world. In the area of parasitic diseases, it is widely considered second only to malaria as a global health problem, with an incalculable drain on the economic resources of countries where it is endemic. Schistosoma japonicum is widespread in eastern and southeastern Asia, where the amphibious snail, Oncomelania hupensis, is the intermediate host. In the present study, we found that infection of O. hupensis with the mature eggs of another trematode, Exorchis sp., inhibited development of S. japonicum mother sporocysts in O. hupensis. Exorchis sp. commonly infects the edible fish Parasilurus asotus in China, but it is harmless to humans. This discovery provides an opportunity for possible biological control of S. japonicum infection and transmission. Additionally, it has the potential to substantially reduce the impact of the global S. japonicum that is independent of antihelminthic use. The mechanisms used by Exorchis sp. to inhibit infection by S. japonicum in the snail require further investigation.

  19. Discrete Pulses of Molting Hormone, 20-Hydroxyecdysone, During Late Larval Development of Drosophila melanogaster: Correlations With Changes in Gene Activity

    PubMed Central

    Warren, James T.; Yerushalmi, Yoram; Shimell, Mary Jane; O'Connor, Michael B.; Restifo, Linda; Gilbert, Lawrence I.

    2008-01-01

    Periodic pulses of the insect steroid molting hormone 20-hydroxyecdysone (20E), acting via its nuclear receptor complex (EcR/USP), control gene expression at many stages throughout Drosophila development. However, during the last larval instar of some lepidopteran insects, subtle changes in titers of ecdysteroids have been documented, including the so-called "commitment peak". This small elevation of 20E reprograms the larva for metamorphosis to the pupa. Similar periods of ecdysteroid immunoreactivity have been observed during the last larval instar of Drosophila. However, due to low amplitude and short duration, along with small body size and staging difficulties, their timing and ecdysteroid composition have remained uncertain. Employing a rigorous regimen of Drosophila culture and a salivary gland reporter gene, Sgs3-GFP, we used RP-HPLC and differential ecdysteroid RIA analysis to determine whole body titers of 20E during the last larval instar. Three small peaks of 20E were observed at 8, 20 and 28 hr following ecdysis, prior to the well-characterized large peak around the time of pupariation. The possible regulation of 20E levels by biosynthetic P450 enzymes and the roles of these early peaks in coordinating gene expression and late larval development are discussed. PMID:16273522

  20. Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae)

    NASA Astrophysics Data System (ADS)

    Anger, K.; Dawirs, R. R.

    1981-09-01

    The influence of starvation on larval development of the spider crab Hyas araneus (L.) was studied in laboratory experiments. No larval stage suffering from continual lack of food had sufficient energy reserves to reach the next instar. Maximal survival times were observed at four different constant temperatures (2°, 6°, 12° and 18 °C). In general, starvation resistance decreased as temperatures increased: from 72 to 12days in the zoea-1, from 48 to 18 days in the zoea-2, and from 48 to 15 days in the megalopa stage. The length of maximal survival is of the same order of magnitude as the duration of each instar at a given temperature. “Sublethal limits” of early starvation periods were investigated at 12 °C: Zoea larvae must feed right from the beginning of their stage (at high food concentration) and for more than one fifth, approximately, of that stage to have at least some chance of surviving to the next instar, independent of further prey availability. The minimum time in which enough reserves are accumulated for successfully completing the instar without food is called “point-of-reserve-saturation” (PRS). If only this minimum period of essential initial feeding precedes starvation, development in both zoeal stages is delayed and mortality is greater, when compared to the fed control. Starvation periods beginning right after hatching of the first zoea cause a prolongation of this instar and, surprisingly, a slight shortening of the second stage. The delay in the zoea-1 increases proportionally to the length of the initial fasting period. If more than approximately 70 % of the maximum possible survival time has elapsed without food supply, the larvae become unable to recover and to moult to the second stage even when re-fed (“point-of-no-return”, PNR). The conclusion, based on own observations and on literature data, is that initial feeding is of paramount importance in the early development of planktotrophic decapod larvae. Taking into account

  1. Larval amphibian growth and development under varying density: are parasitized individuals poor competitors?

    PubMed

    Koprivnikar, J; Forbes, M R; Baker, R L

    2008-03-01

    Population density and infection with parasites often are important factors affecting the growth and development of individuals. How these factors co-occur and interact in nature should have important consequences for individual fitness and higher-order phenomena, such as population dynamics of hosts and their interactions with other species. However, few studies have examined the joint effects of density and parasitism on host growth and development. We examined the co-influences of rearing density and parasitism, by the trematode Echinostoma trivolvis, on the growth and development of larval frogs, Rana (=Lithobates) pipiens. We also examined the potential role of parasite-mediated intraspecific competition by observing how unparasitized individuals performed when housed with other unparasitized tadpoles, versus housing with a combination of unparasitized and parasitized hosts. Mean mass and mean developmental stage were reduced under high rearing densities. The presence of parasitized conspecifics had no significant effect, but there was a significant interaction of density and parasitism presence on host mass, due to the fact that parasitized conspecifics grew poorly at high densities. Unparasitized individuals reared with parasitized and unparasitized conspecifics fared no better than unparasitized individuals reared only with one another. This result indicates that infected hosts compete as much as uninfected hosts for resources, even though infected individuals have reduced mass under high-density conditions. Resource acquisition and resource allocation are different processes, and parasitism, if it only affects the latter, might not have a discernible impact on competitive interactions.

  2. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  3. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  4. Larval serum proteins of the gypsy moth, Lymantria dispar: Allometric changes during development suggest several functions for arylphorin and lipophorin

    SciTech Connect

    Karpells, S.T.

    1989-01-01

    Storage proteins are the major nutritive intermediates in insects and although the serum storage proteins are relatively well studied, definitive roles for many of them have yet to be established. To further characterize their roles in development and to establish quantitative baselines for future studies, two serum proteins, arylphorin (Ap) and lipophorin (Lp), of the gypsy moth, Lymantria dispar, were studied. Ap and Lp, isolated from larval hemolymph, were partially characterized biochemically and immunologically. Hemolymph concentrations throughout larval development were determined using quantitative immunoelectrophoresis and absolute hemolymph amounts of protein were determined by measuring hemolymph volume. Cyclic fluctuations in hemolymph concentrations of Ap in particular correlated with each molting cycle and an increase in Lp levels just prior to pupation suggest a metamorphic change in the role or demand for the protein. Sexual dimorphism in protein concentrations are explained in part by the sexual dimorphism in the number of larval instars. In fact, an additional instar of Ap accumulation in the female gypsy moth is suggested to compensate for the lack of a female-specific storage protein in this species. The last two days of each instar were found to be the optimum time to sample protein concentration with minimum variance. Allometric relationships among Ap accumulation, Lp accumulation and weight gain were uncovered. Ap labelled with ({sup 14}C)-N-ethylmaleimide was shown to be incorporated into newly synthesized cuticle and setae during a larval-larval molt. The antiserum developed against L. dispar Ap was used to identify the Ap of Trichoplusia in and study Ap titers in parasitized T. in larvae. The antiserum was also used to determine the immunological relatedness of 5 species of Lepidoptera.

  5. Embryonic and larval development in barfin flounder Verasper moseri (Jordan and Gilbert)

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Wang, Yongqiang; Jiang, Haibin; Liu, Liming; Wang, Maojian; Li, Tianbao; Zhang, Shubao

    2010-01-01

    Broodstock of Verasper moseri (Jordan and Gilbert) aged 3-4 years old were selected, and reinforced cultivation was conducted to promote maturation under controlled water temperature and photoperiod conditions. Fertilized eggs were obtained by artificial fertilization, and the development of embryos, larvae and juveniles was observed continuously. The results showed that the fertilized eggs of V. moseri were spherical, with transparent yolk and homogeneous bioplasm, and had no oil globule inside. The average diameter of the eggs was 1.77±0.02 mm. The eggs of V. moseri were buoyant in water with salinity above 35. The cleavage type was typical discoidal. Young pigment cells appeared when olfactory plates began to form. Hatching occurred at 187 h after fertilization at a water temperature of 8.5°C. The newly hatched larvae, floating on the water surface, were transparent with an average total length of 4.69±0.15 mm. During the cultivation period, when the water temperature was raised from 9 to 14.5°C, 4-day old larvae showed more melanophores on the body surface, making the larvae gray in color. The pectoral fins began to develop, which enabled the larvae to swim horizontally and in a lively manner. On days 7-8, the digestive duct formed. The yolk sac was small and black. The yolk sac was absorbed on day 11. Larvae took food actively, and body length and body height clearly increased. The rudiments of dorsal and anal fin pterygiophores were discernible and caudal fin ray elements formed on day 19. On day 24, the larval notochord flexed upwards, and the rays of unpaired fins began to differentiate. Pigment cells converged on the dorsal and anal fin rays, and the mastoid teeth on the mandible appeared. On day 29, the left eyes of juveniles began to move upwards. Depigmentation began in some juveniles and they became sandy brown in color on day 37. Most juveniles began to settle on the bottom of the tank. The left eyes of juveniles migrated completely to the right

  6. Inter- and Intra-Specific Density-Dependent Effects on Life History and Development Strategies of Larval Mosquitoes

    PubMed Central

    Tsurim, Ido; Silberbush, Alon; Ovadia, Ofer; Blaustein, Leon; Margalith, Yoel

    2013-01-01

    We explored how inter- and intra-specific competition among larvae of two temporary-pool mosquito species, Culiseta longiareolata and Ochlerotatus caspius, affect larval developmental strategy and life history traits. Given that their larvae have similar feeding habits, we expected negative reciprocal inter-specific interactions. In a microcosm experiment, we found sex-specific responses of larval survival and development to both intra- and inter-specific larval competition. C. longiareolata was the superior competitor, reducing adult size and modifying larval developmental time of O. caspius. We observed two distinct waves of adult emergence in O. caspius, with clear sex-specific responses to its inter-specific competitor. In males, this pattern was not affected by C. longiareolata, but in females, the timing and average body size of the second wave strongly varied with C. longiareolata density. Specifically, in the absence of C. longiareolata, the second wave immediately followed the first wave. However, as C. longiareolata abundance increased, the second wave was progressively delayed and the resulting females tended to be larger. This study improves our understanding of the way intra- and inter-specific competition combine to influence the life histories of species making up temporary pond communities. It also provides strong evidence that not all individuals of a cohort employ the same strategies in response to competition. PMID:23469250

  7. Silver Exposure in Developing Zebrafish (Danio rerio): Persistent Effects on Larval Behavior and Survival

    PubMed Central

    Powers, Christina M.; Yen, Jerry; Linney, Elwood A.; Seidler, Frederic J.; Slotkin, Theodore A.

    2010-01-01

    The increased use of silver nanoparticles in consumer and medical products has led to elevated human and environmental exposures. Silver nanoparticles act as antibacterial/antifungal agents by releasing Ag+ and recent studies show that Ag+ impairs neural cell replication and differentiation in culture, suggesting that in vivo exposures could compromise neurodevelopment. To determine whether Ag+ impairs development in vivo, we examined the effects of exposure on survival, morphological, and behavioral parameters in zebrafish embryos and larvae. Methods We exposed zebrafish from 0–5 days post-fertilization to concentrations of Ag+ ranging from 10 nM to 100 µM in order to assess effects on survival and early embryonic development. We then tested whether concentrations below the threshold for dysmorphology altered larval behavior and subsequent survival. Ag+ concentrations ≥3 µM significantly reduced embryonic survival, whereas 1 µM delayed hatching with no effect on survival. Reducing the concentration to as low as 0.1 µM delayed the inflation of the swim bladder without causing gross dysmorphology or affecting hatching. At this concentration, swimming activity was impaired, an effect that persisted past the point where swim bladder inflation became normal; in contrast, general motor function was unaffected. The early behavioral impairment was then predictive of subsequent decreases in survival. Ag+ is a developmental toxicant within concentrations only slightly above allowable levels. At low concentrations, Ag+ acts as a neurobehavioral toxicant even in the absence of dysmorphology. PMID:20116428

  8. Early embryo and larval development of inviable intergeneric hybrids derived from Crassostrea angulata and Saccostrea cucullata

    NASA Astrophysics Data System (ADS)

    Su, Jiaqi; Wang, Zhaoping; Zhang, Yuehuan; Yan, Xiwu; Li, Qiongzhen; Yu, Ruihai

    2016-06-01

    To detect the intergeneric hybridization between the oyster Crassostrea angulata and Saccostrea cucullata coexisting along the southern coast of China, reciprocal crosses were conducted between the two species. Barriers for sperm recognizing, binding, penetrating the egg, and forming the pronucleus were detected by fluorescence staining. From the results, although fertilization success was observed in hybrid crosses, the overall fertilization rate was lower than that of intraspecific crosses. A large number of hybrid larvae died at 6-8 d after hatching, and those survived could not complete metamorphosis. C. angulata ♀× S. cucullata ♂ larvae had a growth rate similar to that of the maternal species, whereas S. cucullata ♀ × C. angulata ♂ larvae grew the slowest among all crosses. Molecular genetics analysis revealed that hybrid progeny were amphimixis hybrids. This study demonstrated that hybrid embryos generated by crossing C. angulata and S. cucullata could develop normally to the larval state, but could not complete metamorphosis and then develop to the spat stage. Thus, there is a post-reproductive isolation between C. angulata and S. cucullata.

  9. Acidic intracellular pH shift during Caenorhabditis elegans larval development

    SciTech Connect

    Wadsworth, W.G.; Riddle, D.L. )

    1988-11-01

    During recovery from the developmentally arrested, nonfeeding dauer stage of the nemotode Caenorhabditis elegans, metabolic activation is accompanied by a decrease in intracellular pH (pH{sub i}). Phosphorus-31 nuclear magnetic resonance ({sup 31}P NMR) analyses of perchloric acid extracts show that inorganic phosphate predominates in dauer larvae, whereas ATP and other high-energy metabolites are abundant within 6 hr after dauer larvae have been placed in food to initiate development. Although metabolic activation has been associated with an alkaline pH{sub i} shift in other organisms, in vivo {sup 31}P NMR analysis of recovering dauer larvae shows a pH{sub i} decrease from {approx} 7.3 to {approx} 6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and it coincides with, or soon follows, the developmental commitment to recover from the dauer stage, suggesting that control of pH{sub i} may be important in the regulation of larval development in nematodes.

  10. The development of the digestive tract in larval European catfish (Silurus glanis L.).

    PubMed

    Kozarić, Z; Kuzir, S; Petrinec, Z; Gjurcević, E; Bozić, M

    2008-04-01

    The European catfish, Silurus glanis L., has become an important aqua cultural fish in Croatia, and it is cultivated extensively in ponds in polyculture with carps. The development of the digestive tract in S. glanis was studied with the aim of improving intensive fish production. Research was carried out on S. glanis larval stadium from 1- to 19-day post-hatching (DPH). The main histological methods used were: haematoxylin and eosin staining, periodic acid Schiff staining (PAS), Alcian blue (AB) and toluidin blue staining (TB). A yolk sac was present during the first 5 days (1-5-DPH). During the initial 3-DPH period, there was no trace PAS and AB activity in the digestive tract. Differentiation of the digestive tract began at 3- to 5-DPH. The oesophagus was positive for AB at 5-DPH, PAS and TB after 7-DPH. Differentiation of enterocytes began at 5-DPG and the intestines were complete at 11-DPH. Development of liver and pancreas was also studied. The analysis of data obtained in this study suggests that after 5-DPH catfish larvae have morphologically completed digestive tracts.

  11. In vitro detection of benzimidazole resistance in Haemonchus contortus: egg hatch test versus larval development test.

    PubMed

    Várady, M; Cudeková, P; Corba, J

    2007-10-21

    The present study was designed to compare the egg hatch test (EHT) and the larval development test (LDT) as in vitro tools for detection of benzimidazole (BZ) resistance in Haemonchus contortus, a nematode parasite of small ruminants. Comparisons were made during a course of infection and changes in both EHT and LDT were monitored to measure the correlation between resistance and susceptibility in different parasite stages (eggs and larvae). In addition, mixed doses of known numbers of susceptible and BZ-resistant H. contortus eggs were used to assess the sensitivity of LDT for the detection of low levels of resistance. The degree of resistance for each test was expressed as resistance factor (RF). The LDT showed a greater ability to distinguish between four susceptible and four resistant isolates of H. contortus with higher resistance factors compared to the EHT. For the EHT the RF by using ED(50) criterion ranged from 3.2 to 13.3 and from 7.4 to 25.2 by using LC(99). For LDT the resistant isolates were 4.3-63.1 times more tolerant than the susceptible isolates using the ED(50) criterion and 91.1-1411.0 times more tolerant using the LC(99) criterion. The LDT was also able to clearly indicate the presence of low level (4%) of resistant larvae amongst a susceptible background population.

  12. Larval development of Angiostrongylus vasorum in the land snail Helix aspersa.

    PubMed

    Di Cesare, Angela; Crisi, Paolo Emidio; Bartolini, Roberto; Iorio, Raffaella; Talone, Tonino; Filippi, Laura; Traversa, Donato

    2015-10-01

    The metastrongyloid nematode Angiostrongylus vasorum affects the heart and pulmonary arteries of dogs and wild animals. Over the recent years, dog angiostrongylosis has gained great attention in the veterinary community for the expansion of its geographic range and for a rise in the number of clinical cases. Global warming, changes in phenology of mollusc intermediate hosts and movements of wild reservoirs have been evocated in the spreading of mollusc-borne parasites, including A. vasorum. The land snail Helix aspersa, a vector of other respiratory metastrongyloids, is endemic in most regions of the World, where it is a pest outside its native Mediterranean range. In the present study, the susceptibility and suitability of H. aspersa as an intermediate host of A. vasorum were investigated along with the characteristics of larval recovery and development following two different ways of inoculation, i.e. experimental (group A) vs natural infection (group B). After infections, the snails were kept at environmental conditions for 2 months. Five snails from groups A and B were randomly selected, digested and examined at 15-day intervals for 2 months. L1s, L2s and L3s were microscopically identified based on key morphological and morphometric characteristics and their identity was genetically confirmed. The results showed that A. vasorum may reach the infective stage in H. aspersa and that uptake of larvae and parasitic burden within the snails depend on the grazing capability of the molluscs. Biological and epidemiological implications are discussed.

  13. Inner Ear Otolith Growth in larval Fish after Development at simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Baur, U.; Hilbig, R.; Anken, R.

    It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish via a down-regulation of carbonic anhydrase reactivity as an adaptation towards altered environmental gravity We were thus prompted to elucidate whether clinorotation would possibly yield opposite effects Therefore larval siblings of cichlid fish Oreochromis mossambicus were housed in a submersed two-dimensional clinostat Two tubes with different diameters were used 10 5 mm large tube LT and 3 5 mm small tube ST experimental time-span 10 and 7 days respectively After the experiments otoliths were dissected and their size area grown during the experiments was determined planimetrically In case of the LT-clinorotated fish both utricular and saccular otoliths lapilli and sagittae respectively were significantly smaller than those of the 1g-controls In contrast ST-maintenance resulted in significantly larger otoliths lapilli only no statistical significant difference regarding sagittae observed The results from LT-clinorotation therefore indicate that the animals had in fact received hypergravity whereas the ST-data are to be interpreted as being effected by simulated microgravity conditions In conclusion otolith growth is affected by the gravitational vector in a dose-dependent manner Acknowledgement This work was financially supported by the German Aerospace Center DLR FKZ 50 WB 9997

  14. Influence of salinity on fertilization and larval development toxicity tests with two species of sea urchin.

    PubMed

    Carballeira, C; Martín-Díaz, L; Delvalls, T A

    2011-10-01

    Sea urchin embryo-larval development (ELD) and fertilization tests have been widely used in ecotoxicity studies and are included in regulatory frameworks. Biological processes occur naturally within a range of salinity that depends on the species considered. In an attempt to determine the optimum range of salinity, ELD and fertilization bioassays were performed at different salinities (15-40.5‰) with two species of Atlantic sea urchin: Arbacia lixula and Paracentrotus lividus. In the ELD assay, the optimum range of salinity was wider for A. lixula (29-35.5‰) than for P. lividus (29-33‰). In the fertilization assay with P. lividus as a bioindicator species, the highest percentage of fertilization (90%) was obtained at salinities of between 29 and 33‰. More research on A. lixula is required, since the fertilization success was below 60%. The results of the present study demonstrate that salinity may be a confounding factor in interpreting ELD test results.

  15. Megalodicopia hians in the Monterey submarine canyon: Distribution, larval development, and culture

    NASA Astrophysics Data System (ADS)

    Havenhand, Jon. N.; Matsumoto, George I.; Seidel, Ed

    2006-02-01

    The exclusively deep-sea ascidian family Octacnemidae comprises several genera in which the oral siphon has hypertrophied to form two large lips which create an "oral hood" capable of capturing motile prey. Megalodicopia hians is typical of this carnivorous family and has been reported to prey upon small epibenthic crustaceans. Distribution of M. hians in the Monterey Canyon system (36°45'N, 122°00'W) (California) was determined with remotely operated vehicles. M. hians was found sparsely to depths of at least 3800 m throughout the canyon; however, abundance was greatest within the oxygen-minimum zone (400-800 m). Eggs, sperm, and recently fertilized embryos were obtained repeatedly from adults returned to the laboratory in vivo, indicating that this species free-spawns routinely. Overall egg diameter (ovum plus chorion, plus follicle cells) was 175-190 μm—considerably smaller than previously reported for this species. Embryonic development at temperature and oxygen concentrations equivalent to the oxygen-minimum zone was 2-4 d and, embryos gave rise to typical phlebobranch "simple" tadpole larvae. Larval period was extremely variable, and settlement/metamorphosis occurred up to 3 months post-hatching. These results are discussed within the context of settlement-site selection and fertilization ecology of the species.

  16. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    PubMed

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts.

  17. Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement

    PubMed Central

    Rossi, Tullio; Nagelkerken, Ivan; Simpson, Stephen D.; Watson, Sue-Ann; Merillet, Laurene; Fraser, Peter; Munday, Philip L.; Connell, Sean D.

    2015-01-01

    Locating appropriate settlement habitat is a crucial step in the life cycle of most benthic marine animals. In marine fish, this step involves the use of multiple senses, including audition, olfaction and vision. To date, most investigations of larval fish audition focus on the hearing thresholds to various frequencies of sounds without testing an ecological response to such sounds. Identifying responses to biologically relevant sounds at the development stage in which orientation is most relevant is fundamental. We tested for the existence of ontogenetic windows of reception to sounds that could act as orientation cues with a focus on vulnerability to alteration by human impacts. Here we show that larvae of a catadromous fish species (barramundi, Lates calcarifer) were attracted towards sounds from settlement habitat during a surprisingly short ontogenetic window of approximately 3 days. Yet, this auditory preference was reversed in larvae reared under end-of-century levels of elevated CO2, such that larvae are repelled from cues of settlement habitat. These future conditions also reduced the swimming speeds and heightened the anxiety levels of barramundi. Unexpectedly, an acceleration of development and onset of metamorphosis caused by elevated CO2 were not accompanied by the earlier onset of attraction towards habitat sounds. This mismatch between ontogenetic development and the timing of orientation behaviour may reduce the ability of larvae to locate habitat or lead to settlement in unsuitable habitats. The misinterpretation of key orientation cues can have implications for population replenishment, which are only exacerbated when ontogenetic development decouples from the specific behaviours required for location of settlement habitats. PMID:26674946

  18. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development

    PubMed Central

    Walker, Benjamin S.; Lassiter, Christopher S.; Jónsson, Zophonías O.

    2016-01-01

    The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E2 during larval head development. PMID:27069811

  19. Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development

    PubMed Central

    2014-01-01

    parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs. PMID:24468049

  20. Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel.

    PubMed

    Arellano, Shawn M; Young, Craig M

    2009-04-01

    We describe culturing techniques and development for the cold-seep mussel "Bathymodiolus" childressi, the only deep-sea bivalve for which development has been detailed. Spawning was induced in mature mussels by injection of 2 mmol l(-1) serotonin into the anterior adductor muscle. The mean egg diameter is 69.15 +/- 2.36 microm (+/-S.D.; n = 50) and eggs are negatively buoyant. Cleavages are spiral and at 7-8 degrees C occur at a rate of one per 3-9 h through hatching, with free-swimming blastulae hatching by 40 h and shells beginning to develop by day 12. When temperature was raised to 12-14 degrees C after hatching, larvae developed to D-shell veligers by day 8 without being fed. Egg size and larval shell morphology indicate that "B." childressi has a planktotrophic larva, but we did not observe feeding in culture. Wide distribution of this species throughout the Gulf of Mexico and amphi-Atlantic distributions of closely related congeners suggest that larvae may spend extended periods in the plankton. Duration of larval life was estimated for "B." childressi by comparing calculated settlement times to known spawning seasons. These estimates suggest variability in the larval duration, with individuals spending more than a year in the plankton.

  1. Testing the effect of dietary carotenoids on larval survival, growth and development in the critically endangered southern corroboree frog.

    PubMed

    Byrne, Phillip G; Silla, Aimee J

    2017-03-01

    The success of captive breeding programs (CBPs) for threatened species is often limited due to a lack of knowledge of the nutritional conditions required for optimal growth and survival. Carotenoids are powerful antioxidants known to accelerate vertebrate growth and reduce mortality. However, the effect of carotenoids on amphibian life-history traits remains poorly understood. The aim of our study was to use a manipulative laboratory experiment to test the effect of dietary-carotenoid supplementation during the larval life stage on the survival, growth and development of the critically endangered southern corroboree frog (Pseudophryne corroboree). Larvae were fed either a carotenoid supplemented diet or an unsupplemented diet and the survival, growth and development of individuals was monitored and compared. There was no significant effect of dietary treatment on larval survival, growth rate, time taken to reach metamorphosis, or body size at metamorphosis. Our findings provide no evidence that carotenoid supplementation during the larval life stage improves the growth and development of southern corroboree frogs. However, because the carotenoid dose used in our study did not have any detrimental effects on P. corroboree larvae, but has previously been shown to improve adult coloration, immunity, and exercise performance, carotenoid supplementation should be considered when evaluating the nutritional requirements of P. corroboree in captivity. Carotenoid supplementation studies are now required for a diversity of anuran species to determine the effects of carotenoids on amphibian survival, growth and development. Understanding the effects of dietary carotenoids on different life-history traits may assist with amphibian captive breeding and conservation.

  2. CLONING AND FUNCTIONAL CHARACTERIZATION OF TWO CALMODULIN GENES DURING LARVAL DEVELOPMENT IN THE PARASITIC FLATWORM SCHISTOSOMA MANSONI

    PubMed Central

    Taft, Andrew S.; Yoshino, Timothy P.

    2013-01-01

    Schistosomiasis is endemic in over 70 countries in which more than 200 million people are infected with the various schistosome species. Understanding the physiological processes underlying key developmental events could be useful in developing novel chemotherapeutic reagents or infection intervention strategies. Calmodulin is a small, calcium-sensing protein found in all eukaryotes and, although the protein has been previously identified in various Schistosoma mansoni stages and implicated in egg hatching and miracidia transformation, little molecular and functional data are available for this essential protein. Herein, we report the molecular cloning, expression, and functional characterization of calmodulin in the miracidia and primary sporocyst stages of S. mansoni. Two transcripts, SmCaM1 and SmCaM2, were cloned and sequenced, and a recombinant SmCaM1 protein was expressed in Escherichia coli and used to generate anti-CaM antibodies. The 2 protein sequences were highly conserved when compared to other model organisms. The alignment of the predicted proteins of both SmCaM1 and SmCaM2 exhibited 99% identity to each other and 97–98% identity with mammalian calmodulins. Analysis of steady-state transcript abundance indicate that the 2 calmodulin transcripts differ in their stage-associated expression patterns, although the CaM protein isotype appears to be constitutively expressed during early larval development. Application of RNAi to larval parasites results in a “stunted growth” phenotype in sporocysts with 30% and 35% reduction in transcript abundance for SmCaM1 and SmCaM2, respectively, and a corresponding 35% reduction in protein level after incubation in double-stranded RNA. Differential expression of CaM transcripts during early larval development and a growth defect-inducing effect associated with partial transcript and protein inhibition as a result of RNAi, suggest a potentially important role of calmodulin during early larval development. PMID

  3. Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem.

    PubMed

    Havird, Justin C; Vaught, Rebecca C; Weese, David A; Santos, Scott R

    2015-10-01

    Larvae in aquatic habitats often develop in environments different from those they inhabit as adults. Shrimp in the Atyidae exemplify this trend, as larvae of many species require salt or brackish water for development, while adults are freshwater-adapted. An exception within the Atyidae family is the "anchialine clade," which are euryhaline as adults and endemic to habitats with subterranean fresh and marine water influences. Although the Hawaiian anchialine atyid Halocaridina rubra is a strong osmoregulator, its larvae have never been observed in nature. Moreover, larval development in anchialine species is poorly studied. Here, reproductive trends in laboratory colonies over a 5-y period are presented from seven genetic lineages and one mixed population of H. rubra; larval survivorship under varying salinities is also discussed. The presence and number of larvae differed significantly among lineages, with the mixed population being the most prolific. Statistical differences in reproduction attributable to seasonality also were identified. Larval survivorship was lowest (12% settlement rate) at a salinity approaching fresh water and significantly higher in brackish and seawater (88% and 72%, respectively). Correlated with this finding, identifiable gills capable of ion transport did not develop until metamorphosis into juveniles. Thus, early life stages of H. rubra are apparently excluded from surface waters, which are characterized by lower and fluctuating salinities. Instead, these stages are restricted to the subterranean (where there is higher and more stable salinity) portion of Hawaii's anchialine habitats due to their inability to tolerate low salinities. Taken together, these data contribute to the understudied area of larval ecology in the anchialine ecosystem. © 2015 Marine Biological Laboratory.

  4. Differential Gene Expression during Larval Metamorphic Development in the Pearl Oyster, Pinctada fucata, Based on Transcriptome Analysis

    PubMed Central

    Zhang, Bo; Huang, Guiju; Liu, Baosuo; Fan, Sigang; Zhang, Dongling

    2016-01-01

    P. fucata experiences a series of transformations in appearance, from swimming larvae to sessile juveniles, during which significant changes in gene expression likely occur. Thus, P. fucata could be an ideal model in which to study the molecular mechanisms of larval metamorphosis during development in invertebrates. To study the molecular driving force behind metamorphic development in larvae of P. fucata, transcriptomes of five larval stages (trochophore, D-shape, umbonal, eyespots, and spats) were sequenced using an Illumina HiSeq™ 2000 system and assembled and characterized with the transcripts of six tissues. As a result, a total of 174,126 unique transcripts were assembled and 60,999 were annotated. The number of unigenes varied among the five larval stages. Expression profiles were distinctly different between trochophore, D-shape, umbonal, eyespots, and spats larvae. As a result, 29 expression trends were sorted, of which eight were significant. Among others, 80 development-related, differentially expressed unigenes (DEGs) were identified, of which the majority were homeobox-containing genes. Most DEGs occurred among trochophore, D-shaped, and UES (umbonal, eyespots, and spats) larvae as verified by qPCR. Principal component analysis (PCA) also revealed significant differences in expression among trochophore, D-shaped, and UES larvae with ten transcripts identified but no matching annotations. PMID:27843935

  5. Yolk-sac larval development of the substrate-brooding cichlid Archocentrus nigrofasciatus in relation to temperature.

    PubMed

    Vlahos, Nikolaos; Vasilopoulos, Michael; Mente, Eleni; Hotos, George; Katselis, George; Vidalis, Kosmas

    2015-09-01

    In order to conserve and culture the cichlid fish Archocentrus nigrofasciatus, more information about its reproductive biology and its larval behavior and morphogenesis is necessary. Currently, temperatures ranging from 21 to 27 °C are used in ornamental aquaculture hatcheries. Lower temperatures are preferred to reduce the costs of water heating, and 23 °C is usually the selected temperature. However, there is limited information on culturing protocols for ornamental species and most of the information generated on this topic remains scarce. Thus, the present study examines the morphological development of Archocentrus nigrofasciatus during the yolk-sac period up to the age of 100 h post-hatching in relation to 2 temperature regimes used in ornamental aquaculture: a temperature of 27 °C (thermal optimum) and a decreased temperature of 23 °C (thermal tolerance). The results of this study suggest that the 27 °C temperature generates intense morphological changes in yolk-sac development in a shorter period. This has advantages as it reduces the time of yolk-sac larval development, and, thus, minimizes the transition phase to exogenous feeding and maximizes the efficiency at which yolk is converted into body tissues. The present paper provides necessary information to produce freshwater ornamental fish with better practices so as to increase larval survival and capitalize on time for growth.

  6. Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    PubMed Central

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A.; Davis, Andrew R.; Byrne, Maria

    2010-01-01

    Background As the oceans simultaneously warm, acidify and increase in PCO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. Methodology/Principal Findings We examined the interactive effects of near-future ocean warming and increased acidification/PCO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/PCO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/PCO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/PCO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth. Conclusions and Significance This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high PCO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations. PMID:20613879

  7. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.

    PubMed

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A; Davis, Andrew R; Byrne, Maria

    2010-06-29

    As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2) on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2) treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2) and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P(CO2) treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. This study of the effects of ocean warming and CO(2) driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2) ocean would likely impair their performance with negative consequent effects for benthic adult populations.

  8. Reverse osmosis and ultrafiltration for recovery and reuse of larval rearing water in Anopheles arabiensis mass production: Effect of water quality on larval development and fitness of emerging adults.

    PubMed

    Mamai, Wadaka; Hood-Nowotny, Rebecca; Maiga, Hamidou; Ali, Adel Barakat; Bimbile-Somda, Nanwintoun S; Soma, Diloma Dieudonné; Yamada, Hanano; Lees, Rosemary Susan; Gilles, Jeremie R L

    2017-06-01

    Countries around the world are showing increased interest in applying the sterile insect technique against mosquito disease vectors. Many countries in which mosquitoes are endemic, and so where vector control using the sterile insect technique may be considered, are located in arid zones where water provision can be costly or unreliable. Water reuse provides an alternate form of water supply. In order to reduce the cost of mass rearing of Anopheles arabiensis mosquitoes, the possibility of recycling and reusing larval rearing water was explored. The used rearing water ('dirty water') was collected after the tilting of rearing trays for collection of larvae/pupae, and larvae/pupae separation events and underwent treatment processes consisting of ultrafiltration and reverse osmosis. First-instar An. arabiensis larvae were randomly assigned to different water-type treatments, 500 larvae per laboratory rearing tray: 'clean' dechlorinated water, routinely used in rearing; dirty water; and 'recycled' dirty water treated using reverse osmosis and ultrafiltration. Several parameters of insect quality were then compared: larval development, pupation rate, adult emergence, body size and longevity. Water quality of the samples was analyzed in terms of ammonia, nitrite, nitrate, sulphate, dissolved oxygen, chloride, and phosphate concentrations after the larvae had all pupated or died. Surface water temperatures were also recorded continuously during larval development. Pupation rates and adult emergence were similar in all water treatments. Adult body sizes of larvae reared in recycled water were similar to those reared in clean water, but larger than those reared in the dirty larval water treatment, whereas the adult longevity of larvae reared in recycled water was significantly increased relative to both 'clean' and 'dirty' water. Dirty larval water contained significantly higher concentrations of ammonium, sulfate, phosphate and chloride and lower levels of dissolved

  9. Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...

