Sample records for larval key features

  1. Larvae of five horticulturally important species of Chrysopodes (Neuroptera, Chrysopidae): shared generic features, descriptions and keys

    PubMed Central

    Silva, Patrícia S.; Tauber, Catherine A.; Albuquerque, Gilberto S.; Tauber, Maurice J.

    2013-01-01

    Abstract An expanded list of generic level larval characteristics is presented for Chrysopodes; it includes a reinterpretation of the mesothoracic and metathoracic structure and setation. Keys, descriptions and images of Semaphoront A (first instar) and Semaphoront B (second and third instars) are offered for identifying five species of Chrysopodes (Chrysopodes) that are commonly reported from horticultural habitats in the Neotropical region. PMID:23653514

  2. Developmental transitions in C. elegans larval stages.

    PubMed

    Rougvie, Ann E; Moss, Eric G

    2013-01-01

    Molecular mechanisms control the timing, sequence, and synchrony of developmental events in multicellular organisms. In Caenorhabditis elegans, these mechanisms are revealed through the analysis of mutants with "heterochronic" defects: cell division or differentiation patterns that occur in the correct lineage, but simply at the wrong time. Subsets of cells in these mutants thus express temporal identities normally restricted to a different life stage. A seminal finding arising from studies of the heterochronic genes was the discovery of miRNAs; these tiny miRNAs are now a defining feature of the pathway. A series of sequentially expressed miRNAs guide larval transitions through stage-specific repression of key effector molecules. The wild-type lineage patterns are executed as discrete modules programmed between temporal borders imposed by the molting cycles. How these successive events are synchronized with the oscillatory molting cycle is just beginning to come to light. Progression through larval stages can be specifically, yet reversibly, halted in response to environmental cues, including nutrient availability. Here too, heterochronic genes and miRNAs play key roles. Remarkably, developmental arrest can, in some cases, either mask or reveal timing defects associated with mutations. In this chapter, we provide an overview of how the C. elegans heterochronic gene pathway guides developmental transitions during continuous and interrupted larval development. © 2013 Elsevier Inc. All rights reserved.

  3. Diptera of forensic importance in the Iberian Peninsula: larval identification key.

    PubMed

    Velásquez, Y; Magaña, C; Martínez-Sánchez, A; Rojo, S

    2010-09-01

    A revision of the species and families of sarcosaprophagous flies (Diptera: Calliphoridae, Sarcophagidae, Muscidae, Fanniidae, Drosophilidae, Phoridae, Piophilidae and Stratiomyidae) suitable for forensic purposes in the Iberian Peninsula is presented. Morphological characteristics that allow the accurate identification of third instars of the species present in the Iberian Peninsula are described and presented in the form of a diagnostic key. For larval Calliphoridae, characteristics such as the spines of the body segments were useful for the genus Calliphora whereas features of the anal segment and the cephalopharyngeal skeleton were useful for larvae of Lucilia. Identification of three Chrysominae species present in the Iberian Peninsula is included. For larval Sarcophagidae, characters such as the arrangement and shape of spiracular openings, structures of the anal segment and the cephalopharyngeal skeleton were used for the first time. A new record of Sarcophaga cultellata Pandellé, from a human corpse, is also included as well as recent incursions into the European cadaveric entomofauna such as Synthesiomyia nudiseta (van der Wulp) and Hermetia illucens (Linnaeus). This work provides useful new information that could be applied to forensic investigations in the Iberian Peninsula and in southern Europe.

  4. The specific diagnosis of gastrointestinal nematode infections in livestock: larval culture technique, its limitations and alternative DNA-based approaches.

    PubMed

    Roeber, Florian; Kahn, Lewis

    2014-10-15

    The specific diagnosis of gastrointestinal nematode infections in ruminants is routinely based on larval culture technique and on the morphological identification of developed third-stage larvae. However, research on the ecology and developmental requirements of different species suggests that environmental conditions (e.g., temperature and humidity) for optimal development to occur vary between the different species. Thus, employing a common culture protocol for all species will favour the development of certain species over others and can cause a biased result in particular when species proportions in a mixed infection are to be determined. Furthermore, the morphological identification of L3 larvae is complicated by a lack of distinctive, obvious features that would allow the identification of all key species. In the present paper we review in detail the potential limitations of larval culture technique and morphological identification and provide account to some modern molecular alternatives to the specific diagnosis of gastrointestinal nematode infection in ruminants. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Eye development in the four-eyed fish Anableps anableps: cranial and retinal adaptations to simultaneous aerial and aquatic vision

    PubMed Central

    Perez, Louise N.; Lorena, Jamily; Costa, Carinne M.; Araujo, Maysa S.; Frota-Lima, Gabriela N.; Matos-Rodrigues, Gabriel E.; Martins, Rodrigo A. P.; Mattox, George M. T.

    2017-01-01

    The unique eyes of the four-eyed fish Anableps anableps have long intrigued biologists. Key features associated with the bulging eye of Anableps include the expanded frontal bone and the duplicated pupils and cornea. Furthermore, the Anableps retina expresses different photoreceptor genes in dorsal and ventral regions, potentially associated with distinct aerial and aquatic stimuli. To gain insight into the developmental basis of the Anableps unique eye, we examined neurocranium and eye ontogeny, as well as photoreceptor gene expression during larval stages. First, we described six larval stages during which duplication of eye structures occurs. Our osteological analysis of neurocranium ontogeny revealed another distinctive Anablepid feature: an ossified interorbital septum partially separating the orbital cavities. Furthermore, we identified the onset of differences in cell proliferation and cell layer density between dorsal and ventral regions of the retina. Finally, we show that differential photoreceptor gene expression in the retina initiates during development, suggesting that it is inherited and not environmentally determined. In sum, our results shed light on the ontogenetic steps leading to the highly derived Anableps eye. PMID:28381624

  6. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    PubMed

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  7. [Specific features of digestive function development in larvae of some salmonid fish].

    PubMed

    Ershova, T S; Volkova, I V; Zaĭtseva, V F

    2004-01-01

    We studied the activities of digestive enzymes responsible for the digestion of food carbohydrate and protein components in plant-eating fish at various stages of larval development. The activities of all digestive enzymes tend to rise during larval development. Species specific features of the alimentary canal functioning have been described.

  8. Eye development in the four-eyed fish Anableps anableps: cranial and retinal adaptations to simultaneous aerial and aquatic vision.

    PubMed

    Perez, Louise N; Lorena, Jamily; Costa, Carinne M; Araujo, Maysa S; Frota-Lima, Gabriela N; Matos-Rodrigues, Gabriel E; Martins, Rodrigo A P; Mattox, George M T; Schneider, Patricia N

    2017-04-12

    The unique eyes of the four-eyed fish Anableps anableps have long intrigued biologists. Key features associated with the bulging eye of Anableps include the expanded frontal bone and the duplicated pupils and cornea. Furthermore, the Anableps retina expresses different photoreceptor genes in dorsal and ventral regions, potentially associated with distinct aerial and aquatic stimuli. To gain insight into the developmental basis of the Anableps unique eye, we examined neurocranium and eye ontogeny, as well as photoreceptor gene expression during larval stages. First, we described six larval stages during which duplication of eye structures occurs. Our osteological analysis of neurocranium ontogeny revealed another distinctive Anablepid feature: an ossified interorbital septum partially separating the orbital cavities. Furthermore, we identified the onset of differences in cell proliferation and cell layer density between dorsal and ventral regions of the retina. Finally, we show that differential photoreceptor gene expression in the retina initiates during development, suggesting that it is inherited and not environmentally determined. In sum, our results shed light on the ontogenetic steps leading to the highly derived Anableps eye. © 2017 The Author(s).

  9. Redescription of the early larval stages of the pandalid shrimp Chlorotocus crassicornis (Decapoda: Caridea: Pandalidae).

    PubMed

    Landeira, Jose M; Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei; Gozález-Gordillo, J Ignacio

    2015-09-07

    The first four larval stages of the pandalid shrimp Chlorotocus crassicornis (A. Costa, 1871) are described and illustrated from laboratory-reared material obtained from ovigerous females collected in the southwestern Spain and south Taiwan. The second to fourth larval stages of this species are reported for the first time to science. Detailed examination of the first larval stages reveals that previous description misidentified some key larval characters which have prevented its identification in plankton samples. It is found that the zoeal morphology of Chlorotocus is not very different from other pandalid larvae, and in fact closely resembles Plesionika and Heterocarpus.

  10. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.

    PubMed Central

    Hanken, J; Klymkowsky, M W; Alley, K E; Jennings, D H

    1997-01-01

    The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic 'repatterning' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features. PMID:9332017

  11. Neotropical Copestylum Macquart (Diptera: Syrphidae) Breeding in Fruits and Flowers, Including 7 New Species

    PubMed Central

    Ricarte, Antonio; Marcos-García, M. Ángeles; Hancock, E. Geoffrey; Rotheray, Graham E.

    2015-01-01

    Ten species of Copestylum (Diptera: Syrphidae) were reared from fruits and flowers in Costa Rica, Ecuador and Trinidad. Seven were new and in this paper, we describe them, their development sites and the third stage larva and/or the puparium of all ten species. One new synonym is proposed, Copestylum pinkusi (Curran) [= Copestylum cinctiventre (Curran)]. Similarities and differences between these new and other Copestylum species, suggest they separate into two groups, referred to as the Vagum and Cinctiventre species groups. Features characterising these groups for both adult and early stages are assessed. Each species was also distinguished using adult and early stage characters. Within the Vagum group, adults were more disparate morphologically than the larval stage; this was reversed in the Cinctiventre group. Adult colour patterns are probably cryptic in function and for disguise. Vagum species have disruptive marks, while the Cinctiventre species have reflective colours. Biologically, the groups are almost distinguished by larval development sites. Vagum species use predominantly fruits and have a larval stage that is relatively generalised in form and habit. Cinctiventre species are confined to developing in flowers and the larva is more specialised. A key to both adult and early stages of all ten species is provided. PMID:26580811

  12. Identification of Ruffe larvae (Gymnocephalus cernuus) in the ...

    EPA Pesticide Factsheets

    Non-native Ruffe (Gymnocephalus cernua; family Percidae) were first detected in the Laurentian Great Lakes in 1986, and are not included in the Great Lakes larval fish key which was published several years prior to their discovery. In addition, subsequent scientific literature has inconsistently described Ruffe larvae. As a result, identification of larval Ruffe remains challenging. We used traditional morphology paired with DNA technology to develop diagnostics for Ruffe larvae collected in the lower St. Louis River, and compared them to similar species. Ruffe < 6 mm total length have myomere counts and a phenotype that more closely resemble centrarchids like Black Crappie, Bluegill and Pumpkinseed rather than percids. However, morphometrics and pigment patterns can be used to distinguish Ruffe from similar centrarchids at this size. As Ruffe larvae develop, they increasingly resemble other percids such as Yellow Perch, but can be distinguished using myomere counts and morphological features. The findings presented here clarify conflicting descriptions in the scientific literature, and provide additional data to support more confident morphological identification of larval Ruffe. The impact of invasive Ruffe (Gymnocephalus cernuus) on the ecology of Great Lakes systems is currently being studied. Reproduction and early life history data, however, may be hampered by a general lack of information regarding their early life stage morphological description.

  13. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    PubMed

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Granulomatous responses in larval taeniid infections.

    PubMed

    Díaz, Á; Sagasti, C; Casaravilla, C

    2018-05-01

    Granulomas are responses to persistent nonliving bodies or pathogens, centrally featuring specialized macrophage forms called epithelioid and multinucleated giant cells. The larval stages of the cestode parasites of the Taeniidae family (Taenia, Echinococcus) develop for years in fixed tissue sites in mammals. In consequence, they are targets of granulomatous responses. The information on tissue responses to larval taeniids is fragmented among host and parasite species and scattered over many decades. We attempt to draw an integrated picture of these responses in solid tissues. The intensity of inflammation around live parasites spans a spectrum from minimal to high, parasite vitality correlating with low inflammation. The low end of the inflammatory spectrum features collagen capsules proximal to the parasites and moderate distal infiltration. The middle of the spectrum is dominated by classical granulomatous responses, whereas the high end features massive eosinophil invasions. Across the range of parasite species, much observational evidence suggests that eosinophils are highly effective at killing larval taeniids in solid tissues, before and during chronic granulomatous responses. The evidence available also suggests that these parasites are adapted to inhibit host granulomatous responses, in part through the exacerbation of host regulatory mechanisms including regulatory T cells and TGF-β. © 2018 John Wiley & Sons Ltd.

  15. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea.

    PubMed

    Treml, Eric A; Ford, John R; Black, Kerry P; Swearer, Stephen E

    2015-01-01

    Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. The spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics. These important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.

  16. Differences in the timing of cardio-respiratory development determine whether marine gastropod embryos survive or die in hypoxia.

    PubMed

    Rudin-Bitterli, Tabitha S; Spicer, John I; Rundle, Simon D

    2016-04-01

    Physiological plasticity of early developmental stages is a key way by which organisms can survive and adapt to environmental change. We investigated developmental plasticity of aspects of the cardio-respiratory physiology of encapsulated embryos of a marine gastropod, Littorina obtusata, surviving exposure to moderate hypoxia (PO2 =8 kPa) and compared the development of these survivors with that of individuals that died before hatching. Individuals surviving hypoxia exhibited a slower rate of development and altered ontogeny of cardio-respiratory structure and function compared with normoxic controls (PO2 >20 kPa). The onset and development of the larval and adult hearts were delayed in chronological time in hypoxia, but both organs appeared earlier in developmental time and cardiac activity rates were greater. The velum, a transient, 'larval' organ thought to play a role in gas exchange, was larger in hypoxia but developed more slowly (in chronological time), and velar cilia-driven, rotational activity was lower. Despite these effects of hypoxia, 38% of individuals survived to hatching. Compared with those embryos that died during development, these surviving embryos had advanced expression of adult structures, i.e. a significantly earlier occurrence and greater activity of their adult heart and larger shells. In contrast, embryos that died retained larval cardio-respiratory features (the velum and larval heart) for longer in chronological time. Surviving embryos came from eggs with significantly higher albumen provisioning than those that died, suggesting an energetic component for advanced development of adult traits. © 2016. Published by The Company of Biologists Ltd.

  17. Morphological features to distinguish the larval stage of invasive Ruffe from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  18. Morphological features to distinguish the larval stage of invasive Ruffe (Gymnocephalus cernuus) from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  19. Drosophila Activin- and the Activin-like product Dawdle function redundantly to regulate proliferation in the larval brain.

    PubMed

    Zhu, Changqi C; Boone, Jason Q; Jensen, Philip A; Hanna, Scott; Podemski, Lynn; Locke, John; Doe, Chris Q; O'Connor, Michael B

    2008-02-01

    The Drosophila Activin-like ligands Activin-beta and Dawdle control several aspects of neuronal morphogenesis, including mushroom body remodeling, dorsal neuron morphogenesis and motoneuron axon guidance. Here we show that the same two ligands act redundantly through the Activin receptor Babo and its transcriptional mediator Smad2 (Smox), to regulate neuroblast numbers and proliferation rates in the developing larval brain. Blocking this pathway results in the development of larvae with small brains and aberrant photoreceptor axon targeting, and restoring babo function in neuroblasts rescued these mutant phenotypes. These results suggest that the Activin signaling pathway is required for producing the proper number of neurons to enable normal connection of incoming photoreceptor axons to their targets. Furthermore, as the Activin pathway plays a key role in regulating propagation of mouse and human embryonic stem cells, our observation that it also regulates neuroblast numbers and proliferation in Drosophila suggests that involvement of Activins in controlling stem cell propagation may be a common regulatory feature of this family of TGF-beta-type ligands.

  20. Post-Larval Developmental Trajectory of Zebrafish Fry is Altered by Exposure to T3 or T4 Analogues

    EPA Science Inventory

    The thyroid axis plays a key role in development. While the impacts of perturbing thyroid axis development and/or function are documented in embryonic and larval zebrafish, the effects on developmental milestones at later life stages are not well-delineated. To assess potential l...

  1. Development of a larval diet for the South American fruit fly Anastrepha fraterculus (Diptera:Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Mass-rearing protocols must be developed. In particular, a cost-effective larval diet, to implement the sterile insect technique against Anastrepha fratercculus (Wiedemann). The key elements of this diet are the optimal nutrients and their concentrations, diet supports or bulking agents, and the pH ...

  2. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    PubMed

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post-settlement behaviour, although not as we expected: higher quality larvae join groups more frequently (safer) but then forage more. Foraging is risky but may allow faster post-settlement growth, reducing mortality risk in the long run. This shows that behaviour likely serves as a mechanistic link connecting larval traits to post-settlement selective mortality. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  3. Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment

    PubMed Central

    Donahue, Megan J.; Karnauskas, Mandy; Toews, Carl; Paris, Claire B.

    2015-01-01

    Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162

  4. Novel aspects of host tree resistance to leafminers

    Treesearch

    Stanley H. Faeth

    1991-01-01

    At least 10,000 species of leafminers in four orders of insects (Lepidoptera, Diptera, Coleoptera, and Hymenoptera) are found worldwide. The common feature of all leafminers is that larvae feed within leaves for at least some larval stages. Larvae of facultative mining species feed internally but also externally as free-feeders, usually in later larval instars. Larvae...

  5. Acidification reduced growth rate but not swimming speed of larval sea urchins.

    PubMed

    Chan, Kit Yu Karen; García, Eliseba; Dupont, Sam

    2015-05-15

    Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering present and future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics. Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment and the plasticity in larval responses to environmental change.

  6. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    NASA Astrophysics Data System (ADS)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  7. Revision of the genus Dinotoperla Tillyard, 1921 (Plecoptera: Gripopterygidae) using morphological characters and molecular data: Establishes two new genera, three new species and updates the larval taxonomy.

    PubMed

    Mynott, Julia H; Suter, Phillip J; Theischinger, Gunther

    2017-01-23

    The larval taxonomy of Australian stoneflies (Plecoptera) shows a large disparity in knowledge when compared to the adult taxonomy with many species having undescribed larval forms. The importance of stoneflies as an indicator group for monitoring aquatic ecosystems means knowledge of the larval taxonomy and the ability to identify species is essential. This study combined morphology and mitochondrial gene sequences to associate the adult and larval life-stages for species of Dinotoperla Tillyard. Morphological identification of adult males was recognised for 17 of the 35 Dinotoperla species and combining molecular data with morphology confirmed eight new adult-larval life stage associations. Further, molecular data supported the larval taxonomy for five morphospecies which remain unassociated. The combination of molecular and morphological methods enabled the larval morphology to be reassessed for the genus Dinotoperla and this has led to the establishment of two new genera, Odontoperla, gen. nov. and Oedemaperla, gen. nov., and the new species Dinotoperla aryballoi, sp. nov, D. tasmaniensis, sp. nov. and Oedemaperla shackletoni, sp. nov. as well as the new or updated descriptions of the larvae of 31 species and a comprehensive dichotomous key to these larvae.

  8. Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon crangon (Decapoda, Caridea), at hatching

    NASA Astrophysics Data System (ADS)

    Urzúa, Ángel; Anger, Klaus

    2013-06-01

    The "brown shrimp", Crangon crangon (Linnaeus 1758), is a benthic key species in the North Sea ecosystem, supporting an intense commercial fishery. Its reproductive pattern is characterized by a continuous spawning season from mid-winter to early autumn. During this extended period, C. crangon shows significant seasonal variations in egg size and embryonic biomass, which may influence larval quality at hatching. In the present study, we quantified seasonal changes in dry weight (W) and chemical composition (CHN, protein and lipid) of newly hatched larvae of C. crangon. Our data revealed significant variations, with maximum biomass values at the beginning of the hatching season (February-March), a decrease throughout spring (April-May) and a minimum in summer (June-September). While all absolute values of biomass and biochemical constituents per larva showed highly significant differences between months ( P < 0.001), CHN, protein and lipid concentrations (expressed as percentage values of dry weight) showed only marginally significant differences ( P < 0.05). According to generalized additive models (GAM), key variables of embryonic development exerted significant effects on larval condition at hatching: The larval carbon content (C) was positively correlated with embryonic carbon content shortly after egg-laying ( r 2 = 0.60; P < 0.001) and negatively with the average incubation temperature during the period of embryonic development ( r 2 = 0.35; P < 0.001). Additionally, water temperature ( r 2 = 0.57; P < 0.001) and food availability (phytoplankton C; r 2 = 0.39; P < 0.001) at the time of hatching were negatively correlated with larval C content at hatching. In conclusion, "winter larvae" hatching from larger "winter eggs" showed higher initial values of biomass compared to "summer larvae" originating from smaller "summer eggs". This indicates carry-over effects persisting from the embryonic to the larval phase. Since "winter larvae" are more likely exposed to poor nutritional conditions, intraspecific variability in larval biomass at hatching is interpreted as part of an adaptive reproductive strategy compensating for strong seasonality in plankton production and transitory periods of larval food limitation.

  9. Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles.

    PubMed

    Ichikawa, Toshio; Kurauchi, Toshiaki

    2009-08-01

    Cannibalism of pupae by larvae has been documented In many species of Insects, but the features of larval cannibalism and pupal defensive mechanisms against larval cannibalism have been largely Ignored. Pupae of tenebrionld beetles rotate their abdominal segments in a circular motion in response to the tactile stimulation of appendages, including legs, antennae, maxillary pulps, and wings. When the pupal abdominal rotation responses of Tenebrio molitor and Zophobas atratus were completely blocked by transecting the ventral nerve cord (VNC) of the pupae, the appendages of the paralytic pupae became initial, major targets for attack by larval cannibals. The majority of 20 paralytic pupae was cannibalized by 100 larvae within 6 h, and almost all the pupae were killed within 2-3 days. In contrast, only a few pupae of Z. atratus and several pupae of T. molitor were cannibalized when the VNC was Intact. The abdominal rotation response of the pupae thus functions as an effective defense against larval cannibalism.

  10. Hydrogeomorphic features mediate the effects of land use/cover on reservoir productivity and food webs

    USGS Publications Warehouse

    Bremigan, M.T.; Soranno, P.A.; Gonzalez, M.J.; Bunnell, D.B.; Arend, K.K.; Renwick, W.H.; Stein, R.A.; Vanni, M.J.

    2008-01-01

    Although effects of land use/cover on nutrient concentrations in aquatic systems are well known, half or more of the variation in nutrient concentration remains unexplained by land use/cover alone. Hydrogeomorphic (HGM) landscape features can explain much remaining variation and influence food web interactions. To explore complex linkages among land use/cover, HGM features, reservoir productivity, and food webs, we sampled 11 Ohio reservoirs, ranging broadly in agricultural catchment land use/cover, for 3 years. We hypothesized that HGM features mediate the bottom-up effects of land use/cover on reservoir productivity, chlorophyll a, zooplankton, and recruitment of gizzard shad, an omnivorous fish species common throughout southeastern U.S. reservoirs and capable of exerting strong effects on food web and nutrient dynamics. We tested specific hypotheses using a model selection approach. Percent variation explained was highest for total nitrogen (R2 = 0.92), moderately high for total phosphorus, chlorophyll a, and rotifer biomass (R2 = 0.57 to 0.67), relatively low for crustacean zooplankton biomass and larval gizzard shad hatch abundance (R2 = 0.43 and 0.42), and high for larval gizzard shad survivor abundance (R2 = 0.79). The trophic status models included agricultural land use/cover and an HGM predictor, whereas the zooplankton models had few HGM predictors. The larval gizzard shad models had the highest complexity, including more than one HGM feature and food web components. We demonstrate the importance of integrating land use/cover, HGM features, and food web interactions to investigate critical interactions and feedbacks among physical, chemical, and biological components of linked land-water ecosystems.

  11. Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale

    NASA Astrophysics Data System (ADS)

    Leahy, Susannah M.; Russ, Garry R.; Abesamis, Rene A.

    2015-12-01

    Recent research has demonstrated that, despite a pelagic larval stage, many coral reef fishes disperse over relatively small distances, leading to well-connected populations on scales of 0-30 km. Although variation in key biological characteristics has been explored on the scale of 100-1000 s of km, it has rarely been explored at the scale relevant to actual larval dispersal and population connectivity on ecological timescales. In this study, we surveyed the habitat and collected specimens ( n = 447) of juvenile butterflyfish, Chaetodon vagabundus, at nine sites along an 80-km stretch of coastline in the central Philippines to identify variation in key life history parameters at a spatial scale relevant to population connectivity. Mean pelagic larval duration (PLD) was 24.03 d (SE = 0.16 d), and settlement size was estimated to be 20.54 mm total length (TL; SE = 0.61 mm). Both traits were spatially consistent, although this PLD is considerably shorter than that reported elsewhere. In contrast, post-settlement daily growth rates, calculated from otolith increment widths from 1 to 50 d post-settlement, varied strongly across the study region. Elevated growth rates were associated with rocky habitats that this species is known to recruit to, but were strongly negatively correlated with macroalgal cover and exhibited negative density dependence with conspecific juveniles. Larger animals had lower early (first 50 d post-settlement) growth rates than smaller animals, even after accounting for seasonal variation in growth rates. Both VBGF and Gompertz models provided good fits to post-settlement size-at-age data ( n = 447 fish), but the VBGF's estimate of asymptotic length ( L ∞ = 168 mm) was more consistent with field observations of maximum fish length. Our findings indicate that larval characteristics are consistent at the spatial scale at which populations are likely well connected, but that site-level biological differences develop post-settlement, most likely as a result of key differences in quality of recruitment habitat.

  12. Feeding ecology of pelagic larval Burbot in Northern Lake Huron, Michigan

    USGS Publications Warehouse

    George, Ellen M.; Roseman, Edward F.; Davis, Bruce M.; O'Brien, Timothy P.

    2013-01-01

    Burbot Lota lota are a key demersal piscivore across the Laurentian Great Lakes whose populations have declined by about 90% in recent decades. Larval Burbot typically hatch in the early spring and rely on abundant crustacean zooplankton prey. We examined the stomach contents of larval Burbot from inshore (≤15 m) and offshore sites (37 and 91 m) in northern Lake Huron, Michigan. Concurrent zooplankton vertical tows at the same sites showed that the prey community was dominated by calanoid copepods, dreissenid mussel veligers, and rotifers. Burbot consumed mostly cyclopoid copepods, followed by copepod nauplii and calanoid copepods. Chesson's index of selectivity was calculated and compared among sites and months for individual Burbot. According to this index, larval Burbot exhibited positive selection for cyclopoid copepods and copepod nauplii and negative selection for calanoid copepods, cladocerans, rotifers, and dreissenid veligers. This selectivity was consistent across sites and throughout the sampling period. Burbot displayed little variation in their prey preferences during the larval stage, which suggests that the recent shifts in zooplankton abundance due to the invasion of the predatory zooplankter Bythotrephes longimanus and competition from invasive Rainbow Smelt Osmerus mordax could negatively impact larval Burbot populations.

  13. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes

    PubMed Central

    Shulzitski, Kathryn; Sponaugle, Su; Hauff, Martha; Walter, Kristen D.; Cowen, Robert K.

    2016-01-01

    Oceanographic features, such as eddies and fronts, enhance and concentrate productivity, generating high-quality patches that dispersive marine larvae may encounter in the plankton. Although broad-scale movement of larvae associated with these features can be captured in biophysical models, direct evidence of processes influencing survival within them, and subsequent effects on population replenishment, are unknown. We sequentially sampled cohorts of coral reef fishes in the plankton and nearshore juvenile habitats in the Straits of Florida and used otolith microstructure analysis to compare growth and size-at-age of larvae collected inside and outside of mesoscale eddies to those that survived to settlement. Larval habitat altered patterns of growth and selective mortality: Thalassoma bifasciatum and Cryptotomus roseus that encountered eddies in the plankton grew faster than larvae outside of eddies and likely experienced higher survival to settlement. During warm periods, T. bifasciatum residing outside of eddies in the oligotrophic Florida Current experienced high mortality and only the slowest growers survived early larval life. Such slow growth is advantageous in nutrient poor habitats when warm temperatures increase metabolic demands but is insufficient for survival beyond the larval stage because only fast-growing larvae successfully settled to reefs. Because larvae arriving to the Straits of Florida from distant sources must spend long periods of time outside of eddies, our results indicate that they have a survival disadvantage. High productivity features such as eddies not only enhance the survival of pelagic larvae, but also potentially increase the contribution of locally spawned larvae to reef populations. PMID:27274058

  14. Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution.

    PubMed

    Kittelmann, Sebastian; Buffry, Alexandra D; Franke, Franziska A; Almudi, Isabel; Yoth, Marianne; Sabaris, Gonzalo; Couso, Juan Pablo; Nunes, Maria D S; Frankel, Nicolás; Gómez-Skarmeta, José Luis; Pueyo-Marques, Jose; Arif, Saad; McGregor, Alistair P

    2018-05-01

    Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary 'hotspots' are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the 'naked valley' on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.

  15. Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    NASA Astrophysics Data System (ADS)

    Polte, Patrick; Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena

    2017-02-01

    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones.

  16. Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    PubMed Central

    Polte, Patrick; Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena

    2017-01-01

    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones. PMID:28205543

  17. Larval leg integrity is maintained by Distal-less and is required for proper timing of metamorphosis in the flour beetle, Tribolium castaneum

    PubMed Central

    Suzuki, Yuichiro; Squires, Diego C.; Riddiford, Lynn M.

    2009-01-01

    The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late- larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis. PMID:19022238

  18. Larvae of the genus Eleodes (Coleoptera, Tenebrionidae): matrix-based descriptions, cladistic analysis, and key to late instars

    PubMed Central

    Smith, Aaron D.; Dornburg, Rebecca; Wheeler, Quentin D.

    2014-01-01

    Abstract Darkling beetle larvae (Coleoptera, Tenebrionidae) are collectively referred to as false wireworms. Larvae from several species in the genus Eleodes are considered to be agricultural pests, though relatively little work has been done to associate larvae with adults of the same species and only a handful of species have been characterized in their larval state. Morphological characters from late instar larvae were examined and coded to produce a matrix in the server-based content management system mx. The resulting morphology matrix was used to produce larval species descriptions, reconstruct a phylogeny, and build a key to the species included in the matrix. Larvae are described for the first time for the following 12 species: Eleodes anthracinus Blaisdell, Eleodes carbonarius (Say), Eleodes caudiferus LeConte, Eleodes extricatus (Say), Eleodes goryi Solier, Eleodes hispilabris (Say), Eleodes nigropilosus LeConte, Eleodes pilosus Horn, Eleodes subnitens LeConte, Eleodes tenuipes Casey, Eleodes tribulus Thomas, and Eleodes wheeleri Aalbu, Smith & Triplehorn. The larval stage of Eleodes armatus LeConte is redescribed with additional characters to differentiate it from the newly described congeneric larvae. PMID:25009429

  19. Recruitment Variability in North Atlantic Cod and Match-Mismatch Dynamics

    PubMed Central

    Kristiansen, Trond; Drinkwater, Kenneth F.; Lough, R. Gregory; Sundby, Svein

    2011-01-01

    Background Fisheries exploitation, habitat destruction, and climate are important drivers of variability in recruitment success. Understanding variability in recruitment can reveal mechanisms behind widespread decline in the abundance of key species in marine and terrestrial ecosystems. For fish populations, the match-mismatch theory hypothesizes that successful recruitment is a function of the timing and duration of larval fish abundance and prey availability. However, the underlying mechanisms of match-mismatch dynamics and the factors driving spatial differences between high and low recruitment remain poorly understood. Methodology/Principal Findings We used empirical observations of larval fish abundance, a mechanistic individual-based model, and a reanalysis of ocean temperature data from 1960 to 2002 to estimate the survival of larval cod (Gadus morhua). From the model, we quantified how survival rates changed during the warmest and coldest years at four important cod spawning sites in the North Atlantic. The modeled difference in survival probability was not large for any given month between cold or warm years. However, the cumulative effect of higher growth rates and survival through the entire spawning season in warm years was substantial with 308%, 385%, 154%, and 175% increases in survival for Georges Bank, Iceland, North Sea, and Lofoten cod stocks, respectively. We also found that the importance of match-mismatch dynamics generally increased with latitude. Conclusions/Significance Our analyses indicate that a key factor for enhancing survival is the duration of the overlap between larval and prey abundance and not the actual timing of the peak abundance. During warm years, the duration of the overlap between larval fish and their prey is prolonged due to an early onset of the spring bloom. This prolonged season enhances cumulative growth and survival, leading to a greater number of large individuals with enhanced potential for survival to recruitment. PMID:21408215

  20. Cestodes from deep-water squaliform sharks in the Azores

    NASA Astrophysics Data System (ADS)

    Caira, Janine N.; Pickering, Maria

    2013-12-01

    The majority of our knowledge on marine tapeworms (cestodes) is limited to taxa that are relatively easy to obtain (i.e., those that parasitize shallower-water species). The invitation to participate in a deep-water research survey off the Condor seamount in the Azores offered the opportunity to gain information regarding parasites of the less often studied sharks of the mesopelagic and bathypelagic zone. All tapeworms (Platyhelminthes: Cestoda) found parasitizing the spiral intestine of squaliform shark species (Elasmobranchii: Squaliformes) encountered as part of this survey, as well as some additional Azorean sampling from previous years obtained from local fishermen are reported. In total, 112 shark specimens of 12 species of squaliform sharks representing 4 different families from depths ranging between 400 and 1290 m were examined. Cestodes were found in the spiral intestines from 11 of the 12 squaliform species examined: Deania calcea, D. cf. profundorum, D. profundorum, Etmopterus princeps, E. pusillus, E. spinax, Centroscyllium fabricii, Centroscymnus coelolepis, C. cryptacanthus, C. crepidater, and Dalatias licha. No cestodes were found in the spiral intestines of Centrophorus squamosus. Light microscopy and scanning electron microscopy revealed several potentially novel trypanorhynch and biloculated tetraphyllidean species. Aporhynchid and gilquiniid trypanorhynchs dominated the adult cestode fauna of Etmopterus and Deania host species, respectively, while larval phyllobothriids were found across several host genera, including, Deania, Centroscyllium, and Centroscymnus. These results corroborate previous findings that deep-water cestode faunas are relatively depauperate and consist primarily of trypanorhynchs of the families Gilquiniidae and Aporhynchidae and larval tetraphyllideans. A subset of specimens of most cestode species was preserved in ethanol for future molecular analysis to allow more definitive determinations of the identification of the larval tetraphyllideans and trypanorhynchs lacking evaginated tentacles and other key diagnostic features.

  1. The role of internal waves in larval fish interactions with potential predators and prey

    NASA Astrophysics Data System (ADS)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy

    2014-09-01

    Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.

  2. A simple approximation for larval retention around reefs

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, Paulina; Connolly, Sean R.

    2011-09-01

    Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.

  3. Growing Pains: Development of the Larval Nocifensive Response in Drosophila

    PubMed Central

    SULKOWSKI, MIKOLAJ J.; KUROSAWA, MATHIEU S.; OX, DANIEL N.

    2014-01-01

    The ability to perceive and avoid harmful substances or stimuli is key to an organism’s survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advantage of the useful properties of Drosophila larvae to begin elucidating the neuronal connectivity and molecular machinery underlying the nocifensive response. However, these studies have primarily utilized the third-instar larval stage, and many mutations that potentially influence nociception survive only until earlier larval stages. Here we characterize the nocifensive responses of Drosophila throughout larval development and find dramatic changes in the nature of the behavior. Notably, we find that prior to the third instar, larvae are unable to perform the characteristic “corkscrew-like roll” behavior. Also, we identify an avoidance behavior consistent with a nocifensive response that is present immediately after larval hatching, representing a paradigm that may be useful in examining mutations with an early lethal phenotype. PMID:22186918

  4. Larval fish variability in response to oceanographic features in a nearshore nursery area.

    PubMed

    Pattrick, P; Strydom, N A

    2014-09-01

    The influence of oceanographic features on ichthyoplankton assemblages in the warm temperate nearshore region of Algoa Bay, South Africa, was assessed. The nearshore ichthyoplankton comprised 88 taxa from 34 families. Samples were collected at six stations between August 2010 and July 2012 using a plankton ring net of 750 mm diameter and 500 µm mesh aperture. The majority of larvae collected were in a preflexion stage, indicating the potential importance of the nearshore for newly hatched larvae. Engraulidae dominated the catch (38·4%), followed by Cynoglossidae (28·1%) and Sparidae (8·4%). Larval fish abundance was highest during austral spring and summer (September to February). Unique patterns in responses of each dominant fish species to oceanographic features in the nearshore indicate the sensitivity of the early developmental stage to environmental variables. Using generalized linear models, ichthyoplankton abundance responded positively to upwelling and when warm water plumes originating from an Agulhas Current meander entered Algoa Bay. Highest abundances of Engraulis encrasicolus and Sardinops sagax were observed during Agulhas Plume intrusions into Algoa Bay. When a mixed and stratified water column persisted in the nearshore region of Algoa Bay, larval fish abundance decreased. The nearshore region of Algoa Bay appears to serve as a favourable environment for the accumulation of ichthyoplankton. © 2014 The Fisheries Society of the British Isles.

  5. Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta.

    PubMed

    Beetz, Susann; Holthusen, Traute K; Koolman, Jan; Trenczek, Tina

    2008-02-01

    We determined the changes in hemocyte titer and in the abundance of hemocyte types of the tobacco hornworm Manduca sexta during the fourth and fifth larval stadium and the beginning of the pupal stadium. As we analyzed the samples of individual insects at daily intervals, we were able to correlate phenotypical features, body weight, as well as total protein content and lysozyme activity in the hemolymph with the observations on hemocytes. In the course of the fifth larval stadium, the hemocyte titer decreased slightly and declined further after pupation. Using calculated values for total hemocyte numbers, females had about five times and males three times more hemocytes in the circulating population at the beginning of the wandering stage (in the middle of the fifth larval stadium) than immediately after the last larval--larval molt (from the fourth to the fifth larval stadium). This sexual difference was mainly due to an increase in the number of plasmatocytes, which was more prominent in females than in males. Granular cells were dominant in early fifth larval stadium while plasmatocytes were the most abundant cells in pupae. Oenocytoids and spherule cells disappeared during the wandering stage. Lysozyme activity in the hemolymph rose to a maximum during the wandering stage, with females having lysozyme values twice as high as those for males. These changes in lysozyme activity, however, did not correlate with the increase of total hemolymph protein titer which occurred already at the beginning of the wandering stage. We postulate that changes in hemocyte titers are under direct hormonal control, which has to be proven in future experiments. (c) 2007 Wiley-Liss, Inc.

  6. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    PubMed

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  7. Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic.

    PubMed

    Selbach, Christian; Soldánová, Miroslava; Georgieva, Simona; Kostadinova, Aneta; Kalbe, Martin; Sures, Bernd

    2014-10-01

    Large-tailed echinostomatid cercariae of the genus Petasiger Dietz, 1909 (Digenea: Echinostomatidae) from the planorbid snails Gyraulus albus (Müller) and Planorbis planorbis (L.) collected in Germany and the Czech Republic and metacercariae from Gasterosteus aculeatus L. (Gasterosteiformes: Gasterosteidae) collected in Canada are characterised morphologically and molecularly. The rediae, cercariae and metacercariae are described in detail and compared with the existing data on the larval stages of Petasiger spp. Comparative molecular analyses using 28S rDNA and nad1 mitochondrial sequences supported the distinct status of four species of Petasiger. Molecular and morphological evidence for their distinction and an updated key to the known large-tailed cercariae of Petasiger from the Palaearctic are provided.

  8. The complete larval development of the mud shrimp Upogebia vasquezi (Gebiidea: Upogebiidae) reared in the laboratory.

    PubMed

    De Oliveira, Danielly Brito; Martinelli-Lemos, Jussara Moretto; Abrunhosa, Fernando Araújo

    2014-07-01

    The larval development of Upogebia vasquezi consists of four zoeal stages and a megalopa. In the present study, each larval stage was described and illustrated in detail. The first two stages are re-described in order to provide a detailed comparison with the data available for this species recorded in a previous study. The morphological features of all the stages are compared with those of the larvae of other Upogebia species reported previously in the literature. Broad morphological similarities and distinctions were found among most Upogebia species. The main interspecific variations in the morphology of the zoeal stages are the segmentation pattern of the antennular endopod and number of aesthetascs, the number of setae on the scaphognathite and the presence or absence of a mandibular palp.

  9. Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny

    PubMed Central

    Hernández-Ávila, Iván; Cambon-Bonavita, Marie-Anne; Pradillon, Florence

    2015-01-01

    Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential combinations. However, the Alvinocarididae is the only taxa with a combination of lecithotrophy and extended larval development. PMID:26710075

  10. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassessment of chironomid communities.

  11. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassesment of chironomid communities.

  12. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    PubMed

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  13. Unravelling the Gordian knot! Key processes impacting overwintering larval survival and growth: A North Sea herring case study

    NASA Astrophysics Data System (ADS)

    Hufnagl, Marc; Peck, Myron A.; Nash, Richard D. M.; Dickey-Collas, Mark

    2015-11-01

    Unraveling the key processes affecting marine fish recruitment will ultimately require a combination of field, laboratory and modelling studies. We combined analyzes of long-term (30-year) field data on larval fish abundance, distribution and length, and biophysical model simulations of different levels of complexity to identify processes impacting the survival and growth of autumn- and winter-spawned Atlantic herring (Clupea harengus) larvae. Field survey data revealed interannual changes in intensity of utilization of the five major spawning grounds (Orkney/Shetland, Buchan, Banks north, Banks south, and Downs) as well as spatio-temporal variability in the length and abundance of overwintered larvae. The mean length of larvae captured in post-winter surveys was negatively correlated to the proportion of larvae from the southern-most (Downs) winter-spawning component. Furthermore, the mean length of larvae originating from all spawning components has decreased since 1990 suggesting ecosystem-wide changes impacting larval growth potential, most likely due to changes in prey fields. A simple biophysical model assuming temperature-dependent growth and constant mortality underestimated larval growth rates suggesting that larval mortality rates steeply declined with increasing size and/or age during winter as no match with field data could be obtained. In contrast better agreement was found between observed and modelled post-winter abundance for larvae originating from four spawning components when a more complex, physiological-based foraging and growth model was employed using a suite of potential prey field and size-based mortality scenarios. Nonetheless, agreement between field and model-derived estimates was poor for larvae originating from the winter-spawned Downs component. In North Sea herring, the dominant processes impacting larval growth and survival appear to have shifted in time and space highlighting how environmental forcing, ecosystem state and other factors can form a Gordian knot of marine fish recruitment processes. We highlight gaps in process knowledge and recommend specific field, laboratory and modelling studies which, in our opinion, are most likely to unravel the dominant processes and advance predictive capacity of the environmental regulation of recruitment in autumn and winter-spawned fishes in temperate areas such as herring in the North Sea.

  14. Velcro-Like System Used to Fix a Protective Faecal Shield on Weevil Larvae.

    PubMed

    Skuhrovec, Jiří; Stejskal, Robert; Trnka, Filip; di Giulio, Andrea

    2017-01-01

    The last instar larva and pupa of Eucoeliodes mirabilis (A. Villa & G. B. Villa, 1835) (Curculionidae: Ceutorhynchini) are described using drawings and SEM images and are compared and keyed with already described larvae of 58 other ceutorhynchinae taxa. The larval body has an effective combination of morphological adaptations that assist a unique biological defensive strategy. All larval stages of E. mirabilis feed ectophytically on leaves of Euonymus europaeus L. (Celastraceae), and the larval body is covered with a thick faecal shield. The fixation of this protective shield on the larval back is performed by a peculiar dorsal microsculpture composed of a dense carpet of microtrichia on the thorax and abdomen, which serves effectively as a velcro system. Because of this strategy, macrosetae on the larval and pupal body of E. mirabilis are completely reduced. Larvae of E. mirabilis also have distinct morphological adaptations for protecting the spiracles against intrusion of faeces and avoiding occlusion of the tracheal system: a) microtrichia around spiracles are slightly shorter, distinctly stronger and are arranged with high-density and in clusters and b) spiracles are protected by an external safety valve. This strategy of E. mirabilis larvae is unique, although somewhat similar to that of Criocerinae and Blepharida-group leave beetles (Galerucinae) (both Coleoptera: Chrysomelidae), but with distinctly different morphological adaptations.

  15. Velcro-Like System Used to Fix a Protective Faecal Shield on Weevil Larvae

    PubMed Central

    Stejskal, Robert; Trnka, Filip; di Giulio, Andrea

    2017-01-01

    The last instar larva and pupa of Eucoeliodes mirabilis (A. Villa & G. B. Villa, 1835) (Curculionidae: Ceutorhynchini) are described using drawings and SEM images and are compared and keyed with already described larvae of 58 other ceutorhynchinae taxa. The larval body has an effective combination of morphological adaptations that assist a unique biological defensive strategy. All larval stages of E. mirabilis feed ectophytically on leaves of Euonymus europaeus L. (Celastraceae), and the larval body is covered with a thick faecal shield. The fixation of this protective shield on the larval back is performed by a peculiar dorsal microsculpture composed of a dense carpet of microtrichia on the thorax and abdomen, which serves effectively as a velcro system. Because of this strategy, macrosetae on the larval and pupal body of E. mirabilis are completely reduced. Larvae of E. mirabilis also have distinct morphological adaptations for protecting the spiracles against intrusion of faeces and avoiding occlusion of the tracheal system: a) microtrichia around spiracles are slightly shorter, distinctly stronger and are arranged with high-density and in clusters and b) spiracles are protected by an external safety valve. This strategy of E. mirabilis larvae is unique, although somewhat similar to that of Criocerinae and Blepharida-group leave beetles (Galerucinae) (both Coleoptera: Chrysomelidae), but with distinctly different morphological adaptations. PMID:28125664

  16. Larva and pupa of Ctesias (s. str.) serra (Fabricius, 1792) with remarks on biology and economic importance, and larval comparison of co-occurring genera (Coleoptera, Dermestidae).

    PubMed

    Kadej, Marcin

    2018-01-01

    Updated descriptions of the last larval instar (based on the larvae and exuviae) and first detailed description of the pupa of Ctesias (s. str.) serra (Fabricius, 1792) (Coleoptera: Dermestidae) are presented. Several morphological characters of C. serra larvae are documented: antenna, epipharynx, mandible, maxilla, ligula, labial palpi, spicisetae, hastisetae, terga, frons, foreleg, and condition of the antecostal suture. The paper is fully illustrated and includes some important additions to extend notes for this species available in the references. Summarised data about biology, economic importance, and distribution of C. serra are also provided. The comparison of larval characteristics for some of the genera of Dermestidae co-occurring with Ctesias is presented. A key for identification of these genera is also provided.

  17. Influence of summer conditions on the larval fish assemblage in the eastern coast of Tunisia (Ionian Sea, Southern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Zarrad, Rafik; Alemany, Francisco; Rodriguez, José-María; Jarboui, Othman; Lopez-Jurado, José-Luis; Balbin, Rosa

    2013-02-01

    The structure of the summer larval fish assemblage off the eastern coast of Tunisia and its relation to environmental conditions was studied, from ichthyoplankton samples taken during a survey conducted between 23rd June and 9th July 2008. A total of 68 larval fish taxa were identified, 52 to species level. The taxonomic composition and abundance of the larval fish assemblage showed high spatial heterogeneity. Mesoscale hydrographic features, such as eddies, seem to play an important role in the spatial distribution of fish larvae in the area, enhancing concentration and retention. The larval fish assemblage was dominated by the small pelagic species Sardinella aurita (26.6% of the total larval fish abundance), followed by Engraulis encrasicolus (22.6%), Spicara spp. (8.6%) and Mullus barbatus (6.8%). Shannon-Weaver index (H') ranged between 0 and 2.62. The highest values were found offshore, at 95 miles east of Sousse, over depths around 250 m. The diversity was higher in this region as a result of transport by currents and retention by eddies. It has also been shown that the eastern coast of Tunisia is a spawning ground for the tuna species Auxis rochei, Thunnus thynnus and Thunnus alalunga. Larvae of mesopelagic fishes represented 5.46% of the total abundance, with Cyclothone braueri, Ceratoscopelus maderensis and Lampanyctus crocodilus being the most important species. Canonical correspondence analysis (CCA) indicated that depth was the most important environmental factor in explaining species distribution.

  18. Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands.

    PubMed

    Mushinzimana, Emmanuel; Munga, Stephen; Minakawa, Noboru; Li, Li; Feng, Chen-Chieng; Bian, Ling; Kitron, Uriel; Schmidt, Cindy; Beck, Louisa; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2006-02-16

    In the past two decades the east African highlands have experienced several major malaria epidemics. Currently there is a renewed interest in exploring the possibility of anopheline larval control through environmental management or larvicide as an additional means of reducing malaria transmission in Africa. This study examined the landscape determinants of anopheline mosquito larval habitats and usefulness of remote sensing in identifying these habitats in western Kenya highlands. Panchromatic aerial photos, Ikonos and Landsat Thematic Mapper 7 satellite images were acquired for a study area in Kakamega, western Kenya. Supervised classification of land-use and land-cover and visual identification of aquatic habitats were conducted. Ground survey of all aquatic habitats was conducted in the dry and rainy seasons in 2003. All habitats positive for anopheline larvae were identified. The retrieved data from the remote sensors were compared to the ground results on aquatic habitats and land-use. The probability of finding aquatic habitats and habitats with Anopheles larvae were modelled based on the digital elevation model and land-use types. The misclassification rate of land-cover types was 10.8% based on Ikonos imagery, 22.6% for panchromatic aerial photos and 39.2% for Landsat TM 7 imagery. The Ikonos image identified 40.6% of aquatic habitats, aerial photos identified 10.6%, and Landsate TM 7 image identified 0%. Computer models based on topographic features and land-cover information obtained from the Ikonos image yielded a misclassification rate of 20.3-22.7% for aquatic habitats, and 18.1-25.1% for anopheline-positive larval habitats. One-metre spatial resolution Ikonos images combined with computer modelling based on topographic land-cover features are useful tools for identification of anopheline larval habitats, and they can be used to assist to malaria vector control in western Kenya highlands.

  19. Bryophyte-Feeders in a Basal Brachyceran Lineage (Diptera: Rhagionidae: Spaniinae): Adult Oviposition Behavior and Changes in the Larval Mouthpart Morphology Accompanied with the Diet Shifts

    PubMed Central

    Kato, Makoto

    2016-01-01

    Dipteran larval morphology exhibits overwhelming variety, affected by their diverse feeding habits and habitat use. In particular, larval mouthpart morphology is associated with feeding behavior, providing key taxonomic traits. Despite most larval Brachycera being carnivorous, a basal brachyceran family, Rhagionidae, contains bryophyte-feeding taxa with multiple feeding habits. To elucidate the life history, biology, and morphological evolution of the bryophyte-feeding rhagionids, the larval feeding behavior and morphology, and the adult oviposition behavior of four species belonging to three genera of Spaniinae (Spania Meigen, Litoleptis Chillcott and Ptiolina Zetterstedt) are described. Moreover, changes of the larval morphology associated with the evolution of bryophyte-feeding are traced by molecular phylogenetic analyses. Spania and Litoleptis (thallus-miners of thallose liverworts) share a toothed form of apical mandibular sclerite with an orifice on its dorsal surface, which contrasts to those of the other members of Rhagionidae possessing a blade-like mandibular hook with an adoral groove; whereas, Ptiolina (stem borer of mosses) exhibits a weak groove on the adoral surface of mandible and highly sclerotized maxilla with toothed projections. Based on the larval feeding behavior of the thallus-miners, it is inferred that the toothed mandibles with the dorsal orifice facilitate scraping plant tissue and then imbibing it with a great deal of the sap. A phylogeny indicated that the bryophyte-feeding genera formed a clade with Spaniopsis and was sister to Symphoromyia, which presumably are detritivores. This study indicates that the loss or reduction of adoral mandibular groove and mandibular brush is coincident with the evolution of bryophyte-feeding, and it is subsequently followed by the occurrence of dorsal mandibular orifice and the loss of creeping welts accompanying the evolution of thallus-mining. PMID:27812169

  20. Predicting crappie recruitment in Ohio reservoirs with spawning stock size, larval density, and chlorophyll concentrations

    USGS Publications Warehouse

    Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.

    2006-01-01

    Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.

  1. New species of Apoloniinae (Acari: Trombiculidae) from the Laysan albatross taken in the Midway Islands and key to the species of Apoloniinae of the world

    USGS Publications Warehouse

    Goff, M.L.; Sievert, P.R.; Sileo, L.

    1989-01-01

    Womersia midwayensis Goff, Sievert and Sileo is described as a new species from specimens taken off a Laysan albatross chick, Diomedea immutabilis (L.), collected on Sand Island, Midway Islands. A key to the genera and species of larval Apoloniinae of the world is given.

  2. Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran.

    PubMed

    Soleimani-Ahmadi, Moussa; Vatandoost, Hassan; Hanafi-Bojd, Ahmad-Ali; Zare, Mehdi; Safari, Reza; Mojahedi, Abdolrasul; Poorahmad-Garbandi, Fatemeh

    2013-07-01

    To determine the effects of environmental parameters of larval habitats on distribution and abundance of anopheline mosquitoes in Rudan county of Iran. This cross-sectional study was conducted during the mosquito breeding season from February 2010 to October 2011. The anopheline larvae were collected using the standard dipping method. The specimens were identified using a morphological-based key. Simultaneously with larval collection, environmental parameters of the larval habitats including water current and turbidity, sunlight situation, and substrate type of habitats were recorded. Water samples were taken from breeding sites during larval collection. Before collection of samples, the water temperature was measured. The water samples were analysed for turbidity, conductivity, total alkalinity, total dissolved solid, pH and ions including chloride, sulphate, calcium, and magnesium. Statistical correlation analysis and ANOVA test were used to analyze the association between environmental parameters and larval mosquito abundance. In total 2 973 larvae of the genus Anopheles were collected from 25 larval habitats and identified using morphological characters. They comprised of six species: An. dthali (53.21%), An. stephensi (24.22%), An. culicifacies (14.06%), An. superpictus (4.07%), An. turkhudi (3.30%), and An. apoci (1.14%). The most abundant species was An. dthali which were collected from all of the study areas. Larvae of two malaria vectors, An. dthali and An. stephensi, co-existed and collected in a wide range of habitats with different physico-chemical parameters. The most common larval habitats were man-made sites such as sand mining pools with clean and still water. The anopheline mosquitoes also preferred permanent habitats in sunlight with sandy substrates. The results indicated that there was a significant relationship between mean physico-chemical parameters such as water temperature, conductivity, total alkalinity, sulphate, chloride, and mosquito distribution and abundance. The results of this study showed a correlation between certain environmental parameters and mosquito larvae abundance, and these parameters should be considered in planning and implementing larval control programs. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. Exposure to coal combustion residues during metamorphosis elevates corticosterone content and adversely affects oral morphology, growth, and development in Rana sphenocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.

    Coal combustion residues (CCRs) are documented to negatively impact oral morphology, growth, and development in larval amphibians. It is currently unclear what physiological mechanisms may mediate these effects. Corticosterone, a glucocorticoid hormone, is a likely mediator because when administered exogenously it, like CCRs, also negatively influences oral morphology, growth, and development in larval amphibians. In an attempt to identify if corticosterone mediates these effects, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate and documented effects of sediment type on whole body corticosterone, oral morphology, and time to and mass at key metamorphic stages. Coalmore » combustion residue treated tadpoles contained significantly more corticosterone than controls throughout metamorphosis. However, significantly more oral abnormalities occurred early in metamorphosis when differences in corticosterone levels between treatments were minimal. Overall, CCR-treated tadpoles took significantly more time to transition between key stages and gained less mass between stages than controls, but these differences between treatments decreased during later stages when corticosterone differences between treatments were greatest. Our results suggest endogenous increase in corticosterone content and its influence on oral morphology, growth and development is more complex than previously thought.« less

  4. Morphology of the first zoeal stages of five species of the portunid genus Callinectes (Decapoda, Brachyura) hatched at the laboratory.

    PubMed

    Mantelatto, Fernando L; Reigada, Alvaro L D; Gatti, Aline C R; Cuesta, José A

    2014-05-23

    The genus Callinectes Stimpson, 1860 currently consists of 16 species, six of which are reported in Brazilian coast. In the present study, the first zoeal stages of Callinectes bocourti, C. danae, C. exasperatus, C. ornatus and C. sapidus from Brazil were obtained from ovigerous females. The morphological and meristic characters of all these larval stages are described and illustrated. Those of C. bocourti, C. danae and C. sapidus are redescribed and compared with the previous descriptions, and differences are listed. Larval characters of these species were examined for interspecific differences, as well as larval features to distinguish the genus Callinectes within Portunidae. In addition, other portunid genera and species with a known first zoeal stage are compared, with special attention to those species present in the same geographical area. Our findings concord with some previous molecular studies, and we discuss the complexity within the group.

  5. The first morphological description of the immature stages of Thiasophila Kraatz, 1856 (Coleoptera; Staphylinidae) inhabiting ant colonies of the Formica rufa group.

    PubMed

    Zagaja, Mirosław; Staniec, Bernard; Pietrykowska-Tudruj, Ewa

    2014-03-07

    This article for the first time presents the morphology of the egg, three larval instars, pupal cocoon, prepupa and pupa of myrmecophilous rove beetle Thiasophila angulata (Erichson, 1837) along with illustrations of structural features and chaetotaxy. Morphological comparisons are made between larval instars, and between the mature larva of T. angulata and other known larvae of Aleocharinae belonging to the tribes Athetini, Hoplandriini, Liparocephalini, Lomechusinii and Oxypodini. Pupae of T. angulata and two other species of Aleocharinae: Pella laticollis (Märkell, 1844) and Haploglossa picipennis (Gyllenhal, 1827) are compared. The mature larvae of T. angulata were observed to vary morphologically depending on the ant host species (Formica polyctena, F. rufa or F. truncorum). Host-related variation was observed in median larval body length, head and pronotum width and structure of the antennae.

  6. Organization of the Drosophila larval visual circuit

    PubMed Central

    Gendre, Nanae; Neagu-Maier, G Larisa; Fetter, Richard D; Schneider-Mizell, Casey M; Truman, James W; Zlatic, Marta; Cardona, Albert

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

  7. Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns

    PubMed Central

    Bode, Michael; Williamson, David H.; Weeks, Rebecca; Jones, Geoff P.; Almany, Glenn R.; Harrison, Hugo B.; Hopf, Jess K.; Pressey, Robert L.

    2016-01-01

    Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method’s utility in information-poor contexts common in marine conservation. PMID:27168206

  8. Is the Schwabe Organ a Retained Larval Eye? Anatomical and Behavioural Studies of a Novel Sense Organ in Adult Leptochiton asellus (Mollusca, Polyplacophora) Indicate Links to Larval Photoreceptors

    PubMed Central

    Sumner-Rooney, Lauren H.; Sigwart, Julia D.

    2015-01-01

    The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans. PMID:26366861

  9. Dietary supplementation with vitamin k affects transcriptome and proteome of Senegalese sole, improving larval performance and quality.

    PubMed

    Richard, Nadège; Fernández, Ignacio; Wulff, Tune; Hamre, Kristin; Cancela, Leonor; Conceição, Luis E C; Gavaia, Paulo J

    2014-10-01

    Nutritional factors strongly influence fish larval development and skeletogenesis, and may induce skeletal deformities. Vitamin K (VK) has been largely disregarded in aquaculture nutrition, despite its important roles in bone metabolism, in γ-carboxylation of Gla proteins, and in regulating gene expression through the pregnane X receptor (Pxr). Since the mechanisms mediating VK effects over skeletal development are poorly known, we investigated the effects of VK-supplementation on skeletal development in Senegalese sole larvae, aiming to identify molecular pathways involved. Larvae were fed live preys enriched with graded levels of phylloquinone (PK) (0, 50, and 250 mg kg(-1)) and survival rate, growth, VK contents, calcium content and incidence of skeletal deformities were determined, revealing an improvement of larval performance and decreasing the incidence of deformities in VK-supplemented groups. Comparative proteome analysis revealed a number of differentially expressed proteins between Control and Diet 250 associated with key biological processes including skin, muscle, and bone development. Expression analysis showed that genes encoding proteins related to the VK cycle (ggcx, vkor), VK nuclear receptor (pxr), and VK-dependent proteins (VKDPs; oc1 and grp), were differentially expressed. This study highlights the potential benefits of increasing dietary VK levels in larval diets, and brings new insights on the mechanisms mediating the positive effects observed on larval performance and skeletal development.

  10. Seasonal and Inter-annual Variability in Modeled Larval Dispersal and Population Connectivity of Blue Crabs (Callinectes sapidus) in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gyory, J.; Jones, B.; Ko, D. S.; Taylor, C.

    2016-02-01

    Larval dispersal trajectories and their resulting population connectivity patterns are known to be key drivers of population dynamics for many marine organisms. However, few studies to date have examined the temporal variability in population connectivity. Here, we model the larval dispersal and population connectivity of blue crabs in the northern Gulf of Mexico from 2003-2012 and use network analyses to understand how they vary over seasonal and inter-annual scales. We found that in all years, the Mississippi River Delta is a barrier to dispersal. Few larvae cross it and settle successfully. In some years (2004, 2007, 2008, and 2009), 1-2 locations (Adams Bay and Chandeleur Sound) had high (> 0.3) betweenness centrality. These locations are likely to be important for maintaining population connectivity in the region, since more than 30% of larval pathways are predicted to pass through them. Connectivity matrices suggest that some estuaries have consistently high larval retention rates. These include West Cote Blanche Bay, Chandeleur Sound, and, in some years, Pensacola Bay and Atchafalaya Bay. Within the spawning season, we observe a decline in average vertex degree and average source strength in every year. This suggests that seasonal declines in the strength of along-shore currents produce consistent reductions in population connectivity through the spawning season.

  11. Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano.

    PubMed

    Yan, Guoyong; Zhang, Gen; Huang, Jiaomei; Lan, Yi; Sun, Jin; Zeng, Cong; Wang, Yong; Qian, Pei-Yuan; He, Lisheng

    2017-10-27

    Megabalanus barnacle is one of the model organisms for marine biofouling research. However, further elucidation of molecular mechanisms underlying larval settlement has been hindered due to the lack of genomic information thus far. In the present study, cDNA libraries were constructed for cyprids, the key stage for larval settlement, and adults of Megabalanus volcano . After high-throughput sequencing and de novo assembly, 42,620 unigenes were obtained with a N50 value of 1532 bp. These unigenes were annotated by blasting against the NCBI non-redundant (nr), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, 19,522, 15,691, 14,459, and 10,914 unigenes were identified correspondingly. There were 22,158 differentially expressed genes (DEGs) identified between two stages. Compared with the cyprid stage, 8241 unigenes were down-regulated and 13,917 unigenes were up-regulated at the adult stage. The neuroactive ligand-receptor interaction pathway (ko04080) was significantly enriched by KEGG enrichment analysis of the DEGs, suggesting that it possibly involved in larval settlement. Potential functions of three conserved allatostatin neuropeptide-receptor pairs and two light-sensitive opsin proteins were further characterized, indicating that they might regulate attachment and metamorphosis at cyprid stage. These results provided a deeper insight into the molecular mechanisms underlying larval settlement of barnacles.

  12. Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano

    PubMed Central

    Yan, Guoyong; Huang, Jiaomei; Lan, Yi; Zeng, Cong; Wang, Yong; Qian, Pei-Yuan; He, Lisheng

    2017-01-01

    Megabalanus barnacle is one of the model organisms for marine biofouling research. However, further elucidation of molecular mechanisms underlying larval settlement has been hindered due to the lack of genomic information thus far. In the present study, cDNA libraries were constructed for cyprids, the key stage for larval settlement, and adults of Megabalanus volcano. After high-throughput sequencing and de novo assembly, 42,620 unigenes were obtained with a N50 value of 1532 bp. These unigenes were annotated by blasting against the NCBI non-redundant (nr), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, 19,522, 15,691, 14,459, and 10,914 unigenes were identified correspondingly. There were 22,158 differentially expressed genes (DEGs) identified between two stages. Compared with the cyprid stage, 8241 unigenes were down-regulated and 13,917 unigenes were up-regulated at the adult stage. The neuroactive ligand-receptor interaction pathway (ko04080) was significantly enriched by KEGG enrichment analysis of the DEGs, suggesting that it possibly involved in larval settlement. Potential functions of three conserved allatostatin neuropeptide-receptor pairs and two light-sensitive opsin proteins were further characterized, indicating that they might regulate attachment and metamorphosis at cyprid stage. These results provided a deeper insight into the molecular mechanisms underlying larval settlement of barnacles. PMID:29077039

  13. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals

    PubMed Central

    Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward

    2016-01-01

    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions. PMID:27824910

  14. DNA barcoding facilitates associations and diagnoses for Trichoptera larvae of the Churchill (Manitoba, Canada) area.

    PubMed

    Ruiter, David E; Boyle, Elizabeth E; Zhou, Xin

    2013-02-20

    The North American Trichoptera larvae are poorly known at the species level, despite their importance in the understanding of freshwater fauna and critical use in biomonitoring. This study focused on morphological diagnoses for larvae occurring in the Churchill, Manitoba area, representing the largest larval association effort for the caddisflies at any given locality thus far. The current DNA barcode reference library of Trichoptera (available on the Barcode of Life Data Systems) was utilized to provide larval-adult associations. The present study collected an additional 23 new species records for the Churchill area, increasing the total Trichoptera richness to 91 species. We were able to associate 62 larval taxa, comprising 68.1% of the Churchill area Trichoptera taxa. This endeavor to identify immature life stage for the caddisflies enabled the development of morphological diagnoses, production of photographs and an appropriate taxonomic key to facilitate larval species analyses in the area. The use of DNA for associations of unknown larvae with known adults proved rapid and successful. This method should accelerate the state-of-knowledge for North American Trichoptera larvae as well as other taxonomic lineages. The morphological analysis should be useful for determination of material from the Churchill area.

  15. Evidence for carry-over effects of predator exposure on pathogen transmission potential.

    PubMed

    Roux, Olivier; Vantaux, Amélie; Roche, Benjamin; Yameogo, Koudraogo B; Dabiré, Kounbobr R; Diabaté, Abdoulaye; Simard, Frederic; Lefèvre, Thierry

    2015-12-22

    Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology. © 2015 The Author(s).

  16. Description of Larval Instars To Fill a Gap in Forensic Entomology: The Larvae of Paralucilia pseudolyrcea (Diptera: Calliphoridae).

    PubMed

    Da Silva, S M; Vairo, K P; Moura, M O

    2018-05-04

    A fundamental assumption of forensic entomology for estimating the postmortem interval is that insect species are accurately identified, which depends on diagnostic morphological characters. Larvae of the blow fly Paralucilia pseudolyrcea (Mello, 1969) (Diptera: Calliphoridae) were sampled from four corpses in the state of Paraná, Brazil, but despite the forensic importance of this species, morphological data for the identification of its larval instars are lacking, limiting its usefulness in such cases. Thus, the main goal of this study was to describe the larval instars of P. pseudolyrcea. The material was obtained from a colony established by larvae collected from a corpse of a murder case. Overall, the distribution of spines is a key character for identifying this species in the first, second and third instars. Other characteristics, such as the presence of an accessory oral sclerite, the small cirri, the number of lobes of the anterior spiracle and the morphology of posterior spiracles, separates P. pseudolyrcea from other necrophagous blow flies. The detailed morphological description provided here facilitates the identification of larval instars of P. pseudolyrcea and their differentiation from those of other calliphorid species.

  17. Evidence for carry-over effects of predator exposure on pathogen transmission potential

    PubMed Central

    Roux, Olivier; Vantaux, Amélie; Roche, Benjamin; Yameogo, Koudraogo B.; Dabiré, Kounbobr R.; Diabaté, Abdoulaye; Simard, Frederic; Lefèvre, Thierry

    2015-01-01

    Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology. PMID:26674956

  18. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    PubMed

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  19. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    PubMed Central

    Bohnenstiehl, DelWayne; Peters, Jason W.; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species. PMID:27761342

  20. Belowground Ecology of Scarabs Feeding on Grass Roots: Current Knowledge and Future Directions for Management in Australasia

    PubMed Central

    Frew, Adam; Barnett, Kirk; Nielsen, Uffe N.; Riegler, Markus; Johnson, Scott N.

    2016-01-01

    Many scarab beetles spend the majority of their lives belowground as larvae, feeding on grass roots. Many of these larvae are significant pests, causing damage to crops and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida albohirtum), for example, can cause financial losses of up to AU$40 million annually to the Australian sugarcane industry. We review the ecology of some scarab larvae in Australasia, focusing on three subfamilies; Dynastinae, Rutelinae, and Melolonthinae, containing key pest species. Although considerable research on the control of some scarab pests has been carried out in Australasia, for some species, the basic biology and ecology remains largely unexplored. We synthesize what is known about these scarab larvae and outline key knowledge gaps to highlight future research directions with a view to improve pest management. We do this by presenting an overview of the scarab larval host plants and feeding behavior; the impacts of abiotic (temperature, moisture, and fertilization) and biotic (pathogens, natural enemies, and microbial symbionts) factors on scarab larvae and conclude with how abiotic and biotic factors can be applied in agriculture for improved pest management, suggesting future research directions. Several host plant microbial symbionts, such as arbuscular mycorrhizal fungi and endophytes, can improve plant tolerance to scarabs and reduce larval performance, which have shown promise for use in pest management. In addition to this, several microbial scarab pathogens have been isolated for commercial use in pest management with particularly promising results. The entomopathogenic fungus Metarhizium anisopliae caused a 50% reduction in cane beetle larvae while natural enemies such as entomopathogenic nematodes have also shown potential as a biocontrol. Key abiotic factors, such as soil water, play an important role in affecting both scarab larvae and these control agents and should therefore feature in future multi-factorial experiments. Continued research should focus on filling knowledge gaps including host plant preferences, attractive trap crops, and naturally occurring pathogens that are locally adapted, to achieve high efficacy in the field. PMID:27047506

  1. Cuticular colour reflects underlying architecture and is affected by a limiting resource.

    PubMed

    Evison, Sophie E F; Gallagher, Joe D; Thompson, John J W; Siva-Jothy, Michael T; Armitage, Sophie A O

    2017-04-01

    Central to the basis of ecological immunology are the ideas of costs and trade-offs between immunity and life history traits. As a physical barrier, the insect cuticle provides a key resistance trait, and Tenebrio molitor shows phenotypic variation in cuticular colour that correlates with resistance to the entomopathogenic fungus Metarhizium anisopliae. Here we first examined whether there is a relationship between cuticular colour variation and two aspects of cuticular architecture that we hypothesised may influence resistance to fungal invasion through the cuticle: its thickness and its porosity. Second, we tested the hypothesis that tyrosine, a semi-essential amino acid required for immune defence and cuticular melanisation and sclerotisation, can act as a limiting resource by supplementing the larval diet and subsequently examining adult cuticular colouration and thickness. We found that stock beetles and beetles artificially selected for extremes of cuticular colour had thicker less porous cuticles when they were darker, and thinner more porous cuticles when they were lighter, showing that colour co-varies with two architectural cuticular features. Experimental supplementation of the larval diet with tyrosine led to the development of darker adult cuticle and affected thickness in a sex-specific manner. However, it did not affect two immune traits. The results of this study provide a mechanism for maintenance of cuticular colour variation in this species of beetle; darker cuticles are thicker, but their production is potentially limited by resource constraints and differential investments in resistance mechanisms between the sexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Neuromuscular development of Aeolidiella stephanieae Valdéz, 2005 (Mollusca, Gastropoda, Nudibranchia)

    PubMed Central

    2010-01-01

    Background Studies on the development of the nervous system and the musculature of invertebrates have become more sophisticated and numerous within the last decade and have proven to provide new insights into the evolutionary history of organisms. In order to provide new morphogenetic data on opisthobranch gastropods we investigated the neuromuscular development in the nudibranch Aeolidiella stephanieae Valdéz, 2005 using immunocytochemistry as well as F-actin labelling in conjunction with confocal laser scanning microscopy (cLSM). Results The ontogenetic development of Aeolidiella stephanieae can be subdivided into 8 stages, each recognisable by characteristic morphological and behavioural features as well as specific characters of the nervous system and the muscular system, respectively. The larval nervous system of A. stephanieae includes an apical organ, developing central ganglia, and peripheral neurons associated with the velum, foot and posterior, visceral part of the larva. The first serotonergic and FMRFamidergic neural structures appear in the apical organ that exhibits an array of three sensory, flask-shaped and two non-sensory, round neurons, which altogether disappear prior to metamorphosis. The postmetamorphic central nervous system (CNS) becomes concentrated, and the rhinophoral ganglia develop together with the anlage of the future rhinophores whereas oral tentacle ganglia are not found. The myogenesis in A. stephanieae begins with the larval retractor muscle followed by the accessory larval retractor muscle, the velar or prototroch muscles and the pedal retractors that all together degenerate during metamorphosis, and the adult muscle complex forms de novo. Conclusions Aeolidiella stephanieae comprises features of the larval and postmetamorphic nervous as well as muscular system that represent the ground plan of the Mollusca or even the Trochozoa (e. g. presence of the prototrochal or velar muscle ring). On the one hand, A. stephanieae shows some features shared by all nudibranchs like the postmetamorphic condensation of the CNS, the possession of rhinophoral ganglia and the lack of oral tentacle ganglia as well as the de novo formation of the adult muscle complex. On the other hand, the structure and arrangement of the serotonergic apical organ is similar to other caenogastropod and opisthobranch gastropods supporting their sister group relationship. PMID:20205753

  3. Can metamorphosis survival during larval development in spiny lobster Sagmariasus verreauxi be improved through quantitative genetic inheritance?

    PubMed

    Nguyen, Nguyen H; Fitzgibbon, Quinn P; Quinn, Jane; Smith, Greg; Battaglene, Stephen; Knibb, Wayne

    2018-05-04

    One of the major impediments to spiny lobster aquaculture is the high cost of hatchery production due to the long and complex larval cycle and poor survival during the many moult stages, especially at metamorphosis. We examined if the key trait of larval survival can be improved through selection by determining if genetic variance exists for this trait. Specifically, we report, for the first time, genetic parameters (heritability and correlations) for early survival rates recorded at five larval phases; early-phyllosoma stages (instars 1-6; S1), mid-phyllosoma stages (instars; 7-12; S2), late-phyllosoma stages (instars 13-17; S3), metamorphosis (S4) and puerulus stage (S5) in hatchery-reared spiny lobster Sagmariasus verreauxi. The data were collected from a total of 235,060 larvae produced from 18 sires and 30 dams over nine years (2006 to 2014). Parentage of the offspring and full-sib families was verified using ten microsatellite markers. Analysis of variance components showed that the estimates of heritability for all the five phases of larval survival obtained from linear mixed model were generally similar to those obtained from threshold logistic generalised models (0.03-0.47 vs. 0.01-0.50). The heritability estimates for survival traits recorded in the early larval phases (S1 and S2) were higher than those estimated in later phases (S3, S4 and S5). The existence of the additive genetic component in larval survival traits indicate that they could be improved through selection. Both phenotypic and genetic correlations among the five survival measures studied were moderate to high and positive. The genetic associations between successive rearing periods were stronger than those that are further apart. Our estimates of heritability and genetic correlations reported here in a spiny lobster species indicate that improvement in the early survival especially during metamorphosis can be achieved through genetic selection in this highly economic value species.

  4. Development, organization, and remodeling of phoronid muscles from embryo to metamorphosis (Lophotrochozoa: Phoronida).

    PubMed

    Temereva, Elena N; Tsitrin, Eugeni B

    2013-04-24

    The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids exhibits the combination of protostome-like and deuterostome-like features. This combination, which has also been found in the organization of some other systems in phoronids, can be regarded as an important characteristic and one that probably reflects the basal position of phoronids within the Lophotrochozoa.

  5. Development, organization, and remodeling of phoronid muscles from embryo to metamorphosis (Lophotrochozoa: Phoronida)

    PubMed Central

    2013-01-01

    Background The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. Results In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Conclusion Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids exhibits the combination of protostome-like and deuterostome-like features. This combination, which has also been found in the organization of some other systems in phoronids, can be regarded as an important characteristic and one that probably reflects the basal position of phoronids within the Lophotrochozoa. PMID:23617418

  6. Classification of immature mosquito species according to characteristics of the larval habitat in the subtropical province of Chaco, Argentina.

    PubMed

    Stein, Marina; Ludueña-Almeida, Francisco; Willener, Juana Alicia; Almirón, Walter Ricardo

    2011-06-01

    To classify mosquito species based on common features of their habitats, samples were obtained fortnightly between June 2001-October 2003 in the subtropical province of Chaco, Argentina. Data on the type of larval habitat, nature of the habitat (artificial or natural), size, depth, location related to sunlight, distance to the neighbouring houses, type of substrate, organic material, vegetation and algae type and their presence were collected. Data on the permanence, temperature, pH, turbidity, colour, odour and movement of the larval habitat's water were also collected. From the cluster analysis, three groups of species associated by their degree of habitat similarity were obtained and are listed below. Group 1 consisted of Aedes aegypti. Group 2 consisted of Culex imitator, Culex davisi, Wyeomyia muehlensi and Toxorhynchites haemorrhoidalis separatus. Within group 3, two subgroups are distinguished: A (Psorophora ferox, Psorophora cyanescens, Psorophora varinervis, Psorophora confinnis, Psorophora cingulata, Ochlerotatus hastatus-oligopistus, Ochlerotatus serratus, Ochlerotatus scapularis, Culex intrincatus, Culex quinquefasciatus, Culex pilosus, Ochlerotatus albifasciatus, Culex bidens) and B (Culex maxi, Culex eduardoi, Culex chidesteri, Uranotaenia lowii, Uranotaenia pulcherrima, Anopheles neomaculipalpus, Anopheles triannulatus, Anopheles albitarsis, Uranotaenia apicalis, Mansonia humeralis and Aedeomyia squamipennis). Principal component analysis indicates that the size of the larval habitats and the presence of aquatic vegetation are the main characteristics that explain the variation among different species. In contrast, water permanence is second in importance. Water temperature, pH and the type of larval habitat are less important in explaining the clustering of species.

  7. A Biophysical Model for Hawaiian Coral Reefs: Coupling Local Ecology, Larval Transport and Climate Change

    NASA Astrophysics Data System (ADS)

    Kapur, M. R.

    2016-02-01

    Simulative models of reef ecosystems have been used to evaluate ecological responses to a myriad of disturbance events, including fishing pressure, coral bleaching, invasion by alien species, and nutrient loading. The Coral Reef Scenario Evaluation Tool (CORSET), has been developed and instantiated for both the Meso-American Reef (MAR) and South China Sea (SCS) regions. This model is novel in that it accounts for the many scales at which reef ecosystem processes take place; is comprised of a "bottom-up" structure wherein complex behaviors are not pre-programmed, but emergent and highly portable to new systems. Local-scale dynamics are coupled across regions through larval connectivity matrices, derived sophisticated particle transport simulations that include key elements of larval behavior. By this approach, we are able to directly evaluate some of the potential consequences of larval connectivity patterns across a range of spatial scales and under multiple climate scenarios. This work develops and applies the CORSET (Coral Reef Scenario Evaluation Tool) to the Main Hawaiian Islands under a suite of climate and ecological scenarios. We introduce an adaptation constant into reef-building coral dynamics to simulate observed resiliencies to bleaching events. This presentation will share results from the model's instantiation under two Resource Concentration Pathway climate scenarios, with emphasis upon larval connectivity dynamics, emergent coral tolerance to increasing thermal anomalies, and patterns of spatial fishing closures. Results suggest that under a business-as-usual scenario, thermal tolerance and herbivore removal will have synergistic effects on reef resilience.

  8. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans.

    PubMed

    Wharam, Barney; Weldon, Laura; Viney, Mark

    2017-08-22

    Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.

  9. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa)

    PubMed Central

    2016-01-01

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. PMID:26598729

  10. Taxonomic review of the chironomid genus Cricotopus v.d. Wulp (Diptera: Chironomidae) from Australia: keys to males, females, pupae and larvae, description of ten new species and comments on Paratrichocladius Santos Abreu.

    PubMed

    Drayson, Nick; Cranston, Peter S; Krosch, Matt N

    2015-02-16

    The Australian species of the Orthocladiinae genus Cricotopus Wulp (Diptera: Chironomidae) are revised for larval, pupal, adult male and female life stages. Eleven species, ten of which are new, are recognised and keyed, namely Cricotopus acornis Drayson & Cranston sp. nov., Cricotopus albitarsis Hergstrom sp. nov., Cricotopus annuliventris (Skuse), Cricotopus brevicornis Drayson & Cranston sp. nov., Cricotopus conicornis Drayson & Cranston sp. nov., Cricotopus hillmani Drayson & Cranston, sp. nov., Cricotopus howensis Cranston sp. nov., Cricotopus parbicinctus Hergstrom sp. nov., Cricotopus tasmania Drayson & Cranston sp. nov., Cricotopus varicornis Drayson & Cranston sp. nov. and Cricotopus wangi Cranston & Krosch sp. nov. Using data from this study, we consider the wider utility of morphological and molecular diagnostic tools in untangling species diversity in the Chironomidae. Morphological support for distinguishing Cricotopus from Paratrichocladius Santo-Abreu in larval and pupal stages appears lacking for Australian taxa and brief notes are provided concerning this matter.

  11. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    PubMed

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  12. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    PubMed

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  13. Temporal and cross-shelf distribution of ichthyoplankton in the central Cantabrian Sea

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. M.

    2008-09-01

    Environmental variables have been measured and sampling for ichthyoplankton has been conducted monthly, since April 2001, at three stations, located at the inner (1), middle (2) and outer (3) shelf of the central Cantabrian Sea. This paper presents the results of the study of the ichthyoplankton collected from July 2001 to June 2004. Fish larvae from 99 species, belonging to 37 families, were identified. Families with higher number of species were Gadidae, Sparidae and Labridae. The larval fish assemblage was dominated by pelagic fish species, with Sardina pilchardus, as the most abundant. There was a pronounced spring peak in larval abundance, dominated by S. pilchardus. A smaller peak, dominated by S. pilchardus and Micromesistius poutassou, was recorded in late winter at Stns 2 and 3. This pattern was evident for the three-year study. Results also indicate that this study was limited to the coastal larval fish assemblage inhabiting the central Cantabrian Sea shelf. This assemblage was temporally structured into other three assemblages: winter, late winter-spring and summer-autumn. Temperature was apparently a key factor in larval fish assemblage succession. In a scenario of global warming, this study constitutes a basis to evaluating the ongoing changes in the pelagic coastal ecosystem of the central Cantabrian Sea.

  14. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer

    USGS Publications Warehouse

    Wesner, Jeff S.; Kraus, Johanna M.; Schmidt, Travis S.; Walters, David M.; Clements, William H.