  10. Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...

  11. Efficacy and longevity of the newly developed catnip oil microcapsules against stable fly oviposition larval growth

    USDA-ARS?s Scientific Manuscript database

    The stable fly, Stomoxys calcitrans (Diptera: Muscidae), is one of the most important pests of cattle and costs U.S. cattle producers billions of dollars in losses annually. In this study, the efficacy of catnip oil encapsulated in gelatin in oviposition deterrence and larval growth inhibition in st...

  12. Inbreeding Effects in Families of Ostrinia nubilalis (Lepidoptera: Crambidae): Larval Development in Laboratory Bioassays

    USDA-ARS?s Scientific Manuscript database

    Inbreeding depression of laboratory-reared insects has the potential to affect their larval performance and reproductive output. Two studies of laboratory-reared colonies of Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae) were conducted to assess whether inbreeding affected a laboratory bioass...

  13. Efficacy and longevity of newly developed catnip oil microcapsules against stable fly oviposition and larval growth.

    PubMed

    Zhu, J J; Wienhold, B J; Wehrle, J; Davis, D; Chen, H; Taylor, D; Friesen, K; Zurek, L

    2014-06-01

    The stable fly, Stomoxys calcitrans (Diptera: Muscidae), is one of the most important pests of cattle and costs U.S. cattle producers billions of dollars in losses annually. In this study, the efficacy of catnip oil encapsulated in gelatin in oviposition deterrence and larval growth inhibition in stable flies was examined under laboratory conditions. More than 98% inhibition of stable fly larval growth and female oviposition was observed in larval and oviposition media treated with encapsulated catnip oil (0.5 g). Further, dose-response tests showed that as little as 0.1 g of encapsulated catnip oil provided > 85% oviposition deterrence. The release of nepetalactones from the capsules was more rapid when the capsules were placed on a moist substrate rather than a dry substrate. Encapsulated catnip oil also exhibited antibacterial activity, supporting the hypothesis that its inhibition of larval growth may be based on its killing of the bacteria on which larvae feed. The use of encapsulated catnip oil can provide an alternative control strategy for stable fly management.

  14. Gonadosomatic mosaicism for lethal mutations in Drosophila lethal mutations disturbing larval development

    SciTech Connect

    Ivanov, A.I.; Sakharova, N.Yu.

    1988-11-01

    Phenogenetic analysis of autonomous lethal mutations obtained by the method of gonadosomatic mosaicism which manifested during larval stages, established that the nuclei of hypodermal cells, salivary glands suprapharyngeal ganglion, pharynx, esophagus, gizzard, and hindgut are the derivatives of the same nucleus (from the first two nuclei of cleavage) as the nuclei of the cells of the imaginal-somatic tissues.

  15. Silver Nanoparticles Alter Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating and Composition

    PubMed Central

    Powers, Christina M.; Slotkin, Theodore A.; Seidler, Frederic J.; Badireddy, Appala R.; Padilla, Stephanie

    2011-01-01

    Silver nanoparticles (AgNPs) act as antibacterials by releasing monovalent silver (Ag+) and are increasingly used in consumer products, thus elevating exposures in human and wildlife populations. In vitro models indicate that AgNPs are likely to be developmental neurotoxicants with actions distinct from those of Ag+. We exposed developing zebrafish (Danio rerio) to Ag+ or AgNPs on days 0–5 post-fertilization and evaluated hatching, morphology, survival and swim bladder inflation. Larval swimming behavior and responses to different lighting conditions were assessed 24 hr after the termination of exposure. Comparisons were made with AgNPs of different sizes and coatings: 10 nm citrate-coated AgNP (AgNP-C), and 10 or 50 nm polyvinylpyrrolidone-coated AgNPs (AgNP-PVP). Ag+ and AgNP-C delayed hatching to a similar extent but Ag+ was more effective in slowing swim bladder inflation, and elicited greater dysmorphology and mortality. In behavioral assessments, Ag+ exposed fish were hyperresponsive to light changes, whereas AgNP-C exposed fish showed normal responses. Neither of the AgNP-PVPs affected survival or morphology but both evoked significant changes in swimming responses to light in ways that were distinct from Ag+ and each other. The smaller AgNP-PVP caused overall hypoactivity whereas the larger caused hyperactivity. AgNPs are less potent than Ag+ with respect to dysmorphology and loss of viability, but nevertheless produce neurobehavioral effects that highly depend on particle coating and size, rather than just reflecting the release of Ag+. Different AgNP formulations are thus likely to produce distinct patterns of developmental neurotoxicity. PMID:21315816

  16. Sternopleural is a regulatory mutation of wingless with both dominant and recessive effects on larval development of Drosophila melanogaster

    SciTech Connect

    Neumann, C.J.; Cohen, S.M.

    1996-04-01

    The Drosophila wingless (wg) gene encodes a secreted signaling protein that is required for many separate patterning events in both embryonic and larval development. wg functions in the development of the adult structures have been studied using the conditional mutant wg{sup ts} and also using regulatory mutations of wg that reduce larval functions. Here we present evidence that Sternopleural (Sp) is another regulatory allele of wg that affects a subset of larval functions. Sp has both a recessive loss-of-function component and a gain-of-function component. The loss-of-function component reflects a reduction of wg activity in the notum and in the antenna. The gain-of-function component apparently leads to ectopic wg activity in the dorsal first and second leg disc and thereby generates the dominant Sp phenotype. Sp and other wg alleles show a complex pattern of complementation. We present evidence that these genetic properties are due to transvection. These results have implications for the genetic definition of a null allele at loci subject to transvection. 31 refs., 6 figs., 1 tab.

  17. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.)

    NASA Astrophysics Data System (ADS)

    Arnold, K. E.; Findlay, H. S.; Spicer, J. I.; Daniels, C. L.; Boothroyd, D.

    2009-03-01

    Oceanic uptake of anthropogenic CO2 results in a reduction in pH termed "Ocean Acidification" (OA). Comparatively little attention has been given to the effect of OA on the early life history stages of marine animals. Consequently, we investigated the effect of culture in CO2-acidified sea water (approx. 1200 ppm, i.e. average values predicted using IPCC 2007 A1F1 emissions scenarios for year 2100) on early larval stages of an economically important crustacean, the European lobster Homarus gammarus. Culture in CO2-acidified sea water did not significantly affect carapace length or development of H. gammarus. However, there was a reduction in carapace mass during the final stage of larval development in CO2-acidified sea water. This co-occurred with a reduction in exoskeletal mineral (calcium and magnesium) content of the carapace. As the control and high CO2 treatments were not undersaturated with respect to any of the calcium carbonate polymorphs measured, the physiological alterations we record are most likely the result of acidosis or hypercapnia interfering with normal homeostatic function, and not a direct impact on the carbonate supply-side of calcification per se. Thus despite there being no observed effect on survival, carapace length, or zoeal progression, OA related (indirect) disruption of calcification and carapace mass might still adversely affect the competitive fitness and recruitment success of larval lobsters with serious consequences for population dynamics and marine ecosystem function.

  18. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh.

  19. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis.

    PubMed

    Macedo, Maria Lígia R; Freire, Maria das Graças M; Kubo, Carlos Eduardo G; Parra, José Roberto P

    2011-01-01

    Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. The Implications of Temperature-Mediated Plasticity in Larval Instar Number for Development within a Marine Invertebrate, the Shrimp Palaemonetes varians

    PubMed Central

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of

  1. The implications of temperature-mediated plasticity in larval instar number for development within a marine invertebrate, the shrimp Palaemonetes varians.

    PubMed

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30 °C to assess their thermal scope for development. Larvae developed at 17, 25, and 30 °C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as 'repeat' instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25 °C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20 °C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of

  2. Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and West Nile virus

    SciTech Connect

    Zou, L.; Miller, S.N.; Schmidtmann, E.T.

    2006-09-15

    Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since the late 1990s. Large volumes of water are discharged, impounded, and released during the extraction of methane gas, creating aquatic habitats that have the potential to support immature mosquito development. Landsat TM and ETM + data were initially classified into spectrally distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites. This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial data layers for topography, streams, and soils to reduce the potential for overestimation of habitat. Accuracy assessment was carried out using field data and high-resolution aerial photography commensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of approximate to 0.4 ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study area, primarily because of the large increase in small coalbed methane water discharge ponds. These results may facilitate mosquito abatement programs in the Powder River Basin with the potential for application throughout the state and region.

  3. Mosquito larval habitat mapping using remote sensing and GIS: implications of coalbed methane development and West Nile virus.

    PubMed

    Zou, Li; Miller, Scott N; Schmidtmann, Edward T

    2006-09-01

    Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since the late 1990s. Large volumes of water are discharged, impounded, and released during the extraction of methane gas, creating aquatic habitats that have the potential to support immature mosquito development. Landsat TM and ETM+ data were initially classified into spectrally distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites. This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial data layers for topography, streams, and soils to reduce the potential for overestimation of habitat. Accuracy assessment was carried out using field data and high-resolution aerial photography commensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of approximately 0.4 ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study area, primarily because of the large increase in small coalbed methane water discharge ponds. These results may facilitate mosquito abatement programs in the Powder River Basin with the potential for application throughout the state and region.

  4. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.)

    NASA Astrophysics Data System (ADS)

    Arnold, K. E.; Findlay, H. S.; Spicer, J. I.; Daniels, C. L.; Boothroyd, D.

    2009-08-01

    Oceanic uptake of anthropogenic CO2 results in a reduction in pH termed "Ocean Acidification" (OA). Comparatively little attention has been given to the effect of OA on the early life history stages of marine animals. Consequently, we investigated the effect of culture in CO2-acidified sea water (approx. 1200 ppm, i.e. average values predicted using IPCC 2007 A1F1 emissions scenarios for year 2100) on early larval stages of an economically important crustacean, the European lobster Homarus gammarus. Culture in CO2-acidified sea water did not significantly affect carapace length of H. gammarus. However, there was a reduction in carapace mass during the final stage of larval development in CO2-acidified sea water. This co-occurred with a reduction in exoskeletal mineral (calcium and magnesium) content of the carapace. As the control and high CO2 treatments were not undersaturated with respect to any of the calcium carbonate polymorphs measured, the physiological alterations we record are most likely the result of acidosis or hypercapnia interfering with normal homeostatic function, and not a direct impact on the carbonate supply-side of calcification per se. Thus despite there being no observed effect on survival, carapace length, or zoeal progression, OA related (indirect) disruption of calcification and carapace mass might still adversely affect the competitive fitness and recruitment success of larval lobsters with serious consequences for population dynamics and marine ecosystem function.

  5. The Adult Body Plan of Indirect Developing Hemichordates Develops by Adding a Hox-Patterned Trunk to an Anterior Larval Territory.

    PubMed

    Gonzalez, Paul; Uhlinger, Kevin R; Lowe, Christopher J

    2017-01-09

    Many animals are indirect developers with distinct larval and adult body plans [1]. The molecular basis of differences between larval and adult forms is often poorly understood, adding a level of uncertainty to comparative developmental studies that use data from both indirect and direct developers. Here we compare the larval and adult body plans of an indirect developing hemichordate, Schizocardium californicum [2]. We describe the expression of 27 transcription factors with conserved roles in deuterostome ectodermal anteroposterior (AP) patterning in developing embryos, tornaria larvae, and post-metamorphic juveniles and show that the tornaria larva of S. californicum is transcriptionally similar to a truncated version of the adult. The larval ectoderm has an anterior molecular signature, while most of the trunk, defined by the expression of hox1-7, is absent. Posterior ectodermal activation of Hox is initiated in the late larva prior to metamorphosis, in preparation for the transition to the adult form, in which the AP axis converges on a molecular architecture similar to that of the direct developing hemichordate Saccoglossus kowalevskii. These results identify a molecular correlate of a major difference in body plan between hemichordate larval and adult forms and confirm the hypothesis that deuterostome larvae are "swimming heads" [3]. This will allow future comparative studies with hemichordates to take into account molecular differences caused by early life history evolution within the phylum. Additionally, comparisons with other phyla suggest that a delay in trunk development is a feature of indirect development shared across distantly related phyla. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Developing methods based on light sheet fluorescence microscopy for biophysical investigations of larval zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Michael J.

    Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using

  7. Development and organization of the larval nervous system in Phoronopsis harmeri: new insights into phoronid phylogeny

    PubMed Central

    2014-01-01

    Background The organization and development of the nervous system has traditionally been used as an important character for establishing the relationships among large groups of animals. According to this criterion, phoronids were initially regarded as deuterostomian but have more recently been regarded as protostomian. The resolving of this conflict requires detailed information from poorly investigated members of phoronids, such as Phoronopsis harmeri. Results The serotonin-like immunoreactive part of the P. harmeri nervous system changes during larval development. These changes mostly concern the nervous system of the hood and correlate with the appearance of the median and two marginal neurite bundles, the frontal organ, and the sensory field. The apical organ has bilateral symmetry. The tentacular neurite bundle passes under the tentacles, contains several types of perikarya, and gives rise to intertentacular bundles, which branch in the tentacle base and penetrate into adjacent tentacles by two lateroabfrontal bundles. There are two groups of dorsolateral perikarya, which exhibit serotonin-like immunoreactivity, contact the tentacular neurite bundle, and are located near the youngest tentacles. Larvae have a minor nerve ring, which originates from the posterior marginal neurite bundle of the hood, passes above the tentacle base, and gives rise to the mediofrontal neurite bundle in each tentacle. Paired laterofrontal neurite bundles of tentacles form a continuous nerve tract that conducts to the postoral ciliated band. Discussion The organization of the nervous system differs among the planktotrophic larvae of phoronid species. These differences may correlate with differences in phoronid biology. Data concerning the innervation of tentacles in different phoronid larvae are conflicting and require careful reinvestigation. The overall organization of the nervous system in phoronid larvae has more in common with the deuterostomian than with the protostomian

  8. Development of Erythroid Progenitors under Erythropoietin Stimulation in Xenopus laevis Larval Liver.

    PubMed

    Okui, Takehito; Hosozawa, Sakiko; Kohama, Satoka; Fujiyama, Shingo; Maekawa, Shun; Muto, Hiroshi; Kato, Takashi

    2016-12-01

    Erythroid progenitors that respond to erythropoietin (Epo) are present in the liver of adult Xenopus laevis. However, cells responding to Epo in the larval liver and through the metamorphosis period under hepatic remodeling have not been characterized. In this study, tadpoles were staged using the tables of Nieuwkoop and Faber (NF). Liver cells from pre- (NF56) or post- (NF66) metamorphic stage were cultured in the presence of Epo. β2-globin mRNA expression peaked at day 7 after the start of culture. Larval β2-globin was highly expressed in NF56-derived cells, while adult β2-globinwas detected in those of NF66. In both NF56- and NF66-derived cells, mRNA expression of eporand gata2 peaked at day 5 and days 3-4, respectively. In contrast, gata1 expression peaked at day 6 in NF56 cells and at day 5 in NF66 cells. Half maximal proliferation of erythrocytic blast cells derived from the liver at NF66 was observed at day 3, which was earlier than that of NF56. These results indicate that erythroid progenitors that respond to Xenopus laevis Epo are maintained in pre- and post-metamorphic liver, although the tissue architecture changes dramatically during metamorphosis. Additionally, the globin switching occurred, and/or the erythroid progenitors for larval erythrocytes were replaced by those for adult erythrocytes in the metamorphic liver.

  9. The Impact of Seawater Saturation State on Early Skeletal Development in Larval Corals: Insights into Scleractinian Biomineralization

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; McCorkle, D. C.; de Putron, S.

    2007-12-01

    contrast to the fine, closed, densely packed spherulitic bundles accreted in the control system, larvae in the lower Omega treatments produced a disorganized conglomerate of large, highly faceted crystals, consistent with slow growth under low saturation state conditions. Our results suggest that the coral calcification response to changes in seawater saturation state is linked to a physiological limitation on the organism's ability to elevate the saturation state of seawater within the calcifying space. Further, our data indicate that ocean acidification due to fossil fuel CO2 emissions will likely have a strong negative effect on the recruitment and early skeletal development of larval corals over the next several decades.

  10. Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae).

    PubMed

    Duguma, Dagne; Kaufman, Michael G; Simas Domingos, Arthur B

    2017-05-01

    Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top-down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on Culex larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of Culex nigripalpus larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top-down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density-dependent manner. These findings help our understanding of the basic larval biology of Culex mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial-based control methods.

  11. Characterization of bacterial communities associating with larval development of Yesso Scallop ( Patinopecten yessoensisis Jay, 1857) by high-throughput sequencing

    NASA Astrophysics Data System (ADS)

    Sun, Xueying; Liu, Jichen; Li, Ming; Zhao, Xuewei; Liang, Jun; Sun, Pihai; Ma, Yuexin

    2016-12-01

    Bacterial community presumably plays an essential role in inhibiting pathogen colonization and maintaining the health of scallop larvae, but limiting data are available for Yesso scallop ( Patinopecten yessoensisis Jay, 1857) larval development stages. The aim of this study was to characterize and compare the bacterial communities associating with Yesso scallop larval development at fertilized egg S1, trochophora S2, D-shaped larvae S3, umbo larvae S4, and juvenile scallop S5 stages by Illumina high-throughput sequencing. Genomic DNA was extracted from the larvae and their associating bactera, and a gene segment covering V3-V4 region of 16S rRNA gene was amplified and sequenced using an Illumina Miseq sequencer. Overall, 106760 qualified sequences with an average length of 449 bp were obtained. Sequences were compared with those retrieved from 16S rRNA gene databases, and 4 phyla, 7 classes, 15 orders, 21 families, 31 genera were identified. Proteobacteria was predominant phylum, accounting for more than 99%, at all 5 larval development stages. At genus level, Pseudomonas was dominant at stages S1 (80.60%), S2 (87.77%) and S5 (68.71%), followed by Photobacterium (17.06%) and Aeromonas (1.64%) at stage S1, Serratia (6.94%), Stenotrophomonas (3.08%) and Acinetobacter (1.2%) at stage S2, Shewanella (25.95%) and Pseudoalteromonas (4.57%) at stage S5. Moreover, genus Pseudoalteromonas became dominant at stages S3 (44.85%) and S4 (56.02%), followed by Photobacterium (29.82%), Pseudomonas (11.86%), Aliivibrio (8.60%) and Shewanella (3.39%) at stage S3, Pseudomonas (18.16%), Aliivibrio (14.29%), Shewanella (4.11%), Psychromonas (4.04%) and Psychrobacter (1.81%) at stage S4. From the results, we concluded that the bacterial community changed significantly at different development stages of Yesso Scallop larvae.

  12. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    PubMed

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  13. Embryonic development of the larval eyes of the Sunburst Diving Beetle, Thermonectus marmoratus (Insecta: Dytiscidae): a morphological study.

    PubMed

    Stecher, Nadine; Stowasser, Annette; Stahl, Aaron; Buschbeck, Elke K

    2016-07-01

    Stemmata, the larval eyes of holometabolous insects are extremely diverse, ranging from full compound eyes, to a few ommatidial units as are typical in compound eyes, to sophisticated and functionally specialized image-forming camera-type eyes. Stemmata evolved from a compound eye ommatidial ancestor, an eye type that is morphologically well conserved in regards to cellular composition, and well studied in regards to development. However, despite this evolutionary origin it remains largely unknown how stemmata develop. In addition, it is completely unclear how development is altered to give rise to some of the functionally most complex stemmata, such as those of the sunburst diving beetle, Thermonectus marmoratus. In this study, we used histological methods to investigate the embryonic development of the functionally complex principal stemmata Eye 1 and Eye 2 of the larval visual system of T. marmoratus. To gain insights into how cellular components of their sophisticated camera-type eyes might have evolved from the cellular components of ommatidial ancestors, we contrast our findings against known features of ommatidia development, which are particularly well understood in Drosophila. We find many similarities, such as the early presence of a pseudostratified epithelium, and the order in which specific cell types are recruited. However, in Thermonectus each cell type is represented by a large number of cells from early on and major tissue re-orientation occurs as eye development progresses. This study provides insights into the timing of morphological features and represents the basis for future molecular studies.

  14. Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    PubMed

    Gelmedin, Verena; Delaney, Angela; Jennelle, Lucas; Hawdon, John M

    2015-07-01

    protein expression, slightly down regulated both genes under similar conditions. Both modulators inhibited activation-associated feeding, but neither had an effect on hsp-1 levels in activated L3 at 16h. Both celastrol and KNK437 prevent the up-regulation of daf-21 and hsf-1 seen in non-activated control larvae during activation, and significantly down regulated expression of the HSF-1 negative regulator Aca-hsb-1 in activated larvae. Expression levels of heat shock response factors were examined in developing Ancylostoma ceylanicum larvae recovered from infected hosts and found to differ significantly from the expression profile of activated L3, suggesting that feeding during in vitro activation is regulated differently than parasitic development. Our results indicate that a classical heat shock response is not induced at host temperature and is suppressed during larval recovery and parasitic development in the host, but a partial heat shock response is induced after extended incubation at host temperature in the absence of a developmental signal, possibly to protect against heat stress.

  15. Experimental study of Lucilia sericata (Diptera Calliphoridae) larval development on rat cadavers: Effects of climate and chemical contamination.

    PubMed

    Aubernon, Cindy; Charabidzé, Damien; Devigne, Cédric; Delannoy, Yann; Gosset, Didier

    2015-08-01

    Household products such as bleach, gasoline or hydrochloric acid have been used to mask the presence of a cadaver or to prevent the colonization of insects. These types of chemicals affect insect development and alter the forensic entomology analysis. This study was designed to test the effects of six household products (bleach, mosquito repellent, perfume, caustic soda, insecticide and unleaded gasoline) on blowfly (Lucilia sericata, Diptera: Calliphoridae) larval development. Furthermore, the effects of climate (rain or dry conditions) on larval development were analyzed. For each replication, 100 first instars were placed on a rat cadaver on which one household product was spilled. We observed a decrease in the survival rates of the larvae but no significant effect on their development times or the adult size. The same trends were observed under rainy conditions. However, the rain altered the effects of some tested household products, especially gasoline. These results demonstrate for the first time the successful development of necrophagous larvae on chemically contaminated cadavers, and provide evidence for the range of possible effects to expect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of sub-lethal teratogen exposure during larval development on egg laying and egg quality in adult Caenorhabditis elegans

    PubMed Central

    Killeen, Alexis; Marin de Evsikova, Caralina

    2016-01-01

    Background: Acute high dose exposure to teratogenic chemicals alters the proper development of an embryo leading to infertility, impaired fecundity, and few viable offspring. However, chronic exposure to sub-toxic doses of teratogens during early development may also have long-term impacts on egg quality and embryo viability. Methods: To test the hypothesis that low dose exposure during early development can impact long-term reproductive health, Caenorhabditis elegans larvae were exposed to 10 teratogens during larval development, and subsequently were examined for the pattern of egg-laying and egg quality (hatched larvae and embryo viability) as gravid adults.  After the exposure, adult gravid worms were transferred to untreated plates and the numbers of eggs laid were recorded every 3 hours, and the day following exposure the numbers of hatched larvae were counted. Re sults: While fecundity and fertility were typically impaired by teratogens, unexpectedly, many teratogens initially increased egg-laying at the earliest interval compared to control but not at later intervals. However, egg quality, as assessed by embryo viability, remained the same because many of the eggs (<50%) did not hatch. Conclusions: Chronic, low dose exposures to teratogens during early larval development have subtle, long-term effects on egg laying and egg quality. PMID:28163903

  17. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions

    PubMed Central

    2012-01-01

    Background The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Methods Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. Results The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Conclusions Overall, several larval and adult biological traits were significantly affected by larval food

  18. Effects of offshore oil and gas development activities in southern California on larval settlement

    SciTech Connect

    Raimondi, P.T.; Barnett, A.; Krause, P.R.

    1995-12-31

    A series of in situ field experiments were conducted to determine effects of oil and gas drilling activities on the settlement of marine larvae in the deep ocean (180 m). The study sites were a series of three drilling rigs and three reference sites between Pt. Arguello and Pt. Conception in California. Experiments were carried out in both pre-drilling and drilling phases to test the effects of drilling activities (e.g. drilling, drilling mud release, and produced water discharges) on the ability of red abalone (Haliotis rufescens) larvae to settle using an in situ experiment. Their in situ experiment involved reciprocal transplants of settling plates that were ``filmed`` with bacteria from each site. After filming in the field at each of two heights, plates were mounted into chambers, covered with mesh and placed onto recoverable larval arrays for deployment in the field. Before deployment the authors injected approximately 300 competent red abalone larvae into each chamber. One larval array was deployed at each site for three days and each array contained plates filmed at all sites. In addition sterile plates (no surface filming) were included at each site. Upon recovery the number of settled abalone larvae were counted. Therefore, the experiment tested location-related (drilling sites versus reference), waterborne, and height effects on settlement in both the pre-drilling and drilling phases. Their results show that red abalone served as a sensitive indicator for in situ studies of larval settlement. The authors found significantly higher numbers of abalone settling onto plates that were filmed versus those that were not. The authors also found significantly lower settlement rates between the pre-drilling and drilling periods.

  19. Is Palaeospondylus gunni a fossil larval lungfish? Insights from Neoceratodus forsteri development.

    PubMed

    Joss, Jean; Johanson, Zerina

    2007-03-15

    The enigmatic Devonian fossil Palaeospondylus gunni was identified as a larval form, metamorphosing into the lungfish Dipterus valenciennesi. Morphological features used to identify P. gunni as a larval lungfish include enlarged cranial ribs, rudimentary limb girdles, and absence of teeth. However, this combination of features does not characterize the extant lungfish Neoceratodus forsteri, even at very young stages, nor early stages of Devonian and younger fossil lungfish. Absence of teeth is problematic because early ontogenetic stages of fossil and living lungfish possess full dentitions including marginal teeth. Also problematic are cranial ribs as a defining character of lungfish, as these also occur in certain actinopterygians. It is argued that Neoceratodus is an obligate neotene (reproductively mature larva), with the implication that metamorphosis was a feature of the ontogeny of early lungfish. Pedomorphic characters have been recognized in Neoceratodus and other post-Devonian lungfish, including large cells and correspondingly large genome size; these latter characters correlate with neoteny in salamanders. Small cells preserved in fossil bone suggest that Devonian lungfish had a smaller genome than post-Devonian lungfish, implying that they were not neotenic. As fossil lungfish cell sizes (and genomes) increased in the late Paleozoic, the diversity of lungfish morphologies decreased, so that taxa like Sagenodus and Conchopoma show morphological similarity to Neoceratodus, marking a point in phylogeny at which metamorphosis was potentially lost. Since ancestral larval characters are retained in neotenic adults, we predict that Devonian larvae should resemble these post-Devonian taxa, a prediction which Palaeospondylus does not fulfill. (c) 2006 Wiley-Liss, Inc.

  20. Effect of mercuric chloride on fertilization and larval development in the River Frog, Rana heckscheri (Wright) (Anura: Ranidae)

    SciTech Connect

    Punzo, F. )

    1993-10-01

    Previous investigations have indicated that heavy metals such as copper, cadmium, lead and mercury can act as systemic toxicants in many species of wildlife. Although numerous studies have emphasized the effects of metals and pesticides on metabolism, growth, survivorship, neural processes and reproduction in a number of taxa, little information is available on the effects of sublethal concentrations of metals on the reproductive physiology of amphibians. Industrial processes and mining activities can release substantial concentrations of heavy metals such as mercury into aquatic habitats. Since most amphibians have obligate aquatic larval stages, they are exposed to pollutants discharged into the aquatic environment. Amphibians can act as accumulators of heavy metals and their larval stages are useful indicators of pollution levels in the field. What little data are available, indicate that metals can significantly reduce viability in amphibians through their actions on metabolism, development and gametogenesis. The recent concerns over worldwide declines in amphibian populations and the susceptibility of amphibian populations to environmental toxicants, led me to assess the effect of mercuric chloride, one of the most common and persistent toxicants in aquatic environments, on fertilization and larval development in the river frog, Rana heckscheri (Wright). Although there is some information on fish, very little data are available on the effects of mercury on fertilization in amphibians generally, and no published data exist for R. heckscheri. This species is a conspicuous component of the aquatic fauna of parts of the southeastern United States where mercury levels have increased significantly over the last two decades. 22 refs., 2 tabs.

  1. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.

    PubMed

    Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-04-01

    The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. © 2015 Wiley Periodicals, Inc.

  2. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain

    PubMed Central

    Lovick, Jennifer K.; Kong, Angel; Omoto, Jaison J.; Ngo, Kathy T.; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2015-01-01

    The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In the present paper, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4h) intervals and produced a detailed map in the form of confocal z-projections and digital 3D models of all lineages at successive larval stages. Based on these reconstructions we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. PMID:26178322

  3. Comparative studies on the larval development of the penaeid shrimps, Penaeus Chinensis, P. merguiensis and P. penicillatus

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Liu, Rui-Yu

    1994-12-01

    The morphology of larval and 1st postlarval stages of Penaeus penicillatus are described. Results from comparative studies on larval development of P. penicillatus, P. merguiensis and P. chinensis are as follows: These three species could not be identified during their naupliar stages. In the 1st protozoea, the antennule L1/L2 value is 1.7 2.0 in P. merguiensis, but less than 1.7 in P. chinensis and P. penicillatus; in the 2nd protozoea, the supra-orbital spine in P. chinensis is not bifurcated, while those of P. merguiensis and P. penicillatus are bifurcated; in the 3rd protozoea, there is a minute (or no) dorso-median spine on the posterior margin of the 1st and 2nd abdominal somite in P. chinensis, but they are prominent in P. merguiensis and P. penicillatus. In the mysis and 1st postlarval stages, P. chinensis differs from P. merguiensis and P. penicillatus in having 9 (8 in the other 2 species) long setae on the exopod of pereopods 1 3; additionally, one dorsal tooth appears on the rostrum of P. chinensis in the 2nd mysis and that of the other 2 species in the 3rd mysis; P. chinensis has 2 (mostly) or 1 dorsal tooth on the rostrum in the 3rd mysis and 2 3 in the 1st postlarva, while P. penicillatus and P. merguiensis have only 1 in the 3rd mysis and 1st postlarva. Comparative studies on larval development showed P. penicillatus has closer affinity with P. merguiensis than with P. chinensis.

  4. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    PubMed

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis.

  5. Patterns of Cranial Development in Larval Rana macrocnemis: Chondrocranial Size and Shape Relationship With Pelophylax bedriagae (Anura: Ranidae).

    PubMed

    Yildirim, Elıf; Kaya, Uğur

    2016-06-01

    Notwithstanding the abundance of amphibians, there are few descriptions about ranid cranial development. Herein, larval chondrocranial development of Uludağ frog, Rana macrocnemis (Boulenger, 1885), is described on cleared and double-stained specimens. Descriptions are related with the ontogeny of the chondrocranium and osteogenesis of the cranial skeleton. The larval chondrocranial development of R. macrocnemis is compared to those of Rana and Pelophylax larvae (Pelophylax bedriagae, Rana pipiens, R. palustris, R. sphenocephala, R. catesbeiana, R. clamitans and R. sylvatica). In R. macrocnemis, the first bones to ossify are the parasphenoid and exoccipital (Stage 33), followed by the frontoparietal and prootic (stages 35 and 40, respectively). The major reconstruction of the chondrocranium begins at Stage 41. The ossification sequence of R. macrocnemis is distinguished from other ranids. Adult cranial osteology of R. macrocnemis is compared to that of P. bedriagae. Osteologically, R. macrocnemis is different from P. bedriagae by the shape and size of the vomer and number of teeth. Additionally, geometric morphometric methods are used to analyze chondrocranial size and shape changes of ranid larva of R. macrocnemis and P. bedriagae. Anat Rec, 299:711-721, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Interactions of environmental stressors impact survival and development of parasitized larval amphibians.

    PubMed

    Koprivnikar, J

    2010-12-01

    Infected hosts are exposed to many environmental stressors that must be taken into account in order to determine the importance of disease, as various combinations can interact in unpredictable ways. Here, northern leopard frog (Rana pipiens) tadpoles, a species in decline, were exposed to stressors singly or in combination. Stressors included infection by Echinostoma trivolvis (a trematode parasite), exposure to predator chemical cues (larval dragonflies), and exposure to varying concentrations of the herbicide atrazine. Parasitism decreased survival only in combination with exposure to 3 microg/L atrazine, with a negative interaction observed for mass as well. Similarly, a negative interaction of parasitism and predation on survival occurred. However, atrazine exposure alone negatively affected the survival, mass, and developmental stage of tadpoles. These results indicate that certain stressor combinations are particularly deleterious for young parasitized tadpoles. Notably, very common low-intensity parasite infection can be particularly harmful in certain situations. Such negative impacts on larval amphibians in certain scenarios may contribute to ongoing amphibian population declines, emphasizing that the combination of environmental stressors must be considered when evaluating the general role of disease in species extinctions.

  7. Anisakis simplex: CO(2)-fixing enzymes and development throughout the in vitro cultivation from third larval stage to adult.

    PubMed

    Dávila, Cristina; Malagón, David; Valero, Adela; Benítez, Rocío; Adroher, Francisco Javier

    2006-09-01

    We studied the effect of CO(2) on the in vitro cultivation of Anisakis simplex, an aquatic parasitic nematode of cetaceans (final hosts) and fish, squid, crustaceans and other invertebrates (intermediate/paratenic hosts), and, occasionally, of man (accidental host). The results showed that a high pCO(2), at a suitable temperature, is vital for the optimum development of these nematodes, at least from the third larval stage (L3) to adult. After 30 days cultivation in air, molting to L4 (fourth larval stage) was reduced to 1/3, while survival was about 1/3 of that when cultivated in air + 5% CO(2). The activity of the CO(2)-fixing enzymes, PEPCK and PEPC, was also studied. Throughout the development of the worms studied, PEPCK activity was much higher than that of PEPC (e.g., 305 vs. 6.8 nmol/min.mg protein, respectively, in L3 collected from the host fish). The activity of these enzymes in the worms cultivated in air + 5% CO(2) was highest during M3, and was also generally higher than that of those cultivated in air only, especially during molting from L3 to L4 (e.g., in recently molted L4, PEPCK activity was 3.7 times greater than that of PEPC 2.9 times greater than when cultivated in air).

  8. Developing optimum sample size and multistage sampling plans for Lobesia botrana (Lepidoptera: Tortricidae) larval infestation and injury in northern Greece.

    PubMed

    Ifoulis, A A; Savopoulou-Soultani, M

    2006-10-01

    The purpose of this research was to quantify the spatial pattern and develop a sampling program for larvae of Lobesia botrana Denis and Schiffermüller (Lepidoptera: Tortricidae), an important vineyard pest in northern Greece. Taylor's power law and Iwao's patchiness regression were used to model the relationship between the mean and the variance of larval counts. Analysis of covariance was carried out, separately for infestation and injury, with combined second and third generation data, for vine and half-vine sample units. Common regression coefficients were estimated to permit use of the sampling plan over a wide range of conditions. Optimum sample sizes for infestation and injury, at three levels of precision, were developed. An investigation of a multistage sampling plan with a nested analysis of variance showed that if the goal of sampling is focusing on larval infestation, three grape clusters should be sampled in a half-vine; if the goal of sampling is focusing on injury, then two grape clusters per half-vine are recommended.