    2014-01-01

    The response of larval aquatic insects to stressors such as metals is used to assess the ecological condition of streams worldwide. However, nearly all larval insects metamorphose from aquatic larvae to winged adults, and recent surveys indicate that adults may be a more sensitive indicator of stream metal toxicity than larvae. One hypothesis to explain this pattern is that insects exposed to elevated metal in their larval stages have a reduced ability to successfully complete metamorphosis. To test this hypothesis we exposed late-instar larvae of the mayfly, Centroptilum triangulifer, to an aqueous Zn gradient (32–476 μg/L) in the laboratory. After 6 days of exposure, when metamorphosis began, larval survival was unaffected by zinc. However, Zn reduced wingpad development at concentrations above 139 μg/L. In contrast, emergence of subimagos and imagos tended to decline with any increase in Zn. At Zn concentrations below 105 μg/L (hardness-adjusted aquatic life criterion), survival between the wingpad and subimago stages declined 5-fold across the Zn gradient. These results support the hypothesis that metamorphosis may be a survival bottleneck, particularly in contaminated streams. Thus, death during metamorphosis may be a key mechanism explaining how stream metal contamination can impact terrestrial communities by reducing aquatic insect emergence.

  15. Endohelminth parasites of the leafscale gulper shark, Centrophorus squamosus (Bonnaterre, 1788) (Squaliformes:Centrophoridae) off Madeira Archipelago.

    PubMed

    Costa, Graça; Chada, Tomás; Melo-Moreira, Egberto; Cavallero, Serena; D'Amelio, Stefano

    2014-06-01

    The endohelminth parasite fauna of a deep water shark, the leafscale gulper shark, Centrophorus squamosus, examined from Madeiran waters, from September 2009 to January 2010, consisted of larval and juvenile cestodes of two orders, namely Trypanorhyncha and Tetraphyllidea, and L3 stages of Anisakis spp. Infection with Anisakis spp. could be due to the shark's opportunistic feeding on squids and black-scabbard fish, Aphanopus carbo, which is heavily parasitized by Anisakis spp. in Madeira waters. The occurrence of larval and juvenile cestodes only, in this shark, suggests that the leafscale gulper shark features as a paratenic or a dead-end host for the parasites.

  16. How biophysical interactions associated with sub- and mesoscale structures and migration behavior affect planktonic larvae of the spiny lobster in the Juan Fernández Ridge: A modeling approach

    NASA Astrophysics Data System (ADS)

    Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos

    2018-03-01

    The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching deformation, and slight convergence. Stretching deformation flow appeared to be triggered by the eddy-eddy interactions and the Robinson Island barrier effect, and it likely promotes the aggregation of the spiny lobster larvae in the Juan Fernández system. These results highlighted the importance of the coupled effect of physical (mesoscale and submesoscale oceanographic features) and biological processes (DVM) in the generation of larval patchiness and concentration of spiny lobster larvae around the JFR, which could be key for their survival and retention in those waters.

  17. Acoustic control of mosquito larvae in artificial drinking water containers

    USDA-ARS?s Scientific Manuscript database

    Acoustic larvicide devices are part of an emerging technology that provides a non-chemical and non-biological means to reduce larval populations of key medically important mosquito species such as Aedes aegypti in containers or catchments of water. These devices could benefit integrated vector manag...

  18. Larval Diet Affects Male Pheromone Blend in a Laboratory Strain of the Medfly, Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Merli, Daniele; Mannucci, Barbara; Bassetti, Federico; Corana, Federica; Falchetto, Marco; Malacrida, Anna R; Gasperi, Giuliano; Scolari, Francesca

    2018-04-01

    The Mediterranean fruit fly (medfly) Ceratitis capitata is a polyphagous pest of fruits and crops with a worldwide distribution. Its ability to use different larval hosts may have multiple effects, including impacts on adult reproductive biology. The male sex pheromone, which plays a key role in attracting both other males to lekking arenas and females for mating, is a mixture of chemical compounds including esters, acids, alkanes and terpenes known to differ between laboratory strains and wild-type populations. The relationship between larval diet and adult pheromone composition remains unexplored. Here, we investigated the effect of larval diet, including laboratory media and fresh fruits, on the composition of the male pheromone mixture. Using Headspace Solid Phase Microextraction we collected the pheromone emitted by males reared as larvae on different substrates and found both qualitative and quantitative differences. A number of alkanes appeared to be typical of the pheromone of males reared on wheat bran-based larval medium, and these may be cuticular hydrocarbons involved in chemical communication. We also detected differences in pheromone composition related to adult male age, suggesting that variations in hormonal levels and/or adult diet could also play a role in determining the chemical profile emitted. Our findings highlight the plasticity of dietary responses of C. capitata, which may be important in determining the interactions of this pest with the environment and with conspecifics. These results also have applied relevance to increase the mating competitiveness of mass-reared C. capitata used in Sterile Insect Technique programs.

  19. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori.

    PubMed

    Zhang, Zhongjie; Liu, Xiaojing; Shiotsuki, Takahiro; Wang, Zhisheng; Xu, Xia; Huang, Yongping; Li, Muwang; Li, Kai; Tan, Anjiang

    2017-02-01

    Two major hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulate insect growth and development according to their precisely coordinated titres, which are controlled by both biosynthesis and degradation pathways. Juvenile hormone esterase (JHE) is the primary JH-specific degradation enzyme that plays a key role in regulating JH titers, along with JH epoxide hydrolase (JHEH) and JH diol kinase (JHDK). In the current study, a loss-of-function analysis of JHE in the silkworm, Bombyx mori, was performed by targeted gene disruption using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system. Depletion of B. mori JHE (BmJHE) resulted in the extension of larval stages, especially the penultimate and ultimate larval stages, without deleterious effects to silkworm physiology. The expression of JHEH and JHDK was upregulated in mutant animals, indicating the existence of complementary routes in the JH metabolism pathway in which inactivation of one enzyme will activate other enzymes. RNA-Seq analysis of mutant animals revealed that genes involved in protein processing in the endoplasmic reticulum and in amino acid metabolism were affected by BmJHE depletion. Depletion of JHE and subsequent delayed JH metabolism activated genes in the TOR pathway, which are ultimately responsible for extending larval growth. The transgenic Cas9 system used in the current study provides a promising approach for analysing the actions of JH, especially in nondrosophilid insects. Furthermore, prolonging larval stages produced larger larvae and cocoons, which is greatly beneficial to silk production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Variability in reef connectivity in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM) suggest that these major barriers to larval dispersal persist into the future under 8.5 W/m2 of climate forcing, despite some regional changes in connectivity between reefs.

  1. Hypothesis testing with computational modeling: linking aromatase inhibition with plasma vitellogenin dynamics in fathead minnows

    EPA Science Inventory

    Fadrozole inhibits aromatase (CYP19A), a key enzyme that converts testosterone to estradiol (E2). In fish, E2 concentrations control hepatic synthesis ofthe glycolipoprotein vitellogenin (VTG), an egg yolk precursor protein essential to oocyte development and larval survival. Whe...

  2. Different key roles of mesoscale oceanographic structures and ocean bathymetry in shaping larval fish distribution pattern: A case study in Sicilian waters in summer 2009

    NASA Astrophysics Data System (ADS)

    Cuttitta, Angela; Quinci, Enza Maria; Patti, Bernardo; Bonomo, Sergio; Bonanno, Angelo; Musco, Marianna; Torri, Marco; Placenti, Francesco; Basilone, Gualtiero; Genovese, Simona; Armeri, Grazia Maria; Spanò, Antonina; Arculeo, Marco; Mazzola, Antonio; Mazzola, Salvatore

    2016-09-01

    Fish larvae data collected in year 2009 were used to examine the effects of particular environmental conditions on the structure of larval assemblages in two oligotrophic Mediterranean areas (the Southern Tyrrhenian Sea and the Strait of Sicily). For this purpose, relationships with environmental variables (temperature, salinity and fluorescence), zooplankton biomass, water circulation and bathymetry are discussed. Hydrodynamic conditions resulted very differently between two study areas. The Southern Tyrrhenian Sea was characterized by moderate shallow circulation compared to the Strait of Sicily. In this framework, distribution pattern of larval density in the Tyrrhenian Sea was mainly driven by bathymetry, due to spawning behavior of adult fish. There, results defined four assemblages: two coastal assemblages dominated by pelagic and demersal families and two oceanic assemblages dominated by mesopelagic species more abundant in western offshore and less abundant in eastern offshore. The assemblage variations in the western side was related to the presence of an anti-cyclonic gyre in the northern side of the Gulf of Palermo, while in the eastern side the effect of circulation was not very strong and the environmental conditions rather than the dispersal of species determined the larval fish communities structure. Otherwise in the Strait of Sicily the currents were the main factor governing the concentration and the assemblage structure. In fact, the distribution of larvae was largely consistent with the branch of the Atlantic Ionian Stream (AIS). Moreover, very complex oceanographic structures (two cyclonic circulations in the western part of the study area and one anti-cyclonic circulation in the eastern part) caused the formation of uncommon spatial distribution of larval fish assemblages, only partially linked to bathymetry of the study area. Typically coastal larvae (pelagic families: Engraulidae and Clupeidae) were mostly concentrated in the offshore areas and off Capo Passero, where the presence of a thermo-haline front maintained their position in an area with favourable conditions for larval fish feeding and growth.

  3. Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean

    PubMed Central

    Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melià, Paco; Gatto, Marino; Masina, Simona

    2017-01-01

    Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991–2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change. PMID:28809937

  4. Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean.

    PubMed

    Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melià, Paco; Gatto, Marino; Masina, Simona; Casagrandi, Renato

    2017-01-01

    Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991-2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change.

  5. Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits

    PubMed Central

    2010-01-01

    Background Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context. Results After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia. Conclusions Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct ciliary band muscle and flask-shaped epidermal serotonergic cells of the apical organ. Based on current phylogenies, the distribution of ciliary bands and apical organs between polyclads and other spiralians is not congruent with a hypothesis of homology. However, some similarities exist, and this study sets an anatomical framework from which to investigate cellular and molecular mechanisms that will help to distinguish between parallelism, convergence and homology of these features. PMID:20426837

  6. Juvenile Hormone Analogues, Methoprene and Fenoxycarb Dose-Dependently Enhance Certain Enzyme Activities in the Silkworm Bombyx Mori (L)

    PubMed Central

    Mamatha, Devi M.; Kanji, Vijaya K.; Cohly, Hari H.P.; Rao, M. Rajeswara

    2008-01-01

    Use of Juvenile Hormone Analogues (JHA) in sericulture practices has been shown to boost good cocoon yield; their effect has been determined to be dose-dependent. We studied the impact of low doses of JHA compounds such as methoprene and fenoxycarb on selected key enzymatic activities of the silkworm Bombyx mori. Methoprene and fenoxycarb at doses of 1.0 μg and 3.0fg/larvae/48 hours showed enhancement of the 5th instar B. mori larval muscle and silkgland protease, aspartate aminotransaminase (AAT) and alanine aminotransaminase (ALAT), adenosine triphosphate synthase (ATPase) and cytochrome-c-oxidase (CCO) activity levels, indicating an upsurge in the overall oxidative metabolism of the B.mori larval tissues. PMID:18678927

  7. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes.

    PubMed

    Soghigian, John; Andreadis, Theodore G; Livdahl, Todd P

    2017-12-19

    Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes. We show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data. Our results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

  8. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Alemany, F.; Quintanilla, L.; Velez-Belchí, P.; García, A.; Cortés, D.; Rodríguez, J. M.; Fernández de Puelles, M. L.; González-Pola, C.; López-Jurado, J. L.

    2010-07-01

    Within the framework of the TUNIBAL project that focused on Atlantic bluefin tuna ( Thunnus thynnus) larval ecology, ichthyoplankton surveys were conducted from 2001 to 2005 off the Balearic archipelago, which is recognized as one of the main spawning areas of the eastern Atlantic stock of this species. In each survey, a regular sampling grid of about 200 stations, 10 nautical miles apart were sampled. CTD casts and oblique Bongo 60 and surface Bongo 90 plankton tows were carried out. The occurrence frequencies of Atlantic bluefin tuna, albacore tuna ( Thunnus alalunga) and bullet tuna ( Auxis rochei) larvae in quantitative Bongo 60 samples were 0.14, 0.29 and 0.49 respectively. Mean larval abundances in these positive samples were relatively high: 31 larvae 10 m -2 for Atlantic bluefin tuna, 17 for albacore tuna and 31 for bullet tuna. All species had patchy distributions since more than 90% of the stations showed larval densities under 10 larvae 100 m -3 (70% showed even less than 2 larvae 100 m -3), whereas in some isolated spots, we recorded abundances as high as 867 (Atlantic bluefin) or 872 (bullet tuna) larvae 10 m -2. These results allowed us to relate larval distribution to mesoscale hydrographic features and to characterize the spawning habitat of these species. Single Quotient Parameter analyses were applied to spatial (depth), physical (temperature, salinity, dissolved oxygen and geostrophic current velocities) and biological (mesozooplankton biomass) variables to determine the environmental preferences of each species for spawning. Results showed that the complex hydrodynamic scenarios around the Balearic Islands, due to the interaction between the inflowing surface Atlantic water masses (AW) and Mediterranean surface waters (MW), play a key role in determining the abundance and distribution of tuna larvae in this area, especially in the case of Atlantic bluefin tuna. Spawning of this species seems to take place mainly in offshore mixed waters, as suggested by their preferences for waters with salinities between 36.9 and 37.7, located near frontal areas in the confluence of AW and MW. Atlantic bluefin tuna start to spawn once sea surface temperatures (SST) are over 20.5 °C, and preferentially in the range of 21.5-26.5 °C. Its larval distribution suggests that spawners reach the Balearic Sea in association with the inflowing AW. However, bullet tuna and albacore tuna larvae, species whose Mediterranean stocks stay in this sea year round, had a more widespread distribution and were found both in MW and AW. Bullet tuna starts to spawn in shallower waters near the shelf break once the SST reaches 19 °C, and shows significant preferences for waters over 23.5 °C. Similar to Atlantic bluefin tuna, albacore tuna spawn in offshore waters, but its spawning peak is later than its congeneric species, since it has a significant preference for even warmer waters, over 27 °C.

  9. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa).

    PubMed

    Martín-Durán, José M; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas

    2016-01-05

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. © 2015 The Authors.

  10. Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development.

    PubMed

    Heyland, Andreas; Hodin, Jason

    2004-03-01

    Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.

  11. Identification of Ruffe larvae (Gymnocephalus cernuus) in the St. Louis River, Lake Superior: Clarification and guidance regarding morphological descriptions

    EPA Science Inventory

    Non-native Ruffe (Gymnocephalus cernua; family Percidae) were first detected in the Laurentian Great Lakes in 1986, and are not included in the Great Lakes larval fish key which was published several years prior to their discovery. In addition, subsequent scientific literature h...

  12. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification.

    PubMed

    Martin, Sophie; Richier, Sophie; Pedrotti, Maria-Luiza; Dupont, Sam; Castejon, Charlotte; Gerakis, Yannis; Kerros, Marie-Emmanuelle; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Gattuso, Jean-Pierre

    2011-04-15

    Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated P(CO(2))) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pH(T) 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pH(T) 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.

  13. Linking ocean acidification and warming to the larval development of the American lobster (Homarus americanus)

    NASA Astrophysics Data System (ADS)

    Waller, J. D.; Fields, D.; Wahle, R.; Mcveigh, H.; Greenwood, S.

    2016-02-01

    The American lobster upholds the most culturally and economically iconic fishery in New England. Over the past three decades lobster landings have risen steadily in northern New England as lobster populations have shifted northward, leaving policy makers and coastal communities wondering what the future of this fishery may hold. The underlying causes of this population shift are likely due to a suite of environmental stressors including increasing temperature and ocean acidification. In this study we investigated the interactive effects of IPCC predicted temperature and pH on key aspects of larval lobster development (size, survival, development time, respiration rate, swimming speed, prey consumption and gene expression). Our experiments showed that larvae raised in the high temperature treatments (19 °C) experienced significantly higher mortality than larvae in our control treatments (16 °C) with 50% mortality occurring in the high temperature treatment one week after hatching. The larvae in these high temperature treatments developed twice as fast and experienced respiration rates that were three times higher in the third and fourth larval stages. While temperature had a distinct effect, pH treatment had few significant effects on any of our measured parameters. These data suggest that projected end-century warming will have greater adverse effects than acidification on early larval survival, despite the hurrying effect of higher temperatures on lobster larval development and increase in physiological activity. There were no significant treatment effects on carapace length, dry weight, or carbon and nitrogen content. Analysis of swimming speed and gene expression (through RNA sequencing) are in progress. Understanding how the most vulnerable life stages of the lobster life cycle responds to climate change is essential in connecting the northward geographic shifts projected by habitat quality models, and the underlying physiological and genetic mechanisms that drive their ecology.

  14. Infestation of grain fields and degree-day phenology of the cereal leaf beetle (Coleoptera: Chrysomelidae) in Utah: long-term patterns.

    PubMed

    Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan

    2014-02-01

    Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments.

  15. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles.

    PubMed

    Bataillé, Laetitia; Frendo, Jean-Louis; Vincent, Alain

    2015-11-01

    The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ultrasonographic features of peritoneal cestodiasis caused by Mesocestoides sp. in a dog and in a cat.

    PubMed

    Venco, Luigi; Kramer, Laura; Pagliaro, Luigi; Genchi, Claudio

    2005-01-01

    Peritoneal infections caused by Mesocestoides spp. are rare in dogs and cats. Little data exist on the role of abdominal ultrasonography for diagnosis and therapy management of the disease. We describe the ultrasonographic features of peritoneal cestodiasis in a dog and in a cat. In the dog, abdominal ultrasound allowed both a presumptive diagnosis and the collection of tissue samples to confirm peritoneal larval infection. Ultrasound was also very useful for therapy management. In the second patient the ultrasonographic features of tetrathyridial infection in a cat in which the parasite was observed as an incidental finding during ovariohysterectomy are described.

  17. Morphology of the infective larval stage of the equid parasite Habronema muscae (Spirurida: Habronematidae), from houseflies (Musca domestica).

    PubMed

    Buzzell, Gerald R; Tariq, Saeed; Traversa, Donato; Schuster, Rolf

    2011-03-01

    The infective larva of the spirurid nematode Habronema muscae, a parasite of houseflies, was measured and specimens fixed in Karnovsky's fluid were examined by scanning electron microscopy. The oral opening contains six teeth and is surrounded by large bilobed dorsal and ventral lips and smaller lateral lips. A pair of amphids lie behind the lateral lips. There are two rows of four cephalic papillae. The body is deeply ridged, both transversely and longitudinally. The caudal end of the worm is studded by small papillae. The position of the anal opening is somewhat ambiguous. These larval morphological features are discussed, as well as the changes which must have occurred in the metamorphosis of the infective larva to the adult in the stomach of horses.

  18. Host Specificity of Epiplema albida: A Potential Biological Control Agent for Sri Lankan Privet in the Mascarene Islands

    PubMed Central

    Shaw, Richard H.

    2017-01-01

    Epiplema albida (Hampson) (Lepidoptera: Uraniidae, Epipleminae) from Sri Lanka, was studied to assess its safety for use as a biological control agent for Sri Lankan privet, Ligustrum robustum subsp. walkeri (Oleaceae) in La Réunion and other Mascarene Islands. Larval no-choice feeding tests using newly hatched larvae, larval development tests, and multiple choice oviposition tests were used. Adult females of E. albida are shown to have highly selective oviposition behaviour and the species is physiologically restricted to very few hosts for feeding and development. The risk to key test plants in La Réunion is minimal, so this species can be considered for use as a biological control agent there, but would need further evaluation for potential use elsewhere. PMID:28788086

  19. Efficacy of riparian buffers in mitigating local populations declines and the effects of even-aged timber harvest on larval salamanders

    Treesearch

    William E Peterman; Raymond D. Semlitch

    2009-01-01

    Headwater streams are an important and prevalent feature of the eastern North American landscape.These streams provide a wealth of ecosystem services and support tremendous biological diversity, which is predominated by salamanders in the Appalachian region. Salamanders are ubiquitous throughout the region, contributing a significant...

  20. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    ERIC Educational Resources Information Center

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  1. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change.

    PubMed

    Paaijmans, Krijn P; Imbahale, Susan S; Thomas, Matthew B; Takken, Willem

    2010-07-09

    The relationship between mosquito development and temperature is one of the keys to understanding the current and future dynamics and distribution of vector-borne diseases such as malaria. Many process-based models use mean air temperature to estimate larval development times, and hence adult vector densities and/or malaria risk. Water temperatures in three different-sized water pools, as well as the adjacent air temperature in lowland and highland sites in western Kenya were monitored. Both air and water temperatures were fed into a widely-applied temperature-dependent development model for Anopheles gambiae immatures, and subsequently their impact on predicted vector abundance was assessed. Mean water temperature in typical mosquito breeding sites was 4-6 degrees C higher than the mean temperature of the adjacent air, resulting in larval development rates, and hence population growth rates, that are much higher than predicted based on air temperature. On the other hand, due to the non-linearities in the relationship between temperature and larval development rate, together with a marginal buffering in the increase in water temperature compared with air temperature, the relative increases in larval development rates predicted due to climate change are substantially less. Existing models will tend to underestimate mosquito population growth under current conditions, and may overestimate relative increases in population growth under future climate change. These results highlight the need for better integration of biological and environmental information at the scale relevant to mosquito biology.

  2. Molecular characterization and expression analysis of heat shock protein 70 and 90 from Hermetia illucens reared in a food waste bioconversion pilot plant.

    PubMed

    Giannetto, Alessia; Oliva, Sabrina; Mazza, Lorenzo; Mondello, Giovanni; Savastano, Domenico; Mauceri, Angela; Fasulo, Salvatore

    2017-09-05

    Two full-length cDNAs of heat shock protein (HSP) genes (Hihsp70 and Hihsp90) were cloned from the black soldier fly (BSF) Hermetia illucens larvae reared in a food waste bioconversion pilot plant. The Hihsp70 and Hihsp90 transcripts were 2243 and 2507bp long, contained 1923 and 2166bp open reading frames encoding proteins of 640 and 721 amino acids with a molecular mass of 69.8 and 83kDa, respectively. Comparative analysis of protein sequences revealed the presence of the conserved HSP motifs in both proteins, showing high homology to their counterparts in other insect species from six different orders. Hihsp70 and Hihsp90 transcriptional expression profiles during two key developmental stages in the bioconversion process were evaluated by quantitative real time PCR showing that both genes were modulated during larval development. HiHsp70 mRNA expression levels during the II instar larvae was higher in respect to the V instar larvae. A similar difference in mRNA expression levels, but in a less extent, was found for the Hihsp90. Moreover, a diverse transcript level between the two genes at the V larval stage was observed where Hihsp90 was up-regulated compared to Hihsp70. These results suggested the involvement of Hsp70 and Hsp90 in H. illucens development and provide further evidences on the ecological and evolutionary importance of HSPs in the insect developmental processes together with valuable information on molecular features of adaptability to peculiar rearing conditions during food waste bioconversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adult-specific insulin-producing neurons in Drosophila melanogaster.

    PubMed

    Ohhara, Yuya; Kobayashi, Satoru; Yamakawa-Kobayashi, Kimiko; Yamanaka, Naoki

    2018-06-01

    Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution. © 2018 Wiley Periodicals, Inc.

  4. Drosophila haematopoiesis.

    PubMed

    Crozatier, Michèle; Meister, Marie

    2007-05-01

    Like in vertebrates, Drosophila haematopoiesis occurs in two waves. It gives rise to three types of haemocytes: plasmatocytes (phagocytosis), crystal cells (melanization) and lamellocytes (encapsulation of parasites). A first population of haemocytes, specified during embryogenesis, gives rise to an invariant number of plasmatocytes and crystal cells. A second population of haemocytes is specified during larval development in a specialized haematopoietic organ, the lymph gland. All three types of haemocytes can be specified in this organ, but lamellocytes only differentiate in response to parasitism. Thus, larval in contrast to embryonic haematopoiesis can be modulated by physiological constraints. Molecular cascades controlling embryonic haematopoiesis are relatively well established and require transactivators such as GATA, FOG and Runx factors, which are also co-opted in mammalian haematopoiesis. Mechanisms involved during larval haematopoiesis are less well understood although a number of chromatin remodelling factors and signalling pathways (JAK/STAT, Toll, Hedgehog, Notch) are required. In healthy larvae a pool of progenitors is maintained within the lymph gland, under the control of a signalling centre which expresses Collier, Serrate, Antennapedia and Hedgehog, and controls haemocyte homeostasis. Its key role in haemocyte homeostasis is reminiscent of interactions described in vertebrates between haematopoietic stem cells and their microenvironment (niche).

  5. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    PubMed

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis. © 2016 Wiley Periodicals, Inc.

  6. [Biotechnological aspects in "loco" larvae].

    PubMed

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  7. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta.

    PubMed

    Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C

    2015-01-01

    Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development.

  8. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach.

    PubMed

    Schurich, Jessica A; Kumar, Sunil; Eisen, Lars; Moore, Chester G

    2014-03-01

    Remote sensing and Geographic Information System (GIS) data can be used to identify larval mosquito habitats and predict species distribution and abundance across a landscape. An understanding of the landscape features that impact abundance and dispersal can then be applied operationally in mosquito control efforts to reduce the transmission of mosquito-borne pathogens. In an effort to better understand the effects of landscape heterogeneity on the abundance of the West Nile virus (WNV) vector Culex tarsalis, we determined associations between GIS-based environmental data at multiple spatial extents and monthly abundance of adult Cx. tarsalis in Larimer County and Weld County, CO. Mosquito data were collected from Centers for Disease Control and Prevention miniature light traps operated as part of local WNV surveillance efforts. Multiple regression models were developed for prediction of monthly Cx. tarsalis abundance for June, July, and August using 4 years of data collected over 2007-10. The models explained monthly adult mosquito abundance with accuracies ranging from 51-61% in Fort Collins and 57-88% in Loveland-Johnstown. Models derived using landscape-level predictors indicated that adult Cx. tarsalis abundance is negatively correlated with elevation. In this case, low-elevation areas likely more abundantly include habitats for Cx. tarsalis. Model output indicated that the perimeter of larval sites is a significant predictor of Cx. tarsalis abundance at a spatial extent of 500 m in Loveland-Johnstown in all months examined. The contribution of irrigated crops at a spatial extent of 500 m improved model fit in August in both Fort Collins and Loveland-Johnstown. These results emphasize the significance of irrigation and the manual control of water across the landscape to provide viable larval habitats for Cx. tarsalis in the study area. Results from multiple regression models can be applied operationally to identify areas of larval Cx. tarsalis production (irrigated crops lands and standing water) and assign priority in larval treatments to areas with a high density of larval sites at relevant spatial extents around urban locations.

  9. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River

    PubMed Central

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3–N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish species stagger their spawning period to avoid intraspecific competition for food resources during early life stages; a coexistence strategy to some extent. This research outlines the environmental requirements for successful spawning for different fish species. Understanding processes such as those outlined in this research paper is the basis of conservation of fish community diversity which is a critical resource to a successful sustainable fishery in the Pearl River. PMID:26760762

  10. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    PubMed

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).

  11. Monitoring of the Cowpea Bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae), Feeding Activity in Cowpea Seeds: Advances in Sensing Technologies Reveals New Insights.

    PubMed

    Bittner, James A; Balfe, Susan; Pittendrigh, Barry R; Popovics, John S

    2018-05-28

    Cowpea provides a significant source of protein for over 200 million people in Sub-Saharan Africa. The cowpea bruchid, Callosobruchus maculatus (F) (Coleoptera: Bruchidae), is a major pest of cowpea as the larval stage attacks stored cowpea grains, causing postharvest loss. Cowpea bruchid larvae spend all their time feeding within the cowpea seed. Past research findings, published over 25 yr ago, have shown that feeding activity of several bruchids within a cowpea seed emit mechanical vibrations within the frequency range 5-75 kHz. This work led to the development of monitoring technologies that are both important for basic research and practical application. Here, we use newer and significantly improved technologies to re-explore the nature of the vibration signals produced by an individual C. maculatus, when it feeds in cowpea seeds. Utilizing broadband frequency sensing, individual fourth-instar bruchid larvae feeding activities (vibration events) were recorded to identify specific key emission frequencies. Verification of recorded events and association to actual feeding activities was achieved through mass measurements over 24 h for a series of replicates. The measurements identified variable peak event emission frequencies across the replicate sample set ranging in frequency from 16.4 to 26.5 kHz. A positive correlation between the number of events recorded and the measured mass loss of the cowpea seed was observed. The procedure and verification reported in this work provide an improved basis for laboratory-based monitoring of single larval feeding. From the rich dataset captured, additional analysis can be carried out to identify new key variables of hidden bruchid larval activity.

  12. Molecular ontogenesis of digestive capability and associated endocrine control in Atlantic cod (Gadus morhua) larvae.

    PubMed

    Kortner, Trond M; Overrein, Ingrid; Oie, Gunvor; Kjørsvik, Elin; Bardal, Tora; Wold, Per-Arvid; Arukwe, Augustine

    2011-10-01

    We have profiled the expression of twelve genes, in order to provide an overview on the molecular ontogeny of digestive capability with the associated endocrine control during Atlantic cod (Gadus morhua) larval development. Enzyme activity levels for the key digestive enzyme, trypsin, was also measured. Specifically, transcripts for trypsin, amylase, lipolytic enzymes: bile salt activated lipase (BAL), phospholipase A2 (PLA2) and Acyl CoA dehydrogenase (ACADM), regulatory peptides: neuropeptide Y (NPY), orexin (OX) cholecystokinin (CCK) and cocaine and amphetamine-related transcript (CART), the somatotropic factors: growth hormone (GH), preprosomatostatin 1 (PPSS1) and thyroid hormone receptors (TRα and TRβ) were analyzed using quatitative (real-time) polymerase chain reaction (qPCR). Trypsin and BAL mRNA levels peaked at approximately day 17 and 25 post-hatch, respectively, and thereafter displayed a decreasing pattern until metamorphosis. GH mRNA levels decreased moderately from 3 to 33dph, and thereafter, an increase was observed until 46dph. TRα mRNA levels showed a fluctuating pattern peaking at day 39 post-hatch. TRβ mRNA levels were too low to obtain quantitative measurements. Amylase mRNA slightly increased from day 3 to 17 post-hatch, and thereafter showed a steady decrease until day 60. Interestingly, PLA2 mRNA expression showed a consistent increase throughout the study period, indicating an increasingly important role during larval development. Overall, data from this study indicate that cod larvae show differential developmental mode of expression patterns for key genes and endocrine factors that regulate digestive capability, growth and development. These data are discussed in relation to larval trypsin enzyme activity and previous reports for other teleost species. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cystic pulmonary hydatidosis

    PubMed Central

    Sarkar, Malay; Pathania, Rajnish; Jhobta, Anupam; Thakur, Babu Ram; Chopra, Rajesh

    2016-01-01

    Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by the larval stages of the cestode Echinococcus granulosus. Worldwide, pulmonary hydatid cyst is a significant problem medically, socially, and economically. Surgery is the definitive therapy of pulmonary hydatidosis. Benzimidazoles may be considered in patients with a surgical contraindication. This review will focus on pathogenesis, lifecycle, clinical features, and management of pulmonary hydatid disease. PMID:27051107

  14. Deletion of v-chiA from a baculovirus reduces horizontal transmission in the field

    Treesearch

    Vincent D' Amico; James Slavicek; John D. Podgwaite; Ralph Webb; Roger Fuester; Randall A. Peiffer

    2013-01-01

    Nucleopolyhedroviruses (NPVs) can initiate devastating disease outbreaks in populations of defoliating Lepidoptera, a fact that has been exploited for the purposes of biological control of some pest insects. A key part of the horizontal transmission process of NPVs is the degradation of the larval integument by virus-coded proteins called chitinases, such as V-CHIA...

  15. Vector Control During Operation Restore Hope - Somalia

    DTIC Science & Technology

    2008-11-16

    Restore Hope, focusing primarily on pest battalion provided services including and vector control operations. Much of identification of the preventive...and usable arthropod Identification larval mosquito surveys were conducted, materials (i.e., keys) were nonexistent. but only in areas that were...bait would be mosquitoes. The pesticide used for placed adjacent to but away from troop mosquito control ( malathion - ULV) was areas, attracting flies

  16. Rapid mounting of adult Drosophila structures in Hoyer's medium.

    PubMed

    Stern, David L; Sucena, Elio

    2012-01-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

  17. Field study on the epidemiology and pathogenicity of different isolates of bovine Ostertagia spp.

    PubMed

    Al Saqur, I; Armour, J; Bairden, K; Dunn, A M; Jennings, F W; Murray, M

    1982-11-01

    The epidemiological features of three different isolates of bovine Ostertagia spp under similar initial levels of larval challenge were compared in the field. Two of the isolates, consisting mainly of Ostertagia ostertagi, and a low proportion of Skrjabinagia lyrata conformed in epidemiological behaviour with those investigated by previous workers, though the worm burdens which established did not give rise to the expected clinical signs. The third isolate behaved in a different way, yielding very high faecal egg counts which were followed by high pasture larval counts, heavy worm burdens and severe clinical disease. This isolate, while consisting mainly of O ostertagi and a few S lyrata, also contained a proportion of O leptospicularis, and it is suggested that this species may influence the dynamics of the host-parasite relationship in bovine ostertagiasis.

  18. Ancyronyx Erichson, 1847 (Coleoptera, Elmidae) from Mindoro, Philippines, with description of the larvae and two new species using DNA sequences for the assignment of the developmental stages

    PubMed Central

    Freitag, Hendrik

    2013-01-01

    Abstract Ancyronyx buhid sp. n. and Ancyronyx tamaraw sp. n. are described based on adults and larvae, matched using their cox1 or cob DNA sequence data. Additional records of Ancyronyx schillhammeri Jäch, 1994 and Ancyronyx minerva Freitag & Jäch, 2007 from Mindoro are listed. The previously unknown larva of Ancyronyx schillhammeri is also described here, aided by cox1 data. The new species and larval stages are described in detail and illustrated by SEM and stacked microscopic images. Keys to the adult and larval Ancyronyx species of Mindoro and an updated checklist of Philippine Ancyronyx species are provided. The usefulness as bioindicators, the phylogenetic relationships and biogeographic aspects affecting the distribution patterns are briefly discussed. PMID:23950689

  19. Predicting Coral Recruitment in Palau’s Complex Reef Archipelago

    PubMed Central

    Golbuu, Yimnang; Wolanski, Eric; Idechong, Jacques Wasai; Victor, Steven; Isechal, Adelle Lukes; Oldiais, Noelle Wenty; Idip, David; Richmond, Robert H.; van Woesik, Robert

    2012-01-01

    Reproduction and recruitment are key processes that replenish marine populations. Here we use the Palau archipelago, in the western Pacific Ocean, as a case study to examine scales of connectivity and to determine whether an oceanographic model, incorporating the complex reef architecture, is a useful predictor of coral recruitment. We tested the hypothesis that the reefs with the highest retention also had the highest densities of juvenile coral density from 80 field sites. Field comparisons showed a significant correlation between the densities of juvenile Acropora colonies and total larval recruitment derived from the model (i.e., calculated as the sum of the densities of larvae that self-seeded and recruited from the other reefs in the archipelago). Long-distance larval imports may be too infrequent to sustain coral populations, but are critical for recovery in times of extreme local stress. PMID:23209842

  20. Integrating anatomy and function for zebrafish circuit analysis.

    PubMed

    Arrenberg, Aristides B; Driever, Wolfgang

    2013-01-01

    Due to its transparency, virtually every brain structure of the larval zebrafish is accessible to light-based interrogation of circuit function. Advanced stimulation techniques allow the activation of optogenetic actuators at different resolution levels, and genetically encoded calcium indicators report the activity of a large proportion of neurons in the CNS. Large datasets result and need to be analyzed to identify cells that have specific properties-e.g., activity correlation to sensory stimulation or behavior. Advances in three-dimensional (3D) functional mapping in zebrafish are promising; however, the mere coordinates of implicated neurons are not sufficient. To comprehensively understand circuit function, these functional maps need to be placed into the proper context of morphological features and projection patterns, neurotransmitter phenotypes, and key anatomical landmarks. We discuss the prospect of merging functional and anatomical data in an integrated atlas from the perspective of our work on long-range dopaminergic neuromodulation and the oculomotor system. We propose that such a resource would help researchers to surpass current hurdles in circuit analysis to achieve an integrated understanding of anatomy and function.

  1. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design

    PubMed Central

    Rochlin, Ilia; Iwanejko, Tom; Dempsey, Mary E; Ninivaggi, Dominick V

    2009-01-01

    Background In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted habitat modification and biological control methods known as Open Marsh Water Management (OMWM) had been proposed as a viable alternative to marsh-wide physical alterations and chemical control. However, traditional larval sampling techniques may not adequately assess the impacts of marsh management on mosquito larvae. To assess the effectiveness of integrated OMWM and marsh restoration techniques for mosquito control, we analyzed the results of a 5-year OMWM/marsh restoration project to determine changes in mosquito larval production using GIS and geostatistical methods. Methods The following parameters were evaluated using "Before-After-Control-Impact" (BACI) design: frequency and geographic extent of larval production, intensity of larval production, changes in larval habitat, and number of larvicide applications. The analyses were performed using Moran's I, Getis-Ord, and Spatial Scan statistics on aggregated before and after data as well as data collected over time. This allowed comparison of control and treatment areas to identify changes attributable to the OMWM/marsh restoration modifications. Results The frequency of finding mosquito larvae in the treatment areas was reduced by 70% resulting in a loss of spatial larval clusters compared to those found in the control areas. This effect was observed directly following OMWM treatment and remained significant throughout the study period. The greatly reduced frequency of finding larvae in the treatment areas led to a significant decrease (~44%) in the number of times when the larviciding threshold was reached. This reduction, in turn, resulted in a significant decrease (~74%) in the number of larvicide applications in the treatment areas post-project. The remaining larval habitat in the treatment areas had a different geographic distribution and was largely confined to the restored marsh surface (i.e. filled-in mosquito ditches); however only ~21% of the restored marsh surface supported mosquito production. Conclusion The geostatistical analysis showed that OMWM demonstrated considerable potential for effective mosquito control and compatibility with other natural resource management goals such as restoration, wildlife habitat enhancement, and invasive species abatement. GPS and GIS tools are invaluable for large scale project design, data collection, and data analysis, with geostatistical methods serving as an alternative or a supplement to the conventional inference statistics in evaluating the project outcome. PMID:19549297

  2. Why do leafcutter bees cut leaves? New insights into the early evolution of bees.

    PubMed

    Litman, Jessica R; Danforth, Bryan N; Eardley, Connal D; Praz, Christophe J

    2011-12-07

    Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation--the inclusion of foreign material in nest construction--underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints.

  3. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.

    PubMed

    McLean, David L; Fetcho, Joseph R

    2009-10-28

    Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.

  4. Diversity of developmental patterns in achelate lobsters-today and in the Mesozoic.

    PubMed

    Haug, Joachim T; Audo, Denis; Charbonnier, Sylvain; Haug, Carolin

    2013-11-01

    Modern achelate lobsters, slipper and spiny lobsters, have a specific post-embryonic developmental pattern with the following phases: phyllosoma, nisto (slipper lobsters) or puerulus (spiny lobsters), juvenile and adult. The phyllosoma is a peculiar larva, which transforms through a metamorphic moult into another larval form, the nisto or puerulus which largely resembles the juvenile. Unlike the nisto and puerulus, the phyllosoma is characterised by numerous morphological differences to the adult, e.g. a thin head shield, elongate appendages, exopods on these appendages and a special claw. Our reinvestigation of the 85 million years old fossil "Eryoneicus sahelalmae" demonstrates that it represents an unusual type of achelatan lobster larva, characterised by a mixture of phyllosoma and post-phyllosoma characters. We ascribe it to its own genus: Polzicaris nov. gen. We study its significance by comparisons with other cases of Mesozoic fossil larvae also characterised by a mixture of characters. Accordingly, all these larvae are interpreted as ontogenetic intermediates between phyllosoma and post-phyllosoma morphology. Remarkably, most of the larvae show a unique mixture of retained larval and already developed post-larval features. Considering the different-and incompatible-mixture of characters of each of these larvae and their wide geographical and temporal distribution, we interpret all these larvae as belonging to distinct species. The particular character combinations in the different larvae make it currently difficult to reconstruct an evolutionary scenario with a stepwise character acquisition. Yet, it can be concluded that a larger diversity of larval forms and developmental patterns occurred in Mesozoic than in modern faunas.

  5. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly.

    PubMed

    Dinh, Khuong Van; Janssens, Lizanne; Therry, Lieven; Bervoets, Lieven; Bonte, Dries; Stoks, Robby

    2016-11-01

    How exposure to contaminants may interfere with the widespread poleward range expansions under global warming is largely unknown. Pesticide exposure may negatively affect traits shaping the speed of range expansion, including traits related to population growth rate and dispersal-related traits. Moreover, rapid evolution of growth rates during poleward range expansions may come at a cost of a reduced investment in detoxification and repair thereby increasing the vulnerability to contaminants at expanding range fronts. We tested effects of a sublethal concentration of the widespread pesticide chlorpyrifos on traits related to range expansion in replicated edge and core populations of the poleward moving damselfly Coenagrion scitulum reared at low and high food levels in a common garden experiment. Food limitation in the larval stage had strong negative effects both in the larval stage and across metamorphosis in the adult stage. Exposure to chlorpyrifos during the larval stage did not affect larval traits but caused delayed effects across metamorphosis by increasing the incidence of wing malformations during metamorphosis and by reducing a key component of the adult immune response. There was some support for an evolutionary trade-off scenario as the faster growing edge larvae suffered a higher mortality during metamorphosis. Instead, there was no clear support for the faster growing edge larvae being more vulnerable to chlorpyrifos. Our data indicate that sublethal delayed effects of pesticide exposure, partly in association with the rapid evolution of faster growth rates, may slow down range expansions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ocean acidification alters temperature and salinity preferences in larval fish.

    PubMed

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Connell, Sean D

    2017-02-01

    Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO 2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO 2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO 2 -treated fish showed no such response. Natural estuarine water-of higher temperature, lower salinity, and containing estuarine olfactory cues-was only preferred by fish treated under forecasted high CO 2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO 2 from human emissions.

  7. Effects of chlorpyrifos on in vitro sex steroid production and thyroid follicular development in adult and larval Lake Sturgeon, Acipenser fulvescens.

    PubMed

    Brandt, Catherine; Burnett, Duncan C; Arcinas, Liane; Palace, Vince; Gary Anderson, W

    2015-08-01

    Chlorpyrifos is a widely used organophosphate pesticide that has previously been shown to enter waterways in biologically relevant concentrations and has the potential to disrupt both thyroid hormone and sex steroid biosynthesis in vertebrates. Because gonadal maturation and larval development in Lake Sturgeon, Acipenser fulvescens, potentially coincide with the application of chlorpyrifos we examined the effects of chlorpyrifos on both thyroid follicular development in larval Lake Sturgeon, and sex hormone synthesis in adult Lake Sturgeon. For the first time, the present study reports steroidogenesis from testicular and ovarian tissue in Lake Sturgeon using an established in vitro bioassay. Furthermore, incubating gonad tissue with 5, 500 or 2000ngmL(-1) chlorpyrifos revealed an inhibitory effect on testosterone synthesis in both testicular (control, 40.29pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 21.84pgmg(-1) tissue wet weight(-1)h(-1)) and ovarian (control, 33.83pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 15.19pgmg(-1) tissue wet weight(-1)h(-1)) tissue. In a second series of experiments, larval Lake Sturgeon were exposed to equivalent concentrations of chlorpyrifos as above for 10days (d) between hatch and the onset of exogenous feeding. Larvae from each treatment group were raised until 67days post hatch (dph) and growth rates were compared alongside key indicators of thyroid follicle growth. Chlorpyrifos treatment had no effect on the measured indicators of thyroid follicular development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Environmental control on early life stages of flatfishes in the Lima Estuary (NW Portugal)

    NASA Astrophysics Data System (ADS)

    Ramos, Sandra; Ré, Pedro; Bordalo, Adriano A.

    2009-06-01

    Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant species S. senegalensis and P. flesus associated with the middle and upper estuary, while the remaining species were associated with the lower estuarine areas. The larval fraction exhibited distinct dynamics from the juvenile estuarine flatfish community. Larval flatfishes showed a strong seasonal structure mainly regulated by biological features as the spawning season and also by seasonal variations of water characteristics. On the other hand, juvenile flatfishes were markedly controlled by site specific characteristics such as sediments structure, distance from the river mouth and salinity regime. The present study emphasized the idea that the environmental control varies throughout the ontogenetic development, stressing the importance of integrating all the early life of a species in flatfish nursery studies.

  9. Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Colberg, Frank; Slawinski, Dirk; Berry, Oliver; Babcock, Russ

    2016-12-01

    The North West Shelf (NWS) of Australia features extensive and globally significant fringing coral reef ecosystems with high levels of endemism and consequently has received significant conservation efforts in the form of Marine Parks. The shelf circulation on the NWS is dominated by the southwestward-flowing Holloway Current during austral autumn-winter and by the northeastward monsoonal currents during austral summer. Intraseasonal Oscillation and short-term wind variability also influence advection processes on the NWS. These circulation processes are likely to determine demographic inter-dependencies among reef systems in the region, but the extent and spatial variability of the inter-dependence are not well understood. In this study, we used a 3-dimensional, hydrostatic, primitive equations model, to simulate the shelf circulation on the NWS at 1 km horizontal resolution during 2004-2009. We then used a particle tracking model based on the shelf circulation model to simulate larval dispersal in a representative coral species, Acropora millepora, among the 3430 coral reefs on the NWS during its autumn mass spawning. Model results predicted that settling larvae typically reach suitable reef within 10 days of spawning, with a predominantly southwestward tendency of transport. There was significant spatial heterogeneity in larval settlements and the Dampier Archipelago areas seemed to be more isolated from the rest of the NWS. Year-to-year variations of larval dispersals were sensitive to the seasonal and intraseasonal variations of alongshore winds: mass spawning in late March would expose the Dampier Archipelago area to the Holloway Current onset, resulting in it being an occasional source region of larval supply for the rest of the NWS to the southwest; intraseasonal northeastward wind pulses coinciding with the mass larval spawning would bring larvae from coastal regions to the Dampier Archipelago on rare occasions. By aggregating the reefs into 47 subregions, we estimated that the mean rate of self-seeding within the subregions (as a proportion of total supply) was 22% (range from 99% to < 1%). Subregions with high retention (as a proportion of total egg production) were not necessarily those with the highest levels of overall larval settlements. Such high "sink" subregions were also some of the most important "source" subregions. Most of the important source and sink subregions were found to be outside existing marine parks, however, existing marine parks did contain subregions with some of the highest levels of self-seeding and larval retention.

  10. Native Shellfish in Nearshore Ecosystems of Puget Sound

    DTIC Science & Technology

    2006-04-01

    Key parameters include temperature and salinity , turbidity, oxygen, pollutants, and food types and concentrations. All these can be affected by...variety of other organisms, depending on the stage in their life history. Larvae (in the plankton) are eaten by coho and chinook salmon and...of particular year classes are probably determined by larval survival to meta- morphosis, which depends on predation, water tempera- tures, food

  11. Replication of Heliothis virescens ascovirus in insect cell lines.

    PubMed

    Asgari, S

    2006-09-01

    Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.

  12. Diversity of olfactomedin proteins in the sea urchin.

    PubMed

    Hillier, Brian J; Moy, Gary W; Vacquier, Victor D

    2007-06-01

    Olfactomedin (OLF) domain proteins maintain extracellular protein-protein interactions in diverse phyla. Only one OLF family member, amassin-1, has been described from the sea urchin Strongylocentrotus purpuratus, a basal invertebrate deuterostome. Amassin-1 mediates intercellular adhesion of coelomocytes (immunocytes). Here we describe the protein structural features of four additional OLF proteins, the total for the genome being five. Phylogenetically, four of these proteins (the amassins) form a subgroup among previously identified OLF proteins. The fifth OLF protein is within the colmedin subfamily and contains a type II transmembrane domain, collagen repeats, and an OLF domain. Sea urchin OLF proteins represent an intermediate diversification between protostomes and vertebrates. Transcripts of all five OLF family members are in coelomocytes and adult radial nerve tissue. Transcripts for some OLF proteins increase during late larval stages. Transcript levels for amassin-1 increase 1,000,000-fold, coinciding with formation of the adult urchin rudiment within the larval body.

  13. Larvae and a new species of Ancyronyx Erichson, 1847 (Insecta, Coleoptera, Elmidae) from Palawan, Philippines, using DNA sequences for the assignment of the developmental stages

    PubMed Central

    Freitag, Hendrik; Balke, Michael

    2011-01-01

    Abstract Ancyronyx montanus sp. n. is described based on adults and larvae, matched using their cox1 DNA sequence data. Larvae of six additional species of Ancyronyx Erichson, 1847 were also described here for the first time, aided by cox1 or cob data: Ancyronyx helgeschneideri Freitag & Jäch, 2007, Ancyronyx minerva Freitag & Jäch, 2007, Ancyronyx patrolus Freitag & Jäch, 2007, Ancyronyx procerus Jäch, 1994, Ancyronyx punkti Freitag & Jäch, 2007, Ancyronyx pseudopatrolus Freitag & Jäch, 2007. Ancyronyx procerus is newly recorded from the Philippines by a larval specimen from Busuanga island. The new species and larval stages are described in detail and illustrated by digital and SEM images. A key to the Ancyronyx larvae of Palawan and an updated checklist of Philippine Ancyronyx is provided. PMID:22140348

  14. Workshop held to discuss population connectivity in marine systems

    NASA Astrophysics Data System (ADS)

    Cowen, Robert K.; Thorrold, Simon; Pineda, Jesus; Gawarkiewicz, Glen

    A central goal of marine ecology is to achieve a mechanistic understanding of the factors regulating the abundance and distribution of marine populations. One critical component of the above goal is to quantify rates of exchange, or connectivity among sub-populations of marine organisms via larval dispersal. Theoretical studies suggest that these linkages play a fundamental role in local and meta-population dynamics, community structure, genetic diversity, and the resiliency of populations to human exploitation [Fogarty, 1998].Understanding population connectivity is also key in efforts to develop spatial management methods for marine-capture fisheries, including the design of networks of marine reserves [Sala et al., 2002]. We have made considerable advances in our understanding of the biology of juvenile and adult life history stages through experimental marine ecology However, there has been no concomitant increase in our knowledge of the biological and physical processes that determine the extent to which marine populations are connected via larval dispersal.

  15. Neural Circuits Underlying Fly Larval Locomotion

    PubMed Central

    Kohsaka, Hiroshi; Guertin, Pierre A.; Nose, Akinao

    2017-01-01

    Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system. PMID:27928962

  16. Exploring variable patterns of density-dependent larval settlement among corals with distinct and shared functional traits

    NASA Astrophysics Data System (ADS)

    Doropoulos, Christopher; Gómez-Lemos, Luis A.; Babcock, Russell C.

    2018-03-01

    Coral settlement is a key process for the recovery and maintenance of coral reefs, yet interspecific variations in density-dependent settlement are unknown. Settlement of the submassive Goniastrea retiformis and corymbose Acropora digitifera and A. millepora was quantified at densities ranging from 1 to 50 larvae per 20 mL from 110 to 216 h following spawning. Settlement patterns were distinct for each species. Goniastrea settlement was rapid and increased linearly with time, whereas both Acropora spp. hardly settled until crustose coralline algae was provided. Both Goniastrea and A. digitifera showed positive density-dependent settlement, but the relationship was exponential for Goniastrea but linear for A. digitifera. Settlement was highest but density independent in A. millepora. Our results suggest that larval density can have significant effects on settler replenishment, and highlight variability in density-dependent settlement among corals with distinct functional traits as well as those with similar functional forms.

  17. Dispersal capacity and genetic relatedness in Acropora cervicornis on the Florida Reef Tract

    NASA Astrophysics Data System (ADS)

    Drury, Crawford; Paris, Claire B.; Kourafalou, Vassiliki H.; Lirman, Diego

    2018-06-01

    Sexual reproduction in scleractinian corals is a critical component of species recovery, fostering population connectivity and enhancing genetic diveristy. The relative contribution of sexual reproduction to both connectivity and diversity in Acropora cervicornis may be variable due to this species' capacity to reproduce effectively by fragmentation. Using a biophysical model and genomic data in this threatened species, we construct potential connectivity pathways on the Florida Reef Tract (FRT) and compare them to inferred migration rates derived from next-generation sequencing, using a link and node-based approach. Larval connectivity on the FRT can be divided into two zones: the northern region, where most transport is unidirectional to the north with the Florida Current, and the southern region that is more dynamic and exhibits complex spatial patterns. These biophysical linkages are poorly correlated with genetic connectivity patterns, which resolve many reciprocal connections and suggest a less sparse network. These results are difficult to reconcile with genetic data which indicate that individual reefs are diverse, suggesting important contributions of sexual reproduction and recruitment. Larval connectivity models highlight potential resources for recovery, such as areas with high larval export like the Lower Keys, or areas that are well connected to most other regions on the FRT, such as the Dry Tortugas.

  18. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    PubMed

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Control of movement initiation underlies the development of balance

    PubMed Central

    Ehrlich, David E.; Schoppik, David

    2017-01-01

    Summary Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay between environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do. PMID:28111151

  20. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans

    PubMed Central

    Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal

    2016-01-01

    Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. PMID:28007841

  1. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans.

    PubMed

    Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal

    2017-02-09

    Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans , the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. Copyright © 2017 Erdelyi et al.

  2. Developmental and Digestive Flexibilities in the Midgut of a Polyphagous Pest, the Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Sarate, P.J.; Tamhane, V.A.; Kotkar, H.M.; Ratnakaran, N.; Susan, N.; Gupta, V.S.; Giri, A.P.

    2012-01-01

    Developmental patterns and survival of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), a polyphagous insect pest, have been studied with reference to the effect of diet on major gut digestive enzymes (amylases, proteases, and lipases). Significant correlations between nutritional quality of the diet and larval and pupal mass were observed when H. armigera larvae were fed on various host plants viz. legumes (chickpea and pigeonpea), vegetables (tomato and okra), flowers (rose and marigold), and cereals (sorghum and maize). Larvae fed on diets rich in proteins and/or carbohydrates (pigeonpea, chickpea, maize, and sorghum) showed higher larval mass and developed more rapidly than larvae fed on diets with low protein and carbohydrate content (rose, marigold, okra, and tomato). Low calorific value diets like rose and marigold resulted in higher mortality (25–35%) of H. armigera. Even with highly varying development efficiency and larval/pupal survival rates, H. armigera populations feeding on different diets completed their life cycles. Digestive enzymes of H. armigera displayed variable expression levels and were found to be regulated on the basis of macromolecular composition of the diet. Post—ingestive adaptations operating at the gut level, in the form of controlled release of digestive enzymes, might be a key factor contributing to the physiological plasticity in H. armigera. PMID:22954360

  3. Extreme mitochondrial variation in the Atlantic gall crab Opecarcinus hypostegus (Decapoda: Cryptochiridae) reveals adaptive genetic divergence over Agaricia coral hosts

    PubMed Central

    van Tienderen, Kaj M.; van der Meij, Sancia E. T.

    2017-01-01

    The effectiveness of migration in marine species exhibiting a pelagic larval stage is determined by various factors, such as ocean currents, pelagic larval stage duration and active habitat selection. Direct measurement of larval movements is difficult and, consequently, factors determining the gene flow patterns remain poorly understood for many species. Patterns of gene flow play a key role in maintaining genetic homogeneity in a species by dampening the effects of local adaptation. Coral-dwelling gall crabs (Cryptochiridae) are obligate symbionts of stony corals (Scleractinia). Preliminary data showed high genetic diversity on the COI gene for 19 Opecarcinus hypostegus specimens collected off Curaçao. In this study, an additional 176 specimens were sequenced and used to characterize the population structure along the leeward side of Curaçao. Extremely high COI genetic variation was observed, with 146 polymorphic sites and 187 unique haplotypes. To determine the cause of this high genetic diversity, various gene flow scenarios (geographical distance along the coast, genetic partitioning over depth, and genetic differentiation by coral host) were examined. Adaptive genetic divergence across Agariciidae host species is suggested to be the main cause for the observed high intra-specific variance, hypothesised as early signs of speciation in O. hypostegus. PMID:28079106

  4. Larval Habitats Characterization and Species Composition of Anopheles Mosquitoes in Tunisia, with Particular Attention to Anopheles maculipennis Complex

    PubMed Central

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-01-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)–internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places. PMID:25561567

  5. A Linnaeus NG (TM) interactive key to the Lithocolletinae of North-West Europe aimed at accelerating the accumulation of reliable biodiversity data (Lepidoptera, Gracillariidae).

    PubMed

    Doorenweerd, Camiel; van Haren, Merel M; Schermer, Maarten; Pieterse, Sander; van Nieukerken, Erik J

    2014-01-01

    We present an interactive key that is available online through any web browser without the need to install any additional software, making it an easily accessible tool for the larger public. The key can be found at http://identify.naturalis.nl/lithocolletinae. The key includes all 86 North-West European Lithocolletinae, a subfamily of smaller moths ("micro-moths") that is commonly not treated in field guides. The user can input data on several external morphological character systems in addition to distribution, host plant and even characteristics of the larval feeding traces to reach an identification. We expect that this will enable more people to contribute with reliable observation data on this group of moths and alleviate the workload of taxonomic specialists, allowing them to focus on other new keys or taxonomic work.

  6. Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus

    PubMed Central

    2012-01-01

    Background Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern) as a young larva, and switches to a green camouflage coloration (cryptic pattern) in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns. Results To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST) libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes expressed in larval eyespot markings. This finding suggests that E75 is a strong candidate mediator of the hormone-dependent coordination of larval pattern formation. Conclusions This study is one of the most comprehensive molecular analyses of complicated morphological features, and it will serve as a new resource for studying insect mimetic and cryptic pattern formation in general. The wide variety of marking-associated genes (both regulatory and structural genes) identified by our screening indicates that a similar strategy will be effective for understanding other complex traits. PMID:22651552

  7. Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b

    PubMed Central

    Moravec, Cara E.; Samuel, John; Weng, Wei; Wood, Ian C.

    2016-01-01

    During embryonic development, regulation of gene expression is key to creating the many subtypes of cells that an organism needs throughout its lifetime. Recent work has shown that maternal genetics and environmental factors have lifelong consequences on diverse processes ranging from immune function to stress responses. The RE1-silencing transcription factor (Rest) is a transcriptional repressor that interacts with chromatin-modifying complexes to repress transcription of neural-specific genes during early development. Here we show that in zebrafish, maternally supplied rest regulates expression of target genes during larval development and has lifelong impacts on behavior. Larvae deprived of maternal rest are hyperactive and show atypical spatial preferences. Adult male fish deprived of maternal rest present with atypical spatial preferences in a novel environment assay. Transcriptome sequencing revealed 158 genes that are repressed by maternal rest in blastula stage embryos. Furthermore, we found that maternal rest is required for target gene repression until at least 6 dpf. Importantly, disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that recapitulate the hyperactivity phenotype caused by absence of maternal rest. Both maternal rest mutants and snap25a RE1 site mutants have altered primary motor neuron architecture that may account for the enhanced locomotor activity. These results demonstrate that maternal rest represses snap25a/b to modulate larval behavior and that early Rest activity has lifelong behavioral impacts. SIGNIFICANCE STATEMENT Maternal factors deposited in the oocyte have well-established roles during embryonic development. We show that, in zebrafish, maternal rest (RE1-silencing transcription factor) regulates expression of target genes during larval development and has lifelong impacts on behavior. The Rest transcriptional repressor interacts with chromatin-modifying complexes to limit transcription of neural genes. We identify several synaptic genes that are repressed by maternal Rest and demonstrate that snap25a/b are key targets of maternal rest that modulate larval locomotor activity. These results reveal that zygotic rest is unable to compensate for deficits in maternally supplied rest and uncovers novel temporal requirements for Rest activity, which has implications for the broad roles of Rest-mediated repression during neural development and in disease states. PMID:27605615

  8. The role of phenotype structure in the population dynamics of gypsy moth in the Lower Dnieper region

    Treesearch

    Nikolaj M. Derevyanko

    1991-01-01

    One of the characteristic features of the gypsy moth population in the Lower Dnieper area is its variable larval coloring. Phenotype frequency has been recorded over the years in separate micropopulations at different density levels. The data show the population to consist mainly of gray larvae in all life stages, and their abundance varying from 85 to 99.6 percent....

  9. Food and growth parameters of juvenile chinook in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook, salmon (Oncorhynchus tshawytscha) in the Hanford area of the free-flowing central Columbia River, Washington consume almost entirely adult and larval stages of aquatic insects. The diet is dominated by midges (Diptera: Chironomidae). By numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) are of minor numerical importance with a combined utilization of 7% in 1968 and 15% in 1969. Distinctive features of food and feeding activity of juvenile chinook at Hanford are fourfold: (1)more » the fish utilize relatively few insect groups, predominantly Chironomidae; (2) they depend largely upon autochthonous river organisms; (3) they visually select living prey drifting, floating or swimming in the water; and (4) they are apparently habitat opportunists to a large extent. Analyses were made of variations in diet and numbers of insects consumed between six sampling stations distributed along a 38 km section of the river. Data are provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations in regulated flow levels are environmental features influencing feeding, growth, and emigration of fish in the Hanford environs.« less

  10. Degrees of Isolation: The Impact of Climate Change on the Dispersal and Population Genetic Structure of Two Antarctic Fish Species

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Belchier, M.; Meredith, M. P.; Tysklind, N.; Carvalho, G. R.

    2016-02-01

    Understanding the key drivers of larval dispersal and population connectivity in the marine environment is essential for estimating the potential impacts of climate change on the genetic structure and resilience of populations. Small, isolated and fragmented communities will differ fundamentally in their response and resilience to environmental stress, compared with species that are broadly distributed, abundant, and with a frequent exchange of members. Using a `seascape genetics' approach, combining oceanographic modelling and genetic analyses, we have elucidated the fundamental roles of oceanographic transport and planktonic duration on the connectivity and population genetic structure of two Antarctic fish species with contrasting early life histories, Champsocephalus gunnari and Notothenia rossii. Here, we extend these analyses to consider the impact of rising sea temperatures due to climate change on planktonic dispersal and population connectivity. Using a theoretical approach, the effect of increased water temperatures on mortality rates and species-specific egg and larval phase durations has been incorporated into the models, and the relative impact of these climate-related influences on connectivity and population genetic structure has been investigated. Here we present the key findings of our research and consider the roles of early life history and oceanography in the response of fragmented fish populations to climate change.

  11. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. © 2014. Published by The Company of Biologists Ltd.

  12. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Harrison, Alexandra; Dugger, Donald R.; Payne, Richard

    2014-01-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  13. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain.

    PubMed

    Purschke, Benedict; Scheibelberger, Rafaela; Axmann, Sonja; Adler, Andreas; Jäger, Henry

    2017-08-01

    Edible insects have emerged as an alternative and sustainable source of high-quality, animal-derived protein and fat for livestock production or direct human nutrition. During the production of insects, substrate quality is a key parameter to assure optimal insect biomass gain as well as the safety of feed and food derived from commercially reared insects. Therefore, the influence of a realistic substrate contamination scenario on growth performance and accumulation behaviour of black soldier fly larvae (BSFL; Hermetia illucens L.) was investigated. Newly hatched larvae were fed on a corn-based substrate spiked with heavy metals (As, Cd, Cr, Hg, Ni, Pb), mycotoxins (aflatoxins B1/B2/G2, deoxynivalenol, ochratoxin A, zearalenone) and pesticides (chlorpyrifos, chlorpyrifos-methyl, pirimiphos-methyl) under defined breeding conditions (10 days, 28°C, 67% relative humidity). The extent of contaminants' bioaccumulation in the larval tissue as well as the effect on growing determinants were examined. The applied heavy metal substrate contamination was shown to impair larval growing indicated by significantly lower post-trial larval mass and feed conversion ratio (FCR). Cd and Pb accumulation factors of 9 and 2, respectively, were determined, while the concentrations of other heavy metals in the larvae remained below the initial substrate concentration. In contrast, mycotoxins and pesticides have neither been accumulated in the larval tissue nor significantly affected the growing determinants in comparison with the control. The use of BSFL as livestock feed requires contaminant monitoring - especially for Cd and Pb - in the substrates as well as in feedstuff containing BSFL to ensure feed and food safety along the value chain.

  14. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hao, HongFei

    2018-05-01

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  15. Identification of Bombyx mori nucleopolyhedrovirus bm58a as an auxiliary gene and its requirement for cell lysis and larval liquefaction.

    PubMed

    Yang, Rui; Zhang, Jianjia; Feng, Min; Wu, Xiaofeng

    2016-11-01

    Bombyx mori nucleopolyhedrovirus orf58a (bm58a) and its homologues are highly conserved in genomes of all sequenced group I alphabaculoviruses and its function is still unknown. Transcriptional analysis revealed that bm58a is a very late gene initiated from a late transcriptional start motif TAAG. To examine its role in the virus, a bm58a knockout virus (vBmbm-58a-KO-PH-GFP) was generated through homologous recombination in Escherichia coli. Analysis of fluorescence microscopy, titration assays and electron microscopy examination showed that the deletion of bm58a did not affect viral replication and occlusion bodies formation in vitro, indicating that bm58a is not required for viral propagation. However, vBmbm-58a-KO-PH-GFP did not result in cell lysis when wild-type virus infected cells began to lyse, and the vBmbm-58a-KO-PH-GFP infected cells remained intact until 2 weeks post-infection. Quantification of polyhedra release from cells confirmed this observation. Accordingly, though deletion of bm58a did not reduce Bombyx mori nucleopolyhedrovirus infectivity in vivo in bioassays, it did significantly disrupt the larval liquefaction, reducing the level of polyhedra release from infected host. Immunofluorescence analysis demonstrated that Bm58a was predominantly localized on the cellular membrane at the late stage of infection, which may contribute to its function of facilitating cell lysis and larval liquefaction. Our results suggest that although bm58a is not essential for viral propagation as an auxiliary gene, it is a key factor of virus-induced cell lysis and larval liquefaction in vitro and in vivo.

  16. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.

    PubMed

    Huang, Jian; Hao, HongFei

    2018-05-11

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  17. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    PubMed

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.

  18. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats succession information when larval habitats are fewer and manageable. Crop cycles and distance from habitats to household should be considered as effective information in planning larval control.

  19. Asymmetric connectivity of spawning aggregations of a commercially important marine fish using a multidisciplinary approach

    PubMed Central

    Jackson, Alexis; Marinone, Silvio Guido; Erisman, Brad; Moreno-Baez, Marcia; Girón-Nava, Alfredo; Pfister, Tad; Aburto-Oropeza, Octavio; Torre, Jorge

    2014-01-01

    Understanding patterns of larval dispersal is key in determining whether no-take marine reserves are self-sustaining, what will be protected inside reserves and where the benefits of reserves will be observed. We followed a multidisciplinary approach that merged detailed descriptions of fishing zones and spawning time at 17 sites distributed in the Midriff Island region of the Gulf of California with a biophysical oceanographic model that simulated larval transport at Pelagic Larval Duration (PLD) 14, 21 and 28 days for the most common and targeted predatory reef fish, (leopard grouper Mycteroperca rosacea). We tested the hypothesis that source–sink larval metapopulation dynamics describing the direction and frequency of larval dispersal according to an oceanographic model can help to explain empirical genetic data. We described modeled metapopulation dynamics using graph theory and employed empirical sequence data from a subset of 11 sites at two mitochondrial genes to verify the model predictions based on patterns of genetic diversity within sites and genetic structure between sites. We employed a population graph describing a network of genetic relationships among sites and contrasted it against modeled networks. While our results failed to explain genetic diversity within sites, they confirmed that ocean models summarized via graph and adjacency distances over modeled networks can explain seemingly chaotic patterns of genetic structure between sites. Empirical and modeled networks showed significant similarities in the clustering coefficients of each site and adjacency matrices between sites. Most of the connectivity patterns observed towards downstream sites (Sonora coast) were strictly asymmetric, while those between upstream sites (Baja and the Midriffs) were symmetric. The best-supported gene flow model and analyses of modularity of the modeled networks confirmed a pulse of larvae from the Baja Peninsula, across the Midriff Island region and towards the Sonoran coastline that acts like a larval sink, in agreement with the cyclonic gyre (anti-clockwise) present at the peak of spawning (May–June). Our approach provided a mechanistic explanation of the location of fishing zones: most of the largest areas where fishing takes place seem to be sustained simultaneously by high levels of local retention, contribution of larvae from upstream sites and oceanographic patterns that concentrate larval density from all over the region. The general asymmetry in marine connectivity observed highlights that benefits from reserves are biased towards particular directions, that no-take areas need to be located upstream of targeted fishing zones, and that some fishing localities might not directly benefit from avoiding fishing within reserves located adjacent to their communities. We discuss the implications of marine connectivity for the current network of marine protected areas and no-take zones, and identify ways of improving it. PMID:25165626

  20. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing.

    PubMed

    Chen, Dafu; Guo, Rui; Xu, Xijian; Xiong, Cuiling; Liang, Qin; Zheng, Yanzhen; Luo, Qun; Zhang, Zhaonan; Huang, Zhijian; Kumar, Dhiraj; Xi, Weijun; Zou, Xuan; Liu, Min

    2017-07-20

    Honeybees are susceptible to a variety of diseases, including chalkbrood, which is capable of causing huge losses of both the number of bees and colony productivity. This research is designed to characterize the transcriptome profiles of Ascosphaera apis-treated and un-treated larval guts of Apis mellifera ligustica in an attempt to unravel the molecular mechanism underlying the immune responses of western honeybee larval guts to mycosis. In this study, 24, 296 and 2157 genes were observed to be differentially expressed in A. apis-treated Apis mellifera (4-, 5- and 6-day-old) compared with un-treated larval guts. Moreover, the expression patterns of differentially expressed genes (DEGs) were examined via trend analysis, and subsequently, gene ontology analysis and KEGG pathway enrichment analysis were conducted for DEGs involved in up- and down-regulated profiles. Immunity-related pathways were selected for further analysis, and our results demonstrated that a total of 13 and 50 DEGs were annotated in the humoral immune-related and cellular immune-related pathways, respectively. Additionally, we observed that many DEGs up-regulated in treated guts were part of cellular immune pathways, such as the lysosome, ubiquitin mediated proteolysis, and insect hormone biosynthesis pathways and were induced by A. apis invasion. However, more down-regulated DEGs were restrained. Surprisingly, a majority of DEGs within the Toll-like receptor signaling pathway, and the MAPK signaling pathway were up-regulated in treated guts, while all but two genes involved in the NF-κB signaling pathway were down-regulated, which suggested that most genes involved in humoral immune-related pathways were activated in response to the invasive fungal pathogen. This study's findings provide valuable information regarding the investigation of the molecular mechanism of immunity defenses of A. m. ligustica larval guts to infection with A. apis. Furthermore, these studies lay the groundwork for future researches on key genes controlling the susceptibility of A. m. ligustica larvae to chalkbrood. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Different Levels of Hypoxia Tolerance during Early Life History Stages of Key Fish Species from the Northern Benguela Upwelling Ecosystem Inferred from the Comparison of Eco-Physiological Traits

    NASA Astrophysics Data System (ADS)

    Geist, S. J.; Imam, R. M.; Kunzmann, A.; Ekau, W.

    2016-02-01

    Global change factors such as a pronounced Oxygen Minimum Zone and the shoaling of hypoxic waters are assumed to play a major role in controlling the recruitment of fish stocks in Upwelling Systems by affecting the planktonic early life history stages. Ecological and ecophysiological traits in the larval stages of five key fish species in the Northern Benguela Upwelling System (Sardine, Sardinops sagax; Anchovy, Engraulis encrasicolus; Cape horse mackerel, Trachurus capensis; Cape hake, Merluccius sp.; Pelagic goby, Sufflogobobius bibarbatus) were investigated during the GENUS (Geochemistry and Ecology of the Namibian Upwelling Ecosystem) research project . Analysis of vertical larval distributions in relation to the depth of hypoxic water layers showed gradual interspecific differences, suggesting lower hypoxia tolerance levels of the small pelagics Sardine and Anchovy. Cape horse mackerel juveniles and larvae exhibited very high tolerance levels to short-term hypoxia in respirometry stress experiments, close to the levels of the extremely hypoxia-tolerant Pelagic goby. In the latter two species, we also measured the highest activities of anaerobic enzymes (pyruvate kinase and lactate dehydrogenase) in early and late larval stages, compared to very low activities in Sardine larvae. A higher amount of anaerobic enzymatic activity is related to a higher capacity to break down metabolites that build up during phases of oxygen debt and thus help the larvae to quickly recover from hypoxia exposure. In consequence, a high hypoxia tolerance during their early life stages allows Cape horse mackerel and Pelagic goby to successfully reproduce in an environment characterized by frequent hypoxic events. The low hypoxia tolerance of Sardine larvae, eventually resulting in higher mortality rates, is likely to be an important factor to understand the poor reproductive success and continuing recruitment failures of this formerly dominant fish species of the NBUS during the last 40 years.

  2. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    PubMed

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  3. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.

    PubMed

    Garcia-Gonzalez, Eva; Genersch, Elke

    2013-11-01

    Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Larval habitats characterization and species composition of Anopheles mosquitoes in Tunisia, with particular attention to Anopheles maculipennis complex.

    PubMed

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-03-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)-internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places. © The American Society of Tropical Medicine and Hygiene.

  5. Design features of a proposed insecticidal sugar trap for biting midges.

    PubMed

    Cohnstaedt, Lee William; Snyder, Darren

    2016-09-30

    Insecticidal sugar baits for mosquitoes and house ies have proven e cacy to reduce insect populations and consequently, disease transmission rates. The new insecticidal sugar trap (IST) is designed speci cally for controlling biting midge disease vector populations around livestock and near larval habitats. The trap operates by combining light-emitting diode (LED) technology with insecticidal sugar baits. The positive photo attraction of Culicoides elicited by the LEDs, draws the insects to the insecticidal sugar bait, which can be made from various commercial insecticide formulations (pyrethroids, neonicotinoids, etc.) or naturally derived formulations (boric acid, garlic oil, etc.) lethal to Culicoides. Insecticidal sugar trap advantages include: customizable LED lights, they can be used with several di erent oral insecticides that have di erent modes of action to help combat the evolution of pesticide resistance, screening on the trap reduces non-target insect feeding (for example bees and butter ies), targets males and females of the species because both must feed on sugar, and low energy LEDs and a solar panel reduce trap maintenance to re lling sugar baits, rather than replacing batteries. This article discusses key components of an IST, which increase the traps e ectiveness for biting midge control.

  6. Similarities and Differences for Swimming in Larval and Adult Lampreys.

    PubMed

    McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad

    2016-01-01

    The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for feeding as well as engage in long-distance migration during spawning. Finally, the differences in swim efficiency for larval and adult lampreys are compared to other animals employing the anguilliform mode of swimming.

  7. Phylogenetic analyses of mode of larval development.

    PubMed

    Hart, M

    2000-12-01

    Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.

  8. Terminal-instar larval systematics and biology of west European species of Ormyridae associated with insect galls (Hymenoptera, Chalcidoidea)

    PubMed Central

    Gómez, Jose F.; Nieves, María Hernández; Gayubo, Severiano F.; Nieves-Aldrey, Jose Luis

    2017-01-01

    Abstract A systematic study of the genus Ormyrus (Chalcidoidea, Ormyridae) was conducted based on the morphology and biology of the terminal-instar larvae of ten west European species that are parasitoids of gall wasps and gallflies of the families Cynipidae, Eurytomidae and Tephritidae. The first detailed descriptions are provided of the terminal-instar larvae of these ten species using SEM images to illustrate diagnostic characters with systematic values. A key is provided for the identification of ormyrid larvae associated with galls in Europe, which is based particularly on characters of the head, mouthparts and mandibles. Although only limited informative variation in body shape was found, the setation of the head provided several characters of potential taxonomic value. The larval biology of the ten ormyrid species inhabiting different galls is also summarised. Although Ormyrus larvae are usually solitary idiobiont ectoparasitoids of the host larva of various gall-inhabiting insects, evidence of secondary phytophagy was observed in some species. PMID:28144185

  9. Nutritional input from dinoflagellate symbionts in reef-building corals is minimal during planula larval life stage

    PubMed Central

    Kopp, Christophe; Domart-Coulon, Isabelle; Barthelemy, Dominique; Meibom, Anders

    2016-01-01

    Dispersion of larval offspring is of fundamental ecological importance to sessile marine organisms. Photosymbiotic planulae emitted by many reef-forming corals may travel over large distances before settling to form a new colony. It is not clear whether the metabolic requirements of these planula larvae are met exclusively with lipid and protein reservoirs inherited from the mother colony or when metabolic inputs from their endosymbiotic dinoflagellates become important. Pulse-chase experiments using [13C]bicarbonate and [15N]nitrate, combined with subcellular structural and isotopic imaging of freshly emitted symbiotic larvae from the coral Pocillopora damicornis, show that metabolic input from the dinoflagellates is minimal in the planulae compared with adult colonies. The larvae are essentially lecithotrophic upon emission, indicating that a marked shift in metabolic interaction between the symbiotic partners takes place later during ontogeny. Understanding the cellular processes that trigger and control this metabolic shift, and how climate change might influence it, is a key challenge in coral biology. PMID:27051861

  10. Fine-scale analysis of genetic structure in the brooding coral Seriatopora hystrix from the Red Sea

    NASA Astrophysics Data System (ADS)

    Maier, E.; Tollrian, R.; Nürnberger, B.

    2009-09-01

    The dispersal of gametes and larvae plays a key role in the population dynamics of sessile marine invertebrates. Species with internal fertilisation are often associated with very localised larval dispersal, which may cause small-scale patterns of neutral genetic variation. This study on the brooding coral Seriatopora hystrix from the Red Sea focused on the smallest possible scale: Two S. hystrix stands (~100 colonies each) near Dahab were completely sampled, mapped and analysed at five microsatellite markers. The sexual mode of reproduction, the likely occurrence of selfing and the level of immigration were in agreement with previous studies on this species. Contrary to previous findings, both stands were in Hardy-Weinberg proportions. Also, no evidence for spatially restricted larval dispersal within the sampled areas was found. Differences between this and previous studies on S. hystrix could reflect variation in life history or varying environmental conditions, which opens intriguing questions for future research.

  11. Molecular characterization of enolase gene from Taenia multiceps.

    PubMed

    Li, W H; Qu, Z G; Zhang, N Z; Yue, L; Jia, W Z; Luo, J X; Yin, H; Fu, B Q

    2015-10-01

    Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Foraging characteristics of larval bluegill sunfish and larval longear sunfish in the Kanawha River, West Virginia

    USGS Publications Warehouse

    Rider, S.J.; Margraf, F.J.

    1998-01-01

    We determined spatial and temporal foraging characteristics of larval bluegill sunfish (Lepomis macrochirus) and longear sunfish (Lepomis megalotis) in the upper Kanawha River, West Virginia during the summer of 1989. Stomach contents were examined among habitat types (i.e., main channel, main-channel border, and shoreline habitats) and depth (surface, middle, and bottom). Diet of larval bluegill sunfish was dominated by Chironomidae, temporally and spatially. Chironomidae dominated larval longear sunfish diet in main channel and main-channel border collections from all three depths. However, along the shoreline, larval longear sunfish diet was dominated by Cladocera.

  13. Larval descriptions of the family Porcellanidae: A worldwide annotated compilation of the literature (Crustacea, Decapoda)

    PubMed Central

    Vela, María José; González-Gordillo, Juan Ignacio

    2016-01-01

    Abstract For most of the family Porcellanidae, which comprises 283 species, larval development remains to be described. Full development has been only described for 52 species, while part of the larval cycle has been described for 45 species. The importance of knowing the complete larval development of a species goes beyond allowing the identification of larval specimens collected in the plankton. Morphological larval data also constitute a support to cladistic techniques used in the establishment of the phylogenetic status (see Hiller et al. 2006, Marco-Herrero et al. 2013). Nevertheless, the literature on the larval development of this family is old and widely dispersed and in many cases it is difficult to collect the available information on a particular taxon. Towards the aim of facilitating future research, all information available on the larval development of porcellanids has been compiled. Following the taxonomic checklist of Porcellanidae proposed by Osawa and McLaughlin (2010), a checklist has been prepared that reflects the current knowledge about larval development of the group including larval stages and the method used to obtain the larvae, together with references. Those species for which the recognised names have been changed according to Osawa and McLaughlin (2010) are indicated. PMID:27081332

  14. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    USGS Publications Warehouse

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  15. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution

    PubMed Central

    Bocak, Ladislav; Bocakova, Milada; Hunt, Toby; Vogler, Alfried P

    2008-01-01

    Neoteny, the maintenance of larval features in sexually mature adults, is a radical way of generating evolutionary novelty through shifts in relative timing of developmental programmes. While controlled by the environment in facultative neotenics, retention of larval features is obligatory in many species of Lycidae (net-winged beetles). They are studied here as an example of how developmental shifts and ecology interact to produce macroevolutionary impacts. We conducted a phylogenetic analysis of Lycidae based on DNA sequences from nuclear (18S and 28S rRNA) and mitochondrial (rrnL, cox1, cob and nad5) genes from a representative set of lineages (73 species), including 17 neotenic taxa. Major changes of basal relationships compared with those implied in the current classification generally supported three independent origins of neotenics in Lycidae. The southeast Asian Lyropaeinae and Ateliinae were in basal positions indicating evolutionary antiquity, also confirmed by molecular clock estimates, unlike the neotropical leptolycines nested within Calopterini and presumably much younger. neotenics exhibit typical K-selected traits including slow development, large body size, high investment in offspring and low dispersal. This correlated with low species richness and restricted ranges of neotenic lineages compared with their sisters. Yet, these factors did not impede the evolutionary persistence of affected lineages, even without reversals to fully metamorphosed forms, contradicting earlier suggestions of recent evolution from dispersive non-neotenics. PMID:18477542

  16. Description of third instars of Cochliomyia minima (Diptera: Calliphoridae) from West Indies, and updated identification key.

    PubMed

    Yusseff-Vanegas, S

    2014-09-01

    The blow fly Cochliomyia minima Shannon is endemic to the Caribbean, and it has great potential for forensic applications because of its abundance and broad distribution in the region. However, its larval stages are unknown. Here, I update previously published identification keys by describing for the first time the morphology of C. minima larvae. The larvae of C. minima are found to be very similar to those of Cochliomyia macellaria F., but the former can be easily identified by the oral sclerite completely pigmented, visible as a spike between mouth hooks. The description of C. minima larvae in this study will be useful to forensic scientists in the Caribbean region.