  9. Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production.

    PubMed

    Sandoval, Hector; Yao, Chi-Kuang; Chen, Kuchuan; Jaiswal, Manish; Donti, Taraka; Lin, Yong Qi; Bayat, Vafa; Xiong, Bo; Zhang, Ke; David, Gabriela; Charng, Wu-Lin; Yamamoto, Shinya; Duraine, Lita; Graham, Brett H; Bellen, Hugo J

    2014-10-14

    Mitochondrial fusion and fission affect the distribution and quality control of mitochondria. We show that Marf (Mitochondrial associated regulatory factor), is required for mitochondrial fusion and transport in long axons. Moreover, loss of Marf leads to a severe depletion of mitochondria in neuromuscular junctions (NMJs). Marf mutants also fail to maintain proper synaptic transmission at NMJs upon repetitive stimulation, similar to Drp1 fission mutants. However, unlike Drp1, loss of Marf leads to NMJ morphology defects and extended larval lifespan. Marf is required to form contacts between the endoplasmic reticulum and/or lipid droplets (LDs) and for proper storage of cholesterol and ecdysone synthesis in ring glands. Interestingly, human Mitofusin-2 rescues the loss of LD but both Mitofusin-1 and Mitofusin-2 are required for steroid-hormone synthesis. Our data show that Marf and Mitofusins share an evolutionarily conserved role in mitochondrial transport, cholesterol ester storage and steroid-hormone synthesis.

  10. Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)

    PubMed Central

    Vellutini, Bruno C.; Migotto, Alvaro E.

    2010-01-01

    Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 26C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were 20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia. Podial types were distributed in accordance to Lovén's rule and the first podium of each ambulacrum was not encircled by the skeleton. Seven days after metamorphosis juveniles began to feed by rasping sand grains with the lantern. Juveniles survived in laboratory cultures for 9 months and died with wide, a single open sphaeridium per ambulacrum, aboral anus, and no differentiated food grooves or petaloids. Tracking the morphogenesis of early juveniles is a necessary step to elucidate the developmental mechanisms of echinoid growth and important groundwork to clarify homologies between irregular urchins. PMID:20339592

  11. Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development.

    PubMed

    Gleason, Julie E; Eisenmann, David M

    2010-12-01

    Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.

  12. Caffeine Induces High Expression of cyp-35A Family Genes and Inhibits the Early Larval Development in Caenorhabditis elegans

    PubMed Central

    Min, Hyemin; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2015-01-01

    Intake of caffeine during pregnancy can cause retardation of fetal development. Although the significant influence of caffeine on animal development is widely recognized, much remains unknown about its mode of action because of its pleiotropic effects on living organisms. In the present study, by using Caenorhabditis elegans as a model organism, the effects of caffeine on development were examined. Brood size, embryonic lethality, and percent larval development were investigated, and caffeine was found to inhibit the development of C. elegans at most of the stages in a dosage-dependent fashion. Upon treatment with 30 mM caffeine, the majority (86.1 ± 3.4%) of the L1 larvae were irreversibly arrested without further development. In contrast, many of the late-stage larvae survived and grew to adults when exposed to the same 30 mM caffeine. These results suggest that early-stage larvae are more susceptible to caffeine than later-stage larvae. To understand the metabolic responses to caffeine treatment, the levels of expression of cytochrome P450 (cyp) genes were examined with or without caffeine treatment using comparative micro-array, and it was found that the expression of 24 cyp genes was increased by more than 2-fold (p < 0.05). Among them, induction of the cyp-35A gene family was the most prominent. Interestingly, depletion of the cyp-35A family genes one-by-one or in combination through RNA interference resulted in partial rescue from early larval developmental arrest caused by caffeine treatment, suggesting that the high-level induction of cyp-35A family genes can be fatal to the development of early-stage larvae. PMID:25591395

  13. Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas.

    PubMed

    Mottier, Antoine; Kientz-Bouchart, Valérie; Serpentini, Antoine; Lebel, Jean Marc; Jha, Awadhesh N; Costil, Katherine

    2013-03-15

    Pesticides may be involved in oyster summer mortality events, not necessarily as a single causative agent but as an additional stressor. In this context, the present study aimed to assess the toxicity of glyphosate, its by-product, aminomethylphosphonic acid (AMPA) and two commercial formulations, Roundup Express(®) (R(EX)) and Roundup Allées et Terrasses(®) (R(AT)), containing glyphosate as the active ingredient, on the early life stages of the Pacific oyster, Crassostrea gigas. The embryotoxicity of these chemicals were quantified by considering both the rates of abnormalities and the arrested development or types of abnormalities in D-shaped larvae after 48 h exposure. The success of metamorphosis was examined in pediveliger larvae exposed for 24 h. Experiments involving both endpoints included range finding experiments for herbicide concentrations ranging from 0.1 to 100,000 μg L(-1). This range was then narrowed down in order to determine precise EC(50) values. Actual concentrations of the herbicide were determined at the beginning and after 48 h (embryotoxicity) and 24 h (metamorphosis) to evaluate the potential temporal variation in the concentrations. During embryo-larval development, no mortalities were recorded at any of the concentrations of glyphosate and AMPA, whereas no embryos or D-shaped larvae could be observed after exposure to 10,000 μg L(-1) of R(EX) or R(AT). Compared with the controls, no effects on embryo-larval development were recorded between 0.1 and 1000 μg L(-1), regardless of the chemical tested. Above a threshold, which varied according to the chemical used, the gradient of herbicide concentrations correlated with a gradient of severity of abnormality ranging from normal larvae to arrested development (an "old embryo" stage). The EC(50) values were 28,315 and 40,617 μg L(-1) for glyphosate and its metabolite, respectively, but much lowered values of 1133 and 1675 μg L(-1) for R(EX) and R(AT), respectively. Metamorphosis tests

  14. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics.

    PubMed

    Saastamoinen, Marjo; Ikonen, Suvi; Wong, Swee C; Lehtonen, Rainer; Hanski, Ilkka

    2013-05-01

    1. In insects, the length of larval development time typically influences adult body size and individual fitness, and hence development time can be expected to respond in an adaptive manner to variation in environmental conditions. In the wild, larval growth may be influenced by individual condition, which can be affected by population-level parameters such as population density and abundance and quality of resources. 2. We sampled larvae of the Glanville fritillary butterfly (Melitaea cinxia) from 514 local populations across a large metapopulation before the winter diapause and reared the larvae in common garden conditions after diapause. Here, we report that small post-diapause larvae prolonged their development via an extra larval instar, apparently to compensate for their 'bad start' after diapause. The number of instars was additionally a plastic response to environmental conditions, as the frequency of the extra instar increased under cooler thermal conditions. 3. The benefit of the extra instar is clear, as it allows individuals to develop into larger adults, but the cost is delayed adult eclosion, which is likely to select against the extra instar especially in males, in which early eclosion is critical for mating success. In support of this, the frequency of the extra instar was significantly lower in males (7%) than in females (42%). 4. Polymorphisms in three genes, serpin-1, vitellin-degrading protease precursor and phosphoglucose isomerase, which are known to influence development in insects, were associated with the occurrence of the extra instar. 5. At the level of local populations, the frequency of the extra instar was higher in newly established populations than that in old local ones, possibly reflecting maternal effects, as new populations are often established by females with heavy investment in dispersal. The frequency of the extra instar in turn correlated with the change in population size over 1 year and the risk of local extinction in the

  15. Incorporation of habitat information in the development of indices of larval bluefin tuna (Thunnus thynnus) in the Western Mediterranean Sea (2001-2005 and 2012-2013)

    NASA Astrophysics Data System (ADS)

    Ingram, G. Walter; Alvarez-Berastegui, Diego; Reglero, Patricia; Balbín, Rosa; García, Alberto; Alemany, Francisco

    2017-06-01

    Fishery independent indices of bluefin tuna larvae in the Western Mediterranean Sea are presented utilizing ichthyoplankton survey data collected from 2001 through 2005 and 2012 through 2013. Indices were developed using larval catch rates collected using two different types of bongo sampling, by first standardizing catch rates by gear/fishing-style and then employing a delta-lognormal modeling approach. The delta-lognormal models were developed three ways: 1) a basic larval index including the following covariates: time of day, a systematic geographic area variable, month and year; 2) a standard environmental larval index including the following covariates: mean water temperature over the mixed layer depth, mean salinity over the mixed layer depth, geostrophic velocity, time of day, a systematic geographic area variable, month and year; and 3) a habitat-adjusted larval index including the following covariates: a potential habitat variable, time of day, a systematic geographic area variable, month and year. Results indicated that all three model-types had similar precision in index values. However, the habitat-adjusted larval index demonstrated a high correlation with estimates of spawning stock biomass from the previous stock assessment model, and, therefore, is recommended as a tuning index in future stock assessment models.

  16. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil.

    PubMed

    Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Mugabe, Vánio André; Kikuti, Mariana; Tavares, Aline S; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2016-07-27

    Dengue (DENV), Chikungunya (CHIKV), Zika (ZIKV), as well as yellow fever (YFV) viruses are transmitted to humans by Aedes spp. females. In Salvador, the largest urban center in north-eastern Brazil, the four DENV types have been circulating, and more recently, CHIKV and ZIKV have also become common. We studied the role of storm drains as Aedes larval development and adult resting sites in four neighbourhoods of Salvador, representing different socioeconomic, infrastructure and topographic conditions. A sample of 122 storm drains in the four study sites were surveyed twice during a 4-month period in 2015; in 49.0 % of the visits, the storm drains contained water. Adults and immatures of Aedes aegypti were captured in two of the four sites, and adults and immatures of Aedes albopictus were captured in one of these two sites. A total of 468 specimens were collected: 148 Ae. aegypti (38 adults and 110 immatures), 79 Ae. albopictus (48 adults and 31 immatures), and 241 non-Aedes (mainly Culex spp.) mosquitoes (42 adults and 199 immatures). The presence of adults or immatures of Ae. aegypti in storm drains was independently associated with the presence of non-Aedes mosquitoes and with rainfall of ≤ 50 mm during the preceding week. We found that in Salvador, one of the epicentres of the 2015 ZIKV outbreak, storm drains often accumulate water and serve as larval development sites and adult resting areas for both Ae. aegypti and Ae. albopictus. Vector control campaigns usually overlook storm drains, as most of the effort to prevent Ae. agypti reproduction is directed towards containers in the domicile environment. While further studies are needed to determine the added contribution of storm drains for the maintenance of Aedes spp. populations, we advocate that vector control programs incorporate actions directed at storm drains, including regular inspections and use of larvicides, and that human and capital resources are mobilized to modify storm drains, so that

  17. Respiratory metabolism of salivary glands during the late larval and prepupal development of Drosophila melanogaster.

    PubMed

    Farkaš, Robert; Sláma, Karel

    2015-10-01

    During the late larval period, the salivary glands (SG) of Drosophila show a cascade of cytological changes associated with exocytosis and the expectoration of the proteinaceous glue that is used to affix the pupariating larva to a substrate. After puparium formation (APF), SG undergo extensive cytoplasmic vacuolation due to endocytosis, vacuole consolidation and massive apocrine secretion. Here we investigated possible correlations between cytological changes, the puffing pattern in polytene chromosomes and respiratory metabolism of the SG. The carefully staged SG were explanted into small amounts (1 or 2μl) of tissue culture medium. The respiratory metabolism of single or up to 3 pairs of glands was evaluated by recording the rate of O2 consumption using a scanning microrespirographic technique sensitive to subnanoliter volumes of the respiratory O2 or CO2. The recordings were carried out at times between 8h before pupariation (BPF), until 16h APF, at which point the SG completely disintegrate. At the early wandering larval stage (8h BPF), the glands consume 2nl of O2/gland/min (=2500μl O2/g/h). This relatively high metabolic rate decreases down to 1.2-1.3nl of O2 during the endogenous peak in ecdysteroid concentration that culminates around pupariation. The metabolic decline coincides with the exocytosis of the proteinaceous glue. During and shortly after puparium formation, which is accompanied cytologically by intense vacuolation, O2 consumption in the SG temporarily increases to 1.6nl O2/gland/min. After this time, the metabolic rate of the SG decreases downward steadily until 16h APF, when the glands disintegrate and cease to consume oxygen. The SG we analyzed from Drosophila larvae were composed of 134 intrinsic cells, with the average volume of one lobe being 37nl. Therefore, a single SG cell of the wandering larva (with O2 consumption of 2nl/gland/min), consumes each about 16pl of O2/cell/min. A simultaneous analysis of the rate of protein and RNA

  18. Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria.

    PubMed

    Simmons, Peter J; Sztarker, Julieta; Rind, F Claire

    2013-06-15

    Insect larvae clearly react to visual stimuli, but the ability of any visual neuron in a newly hatched insect to respond selectively to particular stimuli has not been directly tested. We characterised a pair of neurons in locust larvae that have been extensively studied in adults, where they are known to respond selectively to objects approaching on a collision course: the lobula giant motion detector (LGMD) and its postsynaptic partner, the descending contralateral motion detector (DCMD). Our physiological recordings of DCMD axon spikes reveal that at the time of hatching, the neurons already respond selectively to objects approaching the locust and they discriminate between stimulus approach speeds with differences in spike frequency. For a particular approaching stimulus, both the number and peak frequency of spikes increase with instar. In contrast, the number of spikes in responses to receding stimuli decreases with instar, so performance in discriminating approaching from receding stimuli improves as the locust goes through successive moults. In all instars, visual movement over one part of the visual field suppresses a response to movement over another part. Electron microscopy demonstrates that the anatomical substrate for the selective response to approaching stimuli is present in all larval instars: small neuronal processes carrying information from the eye make synapses both onto LGMD dendrites and with each other, providing pathways for lateral inhibition that shape selectivity for approaching objects.

  19. Post-embryonic larval development and metamorphosis of the hydroid Eudendrium racemosum (Cavolini) (Hydrozoa, Cnidaria)

    NASA Astrophysics Data System (ADS)

    Sommer, C.

    1990-09-01

    The morphology and histology of the planula larva of Eudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.

  20. Larval development of Fasciola hepatica in experimental infections: variations with populations of Lymnaea truncatula.

    PubMed

    Vignoles, P; Dreyfuss, G; Rondelaud, D

    2002-06-01

    A retrospective study was undertaken on 70 French populations of Lymnaea truncatula experimentally infected with Fasciola hepatica to determine whether or not susceptibility of snails to infection influenced redial and cercarial production. Results were compared with those obtained from two control populations, known for prevalences higher than 60% when experimentally infected with F. hepatica. In the 70 other populations examined, the prevalences ranged from 2 to 75%. In 55 of these populations, where the prevalence was more than 20%, a high proportion (50.1-56.8%) of snails died after cercarial shedding, whereas in the other groups (non-shedding snails with the most differentiated larvae being free cercariae, rediae containing cercariae, immature rediae, or sporocysts, respectively), snail death was significantly less. In 11 populations, where the prevalence values were 5-19%, only 14% of snails died after cercarial shedding, whereas snails with free cercariae, rediae with cercariae, or immature rediae showed significant increases in snail mortality. In the remaining four snail populations, with prevalences of less than 5%, the most differentiated larval forms were only immature rediae and/or sporocysts. Overall, the number of rediae containing cercariae significantly decreased with decreasing prevalence values. The low prevalence of experimental infection in several populations of snails might be explained by the occurrence of natural infections with miracidia originating from a mammalian host other than cattle, and/or by genetic variability in the susceptibility of snails to infection.

  1. Effects of Madagascar yam extracts, Dioscorea antaly, on embryo-larval development of medaka fish, Oryzias latipes.

    PubMed

    Rakotobe, Lolona; Berkal, Miassa; Huet, Hélène; Djediat, Chakib; Jeannoda, Victor; Bodo, Bernard; Mambu, Lengo; Crespeau, François; Edery, Marc

    2010-01-01

    The yams edible starchy tubers, are of cultural, economic and nutritional importance in tropical and subtropical regions. The present study concerns the analysis at different levels of Dioscorea antaly toxicity to medaka embryo-larval development. The incubation of medaka fish embryos in a medium containing Dioscorea antaly extract resulted in a dose dependent reduction in survival rate. Survival rates were reduced up to 100% with extract concentrations of 4mg mL(-1). The LD(50) was estimated to be 0.86mg mL(-1)Dioscorea antaly. Anatomopathological studies did not show any caustic effects, irritation to mouth, throat or intestinal tract in surviving embryos but rather an inflammatory reaction in the liver. The data presented in this paper thus extends the use of medaka embryos as a valuable model to analyze the effects of food toxins.

  2. Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Daly, Kendra L.

    2004-08-01

    Growth, molting, and development of larval Antarctic krill were investigated near Marguerite Bay during four cruises in austral autumn and winter 2001 and 2002, as part of the US Southern Ocean GLOBEC program. Overwintering survival of larvae has been linked to annual sea-ice formation and extent, as sea-ice biota may provide food when other sources are scarce in the water column. During autumn 2001, larvae were very abundant (1-19 individuals m -3), with younger stages dominant offshelf and older stages dominant on-shelf. On-shelf larvae were in better condition than offshore larvae. During autumn 2002, larvae again were abundant offshelf (0.01-110 m -3), whereas all stages were scarce on-shelf. Declining diatom and radiolarian blooms were present during autumn in both years. Average chlorophyll concentrations were low (0.10 vs. 0.22 μg l -1) in autumn and an order of magnitude lower in winter. Carbon content of larvae during autumn 2001 and 2002 (41% vs. 38% C of DW) suggested that lipid storage was moderate. The median autumn larval growth rate (0.027 mm d -1) was lower and the intermolt period (19 d) longer than reported summer values. During winter, larvae appeared to be food-limited based on the following observations: (1) the median growth rate decreased (0.00 mm d -1) and the intermolt period increased (40 d), (2) larval length-specific dry weight (DW) and % carbon and nitrogen of DW decreased, and (3) 88% of furcilia 6 did not develop to the juvenile stage, but remained at the same stage after molting. Experimental results demonstrated that some larvae could survive starvation for a month by combusting body reserves (ca. 1% decrease in DW and body C and N d -1), implying that a portion of the population was resilient to the suboptimal food supply. Although sea ice formed up to 2 months earlier in 2002, ice algae at the ice-water interface, where it is accessible to krill, was not an abundant food source in either year (0.05 vs. 0.07 μg chl l -1). In

  3. She’s a femme fatale: low-density larval development produces good disease vectors

    PubMed Central

    Juliano, Steven A; Ribeiro, Gabriel Sylvestre; Maciel-de-Freitas, Rafael; Castro, Márcia G; Codeço, Claudia; Lourenço-de-Oliveira, Ricardo; Lounibos, L Philip

    2014-01-01

    Two hypotheses for how conditions for larval mosquitoes affect vectorial capacity make opposite predictions about the relationship of adult size and frequency of infection with vector-borne pathogens. Competition among larvae produces small adult females. The competition-susceptibility hypothesis postulates that small females are more susceptible to infection and predicts frequency of infection should decrease with size. The competition-longevity hypothesis postulates that small females have lower longevity and lower probability of becoming competent to transmit the pathogen and thus predicts frequency of infection should increase with size. We tested these hypotheses for Aedes aegypti in Rio de Janeiro, Brazil, during a dengue outbreak. In the laboratory, longevity increases with size, then decreases at the largest sizes. For field-collected females, generalised linear mixed model comparisons showed that a model with a linear increase of frequency of dengue with size produced the best Akaike’s information criterion with a correction for small sample sizes (AICc). Consensus prediction of three competing models indicated that frequency of infection increases monotonically with female size, consistent with the competition-longevity hypothesis. Site frequency of infection was not significantly related to site mean size of females. Thus, our data indicate that uncrowded, low competition conditions for larvae produce the females that are most likely to be important vectors of dengue. More generally, ecological conditions, particularly crowding and intraspecific competition among larvae, are likely to affect vector-borne pathogen transmission in nature, in this case via effects on longevity of resulting adults. Heterogeneity among individual vectors in likelihood of infection is a generally important outcome of ecological conditions impacting vectors as larvae. PMID:25591112

  4. She's a femme fatale: low-density larval development produces good disease vectors.

    PubMed

    Juliano, Steven A; Ribeiro, Gabriel Sylvestre; Maciel-de-Freitas, Rafael; Castro, Márcia G; Codeço, Claudia; Lourenço-de-Oliveira, Ricardo; Lounibos, L Philip

    2014-12-01

    Two hypotheses for how conditions for larval mosquitoes affect vectorial capacity make opposite predictions about the relationship of adult size and frequency of infection with vector-borne pathogens. Competition among larvae produces small adult females. The competition-susceptibility hypothesis postulates that small females are more susceptible to infection and predicts frequency of infection should decrease with size. The competition-longevity hypothesis postulates that small females have lower longevity and lower probability of becoming competent to transmit the pathogen and thus predicts frequency of infection should increase with size. We tested these hypotheses for Aedes aegypti in Rio de Janeiro, Brazil, during a dengue outbreak. In the laboratory, longevity increases with size, then decreases at the largest sizes. For field-collected females, generalised linear mixed model comparisons showed that a model with a linear increase of frequency of dengue with size produced the best Akaike's information criterion with a correction for small sample sizes (AICc). Consensus prediction of three competing models indicated that frequency of infection increases monotonically with female size, consistent with the competition-longevity hypothesis. Site frequency of infection was not significantly related to site mean size of females. Thus, our data indicate that uncrowded, low competition conditions for larvae produce the females that are most likely to be important vectors of dengue. More generally, ecological conditions, particularly crowding and intraspecific competition among larvae, are likely to affect vector-borne pathogen transmission in nature, in this case via effects on longevity of resulting adults. Heterogeneity among individual vectors in likelihood of infection is a generally important outcome of ecological conditions impacting vectors as larvae.

  5. Effects of environmental temperature on the development of the myotomal white muscle in larval carp (Cyprinus carpio L.).

    PubMed

    Alami-Durante, H; Bergot, P; Rouel, M; Goldspink, G

    2000-12-01

    A study was conducted on common carp (Cyprinus carpio L.) to determine the effects of environmental temperature experienced by embryos and larvae on the development of myotomal white muscle. Eggs from one female were divided into two groups following fertilisation and incubated at constant pre-hatch temperatures of 18 or 28 degrees C. At hatching, larvae from the 18 degrees C-incubated eggs were divided into two groups and either reared at the same temperature of 18 degrees C ('cold' group) or transferred over a period of 5 days (at 2 degrees C per day) to 28 degrees C ('transferred' group). Larvae hatched from eggs incubated at 28 degrees C were reared at the same temperature of 28 degrees C ('warm' group). Larvae were sampled at two developmental stages (stage 1, inflation of the back chamber of the swimbladder; stage 2, inflation of the front chamber of the swimbladder) and at 26 days post-hatching. The maturation of myotome shape during larval life was studied in parallel with the changes occurring in the organisation of white fibres. At stage 1, the epaxial part of the myotomes surrounding the vent had the shape of lamellae inclined backwards, and only one central layer of white fibres was present. At stage 2, the epaxial part of the myotomes began to acquire a V-shape, which was well developed at 26 days post-hatch. At stage 2 and at 26 days post-hatch, two layers of white fibres were identified: the initial central layer and a second apical layer. These differ in their orientation, the initial central layer being orientated backwards and the apical layer forwards, and in the mean fibre diameter, which is greater in the initial central layer. Studies on the effects of temperature (constant 18 degrees C, constant 28 degrees C, transfer from 18 to 28 degrees C at hatching) were carried out according to both the developmental stage and the length of the larvae. At stage 1, no significant differences were found between the three groups for larval standard length

  6. Development of liquid larval diet with modified rearing system for Bactrocera dorsalis (Hendel) (Diptera:Tephritidae) for the application of sterile insect technique

    USDA-ARS?s Scientific Manuscript database

    A liquid larval diet and its rearing system have been developed for mass rearing of Bactrocera dorsalis (Hendel) in Hawaii. Rearing facility in Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh, modified protein source from brewer's yeast to a combinat...

  7. The potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arca inflata Reeve

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Mao, Yuze; Bian, Dapeng; Fang, Jianguang

    2014-11-01

    We evaluated the effect of pH on larval development in larval Pacific oyster ( Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development inhibited larval shell formation in both species. Compared with the control, larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3. Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3. However, when exposure was delayed until 24 h post fertilization, shell formation was only inhibited in blood cockle larvae reared at pH 7.3. Thus, the early embryonic stages were more sensitive to acidified conditions. Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves. Although the effects appear subtle, they may accumulate and lead to subsequent issues during later larval development.

  8. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986.

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28?C; 20o/ooS) from hatching to the megalopa stage. Growth in...

  9. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in...

  10. Complete larval development of Thor amboinensis (De Man, 1888) Decapoda: Thoridae) described from laboratory-reared material
    and identified by DNA barcoding.

    PubMed

    Bartilotti, Cátia; Salabert, Joana; Santos, Antonina Dos

    2016-01-18

    Of the 12 species of Thor described until present date, only three (25%) have their complete larval development known. Present work describes the complete larval development of Thor amboinensis, based on laboratory-reared material. The spent females were identified through the analysis of the partial sequences of the mitochondrial DNA barcode, also used for the reconstruction of the phylogenetic relationships within the recently resurrected and recognized family Thoridae Kingsley, 1879. Eight zoeal stages and one decapodid complete this species larval development. In the genus Thor, the number of zoeal stages varies greatly from two (T. dobkini) to eight (T. amboinensis and T. floridanus). The larvae of T. ambionensis and T. floridanus are readily distinguished from each other by the ornamentation of the ventral margin of the carapace and the pereiopods development. The first zoeal stage of T. amboinensis described by Yang & Okuno (2004) and the one described in present study are very similar. A brief discussion on the morphological characters and on the number of zoeal stages of the genus, as well as of the previous larval descriptions is made. The phylogenetic analysis suggest cryptic speciation for geographical separated populations of T. amboinensis, paraphyly of the genus Eualus, and the reassignment of E. cranchii to a different genus.

  11. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in...

  12. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986.

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28?C; 20o/ooS) from hatching to the megalopa stage. Growth in...

  13. Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda.

    PubMed

    Vogt, Günter

    2013-02-01

    The transition from marine to freshwater habitats is one of the major steps in the evolution of life. In the decapod crustaceans, four groups have colonized fresh water at different geological times since the Triassic, the freshwater shrimps, freshwater crayfish, freshwater crabs and freshwater anomurans. Some families have even colonized terrestrial habitats via the freshwater route or directly via the sea shore. Since none of these taxa has ever reinvaded its environment of origin the Decapoda appear particularly suitable to investigate life-history adaptations to fresh water. Evolutionary comparison of marine, freshwater and terrestrial decapods suggests that the reduction of egg number, abbreviation of larval development, extension of brood care and lecithotrophy of the first posthatching life stages are key adaptations to fresh water. Marine decapods usually have high numbers of small eggs and develop through a prolonged planktonic larval cycle, whereas the production of small numbers of large eggs, direct development and extended brood care until the juvenile stage is the rule in freshwater crayfish, primary freshwater crabs and aeglid anomurans. The amphidromous freshwater shrimp and freshwater crab species and all terrestrial decapods that invaded land via the sea shore have retained ocean-type planktonic development. Abbreviation of larval development and extension of brood care are interpreted as adaptations to the particularly strong variations of hydrodynamic parameters, physico-chemical factors and phytoplankton availability in freshwater habitats. These life-history changes increase fitness of the offspring and are obviously favoured by natural selection, explaining their multiple origins in fresh water. There is no evidence for their early evolution in the marine ancestors of the extant freshwater groups and a preadaptive role for the conquest of fresh water. The costs of the shift from relative r- to K-strategy in freshwater decapods are traded

  14. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  15. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling

    PubMed Central

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-01-01

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. PMID:27194808

  16. Effect of Continuous and Cyclic Exposure to a Cold Environment on the Development of Larvae of Lucilia sericata (Diptera: Calliphoridae) in Different Sized Larval Masses.

    PubMed

    Magni, Paola A; Dhaliwal, Satvinder S; Dadour, Ian R

    2016-07-01

    Regulation of forensic practice in many countries prevents the pathologist performing an immediate autopsy. During the period prior to autopsy, the corpse and the insects possibly associated with it are stored in a mortuary with temperatures ∼4°C. When a corpse is found in a late stage of decay, fly immatures may be present as small or large larval masses. The purpose of refrigeration at 4°C is to slow down the decomposition of the corpse as well as the temporary disruption of the activity and development of the bacteria and the necrophagous insects associated with the corpse. The aim of this research is to investigate the growth and development of different larval masses of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae) when stored in a cold environment (4°C). The research was divided into experimental sessions comprising different storage conditions (continuous or cyclic exposure to a cold environment) for immature stages (second and third instar) and included four different sizes of larval mass (∼100, 500, 1,000, and 5,000 larvae) feeding on 4 kg of beef liver and replicated three times. Results show that if the larval mass has a size of ∼5,000 larvae, and the larvae have already reached third instar, then when they are exposed to a cold environment, their development continues. The storage condition at 4°C does not disrupt the development of such larvae. The number of larvae and their instar that make up the larval mass are essential data for the subsequent estimation of a correct minimum postmortem interval. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Effects of temperature and salinity on larval survival and development in the invasive shrimp Palaemon macrodactylus (Caridea: Palaemonidae) along the reproductive season

    NASA Astrophysics Data System (ADS)

    Guadalupe Vázquez, M.; Bas, Claudia C.; Kittlein, Marcelo; Spivak, Eduardo D.

    2015-05-01

    The invasive shrimp Palaemon macrodactylus is associated mainly with brackish waters. Previous studies raised the question if tolerance to low salinities differs between larvae and adults. To answer this question, the combined effects of two temperatures (20 and 25 °C) and four salinities (5, 12, 23 and 34 psu) on survival and development of larvae that hatched at the beginning, in the midpoint and near the end of a reproductive season (denoted early, middle season and late larvae respectively) were examined. The three types of larvae were able to survive and reach juvenile phase at salinities between 12 and 34 psu and at both temperatures. At 5 psu all larvae died, but 45% molted at least once. Temperature and salinity to a lesser extent, had effects on the duration of development and on the number of larval stages in all larval types. Development was longer at the lower temperature, especially in middle season and late larvae. Most early larvae reached the juvenile phase through 5 larval stages; the number of larval stages of middle season and late larvae was higher at 20 °C and in late larvae also low salinity produced extra stages. Low salinity (12 psu) and, in early and middle season larvae, low temperature produced lighter and smaller individuals. Response of larvae to environmental factors seems to be related in part to the previous conditions (maternal effects and/or embryo development conditions). The narrower salinity tolerance of larvae compared to adults and the ability of zoea I to survive at least some days at 5 psu may be related with an export larval strategy.

  18. Same but different: Larval development and gall-inducing process of a non-pollinating fig wasp compared to that of pollinating fig-wasps

    NASA Astrophysics Data System (ADS)

    Jansen-González, Sergio; Teixeira, Simone de Padua; Kjellberg, Finn; Pereira, Rodrigo A. Santinelo

    2014-05-01

    The receptacles of fig trees (Ficus spp.) can harbor a highly diversified and complex community of chalcid wasps. Functional groups of fig wasps (e.g. gallers, cleptoparasites and parasitoids) oviposit into the fig at different developmental stages, reflecting different feeding regimes for these insect larvae. There are few direct data available on larval feeding regimes and access to resources. We studied the gall induction and larval feeding strategy of an Idarnes (group flavicollis) species, a non-pollinating fig wasp (NPFW) associated to Ficus citrifolia P. Miller in Brazil. This Idarnes species shares with the pollinator characteristics such as time of oviposition, ovipositor insertion through flower and location of the egg inside plant ovaries. Nevertheless, we show that the gall induction differs considerably from that of the pollinating species. This Idarnes species relies on the induction of nucellus cell proliferation for gall formation and as the main larval resource. This strategy enables it to develop in both pollinated and unpollinated figs. The large differences between this NPFW and other fig wasps in how ovules are galled suggest that there are different ways to be a galler. A functional analysis of NPFW community structure may require descriptions of the histological processes associated with larval development.

  19. The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Wiederhold, M. L.; Batten, J.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. Mammalian otoconia are barrel-shaped with triplanar facets at each end. Reptilian otoconia are commonly prismatic or fusiform in shape. Amphibians have all three otoconial morphologies, barrel-shaped otoconia within the utricle, with prismatic and fusiform otoconia in the saccule. Scanning electron microscopy revealed a sequential appearance of all three otoconial morphologies during larval development of the newt, Cynops pyrrhogaster. The first otoconia appear within a single, developing otolith, and some resemble adult barrel-shaped otoconia. As the larvae hatch, around stages 39-42, the single otolith divides into two anatomically separate regions, the utricle and saccule, and both contain otoconia similar to those seen in the single otolith. Throughout development, these otoconia may have variable morphologies, with serrated surfaces, or circumferential striations with either separated facets or adjacent facets in the triplanar end-regions. Small fusiform otoconia occur later, at stage 51, and only in the saccule. Prismatic otoconia appear later still, at stage 55, and again only in the saccule. Thus, although prismatic otoconia are the most numerous in adult newts, it is the last vestibular otoconial morphology to be expressed.

  20. The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Wiederhold, M. L.; Batten, J.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. Mammalian otoconia are barrel-shaped with triplanar facets at each end. Reptilian otoconia are commonly prismatic or fusiform in shape. Amphibians have all three otoconial morphologies, barrel-shaped otoconia within the utricle, with prismatic and fusiform otoconia in the saccule. Scanning electron microscopy revealed a sequential appearance of all three otoconial morphologies during larval development of the newt, Cynops pyrrhogaster. The first otoconia appear within a single, developing otolith, and some resemble adult barrel-shaped otoconia. As the larvae hatch, around stages 39-42, the single otolith divides into two anatomically separate regions, the utricle and saccule, and both contain otoconia similar to those seen in the single otolith. Throughout development, these otoconia may have variable morphologies, with serrated surfaces, or circumferential striations with either separated facets or adjacent facets in the triplanar end-regions. Small fusiform otoconia occur later, at stage 51, and only in the saccule. Prismatic otoconia appear later still, at stage 55, and again only in the saccule. Thus, although prismatic otoconia are the most numerous in adult newts, it is the last vestibular otoconial morphology to be expressed.

  1. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans.

    PubMed

    Yu, Xiang; Vought, Valarie E; Conradt, Barbara; Maine, Eleanor M

    2006-09-01

    In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level.

  2. Heterochrony in mandible development of larval shrimp (Decapoda: Caridea)--a comparative morphological SEM study of two carideans.

    PubMed

    Batel, Annika; Melzer, Roland R; Anger, Klaus; Geiselbrecht, Hannes

    2014-11-01

    Mandible development in the larval stages I-V of two palaemonid shrimp species, Palaemon elegans and Macrobrachium amazonicum, was analyzed using scanning electron microscopy, light microscopy, and confocal laser scanning microscopy. In contrast to the zoea I of P. elegans, first-stage larvae of M. amazonicum are nonfeeding. At hatching, the morphology of the mandibles is fully expressed in P. elegans, while it appears underdeveloped in M. amazonicum, presenting only small precursors of typical caridean features. In successive zoeal stages, both species show similar developmental changes, but the mandibular characters of the larvae in M. amazonicum were delayed compared to the equivalent stages in P. elegans, especially in the development of submarginal setae and mandible size. In conclusion, our results indicate heterochrony (postdisplacement) of mandible development in M. amazonicum compared to that in P. elegans, which is related to initial lack of mandible functionality or planktivorous feeding at hatching, respectively. This conclusion is supported by comparison with other palaemonid zoeae exhibiting different feeding modes. Our data suggest that an evolutionary ground pattern of mandible morphology is present even in species with nonfeeding first-stage larvae.

  3. Effects of a fungicide formulation on embryo-larval development, metamorphosis, and gonadogenesis of the South American toad Rhinella arenarum.

    PubMed

    Svartz, Gabriela; Meijide, Fernando; Pérez Coll, Cristina

    2016-07-01

    Sublethal toxicity of the formulated fungicide Maxim(®) XL on embryonic, larval and juvenile development of Rhinella arenarum was evaluated by means of standardized bioassays. Maxim(®) XL, one of the most used fungicides in Argentina, is based on a mixture of two active ingredients: Fludioxonil and Metalaxyl-M. Maxim(®) XL exposure induced severe sublethal effects on the embryos, expressed as general underdevelopment, axial flexures, microcephaly, cellular dissociation, abnormal pigmentation, underdeveloped gills, marked edema and wavy tail. As the embryo development advanced, alterations in behavior as spasmodic contractions, general weakness and inanition were observed. Maxim(®) XL did not affect neither the time required to complete metamorphosis nor sex proportions, but gonadal development and differentiation were impaired. Gross gonadal analysis revealed a significant proportion of exposed individuals with underdevelopment of one or both gonads. Histological analysis confirmed that 18% and 10% of the individuals exposed to 0.25 and 2mg/L Maxim(®) XL, respectively, exhibited undifferentiated gonads characterized by a reduced number (or absence) of germ cells. Taking into account the risk evaluation performed by means of Hazard Quotients, this fungicide could be a threat to R. arenarum populations under chronic exposure. This study represents the first evidence of toxic effects exerted by Maxim(®) XL on amphibians. Finally, our findings highlight the properties of this fungicide that might jeopardize non-target living species exposed to it in agricultural environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus.

    PubMed

    Galaviz, Mario A; García-Ortega, Armando; Gisbert, Enric; López, Lus M; Gasca, Alejandra García

    2012-01-01

    The present study aimed to describe and understand the development of the digestive system in spotted rose snapper (Lutjanus guttatus) larvae from hatching to 40 days post-hatch (dph). The mouth opened between 2 and 3 dph, at that moment the digestive tract was barely differentiated into the anterior and posterior intestine, although the liver and pancreas were already present. Gastric glands were observed until 20 dph, followed by the differentiation of the stomach between 20 and 25 dph. Trypsinogen expression and trypsin activity were detected at hatching, increasing concomitantly to larval development and the change in the type of food. Maximum levels of trypsinogen expression were observed at 25 dph, when animals were fed with Artemia nauplii, and maximum trypsin activity was detected at 35 dph, when larvae were fed with an artificial diet. On the other hand, pepsinogen gene expression was detected at 18 dph, two days before pepsin enzymatic activity and appearance of gastric glands. Maximum pepsin activity was also observed at 35 dph. These results suggest that in this species weaning could be initiated at an earlier age than is currently practiced (between 28 and 30 dph), since larvae of spotted rose snapper develop a functional stomach between days 20 and 25 post-hatch. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  6. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  7. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae).

    PubMed

    Pankoke, Helga; Bowers, M Deane; Dobler, Susanne

    2012-06-01

    Herbivores with polyphagous feeding habits must cope with a diet that varies in quality. One of the most important sources of this variation in host plant suitability is plant secondary chemistry. We examined how feeding on plants containing one such group of compounds, the iridoid glycosides, might affect the growth and enzymatic activity in a polyphagous caterpillar that feeds on over 80 plant species in 50 different families. Larvae of the polyphagous arctiid, Grammia incorrupta, were reared exclusively on one of two plant species, one of which contains iridoid glycosides (Plantago lanceolata, Plantaginaceae) while the other does not (Taraxacum officinale, Asteraceae). Larval weight was measured on the two host plants, and midgut homogenates of last instar larvae were then assayed for activity and kinetic properties of β-glucosidases, using both a standard substrate, 4-nitrophenyl-β-D-glucose (NPβGlc), and the iridoid glycoside aucubin, one of the two main iridoid glycosides in P. lanceolata. Larvae feeding on P. lanceolata weighed significantly less and developed more slowly compared to larvae on T. officinale. While the larval midgut β-glucosidase activity determined with NPβGlc was significantly decreased when fed on P. lanceolata, aucubin was substantially hydrolyzed and the larval β-glucosidase activity towards both substrates correlated negatively with larval weight. Our results demonstrate that host plants containing high concentrations of iridoid glycosides have a negative impact on larval development of this generalist insect herbivore. This is most likely due to the hydrolysis of plant glycosides in the larval midgut which results in the release of toxic aglycones. Linking the reduced larval weight to the toxin-releasing action of an iridoid glycoside cleaving β-glucosidase, our results thus support the detoxification limitation hypothesis, suggesting fitness costs for the larvae feeding solely on P. lanceolata. Thus, in addition to the adaptive

  8. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.

  9. The Effect of Macrocyclic Lactones-Ivermectin Exposure on Egg Hatching and Larval Development of Caenorhabditis elegans

    PubMed Central

    Zain, Mariani Mohd; Yahaya, Zary Shariman; Him, Nik Ahmad Irwan Izzauddin Nik

    2016-01-01

    To date, the ivermectin resistance in nematode parasites has been reported and many studies are carried out to determine the causes of this problem. A free-living Caenorhabditis elegans is used as a model system for this study to investigate the response of C. elegans to ivermectin exposure by using larval development assay. Worms were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24, 48, 72, and 96 hours until the worms become adults. Results indicated that worms’ growth began to be affected by ivermectin at a concentration of 5 ng/mL, while at the concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to control worms. Further study of the protein expression in C. elegans should be done to investigate the up-regulated and down-regulated proteins involve in ivermectin resistance. PMID:27965734

  10. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua)

    PubMed Central

    Nedelec, Sophie L.; Simpson, Stephen D.; Morley, Erica L.; Nedelec, Brendan; Radford, Andrew N.

    2015-01-01

    Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width–length ratios. Larvae with lower body width–length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures. PMID:26468248

  11. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua).

    PubMed

    Nedelec, Sophie L; Simpson, Stephen D; Morley, Erica L; Nedelec, Brendan; Radford, Andrew N

    2015-10-22

    Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width-length ratios. Larvae with lower body width-length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures. © 2015 The Authors.

  12. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish.

    PubMed

    Liu, Yiran; Wu, Ding; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2017-10-01

    Tris (2-butoxyethyl) phosphate (TBOEP), is used as a flame retardant worldwide. It is an additive in materials and can be easily discharged into the surrounding environment. There is evidence linking TBOEP exposure to abnormal development and growth in zebrafish embryos/larvae. Here, using zebrafish embryo as a model, we investigated toxicological effects on developing zebrafish (Danio rerio) caused by TBOEP at concentrations of 0, 20, 200, 1000, 2000μg/L starting from 2h post-fertilization (hpf). Our findings revealed that TBOEP exposure caused developmental toxicity, such as malformation, growth delay and decreased heart rate in zebrafish larvae. Correlation analysis indicated that inhibition of growth was possibly due to down-regulation of expression of genes related to the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, exposure to TBOEP significantly increased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in whole larvae. In addition, changed expression of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis was observed, indicating that perturbation of HPT axis might be responsible for the developmental damage and growth delay induced by TBOEP. The present study provides a new set of evidence that exposure of embryo-larval zebrafish to TBOEP can cause perturbation of GH/IGF axis and HPT axis, which could result in developmental impairment and growth inhibition. Copyright © 2017. Published by Elsevier B.V.

  13. The spawning, embryonic and early larval development of the green wrasse Labrus viridis (Linnaeus, 1758) (Labridae) in controlled conditions.

    PubMed

    Kožul, V; Glavić, N; Tutman, P; Bolotin, J; Onofri, V

    2011-05-01

    Green wrasse, Labrus viridis (Linnaeus, 1758), is an endangered species in the southern Adriatic Sea, but it is also of interest for potential rearing in polyculture with other commercial species for the repopulation of areas where it is endangered or as a new aquaculture species. A parental stock of the green wrasse was kept in aquaria for six years. The spawning, embryonic and early larval development maintained under controlled laboratory conditions are described and illustrated. The average diameter of newly spawned eggs was 1.01±0.03 mm. Mature and fertilized eggs were attached to the tank bottom by mucus. Hatching started after 127 h at a mean temperature of 14.4±0.8°C. The average total length of newly hatched larvae was 4.80±0.22 mm. Absorption of the yolk-sac was completed after the 5th day when larvae reached 5.87±0.28 mm. Larvae were fed with the rotifers Brachionus plicatilis. The pigmentation of L. viridis larvae is similar to that of Labrus merula and Labrus bergylta, but the main differences between these species are in the size of larvae and the development time of the melanophores on the anal fin-fold (five days later than with L. merula) and on top of the head (nine days earlier than with L. merula).

  14. Primary alveolar echinococcosis: course of larval development and antibody responses in intermediate host rodents with different genetic backgrounds after oral infection with eggs of Echinococcus multilocularis.

    PubMed

    Matsumoto, Jun; Kouguchi, Hirokazu; Oku, Yuzaburo; Yagi, Kinpei

    2010-09-01

    We investigated parasite establishment, subsequent larval development and antibody responses in gerbils, cotton rats and 4 inbred mouse strains until 16 weeks post inoculation (p.i.) with 200 eggs of Echinococcus multilocularis. The rate of parasite establishment in the liver determined at 4 weeks p.i. was highest in DBA/2, followed by AKR/N, C57BL/10 and C57BL/6 mice, whereas gerbils harboured few parasite foci. The accurate number of liver lesions in cotton rats could not be determined due to rapid growth and advanced multivesiculation of the parasite observed at 2 weeks p.i. The course of larval development was most advanced in DBA/2 mice with mature protoscolex formation at 16 weeks p.i., followed by AKR/N harbouring metacestodes with sparsely distributed immature protoscoleces. On the other hand, C57BL/6 and C57BL/10 mice had infertile metacestodes without any protoscolex formation. The parasite growth in mice was totally slower than those in gerbils and cotton rats. Specific IgG and IgM responses against 3 types of native crude antigens of larval E. multilocularis were evaluated using somatic extracts of and vesicle fluid of metacestode, and somatic extracts from purified protoscoleces. The 4 mouse strains demonstrated basically similar kinetics with apparent IgG and IgM increases at 9 weeks p.i. and thereafter, except C57BL/10, exhibited higher levels of IgM against crude antigens at some time point of infection. On the other hand, a follow-up determination of specific IgG and IgM levels against recombinant antigens from larval E. multilocularis revealed that each mouse strain showed different antibody-level kinetics. The findings in the present study demonstrate that the course of host-parasite interactions in primary alveolar echinococcosis, caused by larval E. multilocularis, clearly varies among intermediate host rodents with different genetic backgrounds.

  15. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  16. The effects of food shortage during larval development on adult body size, body mass, physiology and developmental time in a tropical damselfly.

    PubMed

    Jiménez-Cortés, J Guillermo; Serrano-Meneses, Martín Alejandro; Córdoba-Aguilar, Alex

    2012-03-01

    Few studies have looked jointly at the effects of larval stressors on life history and physiology across metamorphosis, especially in tropical insects. Here we investigated how the variation of food availability during the larval stage of the tropical and territorial American rubyspot damselfly (Hetaerina americana) affects adult body size and body mass, and two physiological indicators of condition--phenoloxidase activity (an indicator of immune ability) and protein concentration. We also investigated whether larval developmental time is prolonged when food is scarce, an expected situation for tropical species whose larval time is less constrained, compared to temperate species. Second instar larvae were collected from their natural environments and reared in one of two diet regimes: (i) "rich" provided with five Artemia salina prey every day, and (ii) "poor" provided with two A. salina prey every day. In order to compare how distinct our treatments were from natural conditions, a second set of last-instar larvae were also collected and allowed to emerge. Only body size and phenoloxidase increased in the rich regime, possibly to prioritize investment on sexually selected traits (which increase mating opportunities), and immune ability, given pathogen pressure. The sexes did not differ in body size in relation to food regimes but they did differ in body mass and protein concentration; this can be explained on the basis of the energetically demanding territorial activities by males (for the case of body mass), and female allocation to egg production (for the case of protein). Finally, animals delayed larval development when food was scarce, which is coherent for tropical environments. These findings provide key insights in the role of food availability in a tropical species.

  17. Growth and apoptosis during larval forelimb development and adult forelimb regeneration in the newt ( Notophthalmus viridescens).

    PubMed

    Vlaskalin, Tatjana; Wong, Christine J; Tsilfidis, Catherine

    2004-09-01

    Many of the genes involved in the initial development of the limb in higher vertebrates are also expressed during regeneration of the limb in urodeles such as Notophthalmus viridescens. These similarities have led researchers to conclude that the regeneration process is a recapitulation of development, and that patterning of the regenerate mimics pattern formation in development. However, the developing limb and the regenerating limb do not look similar. In developing urodele forelimbs, digits appear sequentially as outgrowths from the limb palette. In regeneration, all the digits appear at once. In this work, we address the issue of whether regeneration and development are similar by examining growth and apoptosis patterns. In contrast to higher vertebrates, forelimb development in the newt, N. viridescens, does not use interdigital apoptosis as the method of digit separation. During adult forelimb regeneration, apoptosis seems to play an important role in wound healing and again during cartilage to bone turnover in the advanced digits and radius/ulna. However, similar to forelimb development, demarcation of the digits in adult forelimb regeneration does not involve interdigital apoptosis. Outgrowth, rather than regression of the interdigital mesenchyme, leads to the individualization of forelimb digits in both newt development and regeneration.

  18. Morphology and ultrastructure of the hindgut fermentation chamber of a melolonthine beetle Holotrichia parallela (Coleoptera: Scarabaeidae) during larval development.

    PubMed

    Zheng, Weiwei; Zhao, Yongshun; Zhang, Hongyu

    2012-04-01

    The morphology and ultrastructure of the hindgut fermentation chamber of a melolonthine beetle, Holotrichia parallela, were examined using light and electron microscopy. The results showed that the anterior portion of the hindgut expanded into a characteristic lobe-like structure described as a fermentation chamber. Hematoxylin-eosin staining revealed that the wall of the fermentation chamber was composed of three main layers: the longitudinal muscle layer, the circular muscle layer, and the columnar epithelial cells. Scanning electron microscopy showed that the ultrastructure of the inner surface of the fermentation chamber was subjected to significant changes during larval development. Only some folds and a few cocci attached to the folds were found in the first-instar larvae. In the fermentation chambers of the second-instar larvae, a cuticular intima began to emerge, and the bacteria multiplied to form bacterial groups attached to the intima. A special lobe-like structure was formed in the third-instar larvae, constituted by bacteria and the bacteria-covered cuticular intima. Transmission electron microscopy revealed that the lobe-like structure held large numbers of rod-shaped bacteria. These data suggest that the hindgut fermentation chamber may have an important role in the symbiotic relationship between microbes and their insect hosts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Chronic toxicity of arsenic during Rhinella arenarum embryonic and larval development: Potential biomarkers of oxidative stress and antioxidant response.

    PubMed

    Mardirosian, Mariana Noelia; Lascano, Cecilia Inés; Bongiovanni, Guillermina Azucena; Venturino, Andrés

    2017-06-01

    The Argentinean autochthonous toad Rhinella arenarum was selected to study the chronic toxicity of arsenic (As) and the biochemical responses elicited by exposure to As in water during embryonic and larval development. Significant decreases in the total reactive antioxidant potential and in catalase activity were observed in individuals exposed chronically to sublethal concentrations of As, which is indicative of an oxidative stress situation. However, an antioxidant response was elicited during chronic exposure to As, as evidenced by the increase in endogenous reduced glutathione content and glutathione-related enzymatic activities such as glutathione S-transferase (GST) and glutathione reductase. This protective response might prevent a deeper decline in the antioxidant system and further oxidative damage. Alternatively, it might be linked to As conjugation with reduced glutathione for its excretion. Considering the sustained increase in GST activity and the decrease in the total antioxidant reactive potential observed, the authors propose them as good candidates to be used as biomarkers during As exposure. Interestingly, glutathione reductase activity was inhibited at a very low concentration of As considered safe for aquatic life. Environ Toxicol Chem 2017;36:1614-1621. © 2016 SETAC. © 2016 SETAC.

  20. [Embryonic and Larval Development of the Asian Seabass Lates calcarifer (Pisces: Perciformes: Latidae) under Thermostatically Controlled Conditions].

    PubMed

    Shadrin, A M; Pavlov, D S

    2015-01-01

    Material for this study was obtained from the hatchery with brood stock of Lates calcarifer that originated from a natural population living in inshore waters off Central Vietnam. Commercial interest in L. calcarifer as an object of mariculture and wildstock fishery has resulted in several publications on its early life history; nevertheless, comprehensive description of early development of L. calcarifer based on controlled incubation of embryos and larvae has remained absent. In the present paper embryonic and larval development to the stage of anlage of pelvic fins is described in detail and illustrated with original drawings of live material on the basis of thermostatically controlled incubation of embryos at 27°C and larvae at 26.8°C (26.5-28.0°C). The first cleavage furrow appeared at the age of 33.5 min. The duration of synchronous cleavage cycle was 16 min. About 80% of all embryos hatched at the age of 18 h. The length of newly hatched larva during the first hour after emergence from the egg shell was 1.63 ± 0.016 mm (1.50-1.75 mm). Chronology of development of the organs, early circulatory system, and pigmentation pattern is given. The dynamics of change in the trunk and caudal body segment number in larva from hatching to the moment of anlage of pelvic fins is shown. The total number of body segments reached the maximum value of 26-27 soon after hatching and then decreased to 20-21 segments. Newly received data are discussed in a comparative context of development of some other teleosts.

  1. A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment

    PubMed Central

    2014-01-01

    Background The purple sea urchin, Strongylocentrotus purpuratus, has long been the focus of developmental and ecological studies, and its recently-sequenced genome has spawned a diversity of functional genomics approaches. S. purpuratus has an indirect developmental mode with a pluteus larva that transforms after 1–3 months in the plankton into a juvenile urchin. Compared to insects and frogs, mechanisms underlying the correspondingly dramatic metamorphosis in sea urchins remain poorly understood. In order to take advantage of modern techniques to further our understanding of juvenile morphogenesis, organ formation, metamorphosis and the evolution of the pentameral sea urchin body plan, it is critical to assess developmental progression and rate during the late larval phase. This requires a staging scheme that describes developmental landmarks that can quickly and consistently be used to identify the stage of individual living larvae, and can be tracked during the final two weeks of larval development, as the juvenile is forming. Results Notable structures that are easily observable in developing urchin larvae are the developing spines, test and tube feet within the juvenile rudiment that constitute much of the oral portion of the adult body plan. Here we present a detailed staging scheme of rudiment development in the purple urchin using soft structures of the rudiment and the primordia of these juvenile skeletal elements. We provide evidence that this scheme is robust and applicable across a range of temperature and feeding regimes. Conclusions Our proposed staging scheme provides both a useful method to study late larval development in the purple urchin, and a framework for developing similar staging schemes across echinoderms. Such efforts will have a high impact on evolutionary developmental studies and larval ecology, and facilitate research on this important deuterostome group. PMID:24886415

  2. Scymnus camptodromus (Coleoptera: Coccinellidae) larval development and predation of hemlock woolly adelgid (Hemiptera: Adelgidae)

    Treesearch

    Samita Limbu; Melody A. Keena; David Long; Nancy Ostiguy; Kelli. Hoover

    2015-01-01

    Development time and prey consumption of Scymnus (Neopullus) camptodromus Yu and Liu (Coleoptera: Coccinellidae) larvae by instar, strain, and temperature were evaluated. S. camptodromus, a specialist predator of hemlock woolly adelgid Adelges tsugae (Annand) (Hemiptera:...

  3. Comparison of larval development and overwintering stages of the spotted knapweed biological control agents Agapeta zoegana (Lepidoptera: Tortricidae) and Cyphocleonus achates (Coleoptera: Curculionidae) in Montana versus Eastern Europe.

    PubMed

    Corn, Janelle G; Story, Jim M; White, Linda J

    2009-08-01

    Larval development of insects introduced for biological control of invasive weeds may be constrained if the new climate is more extreme than in their native range. We surveyed larval development in Agapeta zoegana L. and Cyphocleonus achates (Fahraeus), two species of biological control insects introduced from eastern Europe against spotted knapweed in western North America. We dissected spotted knapweed roots collected from five sites in western Montana over 6 yr either in late fall or early spring and measured larval head capsule size to determine the overwintering instar stage. Development of A. zoegana was estimated equally well with late fall or early spring root collections, but C. achates rate of development may be underestimated using fall samples. The larvae of neither species entered diapause in as advanced an instar in western Montana as reported for their native range. Most A. zoegana larvae reached the third (26%) or fourth (20%) instar at diapause, with only 15% reaching sixth instars, as they typically do in their native Eurasia. Almost all (94%) C. achates overwintered as first instars, with most of the remaining (4%) being eggs, some of which were viable in the spring. Only a small number (2%) of C. achates larvae overwintered as second instars, the common overwintering stage in their native range. Slower development may explain, in part, why A. zoegana only has one generation per year in Montana compared with two to three generations per year in Europe.

  4. Effects of microgravity on the larval development, metamorphosis and reproduction of the urodele amphibian Pleurodeles waltl.

    PubMed

    Dournon, C; Durand, D; Tankosic, C; Membre, H; Gualandris-Parisot, L; Bautz, A

    2001-06-01

    The FERTILE experiment was twice performed onboard the Mir space station during the Cassiopée and Pégase French space missions. The goal was to analyze the effects of microgravity on fertilization and embryonic development, and then on further development on the ground in the amphibian Pleurodeles waltl. The present paper reports development that occurred in the laboratory after landing. Recovered on the ground at the hatching stage, young larvae reared at room temperature underwent metamorphosis and became adults without obvious abnormalities. Of particular interest was the rearing temperature that induced a delayed metamorphosis for animals from the Cassiopée space mission, but not for animals from the Pégase mission. The rate of development and the morphology were analogous in these animals and in ground controls reared in a similar annual period. Analysis of offspring was performed using these animals. Males born in space were first mated with control ground-born females and then with females born in space. The mating gave progeny that developed normally. Depending on the methods used and on the limits of the analyses, the results clearly demonstrated that animals born in space were able to live and reproduce after return to the ground.

  5. Relationships between chemical properties of larval media and development of two Stomoxys species (Diptera: Muscidae) from Reunion Island.

    PubMed

    Gilles, J; David, J F; Lecomte, P; Tillard, E

    2008-02-01

    The development of two cattle pests, Stomoxys calcitrans L. and Stomoxys niger niger Macquart (Diptera: Muscidae), was studied in the laboratory using seven potential larval media from a dairy farm on Reunion Island. The media were six types of cattle feed and an old manure medium. Egg-to-adult survival, duration of development, and adult live weight at emergence were determined for both fly species on each medium. The media were analyzed for pH, nitrogen, organic matter, and structural compounds (cellulose, hemicellulose, lignin). For S. calcitrans, immature survival was significantly higher on sugarcane leaves, Rhodes grass, and elephant grass; for S. niger, survival was significantly higher on the same substrates plus sugarcane tops. These substrates were characterized by slightly acid pH values (range, 5.4-6.0). In both species, there were significant bell-shape relationships between immature survival and substrate pH. The developmental time of both fly species was significantly shorter on Rhodes grass, Rhodes grass hay, and elephant grass. These substrates were characterized by high cellulose contents and low soluble organic fractions. In both species, there were significant linear relationships between developmental time and cellulose content of substrates. Similarly, there were significant linear relationships between adult live weight and cellulose content of substrates. The C:N ratio of the most favorable substrates was highly variable. Although the relationships revealed in this study do not establish causation, it is suggested that pH and cellulose content may have direct and indirect effects on Stomoxys development.

  6. Temporal changes in the bacterial community of animal feces and their correlation with stable fly oviposition, larval development, and adult fitness

    PubMed Central

    Albuquerque, Thais A.; Zurek, Ludek

    2014-01-01

    Stable flies are blood-feeding insects with a great negative impact on animals world wide. Larvae develop primarily in animal manure and bacteria are essential for larval development; however, the principle of this dependence is not understood. We hypothesized that as the microbial community of animal manure changes over time, it plays an important role in stable fly fitness. Two-choice bioassays were conducted using 2 week old horse manure (control) and aging horse manure (fresh to 5 week old) to evaluate the effect of manure age on stable fly oviposition. Our data showed that fresh feces did not stimulate oviposition and that the attractiveness increased as manure aged but started to decline after 3 weeks. Bioassays assessing the effect of manure age at the time of oviposition on larval development demonstrated that 1–3 week old manure supported larval development significantly better than fresh, 4, and 5 week old manure. In addition, adult fitness (body size) was significantly higher in flies from 1 and 2 week old manure comparing to that of all other treatments. Analysis of the bacterial community of aging horse manure by 454-pyrosequencing of 16S rDNA revealed a great reduction in bacterial diversity and richness from fresh to 1–5 week old manure and a major shift from strict anaerobes in fresh manure to facultative anaerobes and strict aerobes in aged manure. Overall, the microbial community of 2 and 3 week old horse manure with its dominant bacterial taxa Rhizobium, Devosia, and Brevundimonas stimulated stable fly oviposition the most and provided a suitable habitat for larval development. These bacteria represent the candidates for studies focused on better understanding of stable fly – microbial interactions. PMID:25426108

  7. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development.

    PubMed

    Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai

    2017-02-01

    Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.

  8. Eugregarines reduce susceptibility of the hide beetle, Dermestes maculatus, to apicomplexan pathogens and retard larval development

    USDA-ARS?s Scientific Manuscript database

    Eugregarines are abundant in a great diversity of invertebrates, and yet their relationships with their hosts are subject to controversy and confusion. We tested the effect of the eugregarine, Pyxinia crystalligera, on growth, development, and susceptibility to two Apicomplexa pathogens of the hide ...

  9. Compensatory Development and Costs of Plasticity: Larval Responses to Desiccated Conspecifics

    PubMed Central

    Sadeh, Asaf; Truskanov, Noa; Mangel, Marc; Blaustein, Leon

    2011-01-01

    Understanding constraints on phenotypic plasticity is central to explaining its evolution and the evolution of phenotypes in general, yet there is an ongoing debate on the classification and relationships among types of constraints. Since plasticity is often a developmental process, studies that consider the ontogeny of traits and their developmental mechanisms are beneficial. We manipulated the timing and reliability of cues perceived by fire salamander larvae for the future desiccation of their ephemeral pools to determine whether flexibility in developmental rates is constrained to early ontogeny. We hypothesized that higher rates of development, and particularly compensation for contradictory cues, would incur greater endogenous costs. We found that larvae respond early in ontogeny to dried conspecifics as a cue for future desiccation, but can fully compensate for this response in case more reliable but contradictory cues are later perceived. Patterns of mortality suggested that endogenous costs may depend on instantaneous rates of development, and revealed asymmetrical costs of compensatory development between false positive and false negative early information. Based on the results, we suggest a simple model of costs of development that implies a tradeoff between production costs of plasticity and phenotype-environment mismatch costs, which may potentially underlie the phenomenon of ontogenetic windows constraining plasticity. PMID:21246048

  10. Otolith development in larval and juvenile Schizothorax davidi: ontogeny and growth increment characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Taiming; Hu, Jiaxiang; Cai, Yueping; Xiong, Sen; Yang, Shiyong; Wang, Xiongyan; He, Zhi

    2017-09-01

    Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David's schizothoracin otoliths. Otolith development was observed and their formation period was verified by monitoring larvae and juveniles of known age. The results revealed that lapilli and sagittae developed before hatching, and the first otolith increment was identified at 2 days post hatching in both. The shape of lapilli was relatively stable during development compared with that of sagittae; however, growth of four sagittae and lapilli areas was consistent, but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface. Similarly, the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length, respectively. Moreover, daily deposition rates were validated by monitoring knownage larvae and juveniles. The increase in lapilli width was 1.88±0.080 0 μm at the ninth increment, which reached a maximum and the decreased gradually toward the otolith edge, whereas that of sagittae increased more slowly. These results illustrate the developmental biology of S. davidi, which will aid in population conservation and fish stock management.

  11. Otolith development in larval and juvenile Schizothorax davidi: ontogeny and growth increment characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Taiming; Hu, Jiaxiang; Cai, Yueping; Xiong, Sen; Yang, Shiyong; Wang, Xiongyan; He, Zhi

    2016-09-01

    Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David's schizothoracin otoliths. Otolith development was observed and their formation period was verified by monitoring larvae and juveniles of known age. The results revealed that lapilli and sagittae developed before hatching, and the first otolith increment was identified at 2 days post hatching in both. The shape of lapilli was relatively stable during development compared with that of sagittae; however, growth of four sagittae and lapilli areas was consistent, but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface. Similarly, the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length, respectively. Moreover, daily deposition rates were validated by monitoring known-age larvae and juveniles. The increase in lapilli width was 1.88±0.080 0 μm at the ninth increment, which reached a maximum and the decreased gradually toward the otolith edge, whereas that of sagittae increased more slowly. These results illustrate the developmental biology of S. davidi, which will aid in population conservation and fish stock management.

  12. A Binding Site for Bacillus thuringiensis Cry1Ab Toxin Is Lost during Larval Development in Two Forest Pests

    PubMed Central

    Rausell, Carolina; Martínez-Ramírez, Amparo Consuelo; García-Robles, Inmaculada; Real, María Dolores

    2000-01-01

    The insecticidal activity and receptor binding properties of Bacillus thuringiensis Cry1A toxins towards the forest pests Thaumetopoea pityocampa (processionary moth) and Lymantria monacha (nun moth) were investigated. Cry1Aa, Cry1Ab, and Cry1Ac were highly toxic (corresponding 50% lethal concentration values: 956, 895, and 379 pg/μl, respectively) to first-instar T. pityocampa larvae. During larval development, Cry1Ab and Cry1Ac toxicity decreased with increasing age, although the loss of activity was more pronounced for Cry1Ab. Binding assays with 125I-labelled Cry1Ab and brush border membrane vesicles from T. pityocampa first- and last-instar larvae detected a remarkable decrease in the overall Cry1Ab binding affinity in last-instar larvae, although saturable Cry1Ab binding to both instars was observed. Homologous competition experiments demonstrated the loss of one of the two Cry1Ab high-affinity binding sites detected in first-instar larvae. Growth inhibition assays with sublethal doses of Cry1Aa, Cry1Ab, and Cry1Ac in L. monacha showed that all three toxins were able to delay molting from second instar to third instar. Specific saturable binding of Cry1Ab was detected only in first- and second-instar larvae. Cry1Ab binding was not detected in last-instar larvae, although specific binding of Cry1Aa and Cry1Ac was observed. These results demonstrate a loss of Cry1Ab binding sites during development on the midgut epithelium of T. pityocampa and L. monacha, correlating in T. pityocampa with a decrease in Cry1Ab toxicity with increasing age. PMID:10742241

  13. Flotation of Toxocara canis Eggs in Commercial Bleach and Effects of Bleach Treatment Times on Larval Development in These Eggs.

    PubMed

    von Dohlen, Alexa Rosypal; Houk-Miles, Alice E; Zajac, Anne M; Lindsay, David S

    2017-04-01

    Toxocara canis is a common intestinal nematode of young dogs. Puppies contaminate the environment with large numbers of eggs that can embryonate and become infective in less than a month. Embryonated eggs are infectious for humans and other paratenic hosts. Most T. canis infections in humans are asymptomatic; however, migration of T. canis larvae in the eye and in the central nervous system can result in vision loss, blindness, and even death. The eggs of T. canis are highly resistant to harsh environmental conditions and routinely used chemical disinfectants. The objective of this study was to evaluate the effects of full-strength commercial bleach (5.25% sodium hypochlorite solution) treatment on development of T. canis eggs and to report our serendipitous finding that T. canis eggs in dog feces can float in passive fecal flotation tests using bleach. We also demonstrated that T. canis eggs could be identified using the McMaster's fecal eggs counting test using 100% bleach. Toxocara canis eggs collected from the feces of naturally infected 4-8 wk old puppies were treated with full-strength bleach (5.25% sodium hypochlorite solution) for 15 min, 30 min, 60 min, and 120 min; washed free of bleach smell by centrifugation; and resuspended in 0.1 N sulfuric acid solution to undergo larval development at room temperature for 18 days after exposure to bleach. Motile larvae were observed in T. canis eggs in all groups treated for 15-120 min and eggs continuously exposed to bleach for 18 days. Our results indicate that bleach may not be an appropriate disinfectant for dog kennels, cages, or laboratory utensils and work surfaces. Toxocara canis eggs are resistant to bleach treatment and continue to pose a risk for canine and human infections. Further study is needed to find the most appropriate methods for disinfection and removal of eggs to reduce the risk of transmission of this parasite.

  14. Effects of multi-well plate incubation on embryo-larval development in the fathead minnow (Pimephales promelas).

    PubMed

    Marentette, Julie R; Sullivan, Cheryl A; Lavalle, Christine; Shires, Kallie; Parrott, Joanne L

    2015-01-01

    Fathead minnow embryos and larvae are frequently used in toxicology, including short-term embryo-only tests which often use small volumes of test solution. The effect that such conditions may have on fathead minnow development has yet to be explicitly described. Here we compared rates of embryonic development in fathead minnow embryos reared under standard light and temperature conditions with a range of possible methods. All methods yielded excellent control survival. We demonstrated that fathead minnow embryos incubated in a range of small volumes in multi-well plates (500 μL to 2 mL per embryo) did not substantially vary in developmental rate, but flexed less frequently as embryos, hatched smaller, later and with larger yolk-sacs, and initiated feeding later than embryos reared in an excess of solution (20 mL per embryo) with or without supplemental aeration. Faster hatch and growth were promoted with an orbital shaker, but growth benefits were not sustained into the larval stage. Developmental differences persisted in larvae reared to 20 days post-fertilization when monitoring ceased, but growth differences did not magnify and in some measurements partially resolved. To our knowledge we are the first to report effects of incubation in multi-well plates in any fish taxa. As our data revealed that the eleutheroembryonic stage for fathead minnow may be prolonged in multi-well plates, this may allow the use of longer toxicity tests using fathead minnow embryos without conflicting with existing animal welfare legislation in many countries.

  15. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development.

    PubMed

    Enya, Sora; Daimon, Takaaki; Igarashi, Fumihiko; Kataoka, Hiroshi; Uchibori, Miwa; Sezutsu, Hideki; Shinoda, Tetsuro; Niwa, Ryusuke

    2015-06-01

    Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species.