  17. Keys to the Larval and Adult Mosquitoes of Espiritu Santo (New Hebrides) with Notes on Their Bionomics

    DTIC Science & Technology

    1946-01-01

    coconut halves and husks , bamboo stumps, and artificial containers such as tin cans, sagging tent covers, tarpaulins, and wooden frames holding...The larvae are occasionally found with hebrideus breeding in water held in wooden frames or coconut husks , but they are also found in tree holes...HEBRIDEUS EDW. Larvae: This is a common larva found in tree holes, coconut husks and shells, sagging tents and tarpulins, wooden frames, rain

  18. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition

    PubMed Central

    Ormerod, Kiel G.; LePine, Olivia K.; Abbineni, Prabhodh S.; Bridgeman, Justin M.; Mercier, A. Joffre; Tattersall, Glenn J.

    2017-01-01

    ABSTRACT Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages. PMID:28277941

  19. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    PubMed

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. Larval Connectivity and the International Management of Fisheries

    PubMed Central

    Kough, Andrew S.; Paris, Claire B.; Butler, Mark J.

    2013-01-01

    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries. PMID:23762273

  1. Isolation and characterization of the stage-specific cytochrome b small subunit (CybS) of Ascaris suum complex II from the aerobic respiratory chain of larval mitochondria.

    PubMed

    Amino, Hisako; Osanai, Arihiro; Miyadera, Hiroko; Shinjyo, Noriko; Tomitsuka, Eriko; Taka, Hikari; Mineki, Reiko; Murayama, Kimie; Takamiya, Shinzaburo; Aoki, Takashi; Miyoshi, Hideto; Sakamoto, Kimitoshi; Kojima, Somei; Kita, Kiyoshi

    2003-05-01

    We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.

  2. Cannibalism and virus production in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae fed with two leaf substrates inoculated with Baculovirus spodoptera.

    PubMed

    Valicente, F H; Tuelher, E S; Pena, R C; Andreazza, R; Guimarães, M R F

    2013-04-01

    Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.

  3. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Morales-Ramos, Juan A; Rojas, M Guadalupe

    2015-10-01

    Crowding conditions of larvae may have a significant impact on commercial production efficiency of some insects, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, no reports were found on the effects of crowding on food utilization. The effect of larval density on food utilization efficiency of T. molitor larvae was studied by measuring efficiency of ingested food conversion (ECI), efficiency of digested food conversion (EDC), and mg of larval weight gain per gram of food consumed (LWGpFC) at increasing larval densities (12, 24, 36, 48, 50, 62, 74, and 96 larvae per dm(2)) over four consecutive 3-wk periods. Individual larval weight gain and food consumption were negatively impacted by larval density. Similarly, ECI, ECD, and LWGpFC were negatively impacted by larval density. Larval ageing, measured as four consecutive 3-wk periods, significantly and independently impacted ECI, ECD, and LWGpFC in a negative way. General linear model analysis showed that age had a higher impact than density on food utilization parameters of T. molitor larvae. Larval growth was determined to be responsible for the age effects, as measurements of larval mass density (in grams of larvae per dm(2)) had a significant impact on food utilization parameters across ages and density treatments (in number of larvae per dm(2)). The importance of mass versus numbers per unit of area as measurements of larval density and the implications of negative effects of density on food utilization for insect biomass production are discussed. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  4. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    PubMed

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  5. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  6. Condition of larval red snapper (Lutjanus campechanus) relative to environmental variability and the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Hernandez, F. J., Jr.; Filbrun, J. E.; Fang, J.; Ransom, J. T.

    2016-09-01

    The Deepwater Horizon oil spill (DWHOS) spatially and temporally overlapped with the spawning of many fish species, including Red Snapper, one of the most economically important reef fish in the Gulf of Mexico. To investigate potential impacts of the DWHOS on larval Red Snapper, data from a long-term ichthyoplankton survey off the coast of Alabama were used to examine: (1) larval abundances among pre-impact (2007-2009), impact (2010), and post-impact (2011, 2013) periods; (2) proxies for larval condition (size-adjusted morphometric relationships and dry weight) among the same periods; and (3) the effects of background environmental variation on larval condition. We found that larval Red Snapper were in poorer body condition during 2010, 2011, and 2013 as compared to the 2007-2009 period, a trend that was strongly (and negatively) related to variation in Mobile Bay freshwater discharge. However, larvae collected during and after 2010 were in relatively poor condition even after accounting for variation in freshwater discharge and other environmental variables. By contrast, no differences in larval abundance were detected during these survey years. Taken together, larval supply did not change relative to the timing of the DWHOS, but larval condition was negatively impacted. Even small changes in condition can affect larval survival, so these trends may have consequences for recruitment of larvae to juvenile and adult life stages.

  7. Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawai'i.

    PubMed

    Wren, Johanna L K; Kobayashi, Donald R

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

  8. Oyster larval transport in coastal Alabama: Dominance of physical transport over biological behavior in a shallow estuary

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Ki; Park, Kyeong; Powers, Sean P.; Graham, William M.; Bayha, Keith M.

    2010-10-01

    Among the various factors affecting recruitment of marine invertebrates and fish, larval transport may produce spatial and temporal patterns of abundance that are important determinants of management strategies. Here we conducted a field and modeling study to investigate the larval transport of eastern oyster, Crassostrea virginica, in Mobile Bay and eastern Mississippi Sound, Alabama. A three-dimensional larval transport model accounting for physical transport, biological movement of larvae, and site- and larval-specific conditions was developed. A hydrodynamic model was used to simulate physical transport, and biological movement was parameterized as a function of swimming and sinking velocity of oyster larvae. Site- and larval-specific conditions, including spawning location, spawning stock size, spawning time, and larval period, were determined based on the previous studies. The model reasonably reproduced the observed gradient in oyster spat settlement and bivalve larval concentration, although the model results were less dynamic than the data, probably owing to the simplified biological conditions employed in the model. A persistent gradient decreasing from west to east in the model results at time scales of overall average, season, and each survey in 2006 suggests that the larval supply may be responsible for the corresponding gradient in oyster spat settlement observed over the past 40 years. Biological movement increased larval retention near the spawning area, thus providing a favorable condition for local recruitment of oysters. Inclusion of biological movement, however, caused little change in the overall patterns of larval transport and still resulted in a west-east gradient, presumably because of frequent destratification in the shallow Mobile Bay system.

  9. Epidemiology, chronobiology and taxonomic updates of Rhinoestrus spp. infestation in horses of Sardinia Isle, Western Mediterranean (Italy).

    PubMed

    Mula, P; Pilo, C; Solinas, C; Pipia, A P; Varcasia, A; Francisco, I; Arias, M S; Paz Silva, A; Sánchez-Andrade, R; Morrondo, P; Díez-Baños, P; Scala, A

    2013-02-18

    From January to December 2008, 265 horses slaughtered in Sardinia (Italy) were examined for the presence of Rhinoestrus spp. (Diptera: Oestridae) through the examination of the nasal cavities and pharynges. Larvae were detected in 49% of the horses, with a mean intensity of infestation of 16.09 and abundance of 7.95. A total of 2108 larvae were collected, 66% of which were classified in first instar (L1), 22% in second instar (L2) and 12% in third instar (L3). The most frequent localization of larvae was the ethmoid, while the less one the larynx. According to the dynamics of Rhinoestrus larval stages, three periods in the chronobiology can be considered, the diapause (September-February) characterized by an absolute prevalence of first larval stage; the active phase of the endogenous phase (February-September) with an increase in the percentages of L2 and L3, and the exit phase (May-September), pointed by a further increase of L1. Morphological examination of L3 larvae revealed the presence of the Rhinoestrus purpureus features in 8% of the examined larvae, of 8% of the Rhinoestrus usbekistanicus features, while in 84% of the larvae were evidenced intermediate features. Contrastingly biomolecular analysis of the COI gene of the larvae evidenced uniformity at genetic level, confirming the presence of a unique species in the Mediterranean area. The results of the present paper, reveal the wide diffusion of rhinoestrosis among Sardinian horses, and suggest the need for applying appropriate control measures. Chemotherapy should be very useful if administered during the diapause period, for reducing the presence of L1 stages and interrupting thus the life cycle of this myiasis. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees

    PubMed Central

    Garcia-Gonzalez, Eva; Poppinga, Lena; Fünfhaus, Anne; Hertlein, Gillian; Hedtke, Kati; Jakubowska, Agata; Genersch, Elke

    2014-01-01

    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens. PMID:25080221

  11. Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile.

    PubMed

    Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe

    2016-01-01

    In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future.

  12. Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile

    PubMed Central

    Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe

    2016-01-01

    In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future. PMID:26751574

  13. Polymorphism at the ref(2)P locus in Drosophila melanogaster: preliminary experiments concerning the selection mechanisms involved in its maintenance.

    PubMed

    Fleuriet, A

    1981-02-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.

  14. How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression

    PubMed Central

    Boys, Craig A.; Robinson, Wayne; Miller, Brett; Pflugrath, Brett; Baumgartner, Lee J.; Navarro, Anna; Brown, Richard; Deng, Zhiqun

    2016-01-01

    ABSTRACT Egg and larval fish that drift downstream are likely to encounter river infrastructure and consequently rapid decompression, which may result in significant injury. Pressure-related injury (or barotrauma) has been shown in juvenile fishes when pressure falls sufficiently below that at which the fish has acclimated. There is a presumption that eggs and larvae may be at least as, if not more, susceptible to barotrauma injury because they are far less-developed and more fragile than juveniles, but studies to date report inconsistent results and none have considered the relationship between pressure change and barotrauma over a sufficiently broad range of pressure changes to enable tolerances to be properly determined. To address this, we exposed eggs and larvae of three physoclistic species to rapid decompression in a barometric chamber over a broad range of discrete pressure changes. Eggs, but not larvae, were unaffected by all levels of decompression tested. At exposure pressures below ∼40 kPa, or ∼40% of surface pressure, swim bladder deflation occurred in all species and internal haemorrhage was observed in one species. None of these injuries killed the fish within 24 h, but subsequent mortality cannot be excluded. Consequently, if larval drift is expected where river infrastructure is present, adopting design or operational features which maintain exposure pressures at 40% or more of the pressure to which drifting larvae are acclimated may afford greater protection for resident fishes. PMID:27230649

  15. The lateral line system in anuran tadpoles: neuromast morphology, arrangement, and innervation.

    PubMed

    Quinzio, Silvia; Fabrezi, Marissa

    2014-08-01

    Anuran larvae have been classified into four morphological types which reflect intraordinal macroevolution. At present, complete characterizations of the lateral line system are only available for Xenopus laevis (Type I) and Discoglossus pictus (Type III). We analyzed the morphology, arrangement, and innervation of neuromasts related to the anterodorsal and anteroventral lateral line nerves in 10 anuran species representing Types I, II, and IV with the aim of interpreting the existing variation and discussing the evolution of the lateral line in anuran larvae. We found: (1) the presence of two orbital and three mandibular neuromast lines in all anuran larvae studied, (2) the ventral arrangement of mandibular neuromast lines appears to have evolved convergently in Larval Types I and II, and the lateroventral arrangement of mandibular lines of neuromasts appears to have evolved in Larval Types III and IV; (3) interspecific variation in the organization, size, and number of sensory cells per neuromast within the lines; and (4) the supralabial extension of the Angular line in Lepidobatrachus spp. and the tentacular location of the Oral neuromasts in X. laevis are concomitant with their particular morphologies. Based on the variation described we find that the lateral line system in anuran larvae seems to have been maintained without significant changes, with the exception of Lepidobatrachus spp. and Xenopus. These unique features added to other of Lepidobatrachus tadpoles are sufficient to propose a new Larval Type (V). Copyright © 2014 Wiley Periodicals, Inc.

  16. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  17. Candidate ionotropic taste receptors in the Drosophila larva.

    PubMed

    Stewart, Shannon; Koh, Tong-Wey; Ghosh, Arpan C; Carlson, John R

    2015-04-07

    We examine in Drosophila a group of ∼35 ionotropic receptors (IRs), the IR20a clade, about which remarkably little is known. Of 28 genes analyzed, GAL4 drivers representing 11 showed expression in the larva. Eight drivers labeled neurons of the pharynx, a taste organ, and three labeled neurons of the body wall that may be chemosensory. Expression was not observed in neurons of one taste organ, the terminal organ, although these neurons express many drivers of the Gr (Gustatory receptor) family. For most drivers of the IR20a clade, we observed expression in a single pair of cells in the animal, with limited coexpression, and only a fraction of pharyngeal neurons are labeled. The organization of IR20a clade expression thus appears different from the organization of the Gr family or the Odor receptor (Or) family in the larva. A remarkable feature of the larval pharynx is that some of its organs are incorporated into the adult pharynx, and several drivers of this clade are expressed in the pharynx of both larvae and adults. Different IR drivers show different developmental dynamics across the larval stages, either increasing or decreasing. Among neurons expressing drivers in the pharynx, two projection patterns can be distinguished in the CNS. Neurons exhibiting these two kinds of projection patterns may activate different circuits, possibly signaling the presence of cues with different valence. Taken together, the simplest interpretation of our results is that the IR20a clade encodes a class of larval taste receptors.

  18. Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure.

    PubMed

    Sanvicente-Añorve, Laura; Zavala-Hidalgo, Jorge; Allende-Arandía, Eugenia; Hermoso-Salazar, Margarita

    2018-01-01

    Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them.

  19. Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure

    PubMed Central

    Zavala-Hidalgo, Jorge; Allende-Arandía, Eugenia; Hermoso-Salazar, Margarita

    2018-01-01

    Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them. PMID:29558478

  20. Short-term variations in mesozooplankton, ichthyoplankton, and nutrients associated with semi-diurnal tides in a patagonian Gulf

    NASA Astrophysics Data System (ADS)

    Castro, L. R.; Cáceres, M. A.; Silva, N.; Muñoz, M. I.; León, R.; Landaeta, M. F.; Soto-Mendoza, S.

    2011-03-01

    The relationships between the distribution of different zooplankton and ichthyoplankton stages and physical and chemical variables were studied using samples and data (CTD profiles, ADCP and current meter measurements, nutrients, mesozooplankton, ichthyoplankton) obtained from different strata during two 24-h cycles at two oceanographic stations in a Chilean Patagonian gulf during the CIMAR 10-Fiordos cruise (November, 2004). A station located at the Chacao Channel was dominated by tidal mixing and small increments in surface stratification during high tides, leading to decreased nutrient availability. This agreed with short periods of increased phytoplankton abundance during slack waters at the end of flood currents. Increases in larval density for all zooplankton and ichthyoplankton taxa corresponded to the flooding phases of the tidal cycle. When the larval density data were fit to a sinusoidal model, the regression coefficients were high, suggesting that tides are important features that modulate short-term variations in plankton abundance. All larvae did not vary synchronously with the tidal phase; rather, time lags were observed among species. The abundances of older individuals of the copepodite Rhincalanus nasutus and all zoea stages of the squat lobster Munida gregaria increased during night flood tides, whereas younger stages increased during daytime flood tides. At a station located at the Queullin Pass, which was dominated by vertical stratification patterns, the variations in peak larval density were better fitted to the semi-diurnal sea level fluctuations. Other evidence indicated internal tides below the pycnocline, which could promote larval transport in deeper layers. In the overall picture that emerges from this study, planktonic organisms from different habitats and phylogenetic origins seem to respond to the local tidal regimes. In some cases, this response might be beneficial, transporting these individuals inshore to areas that are rich in food during the peak biological production season.

  1. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata

    PubMed Central

    Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier

    2013-01-01

    Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects. PMID:23789084

  2. RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages

    PubMed Central

    Renuka, Pichili; Madhav, Maganti S.; Padmakumari, Ayyagari Phani; Barbadikar, Kalyani M.; Mangrauthia, Satendra K.; Vijaya Sudhakara Rao, Kola; Marla, Soma S.; Ravindra Babu, Vemuri

    2017-01-01

    The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches. PMID:28717048

  3. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function.

    PubMed

    Li, Yiyi; Piermarini, Peter M; Esquivel, Carlos J; Drumm, Hannah E; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti , the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  4. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function

    PubMed Central

    Li, Yiyi; Piermarini, Peter M.; Esquivel, Carlos J.; Drumm, Hannah E.; Schilkey, Faye D.; Hansen, Immo A.

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage. PMID:28536536

  5. Steinernema feltiae Intraspecific Variability: Infection Dynamics and Sex-Ratio.

    PubMed

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2014-03-01

    Entomopathogenic nematodes (EPNs) from the Heterorhabditidae and Steinernematidae families are well-known biocontrol agents against numerous insect pests. The infective juveniles (IJs) are naturally occurring in the soil and their success in locating and penetrating the host will be affected by extrinsic/intrinsic factors that modulate their foraging behavior. Characterizing key traits in the infection dynamics of EPNs is critical for establishing differentiating species abilities to complete their life cycles and hence, their long-term persistence, in different habitats. We hypothesized that phenotypic variation in traits related to infection dynamics might occur in populations belonging to the same species. To assess these intraspecific differences, we evaluated the infection dynamics of 14 populations of Steinernema feltiae in two experiments measuring penetration and migration in sand column. Intraspecific variability was observed in the percentage larval mortality, time to kill the insect, penetration rate, and sex-ratio in both experiments (P < 0.01). Larval mortality and nematode penetration percentage were lower in migration experiments than in penetration ones in most of the cases. The sex-ratio was significantly biased toward female-development dominance (P < 0.05). When the populations were grouped by habitat of recovery (natural areas, crop edge, and agricultural groves), nematodes isolated in natural areas exhibited less larval mortality and penetration rates than those from some types of agricultural associated soils, suggesting a possible effect of the habitat on the phenotypic plasticity. This study reinforces the importance of considering intraspecific variability when general biological and ecological questions are addressed using EPNs.

  6. Molecular characterization of prophenoloxidase-1 (PPO1) and the inhibitory effect of kojic acid on phenoloxidase (PO) activity and on the development of Zeugodacus tau (Walker) (Diptera: Tephritidae).

    PubMed

    Zhang, H-H; Luo, M-J; Zhang, Q-W; Cai, P-M; Idrees, A; Ji, Q-E; Yang, J-Q; Chen, J-H

    2018-06-22

    Phenoloxidase (PO) plays a key role in melanin biosynthesis during insect development. Here, we isolated the 2310-bp full-length cDNA of PPO1 from Zeugodacus tau, a destructive horticultural pest. qRT-polymerase chain reaction showed that the ZtPPO1 transcripts were highly expressed during larval-prepupal transition and in the haemolymph. When the larvae were fed a 1.66% kojic acid (KA)-containing diet, the levels of the ZtPPO1 transcripts significantly increased by 2.79- and 3.39-fold in the whole larvae and cuticles, respectively, while the corresponding PO activity was significantly reduced; in addition, the larval and pupal durations were significantly prolonged; pupal weights were lowered; and abnormal phenotypes were observed. An in vitro inhibition experiment indicated that KA was an effective competitive inhibitor of PO in Z. tau. Additionally, the functional analysis showed that 20E could significantly up-regulate the expression of ZtPPO1, induce lower pupal weight, and advance pupation. Knockdown of the ZtPPO1 gene by RNAi significantly decreased mRNA levels after 24 h and led to low pupation rates and incomplete pupae with abnormal phenotypes during the larval-pupal interim period. These results proved that PO is important for the normal growth of Z. tau and that KA can disrupt the development of this pest insect.

  7. Effect of Two Oil Dispersants on Larval Grass Shrimp (Palaemonetes pugio) Development.

    NASA Astrophysics Data System (ADS)

    Betancourt, P.; Key, P. B.; Chung, K. W.; DeLorenzo, M. E.

    2015-12-01

    The study focused on the effects that two oil dispersants, Corexit® EC9500A and Finasol® OSR52, have on the development of larval grass shrimp, (Palaemonetes pugio). The hypothesis was that Finasol would have a greater effect on larval grass shrimp development than Corexit. The experiment was conducted using 300 grass shrimp larvae that were 24 hours old. Each larva was exposed individually. In total, five sub-lethal concentrations were tested for each dispersant (control, 1.25, 2.50, 5.0,10.0 mg/L). The larvae were exposed for five days then transferred to clean seawater until metamorphosis into the juvenile stage. Key data measurements recorded included number of days to become juveniles, number of instars, length, dry weight, and mortality. Data from exposed shrimp was compared to the results of the control for each dispersant concentration. Corexit and Finasol exposure treatments of 5 mg/L and 10 mg/L showed significantly higher values for number of days and number of instars to reach juvenile status than values obtained from unexposed, control shrimp. Overall, mortality was higher in the Finasol treatments but the two dispersants did not respond significantly different from one another. Future studies are needed to determine the long term effects of dispersant exposure on all grass shrimp life stages and how any dispersant exposure impacts grass shrimp populations. Grass shrimp serve as excellent toxicity indicators of estuaries, and further studies will help to develop better oil spill mitigation techniques.

  8. Dispersal Patterns of Coastal Fish: Implications for Designing Networks of Marine Protected Areas

    PubMed Central

    Di Franco, Antonio; Gillanders, Bronwyn M.; De Benedetto, Giuseppe; Pennetta, Antonio; De Leo, Giulio A.; Guidetti, Paolo

    2012-01-01

    Information about dispersal scales of fish at various life history stages is critical for successful design of networks of marine protected areas, but is lacking for most species and regions. Otolith chemistry provides an opportunity to investigate dispersal patterns at a number of life history stages. Our aim was to assess patterns of larval and post-settlement (i.e. between settlement and recruitment) dispersal at two different spatial scales in a Mediterranean coastal fish (i.e. white sea bream, Diplodus sargus sargus) using otolith chemistry. At a large spatial scale (∼200 km) we investigated natal origin of fish and at a smaller scale (∼30 km) we assessed “site fidelity” (i.e. post-settlement dispersal until recruitment). Larvae dispersed from three spawning areas, and a single spawning area supplied post-settlers (proxy of larval supply) to sites spread from 100 to 200 km of coastline. Post-settlement dispersal occurred within the scale examined of ∼30 km, although about a third of post-settlers were recruits in the same sites where they settled. Connectivity was recorded both from a MPA to unprotected areas and vice versa. The approach adopted in the present study provides some of the first quantitative evidence of dispersal at both larval and post-settlement stages of a key species in Mediterranean rocky reefs. Similar data taken from a number of species are needed to effectively design both single marine protected areas and networks of marine protected areas. PMID:22355388

  9. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  10. Steinernema feltiae Intraspecific Variability: Infection Dynamics and Sex-Ratio

    PubMed Central

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2014-01-01

    Entomopathogenic nematodes (EPNs) from the Heterorhabditidae and Steinernematidae families are well-known biocontrol agents against numerous insect pests. The infective juveniles (IJs) are naturally occurring in the soil and their success in locating and penetrating the host will be affected by extrinsic/intrinsic factors that modulate their foraging behavior. Characterizing key traits in the infection dynamics of EPNs is critical for establishing differentiating species abilities to complete their life cycles and hence, their long-term persistence, in different habitats. We hypothesized that phenotypic variation in traits related to infection dynamics might occur in populations belonging to the same species. To assess these intraspecific differences, we evaluated the infection dynamics of 14 populations of Steinernema feltiae in two experiments measuring penetration and migration in sand column. Intraspecific variability was observed in the percentage larval mortality, time to kill the insect, penetration rate, and sex-ratio in both experiments (P < 0.01). Larval mortality and nematode penetration percentage were lower in migration experiments than in penetration ones in most of the cases. The sex-ratio was significantly biased toward female-development dominance (P < 0.05). When the populations were grouped by habitat of recovery (natural areas, crop edge, and agricultural groves), nematodes isolated in natural areas exhibited less larval mortality and penetration rates than those from some types of agricultural associated soils, suggesting a possible effect of the habitat on the phenotypic plasticity. This study reinforces the importance of considering intraspecific variability when general biological and ecological questions are addressed using EPNs. PMID:24644369

  11. Predation on larval Atlantic herring (Clupea harengus) in inshore waters of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena; Peck, Myron A.; Oesterwind, Daniel; Polte, Patrick

    2017-11-01

    In fishery science, early life-stage survival and development are regarded as major factors driving the population dynamics of marine fishes. During the last century, the main research focus has been on the spatio-temporal match of larval fish and appropriate food (bottom-up processes). However, these field studies are often criticised for their limited capability to disentangle their results from mortality caused by predation since these top-down mechanisms are rarely studied. We examined the predation on herring (Clupea harengus) larvae in a Baltic inshore lagoon by investigating the spatio-temporal overlap of larval herring and their potential predators such as the dominant threespine stickleback (Gasterosteus aculeatus) in distinct habitats (sublittoral and littoral areas) using a set of different gears and sampling techniques. Despite significant spatial and temporal predator-prey overlap, stomach analyses suggested that very few larvae were consumed by sticklebacks, even if projected to the entire study area and season. Other well-known predators of clupeid larvae such as gelatinous plankton occur later in the year after young herring have migrated out of the system. The observed predation on herring larvae was much less than expected and appears being a minor factor in determining herring reproduction success in our study area, particularly if compared to other causes of mortality such as egg predation. Providing a relatively good shelter from predation might be a key element making transitional waters valuable nursery grounds for the offspring of migrating marine fish species.

  12. Plant chemical defence: a partner control mechanism stabilising plant - seed-eating pollinator mutualisms

    PubMed Central

    Ibanez, Sébastien; Gallet, Christiane; Dommanget, Fanny; Després, Laurence

    2009-01-01

    Background Mutualisms are inherently conflictual as one partner always benefits from reducing the costs imposed by the other. Despite the widespread recognition that mutualisms are essentially reciprocal exploitation, there are few documented examples of traits that limit the costs of mutualism. In plant/seed-eating pollinator interactions the only mechanisms reported so far are those specific to one particular system, such as the selective abortion of over-exploited fruits. Results This study shows that plant chemical defence against developing larvae constitutes another partner sanction mechanism in nursery mutualisms. It documents the chemical defence used by globeflower Trollius europaeus L. (Ranunculaceae) against the seed-eating larvae of six pollinating species of the genus Chiastocheta Pokorny (Anthomyiidae). The correlative field study carried out shows that the severity of damage caused by Chiastocheta larvae to globeflower fruits is linked to the accumulation in the carpel walls of a C-glycosyl-flavone (adonivernith), which reduces the larval seed predation ability per damaged carpel. The different Chiastocheta species do not exploit the fruit in the same way and their interaction with the plant chemical defence is variable, both in terms of induction intensity and larval sensitivity to adonivernith. Conclusion Adonivernith accumulation and larval predation intensity appear to be both the reciprocal cause and effect. Adonivernith not only constitutes an effective chemical means of partner control, but may also play a key role in the sympatric diversification of the Chiastocheta genus. PMID:19887006

  13. Evaluation of Metals Release from Oxidation of Fly Ash during Dredging of the Emory River, TN

    DTIC Science & Technology

    2011-08-01

    from an oil -free source (trickle flow, 2-5 bubbles per second) to provide some turbulent flow and to maintain dissolved oxygen levels. More rigorous...larval and (b) juvenile Pimephales promelas. ERDC/EL TR-11-9 79 five juvenile fish and was rigorously aerated from an oil -free source to...epithelial width. In contrast, juvenile pike from a reference lake had significantly thicker gill filaments compared to those exposed to Key Lake uranium

  14. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast.

    PubMed

    Klepsatel, Peter; Procházka, Emanuel; Gáliková, Martina

    2018-06-19

    Conditions experienced during development have often long-lasting effects persisting into adulthood. In Drosophila, it is well-documented that larval crowding influences fitness-related traits such as body size, starvation resistance and lifespan. However, the underlying mechanism of this phenomenon is not well understood. Here, we show that the effects of increased larval density on life-history traits can be explained by decreased yeast availability in the diet during development. Yeast-poor larval diet alters various life-history traits and mimics the effects of larval crowding. In particular, reduced amount of yeast in larval diet prolongs developmental time, reduces body size, increases body fat content and starvation resistance, and prolongs Drosophila lifespan. Conversely, the effects of larval crowding can be rescued by increasing the concentration of the dietary yeast in the diet during development. Altogether, our results show that the well-known effects of larval crowding on life-history traits are mainly caused by the reduced availability of dietary yeasts due to increased larval competition. Copyright © 2018. Published by Elsevier Inc.

  15. Dynamics of population densities and vegetation associations of Anopheles albimanus larvae in a coastal area of southern Chiapas, Mexico.

    PubMed

    Rodríguez, A D; Rodríguez, M H; Meza, R A; Hernández, J E; Rejmankova, E; Savage, H M; Roberts, D R; Pope, K O; Legters, L

    1993-03-01

    Spatial and seasonal variations on Anopheles albimanus larval densities and their plant associations were investigated in larval habitats in southern Mexico between April 1989 and May 1990. Thirty-four plant groups were dominant in larval habitats. Dense larval populations were associated with 3 genera of plants, Cynodon, Echinocloa and Fimbristylis and no larvae were found in habitats with Salvinia and Rhizophora. Low significant positive or negative associations were documented with the other 12 plant genera. Larval habitats were classified according to the morphology of their dominant plants. Higher larval densities were observed in the groups characterized by relatively short emergent vegetation. The distribution of habitat-types within 5 identified vegetation units showed a significantly dependent relationship. For the entire study period, highest larval densities were detected in flooded pasture/grassland vegetation units. For all vegetation units, higher larval densities were found when the dominant plant type covered between 25-50% of the breeding site. The integration of data from habitat-types into vegetation units did not result in loss of information.

  16. Quantitative species-level ecology of reef fish larvae via metabarcoding.

    PubMed

    Kimmerling, Naama; Zuqert, Omer; Amitai, Gil; Gurevich, Tamara; Armoza-Zvuloni, Rachel; Kolesnikov, Irina; Berenshtein, Igal; Melamed, Sarah; Gilad, Shlomit; Benjamin, Sima; Rivlin, Asaph; Ohavia, Moti; Paris, Claire B; Holzman, Roi; Kiflawi, Moshe; Sorek, Rotem

    2018-02-01

    The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.

  17. Parental care masks a density-dependent shift from cooperation to competition among burying beetle larvae.

    PubMed

    Schrader, Matthew; Jarrett, Benjamin J M; Kilner, Rebecca M

    2015-04-01

    Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  18. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    PubMed

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.

  19. The importance of accounting for larval detectability in mosquito habitat-association studies.

    PubMed

    Low, Matthew; Tsegaye, Admasu Tassew; Ignell, Rickard; Hill, Sharon; Elleby, Rasmus; Feltelius, Vilhelm; Hopkins, Richard

    2016-05-04

    Mosquito habitat-association studies are an important basis for disease control programmes and/or vector distribution models. However, studies do not explicitly account for incomplete detection during larval presence and abundance surveys, with potential for significant biases because of environmental influences on larval behaviour and sampling efficiency. Data were used from a dip-sampling study for Anopheles larvae in Ethiopia to evaluate the effect of six factors previously associated with larval sampling (riparian vegetation, direct sunshine, algae, water depth, pH and temperature) on larval presence and detectability. Comparisons were made between: (i) a presence-absence logistic regression where samples were pooled at the site level and detectability ignored, (ii) a success versus trials binomial model, and (iii) a presence-detection mixture model that separately estimated presence and detection, and fitted different explanatory variables to these estimations. Riparian vegetation was consistently highlighted as important, strongly suggesting it explains larval presence (-). However, depending on how larval detectability was estimated, the other factors showed large variations in their statistical importance. The presence-detection mixture model provided strong evidence that larval detectability was influenced by sunshine and water temperature (+), with weaker evidence for algae (+) and water depth (-). For larval presence, there was also some evidence that water depth (-) and pH (+) influenced site occupation. The number of dip-samples needed to determine if larvae were likely present at a site was condition dependent: with sunshine and warm water requiring only two dips, while cooler water and cloud cover required 11. Environmental factors influence true larval presence and larval detectability differentially when sampling in field conditions. Researchers need to be more aware of the limitations and possible biases in different analytical approaches used to associate larval presence or abundance with local environmental conditions. These effects can be disentangled using data that are routinely collected (i.e., multiple dip samples at each site) by employing a modelling approach that separates presence from detectability.

  20. Larval fish assemblages across an upwelling front: Indication for active and passive retention

    NASA Astrophysics Data System (ADS)

    Tiedemann, Maik; Brehmer, Patrice

    2017-03-01

    In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M. ocellatus revealed that a larval fish species may adapt its behavior to the local environment and do not necessarily follow a diurnal cycle. Field observations are essential to be integrated in larval drift models, since the vertical and horizontal larval distribution will have major consequences for survival. Comprehending larval survival mechanisms is necessary for the ultimate goal to understand and predict recruitment.

  1. Characterisation of larval habitats, species composition and factors associated with the seasonal abundance of mosquito fauna in Gezira, Sudan.

    PubMed

    Mahgoub, Mostafa M; Kweka, Eliningaya J; Himeidan, Yousif E

    2017-02-08

    Larval source management (LSM), which requires an understanding of the ecology and composition of the local mosquito fauna, is an important parameter in successful vector control programmes. The present study was conducted to understand the distribution of larval habitats, species composition and factors associated with the seasonal abundance of mosquito larvae in Gezira irrigation Scheme in Gezira state, central Sudan. Cross-sectional larval surveys were carried out in the communities of Barakat (urban) and El-Kareiba (semi-urban), in Wad Madani, Gezira. A standard dipper was used for sampling larvae in all possible breeding sites and enamel bowls were employed for larvae sorting. Habitats were characterised using physical features and all larvae specimens were identified morphologically. A total of 331 larval habitats were surveyed, out of which 166 were found to be positive breeding sites for Anopheles (56.78%), Culicinae (29.67%) and Aedes (13.55%) species. A total of 5 525 larvae collected were categorised as Culex (2 617, 47.37%), Anopheles (2 600, 47.06%) and Aedes (308, 5.57%). There was a high number of positive habitats during the rainy season, while the lowest proportion was reported during the hot dry season, in both study sites (Barakat [χ 2  = 10.641, P = 0.0090], El-Kareiba [χ 2  = 23.765, P = 0.0001]). The main breeding site for Anopheles larvae was leaking water pipes (51.5%), followed by irrigation channels (34.2%), hoof prints (6.4%), tyre tracks (5.5%) and water tanks (2.4%). A logistic regression analysis showed that the abundance of Anopheles larvae was reduced by the presence of predators (backswimmers, tadpoles) and grass cover. Adult productivity (number of adult females emerged/m 2 ) was not homogeneousfor all habitats; the highest productivity was found in irrigation channels (0.78 females/m 2 ) for Anopheles, and in septic tanks (2.86 females/m 2 ) for Culicinae and (0.86 females/m 2 ) for Aedes. Anopheles arabiensis was found to be the dominant Anopheles species. This study documented the presence of An. funestus in central Sudan for the first time. Maintaining leaking water pipes and adopting intermittent irrigation are recommended for LSM, as these surveyed habitats represent the main source of maintaining the local mosquito population during the hot dry season.

  2. Vegetative substrates used by larval northern pike in Rainy and Kabetogama Lakes, Minnesota

    Treesearch

    Anne L. Timm; Rodney B. Pierce

    2015-01-01

    Our objective was to identify characteristics of aquatic vegetative communities used as larval northern pike nursery habitat in Rainy and Kabetogama lakes, glacial shield reservoirs in northern Minnesota. Quatrefoil light traps fished at night were used to sample larval northern pike in 11 potential nursery areas. Larval northern pike were most commonly sampled among...

  3. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  4. Variability in size-selective mortality obscures the importance of larval traits to recruitment success in a temperate marine fish.

    PubMed

    Murphy, Hannah M; Warren-Myers, Fletcher W; Jenkins, Gregory P; Hamer, Paul A; Swearer, Stephen E

    2014-08-01

    In fishes, the growth-mortality hypothesis has received broad acceptance as a driver of recruitment variability. Recruitment is likely to be lower in years when the risk of starvation and predation in the larval stage is greater, leading to higher mortality. Juvenile snapper, Pagrus auratus (Sparidae), experience high recruitment variation in Port Phillip Bay, Australia. Using a 5-year (2005, 2007, 2008, 2010, 2011) data set of larval and juvenile snapper abundances and their daily growth histories, based on otolith microstructure, we found selective mortality acted on larval size at 5 days post-hatch in 4 low and average recruitment years. The highest recruitment year (2005) was characterised by no size-selective mortality. Larval growth of the initial larval population was related to recruitment, but larval growth of the juveniles was not. Selective mortality may have obscured the relationship between larval traits of the juveniles and recruitment as fast-growing and large larvae preferentially survived in lower recruitment years and fast growth was ubiquitous in high recruitment years. An index of daily mortality within and among 3 years (2007, 2008, 2010), where zooplankton were concurrently sampled with ichthyoplankton, was related to per capita availability of preferred larval prey, providing support for the match-mismatch hypothesis. In 2010, periods of low daily mortality resulted in no selective mortality. Thus both intra- and inter-annual variability in the magnitude and occurrence of selective mortality in species with complex life cycles can obscure relationships between larval traits and population replenishment, leading to underestimation of their importance in recruitment studies.

  5. The influence of urban heat islands and socioeconomic factors on the spatial distribution of Aedes aegypti larval habitats.

    PubMed

    De Azevedo, Thiago S; Bourke, Brian Patrick; Piovezan, Rafael; Sallum, Maria Anice M

    2018-05-08

    We addressed the potential associations among the temporal and spatial distribution of larval habitats of Aedes (Stegomyia) aegypti, the presence of urban heat islands and socioeconomic factors. Data on larval habitats were collected in Santa Bárbara d'Oeste, São Paulo, Brazil, from 2004 to 2006, and spatial and temporal variations were analysed using a wavelet-based approach. We quantified urban heat islands by calculating surface temperatures using the results of wavelet analyses and grey level transformation from Thematic Mapper images (Landsat 5). Ae. aegypti larval habitats were geo-referenced corresponding to the wavelet analyses to test the potential association between geographical distribution of habitats and surface temperature. In an inhomogeneous spatial point process, we estimated the frequency of occurrence of larval habitats in relation to temperature. The São Paulo State Social Vulnerability Index in the municipality of Santa Barbára d'Oeste was used to test the potential association between presence of larval habitats and social vulnerability. We found abundant Ae. aegypti larval habitats in areas of higher surface temperature and social vulnerability and fewer larval habitats in areas with lower surface temperature and social vulnerability.

  6. Lecithotrophic behaviour in zoea and megalopa larvae of the ghost shrimp Lepidophthalmus siriboia Felder and Rodrigues, 1993 (Decapoda: Callianassidae).

    PubMed

    Abrunhosa, Fernando A; Simith, Darlan J B; Palmeira, Carlos A M; Arruda, Danielle C B

    2008-12-01

    Food supply is considered critical for a successful culturing of decapod larvae. However, some species may present yolk reserve sufficient to complete their larval development without external food supply (known as lecithotrophic larval development). In the present study, two experiments were carried out in order to verify whether the callianassid Lepidophthalmus siriboia have lecithotrophic behaviour or, if they need external food for their larval development: Experiment 1, larvae submitted to an initial feeding period and Experiment 2, larvae submitted to an initial starvation period. High survival rate was observed in both experiments, in which only 2 megalopae and 1 zoea III died. These results strongly suggest that larvae of L. siriboia are lecithotrophic as they have sufficiently large yolk reserve to complete their larval development, while the megalopa stage shows facultative lecithotrophy. The larval periods of each stage of the treatments were quite similar and, despite some significant differences in some larval periods, these can be related probably to larval rearing conditions, abiotic factors or, individual variability of larval health, as well as stress caused to the ovigerous females during embryogenesis.

  7. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  8. Patterns of Larval Sucker Emigration from the Sprague and Lower Williamson Rivers of the Upper Klamath Basin, Oregon, Prior to the Removal of Chiloquin Dam - 2006 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.; Markle, Douglas F.