  16. Eugregarines reduce susceptibility of the hide beetle, Dermestes maculatus, to apicomplexan pathogens and retard larval development.

    PubMed

    Lord, Jeffrey C; Omoto, Charlotte K

    2012-10-01

    Eugregarines are abundant in a great diversity of invertebrates, and yet their relationships with their hosts are subject to controversy and confusion. We tested the effect of the eugregarine, Pyxinia crystalligera, on growth, development, and susceptibility to two Apicomplexa pathogens of the hide beetle, D. maculatus. Heavy infection with eugregarines provided partial protection from two pathogenic members of Apicomplexa, M. trogodermae and A. tribolii. Infection with P. crystalligera caused lower weight in beetle larvae, but did not significantly retard pupation or adult emergence. A. tribolii infection of Lepidoptera and M. trogodermae infection of D. maculatus are reported for the first time. Published by Elsevier Inc.

  17. The toxicity of a lipid transfer protein (Cc-LTP1) from Coffea canephora Seeds on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    Zottich, Umberto; Da Cunha, Maura; Dias, Germana B; Rabelo, Guilherme R; Oliveira, Antonia Elenir A; Carvalho, André O; Fernandes, Kátia Valevski S; do Nascimento, Viviane V; Gomes, Valdirene M

    2014-10-01

    In this work, we analyzed the effects of coffee seed proteins, especially Cc-LTP1 on the larval development of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), a bruchid pest of beans and the most important insect pest of Vigna unguiculata (L.) Walp. Artificial seed assay, which incorporated the F/0-90 fraction from Coffea canephora seeds, resulted in the reduction of oviposition and caused an inhibition of C. maculatus larval development in a dose-dependent manner. The F/0-90 fraction used at a 4 % concentration resulted in the survival of no larvae. The purified Cc-LTP1, at a concentration of 0.5 %, also demonstrated effective inhibition of larval development, reducing both females oviposition and the weight and number of larvae. Cc-LTP1 was also able to inhibit the C. maculatus gut α-amylase activity, and immunolabeling by an anti-LTP serum was observed in the midgut tissues of the C. maculatus larvae. Cc-LTP1 has shown binding affinity towards microvillar cells, endoplasmic reticulum and mitochondria, as demonstrated by micrographic images taken by a transmission electron microscope. The results from this study indicate that Cc-LTP1 has insecticidal actions toward C. maculatus and exerts anti-nutritional effects with direct actions on intestinal tissues.

  18. Effects of chlorpyrifos on in vitro sex steroid production and thyroid follicular development in adult and larval Lake Sturgeon, Acipenser fulvescens.

    PubMed

    Brandt, Catherine; Burnett, Duncan C; Arcinas, Liane; Palace, Vince; Gary Anderson, W

    2015-08-01

    Chlorpyrifos is a widely used organophosphate pesticide that has previously been shown to enter waterways in biologically relevant concentrations and has the potential to disrupt both thyroid hormone and sex steroid biosynthesis in vertebrates. Because gonadal maturation and larval development in Lake Sturgeon, Acipenser fulvescens, potentially coincide with the application of chlorpyrifos we examined the effects of chlorpyrifos on both thyroid follicular development in larval Lake Sturgeon, and sex hormone synthesis in adult Lake Sturgeon. For the first time, the present study reports steroidogenesis from testicular and ovarian tissue in Lake Sturgeon using an established in vitro bioassay. Furthermore, incubating gonad tissue with 5, 500 or 2000ngmL(-1) chlorpyrifos revealed an inhibitory effect on testosterone synthesis in both testicular (control, 40.29pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 21.84pgmg(-1) tissue wet weight(-1)h(-1)) and ovarian (control, 33.83pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 15.19pgmg(-1) tissue wet weight(-1)h(-1)) tissue. In a second series of experiments, larval Lake Sturgeon were exposed to equivalent concentrations of chlorpyrifos as above for 10days (d) between hatch and the onset of exogenous feeding. Larvae from each treatment group were raised until 67days post hatch (dph) and growth rates were compared alongside key indicators of thyroid follicle growth. Chlorpyrifos treatment had no effect on the measured indicators of thyroid follicular development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Gregarine infection accelerates larval development of the cat flea Ctenocephalides felis (Bouché).

    PubMed

    Alarcón, M E; Jara-F, A; Briones, R C; Dubey, A K; Slamovits, C H

    2017-04-01

    A high degree of specialization between host and parasite is a well-known outcome of a long history of coevolution, and it is strikingly illustrated in a coordination of their life cycles. In some cases, the arms race ensued at the establishment of a symbiotic relationship results in the adoption of manipulative strategies by the parasite. We have already learned that Steinina ctenocephali, a gregarine living in the alimentary canal of cat flea, Ctenocephalides felis follows its phenology and metamorphosis. Despite these findings the outcome of their symbiotic partnership (mutualist, parasitic or commensal) remains unclear. To address this important question, we measured life history parameters of the flea in the presence of varying infection intensities of gregarine oocysts in laboratory conditions. We found that neither the emergence nor survival rate of fleas was affected by harbouring the gregarines. More surprisingly, our results show that flea larvae infected with gregarines developed faster and emerged earlier than the control group. This gregarine therefore joins the selected group of protists that can modify physiological host traits and provides not only new model taxa to be explored in an evolutionary scenario, but also potential development of control strategies of cat flea.

  20. Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms

    USGS Publications Warehouse

    Jooste, A.M.; Du Preez, L.H.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Solomon, K.R.

    2005-01-01

    The potential effects of atrazine on gonadal development in metamorphs and subadults of the African clawed frog (Xenopus laevis) were studied under conditions of natural photoperiod and temperatures in outdoor microcosms from August 2002 to June 2003 in South Africa. Triplicate 1100 L microcosms for each nominal concentration of 0.0, 1, 10, and 25 ??g of atrazine/L were used. Measured atrazine concentrations varied <25% throughout the study, and no atrazine was detected in the control microcosms. Tadpoles developed well at all concentrations. On the basis of histological examination of testes of recently metamorphosed stage 66 frogs, 57% of the individuals in the reference group exhibited testicular oocytes as compared with 57, 59, and 39% of the 1, 10, and 25 ??g/L atrazine groups, respectively. The average prevalence of testicular oocytes for all of the treatments including the controls was 54% in a single testis, while, in 35% of individuals, testicular oocytes were observed in both testes. The number of testicular oocytes per individual ranged from 0 to 58 with means of 9.5, 9.8, 8.5, and 11.1 for the 0.0, 1, 10, and 25 ??g of atrazine/L groups, respectively. Ten months after metamorphosis, another subset of juveniles was examined, and the maximum number of testicular oocytes observed was five in one animal. The presence of testicular oocytes was not related to exposure to atrazine and may be a natural phenomenon during ontogeny. ?? 2005 American Chemical Society.

  1. Expression of Immune-Related Genes during Loach (Misgurnus anguillicaudatus) Embryonic and Early Larval Development

    PubMed Central

    Lee, Jang Wook; Kim, Jung Eun; Goo, In Bon; Hwang, Ju-Ae; Im, Jea Hyun; Choi, Hye-Sung; Lee, Jeong-Ho

    2015-01-01

    Early life stage mortality in fish is one of the problems faced by loach aquaculture. However, our understanding of immune system in early life stage fish is still incomplete, and the information available is restricted to a few fish species. In the present work, we investigated the expression of immune-related transcripts in loach during early development. In fishes, recombination-activating gene 1 (RAG-1) and sacsin (SACS) have been considered as immunological function. In this study, the expression of the both genes was assessed throughout the early developmental stages of loach using real-time PCR method. maRAG-1 mRNA was first detected in 0 dph, observed the increased mostly until 40 dph. Significant expression of maRAG-1 was detected in 0 to 40 dph. These patterns of expression may suggest that the loach start to develop its function after hatching. On the other hand, maSACS was detected in unfertilized oocyte to molura stages and 0 to 40 dph. maSACS mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. PMID:26973969

  2. Embryonic and larval development of Eugerres mexicanus (Perciformes: Gerreidae) in Tenosique, Tabasco, Mexico.

    PubMed

    Hernández, Raúl E; Perera, Martha A; Castillo, Alfonso; Luna, Emiliano; de la Cruz, José A; Gómez, Luis M; Valdez Zenil, José

    2012-03-01

    Most studies on Eugerres mexicanus mainly consider biogeographic and systematic aspects and rarely address reproductive characteristics, which are useful for fishery population management plans. This study aimed at evaluating the ontogeny of E. mexicanus, based on 30 embryos and 30 larvae sampled by induced spawning of breeders, taken in February 2009 from the Usumacinta River in Tenosique, Tabasco, Mexico. All descriptions of the embryonic development were based on morphometric and meristic data and followed standard methods. Eggs, recovered at the gastrula stage, had an average diameter of 1.17mm (SD=0.08). The bud stage appeared during the first three hours of development, in which the posterior side was adhered to the vitellus; Kupffer's vesicle was visible. Yolk-sac larvae hatched 18 hours after fertilization, exhibiting a light brown color and an average total length of 2.94mm (SD=0.70); the preflexion stage was reached eight days after hatching, with a total average length of 4.67mm (SD=0.50) and a total notochord length of 4.45mm (SD=0.50). The flexion stage was reached on the 16th day, with an average total length of 6.66mm (SD=1.53), while postflexion was reached on the 24th day, with 10.33mm (SD=1.45). The pre-juvenile stage was reached on the 33rd day, with a total length of 14.30mm (SD=0.93), showing IX spines and 10 rays and III spines and eight rays in the dorsal and anal fins, respectively. The juvenile stage was reached by the 45th day, with an average length of 28.16mm (SD=1.93) and average weight of 4.75g (SD=1.49). Prejuveniles showed an initial pigmentation with dark colored dots in the superior and inferior jaw and dispersed on the head, while juveniles presented the same pigmentation pattern, decreasing towards the margin of the caudal peduncle. In conclusion, the embryonic developmental stages of E. mexicanus were typical for the Gerreidae group. However, their morphometric characters were slightly different since the diameter and size of

  3. Talisia esculenta lectin and larval development of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae).

    PubMed

    Macedo, Maria Ligia R; das Graças Machado Freire, Maria; Novello, José Camillo; Marangoni, Sérgio

    2002-06-06

    Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil and the Mexican bean weevil, are pests that damage stored seeds. Plant lectins have been implicated as antibiosis factors against insects, particularly the cowpea weevil, Callosobruchus maculatus. Talisia esculenta lectin (TEL) was tested for anti-insect activity against C. maculatus and Zabrotes subfasciatus larvae. TEL produced ca. 90% mortality to these bruchids when incorporated in an artificial diet at a level of 2% (w/w). The LD(50) and ED(50) for TEL was ca. 1% (w/w) for both insects. TEL was not digested by midgut preparations of C. maculatus and Z. subfasciatus. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.

  4. Larval organogenesis of Pagrus pagrus L., 1758 with special attention to the digestive system development.

    PubMed

    Darias, M J; Ortiz-Delgado, J B; Sarasquete, C; Martínez-Rodríguez, G; Yúfera, M

    2007-07-01

    Organogenesis of the red porgy (Pagrus pagrus L., 1758) was examined from hatching until 63 days post-hatching (dph) using histological and histochemical techniques. At hatching, the heart appeared as a tubular structure which progressively developed into four differentiated regions at 2 dph: bulbus arteriosus, atrium, ventricle and sinus venosus. First ventricle and atrium trabeculae were appreciated at 6 and 26 dph, respectively. Primordial gill arches were evident at 2 dph. Primordial filaments and first lamellae were observed at 6 and 15 dph, respectively. At mouth opening (3dph), larvae exhausted their yolk-sac reserves. The pancreatic zymogen granules appeared at 6 dph. Glycogen granules, proteins and neutral lipids (vacuoles in paraffin sections) were detected in the cytoplasm of the hepatocytes from 4-6 dph. Hepatic sinusoids could be observed from 9 dph. Pharyngeal and buccal teeth were observed at 9 and 15 dph, respectively. Oesophageal goblet cells appeared around 6 dph, containing neutral and acid mucosubstances. An incipient stomach could be distinguished at 2 dph. The first signs of gastric gland development were detected at 26 dph, increasing in number and size by 35-40 dph. Gastric glands were concentrated in the cardiac stomach region and presented a high content of protein rich in tyrosine, arginine and tryptophan. The intestinal mucous cells appeared at 15 dph and contained neutral and acid glycoconjugates, the carboxylated mucins being more abundant than the sulphated ones. Acidophilic supranuclear inclusions in the intestinal cells of the posterior intestine, related to pynocitosis of proteins, were observed at 4-6 dph.

  5. In vitro development of the fish parasite Hysterothylacium aduncum from the third larval stage recovered from a host to the third larval stage hatched from the egg.

    PubMed

    Adroher, F J; Malagón, D; Valero, A; Benítez, R

    2004-01-28

    Anisakids are parasitic nematodes of fish worldwide, producing economic and human health concerns. It is thus important to ascertain their in vitro life cycle in laboratory studies. Here we describe the in vitro development of third-stage larvae (L3) of Hysterothylacium aduncum isolated from blue whiting Micromesistius poutassou, to the hatching of L3 from eggs obtained from H. aduncum worms grown in GLIT medium (a modified mixture of Yaeger's LIT [Liver Infusion Tryptose] and Grace's media) at pH 4.0, 13 degrees C and with 5% CO2 in air. Under these conditions, L3 recovered from fish developed to mature adults (3.4 to 6.2 cm in length), with oviposition starting from Day 26 in culture. Fertilized eggs (mean size 64 x 52 microm) had a thick, rugose eggshell and were larger than unfertilized ones (mean size 49 x 42 microm), whose eggshells were thin and smooth. Eggs laid during the first and second week of oviposition, and maintained in 2.8% NaCl solution at 13 degrees C, developed to L3. Under these maintenance conditions, between 20.6 and 52.5% of the eggs laid during the first week developed into larvae. Motile larvae, enclosed in a sheath, hatched from between 2 and 11% of these eggs. The larvae started to hatch 23 d after deposition. These larvae were 144 to 215 microm in length, enclosed in a 237 to 305 microm-long sheath. This GLIT culture medium may help to study the biology of this and other anisakids.

  6. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish.

    PubMed

    Forsgren, Elisabet; Dupont, Sam; Jutfelt, Fredrik; Amundsen, Trond

    2013-10-01

    As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 μatm) CO2 or control seawater (ca 370 μatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.

  7. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish

    PubMed Central

    Forsgren, Elisabet; Dupont, Sam; Jutfelt, Fredrik; Amundsen, Trond

    2013-01-01

    As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 μatm) CO2 or control seawater (ca 370 μatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment. PMID:24198929

  8. Control of larval and egg development in Aedes aegypti with Ribonucleic acid interference (RNAi) against juvenile hormone acid methyl transferase

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pi...

  9. Effects of Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development in the Fathead Minnow, Pimephales promelas (Rafinesque, 1820)

    SciTech Connect

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty; Sherrard, Rick

    2014-01-01

    The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephales promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.

  10. Effects of sediment containing coal ash from the Kingston ash release on embryo-larval development in the fathead minnow, Pimephales promelas (Rafinesque, 1820).

    PubMed

    Greeley, Mark S; Elmore, Logan R; McCracken, Mary K; Sherrard, Rick M

    2014-02-01

    The largest environmental release of coal ash in US history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority Kingston Fossil Fuel Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish embryonic and larval life stages. The early development of fish embryos and larvae during contact exposures to river bottom sediments containing up to 78 % coal ash from the Kingston spill was examined in 7-day laboratory tests with the fathead minnow (Pimephales promelas). No significant effects were observed in hatching success, incidences of developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present a significant risk to fish eggs and larvae in waterways affected by the coal ash spill.

  11. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

    PubMed Central

    2013-01-01

    Background Nutritional symbioses play a central role in insects’ adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. Results We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are

  12. Development of tyrosine hydroxylase-immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis.

    PubMed

    Pierre-Simons, Jacqueline; Repérant, Jacques; Mahouche, Mohamed; Ward, Roger

    2002-05-27

    The development of the catecholaminergic system of the brain of the lamprey (Lampetra fluviatilis) was studied with immunocytochemistry in a series of larvae of different sizes by using two different antibodies directed against tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. In group 1 larvae (length: 29-54 mm, ages: 8 months to 1.5 years), the only TH-immunoreactive somata observed were located in the caudal wall of the recessus praeopticus (RP) and in the nucleus tuberculi posterioris (NTP). In group 2 larvae (length: 55-80 mm, ages: 1.5-2.5 years), the somata of immunolabeled cells of the NTP give rise to fibers, most of which are ascending and terminate in the corpus striatum. Additional immunoreactive cells are observed in the nucleus praeopticus (NP), which has differentiated, and in the spinal cord. In group 3 larvae (length: 81-110 mm, ages: 2.5-4 years), the spatial distribution of TH-immunoreactive elements (somata, fibers, and terminals) bears many resemblances to that seen in the adult. Immunolabeled cells may be observed in the olfactory bulb, in the nucleus commissurae postopticae (NCP), and in the nucleus dorsalis hypothalami (NDH). Nevertheless, some groups of TH-immunoreactive cells found in the adult are not observed in group 3 larvae; these may appear during the metamorphic phase. By comparative analysis, we show that, in spite of several differences, the spatiotemporal sequence of appearance of TH-immunoreactive cell bodies and fibers in the lamprey presents many similarities to that described in gnathostomes.

  13. Differential toxicity and uptake of Diazinon on embryo-larval development of Rhinella arenarum.

    PubMed

    Aronzon, Carolina Mariel; Marino, Damián J G; Ronco, Alicia E; Pérez Coll, Cristina Silvia

    2014-04-01

    Diazinon, an anti-cholinesterase organophosphate, is an extensively used pesticide. The main objective of this work was to assess the lethal and sublethal effects of Diazinon and its comparison with the uptake by embryos and larvae of the common South American toad Rhinella arenarum by means of standardized bioassays during acute (96 h), short-term chronic (168 h) and chronic (504 h) exposures. Toxicity resulted time- and stage-dependent, thus the lethal concentration 50 for 96 h, 168 h and 504 h were 27.2; 20.1 and 6.8 mg Diazinon L(-1) for embryos and 8, 6.7 and 1.9 mg Diazinon L(-1) for larvae. It is noteworthy the remarkable differences found in the concentration which caused lethality with those causing adverse effects on development such as malformations (teratogenic effects). Therefore, the teratogenic index from 144 h was greater than two; the main adverse effects were axial flexures, irregular borders, wavy tail, microcephaly, malformed mouth and adhesive structures, gut miscoiling, underdeveloped gills, cloacal edema, desquamation and severe hydropsy. Moreover, the characteristic sublethal effect of Diazinon on larvae was abnormal behavior related to neurotoxicity with a NOEC-168 h of 4.5 mg Diazinon L(-1). Diazinon contents in R. arenarum were time-dependent and significantly related to exposure concentration for both embryos and larvae. Diazinon contents were also stage-dependent, as it was up to 27 times higher for organisms exposed from blastula stage onwards than early larvae. These facts and the Hazard Quotients, a numerical expression of ecological risk, of 2.73, which is above USEPA's Level of Concern, showed the threat that Diazinon represents for R. arenarum populations.

  14. Development of ovary structures in the last larval and adult stages of psyllids (Insecta, Hemiptera, Sternorrhyncha: Psylloidea).

    PubMed

    Kot, Marta; Büning, Jürgen; Jankowska, Władysława; Drohojowska, Jowita; Szklarzewicz, Teresa

    2016-07-01

    The development and organization of the ovaries of ten species from four Psylloidea families (Psyllidae, Triozidae, Aphalaridae and Liviidae) have been investigated. The ovaries of the last larval stage (i.e. fifth instar) of all examined species are filled with numerous clusters of cystocytes which undergo synchronous incomplete mitotic division. Cystocytes of the given cluster are arranged into a rosette with polyfusome in the centre. These clusters are associated with single somatic cells. At the end of the fifth instar, the clusters begin to separate from each other, forming spherical ovarioles which are surrounded by a single layer of somatic cells. In the ovarioles of very young females all cystocytes enter the prophase of meiosis and differentiate shortly thereafter into oocytes and trophocytes (nurse cells). Meanwhile, somatic cells differentiate into cells of the inner epithelial sheath surrounding the trophocytes and into the prefollicular cells that encompass the oocytes. During this final differentiation, the trophocytes lose their cell membranes and become syncytial. Oocytes remain cellular and most of them (termed arrested oocytes) do not grow. In the ovarioles of older females, one oocyte encompassed by its follicle cells starts growing, still connected to the syncytial tropharium by a nutritive cord. After the short phase of previtellogenesis alone, the oocyte enters its vitellogenic the growth phase in the vitellarium. At that time, the second oocyte may enter the vitellarium and start its previtellogenic growth. In the light of the obtained results, the phylogeny of psyllids, as well as phylogenetic relationships between taxa of Hemiptera: Sternorrhyncha are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of Three Volatile Oxylipins on Colony Development in Two Species of Fungi and on Drosophila Larval Metamorphosis.

    PubMed

    Yin, Guohua; Padhi, Sally; Lee, Samantha; Hung, Richard; Zhao, Guozhu; Bennett, Joan W

    2015-09-01

    The aim of this study is to investigate the effects of three volatile oxylipins on colony development in two fungi and on Drosophila larval metamorphosis. Using an airborne exposure technique, three common and volatile oxylipins (1-octen-3-ol, (E)-2-hexenal, and 1-hexanol) were compared for their effects on spore germination and colony growth in Aspergillus niger and Penicillium chrysogenum, as well as for their effects on the morphogenesis of larvae of Drosophila melanogaster. Conidia of both A. niger and P. chrysogenum plated in the presence of low concentrations (50 ppm) of these three volatile organic compounds (VOCs) formed fewer colony-forming units (CFUs) and exhibited reduced radial growth of colonies as compared to controls. When A. niger and P. chrysogenum spores were germinated in the presence of the enantiomers of 1-octen-3-ol, (R)-(-)-1-octen-3-ol had the greatest impact on colony morphology (decreased sporulation and colony diameter), while (S)-(+)-1-octen-3-ol and the racemic form yielded similar morphological changes but to a lesser extent. In addition, Drosophila larvae exposed to vapors of these oxylipins exhibited serious delays in metamorphosis and toxic effects on pupae and adult stages. Low concentration of these three VOCs can significantly inhibit the formation of CFUs and the growth of fungi. (R)-(-)-1-octen-3-ol imposed the greatest impact on fungal morphology compared to (S)-(+)-1-octen-3-ol and the racemic form. The three volatile oxylipins could also delay the metamorphosis of Drosophila and impose toxic effects on its pupae and adult stages.

  16. Evaluation of anthelmintic activity in captive wild ruminants by fecal egg reduction tests and a larval development assay.

    PubMed

    Young, K E; Jensen, J M; Craig, T M

    2000-09-01

    The effectiveness of anthelmintics was evaluated in four herds of captive ruminants, wapiti (Cervus elaphus), Armenian red sheep (Ovis orientalis), giraffe (Giraffa camelopardalis), and pronghorn (Antilocapra americana), by the use of fecal egg reduction tests (FERTs) and a commercial larval development assay (LDA) designed to evaluate susceptibility or resistance of nematodes to anthelmintics. Haemonchus sp. was the predominant nematode in the red sheep, giraffe, and pronghorn herds, whereas Ostertagia sp. and Trichostrongylus sp. were predominant in the wapiti. The LDA data indicated susceptibility by the worms to benzimidazoles except in the red sheep flock, which showed a high level of resistance. High levels of resistance to levamisole were seen in the worm populations from the wapiti and red sheep, moderate resistance in the pronghorn herd, and susceptibility in the giraffe herd. Worms were susceptible in all four herds to a combination of benzimidazole/levamisole. There was suspected avermectin resistance by Trichostrongylus sp. in the wapiti herd and by Haemonchus sp. in the giraffe. The FERTs agreed with the LDA in showing the Haemonchus in the giraffe was susceptible to fenbendazole and had suspected resistance to ivermectin, whereas Haemonchus in the red sheep and pronghorn were susceptible to ivermectin. There was correlation between the tests evaluating anthelmintics. The LDA is useful as a screening test in the selection of an anthelmintic for use in grazing ruminants, but the effectiveness of a drug in a host species may depend as much on the dose used, and the method of administration, as it does on the parasite's sensitivity to the anthelmintic.

  17. Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio).

    PubMed

    Wang, Huili; Che, Baoguang; Duan, Ailian; Mao, Jingwen; Dahlgren, Randy A; Zhang, Minghua; Zhang, Hongqin; Zeng, Aibing; Wang, Xuedong

    2014-10-01

    This study evaluated the effects of β-diketone antibiotics (DKAs) on the development of embryo-larval zebrafish (Danio rerio). When exposure to DKAs, developmental malformations, such as hatching delay, curved body axis, pericardial edema, uninflated swim bladder and yolk sac edema, were observed at 120 h postfertilization (hpf). The estimated 120 hpf nominal concentrations of no observed effect concentration and lowest observed effect concentration for DKAs were 18.75 and 37.50 mg/L, respectively, suggesting that DKAs have much lower toxicity than other persistent pollutants. Following DKA exposure, embryonic heart rates were significantly reduced as compared to the controls at 48 and 60 hpf. The peak bending motion frequency appeared 1 h earlier than in control embryos. The 2.34 and 9.38-mg/L treatment groups had a higher basal swim rate than control groups at 120 hpf in both light and light-to-dark photoperiod experiments. The occurrence of high speed swim rates was enhanced approximately threefold to sevenfold in the 2.34 and 9.38 mg/L treatments compared to the control. Glutathione (GSH) concentrations in the 2.34 and 9.38-mg/L treatments were significantly higher than the control at 72 hpf, suggesting that GSH production was induced at the end of the hatching period. When exposed to DKAs, zebrafish superoxide dismutase enzyme (SOD) activities were significantly inhibited in the early embryonic period, demonstrating that the clearing ability in zebrafish was lower than the generation rate of free radicals. In summary, the combined DKAs were developmentally toxic to zebrafish in their early life stages and had the ability to impair individual behaviors that are of great importance in the assessment of their ecological fitness.

  18. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi.

    PubMed

    Takken, Willem; Smallegange, Renate C; Vigneau, Antoine J; Johnston, Valerie; Brown, Margaret; Mordue-Luntz, A Jenny; Billingsley, Peter F

    2013-12-10

    Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector's nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An. stephensi was a robust, successful vector

  19. Differences in heat shock protein 70 expression during larval and early spat development in the Eastern oyster, Crassostrea virginica (Gmelin, 1791).

    PubMed

    Ueda, Nobuo; Boettcher, Anne

    2009-07-01

    For a variety of species, changes in the expression of heat shock proteins (HSP) have been linked to key developmental changes, i.e., gametogenesis, embryogenesis, and metamorphosis. Many marine invertebrates are known to have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis as they transition to the benthic life stage. A series of experiments were run to examine the expression of heat shock protein 70 (HSP 70) during larval and early spat (initial benthic phase) development in the Eastern oyster, Crassostrea virginica. In addition, the impact of thermal stress on HSP 70 expression during these early stages was studied. C. virginica larvae and spat expressed three HSP 70 isoforms, two constitutive, HSC 77 and HSC 72, and one inducible, HSP 69. We found differences in the expression of both the constitutive and inducible forms of HSP 70 among larval and early juvenile stages and in response to thermal stress. Low expression of HSP 69 during early larval and spat development may be associated with the susceptibility of these stages to environmental stress. Although developmental regulation of HSP 70 expression has been widely recognized, changes in its expression during settlement and metamorphosis of marine invertebrates are still unknown. The results of the current study demonstrated a reduction of HSP 70 expression during settlement and metamorphosis in the Eastern oyster, C. virginica.

  20. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile.

    PubMed

    Haselman, Jonathan T; Sakurai, Maki; Watanabe, Naoko; Goto, Yasushi; Onishi, Yuta; Ito, Yuki; Onoda, Yu; Kosian, Patricia A; Korte, Joseph J; Johnson, Rodney D; Iguchi, Taisen; Degitz, Sigmund J

    2016-12-01

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in a model amphibian species, Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg l(-1) BP-2 until 2 months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg l(-1) treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genetic males showing both testis and ovary tissues (1.5 mg l(-1) ) and 100% of the genetic males in the 3.0 and 6.0 mg l(-1) treatments experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely vitellogenin and other estrogen-responsive yolk proteins. This is the first study that demonstrates the endocrine effects of this mixed mode of action chemical in an amphibian species and demonstrates the utility of the LAGDA design for supporting chemical risk assessment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Larval development of Lynceus brachyurus (Crustacea, Branchiopoda, Laevicaudata): redescription of unusual crustacean nauplii, with special attention to the molt between last nauplius and first juvenile.

    PubMed

    Olesen, Jørgen

    2005-05-01

    The larval development of "conchostracans" has received only scattered attention. Here I present the results of a study on the larval (naupliar) development and the metamorphosis of Lynceus brachyurus, a member of the bivalved branchiopod order the Laevicaudata. Lynceus brachyurus is the only species of the "Conchostraca" in Denmark. The phylogenetic position of the Laevicaudata has traditionally been a source of controversy, and this study does not solve the question completely. This work focuses on features potentially important for phylogeny. The general appearance of the larvae of L. brachyurus has been known for more than a century and a half, and some of its unique features include a large, larval dorsal shield; a huge, plate-like labrum; and a pair of immovable, horn-like antennules. However, many details relating to limb morphology, potentially important for phylogeny, have not been studied previously. Based on size categories, five or six larval stages can be recognized. The larvae approximately double their length and width during development (length: 230-520 microm). Most morphological features stay largely unchanged during development, but the antennal coxal masticatory spines are significant exceptions: they become bifid after one of the first molts. In all larval stages only the antennae and the mandibles actively move. In late naupliar stages the trunk limbs become visible as rows of laterally placed, undeveloped, and still immovable lobes. Swimming is performed by the antennae, whereas the mandibles appear to be involved mainly in feeding, as in other branchiopod larvae. The last naupliar stage undergoes a small metamorphosis to the first juvenile stage, the details of which in part were studied by following the premolt juvenile condition through the cuticle of the last stage nauplius. Among other changes there is a characteristic change in the shape and morphology of the univalved dorsal naupliar shield to a bivalved juvenile carapace. The general

  2. Interrenal and thyroid development in red drum (Sciaenops ocellatus): effects of nursery environment on larval growth and cortisol concentration during settlement.

    PubMed

    Pérez-Domínguez, Rafael; Holt, G Joan

    2006-04-01

    Red drum settle into shallow seagrass meadows during the larval stage. Day-night cycles in these habitats result in marked diel temperature and dissolved oxygen (DO) cycles, and it is possible that extreme fluctuations influence endocrine development and growth of larvae. Here, we described red drum interrenal and thyroid ontogeny and determine responses to environmental stimuli with special emphasis on settlement to explore possible role of hormones as mediator of directive environmental factors. This study detected an early activation of thyroid and interrenal axis during the yolk-sac phase and a second activation of the thyroid starting at settlement size to the end of the larval period. Whole-body l-thyroxine (T4) and 3-5-3'-triiodo-l-thyronine (T3) showed a sharp decline at the juvenile stage. In contrast, cortisol steadily declines during the larval phase to a minimum before the end of the larval period. Older settlement-size larvae exposed to a strong stimulus increased whole body cortisol. In contrast, new settlers showed a minor cortisol rise suggesting changes on stress responsiveness during the ontogeny of the species. Additionally, settlement-size larvae exposed to various environmentally realistic temperature or DO fluctuations showed no difference in growth compared to fish grown under stable conditions (control). However, growth rate was significantly reduced in DO cycled fish with prolonged exposure to hypoxia. No differences were found in whole-body cortisol levels in the reduced growth treatment groups, suggesting that growth retardation was not related to a cortisol-mediated stress response. In moderate DO and temperature treatment groups, cortisol showed wider fluctuations than control groups during the night time that were not related to stress.

  3. Development of the larval amphibian growth and development assay: Effects of chronic 4-tert-octylphenol or 17ß-trenbolone exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thy...

  4. Development of the larval amphibian growth and development assay: Effects of chronic 4-tert-octylphenol or 17ß-trenbolone exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thy...

  5. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.

    PubMed

    Stumpp, M; Dupont, S; Thorndyke, M C; Melzner, F

    2011-11-01

    Extensive use of fossil fuels is leading to increasing CO(2) concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO(2). As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO(2) 41 Pa e.g. 399 μatm) and CO(2) acidified seawater with pH of 7.7 (pCO(2) 134 Pa e.g. 1318 μatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10% reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (two-way ANOSIM: Global R=1) while acidification effects were less pronounced (Global R=0.518). Significant differences in gene expression patterns (ANOSIM R=0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO(2) treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO(2) effect. We found an up regulation of metabolic genes (between 10%and 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes

  6. Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development.

    PubMed

    Kullik, Sigrun A; Sears, Mark K; Schaafsma, Arthur W

    2011-04-01

    Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed.

  7. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  8. Effects of chronic exposure to soft, acidic water on gill development and chloride cell numbers in embryo-larval brook trout, Salvelinus fontinalis

    USGS Publications Warehouse

    Conklin, D.J.; Mowbray, R.C.; Gingerich, W.H.

    1992-01-01

    Recruitment failure is considered to be a major factor contributing to the decline of fish populations in soft, acidic waters; direct mortality of embryo-larval fishes has been postulated as a major cause of the decline. Little is understood of the physiological consequences to embryo-larval fishes of prolonged exposure to soft, acidic waters; however, dysfunction of respiratory and ionoregulatory processes is suspected. In order to evaluate the effects of acid exposure on the respiratory and ionoregulatory systems of developing brook trout, Salvelinus fontinalis, differences in gill morphology and numbers of chloride cells were compared between groups cf developing embryo-larval fish continuously exposed to moderately hard well water (130.0 mg.l-1 as CaCO3, pH 7.94) or to reconstituted soft, acidic water (4.4 mg.l-1 as CaCO3, pH 5.25) designed to mimic acidic waters of northern Wisconsin acidified lakes. Exposures were maintained for up to 48 days (82 days after fertilization) during critical periods of growth and differentiation of branchial structures. The second right gill arch of each fish was examined for changes in the development of filaments and lamellae and for differences in numbers of chloride cells. Gills of fish that developed in soft, acidic water contained greater numbers of normal and degenerating chloride cells, exhibited hyperplasia of primary epithelium and multiple fusions of adjacent filaments and lamellar epithelium than the gills of control fish. Filament and lamellar lengths and numbers of lamellae per filament were significantly less (P< 0.05) in fish that developed in soft, acidic water than in fish exposed to well water.

  9. Larval development sites of the main Culicoides species (Diptera: Ceratopogonidae) in northern Europe and distribution of coprophilic species larvae in Belgian pastures.

    PubMed

    Zimmer, Jean-Yves; Brostaux, Yves; Haubruge, Eric; Francis, Frédéric

    2014-10-15

    Some Culicoides species of biting midges (Diptera: Ceratopogonidae) are biological virus vectors worldwide and have indeed been associated with outbreaks of important epizoonoses in recent years, such as bluetongue and Schmallenberg disease in northern Europe. These diseases, which affect domestic and wild ruminants, have caused considerable economic losses. Knowledge of substrates suitable for Culicoides larval development is important, particularly for the main vector temperate species. This study, realized during two years, aimed to highlight the larval development sites of these biting midge species in the immediate surroundings of ten Belgian cattle farms. Moreover, spatial distribution of the coprophilic Culicoides larvae (C. chiopterus and C. dewulfi) within pastures was studied with increasing distance from farms along linear transects (farm-pasture-woodland). A total of 4347 adult specimens belonging to 13 Culicoides species were obtained by incubation of 2131 soil samples belonging to 102 different substrates; 18 of these substrates were suitable for larval development. The Obsoletus complex (formed by two species) was observed in a wide range of substrates, including silage residues, components of a chicken coop, dung adhering to walls inside stables, leftover feed along the feed bunk, a compost pile of sugar beet residues, soil of a livestock trampling area, and decaying wood, while the following served as substrates for the other specimens: C. chiopterus, mainly cow dung; C. dewulfi, cow dung and molehill soil; C. circumscriptus, algae; C. festivipennis, algae and soil in stagnant water; C. nubeculosus, algae and silt specifically from the edge of a pond; C. punctatus, mainly wet soil between silage reserves; C. salinarius, algae; and C. stigma, algae and wet soil between silage reserves. We also recorded significantly higher densities of coprophilic larvae within pastures in cow dung located near forests, which is likely due to the localization of

  10. A larval Devonian lungfish.

    PubMed

    Thomson, Keith S; Sutton, Mark; Thomas, Bethia

    2003-12-18

    Perhaps the most enduring of puzzles in palaeontology has been the identity of Palaeospondylus gunni Traquair, a tiny (5-60-mm) vertebrate fossil from the Middle Devonian period (approximately 385 Myr ago) of Scotland, first discovered in 1890 (refs 1-3). It is known principally from a single site (Achanarras Quarry, Caithness) where, paradoxically, it is extremely abundant, preserved in varved lacustrine deposits along with 13 other genera of fishes. Here we show that Palaeospondylus is the larval stage of a lungfish, most probably Dipterus valenciennesi Sedgwick and Murchison 1828 (ref. 5), and that development of the adult form requires a distinct metamorphosis. Palaeospondylus is the oldest known true larva of a vertebrate.

  11. Growth and Development of Larval Bay Scallops (Argopecten irradians) in Response to Early Exposure to High CO2

    DTIC Science & Technology

    2013-02-01

    molluscs .    We   investigated  the  effects  of  high  CO2...bivalve   mollusc  species  that  produce  calcareous  skeletons  or  shells.    For   example,  mussel  and  oyster...Weiss,  I.  M.,  N.  Tuross,  L.  Addadi,  and  S.  Weiner.  2002.   Mollusc  larval  shell  formation:  

  12. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  13. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  14. Effect of Microcystis aeruginosa and Nodularia spumigena on survival of Eurytemora affinis and the embryonic and larval development of the Baltic herring Clupea harengus membras.

    PubMed

    Ojaveer, Evald; Simm, Mart; Balode, Maija; Purina, Ingrida; Suursaar, Ulo

    2003-08-01

    Laboratory experiments were carried out to investigate the effect of two strains of Microcystis aeruginosa and a strain of Nodularia spumigena on the survival of Eurytemora affinis (Copepoda) and on the embryonic and larval development of the Baltic spring-spawning herring Clupea harengus membras. The trials were made in water taken from Pärnu Bay, at a salinity of 3.7-5.1 psu, a constant temperature (15 degrees C +/- 1 degrees C in trials with Eurytemora and herring embryos; 18 degrees C +/- 2 degrees C with herring larvae), and an oxygen concentration of 8.8-10.4 ppm. The strains tested had a negative impact on the survival of Eurytemora, as well as on the embryonic development and hatching regime of the Baltic herring. In Eurytemora the response depended on the sex of the animals: the survival was clearly higher in females. In the embryonic stages of herring, the influence resulted in an increase in deviations from the normal pattern of development and a higher mortality. The impact of the strains on the larval development of herring was rather moderate. Copyright 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 236-242, 2003.

  15. New species of Scalibregmatidae (Annelida, Polychaeta) from the East Antarctic Peninsula including a description of the ecology and post-larval development of species of Scalibregma and Oligobregma.

    PubMed

    Blake, James A

    2015-10-21

    A large collection of scalibregmatid polychaetes from the east Antarctic Peninsula in May 2000 has yielded specimens of three new species of Scalibregma, Pseudoscalibregma, and Oligobregma. The new species of Scalibregma is represented by more than 400 specimens that include post-larval and juvenile forms which, for the first time, provide data on the sequence of development of key characters of a scalibregmatid. These data demonstrate that taxonomic characters including the form of the prostomium and presence of branchiae develop late in ontogeny and that small specimens cannot be reliably referred to a species or genus without a growth sequence. Juvenile morphology is also presented for the new species of Oligobregma. The new species of Scalibregma is compared with five northern hemisphere species and differs in details of the peristomium, upper and lower lips of the mouth, dorsal and ventral cirri, and nature of the short spinous setae of setiger 1. The new species of Pseudoscalibregma is unique in the nature of asymmetrical ventral cirri of posterior setigers. The new species of Oligobregma has large acicular spines in both noto- and neuropodia and these are present in juveniles. However, the final adult configuration of the prostomium is not evident until late in development. The taxonomic significance of the timing of development of post-larval and juvenile morphology elucidated in this study is discussed in relation to the validity of certain taxa and the current system of genera used in the family.

  16. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.

    PubMed

    Love, Alan C; Lee, Abigail E; Andrews, Mary E; Raff, Rudolf A

    2008-01-01

    The origin of marine invertebrate larvae has been an area of controversy in developmental evolution for over a century. Here, we address the question of whether a pelagic "larval" or benthic "adult" morphology originated first in metazoan lineages by testing the hypothesis that particular gene co-option patterns will be associated with the origin of feeding, indirect developing larval forms. Empirical evidence bearing on this hypothesis is derivable from gene expression studies of the sea urchin larval gut of two closely related but differently developing congenerics, Heliocidaris tuberculata (feeding indirect-developing larva) and H. erythrogramma (nonfeeding direct developer), given two subsidiary hypotheses. (1) If larval gut gene expression in H. tuberculata was co-opted from an ancestral adult expression pattern, then the gut expression pattern will remain in adult H. erythrogramma despite its direct development. (2) Genes expressed in the larval gut of H. tuberculata will not have a coordinated expression pattern in H. erythrogramma larvae due to loss of a functional gut. Five structural genes expressed in the invaginating archenteron of H. tuberculata during gastrulation exhibit substantially different expression patterns in H. erythrogramma with only one remaining endoderm specific. Expression of these genes in the adult of H. erythrogramma and larval gut of H. tuberculata, but not in H. erythrogramma larval endoderm, supports the hypothesis that they first played roles in the formation of adult structures and were subsequently recruited into larval ontogeny during the origin and evolution of feeding planktotrophic deuterostome larvae.

  17. Developmental and hormone-induced changes of mitochondrial electron transport chain enzyme activities during the last instar larval development of maize stem borer, Chilo partellus (Lepidoptera: Crambidae).

    PubMed

    VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A

    2016-12-01

    The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F1F0ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Defining the chronic impacts of atenolol on embryo-larval development and reproduction in the fathead minnow (Pimephales promelas).

    PubMed

    Winter, Matthew J; Lillicrap, Adam D; Caunter, John E; Schaffner, Christian; Alder, Alfredo C; Ramil, Maria; Ternes, Thomas A; Giltrow, Emma; Sumpter, John P; Hutchinson, Thomas H

    2008-02-18

    Atenolol is a beta-adrenergic receptor antagonist ('beta-blocker') widely used for the treatment of angina, glaucoma, high blood pressure and other related conditions. Since atenolol is not appreciably metabolized in humans, the parent compound is the predominant excretory product, and has been detected in sewage effluent discharges and surface waters. Consequently, atenolol has been chosen as a reference pharmaceutical for a European Union-funded research consortium, known as ERAPharm (http://www.erapharm.org), which focused on the fate and effects of pharmaceuticals in the environment. Here, we present data generated within this project from studies assessing population-relevant effects in a freshwater fish species. Using fathead minnows (Pimephales promelas) as a standard OECD test species, embryo-larval development (early life stage or ELS) and short-term (21 d) adult reproduction studies were undertaken. In the ELS study, the 4d embryo NOEC(hatching) and LOEC(hatching) values were 10 and >10mg/L, respectively, and after 28 d, NOEC(growth) and LOEC(growth) values were 3.2 and 10mg/L, respectively (arithmetic mean measured atenolol concentrations were >90% of these nominal values). In the short-term reproduction study, NOEC(reproduction) and LOEC(reproduction) values were 10 and >10mg/L, respectively (mean measured concentrations were 77-96% of nominal values), while the most sensitive endpoint was an increase in male fish condition index, giving NOEC(condition index) and LOEC(condition index) values of 1.0 and 3.2mg/L, respectively. The corresponding measured plasma concentration of atenolol in these fish was 0.0518 mg/L. These data collectively suggest that atenolol has low chronic toxicity to fish under the conditions described, particularly considering the low environmental concentrations reported. These data also allowed the assessment of two theoretical approaches proposed as predictors of the environmental impact of human pharmaceuticals: the Huggett

  19. Embryonic and larval development and early behavior in grass carp, Ctenopharyngodon idella: implications for recruitment in rivers

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one "cold" and one "warm", and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi's (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers.

  20. Milt characteristics, reproductive performance, and larval survival and development of white sucker exposed to bleached kraft mill effluent

    SciTech Connect

    McMaster, M.E.; Portt, C.B.; Munkittrick, K.R.; Dixon, D.G. )

    1992-02-01

    White sucker from a Lake Superior bay which receives bleached kraft mill effluent (BKME) show increased hepatic mixed-function oxygenase (MFO) activity, reduced plasma sex steroid levels, decreased egg and gonad size, a decrease in the occurrence of secondary sexual characteristics, and an increased age to maturation. This study evaluated the reproductive performance of that white sucker population relative to a similar reference population. Spawning male white sucker from the BKME site had reduced spermatozoan motility but no significant differences in milt volume, spermatocrit levels, or seminal plasma constituents. BKME male and female fish had equal or greater fertilization potential compared to both male and female fish at the reference site. There was no difference either in the hatchability of the eggs or in larval size at hatch. BKME larvae did show reduced growth rates by 24 days posthatch but showed equal rates of yolk utilization. No difference in larval MFO activity was detected between sites at 21 days posthatch, indicating no parental transfer of induction to the progeny.

  1. Embryonic and Larval Development and Early Behavior in Grass Carp, Ctenopharyngodon idella: Implications for Recruitment in Rivers

    PubMed Central

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one “cold” and one “warm”, and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi’s (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers. PMID:25822837

  2. Milt characteristics, reproductive performance, and larval survival and development of white sucker exposed to bleached kraft mill effluent.

    PubMed

    McMaster, M E; Portt, C B; Munkittrick, K R; Dixon, D G

    1992-02-01

    White sucker from a Lake Superior bay which receives bleached kraft mill effluent (BKME) show increased hepatic mixed-function oxygenase (MFO) activity, reduced plasma sex steroid levels, decreased egg and gonad size, a decrease in the occurrence of secondary sexual characteristics, and an increased age to maturation. This study evaluated the reproductive performance of that white sucker population relative to a similar reference population. Spawning male white sucker from the BKME site had reduced spermatozoan motility but no significant differences in milt volume, spermatocrit levels, or seminal plasma constituents. BKME male and female fish had equal or greater fertilization potential compared to both male and female fish at the reference site. There was no difference either in the hatchability of the eggs or in larval size at hatch. BKME larvae did show reduced growth rates by 24 days posthatch but showed equal rates of yolk utilization. No difference in larval MFO activity was detected between sites at 21 days posthatch, indicating no parental transfer of induction to the progeny.

  3. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.

    PubMed

    Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip

    2014-01-01

    We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements.

  4. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.

    PubMed

    Stumpp, M; Wren, J; Melzner, F; Thorndyke, M C; Dupont, S T

    2011-11-01

    Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129 Pa, 1271 μatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.

  5. Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis.

    PubMed

    Castellano, Immacolata; Ercolesi, Elena; Palumbo, Anna

    2014-01-01

    In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.

  6. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development

    PubMed Central

    Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli

    2017-01-01

    Background Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Methodology/Principal findings Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. Conclusions/Significance These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis. PMID:28241017

  7. Influence of Hydrodynamics on the Larval Supply to Hydrothermal Vents on the East Pacific Rise

    DTIC Science & Technology

    2007-06-01

    International Symposium on the Ecology of Larval Molluscs . [13] Lutz, R. A., Jablonski, D., & Turner, R. D. (1984). Larval development and dispersal at...Symposium on the Ecology of Larval Molluscs . [27] A.G. Marsh, L. S. Mullineaux, C. M. Young, and D. T. Manahan. Larval disper- sal potential of the

  8. Differential cytokine and antibody responses to adult and larval stages of Onchocerca volvulus consistent with the development of concomitant immunity.

    PubMed

    MacDonald, Angus J; Turaga, Prasad S D; Harmon-Brown, Carolyn; Tierney, Tracy J; Bennett, Kristine E; McCarthy, Maggie C; Simonek, Scott C; Enyong, Peter A; Moukatte, Daniel W; Lustigman, Sara

    2002-06-01

    The possibility of concomitant immunity and its potential mechanisms in Onchocerca volvulus infection were examined by analyzing cytokine and antibody responses to infective larval (third-stage larvae [L3] and molting L3 [mL3]), adult female worm (F-OvAg), and skin microfilaria (Smf) antigens in infected individuals in a region of hyperendemicity in Cameroon as a function of age. Peripheral blood mononuclear cell interleukin 5 (IL-5) responses to F-OvAg and Smf declined significantly with age (equivalent to years of exposure to O. volvulus). In contrast, IL-5 secretion in response to L3 and mL3 remained elevated with increasing age. Gamma interferon responses to L3, mL3, and F-OvAg were low or suppressed and unrelated to age, except for responses to Smf in older subjects. IL-10 levels were uniformly elevated, regardless of age, in response to L3, mL3, and F-OvAg but not to Smf, for which levels declined with age. A total of 49 to 60% of subjects had granulocyte-macrophage colony-stimulating factor responses to all O. volvulus antigens unrelated to age. Analysis of levels of stage-specific immunoglobulin G3 (IgG3) and IgE revealed a striking, age-dependent dissociation between antibody responses to larval antigens (L3 and a recombinant L3-specific protein, O. volvulus ALT-1) which were significantly increased or maintained with age and antibody responses to F-OvAg, which decreased. Levels of IgG1 to L3 and F-OvAg were elevated regardless of age, and levels of IgG4 increased significantly with age, although not to O. volvulus ALT-1, which may have unique L3-specific epitopes. Immunofluorescence staining of whole larvae showed that total anti-L3 immunoglobulin levels also increased with the age of the serum donor. The separate and distinct cytokine and antibody responses to adult and infective larval stages of O. volvulus which are age related are consistent with the acquisition of concomitant immunity in infected individuals.

  9. Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model.

    PubMed

    García-Cambero, J P; García-Cortés, H; Valcárcel, Y; Catalá, M

    2015-12-30

    Several studies have found cocaine and its main active metabolite benzoylecgonine (BE) in the aquatic environment and drinking water, derived from its consumption by humans as well as the inability of water treatment processes to eliminate it. A few studies have already investigated the ecotoxicology of BE to aquatic invertebrates, but none has still addressed the effects of BE on aquatic vertebrates or vascular plants. The goal of this publication is to provide information on the toxicity of environmental concentrations of BE during animal and vascular plant development, in order to contribute to a better understanding of the potential risk of this substance for the environment. BE induced alterations in mitochondrial activity and DNA levels of fern spores at environmental concentrations (1 ng L(-1)), which could disrupt gametophyte germination. However, BE at concentrations ranging from 1 ng L(-1) to 1 mg L(-1) did not disturb morphogenesis, hatching, heartbeat rate or larval motility in a zebrafish embryo-larval model. Adverse effects on ferns agree with the allelophathic role described for alkaloids and their unspecific interference with plant germination. Therefore, the anthropogenic dispersion of alkaloid allelochemicals may pose a risk for biodiversity and irrigated food production that should be further investigated.

  10. Metamorphosis of a clock: remodeling of the circadian timing system in the brain of Rhodnius prolixus (Hemiptera) during larval-adult development.

    PubMed

    Vafopoulou, Xanthe; Steel, Colin G H

    2012-04-15

    The rhythmic phenomena expressed by organisms change over their lifetimes, but little is known of accompanying reorganization of the central circadian timing system in the brain. Especially dramatic changes in overt rhythms and morphology occur during transformation of larval insects into the adult form (metamorphosis). In Rhodnius prolixus, both the physiology of metamorphosis and its hormonal control are known in detail. Here we report changes in the brain timing system as revealed by pigment dispersing factor immunohistochemistry and confocal microscopy. Most of the features of the larval system are retained, but new clock cells differentiate and the arborizations of their axons increase in complexity, as do pathways connecting the lateral (LNs) and dorsal (DNs) groups of clock neurons. Early in metamorphosis, the LNs increase from 8 to 11 in number, becoming five small and six large LNs. Two large LNs then migrate to new positions in the protocerebrum. Another clock cell differentiates in the posterior protocerebrum. Each change occurs at a characteristic concentration of the ecdysteroid molting hormones that regulate metamorphosis. Clock cell axons invade the mushroom body and corpus allatum and travel down the ventral nerve cord. New overt rhythms develop during metamorphosis, in which these structures participate. The neuroendocrine cells of the brain receive more extensive branches of clock cell axons than in larvae. These increases in size and complexity of the circadian system during metamorphosis imply a greater complexity and diversity of outputs from it to both behavioral and hormonal rhythms in the adult.

  11. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles

    PubMed Central

    Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T.

    2017-01-01

    The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis. PMID:28282454

  12. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    de Sá, Leonardo Figueira Reis; Wermelinger, Tierry Torres; Ribeiro, Elane da Silva; Gravina, Geraldo de Amaral; Fernandes, Kátia Valevski Sales; Xavier-Filho, José; Venancio, Thiago Motta; Rezende, Gustavo Lazzaro; Oliveira, Antonia Elenir Amancio

    2014-01-01

    Bruchid beetles infest various seeds. The seed coat is the first protective barrier against bruchid infestation. Although non-host seed coats often impair the oviposition, eclosion and survival of the bruchid Callosobruchus maculatus larvae, morphological and biochemical aspects of this phenomenon remain unclear. Here we show that Phaseolus vulgaris (non-host) seed coat reduced C. maculatus female oviposition about 48%, increased 83% the seed penetration time, reduced larval mass and survival about 62 % and 40 % respectively. Interestingly, we found no visible effect on the major events of insect embryogenesis, namely the formation of the cellular blastoderm, germ band extension/retraction, embryo segmentation, appendage formation and dorsal closure. Larvae fed on P. vulgaris seed coat have greater FITC fluorescence signal in the midgut than in the feces, as opposed to what is observed in control larvae fed on Vigna unguiculata. Cysteine protease, α-amylase and α-glucosidase activities were reduced in larvae fed on P. vulgaris natural seed coat. Taken together, our results suggest that although P. vulgaris seed coat does not interfere with C. maculatus embryonic development, food digestion was clearly compromised, impacting larval fitness (e.g. body mass and survivability).

  13. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    NASA Astrophysics Data System (ADS)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  14. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development.

    PubMed

    Joven, Alberto; Morona, Ruth; Moreno, Nerea; González, Agustín

    2013-07-01

    The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.

  15. Efficacy and toxicity of thirteen plant leaf acetone extracts used in ethnoveterinary medicine in South Africa on egg hatching and larval development of Haemonchus contortus.

    PubMed

    Adamu, Mathew; Naidoo, Vinasan; Eloff, Jacobus N

    2013-02-26

    Helminthiasis is a major limitation to the livestock industry in Africa. Haemonchus contortus is the singular most important helminth responsible for major economic losses in small ruminants. The high cost of anthelmintics to small farmers, resistance to available anthelmintics and residue problems in meat and milk consumed by humans further complicates matters. The use of plants and plant extracts as a possible source of new anthelmintics has received more interest in the last decade. Our aim was not to confirm the traditional use, but rather to determine activity of extracts.Based on our past experience acetone was used as extractant. Because it is cheaper and more reproducible to evaluate the activity of plant extracts, than doing animal studies, the activity of acetone leaf extracts of thirteen plant species used traditionally in ethnoveterinary medicine in South Africa were determined using the egg hatch assay and the larval development test. Cytotoxicity of these extracts was also evaluated using the MTT cellular assay. Extracts of three plant species i.e. Heteromorpha trifoliata, Maesa lanceolata and Leucosidea sericea had EC50 values of 0.62 mg/ml, 0.72 mg/ml and 1.08 mg/ml respectively for the egg hatch assay. Clausena anisata; (1.08 mg/ml) and Clerodendrum glabrum; (1.48 mg/ml) extracts were also active. In the larval development assay the H. trifoliata extract was the most effective with an EC50 of 0.64 mg/ml followed by L. sericea (1.27 mg/ml). The activities in the larval development test were generally lower in most plant species than the egg hatch assay. Based on the cytotoxicity results C. anisata was the least toxic with an LC50 of 0.17 mg/ml, while Cyathea dregei was the most toxic plant with an LC50 of 0.003 mg/ml. The C. anisata extract had the best selectivity index with a value of 0.10 and 0.08 for the two assays, followed by H. trifoliata and L. sericea with values of 0.07, 0.07 and 0.05, 0.04. The C. dregei extract had the worst selectivity

  16. Life History, Reproductive Biology, and Larval Development of Ontsira mellipes (Hymenoptera: Braconidae), a Newly Associated Parasitoid of the Invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae).

    PubMed

    Golec, Julian R; Duan, Jian J; Aparicio, Ellen; Hough-Goldstein, Judith

    2016-08-01

    The invasive Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), is a destructive xylophagous forest pest species originating from Asia. Several endemic North American hymenopteran (Braconidae) species in the mid-Atlantic region were capable of attacking and reproducing on A. glabripennis larvae in laboratory bioassays. Ontsira mellipes Ashmead (Hymenoptera: Braconidae) has been continually reared on A. glabripennis larvae at USDA-ARS BIIRU since 2010, and has been identified as a potential new-association biocontrol agent. Two experiments were conducted to investigate parasitism, paralysis, reproductive biology, larval development, and longevity of adult O. mellipes In the first experiment, pairs of adult parasitoids were given single A. glabripennis larvae every 2 d (along with honey and water) over their lifetimes, while in the second experiment individual parasitoids were observed daily from egg to adult, and adults were subsequently starved. Adults in the first experiment parasitized ∼21% of beetle larvae presented to them throughout their life, and paralysis of larvae occurred 1-2 d after oviposition. More than half of the individual pairs parasitized A. glabripennis larvae, with each female producing around 26 offspring throughout her life. In the second experiment, median development time of O. mellipes from egg to adult was about 3 wk, with five larval instars. Adult O. mellipes that were provided with host larvae, honey, and water lived 9 d longer than host-deprived and starved adults. These findings indicate that mass-rearing procedures for O. mellipes may be developed using the new association host for development of effective biocontrol programs against A. glabripennis. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.

  17. Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group.

    PubMed

    Jungblut, Lucas David; Reiss, John O; Paz, Dante A; Pozzi, Andrea G

    2017-09-01

    The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal-exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum, Hypsiboas pulchellus, and Xenopus laevis). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal-exposed olfactory epithelium was absent in X. laevis, and best developed in H. pulchellus. In postmetamorphic animals, the olfactory epithelium (air-sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus), whereas the vomeronasal and the middle chamber epithelia (water-sensitive organs) was best developed in X. laevis. A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus. These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis. They also support a role for the larval buccal-exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis, an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral

  18. Effects of ambient temperature on egg and larval development of the invasive emerald ash borer (Coleoptera: Buprestidae): implications for laboratory rearing.

    PubMed

    Duan, Jian J; Watt, Tim; Taylor, Phil; Larson, Kristi; Lelito, Jonathan P

    2013-10-01

    The emerald ash borer, Agrilus planipennis Fairmaire, an invasive beetle from Asia causing large scale ash (Fraxinus) mortality in North America, has been extremely difficult to rear in the laboratory because of its long life cycle and cryptic nature of immature stages. This lack of effective laboratory-rearing methods has not only hindered research into its biology and ecology, but also mass production of natural enemies for biological control of this invasive pest. Using sticks from the alternate host plant, Fraxinus uhdei (Wenzig) Lingelsh, we characterized the stage-specific development time and growth rate of both emerald ash borer eggs and larvae at different constant temperatures (12-35 degrees C) for the purpose of developing effective laboratory-rearing methods. Results from our study showed that the median time for egg hatching decreased from 20 d at 20 degrees C to 7 d at 35 degrees C, while no emerald ash borer eggs hatched at 12 degrees C. The developmental time for 50% of emerald ash borer larvae advancing to third, fourth, and J-larval stages at 20 degrees C were 8.3, 9.1, and 12.3 wk, respectively, approximately two times longer than at 30 degrees C for the corresponding instars or stages. In contrast to 30 degrees C, however, the development times of emerald ash borer larvae advancing to later instars (from oviposition) were significantly increased at 35 degrees C, indicating adverse effects of this high temperature. The optimal range of ambient temperature to rear emerald ash borer larvae should be between 25-30 degrees C; however, faster rate of egg and larval development should be expected as temperature increases within this range.

  19. Electron microscopic analysis of Drosophila midline glia during embryogenesis and larval development using beta-galactosidase expression as endogenous cell marker.

    PubMed

    Stollewerk, A; Klămbt, C; Cantera, R

    1996-10-15

    To thoroughly study developmental problems it is often desirable to identify specific cells at the resolution of the electron microscope (TEM). Specific antibodies, and immunogold and other antibody labelling techniques can be successfully used with the TEM. But for these techniques to be successful there must be substantial adjustments for each antibody and tissue analyzed. To develop a more generally applicable labelling method we took advantage of the enhancer trap technique in Drosophila. Enhancer trap fly strains show cell- and/or tissue-specific beta-galactosidase expression which can be visualized by a simple X-gal staining procedure. To combine the power of the enhancer trap approach with electron microscopy, we have improved the fixation and staining conditions, which allow detection of X-gal crystals (by TEM) and thus provide precise information on ultrastructural morphology. We have tested our technique using the well-known midline glial cells and examined these cells between late embryonic and pupal developmental stages. The four embryonic midline glial cells found in each neuromere reside ventrally and dorsally to the midline of the neuropile and are closely associated with unpaired neurons, major commissures, and other types of glial cells. During larval and pupal life dramatic cell growth and endomitotic nuclear replication occur in midline glial cells. By the end of larval life, the giant midline glial cells fragment to give rise to a variable number of small midline glial cells. Here we show that the combination of transmission electron microscopy with cytochemical detection of beta-galactosidase expression represents a promising and valuable tool for the study of the morphology and development of specific cell types.

  20. Expression patterns of two heat-shock cognate 70 genes during immune responses and larval development of the Chinese mitten crab Eriocheir sinensis.

    PubMed

    Li, P; Jiang, X F; Guo, W B; Yan, J; Zhou, K Y

    2016-09-16

    Two heat-shock protein (HSP) 70 family transcripts, heat-shock protein 70 cognate 5 and heat-shock protein 70 cognate 3 (designated as EsHSC70-5 and EsHSC70-3, respectively), were isolated from the Chinese mitten crab Eriocheir sinensis and their expression profiles were evaluated for their responsiveness to larval development and immune challenge in adult crabs. The HSPs exhibited 45-89% identity with other heat-shock proteins, and they shared similar structural features. EsHSC70 mRNA expression was detected not only during infection but also during the developmental larval stages. The EsHSC70s were enriched, and their expression fluctuated during early development. EsHSC70 mRNA expression was significantly induced by Vibrio parahaemolyticus challenge in all of the tissues studied (P < 0.05). Expression of EsHSC70 mRNA in the hepatopancreas and at the early zoeal stages was particularly pronounced, and the two EsHSC70s exhibited differential expression patterns both chronologically and spatially. The EsHSC70-5 mRNA level was significantly downregulated in the intestine and gills compared to that in controls at nearly all time points, and was expressed at a lower level after the bacterial challenge, indicating that EsHSC70-5 and EsHSC70-3 respond to immune challenges. The stage-specific enrichment of EsHSC70 transcripts in crabs suggests that these stress proteins play an essential role during brachyurization events.

  1. Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development.

    PubMed

    Langlois, Valérie S; Duarte-Guterman, Paula; Ing, Sally; Pauli, Bruce D; Cooke, Gerard M; Trudeau, Vance L

    2010-04-01

    Steroidogenic enzymes and their steroid products play critical roles during gonadal differentiation in amphibians; however their roles during embryogenesis remain unclear. The objective of this study was to investigate the expression and activity of aromatase (cyp19; estrogen synthase) and 5 beta-reductase (srd5 beta; 5 beta-dihydrotestosterone synthase) during amphibian embryogenesis. Expression and activity profiles of cyp19 and srd5 beta were first established during Silurana (Xenopus) tropicalis embryogenesis from Nieuwkoop-Faber (NF) stage 2 (2-cell stage; 1h post-fertilization) to NF stage 46 (beginning of feeding; 72 h post-fertilization). Exposures to fadrozole (an aromatase inhibitor; 0.5, 1.0 and 2.0 microM) and finasteride (a putative 5-reductase inhibitor; 25, 50 and 100 microM) were designed to assess the consequences of inhibiting these enzymes on gene expression in early amphibian larval development. Exposed embryos showed changes in both enzyme activities and sex steroid- and thyroid hormone-related gene expression. Fadrozole treatment inhibited cyp19 activity and increased androgen receptor and thyroid hormone receptor (alpha and beta) mRNAs. Finasteride treatment inhibited srd5 beta (activity and mRNA), decreased cyp19 mRNA and activity levels and increased estrogen receptor alpha mRNA. Both treatments altered the expression of deiodinases (thyroid hormone metabolizing enzymes). We conclude that cyp19 and srd5 beta are active in early embryogenesis and larval development in Silurana tropicalis and their inhibition affected transcription of genes associated with the thyroid and reproductive axes. (c) 2009 Elsevier Inc. All rights reserved.

  2. Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda.

    PubMed

    Vilpoux, Kathia; Waloszek, Dieter

    2003-12-01

    Aspects of pantopod ontogeny have been known for a long time, but specific information is available for only a few species. Our account of the postembryonic development of Pycnogonum litorale is based on laboratory-reared individuals and SEM studies. We documented particularly all early developmental stages, with emphasis on morphogenetic changes of head structures and appendages. In P. litorale the protonymphal limbs, the chelicerae and two more uniramous legs, degenerate already during the larval phase; only the third one, the ovigers, reappears in male juveniles. Other Pantopoda vary in this aspect from retention of all three protonymphal appendages to their complete reduction, as in P. litorale. Accordingly, the two post-cheliceral larval appendages are separate legs in front of the walking legs in the adults, the 'parapalps' and the 'ovigers', but they do not occur in all pantopods. The scarcity of studies of the ontogeny of Pantopoda prevents us from a more conclusive picture, but our data are promising to state that additional such studies will increase the usability of ontogenetic data for a phylogenetic analysis of Pantopoda, the crown group of the Pycnogonida. We also discuss the phylogenetic implications of our data in the light of new information from Hox genes and developmental-biological data on body segmentation and tagmosis of the Chelicerata. These suggest the homology of chelicerae and antenn(ul)ae of other euarthropods. Accepting this, we conclude that the adult pycnogonid/pantopod head, the cephalosoma, corresponds to the euarthropod head and that the protonymph with three appendage-bearing segments may represent an even shorter, possibly phylogenetically older larval type than the euarthropod 'head larva' bearing four pairs of appendages. In further consequence, the fourth walking legs of Pycnogonida/Pantopoda should correspond to the first opisthosomal appendages, the chilaria, of euchelicerates. This implies that within Pycnogonida the post

  3. Moving south: effects of water temperatures on the larval development of invasive cane toads (Rhinella marina) in cool-temperate Australia.

    PubMed

    Wijethunga, Uditha; Greenlees, Matthew; Shine, Richard

    2016-10-01

    The distributional limits of many ectothermic species are set by thermal tolerances of early-developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond-breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestrial niches. Invasive species provide robust model systems for exploring these questions, because we can quantify thermal challenges at the expanding range edge (from field surveys) and larval responses to thermal conditions (in the laboratory). Our studies on invasive cane toads (Rhinella marina) at the southern (cool-climate) edge of their expanding range in Australia show that available ponds often average around 20°C during the breeding period, 10°C lower than in many areas of the toads' native range, or in the Australian tropics. Our laboratory experiments showed that cane toad eggs and larvae cannot develop successfully at 16°C, but hatching success and larval survival rates were higher at 20°C than in warmer conditions. Lower temperatures slowed growth rates, increasing the duration of tadpole life, but also increased metamorph body mass. Water temperature also influenced metamorph body shape (high temperatures reduced relative limb length, head width, and body mass) and locomotor performance (increased speed from intermediate temperatures, longer hops from high temperatures). In combination with previous studies, our data suggest that lower water temperatures may enhance rather than reduce recruitment of cane toads, at least in areas where pond temperatures reach or exceed 20°C. That condition is fulfilled over a wide area of southern Australia, suggesting that the continuing expansion of this invasive species is unlikely to be curtailed by the impacts of relatively low water temperatures on the viability of early life-history stages.

  4. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    PubMed

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  5. Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development.

    PubMed

    Matsuura, Kazuo; Fujimoto, Kenta; Fu, Liezhen; Shi, Yun-Bo

    2012-02-01

    Thyroid hormone (T(3)) plays an important role in regulating multiple cellular and metabolic processes, including cell proliferation, cell death, and energy metabolism, in vertebrates. Dysregulation of T(3) signaling results in developmental abnormalities, metabolic defects, and even cancer. We used T(3)-dependent Xenopus metamorphosis as a model to study how T(3) regulates transcription during vertebrate development. T(3) exerts its metamorphic effects through T(3) receptors (TR). TR recruits, in a T(3)-dependent manner, cofactor complexes that can carry out chromatin remodeling/histone modifications. Whether and how histone modifications change upon gene regulation by TR during vertebrate development is largely unknown. Here we analyzed histone modifications at T(3) target genes during intestinal metamorphosis, a process that involves essentially total apoptotic degeneration of the simple larval epithelium and de novo development of the adult epithelial stem cells, followed by their proliferation and differentiation into the complex adult epithelium. We demonstrated for the first time in vivo during vertebrate development that TR induces the removal of core histones at the promoter region and the recruitment of RNA polymerase. Furthermore, a number of histone activation and repression marks have been defined based on correlations with mRNA levels in cell cultures. Most but not all correlate with gene expression induced by liganded TR during development, suggesting that tissue and developmental context influences the roles of histone modifications in gene regulation. Our findings provide important mechanistic insights on how chromatin remodeling affects developmental gene regulation in vivo.