    2009-01-01

    In 2006, we collected larval Lost River sucker Deltistes luxatus (LRS), shortnose sucker Chasmistes brevirostris (SNS), and Klamath largescale sucker Catostomus snyderi (KLS) emigrating from spawning areas in the Williamson and Sprague Rivers. This work is part of a multi-year effort to characterize the relative abundance, drift timing, and length frequencies of larval suckers in this watershed prior to the removal of Chiloquin Dam on the lower Sprague River. Additional larval drift samples were collected from the Fremont Bridge on Lakeshore Drive on the south end of Upper Klamath Lake near its outlet to the Link River. Because of difficulties in distinguishing KLS larvae from SNS larvae, individuals identified as either of these two species were grouped together and reported as KLS-SNS in this report. We found that larval densities varied by site with the highest densities being collected at the most upstream site on the Sprague River at river kilometer (rkm) 108.0 near Beatty, Oregon (Beatty), and the most downstream sites near Chiloquin, Oregon; one site on the Sprague River at rkm 0.7 (Chiloquin) and the other site on the Williamson River at rkm 7.4 (Williamson). Larval catches were relatively small and sporadic at two other sites on the Sprague River located between Chiloquin and Beatty (Power Station at rkm 9.5 and Lone Pine at rkm 52.7) and one site on the Sycan River at rkm 4.7. Most larvae (79 percent) collected in 2006 were identified as LRS. More larvae and eggs were collected at Chiloquin than at any other site. The seasonal timing of larval drift varied by location; larvae generally were captured earlier at upstream sites than at downstream sites. Cumulative catch percentages of drifting larvae suggest that larval LRS emigrated earlier than KLS-SNS larvae at every site. Drift of LRS larvae at Beatty began 3 to 4 weeks earlier than at Chiloquin or Williamson. At Chiloquin, peak larval catches occurred 3 and 5 weeks after peak egg catches. The daily peak in larval drift at Chiloquin occurred approximately 1.5 to 2.0 hours after sunset. Nightly peak larval drift varied by location; larvae were captured earlier in the evening at sites closer to known spawning locations than sites farther away from these areas. The highest numerical catches of sucker-sized eggs were at Chiloquin indicating that this site is in close proximity to a spawning area. Numerical catches of older, more developed larval and juvenile suckers also were highest at Chiloquin. This may be due to the turbulent nature of this site, which could have swept larger fish into the drift. Proportional catches of older, more developed larval and juvenile suckers were highest at Sycan, Lone Pine, Power Station, and Fremont Bridge. This indicates these sites are located nearer to sucker nursery areas rather than spawning areas. Very few larval LRS were collected at Fremont Bridge at the south end of Upper Klamath Lake. Larval KLS-SNS densities at Fremont Bridge were the third highest of the seven sampling sites. Peak drift of larval KLS-SNS at Fremont Bridge occurred the week after peak drift of larval KLS-SNS at Williamson. Although inter-annual variation continues to appear in the larval drift data, our results continue to show consistent patterns of larval emigration in the drainage basin. In combination with data collected from the spawning movements and destinations of radio-tagged and PIT-tagged adult suckers, this larval drift data will provide a baseline standard by which to determine the effects of dam removal on the spawning distribution of endangered Klamath Basin suckers in the Sprague River.

  9. Eggshells as an index of aedine mosquito production. 2: Relationship of Aedes taeniorhynchus eggshell density to larval production.

    PubMed

    Addison, D S; Ritchie, S A; Webber, L A; Van Essen, F

    1992-03-01

    To test if eggshell density could be used as an index of aedine mosquito production, we compared eggshell density with the larval production of Aedes taeniorhynchus in Florida mangrove basin forests. Quantitative (n = 7) and categorical (n = 34) estimates of annual larval production were regressed against the number of eggshells per cc of soil. Significant regressions were obtained in both instances. Larval production was concentrated in zones with the highest eggshell density. We suggest that eggshell density and distribution can be used to identify oviposition sites and the sequence of larval appearance.

  10. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    PubMed

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  11. Testing the enemy release hypothesis: abundance and distribution patterns of helminth communities in grey mullets (Teleostei: Mugilidae) reveal the success of invasive species.

    PubMed

    Sarabeev, Volodimir; Balbuena, Juan Antonio; Morand, Serge

    2017-09-01

    The abundance and aggregation patterns of helminth communities of two grey mullet hosts, Liza haematocheilus and Mugil cephalus, were studied across 14 localities in Atlantic and Pacific marine areas. The analysis matched parasite communities of (i) L. haematocheilus across its native and introduced populations (Sea of Japan and Sea of Azov, respectively) and (ii) the introduced population of L. haematocheilus with native populations of M. cephalus (Mediterranean, Azov-Black and Japan Seas). The total mean abundance (TMA), as a feature of the infection level in helminth communities, and slope b of the Taylor's power law, as a measure of parasite aggregation at the infra and component-community levels, were estimated and compared between host species and localities using ANOVA. The TMA of the whole helminth community in the introduced population of L. haematocheilus was over 15 times lower than that of the native population, but the difference was less pronounced for carried (monogeneans) than for acquired (adult and larval digeneans) parasite communities. Similar to the abundance pattern, the species distribution in communities from the invasive population of L. haematocheilus was less aggregated than from its native population for endoparasitic helminths, including adult and larval digeneans, while monogeneans showed a similar pattern of distribution in the compared populations of L. haematocheilus. The aggregation level of the whole helminth community, endoparasitic helminths, adult and larval digeneans was lower in the invasive host species in comparison with native ones as shown by differences in the slope b. An important theoretical implication from this study is that the pattern of parasite aggregation may explain the success of invasive species in ecosystems. Because the effects of parasites on host mortality are likely dose-dependent, the proportion of susceptible host individuals in invasive species is expected to be lower, as the helminth distribution in the invasive host was featured by a higher number of uninfected hosts and a shorter distribution tail when compared with native species. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  12. Spatial and seasonal patterns of ichthyoplankton assemblages in the Haizhou Bay and its adjacent waters of China

    NASA Astrophysics Data System (ADS)

    Li, Zengguang; Ye, Zhenjiang; Wan, Rong

    2015-12-01

    Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring <20 m, and the middle bay assemblage generally occurred in the middle of bay, with depths measuring 20 to 40 m. Spatial and seasonal variations in ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.

  13. The study of muscle remodeling in Drosophila metamorphosis using in vivo microscopy and bioimage informatics

    PubMed Central

    2012-01-01

    Background Metamorphosis in insects transforms the larval into an adult body plan and comprises the destruction and remodeling of larval and the generation of adult tissues. The remodeling of larval into adult muscles promises to be a genetic model for human atrophy since it is associated with dramatic alteration in cell size. Furthermore, muscle development is amenable to 3D in vivo microscopy at high cellular resolution. However, multi-dimensional image acquisition leads to sizeable amounts of data that demand novel approaches in image processing and analysis. Results To handle, visualize and quantify time-lapse datasets recorded in multiple locations, we designed a workflow comprising three major modules. First, the previously introduced TLM-converter concatenates stacks of single time-points. The second module, TLM-2D-Explorer, creates maximum intensity projections for rapid inspection and allows the temporal alignment of multiple datasets. The transition between prepupal and pupal stage serves as reference point to compare datasets of different genotypes or treatments. We demonstrate how the temporal alignment can reveal novel insights into the east gene which is involved in muscle remodeling. The third module, TLM-3D-Segmenter, performs semi-automated segmentation of selected muscle fibers over multiple frames. 3D image segmentation consists of 3 stages. First, the user places a seed into a muscle of a key frame and performs surface detection based on level-set evolution. Second, the surface is propagated to subsequent frames. Third, automated segmentation detects nuclei inside the muscle fiber. The detected surfaces can be used to visualize and quantify the dynamics of cellular remodeling. To estimate the accuracy of our segmentation method, we performed a comparison with a manually created ground truth. Key and predicted frames achieved a performance of 84% and 80%, respectively. Conclusions We describe an analysis pipeline for the efficient handling and analysis of time-series microscopy data that enhances productivity and facilitates the phenotypic characterization of genetic perturbations. Our methodology can easily be scaled up for genome-wide genetic screens using readily available resources for RNAi based gene silencing in Drosophila and other animal models. PMID:23282138

  14. On the Ecology and Conservation of Sericinus montelus (Lepidoptera: Papilionidae) – Its Threats in Xiaolongshan Forests Area (China)

    PubMed Central

    Li, Xiushan; Luo, Youqing; Yang, Haiyu; Yang, Qingsen; Settele, Josef; Schweiger, Oliver

    2016-01-01

    Contents and Methods Here we present a detailed analysis of the life history, mobility and habitat requirements of the butterfly Sericinus montelus on the basis of extensive field observations, experimental breeding, capture-mark- recapture (CMR) and transect surveys. Life History We found that S. montelus has three generations per year and overwinters as pupae on shrub branches in Xiaolongshan. The adults of first generation have a peak of emergence in late April. The second generation emerges at the end of June and the third in early to middle August. Within the study region, larvae of S. montelus are monophagous on Aristolochia contorta. Adults fly slowly and lay eggs in clusters. Key Factors Life tables show that natural enemies and human activities such as mowing, weeding and trampling during the egg and larval stages are key factors causing high mortality, killing up to 43% of eggs and 72% of larvae thereby limiting population growth and recovery. Population Ecology The populations of S. montelus in Xiaolongshan have a rather patchy distribution. According to CMR data, adults fly a maximum distance of 700m within a lifespan of 6 days. The host plant A. contorta, grows along the low banks of fields, irrigation ditches and paths, and can be highly affected by agricultural activities, like mowing, weeding and herding, which impact larval survival. Population Maintenance For S. montelus should mainly focus on reducing agricultural threats to the host plant A. contorta and on increasing habitat connectivity. PMID:27002639

  15. Does White Clover (Trifolium repens) Abundance in Temperate Pastures Determine Sitona obsoletus (Coleoptera: Curculionidae) Larval Populations?

    PubMed

    McNeill, Mark R; van Koten, Chikako; Cave, Vanessa M; Chapman, David; Hodgson, Hamish

    2016-01-01

    To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown in ryegrass ( Lolium perenne ) (cv. Nui) sown at either 6 or 30 kg/ha and white clover ( Trifolium repens ) sown at a uniform rate of 8 kg/ha. This provided a range of % white clover content to investigate CRW population establishment and impacts on white clover survival. Larval sampling was carried out in spring (October) when larval densities are near their spring peak at Lincoln (Canterbury, New Zealand) with % clover measured in autumn (April) and spring (September) of each year. Overall, mean larval densities measured in spring 2012-2015 were 310, 38, 59, and 31 larvae m -2 , respectively. There was a significant decline in larval populations between 2012 and 2013, but spring populations were relatively uniform thereafter. The mean % white clover measured in autumns of 2012 to 2015 was 17, 10, 3, and 11%, respectively. In comparison, mean spring % white clover from 2012 to 2015, averaged c. 5% each year. Analysis relating spring (October) larval populations to % white clover measured in each plot in autumn (April) found the 2012 larval population to be statistically significantly larger in the ryegrass 6 kg/ha plots than 30 kg/ha plots. Thereafter, sowing rate had no significant effect on larval populations. From 2013 to 2015, spring larval populations had a negative relationship with the previous autumn % white clover with the relationship highly significant for the 2014 data. When CRW larval populations in spring 2013 to 2015 were predicted from the 2013 to 2015 autumn % white clover, respectively, based on their positive relationship in 2012, the predicted densities were substantially larger than those observed. Conversely, when 2015 spring larval data and % clover was regressed against 2012-2014 larval populations, observed densities tended to be higher than predicted, but the numbers came closer to predicted for the 2013 and 2014 populations. These differences are attributed to a CRW population decline that was not accounted by % white clover changes, the CRW decline most likely due to biological control by the Braconid endoparasitoid Microctonus aethiopoides , which showed incremental increases in parasitism between 2012 and 2015, which in 2015 averaged 93%.

  16. An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis, in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus

    Treesearch

    Paul.L. Dallara; Mary.L. Flint; Steven. J. Seybold

    2012-01-01

    By measuring and analyzing larval head capsule widths, we determined that a northern California population of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), has three larval instars. We also developed rules to classify P. juglandis larval instars. Overlap in the ranges of widths among...

  17. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions.

    PubMed

    Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida

    2012-08-02

    The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply led to enhance larval and production and larger mosquitoes with longer longevity and higher biting frequency. Thus, larval food availability can alter important biological traits that influence the vectorial capacity of An. darlingi.

  18. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae.

    PubMed

    Kim, Wontae; Bae, Sungwoo; Kim, Ayoung; Park, Kwanho; Lee, Sangbeom; Choi, Youngcheol; Han, Sangmi; Park, Younghan; Koh, Youngho

    2011-06-01

    To investigate the molecular scavenging capabilities of the larvae of Hermetia illucens, two serine proteases (SPs) were cloned and characterized. Multiple sequence alignments and phylogenetic tree analysis of the deduced amino acid sequences of Hi-SP1 and Hi-SP2 were suggested that Hi-SP1 may be a chymotrypsin- and Hi-SP2 may be a trypsin-like protease. Hi-SP1 and Hi-SP2 3-D homology models revealed that a catalytic triad, three disulfide bonds, and a substrate-binding pocket were highly conserved, as would be expected of a SP. E. coli expressed Hi-SP1 and Hi-SP2 showed chymotrypsin or trypsin activities, respectively. Hi-SP2 mRNAs were consistently expressed during larval development. In contrast, the expression of Hi-SP1 mRNA fluctuated between feeding and molting stages and disappeared at the pupal stages. These expression pattern differences suggest that Hi-SP1 may be a larval specific chymotrypsin-like protease involved with food digestion, while Hi-SP2 may be a trypsin-like protease with diverse functions at different stages.

  19. Quantifying rates of evolutionary adaptation in response to ocean acidification.

    PubMed

    Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W

    2011-01-01

    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.

  20. Temperature effects on egg development and larval condition in the lesser sandeel, Ammodytes marinus

    NASA Astrophysics Data System (ADS)

    Régnier, Thomas; Gibb, Fiona M.; Wright, Peter J.

    2018-04-01

    Understanding the influence of temperature on egg development and larval condition in planktonic fish is a prerequisite to understanding the phenological impacts of climate change on marine food-webs. The lesser sandeel, Ammodytes marinus (Raitt 1934), is a key trophic link between zooplankton and many piscivorous fish, sea birds and mammals in the northeast Atlantic. Temperature-egg development relationships were determined for batches of lesser sandeel eggs. Hatching began as early as 19 days post fertilisation at 11 °C and as late as 36 days post fertilisation at 6 °C, which is faster than egg development rates reported for closely related species at the lower end of the tested temperature range. The average size of newly hatched larvae decreased with increasing incubation temperatures in early hatching larvae, but this effect was lost by the middle of the hatching period. While the study revealed important temperature effects on egg development rate, predicted variability based on the range of temperatures eggs experience in the field, suggests it is only a minor contributor to the observed inter-annual variation in hatch date.

  1. Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei

    PubMed Central

    Hanington, Patrick C.; Lun, Cheng-Man; Adema, Coen M; Loker, Eric S

    2010-01-01

    Successful colonization of a compatible snail host by a digenetic trematode miracidium initiates a complex, proliferative development program requiring weeks to reach culmination in the form of production of cercariae which, once started, may persist for the remainder of the life span of the infected snail. How are such proliferative and invasive parasites able to circumvent host defenses and establish chronic infections? Using a microarray designed to monitor the internal defense and stress-related responses of the freshwater snail Biomphalaria glabrata, we have undertaken a time course study to monitor snail responses following exposure to two different trematode species to which the snail is susceptible: the medically important Schistosoma mansoni, exemplifying sporocyst production in its larval development, or Echinostoma paraensei, representing an emphasis on rediae production in its larval development. We sampled eight time points (0.5, 1, 2, 4, 8, 16 and 32 days p.i.) that cover the period required for cercariae to be produced. Following exposure to S. mansoni, there was a preponderance of up-regulated over down-regulated array features through 2 days p.i. but by 4 days p.i. and thereafter, this pattern was strongly reversed. For E. paraensei, there was a preponderance of down-regulated array features over up-regulated features at even 0.5 days p.i., a pattern that persists throughout the course of infection except for 1 day p.i., when up-regulated array features slightly outnumbered down-regulated features. Examination of particular array features revealed several that were up-regulated by both parasites early in the course of infection and one, fibrinogen related protein 4 (FREP 4), that remained significantly elevated throughout the course of infection with either parasite, effectively serving as a marker of infection. Many defense-related transcripts were persistently down-regulated, including several fibrinogen-containing lectins and homologs of molecules best known from vertebrate phagocytic cells. Our results are consistent with earlier studies suggesting that both parasites are able to interfere with host defense responses, including a tendency for E. paraensei to do so more rapidly and strongly than S. mansoni They further suggest mechanisms for how trematodes are able to establish the chronic infections necessary for their continued success. PMID:20083115

  2. Optimizing larval assessment to support sea lamprey control in the Great Lakes

    USGS Publications Warehouse

    Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam

    2003-01-01

    Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.

  3. Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzhong; Haidvogel, Dale; Munroe, Daphne; Powell, Eric N.; Klinck, John; Mann, Roger; Castruccio, Frederic S.

    2015-02-01

    To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The model results show a typical along-shore connectivity pattern from the northeast to the southwest among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. Continuous surfclam larval input into regions off Delmarva (DMV) and New Jersey (NJ) suggests that insufficient larval supply is unlikely to be the factor causing the failure of the population to recover after the observed decline of the surfclam populations in DMV and NJ from 1997 to 2005. The GBK surfclam population is relatively more isolated than populations to the west and south in the MAB; model results suggest substantial inter-population connectivity from southern New England to the Delmarva region. Simulated surfclam larvae generally drift for over one hundred kilometers along the shelf, but the distance traveled is highly variable in space and over time. Surfclam larval growth and transport are strongly impacted by the physical environment. This suggests the need to further examine how the interaction between environment, behavior, and physiology affects inter-population connectivity. Larval vertical swimming and sinking behaviors have a significant net effect of increasing larval drifting distances when compared with a purely passive model, confirming the need to include larval behavior.

  4. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.

    PubMed

    Walker, K; Lynch, M

    2007-03-01

    Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.

  5. Tumorigenic Properties of Drosophila Epithelial Cells Mutant for lethal giant larvae.

    PubMed

    Calleja, Manuel; Morata, Ginés; Casanova, Jordi

    2016-08-01

    Mutations in Drosophila tumor suppressor genes (TSGs) lead to the formation of invasive tumors in the brain and imaginal discs. Here we studied the tumorigenic properties of imaginal discs mutant for the TSG gene lethal giant larvae (lgl). lgl mutant cells display the characteristic features of mammalian tumor cells: they can proliferate indefinitely, induce additional tracheogenesis (an insect counterpart of vasculogenesis) and invade neighboring tissues. Lgl mutant tissues exhibit high apoptotic levels, which lead to the activation of the Jun-N-Terminal Kinase (JNK) pathway. We propose that JNK is a key factor in the acquisition of these tumorigenic properties; it promotes cell proliferation and induces high levels of Mmp1 and confers tumor cells capacity to invade wild-type tissue. Noteworthy, lgl RNAi-mediated down-regulation does not produce similar transformations in the central nervous system (CNS), thereby indicating a fundamental difference between the cells of developing imaginal discs and those of differentiated organs. We discuss these results in the light of the "single big-hit origin" of some human pediatric or developmental cancers. Down-regulation of lgl in imaginal discs is sufficient to enhance tracheogenesis and to promote invasion and colonization of other larval structures including the CNS. Developmental Dynamics 245:834-843, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi

    PubMed Central

    Ventura, Tomer; Fitzgibbon, Quinn P.; Battaglene, Stephen C.; Elizur, Abigail

    2015-01-01

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation. PMID:26311524

  7. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi.

    PubMed

    Ventura, Tomer; Fitzgibbon, Quinn P; Battaglene, Stephen C; Elizur, Abigail

    2015-08-27

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation.

  8. Impacts of a gape limited Brook Trout, Salvelinus fontinalis, on larval Northwestern salamander, Ambystoma gracile, growth: A field enclosure experiment

    USGS Publications Warehouse

    Currens, C.R.; Liss, W.J.; Hoffman, R.L.

    2007-01-01

    The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  9. Influences of acid mine drainage and thermal enrichment on stream fish reproduction and larval survival

    USGS Publications Warehouse

    Hafs, Andrew W.; Horn, C.D.; Mazik, P.M.; Hartman, K.J.

    2010-01-01

    Potential effects of acid mine drainage (AMD) and thermal enrichment on the reproduction of fishes were investigated through a larval-trapping survey in the Stony River watershed, Grant County, WV. Trapping was conducted at seven sites from 26 March to 2 July 2004. Overall larval catch was low (379 individuals in 220 hours of trapping). More larval White Suckers were captured than all other species. Vectors fitted to nonparametric multidimensional scaling ordinations suggested that temperature was highly correlated to fish communities captured at our sites. Survival of larval Fathead Minnows was examined in situ at six sites from 13 May to 11 June 2004 in the same system. Larval survival was lower, but not significantly different between sites directly downstream of AMD-impacted tributaries (40% survival) and non-AMD sites (52% survival). The lower survival was caused by a significant mortality event at one site that coincided with acute pH depression in an AMD tributary immediately upstream of the site. Results from a Cox proportional hazard test suggests that low pH is having a significant negative influence on larval fish survival in this system. The results from this research indicate that the combination of low pH events and elevated temperature are negatively influencing the larval fish populations of the Stony River watershed. Management actions that address these problems would have the potential to substantially increase both reproduction rates and larval survival, therefore greatly enhancing the fishery.

  10. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni

    NASA Astrophysics Data System (ADS)

    Criales, M. M.; Anger, K.

    1986-09-01

    Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.

  11. Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus.

    PubMed

    Bara, Jeffrey; Rapti, Zoi; Cáceres, Carla E; Muturi, Ephantus J

    2015-01-01

    Despite the growing awareness that larval competition can influence adult mosquito life history traits including susceptibility to pathogens, the net effect of larval competition on human risk of exposure to mosquito-borne pathogens remains poorly understood. We examined how intraspecific larval competition affects dengue-2 virus (DENV-2) extrinsic incubation period and vectorial capacity of its natural vector Aedes albopictus. Adult Ae. albopictus from low and high-larval density conditions were orally challenged with DENV-2 and then assayed for virus infection and dissemination rates following a 6, 9, or 12-day incubation period using real-time quantitative reverse transcription PCR. We then modeled the effect of larval competition on vectorial capacity using parameter estimates obtained from peer-reviewed field and laboratory studies. Larval competition resulted in significantly longer development times, lower emergence rates, and smaller adults, but did not significantly affect the extrinsic incubation period of DENV-2 in Ae. albopictus. Our vectorial capacity models suggest that the effect of larval competition on adult mosquito longevity likely has a greater influence on vectorial capacity relative to any competition-induced changes in vector competence. Furthermore, we found that large increases in the viral dissemination rate may be necessary to compensate for small competition-induced reductions in daily survivorship. Our results indicate that mosquito populations that experience stress from larval competition are likely to have a reduced vectorial capacity, even when susceptibility to pathogens is enhanced.

  12. Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus

    PubMed Central

    Bara, Jeffrey; Rapti, Zoi; Cáceres, Carla E.; Muturi, Ephantus J.

    2015-01-01

    Despite the growing awareness that larval competition can influence adult mosquito life history traits including susceptibility to pathogens, the net effect of larval competition on human risk of exposure to mosquito-borne pathogens remains poorly understood. We examined how intraspecific larval competition affects dengue-2 virus (DENV-2) extrinsic incubation period and vectorial capacity of its natural vector Aedes albopictus. Adult Ae. albopictus from low and high-larval density conditions were orally challenged with DENV-2 and then assayed for virus infection and dissemination rates following a 6, 9, or 12-day incubation period using real-time quantitative reverse transcription PCR. We then modeled the effect of larval competition on vectorial capacity using parameter estimates obtained from peer-reviewed field and laboratory studies. Larval competition resulted in significantly longer development times, lower emergence rates, and smaller adults, but did not significantly affect the extrinsic incubation period of DENV-2 in Ae. albopictus. Our vectorial capacity models suggest that the effect of larval competition on adult mosquito longevity likely has a greater influence on vectorial capacity relative to any competition-induced changes in vector competence. Furthermore, we found that large increases in the viral dissemination rate may be necessary to compensate for small competition-induced reductions in daily survivorship. Our results indicate that mosquito populations that experience stress from larval competition are likely to have a reduced vectorial capacity, even when susceptibility to pathogens is enhanced. PMID:25951173

  13. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  14. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    PubMed

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  15. Fitness consequences of larval traits persist across the metamorphic boundary.

    PubMed

    Crean, Angela J; Monro, Keyne; Marshall, Dustin J

    2011-11-01

    Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  16. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis

    PubMed Central

    Katz, Sefano M.; van de Water, Jeroen A.J.M.; Davies, Sarah W.; Hein, Margaux; Torda, Gergely; Matz, Mikhail V.; Beltran, Victor H.; Buerger, Patrick; Puill-Stephan, Eneour; Abrego, David; Bourne, David G.; Willis, Bette L.

    2017-01-01

    Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL−1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA) is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species. PMID:28894640

  17. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector

    PubMed Central

    Dickson, Laura B.; Jiolle, Davy; Minard, Guillaume; Moltini-Conclois, Isabelle; Volant, Stevenn; Ghozlane, Amine; Bouchier, Christiane; Ayala, Diego; Paupy, Christophe; Moro, Claire Valiente; Lambrechts, Louis

    2017-01-01

    Conditions experienced during larval development of holometabolous insects can affect adult traits, but whether differences in the bacterial communities of larval development sites contribute to variation in the ability of insect vectors to transmit human pathogens is unknown. We addressed this question in the mosquito Aedes aegypti, a major arbovirus vector breeding in both sylvatic and domestic habitats in Sub-Saharan Africa. Targeted metagenomics revealed differing bacterial communities in the water of natural breeding sites in Gabon. Experimental exposure to different native bacterial isolates during larval development resulted in significant differences in pupation rate and adult body size but not life span. Larval exposure to an Enterobacteriaceae isolate resulted in decreased antibacterial activity in adult hemolymph and reduced dengue virus dissemination titer. Together, these data provide the proof of concept that larval exposure to different bacteria can drive variation in adult traits underlying vectorial capacity. Our study establishes a functional link between larval ecology, environmental microbes, and adult phenotypic variation in a holometabolous insect vector. PMID:28835919

  18. Conservation, Innovation, and Bias: Embryonic Segment Boundaries Position Posterior, but Not Anterior, Head Horns in Adult Beetles.

    PubMed

    Busey, Hannah A; Zattara, Eduardo E; Moczek, Armin P

    2016-07-01

    The integration of form and function of novel traits is a fundamental process during the developmental evolution of complex organisms, yet how novel traits and trait functions integrate into preexisting contexts remains poorly understood. Here, we explore the mechanisms by which the adult insect head has been able to integrate novel traits and features during its ontogeny, focusing on the cephalic horns of Onthophagus beetles. Specifically, using a microablation approach we investigate how different regions of the dorsal head of adult horned beetles relate to their larval and embryonic counterparts and test whether deeply conserved regional boundaries that establish the embryonic head might also facilitate or bias the positioning of cephalic horns along the dorsal adult head. We find that paired posterior horns-the most widespread horn type within the genus-are positioned along a border homologous to the embryonic clypeolabral (CL)-ocular boundary, and that this placement constitutes the ancestral form of horn positioning. In contrast, we observed that the phylogenetically much rarer anterior horns are positioned by larval head regions contained firmly within the CL segment and away from any major preexisting larval head landmarks or boundaries. Lastly, we describe the unexpected finding that ablations at medial head regions can result in ectopic outgrowths bearing terminal structures resembling the more anterior clypeal ridge. We discuss our results in the light of the developmental genetic mechanisms of head formation in holometabolous insects and the role of co-option in innovation and bias in developmental evolution. © 2016 Wiley Periodicals, Inc.

  19. Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia.

    PubMed

    Ahmad, Rohani; Ali, Wan N W M; Nor, Zurainee M; Ismail, Zamree; Hadi, Azahari A; Ibrahim, Mohd N; Lim, Lee H

    2011-12-13

    The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level.

  20. Karyotype characteristics, larval morphology and chromosomal polymorphism peculiarities of Glyptotendipes salinus Michailova, 1983 (Diptera, Chironomidae) from Tambukan Lake, Central Caucasus

    PubMed Central

    Karmokov, Mukhamed Kh.; Akkizov, Azamat Y.

    2016-01-01

    Abstract Data on the karyotype characteristics, larval morphology and features of chromosomal polymorphism of a population of Glyptotendipes salinus Michailova, 1983 (Diptera, Chironomidae) from Tambukan Lake (on the northern macroslope of the central Caucasus) are presented. It was found that diagnostic larval characters of Glyptotendipes salinus from Caucasus in general are similar to those described in previous studies, but with some significant differences. By some morphological characteristics Caucasian larvae appeared to be closer to Glyptotendipes barbipes than to ones provided for European larvae of Glyptotendipes salinus by Contreras-Lichtenberg (1999). Obtained morphological data make possible to conclude that Caucasian population of Glyptotendipes salinus can be a markedly diverged population of the species, probably even subspecies. In the Caucasian population 12 banding sequences were found: two in arms A, B, C, E, and G, and one in arms D and F. Eight of these are already known for this species, and four, salA2, salB2, salEX, and salG3, are described for the first time. Genetic distances between all the previously studied populations of Glyptotendipes salinus were measured using Nei criteria (1972). The population of the central Caucasus occupies a distinct position on the dendrogram compared with populations from Altai and Kazakhstan. All the obtained morphological and cytogenetic data can indicate the plausible relative isolation and complexity of the Caucasus from the viewpoint of microevolution. More researches are required in other parts of Caucasus and other geographically distant regions for more specific allegations. PMID:28123679

  1. Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia

    PubMed Central

    2011-01-01

    Background The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. Methods As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Results Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. Conclusions This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level. PMID:22166101

  2. Assessing spatio-temporal trend of vector breeding and dengue fever incidence in association with meteorological conditions.

    PubMed

    Malik, Afifa; Yasar, Abdullah; Tabinda, Amtul Bari; Zaheer, Ihsan Elahi; Malik, Khalida; Batool, Adeeba; Mahfooz, Yusra

    2017-04-01

    Th aim of this study is to investigate spatio-temporal trends of dengue vector breeding and epidemic (disease incidence) influenced by climatic factors. The spatio-temporal (low-, medium-, and high-intensity periods) evaluation of entomological and epidemiological investigations along with climatic factors like rainfall (RF), temperature (T max ), relative humidity (RH), and larval indexing was conducted to develop correlations in the area of Lahore, Pakistan. The vector abundance and disease transmission trend was geo-tagged for spatial insight. The sufficient rainfall events and optimum temperature and relative humidity supported dengue vector breeding with high larval indices for water-related containers (27-37%). Among temporal analysis, the high-intensity period exponentially projected disease incidence followed by post-rainfall impacts. The high larval incidence that was observed in early high-intensity periods effected the dengue incidence. The disease incidence had a strong association with RF (r = 0.940, α = 0.01). The vector larva occurrence (r = 0.017, α = 0.05) influenced the disease incidence. Similarly, RH (r = 0.674, α = 0.05) and average T max (r = 0.307, α = 0.05) also induced impact on the disease incidence. In this study, the vulnerability to dengue fever highly correlates with meteorological factors during high-intensity period. It provides area-specific understanding of vector behavior, key containers, and seasonal patterns of dengue vector breeding and disease transmission which is essential for preparing an effective prevention plan against the vector.

  3. Selection and Suitability of an Artificial Diet for Tuta absoluta (Lepidoptera: Gelechiidae) Based on Physical and Chemical Characteristics

    PubMed Central

    Parra, J. R. P.

    2017-01-01

    Tuta absoluta (Meyrick, 1917) is a key tomato pest in South America and, recently, in Europe and Africa. To develop efficient control methods for this pest, adequate rearing protocols are desirable. As an alternative to tomato leaves (natural diet), we evaluated four artificial diets. Biological traits including larval and pupal viability and development time, pupal weight and deformations were assessed. Additionally, the optimum container size and larval density were evaluated. The diet based on casein, wheat germ and cellulose allowed the best development of T. absoluta, showing higher viability and no negative effects on larval instars and pupal weight. The best container was a glass tube measuring Ø 1 × h 6 cm, topped with waterproof cotton, with a density of three larvae. To evaluate the suitability of this diet, T. absoluta was reared during eight generations and life-table parameters were estimated for the F1, F3, F6, and F8 generations. The total viability (egg–adult) increased over the generations, reaching 75% in the eighth generation. Based on life-table estimations no differences among generations were found. The net reproductive rate (Ro) was higher than 40, the intrinsic rate of increase (rm) ranged between 0.08 and 0.11, the finite rate of increase (λ) was 1.1, the mean generation time (T) have a maximum of 44 d and doubling time ranged from 5.89–8.32 generations. These results indicated that a diet based on casein, wheat germ and cellulose was suitable for T. absoluta rearing in laboratory conditions. PMID:28042106

  4. Expression of lysozyme in the life history of the house fly (Musca domestica l.).

    PubMed

    Nayduch, Dana; Joyner, Chester

    2013-07-01

    From egg to adult, all life history stages of house flies associate with septic environments teeming with bacteria. House fly lysozyme was first identified in the larval midgut, where it is used for digestion of microbe-rich meals because of its broad-spectrum activity against gram-positive and gram-negative bacteria as well as fungi. This study aimed to determine the temporal expression of lysozyme in the life history of house flies (from egg through adults) on both the mRNA and protein level, and to determine the tissue-specific expression of lysozyme in adult flies induced by feeding Staphylococcus aureus. From 30-min postoviposition through adulthood, all life history stages of the house fly express lysozyme on the mRNA level. In adult flies, lysozyme is expressed both locally in the alimentary canal and systemically in the fat body. Interestingly, we found that during the normal life history of flies, lysozyme protein was only detected in larval stages and older adults, likely because of ingestion of immune-stimulating levels of bacteria, not experienced during egg, pupa, and teneral adult stages. Constitutive expression on the mRNA level implies that this effector is a primary defense molecule in all stages of the house fly life history, and that a mechanism for posttranscriptional control of mature lysozyme enzyme expression may be present. Lysozyme active enzyme primarily serves both a digestive and defensive function in larval and adult flies, and may be a key player in the ability of Musca domestica L. to thrive in microbe-rich environments.

  5. Effects of chronic crude oil exposure on early developmental stages of the Northern krill (Meganyctiphanes norvegica).

    PubMed

    Arnberg, Maj; Moodley, Leon; Dunaevskaya, Evgenia; Ramanand, Sreerekha; Ingvarsdóttir, Anna; Nilsen, Marianne; Ravagnan, Elisa; Westerlund, Stig; Sanni, Steinar; Tarling, Geraint A; Bechmann, Renée K

    2017-01-01

    Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.

  6. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The Story of a Hitchhiker: Population Genetic Patterns in the Invasive Barnacle Balanus(Amphibalanus) improvisus Darwin 1854

    PubMed Central

    Wrange, Anna-Lisa; Charrier, Gregory; Thonig, Anne; Alm Rosenblad, Magnus; Blomberg, Anders; Havenhand, Jonathan N.; Jonsson, Per R.; André, Carl

    2016-01-01

    Understanding the ecological and evolutionary forces that determine the genetic structure and spread of invasive species is a key component of invasion biology. The bay barnacle, Balanus improvisus (= Amphibalanus improvisus), is one of the most successful aquatic invaders worldwide, and is characterised by broad environmental tolerance. Although the species can spread through natural larval dispersal, human-mediated transport through (primarily) shipping has almost certainly contributed to the current global distribution of this species. Despite its worldwide distribution, little is known about the phylogeography of this species. Here, we characterize the population genetic structure and model dispersal dynamics of the barnacle B. improvisus, and describe how human-mediated spreading via shipping as well as natural larval dispersal may have contributed to observed genetic variation. We used both mitochondrial DNA (cytochrome c oxidase subunit I: COI) and nuclear microsatellites to characterize the genetic structure in 14 populations of B. improvisus on a global and regional scale (Baltic Sea). Genetic diversity was high in most populations, and many haplotypes were shared among populations on a global scale, indicating that long-distance dispersal (presumably through shipping and other anthropogenic activities) has played an important role in shaping the population genetic structure of this cosmopolitan species. We could not clearly confirm prior claims that B. improvisus originates from the western margins of the Atlantic coasts; although there were indications that Argentina could be part of a native region. In addition to dispersal via shipping, we show that natural larval dispersal may play an important role for further colonisation following initial introduction. PMID:26821161

  8. Phenology of sexual reproduction in the common coral reef sponge, Carteriospongia foliascens

    NASA Astrophysics Data System (ADS)

    Abdul Wahab, M. A.; de Nys, R.; Webster, N.; Whalan, S.

    2014-06-01

    Understanding processes that contribute to population maintenance is critical to the management and conservation of species. Despite this, very little is currently known about the reproductive biology of Great Barrier Reef (GBR) sponge species. Here, we established reproductive parameters including mode of sexuality and development, seasonality, sex ratios, gametogenesis, reproductive output, and size at sexual maturity for the common phototrophic intertidal sponge, Carteriospongia foliascens, in the central GBR over two reproductive cycles. A population sexual productivity index (PoSPi) integrating key reproductive parameters was formulated to compare population larval supply over time. This study shows that C. foliascens is reproductive all year round, gonochoric and viviparous, with larvae developing asynchronously throughout the mesohyl. The influence of environmental parameters relevant to C. foliascens reproduction [i.e., sea surface temperature (SST), photoperiod, and rainfall] was also examined, and SST was found to have the most significant effect on phenology. C. foliascens reproduction exhibited annual mono-cyclic patterns closely resembling SST fluctuations. Reproductive output was depressed at low SST (<23 °C) and increased at temperatures above 23 °C. Peak sperm release occurred at temperatures above 25 °C, while peak larval release occurred during the annual temperature maxima (>28 °C). A twofold increase in maximum larval production (PoSPi) in C. foliascens was observed in the second reproductive cycle, following a depressed PoSPi in the first cycle. This reduction in PoSPi in the first reproductive cycle was associated with elevated SST and rainfall, coinciding with one of the strongest La Niña events on record.

  9. Biocontrol Potential of Steinernema thermophilum and Its Symbiont Xenorhabdus indica Against Lepidopteran Pests: Virulence to Egg and Larval Stages.

    PubMed

    Kalia, Vinay; Sharma, Garima; Shapiro-Ilan, David I; Ganguly, Sudershan

    2014-03-01

    Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host). In terms of host susceptibility of lepidopteran larvae to S. thermophilum, based on the LC50 36 hr after treatment, G. mellonella (LC50 = 16.28 IJ/larva) was found to be more susceptible than S. litura (LC50 = 85 IJ/larva), whereas neither host was found to be significantly different from H. armigera (LC50 = 54.68 IJ/larva). In addition to virulence to the larval stages, ovicidal activity up to 84% was observed at 200 IJ/50 and 100 eggs of H. armigera and S. litura, respectively. To our knowledge this is the first report of entomopathogenic nematode pathogenicity to lepidopteran eggs. Production of infective juvenile (IJ) nematodes/insect larva was also measured and found to be positively correlated with rate of IJ for H. armigera (r = 0.990), S. litura (r = 0.892), as well as G. mellonella (r = 0.834). Both Phase I and Phase II of symbiotic bacteria Xenorhabdus indica were tested separately against neonates of H. armigera and S. litura by feeding assays and found to be virulent to the target pests; phase variation did not affect the level of virulence. Thus S. thermophilum as well as the nematode's symbiotic bacteria applied separately have the potential to be developed as biocontrol agents for key lepidopteran pests.

  10. Functional impacts of ocean acidification in an ecologically critical foundation species.

    PubMed

    Gaylord, Brian; Hill, Tessa M; Sanford, Eric; Lenz, Elizabeth A; Jacobs, Lisa A; Sato, Kirk N; Russell, Ann D; Hettinger, Annaliese

    2011-08-01

    Anthropogenic CO(2) is reducing the pH and altering the carbonate chemistry of seawater, with repercussions for marine organisms and ecosystems. Current research suggests that calcification will decrease in many species, but compelling evidence of impaired functional performance of calcium carbonate structures is sparse, particularly in key species. Here we demonstrate that ocean acidification markedly degrades the mechanical integrity of larval shells in the mussel Mytilus californianus, a critical community member on rocky shores throughout the northeastern Pacific. Larvae cultured in seawater containing CO(2) concentrations expected by the year 2100 (540 or 970 ppm) precipitated weaker, thinner and smaller shells than individuals raised under present-day seawater conditions (380 ppm), and also exhibited lower tissue mass. Under a scenario where mussel larvae exposed to different CO(2) levels develop at similar rates, these trends suggest a suite of potential consequences, including an exacerbated vulnerability of new settlers to crushing and drilling attacks by predators; poorer larval condition, causing increased energetic stress during metamorphosis; and greater risks from desiccation at low tide due to shifts in shell area to body mass ratios. Under an alternative scenario where responses derive exclusively from slowed development, with impacted individuals reaching identical milestones in shell strength and size by settlement, a lengthened larval phase could increase exposure to high planktonic mortality rates. In either case, because early life stages operate as population bottlenecks, driving general patterns of distribution and abundance, the ecological success of this vital species may be tied to how ocean acidification proceeds in coming decades.

  11. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori.

    PubMed

    Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka

    2016-06-01

    Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Polymorphism at the REF(2)P Locus in DROSOPHILA MELANOGASTER: Preliminary Experiments concerning the Selection Mechanisms Involved in Its Maintenance

    PubMed Central

    Fleuriet, Annie

    1981-01-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition. PMID:6791986

  13. The nucleotide sequence of a major glycine transfer RNA from the posterior silk gland of Bombyx mori L.

    PubMed Central

    Zúñiga, M C; Steitz, J A

    1977-01-01

    The nucleotide sequence of tRNA1Gly isolated from the posterior silk gland of Bombyx mori has been determined. This transfer RNA is present in high amounts in the posterior silk gland during the fifth larval instar. It has a GCC anticodon, capable of decoding a major glycine codon in the fibroin messenger RNA, GGU. Structural features of Bombyx tRNA1Gly and its homology to other eukaryotic glycine tRNAs are discussed. Images PMID:414206

  14. Larval and pupal descriptions of Anomalini (Coleoptera: Scarabaeidae: Rutelinae) species from Ecuador.

    PubMed

    Filippini, Valentina; Onore, Giovanni; Guidolin, Laura

    2017-02-02

    The third instars are described and illustrated for five Anomalini (Coleoptera: Scarabaeidae: Rutelinae) species from Ecuador: Anomala balzapambae Ohaus, 1897, A. popayana Ohaus, 1897, A. valida Burmeister, 1844, Callistethus buchwaldianus (Ohaus, 1908), and C. levii (Blanchard, 1851). The pupae of three Ecuadorian species are also described and illustrated: A. discoidalis Bates, 1888, A. popayana, and C. levii. Diagnostic characters of the species are provided. A key to the known larvae of Anomalini from the New World is provided, which now includes five genera and 31 species.