  6. Post-larval development of the microcotylid monogenean Sparicotyle chrysophrii (Van Beneden and Hesse, 1863): comparison with species of Microcotylidae and Heteraxinidae.

    PubMed

    Repullés-Albelda, Aigües; Raga, Juan A; Montero, Francisco E

    2011-12-01

    The chronology of post-larval development in S. chrysophrii, a polyopisthocotylean monogenean parasite of the gilthead seabream (Sparus aurata L.), was experimentally studied. It is compared with other species within the Microcotylidae and the Heteraxinidae, including an analysis of the changes in attachment and the growth rate. Gilthead seabreams infected by larvae of S. chrysophrii were killed periodically in order to collect the different developmental stages. Parasite total body length, haptor length, largest clamp width, and total number of clamps were recorded. Specimens of S. chrysophrii in culture conditions at 20°C became gravid after 26-30 days, with 37 pairs of clamps. The S. chrysophrii growth curve appears to be sigmoid with 3 growth periods (slow-fast-slow). The haptor of S. chrysophrii grows linearly with total body length, but the main contribution to total body length growth is that of the non-haptoral body. The relationship between number of clamps and total body length during development can be fitted to an exponential curve for all the reviewed species, i.e.: Microcotyle spinicirrus, Microcotyle donavini, Microcotyle gotoi, Microcotyle sebastis, Microcotyle hiatulae, Polylabroides multispinosus, Bivagina tai, Heteraxinoides xanthophilis, Heteraxine heterocerca, and Zeuxapta seriolae. The sequence of events was common for all of the species compared: terminal lappet is lost when about 15% of clamps were developed; primordia of testes at approximately 30% of clamps developed, and maturity (as first egg appearance) at about 65% of clamps developed.

  7. The Drosophila melanogaster importin alpha3 locus encodes an essential gene required for the development of both larval and adult tissues.

    PubMed Central

    Mason, D Adam; Máthé, Endre; Fleming, Robert J; Goldfarb, David S

    2003-01-01

    The nuclear transport of classical nuclear localization signal (cNLS)-containing proteins is mediated by the cNLS receptor importin alpha. The conventional importin alpha gene family in metazoan animals is composed of three clades that are conserved between flies and mammals and are referred to here as alpha1, alpha2, and alpha3. In contrast, plants and fungi contain only alpha1 genes. In this study we report that Drosophila importin alpha3 is required for the development of both larval and adult tissues. Importin alpha3 mutant flies die around the transition from first to second instar larvae, and homozygous importin alpha3 mutant eyes are defective. The transition to second instar larvae was rescued with importin alpha1, alpha2, or alpha3 transgenes, indicating that Importin alpha3 is normally required at this stage for an activity shared by all three importin alpha's. In contrast, an alpha3-specific biochemical activity(s) of Importin alpha3 is probably required for development to adults and photoreceptor cell development, since only an importin alpha3 transgene rescued these processes. These results are consistent with the view that the importin alpha's have both overlapping and distinct functions and that their role in animal development involves the spatial and temporal control of their expression. PMID:14704178

  8. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

    PubMed

    Ramasamy, Ranjan; Surendran, Sinnathamby N; Jude, Pavilupillai J; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-11-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5-30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.

  9. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila.

    PubMed

    Friedrich, Markus

    2006-12-01

    Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.

  10. Genome-wide identification and characterization of long intergenic noncoding RNAs and their potential association with larval development in the Pacific oyster

    PubMed Central

    Yu, Hong; Zhao, Xuelin; Li, Qi

    2016-01-01

    An increasing amount of evidence suggests that long intergenic noncoding RNAs (lincRNAs) may play diverse roles in many cellular processes. However, little is known about lincRNAs in marine invertebrates. Here, we presented the first identification and characterization of lincRNAs in the Pacific oyster (Crassostrea gigas). We developed a pipeline and identified 11,668 lincRNAs in C. gigas based on RNA-Seq resources available. These lincRNAs exhibited many common characteristics with vertebrate lincRNAs: relatively short length, low exon numbers, low expression, and low sequence conservation. 1,175 lincRNAs were expressed in a tissue-specific manner, with 35.2% preferentially expressed in male gonad. 776 lincRNAs were specifically expressed in juvenile during different developmental stages. In addition, 47 lincRNAs were found to be potentially related to oyster settlement and metamorphosis. Such diverse temporal and spatial patterns of expression suggest that these lincRNAs might function in cell differentiation during early development, as well as sex differentiation and reproduction. Based on a co-expression network analysis, five lincRNAs were detected that have an expression correlation with key hub genes in four modules significantly correlated with larval development. Our study provides the first large-scale identification of lincRNAs in molluscs and offers new insights into potential functions of lincRNAs in marine invertebrates. PMID:26861843

  11. Magnetic compass orientation by larval Drosophila melanogaster.

    PubMed

    Dommer, David H; Gazzolo, Patrick J; Painter, Michael S; Phillips, John B

    2008-04-01

    We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.

  12. Larval development of the pedunculate barnacles Octolasmis angulata Aurivillius 1894 and Octolasmis cor Aurivillius 1892 (Cirripedia: Thoracica: Poecilasmatidae) from the gills of the mud crab, Scylla tranquebarica Fabricius, 1798.

    PubMed

    Yap, F C; Wong, W L; Maule, A G; Brennan, G P; Lim, L H S

    2015-05-01

    Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.

  13. In vitro activity of Peltophorum africanum Sond. (Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubriformis.

    PubMed

    Bizimenyera, E S; Githiori, J B; Eloff, J N; Swan, G E

    2006-12-20

    Trichostrongylus colubriformis is an important cause of parasitic gastroenteritis in ruminants, where it causes protracted diarrhoea, rapid loss of weight, loss of production and death. The in vitro efficacy of extracts of Peltophorum africanum was determined against this parasitic nematode. Eggs and larvae of T. colubriformis were incubated at 23 degrees C in the extracts of the leaf, bark and root of P. africanum at concentrations of 0.008-25 mg ml-1 for 2 and 5 days, respectively. Thiabendazole and water were used as positive and negative controls, respectively. Inhibition of egg hatching and larval development increased significantly (P<0.05) with increasing concentrations of the extracts. Concentrations of 0.2-1.0 mg ml-1 of the extracts of leaf, stem bark, and root bark of P. africanum completely inhibited the hatching of eggs and development of larvae. No eggs and larvae of T. colubriformis could be observed in wells incubated with all the three extracts at concentrations of 5 and 25 mg ml-1. The in vitro model results support the traditional use of P. africanum against nematode parasites. Further research is required to isolate and structurally identify the active anthelmintic compounds, and to improve methods of plant extraction of the effective anthelmintic components that will be readily adaptable for use by rural communities against helminthosis.

  14. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis

    PubMed Central

    Zhu, Jian; Dong, Yong-Cheng; Li, Ping; Niu, Chang-Ying

    2016-01-01

    RNA interference (RNAi) is a robust tool to study gene functions as well as potential for insect pest control. Finding suitable target genes is the key step in the development of an efficient RNAi-mediated pest control technique. Based on the transcriptome of Chilo suppressalis, 24 unigenes which putatively associated with insect hormone biosynthesis were identified. Amongst these, four genes involved in ecdysteroidogenesis i.e., ptth, torso, spook and nm-g were evaluated as candidate targets for function study. The partial cDNA of these four genes were cloned and their bacterially expressed dsRNA were fed to the insects. Results revealed a significant reduction in mRNA abundance of target genes after 3 days. Furthermore, knocked down of these four genes resulted in abnormal phenotypes and high larval mortality. After 15 days, the survival rates of insects in dsspook, dsptth, dstorso, and dsnm-g groups were significantly reduced by 32%, 38%, 56%, and 67% respectively, compared with control. Moreover, about 80% of surviving larvae showed retarded development in dsRNA-treated groups. These results suggest that oral ingestion of bacterially expressed dsRNA in C. suppressalis could silence ptth, torso, spook and nm-g. Oral delivery of bacterially expressed dsRNA provides a simple and potential management scheme against C. suppressalis. PMID:27352880

  15. Hybridoma antibody immunoassays for the detection of parasitic infection: development of a model system using a larval cestode infection in mice.

    PubMed

    Mitchell, G F; Cruise, K M; Chapman, C B; Anders, R F; Howard, M C

    1979-06-01

    A prototype immunodiagnostic assay has been developed using chronic infection with the larval cestode, Mesocestoides corti, as a model system in mice. The assay is highly sensitive, it appears to be absolutely specific for M. corti infection, and is based on the inhibition of binding (by sera from infected mice) of a radiolabelled anti-M. corti hybridoma antibody to a crude M. corti antigen extract. The hybridoma antibody binds to living M. corti larvae and is an IgG1 protein. In large scale experiments no false positives were detected and the only M. corti-infected mice not detected by the assay were hypothymic nude (nu/nu) mice. Only limited success has been achieved in attempts to convert the assay to one not requiring parasite antigen and based on the inhibition of binding of radiolabelled anti-parasite hybridoma antibody and a large pool of anti-idiotype antiserum. Monoclonal antibodies derived from anti-parasite antibody-secreting hybridoma cell lines will be of particular use in the development of new, highly specific, immunodiagnostic reagents for the detection of parasite infection, exposure and disease.

  16. Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill.

    PubMed

    Greeley, Mark S; Adams, S Marshall; Elmore, Logan R; McCracken, Mary K

    2016-04-01

    In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 millionm(3) of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill - the largest in U.S. history - we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish (Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emory and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means=4.9-5.3 and 6.7-9.0mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2-3.2mg/kg d.w. for whole bodies and 3.6-4.8mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Results from this and related studies associated

  17. Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill

    SciTech Connect

    Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.; McCracken, Mary Kitty

    2016-01-03

    In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish (Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emory and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore

  18. Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill

    DOE PAGES

    Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.; ...

    2016-01-03

    In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish (Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emory and Clinchmore » Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore, results from

  19. A SoxC gene related to larval shell development and co-expression analysis of different shell formation genes in early larvae of oyster.

    PubMed

    Liu, Gang; Huan, Pin; Liu, Baozhong

    2017-06-01

    Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 (+)/soxc (+)/gata2/3 (+) cells and tyr1 (+)/soxc (+)/gata2/3 (-) cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.

  20. Prorenin Receptor Homologue VHA-20 is Critical for Intestinal pH Regulation, Ion and Water Management and Larval Development in C. elegans.

    PubMed

    Zima, V; Šebková, K; Šimečková, K; Dvořák, T; Saudek, V; Kostrouchová, M

    2015-01-01

    The prorenin receptor (ATP6AP2) is a multifunctional transmembrane protein; it is a constituent of proton-translocating V-ATPase, a non-proteolytic activator of renin and an adaptor in the Wnt/β-catenin pathway. Here, we studied vha-20, one of the two prorenin receptor homologues that are identified by sequence similarity in the C. elegans genome. We show that vha-20 (R03E1.2) is prominently expressed in the intestine, in the excretory cell and in amphid neurons, tissues critical for regulation of ion and water management. The expression of vha-20 in the intestine is dependent on NHR-31, a nuclear receptor related to HNF4. VHA-20 is indispensable for normal larval development, acidification of the intestine, and is required for nutrient uptake. Inhibition of vha-20 by RNAi leads to complex deterioration of water and pH gradients at the level of the whole organism including distention of pseudocoelome cavity. This suggests new roles of prorenin receptor in the regulation of body ion and water management and in acidification of intestinal lumen in nematodes.

  1. Transcriptome Analysis of Drosophila melanogaster Third Instar Larval Ring Glands Points to Novel Functions and Uncovers a Cytochrome p450 Required for Development

    PubMed Central

    Christesen, Danielle; Yang, Ying Ting; Somers, Jason; Robin, Charles; Sztal, Tamar; Batterham, Philip; Perry, Trent

    2016-01-01

    In Drosophila melanogaster larvae, the ring gland (RG) is a control center that orchestrates major developmental transitions. It is a composite organ, consisting of the prothoracic gland, the corpus allatum, and the corpora cardiaca, each of which synthesizes and secretes a different hormone. Until now, the RG’s broader developmental roles beyond endocrine secretion have not been explored. RNA sequencing and analysis of a new transcriptome resource from D. melanogaster wandering third instar larval RGs has provided a fascinating insight into the diversity of developmental signaling in this organ. We have found strong enrichment of expression of two gene pathways not previously associated with the RG: immune response and fatty acid metabolism. We have also uncovered strong expression for many uncharacterized genes. Additionally, RNA interference against RG-enriched cytochrome p450s Cyp6u1 and Cyp6g2 produced a lethal ecdysone deficiency and a juvenile hormone deficiency, respectively, flagging a critical role for these genes in hormone synthesis. This transcriptome provides a valuable new resource for investigation of roles played by the RG in governing insect development. PMID:27974438

  2. Cofactor Independent Phosphoglycerate Mutase of Brugia malayi Induces a Mixed Th1/Th2 Type Immune Response and Inhibits Larval Development in the Host

    PubMed Central

    Singh, Prashant K.; Kushwaha, Susheela; Rana, Ajay K.; Misra-Bhattacharya, Shailja

    2014-01-01

    Lymphatic filariasis is a major debilitating disease, endemic in 72 countries putting more than 1.39 billion people at risk and 120 million are already infected. Despite the significant progress in chemotherapeutic advancements, there is still need for other measures like development of an effective vaccine or discovery of novel drug targets. In this study, structural and immunological characterization of independent phosphoglycerate mutase of filarial parasite Brugia malayi was carried out. Protein was found to be expressed in all major parasite life stages and as an excretory secretory product of adult parasites. Bm-iPGM also reacted to all the categories of human bancroftian patient's sera including endemic normals. In vivo immunological behaviour of protein was determined in immunized BALB/c mice followed by prophylactic analysis in BALB/c mice and Mastomys coucha. Immunization with Bm-iPGM led to generation of a mixed Th1/Th2 type immune response offering 58.2% protection against larval challenge in BALB/c and 65–68% protection in M. coucha. In vitro studies confirmed participation of anti-Bm-iPGM antibodies in killing of B. malayi infective larvae and microfilariae through ADCC mechanism. The present findings reveal potential immunoprotective nature of Bm-iPGM advocating its worth as an antifilarial vaccine candidate. PMID:25061608

  3. Assessment of the individual and mixture toxicity of cadmium, copper and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus.

    PubMed

    Gharred, Tahar; Jebali, Jamel; Belgacem, Mariem; Mannai, Rabeb; Achour, Sami

    2016-09-01

    Multiple pollutions by trace metals and pharmaceuticals have become one of the most important problems in marine coastal areas because of its excessive toxicity on organisms living in this area. This study aimed to assess the individual and mixture toxicity of Cu, Cd, and oxytetracycline frequently existing in the contaminated marine areas and the embryo-larval development of the sea urchin Paracentrotus lividus. The individual contamination of the spermatozoid for 1 h with the increasing concentrations of Cd, Cu, and OTC decreases the fertility rate and increases larvae anomalies in the order Cu > Cd > OTC. Moreover, the normal larva frequency and the length of spicules were more sensitive than the fertilization rate and normal gastrula frequency endpoints. The mixture toxicity assessed by multiple experimental designs showed clearly that concentrations of Cd, Cu, and OTC superior to 338 μg/L, 0.56 μg/L, and 0.83 mg/L, respectively, cause significant larva malformations.

  4. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera.

    PubMed

    Israni, B; Rajam, M V

    2017-04-01

    RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival.

  5. Co-expression of the proteinase inhibitors oryzacystatin I and oryzacystatin II in transgenic potato alters Colorado potato beetle larval development.

    PubMed

    Cingel, Aleksandar; Savić, Jelena; Lazarević, Jelica; Ćosić, Tatjana; Raspor, Martin; Smigocki, Ann; Ninković, Slavica

    2017-10-01

    Colorado potato beetle (CPB; Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae) has shown a remarkable adaptability to a variety of control measures. Although oryzacystatin I and II (OCI and OCII) have potential in controlling pests that use cysteine proteinases for food digestion, expression of a single OC gene in potato exhibited a minimal or no effect on CPB fitness traits. The aim of this study was to examine the effect of coexpressed OCI and OCII in potato (Solanum tuberosum L.) cultivars Desiree, Dragačevka and Jelica on CPB larvae. Growth parameters, consumption rates and food utilization, as well as activity of proteases of CPB larvae were assayed. Second and third instar larvae fed on transformed leaves molted earlier and had higher relative growth and consumption rates than larvae fed on nontransformed leaves, while efficiency of food utilization was unaffected. In contrast, fourth instar maximum weight gain and amount of leaves consumed were about 20% lower for the larvae fed on transgenic potato. Analysis of total protease activity of third instar larvae revealed reduction in overall proteolytic activity measured by azocasein hydrolysis, accompanied with inhibition of cysteine proteinase activity 24 h after ingestion of potato leaves expressing OCI and OCII. However, after long-term feeding on transformed leaves proteolytic activities of larvae became similar to the controls. Although feeding on OCI/OCII leaves did not affect larval survival, coexpression of OC genes reduced the development time and thus significantly decreased plant damage caused by CPB larvae. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  6. Transcriptome Analysis of Drosophila melanogaster Third Instar Larval Ring Glands Points to Novel Functions and Uncovers a Cytochrome p450 Required for Development.

    PubMed

    Christesen, Danielle; Yang, Ying Ting; Somers, Jason; Robin, Charles; Sztal, Tamar; Batterham, Philip; Perry, Trent

    2017-02-09

    In Drosophila melanogaster larvae, the ring gland (RG) is a control center that orchestrates major developmental transitions. It is a composite organ, consisting of the prothoracic gland, the corpus allatum, and the corpora cardiaca, each of which synthesizes and secretes a different hormone. Until now, the RG's broader developmental roles beyond endocrine secretion have not been explored. RNA sequencing and analysis of a new transcriptome resource from D. melanogaster wandering third instar larval RGs has provided a fascinating insight into the diversity of developmental signaling in this organ. We have found strong enrichment of expression of two gene pathways not previously associated with the RG: immune response and fatty acid metabolism. We have also uncovered strong expression for many uncharacterized genes. Additionally, RNA interference against RG-enriched cytochrome p450s Cyp6u1 and Cyp6g2 produced a lethal ecdysone deficiency and a juvenile hormone deficiency, respectively, flagging a critical role for these genes in hormone synthesis. This transcriptome provides a valuable new resource for investigation of roles played by the RG in governing insect development. Copyright © 2017 Christesen et al.

  7. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development

    USDA-ARS?s Scientific Manuscript database

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  8. Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus.

    PubMed

    Kerney, Ryan R; Blackburn, David C; Müller, Hendrik; Hanken, James

    2012-01-01

    Recent molecular phylogenies suggest the surprising reacquisition of posthatching metamorphosis within an otherwise direct-developing clade of lungless salamanders (family Plethodontidae). Metamorphosis was long regarded as plesiomorphic for plethodontids, yet the genus Desmognathus, which primarily includes metamorphosing species, is now nested within a much larger clade of direct-developing species. The extent to which the putative reacquisition of metamorphosis in Desmognathus represents a true evolutionary reversal is contingent upon the extent to which both larva-specific features and metamorphosis were actually lost during the evolution of direct development. In this study we analyze development of the hyobranchial skeleton, which is dramatically remodeled during salamander metamorphosis, in the direct-developing red-backed salamander, Plethodon cinereus. We find dramatic remodeling of the hyobranchial skeleton during embryogenesis in P. cinereus and the transient appearance of larva-specific cartilages. Hyobranchial development in this direct-developing plethodontid is highly similar to that in metamorphosing plethodontids (e.g., Desmognathus). The proposed reacquisition of hyobranchial metamorphosis within Desmognathus does not represent the "re-evolution" of a lost phenotype, but instead the elaboration of an existing developmental sequence. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  9. The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes

    PubMed Central

    McDougall, Carmel; Chen, Wei-Chung; Shimeld, Sebastian M; Ferrier, David EK

    2006-01-01

    Background To understand the evolution of animals it is essential to have taxon sampling across a representative spread of the animal kingdom. With the recent rearrangement of most of the Bilateria into three major clades (Ecdysozoa, Lophotrochozoa and Deuterostomia) it has become clear that the Lophotrochozoa are relatively poorly represented in our knowledge of animal development, compared to the Ecdysozoa and Deuterostomia. We aim to contribute towards redressing this balance with data on the development of the muscular, nervous and ciliary systems of the annelid Pomatoceros lamarckii (Serpulidae). We compare our data with other lophotrochozoans. Results P. lamarckii develops locomotory and feeding structures that enable it to become a swimming, planktotrophic larva within 24 hours. Formation of the trochophore includes development of a prototroch, metatroch and neurotroch, development of apical and posterior nervous elements at similar times, and development of musculature around the ciliary bands and digestive tract prior to development of any body wall muscles. The adult nervous and muscular systems are essentially preformed in the late larva. Interestingly, the muscular systems of the larvae and juvenile worms do not include the circular muscles of the body wall, which are considered to be plesiomorphic for annelids, although the possibility that circular muscles develop after these stages cannot be ruled out at this point. Conclusion A comparison between polychaetes shows variability in the timing (heterochrony) of development of body wall muscles and elements of the nervous system. These heterochronies are one route for evolution of different life history strategies, such as adaptations to feeding requirements. PMID:17032451

  10. Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences.

    PubMed

    Kratochwil, Claudius F; Sefton, Maggie M; Meyer, Axel

    2015-02-26

    Central American crater lake cichlid fish of the Midas species complex (Amphilophus spp.) are a model system for sympatric speciation and fast ecological diversification and specialization. Midas cichlids have been intensively analyzed from an ecological and morphological perspective. Genomic resources such as transcriptomic and genomic data sets, and a high-quality draft genome are available now. Many ecologically relevant species-specific traits and differences such as pigmentation and cranial morphology arise during development. Detailed descriptions of the early development of the Midas cichlid in particular, will help to investigate the ontogeny of species differences and adaptations. We describe the embryonic and larval development of the crater lake cichlid, Amphilophus xiloaensis, until seven days after fertilization. Similar to previous studies on teleost development, we describe six periods of embryogenesis - the zygote, cleavage, blastula, gastrula, segmentation, and post-hatching period. Furthermore, we define homologous stages to well-described teleost models such as medaka and zebrafish, as well as other cichlid species such as the Nile tilapia and the South American cichlid Cichlasoma dimerus. Key morphological differences between the embryos of Midas cichlids and other teleosts are highlighted and discussed, including the presence of adhesive glands and different early chromatophore patterns, as well as variation in developmental timing. The developmental staging of the Midas cichlid will aid researchers in the comparative investigation of teleost ontogenies. It will facilitate comparative developmental biological studies of Neotropical and African cichlid fish in particular. In the past, the species flocks of the African Great Lakes have received the most attention from researchers, but some lineages of the 300-400 species of Central American lakes are fascinating model systems for adaptive radiation and rapid phenotypic evolution. The availability

  11. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  12. House and stable fly (Diptera: Muscidae) seasonal abundance, larval development substrates, and natural parasitism on small equine farms in Florida

    USDA-ARS?s Scientific Manuscript database

    This 1-year study was designed to determine adult fly population levels and development substrates on four small equine farms. Results showed that pest flies were present year-round, but differences existed in population levels among farms and seasons. Fly larvae were not found on two of the farms, ...

  13. Effects of temperature on energy cost and timing of embryonic and larval development of the terrestrially breeding moss frog, Bryobatrachus nimbus.

    PubMed

    Mitchell, N J; Seymour, R S

    2000-01-01

    The Australian moss frog, Bryobatrachus nimbus, oviposits four to 16 large eggs in terrestrial nests constructed in moss or lichen in subalpine regions of southern Tasmania. Nidicolous larvae overwinter beneath snow, reaching metamorphosis without feeding after 395 d, the longest development time known for an endotrophic anuran. However, a few clutches develop more quickly and metamorphose before winter. This study examines the effect of temperature on development time and energy expenditure by measuring temperatures and developmental stages in field nests as well as rates of oxygen consumption (Vo2), developmental stage, body mass, and energy content in the laboratory at three relevant temperatures (5 degrees, 10 degrees, 15 degrees C). Eggs and larvae reared at 5 degrees C differentiated very slowly, and their development time far exceeded those in natural nests, but development times at 10 degrees and 15 degrees C averaged 277 and 149 d, respectively, and were shorter than field incubation times. Generally, respiration rates of aquatic hatchlings were low in comparison with other species but increased with larval age and jumped about 25% higher near metamorphosis when larvae were able to air breathe. The mean energy density was 26.0 J mg(-1) for the dry ova and 20.6 J mg(-1) for a dry gut-free froglet, and total production efficiency was 61.5%. We developed a model based on the relationships between incubation temperature and V&d2;o2 to estimate the respiratory cost of development to metamorphosis, the first such study for an amphibian. The cost was 177 J at 15 degrees C, 199 J at 10 degrees C, and at least 249 J at 5 degrees C, and we predicted that continual development at 5 degrees C would lead to premature yolk depletion because it equalled the 249 J contained in fresh ova. Continuously logged field-nest temperatures and interpolation of laboratory data provided estimates of development rates, Vo2, and respiratory energy costs in field nests. Development to

  14. Larval development of the land hermit crab Coenobita violascens Heller, 1862 (Decapoda, Anomura, Coenobitidae) described from laboratory-reared materia.

    PubMed

    Kato, Saori; Hamasaki, Katsuyuki; Dan, Shigeki; Kitada, Shuichi

    2015-02-03

    The zoeal and the megalopal stages of the land hermit crab Coenobita violascens Heller, 1862 are described and illustrated from laboratory-reared material, and compared with larvae of nine other described coenobitid species. The larvae developed through four planktonic zoeal stages to the megalopal stage. Coenobita violascens had characteristics of zoeal pleomeres and megalopal antennules typical of those found in other Coenobita species, excluding C. brevimanus. 

  15. Functional morphology of mouthparts and digestive system during larval development of the cleaner shrimp Lysmata amboinensis (de Man, 1888).

    PubMed

    Tziouveli, Vasiliki; Bastos Gomes, Giana; Bastos-Gomez, Giana; Bellwood, Orpha

    2011-09-01

    Mouthpart and alimentary canal development was examined in Lysmata amboinensis larvae using scanning electron microscopy and histology. The gross morphological features of external mouthparts and internal digestive tract structures of larvae at different developmental stages indicate that ingestive and digestive capabilities are well developed from early on. With increasing age of the larvae the mouthpart appendages increased in size, the hepatopancreas in tubular density and the midgut in length. The density of setae and robustness of teeth and spines of individual structures increased. The most pronounced changes from early to late stage larvae involved formation of pores on the paragnaths and labrum, transformation of the mandibular spine-like teeth to molar cusps, development of the filter press in the proventriculus and of infoldings in the previously straight hindgut. The results suggest that early stage L. amboinensis larvae may benefit from soft, perhaps gelatinous prey, whereas later stages are better equipped to handle larger, muscular or more fibrous foods. 2011 Wiley-Liss, Inc.

  16. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis.

    PubMed

    Marlow, Heather; Matus, David Q; Martindale, Mark Q

    2013-08-15

    The primary axis of cnidarians runs from the oral pole to the apical tuft and defines the major body axis of both the planula larva and adult polyp. In the anthozoan cnidarian Nematostella vectensis, the primary oral-aboral (O-Ab) axis first develops during the early embryonic stage. Here, we present evidence that pharmaceutical activators of canonical wnt signaling affect molecular patterning along the primary axis of Nematostella. Although not overtly morphologically complex, molecular investigations in Nematostella reveal that the O-Ab axis is demarcated by the expression of differentially localized signaling molecules and transcription factors that may serve roles in establishing distinct ectodermal domains. We have further characterized the larval epithelium by determining the position of a nested set of molecular boundaries, utilizing several newly characterized as well as previously reported epithelial markers along the primary axis. We have assayed shifts in their position in control embryos and in embryos treated with the pharmacological agents alsterpaullone and azakenpaullone, Gsk3β inhibitors that act as canonical wnt agonists, and the Wnt antagonist iCRT14, following gastrulation. Agonist drug treatments result in an absence of aboral markers, a shift in the expression boundaries of oral markers toward the aboral pole, and changes in the position of differentially localized populations of neurons in a dose-dependent manner, while antagonist treatment had the opposite effect. These experiments are consistent with canonical wnt signaling playing a role in an orally localized wnt signaling center. These findings suggest that in Nematostella, wnt signaling mediates O-Ab ectodermal patterning across a surprisingly complex epithelium in planula stages following gastrulation in addition to previously described roles for the wnt signaling pathway in endomesoderm specification during gastrulation and overall animal-vegetal patterning at earlier stages of

  17. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis

    PubMed Central

    Marlow, Heather; Matus, David Q.

    2016-01-01

    The primary axis of cnidarians runs from the oral pole to the apical tuft and defines the major body axis of both the planula larva and adult polyp. In the anthozoan cnidarian Nematostella vectensis, the primary oral–aboral (O–Ab) axis first develops during the early embryonic stage. Here, we present evidence that pharmaceutical activators of canonical wnt signaling affect molecular patterning along the primary axis of Nematostella. Although not overtly morphologically complex, molecular investigations in Nematostella reveal that the O–Ab axis is demarcated by the expression of differentially localized signaling molecules and transcription factors that may serve roles in establishing distinct ectodermal domains. We have further characterized the larval epithelium by determining the position of a nested set of molecular boundaries, utilizing several newly characterized as well as previously reported epithelial markers along the primary axis. We have assayed shifts in their position in control embryos and in embryos treated with the pharmacological agents alsterpaullone and azakenpaullone, Gsk3β inhibitors that act as canonical wnt agonists, and the Wnt antagonist iCRT14, following gastrulation. Agonist drug treatments result in an absence of aboral markers, a shift in the expression boundaries of oral markers toward the aboral pole, and changes in the position of differentially localized populations of neurons in a dose-dependent manner, while antagonist treatment had the opposite effect. These experiments are consistent with canonical wnt signaling playing a role in an orally localized wnt signaling center. These findings suggest that in Nematostella, wnt signaling mediates O–Ab ectodermal patterning across a surprisingly complex epithelium in planula stages following gastrulation in addition to previously described roles for the wnt signaling pathway in endomesoderm specification during gastrulation and overall animal–vegetal patterning at earlier

  18. Effects of exposure to 17α-ethynylestradiol during larval development on growth, sexual differentiation, and abundances of transcripts in the liver of the wood frog (Lithobates sylvaticus).

    PubMed

    Tompsett, Amber R; Wiseman, Steve; Higley, Eric; Giesy, John P; Hecker, Markus

    2013-01-15

    Populations of amphibians are in decline in certain locations around the world, and the possible contribution of environmental contaminants, including estrogenic compounds, to these declines is of potential concern. In the current study, responses of the wood frog (Lithobates sylvaticus) to exposure to 17α-ethynylestradiol (EE2), the synthetic estrogen used in oral contraceptives, during the larval period were characterized. Exposure of L. sylvaticus to 1.08, 9.55, or 80.9 μg EE2/L had no effects on survival, growth, or metamorphic endpoints monitored in the current study. However, there were significant effects of exposure to EE2 on phenotypic sex ratios. In general, lesser proportions of L. sylvaticus developed as phenotypic males and greater proportions developed as phenotypic females or with mixed sex phenotypes at all concentrations of EE2 tested. Utilizing the data collected in the current study, the EC(50) for complete feminization of L. sylvaticus was determined to be 7.7 μg EE2/L, and the EC(50) for partial feminization was determined to be 2.3 μg EE2/L. In addition, after chronic exposure, abundances of transcripts of vitellogenin A2, high density lipoprotein binding protein, and 7-dehydrocholesterol reductase were 1.8-280-fold greater in livers from L. sylvaticus exposed to EE2 compared to controls. Overall, there were significant effects of exposure to all concentrations of EE2 tested, the least of which was within about 2-fold of estrogen equivalent concentrations previously measured in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish (Danio rerio).

    PubMed

    Lindsey, Benjamin W; Dumbarton, Tristan C; Moorman, Stephen J; Smith, Frank M; Croll, Roger P

    2011-06-01

    The gas-filled swimbladder of teleost fishes provides hydrodynamic lift which counteracts the high density of other body tissues, and thereby allows the fish to achieve neutral buoyancy with minimal energy expenditure. In this study, we examined whether the absence of a constant direction gravitational vector affects the ontogeny of the swimbladder and buoyancy control in zebrafish (Danio rerio). We exposed fertilized eggs to simulated microgravity (SMG) in a closed rotating wall vessel with control eggs placed in a similar but nonrotating container. All eggs hatched in both groups. At 96 hr of postfertilization (hpf), all larvae were removed from the experimental and control vessels. At this point, 62% of the control larvae, but only 14% of SMG-exposed larvae, were observed to have inflated their swimbladder. In addition, the mean volume of the inflated swimbladders was significantly greater in the control larvae compared with larvae raised in SMG. After transfer to open stationary observation tanks, larvae with uninflated swimbladders in both groups swam to the surface to complete inflation, but this process was significantly delayed in larvae exposed to SMG. Initial differences in swimbladder inflation and volume between groups disappeared by 144 hpf. Furthermore, there were no apparent changes in patterns of development and maturation of swimbladder musculature, vasculature, or innervation resulting from SMG exposure at later stages of ontogeny. These data indicate that, despite a transient delay in swimbladder inflation in zebrafish larvae exposed to SMG, subsequent swimbladder development in these animals proceeded similarly to that in normal larvae.

  20. Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the leopard frog (Rana pipiens).

    PubMed Central

    Crump, Douglas; Lean, David; Trudeau, Vance L

    2002-01-01

    We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation, a known stressor in amphibian development, for their effects on hypothalamic gene expression and premetamorphic development in the leopard frog Rana pipiens. Newly hatched tadpoles were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehicle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorphosis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emergence (p < 0.05), but neither OP nor UV-B alone produced significant changes in body weight or hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We hypothesized that the developing hypothalamus might be a potential environmental sensor for neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a differential display strategy to identify candidate genes differentially expressed in the hypothalamic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens glutamate decarboxylases--GAD65 and GAD67, enzymes involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholipase C gamma-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67, cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a novel approach in toxicology that combines physiologic and molecular end points and indicates that levels of OP commonly found in the environment and subambient levels of UV-B alter the expression of important hypothalamic

  1. Immature development of the malaria vector mosquito, Anopheles gambiae S.L. (Diptera: Culicidae), in relation to soil-substrate organic matter content of larval habitats in northcentral Nigeria.