  15. Description of Cyclocephala distincta Burmeister (Coleoptera: Scarabaeidae: Dynastinae: Cyclocephalini) immatures and identification key for third instars of some Cyclocephala species.

    PubMed

    Souza, Thamyrys Bezerra De; Maia, Artur Campos Dália; Albuquerque, Cleide Maria Ribeiro De; Iannuzzi, Luciana

    2014-10-08

    The larval instars and pupa of Cyclocephala distincta Burmeister (Coleoptera: Scarabaeidae: Dynastinae: Cyclocephalini) are described and compared to those of other known congenerics. Adult C. distincta, specialized flower visitors of Neotropical palms (Arecaceae), were collected in an area of native Atlantic Forest cover in the northeastern coast of Brazil and reared in captivity. The larvae of C. distincta diff---er from those of the other congenerics because of a distinctive pattern and arrangement of the setae on the raster.

  16. Trait-based Modeling of Larval Dispersal in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jones, B.; Richardson, D.; Follows, M. J.; Hill, C. N.; Solow, A.; Ji, R.

    2016-02-01

    Population connectivity of marine species is the inter-generational movement of individuals among geographically separated subpopulations and is a crucial determinant of population dynamics, community structure, and optimal management strategies. For many marine species, population connectivity is largely determined by the dispersal patterns that emerge from a pelagic larval phase. These dispersal patterns are a result of interactions between the physical environment, adult spawning strategy, and larval ecology. Using a generalized trait-based model that represents the adult spawning strategy as a distribution of larval releases in time and space and the larval trait space with the pelagic larval duration, vertical swimming behavior, and settlement habitat preferences, we simulate dispersal patterns in the Gulf of Maine and surrounding regions. We implement this model as an individual-based simulation that tracks Lagrangian particles on a graphics processing unit as they move through hourly archived output from the Finite-Volume Community Ocean Model. The particles are released between the Hudson Canyon and Nova Scotia and the release distributions are determined using a novel method that minimizes the number of simulations required to achieve a predetermined level of precision for the connectivity matrices. The simulated larvae have a variable pelagic larval duration and exhibit multiple forms of dynamic depth-keeping behavior. We describe how these traits influence the dispersal trajectories and connectivity patterns among regions in the northwest Atlantic. Our description includes the probability of successful recruitment, patchiness of larval distributions, and the variability of these properties in time and space under a variety of larval dispersal strategies.

  17. Response of coccinellid larvae to conspecific and heterospecific larval tracks: a mechanism that reduces cannibalism and intraguild predation.

    PubMed

    Meisner, Matthew H; Harmon, Jason P; Ives, Anthony R

    2011-02-01

    Cannibalism, where one species feeds on individuals of its own species, and intraguild predation (IGP), where a predator feeds on other predatory species, can both pose significant threats to natural enemies and interfere with their biological control of pests. Behavioral mechanisms to avoid these threats, however, could help maintain superior pest control. Here, we ask whether larvae of Coccinella septempunctata (Coleoptera: Coccinellidae) and Harmonia axyridis (Coleoptera: Coccinellidae) respond to larval tracks deposited by the other and whether this behavioral response reduces the threat of cannibalism and IGP. In petri dish experiments, we show that both H. axyridis and C. septempunctata avoid foraging in areas with conspecific larval tracks. Using a method of preventing larvae from depositing tracks, we then demonstrate that the frequency of cannibalism is greater for both species when larvae are prevented from depositing tracks compared with when the tracks are deposited. For multi-species interactions we show in petri dish experiments that C. septempunctata avoids H. axyridis larval tracks but H. axyridis does not avoid C. septempunctata larval tracks, demonstrating an asymmetry in response to larval tracks that parallels the asymmetry in aggressiveness between these species as intraguild predators. On single plants, we show that the presence of H. axyridis larval tracks reduces the risk of IGP by H. axyridis on C. septempunctata. Our study suggests that larval tracks can be used in more ways than previously described, in this case by changing coccinellid larval behavior in a way that reduces cannibalism and IGP. © 2011 Entomological Society of America

  18. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio).

    PubMed

    Cao, Fangjie; Wu, Peizhuo; Huang, Lan; Li, Hui; Qian, Le; Pang, Sen; Qiu, Lihong

    2018-05-01

    Previous study indicated that azoxystrobin had high acute toxicity to zebrafish, and larval zebrafish were more sensitive to azoxystrobin than adult zebrafish. The objective of the present study was to investigate short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish. After zebrafish embryos and adults were exposed to 0.01, 0.05 and 0.20 mg/L azoxystrobin (equal to 25, 124 and 496 nM azoxystrobin, respectively) for 8 days, the lethal effect, physiological responses, liver histology, mitochondrial ultrastructure, and expression alteration of genes related to mitochondrial respiration, oxidative stress, cell apoptosis and innate immune response were determined. The results showed that there was no significant effect on larval and adult zebrafish after exposure to 0.01 mg/L azoxystrobin. However, increased ROS, MDA concentration and il1b in larval zebrafish, as well as increased il1b, il8 and cxcl-c1c in adult zebrafish were induced after exposure to 0.05 mg/L azoxystrobin. Reduced mitochondrial complex III activity and ATP concentration, increased SOD activity, ROS and MDA concentration, decreased cytb, as well as increased sod1, sod2, cat, il1b, il8 and cxcl-c1c were observed both in larval and adult zebrafish after exposure to 0.20 mg/L azoxystrobin; meanwhile, increased p53, bax, apaf1 and casp9, alteration of liver histology and mitochondrial ultrastructure in larval zebrafish, and alteration of mitochondrial ultrastructure in adult zebrafish were also induced. The results demonstrated that azoxytrobin induced short-term developmental effects on larval zebrafish and adult zebrafish, including mitochondrial dysfunction, oxidative stress, cell apoptosis and innate immune response. Statistical analysis indicated that azoxystrobin induced more negative effects on larval zebrafish, which might be the reason for the differences of developmental toxicity between larval and adult zebrafish caused by azoxystrobin. These results provided a new insight into potential mechanisms of azoxystrobin in larval zebrafish and adult zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    PubMed Central

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  20. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes.

    PubMed

    Bochdanovits, Zoltán; de Jong, Gerdien

    2003-08-01

    In Drosophila, both the phenotypic and evolutionary effect of temperature on adult size involves alterations to larval resource processing and affects other life-history traits, that is, development time but most notably, larval survival. Therefore, thermal evolution of adult body size might not be independent of simultaneous adaptation of larval traits to resource availability. Using experimental evolution lines adapted to high and low temperatures at different levels of food, we show that selection pressures interact in shaping larval resource processing. Evolution on poor food invariably leads to lower resource acquisition suggesting a cost to feeding behavior. However, following low temperature selection, lower resource acquisition led to a higher adult body size, probably by more efficient allocation to growth. In contrast, following high temperature selection, low resource acquisition benefited larval survival, possibly by reducing feeding-associated costs. We show that evolved differences to larval resource processing provide a possible proximate mechanism to variation in a suite of correlated life-history traits during adaptation to different climates. The implication for natural populations is that in nature, thermal evolution drives populations to opposite ends of an adult size versus larval survival trade-off by altering resource processing, if resource availability is limited.

  1. Larval fish distribution in the St. Louis River estuary

    EPA Science Inventory

    Our objective was to determine what study design, environmental, and habitat variables contribute to the distribution and abundance of larval fish in the St. Louis River estuary. Larval fish habitat associations are poorly understood in Great Lakes coastal wetlands, yet critical ...

  2. New records of larval stages of the eel cod genus Muraenolepis Günther 1880 (Gadiformes: Muraenolepididae) from the western Antarctic Peninsula.

    PubMed

    Konstantinidis, P; Hilton, E J; Matarese, A C

    2016-08-01

    Three newly discovered larval specimens of the genus Muraenolepis collected from the waters of the western Antarctic Peninsula are described. Knowledge of their natural history is sparse and information about their early life history is based on only a few larval stages. Here, the available literature on larval eel cods is reviewed, and the specimens placed in context. © 2016 The Fisheries Society of the British Isles.

  3. Exposure to 2,4-decadienal negatively impacts upon marine invertebrate larval fitness.

    PubMed

    Caldwell, Gary S; Lewis, Ceri; Olive, Peter J W; Bentley, Matthew G

    2005-06-01

    Diatoms liberate volatile, biologically active unsaturated aldehydes following cell damage, which negatively impact upon invertebrate reproductive processes such as fertilization, embryogenesis and larval survival. 2,4-Decadienal is frequently identified among the aldehydes produced and is one of the more biologically active. The majority of studies which have examined the toxic effects of diatom aldehydes to invertebrate reproduction have scored egg production and/or hatching success as indicators of biological impacts. There are very few studies which have dealt specifically with the impacts of diatom-derived aldehydes on larval fitness. Larval stages of the polychaetes Arenicola marina and Nereis virens and the echinoderms Asterias rubens and Psammechinus miliaris exposed to 2,4-decadienal at sub 1 microg ml(-1) concentrations suffered reduced survival over the incubation period (day 1-8 post fertilization) with detectable differences for the polychates at a concentration of 0.005 and 0.01-0.1 microg ml(-1) for the echinoderms. Susceptibility of larval N. virens was investigated using stage specific 24 h exposures at 2,4-decadienal concentrations up to 1.5 microg ml(-1). A clear stage specific effect was found, with earlier larval stages most vulnerable. Nectochaete larvae (9-10 d) showed no reduction in survival at the concentrations assayed. Fluctuating asymmetry (FA), defined as random deviations from perfect bilateral symmetry, was used to analyse fitness of larval P. miliaris exposed to 2,4-decadienal at concentrations of 0.1, 0.5 and 1 microg ml(-1). The degree and frequency of asymmetrical development increased with increasing 2,4-decadienal concentration. Equally, as FA increased larval survival decreased. These results provide further support for the teratogenic nature of 2,4-decadienal and its negative impact on invertebrate larval fitness.

  4. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow.

    PubMed

    Clay, T W; Grünbaum, D

    2010-04-01

    Many larvae and other plankton have complex and variable morphologies of unknown functional significance. We experimentally and theoretically investigated the functional consequences of the complex morphologies of larval sand dollars, Dendraster excentricus (Eschscholtz), for hydrodynamic interactions between swimming and turbulent water motion. Vertical shearing flows (horizontal gradients of vertical flow) tilt organisms with simple geometries (e.g. spheres, ellipsoids), causing these organisms to move horizontally towards downwelling water and compromising their abilities to swim upwards. A biomechanical model of corresponding hydrodynamic interactions between turbulence-induced shear and the morphologically complex four-, six- and eight-armed stages of sand dollar larvae suggests that the movements of larval morphologies differ quantitatively and qualitatively across stages and shear intensities: at shear levels typical of calm conditions in estuarine and coastal environments, all modeled larval stages moved upward. However, at higher shears, modeled four- and eight-armed larvae moved towards downwelling, whereas six-armed larvae moved towards upwelling. We also experimentally quantified larval movement by tracking larvae swimming in low-intensity shear while simultaneously mapping the surrounding flow fields. Four- and eight-armed larvae moved into downwelling water, but six-armed larvae did not. Both the model and experiments suggest that stage-dependent changes to larval morphology lead to differences in larval movement: four- and eight-armed stages are more prone than the six-armed stage to moving into downwelling water. Our results suggest a mechanism by which differences can arise in the vertical distribution among larval stages. The ability to mitigate or exploit hydrodynamic interactions with shear is a functional consequence that potentially shapes larval evolution and development.

  5. How does competition among wild type mosquitoes influence the performance of Aedes aegypti and dissemination of Wolbachia pipientis?

    PubMed Central

    de Oliveira, Suellen; Villela, Daniel Antunes Maciel; Dias, Fernando Braga Stehling; Moreira, Luciano Andrade

    2017-01-01

    Background Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size. Methodology/principal findings Three different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain), wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae. Conclusions/significance In all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion. PMID:28991902

  6. Larval Dispersal Modeling of Pearl Oyster Pinctada margaritifera following Realistic Environmental and Biological Forcing in Ahe Atoll Lagoon

    PubMed Central

    Thomas, Yoann; Dumas, Franck; Andréfouët, Serge

    2014-01-01

    Studying the larval dispersal of bottom-dwelling species is necessary to understand their population dynamics and optimize their management. The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia's atoll lagoons. This aquaculture relies on spat collection, a process that can be optimized by understanding which factors influence larval dispersal. Here, we investigate the sensitivity of P. margaritifera larval dispersal kernel to both physical and biological factors in the lagoon of Ahe atoll. Specifically, using a validated 3D larval dispersal model, the variability of lagoon-scale connectivity is investigated against wind forcing, depth and location of larval release, destination location, vertical swimming behavior and pelagic larval duration (PLD) factors. The potential connectivity was spatially weighted according to both the natural and cultivated broodstock densities to provide a realistic view of connectivity. We found that the mean pattern of potential connectivity was driven by the southwest and northeast main barotropic circulation structures, with high retention levels in both. Destination locations, spawning sites and PLD were the main drivers of potential connectivity, explaining respectively 26%, 59% and 5% of the variance. Differences between potential and realistic connectivity showed the significant contribution of the pearl oyster broodstock location to its own dynamics. Realistic connectivity showed larger larval supply in the western destination locations, which are preferentially used by farmers for spat collection. In addition, larval supply in the same sectors was enhanced during summer wind conditions. These results provide new cues to understanding the dynamics of bottom-dwelling populations in atoll lagoons, and show how to take advantage of numerical models for pearl oyster management. PMID:24740288

  7. Observations on the reproductive and larval biology of Blennius pavo (Pisces: Teleostei)

    NASA Astrophysics Data System (ADS)

    Westernhagen, H.

    1983-09-01

    Social behaviour and spawning of adult Blennius pavo kept in the laboratory are described. Eggs are deposited in batches on the walls of artificial spawning places (PVC pipes). One male guards and tends the eggs of different females in one spawning place. Larval hatching occurs in groups according to oviposition. Minimum incubation temperature is around 14 15°C. Larval survival in 1-1 rearing jars is not related to larval total length but to density of larval stock. An experimental population of laboratory reared juvenile and adolescent B. pavo displays a male to female ratio of 1:1.4. Factors possibly influencing the sex ratio of this littoral fish are discussed in view of the situation in its natural environment.

  8. Histological development of the digestive system of the Amazonian pimelodid catfish Pseudoplatystoma punctifer.

    PubMed

    Gisbert, E; Moreira, C; Castro-Ruiz, D; Oztürk, S; Fernández, C; Gilles, S; Nuñez, J; Duponchelle, F; Tello, S; Renno, J F; García-Dávila, C; Darias, M J

    2014-11-01

    The organogenesis of the digestive system was described in the Amazonian pimelodid catfish species Pseudoplatystoma punctifer from hatching (3.5 mm total length, TL) to 41 days post-fertilization (dpf) (58.1 mm TL) reared at 28°C. Newly hatched larvae showed a simple digestive tract, which appeared as a straight undifferentiated and unfolded tube lined by a single layer of columnar epithelial cells (future enterocytes). During the endogenous feeding period, comprised between 20 and 96 h post-fertilization (3.5 to 6.1 mm TL), the larval digestive system experienced a fast transformation with the almost complete development and differentiation of most of digestive organs (buccopahrynx, oesophagus, intestine, liver and exocrine pancreas). Yolk reserves were not completely depleted at the onset of exogenous feeding (4 dpf, 6.1 mm TL), and a period of mixed nutrition was observed up to 6 to 7 dpf (6.8 to 7.3 mm TL) when yolk was definitively exhausted. The stomach was the organ that latest achieved its complete differentiation, characterized by the development of abundant gastric glands in the fundic stomach between 10 and 15 dpf (10.9 to 15.8 mm TL) and the formation of the pyloric sphincter at the junction of the pyloric stomach and the anterior intestine at 15 dpf (15.8 mm TL). The above-mentioned morphological and histological features observed suggested the achievement of a digestive system characteristic of P. punctifer juveniles and adults. The ontogeny of the digestive system in P. punctifer followed the same general pattern as in most Siluriform species so far, although some species-specific differences in the timing of differentiation of several digestive structures were noted, which might be related to different reproductive guilds, egg and larval size or even different larval rearing practices. According to present findings on the histological development of the digestive system in P. punctifer, some recommendations regarding the rearing practices of this species are also provided in order to improve the actual larval rearing techniques of this fast-growing Neotropical catfish species.

  9. [BIO-INSECTICIDAL ACTIVITY OF ALPINIA GALANGA (L.) ON LARVAL DEVELOPMENT OF SPODOPTERA LITURA (LEPIDOPTERA: NOCTUIDAE).

    PubMed

    Pumchan, A; Puangsomchit, A; Temyarasilp, P; Pluempanupat, W; Bullangpoti, V

    2015-01-01

    The aim of the study was to assess the bio-efficacy of four Alpinia galanga rhizome crude extracts against the second and third instars of Spodoptera litura, an important field pest. The growth of younger larvae was significantly affected while that of the older larval stage was less influenced. In both stages, the methanol crude extract showed the greatest efficiency which caused the highest number of abnormal adults to occur and produced a large LD₅₀ value (12.816 µg/ larvae) pupicidal percentage after treatment, whereas, hexane extract caused the highest mortality during the larval-pupal stage after treatment with an LD₅₀ value of 6.354 µg/ larvae. However, the larval development was not significantly different among all treated larvae compared to the control. This study suggests that secondary larval instars of S. litura are more susceptible to the larval growth inhibitory action of Alpinia galanga extracts and these extracts could also be applied for use in the management of pests.

  10. Soundscape manipulation enhances larval recruitment of a reef-building mollusk

    PubMed Central

    Bohnenstiehl, DelWayne R.; Eggleston, David B.

    2015-01-01

    Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.e., the “soundscape”) influence larval settlement and habitat selection; however, the significance of acoustic cues is rarely tested. Here we show in a field experiment that the free-swimming larvae of an estuarine invertebrate, the eastern oyster, respond to the addition of replayed habitat-related sounds. Oyster larval recruitment was significantly higher on larval collectors exposed to oyster reef sounds compared to no-sound controls. These results provide the first field evidence that soundscape cues may attract the larval settlers of a reef-building estuarine invertebrate. PMID:26056624

  11. A comparison of spring larval fish assemblages in the Strait of Georgia (British Columbia, Canada) between the early 1980s and late 2000s

    NASA Astrophysics Data System (ADS)

    Guan, Lu; Dower, John F.; McKinnell, Skip M.; Pepin, Pierre; Pakhomov, Evgeny A.; Hunt, Brian P. V.

    2015-11-01

    The concentration and composition of the larval fish assemblage in the Strait of Georgia (British Columbia, Canada) has changed between the early 1980s (1980 and 1981) and the late 2000s (2007, 2009 and 2010). During both periods, the spring larval fish assemblages were dominated by pelagic species: Clupea pallasi (Pacific herring), Merluccius productus (Pacific hake), Leuroglossus schmidti (northern smoothtongue) and Theragra chalcogramma (walleye Pollock). The average concentration of Merluccius productus, Theragra chalcogramma, Leuroglossus schmidti, and Sebastes spp. declined between the early 1980s and the late 2000s; in contrast, the absolute concentration and proportion of Pleuronectidae and several demersal fish taxa increased in the spring larval assemblage. Examination of the associations between larval fish assemblages and environmental fluctuations suggests that large-scale climate processes are potential contributors to variations in overall larval concentrations of the dominant taxa and assemblage composition in the Strait of Georgia.

  12. Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A.

    PubMed

    Fernández, Ignacio; Darias, Maria; Andree, Karl B; Mazurais, David; Zambonino-Infante, Jose Luís; Gisbert, Enric

    2011-02-09

    Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor β-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen α1 chain (COL1A1) have been studied in gilthead sea bream. During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene disruption induced by a nutritional VA imbalance underlie the skeletal deformities. Our results are of basic interest for fish VA signalling and point out some of the potential molecular players involved in fish skeletogenesis. Increased incidences of skeletal deformities in gilthead sea bream fed with hypervitaminosis A were the likely ultimate consequence of specific gene expression disruption at critical development stages.

  13. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean.

    PubMed

    Kamya, Pamela Z; Dworjanyn, Symon A; Hardy, Natasha; Mos, Benjamin; Uthicke, Sven; Byrne, Maria

    2014-11-01

    Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems. © 2014 John Wiley & Sons Ltd.

  14. Biology and control of tabanids, stable flies and horn flies.

    PubMed

    Foil, L D; Hogsette, J A

    1994-12-01

    Tabanids are among the most free-living adult flies which play a role as livestock pests. A single blood meal is used as a source of energy for egg production (100-1,000 eggs per meal), and females of certain species can oviposit before a blood meal is obtained (autogeny). Therefore, the maintenance of annual populations requires successful oviposition by only 2% of females. Wild animal blood sources are usually available to maintain annual tabanid populations. Larval habitats are also independent of domestic livestock. Thus, the use of repellents or partial repellents is the only effective chemical strategy to reduce the incidence of tabanids on livestock. Permanent traps (and possibly treated silhouette traps) can be employed to intercept flies. Selective grazing or confinement can also reduce the impact of tabanids. Stable fly adults are dependent on vertebrate blood for survival and reproduction, but the amount of time spent in contact with the host is relatively small. Stable fly larvae develop in manure, spilled feed and decaying vegetation. Management of larval habitats by sanitation is the key to stable fly control. Treatment of animals with residual insecticides can aid in control; thorough application to the lower body parts of livestock is important. Proper use of modified traps, using either treated targets or solar-powered electrocution grids, can be effective in reducing stable fly populations. Adult horn flies spend the major part of their time on the host, and the larvae are confined to bovid manure. Therefore, almost any form of topical insecticide application for livestock is effective against horn flies, in the absence of insecticide resistance. Treatments should be applied when economic benefit is possible; economic gains are associated with increased weaning weights and weight gains of yearling and growing cattle. Oral chemical treatments (insect growth regulators or insecticides) administered at appropriate rates via bolus, water, food or mineral mixtures can inhibit horn fly larval development. However, adult horn fly movement among cattle herds limits the use of larval control for horn fly population management. The augmentation of native parasites, predators and competitors has been attempted and even promoted for horn fly and stable fly control, but evidence for the success of such programmes is equivocal.

  15. Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A

    PubMed Central

    2011-01-01

    Background Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor β-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen α1 chain (COL1A1) have been studied in gilthead sea bream. Results During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Conclusions Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene disruption induced by a nutritional VA imbalance underlie the skeletal deformities. Our results are of basic interest for fish VA signalling and point out some of the potential molecular players involved in fish skeletogenesis. Increased incidences of skeletal deformities in gilthead sea bream fed with hypervitaminosis A were the likely ultimate consequence of specific gene expression disruption at critical development stages. PMID:21306609

  16. Larval competition of Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae): behavior and ecological studies of two blow fly species of forensic significance.

    PubMed

    Shiao, Shiuh-Feng; Yeh, Ta-Chuan

    2008-07-01

    Chrysomya megacephala and Chrysomya rufifacies are two predominant necrophagous species in Taiwan. Larvae of the latter can prey on other maggots, including that of their own species as facultative food. This facultative characteristic of C. rufifacies may enhance its competitive advantage over other maggots and could also change the situation of other coexisting colonies. In this study, these two species were colonized in the laboratory, and the main objective was to try to understand the effect of competition on larval development. According to our results, intraspecific competition mostly occurred as competition for food; when the rearing density was increased, larvae pupated earlier, resulting in a lighter adult dry weight. The tendencies were similar in both species, but C. megacephala developed smaller viable adults and had higher survivorship at high densities. Although C. rufifacies could use the food resource of cannibalism, its survivorship was still low. Our results also showed there were significant interactions between intraspecific competition and the density factor. However, with interspecific competition, the first-instar larvae of C. rufifacies invaded maggot masses of C. megacephala to feed together. The third instars of C. rufifacies were able to expel C. megacephala larvae from food by using a fleshy protrusion on their body surface; C. megacephala was usually forced to pupate earlier by shortening its larval stages. The results indicated that a temporary competitive advantage could only be obtained by C. rufifacies under a proper larval density. In addition, the effects on different larval stages, the responses to different competition intensities, and the temperature-dependent effects on interspecific competition are also discussed. In general, under mixed-species rearing at different temperatures and densities, larval duration, adult dry weight, and survivorship of both species decreased. However, our results did not completely agree with previous studies, and we suspect that the difference was partially caused by different experimental designs and different biological characters of different blow fly colonies. Our results also suggest that both the predation ability and defense or escape activity should be taken into account when evaluating larval competitive advantages. The durations of larval stages of these two species could be decreased by approximately 54 h when a single species was reared alone and food was limited; the largest reduction in larval duration, approximately 25 h in C. megacephala and 34 h in C. rufifacies, caused by interspecific competition was under a high larval density. In conclusion, competition decreased the larval duration of these two species by up to 2 d; this also draws attention to justifying the postmortem interval estimation of using larval developmental data when larval competition exists.

  17. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties

    PubMed Central

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates. PMID:28702021

  18. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties.

    PubMed

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus , lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans , with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis . Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  19. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    USGS Publications Warehouse

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  20. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    USGS Publications Warehouse

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  1. The influence of larval migration and dispersal depth on potential larval trajectories of a deep-sea bivalve

    NASA Astrophysics Data System (ADS)

    McVeigh, Doreen M.; Eggleston, David B.; Todd, Austin C.; Young, Craig M.; He, Ruoying

    2017-09-01

    Many fundamental questions in marine ecology require an understanding of larval dispersal and connectivity, yet direct observations of larval trajectories are difficult or impossible to obtain. Although biophysical models provide an alternative approach, in the deep sea, essential biological parameters for these models have seldom been measured empirically. In this study, we used a biophysical model to explore the role of behaviorally mediated migration from two methane seep sites in the Gulf of Mexico on potential larval dispersal patterns and population connectivity of the deep-sea mussel ;Bathymodiolus; childressi, a species for which some biological information is available. Three possible larval dispersal strategies were evaluated for larvae with a Planktonic Larval Duration (PLD) of 395 days: (1) demersal drift, (2) dispersal near the surface early in larval life followed by an extended demersal period before settlement, and (3) dispersal near the surface until just before settlement. Upward swimming speeds varied in the model based on the best data available. Average dispersal distances for simulated larvae varied between 16 km and 1488 km. Dispersal in the upper water column resulted in the greatest dispersal distance (1173 km ± 2.00), followed by mixed dispersal depth (921 km ± 2.00). Larvae originating in the Gulf of Mexico can potentially seed most known seep metapopulations on the Atlantic continental margin, whereas larvae drifting demersally cannot (237 km ± 1.43). Depth of dispersal is therefore shown to be a critical parameter for models of deep-sea connectivity.

  2. The effects of exposure in sandy beach surf zones on larval fishes.

    PubMed

    Pattrick, P; Strydom, N A

    2014-05-01

    The influence of wind and wave exposure on larval fish assemblages within a large bay system was investigated. Larval fishes were sampled from two areas with vastly different exposure to waves and wind, namely the windward and leeward sectors of Algoa Bay. In total, 5702 larval fishes were collected using a modified larval seine. Of these, 4391 were collected in the leeward and 1311 in the windward sector of the bay, representing a total of 23 families and 57 species. Dominant fish families included Clinidae, Engraulidae, Kyphosidae, Mugilidae, Soleidae and Sparidae, similar to the situation elsewhere, highlighting continuity in the composition of larval fish assemblages and the utilization of surf zones by a specific group of larval fishes. Nineteen estuary-associated marine species occurred within the surf zones of Algoa Bay and dominated catches (86·7%) in terms of abundance. Postflexion larvae comprised > 80% of the catch, indicating the importance of the seemingly inhospitable surf zone environment for the early life stages of many fish species. The greatest species diversity was observed within the windward sector of the bay. Distance-based linear modelling identified wave period as the environmental variable explaining the largest proportion of the significant variation in the larval fish assemblage. The physical disturbance generated by breaking waves could create a suitable environment for fish larvae, sheltered from predators and with an abundance of food resources. © 2014 The Fisheries Society of the British Isles.

  3. Larval gizzard shad characteristics in Lake Oahe, South Dakota: A species at the northern edge of its range

    USGS Publications Warehouse

    Fincel, Mark J.; Chipps, Steven R.; Graeb, Brian D. S.; Edwards, Kris R.

    2013-01-01

    Gizzard shad, Dorosoma cepedianum, have generally been restricted to the lower Missouri River impoundments in South Dakota. In recent years, gizzard shad numbers have increased in Lake Oahe, marking the northern-most natural population. These increases could potentially affect recreational fishes. Specifically, questions arise about larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit fast or slow growth, both of which can have profound effects on piscivore populations in this reservoir. In this study, we evaluated larval gizzard shad hatch timing, growth, and density in Lake Oahe. We collected larval gizzard shad from six sites from May to July 2008 and used sagittal otoliths to estimate the growth and back-calculate the hatch date. We found that larval gizzard shad hatched earlier in the upper part of the reservoir compared to the lower portion and that hatch date appeared to correspond to warming water temperatures. The peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) and varied significantly among reservoir sites. Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/d) and differed spatially within the reservoir. We found no relationship between the larval gizzard shad growth or density and small- or large-bodied zooplankton density (p > 0.05). As this population exhibits slow growth and low densities, gizzard shad should remain a suitable forage option for recreational fishes in Lake Oahe.

  4. Reorientation and Swimming Stability in Sea Urchin Larvae

    NASA Astrophysics Data System (ADS)

    Wheeler, J.; Chan, K. Y. K.; Anderson, E.; Helfrich, K. R.; Mullineaux, L. S.; Sengupta, A.; Stocker, R.

    2016-02-01

    Many benthic marine invertebrates have two-phase life histories, relying on planktonic larval stages for dispersal and exchange of individuals between adult populations. The dispersal of planktonic larvae is determined by two factors: passive advection by the ambient flow and active motility. By modifying dispersal and ultimately settlement, larval motility influences where and when individuals recruit into benthic communities. Despite its ecological relevance, our understanding of larval motility and behavior in the plankton remains limited, especially regarding the interactions of larval motility and ambient turbulence. As most larvae are smaller than the Kolmogorov scale, they experience ocean turbulence in part as a time-changing viscous torque produced by local fluid shear. This torque causes larval reorientation, impacting swimming direction and potentially dispersal at the macroscale. It is therefore paramount to understand the mechanisms of larval reorientation and the stability of larvae against reorientation. Here we report on the larval reorientation behavior of the sea urchins Arbacia punctulata and Heliocidaris crassispina. Both species have life histories characterized by ontogenetic changes to internal density structure and morphology, which we hypothesized to impact stability. To test this hypothesis, we performed "flip chamber" experiments, in which larvae swim freely in a small chamber that is intermittently inverted, mimicking the overturning experienced by larvae in turbulence. We investigated the role of larval age, body size, species, morphology (number of arms), and motility (live versus dead) on the reorientation dynamics. Our work contributes to a more mechanistic understanding of the role of hydrodynamics in the motility and transport of planktonic larvae.

  5. Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae).

    PubMed

    Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban

    2014-01-01

    Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase, and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Transcriptomic Survey of the Midgut of Anthonomus grandis (Coleoptera: Curculionidae)

    PubMed Central

    Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban

    2014-01-01

    Abstract Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase , and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. PMID:25473064

  7. VARIATIONS IN LARVAL GROWTH AND METABOLISM OF AN ESTUARINE SHRIMP DURING TOXICOSIS BY AN INSECT GROWTH REGULATOR

    EPA Science Inventory

    Exposure of the estuarine shrimp, Ptiaemonetes pugio, to a juvenile hormone analogue (> 3 ug methoprene-1) throughout larval development inhibited successful completion of metamorphosis. Methoprene exposure retarded growth in early larval stages and postlarvae enhanced growth in ...

  8. Biometric studies on premetamorphic eel larvae of Anguilla anguilla (Anguilliformes: Anguillidae) in comparison with younger developmental stages of the species

    NASA Astrophysics Data System (ADS)

    Strehlow, B.

    1996-09-01

    387 premetamorphic leptocephali of the family Anguillidae caught off the west coast of Europe were examined taxonomically and compared with the youngest developmental stages of larvae of Anguilla anguilla caught in the Sargasso Sea 1979 (Schoth, 1982). The total number of myomeres and the number of myomeres up to the third, opistonephritic blood vessel present features of this species which are significantly different from those of the larvae of Anguilla rostrata and do not change during the whole larval phase. A combination of these two biometric features enables an infallible species identification of the Atlantic Anguilla larvae at all developmental stages. The number of predorsal and preanal myomeres, the preanal length and features of the head cannot be used for a distinction of Anguilla larvae. One larva, 68.7 mm long, with 107 myomeres, and 44 myomeres to the opistonephritic blood vessel represents the hitherto southernmost record of an A. rostrata larva in the eastern North Atlantic.

  9. Evaluation of waste artificial larval rearing media as oviposition attractant for New World screwworm (Diptera: Calliphoridae)

    USDA-ARS?s Scientific Manuscript database

    The waste artificial larval rearing media of the New World Screwworm, Cochliomyia hominivorax (Coquerel) were evaluated to determine their effectiveness as oviposition attractants. Various concentrations of waste larval media resulting from rearing screwworm larvae in gel and cellulose fiber-based ...

  10. The larval development of the partner shrimp Periclimenes sagittifer (Norman, 1861) (Decapoda: Caridea: Palaemonidae: Pontoniinae) described from laboratory-reared material, with a note on chemical settlement cues

    NASA Astrophysics Data System (ADS)

    dos Santos, Antonina; Calado, Ricardo; Bartilotti, Cátia; Narciso, Luís

    2004-04-01

    The complete larval development (eight zoeae and megalopa) of Periclimenes sagittifer (Norman, 1861) (Decapoda: Palaemonidae: Pontoniinae) from laboratory-reared material is described and illustrated. The morphology of the first larval stage is compared with previous larval descriptions of other species in the genus (P. agag, P. americanus, P. calmani, P. diversipes, P. grandis and P. pandionis). The importance of chemical settlement cues for late stage Periclimenes larvae is discussed.

  11. Parallel Evolution of Larval Feeding Behavior, Morphology, and Habitat in the Snail-Kiling fly Genus Tetanocera

    NASA Astrophysics Data System (ADS)

    Chapman, E. G.; Foote, B. A.; Malukiewicz, J.; Hoeh, W. R.

    2005-05-01

    Sciomyzid larvae (Diptera: Acalyptratae) display a wide range of feeding behaviors, typically preying on a wide variety of gastropods. The genus Tetanocera is particularly interesting because its species occupy five larval feeding groups with each species' larvae living in one of two habitat types (aquatic or terrestrial). We constructed a molecular phylogeny for Tetanocera, estimated evolutionary transitions in larval feeding behaviors and habitats that occurred during Tetanocera phylogenesis, and investigated potential correlations among larval habitat and morphological characteristics. Approximately 3800 base pairs (both mitochondrial and nuclear) of sequence data were used to build the phylogeny. Larval feeding groups and habitat type were mapped onto the phylogeny and pair-wise comparisons were used to evaluate potential associations between habitat and morphology. Feeding and habitat groups within Tetanocera were usually not monophyletic and it was estimated that Tetanocera lineages made at least three independent aquatic to terrestrial transitions. These parallel habitat shifts were typically accompanied by parallel character state changes in four morphological characteristics (larval color and three posterior spiracular disc characters). These larval habitat-morphology associations were statistically significant and consistent with the action of natural selection in facilitating the morphological changes that occurred during aquatic to terrestrial habitat transitions in Tetanocera.

  12. Larval connectivity of pearl oyster through biophysical modelling; evidence of food limitation and broodstock effect

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Dumas, Franck; Andréfouët, Serge

    2016-12-01

    The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia atoll lagoons. This aquaculture relies on spat collection, a process that experiences spatial and temporal variability and needs to be optimized by understanding which factors influence recruitment. Here, we investigate the sensitivity of P. margaritifera larval dispersal to both physical and biological factors in the lagoon of Ahe atoll. Coupling a validated 3D larval dispersal model, a bioenergetics larval growth model following the Dynamic Energy Budget (DEB) theory, and a population dynamics model, the variability of lagoon-scale connectivity patterns and recruitment potential is investigated. The relative contribution of reared and wild broodstock to the lagoon-scale recruitment potential is also investigated. Sensitivity analyses pointed out the major effect of the broodstock population structure as well as the sensitivity to larval mortality rate and inter-individual growth variability to larval supply and to the subsequent settlement potential. The application of the growth model clarifies how trophic conditions determine the larval supply and connectivity patterns. These results provide new cues to understand the dynamics of bottom-dwelling populations in atoll lagoons, their recruitment, and discuss how to take advantage of these findings and numerical models for pearl oyster management.

  13. Larval development of the subantarctic king crabs Lithodes santolla and Paralomis granulosa reared in the laboratory

    NASA Astrophysics Data System (ADS)

    Calcagno, J. A.; Anger, K.; Lovrich, G. A.; Thatje, S.; Kaffenberger, A.

    2004-02-01

    The larval development and survival in the two subantarctic lithodid crabs Lithodes santolla (Jaquinot) and Paralomis granulosa (Molina) from the Argentine Beagle Channel were studied in laboratory cultures. In L. santolla, larval development lasted about 70 days, passing through three zoeal stages and the megalopa stage, with a duration of approximately 4, 7, 11 and 48 days, respectively. The larval development in P. granulosa is more abbreviated, comprising only two zoeal stages and the megalopa stage, with 6, 11 and 43 days' duration, respectively. In both species, we tested for effects of presence versus absence of food (Artemia nauplii) on larval development duration and survival rate. In P. granulosa, we also studied effects of different rearing conditions, such as individual versus mass cultures, as well as aerated versus unaerated cultures. No differences in larval development duration and survival were observed between animals subjected to those different rearing conditions. The lack of response to the presence or absence of potential food confirms, in both species, a complete lecithotrophic mode of larval development. Since lithodid crabs are of high economic importance in the artisanal fishery in the southernmost parts of South America, the knowledge of optimal rearing conditions for lithodid larvae is essential for future attempts at repopulating the collapsing natural stocks off Tierra del Fuego.

  14. Modelling larval dispersal and settlement of the reef-building polychaete Sabellaria alveolata: Role of hydroclimatic processes on the sustainability of biogenic reefs

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée; Ellien, Céline; Dumas, Franck; Dubois, Stanislas; Thiébaut, Éric

    2009-06-01

    The honeycomb worm Sabellaria alveolata forms biogenic reefs which constitute diversity hotspots on tidal flats. The largest known reefs in Europe, located in the Bay of Mont-Saint-Michel (English Channel), are suffering increasing anthropogenic disturbances which raise the question of their sustainability. As the ability to recover depends partly on the recolonization of damaged reefs by larval supply, evaluating larval dispersal and the connectivity between distant reefs is a major challenge for their conservation. In the present study, we used a 3D biophysical model to simulate larval dispersal under realistic hydroclimatic conditions and estimate larval retention and exchanges among the two reefs of different sizes within the bay. The model takes into account fine-scale hydrodynamic circulation (800×800 m 2), advection-diffusion larval transport, and gregarious settlement behaviour. According to the field data, larval dispersal was simulated for a minimal planktonic larval duration ranging from 4 to 8 weeks and the larval mortality was set to 0.09 d -1. The results highlighted the role played by a coastal eddy on larval retention within the bay, as suggested by previous in situ observations. Very different dispersal patterns were revealed depending on the spawning reef location, although the two reefs were located only 15 km apart. The settlement success of the larvae released from the smallest reef was mainly related to tidal conditions at spawning, with the highest settlement success for releases at neap tide. The settlement success of the larvae from the biggest reef was more dependent on meteorological conditions: favourable W and SW winds may promote a ten-fold increase in settlement success. Strong year-to-year variability was observed in settlers' numbers, with favourable environmental windows not always coinciding with the main reproductive periods of Sabellaria. Settlement kinetics indicated that the ability to delay metamorphosis could significantly improve the settlement success. Although bidirectional exchanges occurred between the two reefs, the highest settlers' numbers originated from the biggest reef because of its stronger reproductive output. Because of the recent decline of this reef due to increasing anthropogenic disturbances larval supply in the bay may not be sufficient enough to ensure the sustainability of the remarkable habitat formed by Sabellaria alveolata reefs.

  15. Larval traits show temporally consistent constraints, but are decoupled from post-settlement juvenile growth, in an intertidal fish.