    PubMed

    Olayemi, I K; Ojo, V O

    2013-02-01

    This study elucidated the relationships between larval habitat soil-substrate Organic Matter Content (OMC) and immature development of the mosquito Anopheles gambiae S.L. Day-old larvae of the mosquito were reared in media substrated with typical soil samples (i.e., sandy, silt, clayey and loamy soils), from established anopheline breeding sites, to provide a gradient in soil-substrate OMC. The OMC of the soil samples were determined by ignition to a constant weight; while the developing A. gambiae mosquitoes in the culture media were monitored daily for survivorship and duration of immature life stages. The results indicated significant (p < 0.05) variation in OMC of the soil types (range = 11.21 +/- 2.91% in sandy to 29.83 +/- 2.96% in loamy soils). However, though Daily Larval Survival Rates (DLSR) were relatively high (range = 95.21 +/- 2.96 to 96.70 +/- 1.44%), as influenced by OMC, such values were not significantly different (p > 0.05) among the soil-substrate types; results contrary to those of Larval Success Rates (LSR) (i.e., range = 52.07 +/- 13.64 to 74.39 +/- 6.60%). Daily Pupation Rate (DPR) of the mosquitoes varied significantly among the soil-substrates, ranging from 13.87 +/- 2.39% in clayey to 25.00 +/- 4.30% in loamy substrates. Soil-substrate OMC significantly extended the Duration of Immature Life Stages (DILS) of the mosquitoes only in the sandy soil type (range = 12.76 +/- 1.74 to 15.81 +/- 2.40 days). On the whole, DILS was inversely related to soil-substrate OMC. Cross-correlational analysis revealed significant positive association among most of the variables tested. The findings of this study should serve as baseline information for the development of effective environmental management strategies for malaria larval-vector control.

  2. Effects of indian coral tree, Erythrina indica lectin on eggs and larval development of melon fruit fly, Bactrocera cucurbitae.

    PubMed

    Singh, Kuljinder; Kaur, Manpreet; Rup, Pushpinder J; Singh, Jatinder

    2009-07-01

    Present study was undertaken to investigate the influence of D-galactose binding lectin from Erythrina indica Lam. on the eggs and second instar larvae (64-72 hr) of melon fruit fly, Bactrocera cucurbitae (Coquillett). The lectin from E. indica seeds was extracted and purified by affinity chromatography using asilofetuin linked porous amino activated silica beads. The effects of various concentrations (0, 125, 250, 500 and 1000 microg ml(-1)) of lectin were studied on freshly laid eggs (0-8 hr) of B. cucurbitae which showed non-significant reduction in percent hatching of eggs. However, the treatment of second instar larvae (64-72 hr) with various test concentrations (0, 25, 50, 100 and 200 microg ml(-1)) of lectin significantly reduced the percent pupation and percent emergence of B. cucurbitae depicting a negative correlation with the lectin concentration. The LC50 (81 microg ml(-1)) treatment significantly decreased the pupal weight. Moreover, the treatment of larvae had also induced a significant increase in the remaining development duration. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), one oxidoreductase (catalase) and one group transfer enzyme (glutathione S-transferases) was assayed in second instar larvae under the influence of LC50 concentration of lectin for three exposure intervals (24, 48 and 72 hr). It significantly suppressed the activity of all the enzymes after all the three exposure intervals except for esterases which increased significantly.

  3. Effect of juvenile hormone analog, methoprene on H-fibroin regulation during the last instar larval development of Corcyra cephalonica.

    PubMed

    Chaitanya, R K; Sridevi, P; Senthilkumaran, B; Dutta Gupta, Aparna

    2013-01-15

    Juvenile hormone (JH) and 20-hydroxyecdysone (20E), co-ordinately orchestrate insect growth and development. The process of silk synthesis and secretion in lepidopteran insects is known to be under hormonal control. However, the role of JH in this process has not been demonstrated hitherto. The present study is aimed to elucidate the role of JH in H-fibroin regulation in Corcyra cephalonica, a serious lepidopteran pest. Reiterated amino acid stretches and the large molecular weight of H-fibroin render its cloning and characterization cumbersome. To address this, a commercially synthesized short amino acid peptide conjugated with a carrier protein was used to generate antibodies against the N-terminal region of H-fibroin. ELISA and immunoblot experiments demonstrated the sensitivity and specificity of antibody. Further, immunohistochemical analyses revealed the antibody's cross-reactivity with H-fibroins of C. cephalonica and Bombyx mori in the silk gland lumen. Quantitative RT-PCR and Western blot analysis demonstrated the tissue-specificity and developmental expression of H-fibroin. Hormonal studies revealed that JH alone does not alter the expression of H-fibroin. However, in the presence 20E, JH reverses the declined expression caused by 20E administration to normal levels. This study provides molecular evidence for the regulation of H-fibroin by the cumulative action of JH and 20E.

  4. Utilization of blueberry by the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae): survival, development, and larval performance.

    PubMed

    Calvo, D; Molina, J Ma

    2004-06-01

    The lappet moth, Streblote panda Hübner [1820] (Lasiocampidae), is a common species found in blueberry, Vaccinium spp. (Ericaceae) fields of Western Andalusia. The biology of this species as well as the extent to which its larvae can use and survive on blueberry is unknown. In this study, the suitability to larvae of several blueberry cultivars was studied. Larvae were grown under controlled laboratory conditions on excised foliage of six blueberry cultivars. Survival, development, and food use were determined for first and fifth instars. According to our results, blueberry has become an alternative host plant for S. panda in southwestern Andalusia. Low growth rates and efficiencies of use of food were observed. Lower gross efficiency of growth was found for larvae fed blueberry 'Sharpblue', despite a higher apparent digestibility of this cultivar. Larvae reared on this cultivar had the highest mortality, increased developmental time, and used a greater part of metabolism for maintenance. Herbivore pressure may be increased with the widespread planting of the most suitable cultivars 'Misty' and 'O'Neal', whereas 'Sharpblue' and'Climax' seem to be the least suitable host plants. These data provide useful information for planning and managing blueberry orchards in the presence of S. panda populations.

  5. Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata.

    PubMed

    Dolezal, Petr; Habustová, Oxana; Sehnal, Frantisek

    2007-08-01

    Larvae of Leptinotarsa decemlineata developed faster and consumed less food under short-day (Sd, 12:12 h light:darkness) than under long-day (Ld, 18:6 h L:D) conditions. The average index of food conversion efficiency was 5.4 in the Ld (25 degrees C), and 7.2 and 11.9 (at 20 and 25 degrees C, respectively) in the Sd insects. Pupae were smaller under the Ld conditions due to a greater loss of biomass during the prepupal period that was nearly twice longer than in the Sd insects. Virgin Ld females laid eggs for 6 months and survived 13 months. The lack of oviposition, reduced food intake, and behavioural changes characterised diapause in the Sd adults. Application of 100 microg JH III to newly ecdysed adults was used to probe diapause intensity. At 25 degrees C, the treatment elicited oviposition most effectively in females that were just transferred from the Ld to the Sd conditions. A distinctly lower response occurred in insects that had been kept under Sd conditions since hatching; their transfer to Ld conditions at the time of treatment had little effect on JH sensitivity. JH application to Sd females reared at 20 degrees C caused enlargement of the germaria but no eggs were formed.

  6. Mixed Effects of Elevated pCO2 on Fertilisation, Larval and Juvenile Development and Adult Responses in the Mobile Subtidal Scallop Mimachlamys asperrima (Lamarck, 1819)

    PubMed Central

    Scanes, Elliot; Parker, Laura M.; O’Connor, Wayne A.; Ross, Pauline M.

    2014-01-01

    Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world’s oceans at predicted future pCO2 levels. PMID:24733125

  7. Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819).

    PubMed

    Scanes, Elliot; Parker, Laura M; O'Connor, Wayne A; Ross, Pauline M

    2014-01-01

    Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.

  8. Laboratory evaluation of novaluron as a development site treatment for controlling larval horn flies, house flies, and stable flies (Diptera: Muscidae)

    USDA-ARS?s Scientific Manuscript database

    A granular formulation of novaluron (Novaluron 0.2G, 0.2% AI), a newer benzoylphenyl urea insecticide, was evaluated for its efficacy in controlling the larval stage of horn flies, Haematobia irritans (L.), house flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), in cow manure. V...

  9. Development of blastomere clones in the Ilyanassa embryo: transformation of the spiralian blastula into the larval body plan.

    PubMed

    Chan, Xin Yi; Lambert, J David

    2014-06-01

    Spiralian embryogenesis is deeply conserved and seems to have been in place in the last common ancestor of the large assemblage of protostome phyla known as the Lophotrochozoa. While the blastula fate maps of several spiralian embryos have been determined, little is known about the events that link the early embryo and the larva. For all cells in the Ilyanassa blastula, we determined the clonal morphology at four time points between the blastula and veliger stages. We found that ectomesoderm comes mostly from 3a and 3b, but also from 2c and 2b. We also observed the ingression and early proliferation of 3a- and 3b-derived ectomesoderm. We found cells in the 2b clone that marked the anterior edge of the blastopore and later the mouth and cells in the 3c/3d clones that marked the posterior edges of these structures. This demonstrates directly that the mouth forms in the same location as the blastopore. In the development of the shell field, we observed dramatic cell migration events that invert the positions of the 2b and 2d clones that contribute to the shell. Using time-lapse imaging, we followed and described the cleavage pattern of the conserved endomesodermal blast cell, 4d, up to 4d + 45 h, when there were 52 cells in the clone. Our results show the growth and movement of clones derived from cells of the spiralian blastula as they transform into the trochophore-like and veliger stages. They have implications for the evolution of the shell in gastropods, the origins of mesoderm in spiralians, and the evolution of mouth formation in metazoans.

  10. Changes in digestive enzyme activities during larval development of Chinese loach Paramisgurnus dabryanus (Dabry de Thiersant, 1872).

    PubMed

    Zhang, Yun-Long; Wu, Qiao-Wan; Hu, Wei-Hua; Wang, Fan; Zhao, Zhong-Bo; He, Hui; Shao, Wei-Han; Fan, Qi-Xue

    2015-12-01

    The digestive physiology of Chinese loach (Paramisgurnus dabryanus) was studied by assessing the specific and total activities of different pancreatic (trypsin, chymotrypsin, amylase and lipase), gastric (pepsin) and intestinal (alkaline phosphatase and leucine-aminopeptidase) enzymes from hatching to 40 days after hatching (DAH). Larvae were reared at 24.4 ± 0.4 °C and fed with rotifers from mouth opening (4 DAH) to 15 DAH, from 10 to 35 DAH with Cladocera and from 30 to 40 DAH with compound diet. Enzyme activities for trypsin, chymotrypsin, amylase and lipase were detected before the onset of exogenous feeding, indicating that these enzymes were genetically pre-programmed. Most of the pancreatic enzyme specific activities increased until 20 DAH and decreased thereafter. The pepsin activity of Chinese loach was firstly detected at 30 DAH, indicating the appearance of functional gastric gland. Alkaline phosphatase specific activity was detected from hatching onward, showed marked increase and reached the second peak at 20 DAH, while a gradual increase in specific leucine-aminopeptidase activity was observed until the end of the experiment. Accordingly, the larvae of Chinese loach possess a functional digestive system before the onset of exogenous feeding and the digestive capacity gradually increases as development progresses. The abrupt increase in intestinal enzyme activities between 10 and 20 DAH demonstrates onset of juvenile-like digestive mode in Chinese loach larvae. The increase in pepsin activity after 30 DAH indicates the shift from alkaline to acidic digestion in Chinese loach larvae, which may be considered as the onset of weaning.

  11. THE RESPONSE TO SELECTION FOR FAST LARVAL DEVELOPMENT IN DROSOPHILA MELANOGASTER AND ITS EFFECT ON ADULT WEIGHT: AN EXAMPLE OF A FITNESS TRADE-OFF.

    PubMed

    Nunney, Leonard

    1996-06-01

    A selection experiment using Drosophila melanogaster revealed a strong trade-off between adult weight and larval development time (LDT), supporting the view that antagonistic pleiotropy for these two fitness traits determines mean adult size. Two experimental lines of flies were selected for a shorter LDT (measured from egg laying to pupation). After 15 generations LDT was reduced by an average of 7.9%. The response appeared to be controlled primarily by autosomal loci. A correlated response to the selection was a reduction in adult dry weight: individuals from the selected populations were on average 15.1% lighter than the controls. The lighter females of the selected lines showed a 35% drop in fecundity, but no change in longevity. Thus, there is no direct relationship between LDT and adult longevity. The genetic correlation between weight and LDT, as measured from their joint response to selection, was 0.86. Although there was weak evidence for dominance in LDT, there was none for weight, making it unlikely that selection acting on this antagonistic pleiotropy could lead to a stable polymorphism. In all lines, sex differences in weight violated expectations based on intrasex genetic correlations: Females, being larger than males, ought to require a longer LDT, whereas there was a slight trend in the opposite direction. Because the sexual dimorphism in size was not significantly altered by selection, it appears that the controlling loci are either invariant or have very limited pleiotropic effect on developmental time. It is suggested that they probably control some intrinsic, energy-intensive developmental process in males. © 1996 The Society for the Study of Evolution.

  12. The Importance of Drains for the Larval Development of Lymphatic Filariasis and Malaria Vectors in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    Castro, Marcia C.; Kanamori, Shogo; Kannady, Khadija; Mkude, Sigsbert; Killeen, Gerry F.; Fillinger, Ulrike

    2010-01-01

    Background Dar es Salaam has an extensive drain network, mostly with inadequate water flow, blocked by waste, causing flooding after rainfall. The presence of Anopheles and Culex larvae is common, which is likely to impact the transmission of lymphatic filariasis and malaria by the resulting adult mosquito populations. However, the importance of drains as larval habitats remains unknown. Methodology Data on mosquito larval habitats routinely collected by the Urban Malaria Control Program (UMCP) and a special drain survey conducted in 2006 were used to obtain a typology of habitats. Focusing on drains, logistic regression was used to evaluate potential factors impacting the presence of mosquito larvae. Spatial variation in the proportion of habitats that contained larvae was assessed through the local Moran's I indicator of spatial association. Principal Findings More than 70% of larval habitats in Dar es Salaam were human-made. Aquatic habitats associated with agriculture had the highest proportion of Anopheles larvae presence and the second highest of Culex larvae presence. However, the majority of aquatic habitats were drains (42%), and therefore, 43% (1,364/3,149) of all culicine and 33% (320/976) of all anopheline positive habitats were drains. Compared with drains where water was flowing at normal velocity, the odds of finding Anopheles and Culex larvae were 8.8 and 6.3 (p<0.001) times larger, respectively, in drains with stagnant water. There was a positive association between vegetation and the presence of mosquito larvae (p<0.001). The proportion of habitats with mosquito larvae was spatially correlated. Conclusion Restoring and maintaining drains in Dar es Salaam has the potential to eliminate more than 40% of all potential mosquito larval habitats that are currently treated with larvicides by the UMCP. The importance of human-made larval habitats for both lymphatic filariasis and malaria vectors underscores the need for a synergy between on-going control

  13. The Paleozoic evolution of the gastropod larval shell: larval armor and tight coiling as a result of predation-driven heterochronic character displacement.

    PubMed

    Seuss, Barbara; Nützel, Alexander; Scholz, Henning; Frýda, Jiří

    2012-01-01

    Early and middle Paleozoic gastropod protoconchs generally differ strongly from their corresponding adult morphologies, that is, most known protoconchs are smooth and openly coiled, whereas the majority of adult shells are ornamented and tightly coiled. In contrast, larval and adult shells of late Paleozoic gastropods with planktotrophic larval development (Caenogastropoda, Neritimorpha) commonly resemble each other in shape and principle ornamentation. This is surprising because habitat and mode of life of planktonic larvae and benthic adults differ strongly from each other. Generally, late Paleozoic to Recent protoconchs are tightly coiled. This modern type of larval shell resembles the adult shell morphology and was obviously predisplaced onto the larval stage during the middle Paleozoic. The oldest known planktonic-armored (strongly ornamented) larval shells are known from the late Paleozoic. However, smooth larval shells are also common among the studied late Paleozoic gastropods. The appearance of larval armor at the beginning of the late Paleozoic could reflect an increase of predation pressure in the plankton. Although there are counter examples in which larval and adult shell morphology differ strongly from each other, there is statistical evidence for a heterochronic predisplacement of adult characters onto the larval stage. Larval and adult shells are built in the same way, by accretionary secretion at the mantle edge. It is likely that the same underlying gene expression is responsible for that. If so, similarities of larval and adult shell may be explained by gene sharing, whereas differences may be due to different (planktic vs. benthic life) epigenetic patterns.

  14. Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, Osmia bicornis

    PubMed Central

    Fowler, Robert; Niven, Jeremy E.; Gilbert, James D.; Goulson, Dave

    2017-01-01

    There is widespread concern regarding the effects of agro-chemical exposure on bee health, of which neonicotinoids, systemic insecticides detected in the pollen and nectar of both crops and wildflowers, have been the most strongly debated. The majority of studies examining the effect of neonicotinoids on bees have focussed on social species, namely honey bees and bumble bees. However, most bee species are solitary, their life histories differing considerably from these social species, and thus it is possible that their susceptibility to pesticides may be quite different. Studies that have included solitary bees have produced mixed results regarding the impact of neonicotinoid exposure on survival and reproductive success. While the majority of studies have focused on the effects of adult exposure, bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here we examined the effect of exposure of Osmia bicornis larvae to a range of field-realistic concentrations (0–10 ppb) of the neonicotinoid clothianidin, observing no effect on larval development time, overwintering survival or adult weight. Flow-through respirometry was used to test for latent effects of larval exposure on adult physiological function. We observed differences between male and female bees in the propensity to engage in discontinuous gas exchange; however, no effect of larval clothianidin exposure was observed. Our results suggest that previously reported adverse effects of neonicotinoids on O. bicornis are most likely mediated by impacts on adults. PMID:28649467

  15. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  16. Drosophila adult and larval pheromones modulate larval food choice.

    PubMed

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-06-07

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally--but not always--low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature.

  17. A comparison of beating parameters in larval and post-larval locomotor systems of the lobster Homarus gammarus (L.).

    PubMed

    Laverack, M S; Macmillan, D L; Neil, D M

    1976-03-18

    A study has been made of the interrelations between rhythmical exopodite beating in different larval stages and swimmeret beating in poast-larval stages of the lobster Homarus gammarus. Data on exopodite beat cycle durations have been used for statistical comparisons of exopodite performance within one larva, and also between different stages of larval development. Inter-exopodite comparisons reveal clear bilateral differences (table 1), although there is no consistently favoured relationship (tables 2 and 3). There are significant differences in cycle duration between the first three developmental stages, with a slight increase at the first moult, and a marked decrease at the second (table 4). However, within each stage the repeat frequency exhibits little change (table 5). Therefore it appears that changes in swimming behaviour occur discontinuously in development, and are associated with the larval moults. It is suggested that changes in beat frequency, and especially the faster beating in stage III, may represent responses to changed loading conditions (table 7). Measurements of swimmeret beating in post-larval lobsters have been analysed in terms of cycle durations, and inter- and intra-segmental phase relations. Swimmeret beating patterns are very regular (figure 1), but not restricted to a narrow range of frequencies (table 6a). Intersegmental phase lag remains constant around 0.2 (figure 3) independent of beat frequency (figure 4). Similarly the powerstroke/returnstroke ratio of approximately 0.5 (figure 5) shows no significant correlation with cycle duration (figure 6). Differences emerge in the performance of larval exopodites and post-larval swimmerets (table 6b), although the possibility cannot be excluded that the larval exopodite oscillator in some way influences the developing action of the post-larval swimmeret system.

  18. Does fish larval dispersal differ between high and low latitudes?

    PubMed Central

    Leis, Jeffrey M.; Caselle, Jennifer E.; Bradbury, Ian R.; Kristiansen, Trond; Llopiz, Joel K.; Miller, Michael J.; O'Connor, Mary I.; Paris, Claire B.; Shanks, Alan L.; Sogard, Susan M.; Swearer, Stephen E.; Treml, Eric A.; Vetter, Russell D.; Warner, Robert R.

    2013-01-01

    Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal. PMID:23516247

  19. Bean Type Modifies Larval Competition in Zabrotes subfasciatus (Chrysomelidae: Bruchinae).

    PubMed

    Oliveira, S O D; Rodrigues, A S; Vieira, J L; Rosi-Denadai, C A; Guedes, N M P; Guedes, R N C

    2015-08-01

    Larval competition is particularly prevalent among grain beetles that remain within their mother-selected grain throughout development, and the behavioral process of competition is usually inferred by the competition outcome. The Mexican bean weevil Zabrotes subfasciatus (Boheman) is subjected to resource availability variation because of the diversity of common bean types and sizes, from small (e.g., kidney beans) to large (e.g., cranberry beans). The competition process was identified in the Mexican bean weevil reared on kidney and cranberry beans by inference from the competition outcome and by direct observation through digital X-ray imaging. Increased larval density negatively affected adult emergence in kidney beans and reduced adult body mass in both kidney and cranberry beans. Developmental time was faster in cranberry beans. The results allowed for increased larval fitness (i.e., higher larval biomass produced per grain), with larval density reaching a maximum plateau >5 hatched larvae per kidney bean, whereas in cranberry beans, larval fitness linearly increased with density to 13 hatched larvae per bean. These results, together with X-ray imaging without evidence of direct aggressive interaction among larvae, indicate scramble competition, with multiple larvae emerging per grain. However, higher reproductive output was detected for adults from lower density competition with better performance on cranberry beans. Larger populations and fitter adults are expected in intermediate larval densities primarily in cranberry beans where grain losses should be greater.

  20. Injuries from larval Neuroptera.

    PubMed

    Southcott, R V

    1991-03-04

    Bites from larval Neuroptera (lacewings) in Australia are recorded. This order of insects is among the most primitive of the higher or holometabolous insects, those with a life-history of complete metamorphoses--namely, from egg to larva to pupa to adult. The mobile instars (larva and adult) live by predation. Larvae have generally long, sharp-pointed jaws, which are used in piercing and sucking prey. One family (Chrysopidae) has larvae with jaws capable of piercing human skin. The larvae seek their prey on leaves of shrubs and trees, and occasionally cause bites to gardeners and others, but as these larvae commonly camouflage themselves with the cast skins of their prey (small insects and mites), as well as other material, such as caterpillar faeces and scraps of vegetable debris, they are mostly not recognised by their human victims. The effects are of immediate local pain with erythema and a local papule, lasting a few hours or at most a day or so. No treatment is required.

  1. Evolved differences in larval social behavior mediated by novel pheromones.

    PubMed

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-12-12

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects.

  2. Insecticidal effects of extracts of seven plant species on larval development, alpha-amylase activity and offspring production of Tribolium castaneum (Herbst) (Insecta: Coleoptera: Tenebrionidae).

    PubMed

    Jbilou, R; Amri, H; Bouayad, N; Ghailani, N; Ennabili, A; Sayah, F

    2008-03-01

    Bioinsecticidal effects of methanol extracts from seven plant species on Tribolium castaneum were investigated. Centaurium erythraea, Peganum harmala, Ajuga iva, Aristolochia baetica, Pteridium aquilinum and Raphanus raphanistrum extracts inhibit growth of larvae. C. erythraea was the most toxic with 63% mortality 10 days after treatment, followed by P. harmala with 58%. C. erythraea and P. aquilinum reduce the emergence rate respectively of 66% and 19%. The duration of larval period was shortened by Launaea arborescens, P. aquilinum and A. iva extracts, whereas R. raphanistrum and P. harmala extracts extend the larval period when compared to the control. Extracts of C. erythraea, P. harmala, A. iva and A. baetica inhibited F1 progeny production. Larvae possess three alpha-amylase isoforms as determined by SDS-PAGE. Larvae fed on treated diet had lower alpha-amylase activity than larvae feed on untreated diet. C. erythraea and P. harmala are the most potent extracts. These plant extracts could be useful to reduce seed damage caused by this pest species.

  3. Larval morphology of Metaphycus flavus and its role in host attachment and larval cannibalism.

    PubMed

    Tena, A; Kapranas, A; Walker, G P; Garcia-Marí, F; Luck, R F

    2011-06-01

    Metaphycus flavus (Howard) (Hymenoptera: Encyrtidae) is a facultatively gregarious endoparasitoid of soft scales (Hemiptera: Coccidae). When it develops in superparasitised hosts, the larvae often attack and consume brood mates six or more days post oviposition. Under our laboratory conditions (25±1°C and 14 hours of light followed by 18±1°C and ten hours of darkness in 50-70% R.H.), M. flavus eggs hatched three days after oviposition. Measurements of the mandibles and tentorium indicate there are four larval instars, and M. flavus reaches the fourth instar by day six post oviposition, and pupates on day eight. Thus, cannibalism among M. flavus larvae occurs during the fourth instar. During this instar, M. flavus larvae separate from their attachment to the scale cuticle, to which they were tethered by a respiratory structure during the previous three larval instars. Once detached, they are free to move within the scale, which increases the probability of larval encounters and aggressive behaviours. Moreover, the mandibles of the fourth instar are better adapted for fighting than are those of the first three larval instars, since they are larger and more sclerotized. The cranium and mouthparts of M. flavus have four different types of sensory organs, some of which are almost certainly olfactory, an unexpected function for a larva that presumably is surrounded by an aqueous medium where gustatory sensilla would seem to be more appropriate. The cranium also bears two pairs of what appear to be secretory pores.

  4. An age-size reaction norm yields insight into environmental interactions affecting life-history traits: a factorial study of larval development in the malaria mosquito Anopheles gambiae sensu stricto.

    PubMed

    Phelan, Conan; Rotiberg, Bernard D

    2013-07-01

    Environmental factors frequently act nonindependently to determine growth and development of insects. Because age and size at maturity strongly influence population dynamics, interaction effects among environmental variables complicate the task of predicting dynamics of insect populations under novel conditions. We reared larvae of the African malaria mosquito Anopheles gambiae sensu stricto (s.s.) under three factors relevant to changes in climate and land use: food level, water depth, and temperature. Each factor was held at two levels in a fully crossed design, for eight experimental treatments. Larval survival, larval development time, and adult size (wing length) were measured to indicate the importance of interaction effects upon population-level processes. For age and size at emergence, but not survival, significant interaction effects were detected for all three factors, in addition to sex. Some of these interaction effects can be understood as consequences of how the different factors influence energy usage in the context of a nonindependent relationship between age and size. Experimentally assessing interaction effects for all potential future sets of conditions is intractable. However, considering how different factors affect energy usage within the context of an insect's evolved developmental program can provide insight into the causes of complex environmental effects on populations.

  5. Larval descriptions of the family Porcellanidae: A worldwide annotated compilation of the literature (Crustacea, Decapoda)

    PubMed Central

    Vela, María José; González-Gordillo, Juan Ignacio

    2016-01-01

    Abstract For most of the family Porcellanidae, which comprises 283 species, larval development remains to be described. Full development has been only described for 52 species, while part of the larval cycle has been described for 45 species. The importance of knowing the complete larval development of a species goes beyond allowing the identification of larval specimens collected in the plankton. Morphological larval data also constitute a support to cladistic techniques used in the establishment of the phylogenetic status (see Hiller et al. 2006, Marco-Herrero et al. 2013). Nevertheless, the literature on the larval development of this family is old and widely dispersed and in many cases it is difficult to collect the available information on a particular taxon. Towards the aim of facilitating future research, all information available on the larval development of porcellanids has been compiled. Following the taxonomic checklist of Porcellanidae proposed by Osawa and McLaughlin (2010), a checklist has been prepared that reflects the current knowledge about larval development of the group including larval stages and the method used to obtain the larvae, together with references. Those species for which the recognised names have been changed according to Osawa and McLaughlin (2010) are indicated. PMID:27081332

  6. Can Georges Bank larval cod survive on a calanoid diet?

    NASA Astrophysics Data System (ADS)

    Lynch, Daniel R.; Lewis, Craig V. W.; Werner, Francisco E.

    A simple conceptual model is developed for larval fish feeding on stage-structured prey populations, in an Eulerian framework. The model combines simplified contemporary models of larval fish trophodynamics, zooplankton population dynamics, and hydrodynamic turbulence. The Eulerian view allows instructive maps of larval feeding and growth rates for individual prey species, alone or in combination. Decadally averaged MARMAP surveys of Calanus finmarchicus and Pseudocalanus spp. are analyzed for the March-April period. Quasi-static population dynamics are used to infer the abundance of the smallest stages from adult female abundance. Computed growth rates show that Calanus alone is insufficient to support the smallest cod larvae (4 and 6 mm), but provides good growth (⩾10%/day) for large larvae (10, 12 mm). Pseudocalanus alone provides generally good growth for all larvae but is mismatched spatially with observed cod spawning and subsequent larval advection. Both species together provide good growth, matched spatially with larval cod, for 6 mm and larger larvae. A dietary supplement beyond these two species is needed for the smallest larvae. The procedure provides a general method for mapping observations of zooplankton abundance, distribution and reproductive status, and their relevance to larval fish survival, when the smallest stages are not observable.

  7. Muscle development and body growth in larvae and early post-larvae of shi drum, Umbrina cirrosa L., reared under different larval photoperiod: muscle structural and ultrastructural study.

    PubMed

    Ayala, Maria D; Abellán, Emilia; Arizcun, Marta; García-Alcázar, Alicia; Navarro, F; Blanco, Alfonso; López-Albors, Octavio M

    2013-08-01

    Shi drum specimens were maintained under four different photoperiod regimes: a natural photoperiod regime (16L:8D), constant light (24L), equal durations of light and dark (12L:12D) and a reduced number of daylight hours (6L:18D) from hatching until the end of larval metamorphosis. Specimens were then kept under natural photoperiod conditions until 111 days post-hatching. Muscle and body parameters were studied. During the vitelline phase, there was little muscle growth and no photoperiod effects were reported; however, a monolayer of red muscle and immature white muscle fibres were observed in the myotome. At hatching, external cells (presumptive myogenic cells) were already present on the surface of the red muscle. At the mouth opening, some presumptive myogenic cells appeared between the red and white muscles. At 20 days, new germinal areas were observed in the apical extremes of the myotome. At this stage, the 16L:8D group (followed by the 24L group) had the longest body length, the largest cross-sectional area of white muscle and the largest white muscle fibres. Conversely, white muscle hyperplasia was most pronounced in the 24L group. Metamorphosis was complete at 33 days in the 24L and 12L:12D groups. At this moment, both groups showed numerous myogenic precursors on the surface of the myotome as well as among the adult muscle fibres (mosaic hyperplastic growth). The 16L:8D group completed metamorphosis at 50 days, showing a similar degree of structural maturity in the myotome to that described in the 24L and 12L:12D groups at 33 days. When comparing muscle growth at the end of the larval period, hypertrophy was highest in the 16L:8D group, whereas hyperplasia was higher in the 24L and 16L:8D groups. At 111 days, all groups showed the adult muscle pattern typical of teleosts; however, the cross-sectional area of white muscle, white muscle fibre hyperplasia, body length and body weight were highest in the 24L group, followed by the 12L:12D group; white muscle

  8. Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant

    SciTech Connect

    Hopkins, W.A.; Congdon, J.; Ray, J.K.

    2000-04-01

    Amphibian malformations have recently received much attention from the scientific community, but few studies have provided evidence linking environmental pollution to larval amphibian malformations in the field. The authors document an increased incidence of axial malformations in bullfrog larvae (Rana catesbeiana) inhabiting two sites contaminated with coal combustion wastes. In the polluted sites, 18 and 37% of larvae exhibited lateral curvatures of the spine, whereas zero and 4% of larvae from two reference sites had similar malformations. Larvae from the most heavily polluted site had significantly higher tissue concentrations of potentially toxic trace elements, including As, Cd, Se, Cu, Cr, and V, compared with conspecifics from the reference sites. In addition, malformed larvae from the cost contaminated site had decreased swimming speeds compared with those of normal larvae from the same site. The authors hypothesize that the complex mixture of contaminants produced by coal combustion is responsible for the high incidence of malformations and associated effects on swimming performance.

  9. Analysis of relationship between Anopheles subpictus larval densities and environmental parameters using Remote Sensing (RS), a Global Positioning System (GPS) and a Geographic Information System (GIS).

    PubMed

    Anno, S; Takagi, M; Tsuda, Y; Yotopranoto, S; Dachlan, Y P; Bendryman, S S; Ono, M; Kawabata, M

    2000-12-01

    Remote Sensing (RS), a Global Positioning System (GPS) and a Geographic Information System (GIS) were used to analyze relationship between Anopheles subpictus larval densities and environmental parameters in the Sekotong district on Lombok Island, Indonesia. Distance from the coast to larval habitats, season and surface water were considered as environmental parameters for determining An. subpictus larval densities. Japanese Earth Resources Satellite (JERS) Visible and Near Infrared Radiometer (VNIR) satellite imagery for the area acquired by National Space Development Agency of Japan (NASDA) were used to detect water, which could be used to characterize larval habitats. Data on larval sampling sites obtained from a GPS were entered into a GIS for mapping larval habitats to measure distance between the coast and the larval habitats. A GIS was used for overlaying of data coverages (i.e., water distribution from RS data and larval habitats coupled with data on larval densities) to identify factors that may explain the spatial distribution patterns of larval densities. An. subpictus larval densities were significantly associated with season and distance from the coast to larval habitats. The rainy season and the distance from the coast to larval habitats were critical environmental determinants for presence of An. subpictus larvae in the study. In this paper, we investigated relationship between An. subpictus larval densities and the environmental parameters using RS/GPS/GIS to determine if these tools could be used to predict larval densities.

  10. The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs.

    PubMed

    Relyea, Rick A; Hoverman, Jason T

    2003-03-01

    Studies of phenotypic plasticity typically focus on traits in single ontogenetic stages. However, plastic responses can be induced in multiple ontogenetic stages and traits induced early in ontogeny may have lasting effects. We examined how gray treefrog larvae altered their morphology in four different larval environments and whether different larval environments affected the survival, growth, development, and morphology of juvenile frogs at metamorphosis. We then reared these juveniles in terrestrial environments under high and low intraspecific competition to determine whether the initial differences in traits at metamorphosis affected subsequent survival and growth, whether the initial phenotypic differences converged over time, and whether competition in the terrestrial environment induced further phenotypic changes. Larval and juvenile environments both affected treefrog traits. Larval predators induced relatively deep tail fins and short bodies, but there was no impact on larval development. In contrast, larval competitors induced relatively short tails and long bodies, reduced larval growth, and slowed larval development. At metamorphosis, larval predators had no effect on juvenile growth or relative morphology while larval competitors produced juveniles that were smaller and possessed relatively shorter limbs and shorter bodies. After 1 month of terrestrial competition among the juvenile frogs, the initial differences in juvenile morphology did not converge. There were no differences in growth due to larval treatment but there were differences in survival. Individuals that experienced low competition as tadpoles experienced near perfect survival as juvenile frogs but individuals that experienced high competition as tadpoles suffered an 18% decrease in survival as juvenile frogs. There were also morphological responses to juvenile competition, but these changes appear to be due, at least in part, to allometric effects. Collectively, these results

  11. Larval feeding substrate and species significantly influence the effect of a juvenile hormone analog on sexual development/performance in four tropical tephritid flies.

    PubMed

    Aluja, Martín; Ordano, Mariano; Teal, Peter E A; Sivinski, John; García-Medel, Darío; Anzures-Dadda, Alberto

    2009-03-01

    The juvenile hormone (JH) analog methoprene reduces the amount of time it takes laboratory-reared Anastrepha suspensa (Caribbean fruit fly) males to reach sexual maturity by almost half. Here, we examined if methoprene exerted a similar effect on four other tropical Anastrepha species (Anastrepha ludens, Anastrepha obliqua, Anastrepha serpentina and Anastrepha striata) reared on natural hosts and exhibiting contrasting life histories. In the case of A. ludens, we worked with two populations that derived from Casimiroa greggi