    PubMed

    Thia, Joshua A; Riginos, Cynthia; Liggins, Libby; Figueira, Will F; McGuigan, Katrina

    2018-05-05

    1.Complex life-cycles may evolve to dissociate distinct developmental phases in an organism's lifetime. However, genetic or environmental factors may restrict trait independence across life stages, constraining ontogenetic trajectories. Quantifying covariance across life-stages and their temporal variability is fundamental in understanding life-history phenotypes and potential distributions and consequences for selection. 2.We studied developmental constraints in an intertidal fish (Bathygobius cocosensis: Gobiidae) with a discrete pelagic larval phase and benthic juvenile phase. We tested whether traits occurring earlier in life affected those expressed later, and whether larval traits were decoupled from post-settlement juvenile traits. Sampling distinct cohorts from three annual breeding seasons afforded tests of temporally variability in trait covariance. 3.From otoliths (fish ear stones), we measured hatch size, larval duration, pelagic growth (larval traits) and early post-settlement growth (juvenile trait) in 124 juvenile B. cocoensis. We used path analyses to model trait relationships with respect to their chronological expression, comparing models among seasons. We also modelled the effect of season and hatch date on each individual trait to quantify their inherent variability. 4.Our path analyses demonstrated a decoupling of larval traits on juvenile growth. Within the larval phase, longer larval durations resulted in greater pelagic growth, and larger size-at-settlement. There was also evidence that larger hatch size might reduce larval durations, but this effect was only marginally significant. Although pelagic and post-settlement growth were decoupled, pelagic growth had post-settlement consequences: individuals with high pelagic growth were among the largest fish at settlement, and remained among the largest early post-settlement. We observed no evidence that trait relationships varied among breeding seasons, but larval duration differed among breeding seasons, and was shorter for larvae hatching later within each season. 5.Overall, we demonstrate mixed support for the expectation that traits in different life-stages are independent. While post-settlement growth was decoupled from larval traits, pelagic development had consequences for the size of newly settled juveniles. Temporal consistency in trait covariances implies that genetic and/or environmental factors influencing them were stable over our three-year study. Our work highlights the importance of individual developmental experiences and temporal variability in understanding population distributions of life-history traits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Secure image retrieval with multiple keys

    NASA Astrophysics Data System (ADS)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  17. A practical guide to assessing clinical decision-making skills using the key features approach.

    PubMed

    Farmer, Elizabeth A; Page, Gordon

    2005-12-01

    This paper in the series on professional assessment provides a practical guide to writing key features problems (KFPs). Key features problems test clinical decision-making skills in written or computer-based formats. They are based on the concept of critical steps or 'key features' in decision making and represent an advance on the older, less reliable patient management problem (PMP) formats. The practical steps in writing these problems are discussed and illustrated by examples. Steps include assembling problem-writing groups, selecting a suitable clinical scenario or problem and defining its key features, writing the questions, selecting question response formats, preparing scoring keys, reviewing item quality and item banking. The KFP format provides educators with a flexible approach to testing clinical decision-making skills with demonstrated validity and reliability when constructed according to the guidelines provided.

  18. Seasonal Distribution and Abundance of Larval and Juvenile Lost River and Shortnose Suckers in Hanks Marsh, Upper Klamath National Wildlife Refuge, Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Anderson, Greer O.; Wilkens, Alexander X.; Burdick, Summer M.; VanderKooi, Scott P.

    2009-01-01

    In the summer of 2007, we undertook an assessment of larval and juvenile sucker use of Hanks Marsh in Upper Klamath Lake, Oregon. This 1,200-acre marsh on the southeastern shoreline of the lake represents part of the last remaining natural emergent wetland habitat in the lake. Because of the suspected importance of this type of habitat to larval and juvenile endangered Lost River and shortnose suckers, it was thought that sucker abundance in the marsh might be comparatively greater than in other non-vegetated areas of the lake. It also was hoped that Hanks Marsh would serve as a reference site for wetland restoration projects occurring in other areas of the lake. Our study had four objectives: to (1) examine seasonal distribution and relative abundance of larval suckers in and adjacent to Hanks Marsh in relation to habitat features such as depth, vegetation, water quality, and relative abundance of non-sucker species; (2) determine the presence or absence and describe the distribution of juvenile suckers [35 to 80 mm standard length (SL)] along the periphery of Hanks Marsh; (3) assess spatial and temporal overlap between larval suckers and their potential predators; and (4) assess suitability of water quality throughout the summer for young-of-the-year suckers. Due to the low number of suckers found in the marsh and our inability to thoroughly sample all marsh habitats due to declining lake levels during the summer, we were unable to completely address these objectives in this pilot study. The results, however, do give some indication of the relative use of Hanks Marsh by sucker and non-sucker species. Through sampling of larval and juvenile suckers in various habitat types within the marsh, we determined that sucker use of Hanks Marsh may be very low in comparison with other areas of the lake. We caught only 42 larval and 19 juvenile suckers during 12 weeks of sampling throughout the marsh. Sucker catches were rare in Hanks Marsh, and were lower than catch rates in other marshes of Upper Klamath Lake and in other nearshore and offshore areas of the lake. Based on the few suckers we did capture in Hanks Marsh, larvae tended to be found more often in vegetated habitats. A modified sampling design and approach may be necessary to address the objectives in this study, given that declining lake-surface elevation prevented us from adequately sampling all portions of the marsh throughout the sampling season. Common non-sucker species in Hanks Marsh included juvenile and adult brown bullhead, larval blue chub, tui chub, fathead minnow, and yellow perch. This species composition was similar to that of other marshes in Upper Klamath Lake but most species were found in lower numbers in Hanks Marsh than other marshes. It may be that use of Hanks Marsh is limited by poor water quality, which we found to exist at many sites after June. It also may be that access to or habitat in the marsh is limited at certain times of the year by low water. Although the results from this initial study of Hanks Marsh indicate that the area may have little direct benefit for sucker species, indirect benefits for these species possibly may come from its positive influence on some aspects of water quality in the lake, such as regulation of pH. It also may be the case that use of Hanks Marsh may vary by year and conditions; however, under the current scope of the study, we were unable to investigate inter-annual variability.

  19. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we show that long-term laboratory populations of D. melanogaster, descended from some of the populations used in the earlier studies, evolve essentially the same set of traits as the D. ananassae and D. n. nasuta crowding-adapted populations when subjected to a similar larval density at low absolute volumes of food. As in the case of D. ananassae and D. n. nasuta, and in stark contrast to earlier studies with D. melanogaster, these crowding-adapted populations of D. melanogaster did not evolve greater larval feeding rates as a correlate of increased competitive ability. The present results clearly suggest that the suite of phenotypes through which the evolution of greater competitive ability is achieved in fruitflies depends critically not just on larval density per unit volume of food, but also on the total amount of food available in the culture vials. We discuss these results in the context of an hypothesis about how larval density and the height of the food column in culture vials might interact to alter the fitness costs and benefits of increased larval feeding rates, thus resulting in different routes to the evolution of greater competitive ability, depending on the details of exactly how the larval crowding was implemented.

  20. Toxicity implications for early life stage Japanese medaka (Oryzias latipes) exposed to oxyfluorfen.

    PubMed

    Powe, Doris K; Dasmahapatra, Asok K; Russell, Joseph L; Tchounwou, Paul B

    2018-05-01

    We investigated the potential toxic effects of Oxyfluorfen (OXY), an herbicide used in agriculture, on the embryo-larval development of Japanese medaka fish (Oryzias latipes). Embryos (1-day postfertilization) and larvae (2-day posthatch) were exposed to OXY (0.5-8 mg/L) for 96 h and evaluated for mortality and hatching on embryos, and the mortality and growth on larvae during depuration. It was observed that the embryo-mortality was inconsistently altered by OXY; only the 2 mg/L group showed significant reduction on embryo survivability. However, larval-mortality was concentration-dependent and OXY exposure induced scoliosis-like phenotypic features in the surviving larvae; the calculated LC 50 was 5.238 mg/L. Our data further indicated that larval skeleton, both axial and appendicular, was the potential target site of OXY. Skeletal growth in larvae exposed to 2 mg/L was inhibited significantly until 1 week of depuration with regard to the linear lengths of neurocranium, Meckel's cartilage, caudal vertebrae (first 10) in the axial skeletons, and pectoral fin and urostyle in the appendicular skeletons. Moreover, the total protein content remained unaltered by OXY after 96 h exposure; while the RNA concentration was reduced significantly in larvae exposed to 2 mg/L. Expression analysis of several genes by quantitative real-time RT-PCR (RT-qPCR) showed significant upregulation of zic5, a zinc-finger type transcription regulator, at the transcription level. This study indicated that the scoliosis induced by OXY in Japanese medaka larvae was the result of stunted skeletal growth, probably because of deregulation of zinc-finger type transcription regulators, at the genomic level. © 2018 Wiley Periodicals, Inc.

  1. Does Skipping a Meal Matter to a Butterfly's Appearance? Effects of Larval Food Stress on Wing Morphology and Color in Monarch Butterflies

    PubMed Central

    Johnson, Haley; Solensky, Michelle J.; Satterfield, Dara A.; Davis, Andrew K.

    2014-01-01

    In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success. PMID:24695643

  2. Life history, larval dispersal, and connectivity in coral reef fish among the Scattered Islands of the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    O'Donnell, James L.; Beldade, Ricardo; Mills, Suzanne C.; Williams, Hannah E.; Bernardi, Giacomo

    2017-03-01

    The Western Indian Ocean harbors one of the world's most diverse marine biota yet is threatened by exploitation with few conservation measures in place. Primary candidates for conservation in the region are the Scattered Islands (Îles Éparses), a group of relatively pristine and uninhabited islands in the Mozambique Channel. However, while optimal conservation strategies depend on the degree of population connectivity among spatially isolated habitats, very few studies have been conducted in the area. Here, we use highly variable microsatellite markers from two damselfishes ( Amphiprion akallopisos and Dascyllus trimaculatus) with differing life history traits [pelagic larval duration (PLD), adult habitat] to compare genetic structure and connectivity among these islands using classic population structure indices as well as Bayesian clustering methods. All classical fixation indexes F ST, R ST, G'ST, and Jost's D show stronger genetic differentiation among islands for A. akallopisos compared to D. trimaculatus, consistent with the former species' shorter PLD and stronger adult site attachment, which may restrict larval dispersal potential. In agreement with these results, the Bayesian analysis revealed clear genetic differentiation among the islands in A. akallopisos, separating the southern group (Bassas da India and Europa) from the center (Juan de Nova) and northern (Îles Glorieuses) islands, but not for D. trimaculatus. Local oceanographic patterns such as eddies that occur along the Mozambique Channel appear to parallel the results reported for A. akallopisos, but such features seem to have little effect on the genetic differentiation of D. trimaculatus. The contrasting patterns of genetic differentiation between species within the same family highlight the importance of accounting for diverse life history traits when assessing community-wide connectivity, an increasingly common consideration in conservation planning.

  3. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history.

    PubMed

    Marden, James H; Fescemyer, Howard W; Saastamoinen, Marjo; MacFarland, Suzanne P; Vera, J Cristobal; Frilander, Mikko J; Hanski, Ilkka

    2008-12-01

    A fundamental feature of gene expression in multicellular organisms is the production of distinct transcripts from single genes by alternative splicing (AS), which amplifies protein and functional diversity. In spite of the likely consequences for organismal biology, little is known about how AS varies among individuals or responds to body condition, environmental variation or extracellular signals in general. Here we show that evolutionarily conserved AS of troponin-t in flight muscle of adult moths responds in a quantitative fashion to experimental manipulation of larval nutrition and adult body weight. Troponin-t (Tnt) isoform composition is known to affect muscle force and power output in other animals, and is shown here to be associated with the thorax mass-specific rate of energy consumption during flight. Loading of adults with external weights for 5 days caused an AS response nearly identical to equal increases in actual body weight. In addition, there were effects of larval feeding history on adult Tnt isoform composition that were independent of body weight, with moths from poorer larval feeding regimes producing isoform profiles associated with reduced muscle performance and energy consumption rate. Thus, Tnt isoform composition in striated muscle is responsive to both weight-sensing and nutrition-sensing mechanisms, with consequent effects on function. In free-living butterflies, Tnt isoform composition was also associated with activity level and very strongly with the rate of egg production. Overall, these results show that AS of a muscle gene responds in a quantitative fashion to whole-organism variables, which apparently serves to coordinate muscle strength and energy expenditure with body condition and life history.

  4. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    PubMed

    Johnson, Haley; Solensky, Michelle J; Satterfield, Dara A; Davis, Andrew K

    2014-01-01

    In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  5. Quantitative effects of cyanogenesis on an adapted herbivore.

    PubMed

    Ballhorn, D J; Heil, M; Pietrowski, A; Lieberei, R

    2007-12-01

    Plant cyanogenesis means the release of gaseous hydrogen cyanide (HCN) in response to cell damage and is considered as an effective defense against generalist herbivores. In contrast, specialists are generally believed not to be affected negatively by this trait. However, quantitative data on long-term effects of cyanogenesis on specialists are rare. In this study, we used lima bean accessions (Fabaceae: Phaseolus lunatus L.) with high quantitative variability of cyanogenic features comprising cyanogenic potential (HCNp; concentration of cyanogenic precursors) and cyanogenic capacities (HCNc; release of gaseous HCN per unit time). In feeding trials, we analyzed performance of herbivorous Mexican bean beetle (Coleoptera: Coccinellidae: Epilachna varivestis Mulsant) on selected lines characterized by high (HC-plants) and low HCNp (LC-plants). Larval and adult stages of this herbivore feed on a narrow range of legumes and prefer cyanogenic lima bean as host plant. Nevertheless, we found that performance of beetles (larval weight gain per time and body mass of adult beetles) was significantly affected by lima bean HCNp: Body weight decreased and developmental period of larvae and pupae increased on HC-plants during the first generation of beetles and then remained constant for four consecutive generations. In addition, we found continuously decreasing numbers of eggs and larval hatching as inter-generational effects on HC-plants. In contrast to HC-plants, constantly high performance was observed among four generations on LC-plants. Our results demonstrate that Mexican bean beetle, although preferentially feeding on lima bean, is quantitatively affected by the HCNp of its host plant. Effects can only be detected when considering more than one generation. Thus, cyanide-containing precursors can have negative effects even on herbivores adapted to feed on cyanogenic plants.

  6. DLGS97/SAP97 is developmentally upregulated and is required for complex adult behaviors and synapse morphology and function.

    PubMed

    Mendoza-Topaz, Carolina; Urra, Francisco; Barría, Romina; Albornoz, Valeria; Ugalde, Diego; Thomas, Ulrich; Gundelfinger, Eckart D; Delgado, Ricardo; Kukuljan, Manuel; Sanxaridis, Parthena D; Tsunoda, Susan; Ceriani, M Fernanda; Budnik, Vivian; Sierralta, Jimena

    2008-01-02

    The synaptic membrane-associated guanylate kinase (MAGUK) scaffolding protein family is thought to play key roles in synapse assembly and synaptic plasticity. Evidence supporting these roles in vivo is scarce, as a consequence of gene redundancy in mammals. The genome of Drosophila contains only one MAGUK gene, discs large (dlg), from which two major proteins originate: DLGA [PSD95 (postsynaptic density 95)-like] and DLGS97 [SAP97 (synapse-associated protein)-like]. These differ only by the inclusion in DLGS97 of an L27 domain, important for the formation of supramolecular assemblies. Known dlg mutations affect both forms and are lethal at larval stages attributable to tumoral overgrowth of epithelia. We generated independent null mutations for each, dlgA and dlgS97. These allowed unveiling of a shift in expression during the development of the nervous system: predominant expression of DLGA in the embryo, balanced expression of both during larval stages, and almost exclusive DLGS97 expression in the adult brain. Loss of embryonic DLGS97 does not alter the development of the nervous system. At larval stages, DLGA and DLGS97 fulfill both unique and partially redundant functions in the neuromuscular junction. Contrary to dlg and dlgA mutants, dlgS97 mutants are viable to adulthood, but they exhibit marked alterations in complex behaviors such as phototaxis, circadian activity, and courtship, whereas simpler behaviors like locomotion and odor and light perception are spared. We propose that the increased repertoire of associations of a synaptic scaffold protein given by an additional domain of protein-protein interaction underlies its ability to integrate molecular networks required for complex functions in adult synapses.

  7. DLGS97/SAP97 Is Developmentally Upregulated and Is Required for Complex Adult Behaviors and Synapse Morphology and Function

    PubMed Central

    Mendoza-Topaz, Carolina; Urra, Francisco; Barri′a, Romina; Albornoz, Valeria; Ugalde, Diego; Thomas, Ulrich; Gundelfinger, Eckart D.; Delgado, Ricardo; Kukuljan, Manuel; Sanxaridis, Parthena D.; Tsunoda, Susan; Ceriani, M. Fernanda; Budnik, Vivian; Sierralta, Jimena

    2015-01-01

    The synaptic membrane-associated guanylate kinase (MAGUK) scaffolding protein family is thought to play key roles in synapse assembly and synaptic plasticity. Evidence supporting these roles in vivo is scarce, as a consequence of gene redundancy in mammals. The genome of Drosophila contains only one MAGUK gene, discs large (dlg), from which two major proteins originate: DLGA [PSD95 (postsynaptic density 95)-like] and DLGS97 [SAP97 (synapse-associated protein)-like]. These differ only by the inclusion in DLGS97 of an L27 domain, important for the formation of supramolecular assemblies. Known dlg mutations affect both forms and are lethal at larval stages attributable to tumoral overgrowth of epithelia. We generated independent null mutations for each, dlgA and dlgS97. These allowed unveiling of a shift in expression during the development of the nervous system: predominant expression of DLGA in the embryo, balanced expression of both during larval stages, and almost exclusive DLGS97 expression in the adult brain. Loss of embryonic DLGS97 does not alter the development of the nervous system. At larval stages, DLGA and DLGS97 fulfill both unique and partially redundant functions in the neuromuscular junction. Contrary to dlg and dlgA mutants, dlgS97 mutants are viable to adulthood, but they exhibit marked alterations in complex behaviors such as phototaxis, circadian activity, and courtship, whereas simpler behaviors like locomotion and odor and light perception are spared. We propose that the increased repertoire of associations of a synaptic scaffold protein given by an additional domain of protein–protein interaction underlies its ability to integrate molecular networks required for complex functions in adult synapses. PMID:18171947

  8. Diversity of breeding habitats of anophelines (Diptera: Culicidae) in Ramgarh district, Jharkhand, India.

    PubMed

    Pandey, Siddharth; Das, M K; Dhiman, Ramesh C

    2016-01-01

    The Ramgarh district of Jharkhand state, India is highly malarious owing to abundance of different malaria vector species, namely Anopheles culicifacies, An. fluviatilis and An. annularis. In spite of high prevalence of malaria vectors in Ramgarh, their larval ecology and climatic conditions affecting malaria dynamics have never been studied. Therefore, the objective of this study was to identify the diversity of potential breeding habitats and breeding preferences of anopheline vectors in the Ramgarh district. Anopheles immature collection was carried out at potential aquatic habitats in Ramgarh and Gola sites using the standard dipper on fortnightly basis from August 2012 to July 2013. The immatures were reared till adult emergence and further identified using standard keys. Temperature of outdoor and water bodies was recorded through temperature data loggers, and rainfall through standard rain gauges installed at each site. A total of 6495 immature specimens representing 17 Anopheles species including three malaria vectors, viz. An. culicifacies, An. fluviatilis and An. annularis were collected from 11 types of breeding habitats. The highly preferred breeding habitats of vector anophelines were river bed pools, rivulets, wells, ponds, river margins, ditches and irrigation channels. Larval abundance of vector species showed site-specific variation with temperature and rainfall patterns throughout the year. The Shannon-Weiner diversity index ranged from 0.19 to 1.94 at Ramgarh site and 0.16 to 1.76 at Gola site. The study revealed that malaria vector species have been adapted to breed in a wide range of water bodies. The regular monitoring of such specific vector breeding sites under changing ecological and environmental conditions will be useful in guiding larval control operations selectively for effective vector/ malaria control.

  9. Proteome Comparisons between Hemolymph of Two Honeybee Strains (Apis mellifera ligustica) Reveal Divergent Molecular Basis in Driving Hemolymph Function and High Royal Jelly Secretion.

    PubMed

    Ararso, Zewdu; Ma, Chuan; Qi, Yuping; Feng, Mao; Han, Bin; Hu, Han; Meng, Lifeng; Li, Jianke

    2018-01-05

    Hemolymph is vital for the immunity of honeybees and offers a way to investigate their physiological status. To gain novel insight into the functionality and molecular details of the hemolymph in driving increased Royal Jelly (RJ) production, we characterized and compared hemolymph proteomes across the larval and adult ages of Italian bees (ITbs) and Royal Jelly bees (RJbs), a stock selected from ITbs for increasing RJ output. Unprecedented in-depth proteome was attained with the identification of 3394 hemolymph proteins in both bee lines. The changes in proteome support the general function of hemolymph to drive development and immunity across different ages. However, age-specific proteome settings have adapted to prime the distinct physiology for larvae and adult bees. In larvae, the proteome is thought to drive temporal immunity, rapid organogenesis, and reorganization of larval structures. In adults, the proteome plays key roles in prompting tissue development and immune defense in newly emerged bees, in gland maturity in nurse bees, and in carbohydrate energy production in forager bees. Between larval and adult samples of the same age, RJbs and ITbs have tailored distinct hemolymph proteome programs to drive their physiology. In particular, in day 4 larvae and nurse bees, a large number of highly abundant proteins are enriched in protein synthesis and energy metabolism in RJbs. This implies that they have adapted their proteome to initiate different developmental trajectories and high RJ secretion in response to selection for enhanced RJ production. Our hitherto unexplored in-depth proteome coverage provides novel insight into molecular details that drive hemolymph function and high RJ production by RJbs.

  10. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.

    PubMed

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-31

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.

  11. Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs

    NASA Astrophysics Data System (ADS)

    Almany, G. R.; Connolly, S. R.; Heath, D. D.; Hogan, J. D.; Jones, G. P.; McCook, L. J.; Mills, M.; Pressey, R. L.; Williamson, D. H.

    2009-06-01

    Networks of no-take reserves are important for protecting coral reef biodiversity from climate change and other human impacts. Ensuring that reserve populations are connected to each other and non-reserve populations by larval dispersal allows for recovery from disturbance and is a key aspect of resilience. In general, connectivity between reserves should increase as the distance between them decreases. However, enhancing connectivity may often tradeoff against a network’s ability to representatively sample the system’s natural variability. This “representation” objective is typically measured in terms of species richness or diversity of habitats, but has other important elements (e.g., minimizing the risk that multiple reserves will be impacted by catastrophic events). Such representation objectives tend to be better achieved as reserves become more widely spaced. Thus, optimizing the location, size and spacing of reserves requires both an understanding of larval dispersal and explicit consideration of how well the network represents the broader system; indeed the lack of an integrated theory for optimizing tradeoffs between connectivity and representation objectives has inhibited the incorporation of connectivity into reserve selection algorithms. This article addresses these issues by (1) updating general recommendations for the location, size and spacing of reserves based on emerging data on larval dispersal in corals and reef fishes, and on considerations for maintaining genetic diversity; (2) using a spatial analysis of the Great Barrier Reef Marine Park to examine potential tradeoffs between connectivity and representation of biodiversity and (3) describing a framework for incorporating environmental fluctuations into the conceptualization of the tradeoff between connectivity and representation, and that expresses both in a common, demographically meaningful currency, thus making optimization possible.

  12. Cloning and molecular ontogeny of digestive enzymes in fed and food-deprived developing gilthead seabream (Sparus aurata) larvae.

    PubMed

    Mata-Sotres, José Antonio; Martos-Sitcha, Juan Antonio; Astola, Antonio; Yúfera, Manuel; Martínez-Rodríguez, Gonzalo

    2016-01-01

    We have determined the expression pattern of key pancreatic enzymes precursors (trypsinogen, try; chymotrypsinogen, ctrb; phospholipase A2, pla2; bile salt-activated lipase, cel; and α-amylase, amy2a) during the larval stage of gilthead seabream (Sparus aurata) up to 60days after hatching (dph). Previously, complete sequences of try, cel, and amy2a were cloned and phylogenetically analyzed. One new isoform was found for cel transcript (cel1b). Expression of all enzyme precursors was detected before the mouth opening. Expression of try and ctrb increased during the first days of development and then maintained high values with some fluctuations during the whole larval stage. The prolipases pla2 and cel1b increased from first-feeding with irregular fluctuation until the end of the experiment. Contrarily, cel1a maintained low expression values during most of the larval stage increasing at the end of the period. Nevertheless, cel1a expression was negligible as compared with cel1b. The expression of amy2a sharply increased during the first week followed by a gradual decrease. In addition, a food-deprivation experiment was performed to find the differences in relation to presence/absence of gut content after the opening of the mouth. The food-deprived larvae died at 10dph. The expression levels of all digestive enzymes increased up to 7dph, declining sharply afterwards. This expression pattern up to 7dph was the same observed in fed larvae, confirming the genetic programming during the early development. Main digestive enzymes in gilthead seabream larvae exhibited the same expression profiles than other marine fish with carnivorous preferences in their juvenile stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    PubMed

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Dry season refugia for anopheline larvae and mapping of the seasonal distribution in mosquito larval habitats in Kandi, northeastern Benin.

    PubMed

    Govoetchan, Renaud; Gnanguènon, Virgile; Ogouwalé, Euloge; Oké-Agbo, Frédéric; Azondékon, Roseric; Sovi, Arthur; Attolou, Roseline; Badirou, Kefilath; Youssouf, Ramziyath Agbanrin; Ossè, Razaki; Akogbéto, Martin

    2014-03-31

    The dynamics of mosquito populations depends on availability of suitable surface water for oviposition. It is well known that suitable management of mosquito larval habitats in the sub-Saharan countries, particularly during droughts, could help to suppress vector densities and malaria transmission. We conducted a field survey to investigate the spatial and seasonal distribution of mosquito larval habitats and identify drought-refugia for anopheline larvae. A GIS approach was used to identify, geo-reference and follow up longitudinally from May 2012 to May 2013, all mosquito breeding sites in two rural sites (Yondarou and Thui), one urban (Kossarou), and one peri-urban (Pèdè) site at Kandi, a municipality in northeastern Benin. In Kandi, droughts are excessive with no rain for nearly six months and a lot of sunshine. A comprehensive record of mosquito larval habitats was conducted periodically in all sites for the identification of drought-refugia of anopheline larval stages. With geospatialisation data, seasonal larval distribution maps were generated for each study site with the software ArcGIS version 10.2. Overall, 187 mosquito breeding sites were identified of which 29.95% were recorded during drought. In rural, peri-urban and urban sites, most of the drought-refugia of anopheline larvae were domestic in nature (61.54%). Moreover, in rural settings, anopheline larvae were also sampled in cisterns and wells (25% of larval habitats sampled during drought in Yondarou and 20% in Thui). The mapping showed a significant decrease in the spatial distribution of mosquito larval habitats in rural, peri-urban and urban sites during drought, except in Yondarou (rural) where the aridity did not seem to influence the distribution of larval habitats. Our data showed that the main drought-refugia of anopheline larvae were of a domestic nature as well as wells and cisterns. A suitable management of mosquito larvae in sub-Saharan countries, particularly during droughts, should target such larval habitats for a meaningful impact on the dynamics of mosquito populations and malaria transmission.

  15. Offshore-onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean)

    NASA Astrophysics Data System (ADS)

    Morat, Fabien; Letourneur, Yves; Blamart, Dominique; Pécheyran, Christophe; Darnaude, Audrey M.; Harmelin-Vivien, Mireille

    2014-08-01

    Understanding individual dispersion from offshore natal areas to coastal nurseries during pelagic larval life is especially important for the sustainable management of exploited marine fish species. For several years, the hatching period, the larval life duration, the average growth rate and the otolith chemical composition (δ13C, δ18O, Sr:Ca and Ba:Ca) during the larval life were studied for young of the year (YOY) of sole collected in three main nurseries of the Gulf of Lions (GoL) (Thau, Mauguio and Berre). We investigated the spatial variation in the origin of the sole larvae which colonised the nurseries around the GoL, and whether temporal differences in environmental conditions during this life stage affected growth and larval life duration. The hatching period ranges from October to March, depending on year and site. Average ages at metamorphosis varied between 43 and 50 days, with the lowest and highest values consistently found for Mauguio and Berre, respectively. Otolith growth rates ranged between 2.7 and 3.2 μm d-1, with the lowest values in Thau and Mauguio and the highest in Berre. Otolith chemical composition during the larval life also varied, suggesting contrasted larval environmental histories in YOY among nurseries. In fishes from Berre and Mauguio, larval life was more influenced by the Rhône River, showing consistently higher larval Ba:Ca ratios (10/23 μmol mol-1) and lower δ13C (-6.5/-6.1‰) and δ18O values (-1.6/0.1‰) than for Thau (with Ba:Ca ratios < 8 μmol mol-1, δ13C ˜-2.3‰ and δ18O ˜1.5‰). Differences in larval otolith composition were observed for 2004, with higher Ba:Ca and lower δ13C and δ18O values than in the two other years. These differences were explained by changes in composition and chemical signatures of water masses after an exceptional flooding event of the Rhône River in late 2003.

  16. Larval morphology and complex vocal repertoire of Rhacophorus helenae (Anura: Rhacophoridae), a rare flying frog from Vietnam.

    PubMed

    Vassilieva, Anna B; Gogoleva, Svetlana S; Poyarkov, Nikolay A Jr

    2016-06-24

    We present new data on the distribution, reproduction, larval morphology and vocalization of Rhacophorus helenae (Rhacophoridae), a narrowly distributed frog from southern Vietnam. Two new populations of R. helenae were discovered during field surveys in the lowland monsoon forests in Dong Nai and Ba Ria-Vung Tau provinces in 2010-2013. Spawning was observed in May 2013. Egg clutches containing small (2.3±0.1 mm) unpigmented eggs were embedded in a foam nest and suspended high on trees above temporary ponds. The tadpoles of R. helenae have a morphology typical of pond-dwelling Rhacophorus larvae with a moderate tail length and a labial tooth row formula of 5(2-5)/3. Postmetamorphic juveniles differed from adult frogs in the features of their coloration and less developed webbing. The complex vocal repertoire of R. helenae included five types of tonal, wideband and pulsed calls and several transitional signal types differentiated by frequency and amplitude parameters. Calls were uttered as singular signals (pulsed calls) or within non-stereotyped series of variable duration (other call types). The complex structure of the advertisement call markedly distinguishes R. helenae from other members of the Rhacophorus reinwardtii species complex.

  17. Diversity and Spatiotemporal Distribution of Larval Odonate Assemblages in Temperate Neotropical Farm Ponds

    PubMed Central

    Pires, Mateus Marques; Kotzian, Carla Bender; Spies, Marcia Regina

    2014-01-01

    Abstract Farm ponds help maintain diversity in altered landscapes. However, studies on the features that drive this type of property in the Neotropics are still lacking, especially for the insect fauna. We analyzed the spatial and temporal distribution of odonate larval assemblages in farm ponds. Odonates were sampled monthly at four farm ponds from March 2008 to February 2009 in a temperate montane region of southern Brazil. A small number of genera were frequent and accounted for most of the dominant fauna. The dominant genera composition differed among ponds. Local spatial drivers such as area, hydroperiod, and margin vegetation structure likely explain these results more than spatial predictors due to the small size of the study area. Circular analysis detected seasonal effect on assemblage abundance but not on richness. Seasonality in abundance was related to the life cycles of a few dominant genera. This result was explained by temperature and not rainfall due to the temperate climate of the region studied. The persistence of dominant genera and the sparse occurrence of many taxa over time probably led to a lack in a seasonal pattern in assemblage richness. PMID:25527585

  18. Heterochrony in mandible development of larval shrimp (Decapoda: Caridea)--a comparative morphological SEM study of two carideans.

    PubMed

    Batel, Annika; Melzer, Roland R; Anger, Klaus; Geiselbrecht, Hannes

    2014-11-01

    Mandible development in the larval stages I-V of two palaemonid shrimp species, Palaemon elegans and Macrobrachium amazonicum, was analyzed using scanning electron microscopy, light microscopy, and confocal laser scanning microscopy. In contrast to the zoea I of P. elegans, first-stage larvae of M. amazonicum are nonfeeding. At hatching, the morphology of the mandibles is fully expressed in P. elegans, while it appears underdeveloped in M. amazonicum, presenting only small precursors of typical caridean features. In successive zoeal stages, both species show similar developmental changes, but the mandibular characters of the larvae in M. amazonicum were delayed compared to the equivalent stages in P. elegans, especially in the development of submarginal setae and mandible size. In conclusion, our results indicate heterochrony (postdisplacement) of mandible development in M. amazonicum compared to that in P. elegans, which is related to initial lack of mandible functionality or planktivorous feeding at hatching, respectively. This conclusion is supported by comparison with other palaemonid zoeae exhibiting different feeding modes. Our data suggest that an evolutionary ground pattern of mandible morphology is present even in species with nonfeeding first-stage larvae. © 2014 Wiley Periodicals, Inc.

  19. Introduction to the symposium--barnacle biology: essential aspects and contemporary approaches.

    PubMed

    Zardus, John D

    2012-09-01

    Barnacles have evolved a number of specialized features peculiar for crustaceans: they produce a calcified, external shell; they exhibit sexual strategies involving dioecy and androdioecy; and some have become internal parasites of other Crustacea. The thoroughly sessile habit of adults also belies the highly mobile and complex nature of their larval stages. Given these and other remarkable innovations in their natural history, it is perhaps not surprising that barnacles present a spectrum of opportunities for study. This symposium integrates research on barnacles in the areas of larval biology, biofouling, reproduction, biogeography, speciation, population genetics, ecological genomics, and phylogenetics. Pioneering comparisons are presented of metamorphosis among barnacles from three major lineages. Biofouling is investigated from the perspectives of biochemical and biomechanical mechanisms. Tradeoffs in reproductive specializations are scrutinized through theoretical modeling and empirical validation. Patterns of endemism and diversity are delineated in Australia and intricate species boundaries in the genus Chthamalus are elucidated for the Indo-Pacific. General methodological concerns with population expansion studies in crustaceans are highlighted using barnacle models. Data from the first, draft barnacle genome are employed to examine location-specific selection. Lastly, barnacle evolution is framed in a deep phylogenetic context and hypothetical origins of defined characters are outlined and tested.

  20. The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Wiederhold, M. L.; Batten, J.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. Mammalian otoconia are barrel-shaped with triplanar facets at each end. Reptilian otoconia are commonly prismatic or fusiform in shape. Amphibians have all three otoconial morphologies, barrel-shaped otoconia within the utricle, with prismatic and fusiform otoconia in the saccule. Scanning electron microscopy revealed a sequential appearance of all three otoconial morphologies during larval development of the newt, Cynops pyrrhogaster. The first otoconia appear within a single, developing otolith, and some resemble adult barrel-shaped otoconia. As the larvae hatch, around stages 39-42, the single otolith divides into two anatomically separate regions, the utricle and saccule, and both contain otoconia similar to those seen in the single otolith. Throughout development, these otoconia may have variable morphologies, with serrated surfaces, or circumferential striations with either separated facets or adjacent facets in the triplanar end-regions. Small fusiform otoconia occur later, at stage 51, and only in the saccule. Prismatic otoconia appear later still, at stage 55, and again only in the saccule. Thus, although prismatic otoconia are the most numerous in adult newts, it is the last vestibular otoconial morphology to be expressed.

  1. Brief Exposure to Turbulence Permanently Alters Development of Sand Dollar Larvae

    NASA Astrophysics Data System (ADS)

    Ferner, M. C.; Hodin, J.; Ng, G.; Lowe, C. J.; Gaylord, B.

    2016-02-01

    Fluid motion underlies interactions between animals and their environment through effects on locomotion, food capture, respiration, information transfer, and other processes. Recent studies of marine invertebrates indicate that metamorphosis and settlement can be altered when swimming larvae experience a change in turbulence intensity, possibly increasing the likelihood that larvae will settle in appropriate habitat. For example, brief exposure to levels of turbulence characteristic of wave-swept coasts causes echinoderm larvae to quickly transition from a non-responsive "pre-competent" stage into a "competent" stage, thereby allowing the larvae to respond to local cues and settle. However, responding to one's entry into the nearshore environment isn't enough, as many such species live as adults in a narrower range of highly specific benthic habitat that is even more rarely encountered. Here we provide an account for this apparent mismatch between larval responses to broadly distributed cues and their need for more specialized settlement locations: turbulence exposure seems to cause larval sand dollars (Dendraster excentricus) to permanently shift from pre-competence to competence. This observation suggests a scenario where turbulence can activate a temporally extensive search image in larvae over a broad habitat range, a seemingly adaptive feature for larvae entering dynamic coastal environments.

  2. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center.

    PubMed

    Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi

    2015-02-01

    Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. © 2014 Wiley Periodicals, Inc.

  3. The protozooplankton-ichthyoplankton trophic link: an overlooked aspect of aquatic food webs.

    PubMed

    Montagnes, David J S; Dower, John F; Figueiredo, Gisela M

    2010-01-01

    Since the introduction of the microbial loop concept, awareness of the role played by protozooplankton in marine food webs has grown. By consuming bacteria, and then being consumed by metazooplankton, protozoa form a trophic link that channels dissolved organic material into the "classic" marine food chain. Beyond enhancing energy transfer to higher trophic levels, protozoa play a key role in improving the food quality of metazooplankton. Here, we consider a third role played by protozoa, but one that has received comparatively little attention: that as prey items for ichthyoplankton. For >100 years it has been known that fish larvae consume protozoa. Despite this, fisheries scientists and biological oceanographers still largely ignore protozoa when assessing the foodweb dynamics that regulate the growth and survival of larval fish. We review evidence supporting the importance of the protozooplankton-ichthyoplankton link, including examples from the amateur aquarium trade, the commercial aquaculture industry, and contemporary studies of larval fish. We then consider why this potentially important link continues to receive very little attention. We conclude by offering suggestions for quantifying the importance of the protozooplankton-ichthyoplankton trophic link, using both existing methods and new technologies.

  4. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals

    PubMed Central

    Bhogal, Balpreet; Plaza-Jennings, Amara

    2016-01-01

    Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. PMID:27256879

  5. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals.

    PubMed

    Bhogal, Balpreet; Plaza-Jennings, Amara; Gavis, Elizabeth R

    2016-06-15

    Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. © 2016. Published by The Company of Biologists Ltd.

  6. Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx.

    PubMed

    Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng

    2016-01-01

    The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated Yorkie(CA) overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm.

  7. Bioprospection of immature salivary glands of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae).

    PubMed

    Caleffe, Ronaldo Roberto Tait; de Oliveira, Stefany Rodrigues; Gigliolli, Adriana Aparecida Sinópolis; Ruvolo-Takasusuki, Maria Claudia Colla; Conte, Helio

    2018-06-08

    Larval therapy (LT) comprises the application of sterile Calliphoridae larvae for wound debridement, disinfection, and healing in humans and animals. Larval digestion plays a key role in LT, where the salivary glands and gut produce and secrete proteolytic and antimicrobial substances. The objective of this work was to bioprospect the salivary glands of Chrysomya megacephala (Fabricius, 1794) larvae, using ultrastructural, morphological, and histological observations, and the total protein electrophoretic profile. The salivary glands present a deferent duct, originating from the buccal cavity, which bifurcates into efferent ducts that insert through a slight dilatation to a pair of tubular-shaped tissues, united in the region of fat cells. Histologically, the secretion had protein characteristics. Cell cytoplasm presented numerous free ribosomes, autophagic vacuoles, spherical and elongated mitochondria, atypical Golgi complexes, and dilated rough endoplasmic reticulum. In the apical cytoplasm, secretory granules and microvilli secretions demonstrated intense protein synthesis, basal cytoplasm with trachea insertions, and numerous mitochondria. The present work described the ultrastructure and morphology of C. megacephala third instar salivary glands, confirming intense protein synthesis and the molecular weight of soluble proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp.

    PubMed Central

    Bucher, Madeline; Wolfowicz, Iliona; Voss, Philipp A.; Hambleton, Elizabeth A.; Guse, Annika

    2016-01-01

    Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level. PMID:26804034

  9. Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp.

    PubMed

    Bucher, Madeline; Wolfowicz, Iliona; Voss, Philipp A; Hambleton, Elizabeth A; Guse, Annika

    2016-01-25

    Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level.

  10. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  11. A SoxC gene related to larval shell development and co-expression analysis of different shell formation genes in early larvae of oyster.

    PubMed

    Liu, Gang; Huan, Pin; Liu, Baozhong

    2017-06-01

    Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 + /soxc + /gata2/3 + cells and tyr1 + /soxc + /gata2/3 - cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.

  12. Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.

    PubMed

    Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K

    2016-03-01

    The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Fisheries Closed Areas Strengthen Scallop Larval Settlement and Connectivity Among Closed Areas and Across International Open Fishing Grounds: A Model Study.

    PubMed

    Davies, Kimberley T A; Gentleman, W C; DiBacco, C; Johnson, C L

    2015-09-01

    This study examined whether a measured increase in average body size of adult sea scallops inside three fishery closed areas on Georges Bank (GB), United States (US), was sufficient to increase larval supply to closed areas and open fishing areas in both US and Canadian areas of the Bank. The effects of adult scallop density-at-size and fecundity-at-size on egg production were compared among open and closed fishery areas, countries, and time periods before and after the closed areas were established. Estimated egg production was then used to define spawning conditions in a coupled biological-physical larval tracking model that simulated larval development, mortality, and dispersal. Results showed that order of magnitude increases in larval settlement after closure were facilitated by increases in size-dependant egg production inside and dispersal from Closed Areas I and II, but not Nantucket Lightship Closed Area. The distributions of both egg production and larval settlement became more uniform across the Bank, causing the relative contribution of Canadian larvae to US scallop aggregations to decrease after establishment of Closed Areas I and II. Decreases in small and medium-sized scallop density in Canada and decreases in large scallops over the US-Southern Flank after closure caused local declines in egg production but were not sufficient to negatively affect larval settlement at the regional scale. Our model suggests that the establishment of fishery closed areas on GB considerably strengthened larval supply and settlement within and among several adult scallop aggregations.

  14. Fisheries Closed Areas Strengthen Scallop Larval Settlement and Connectivity Among Closed Areas and Across International Open Fishing Grounds: A Model Study

    NASA Astrophysics Data System (ADS)

    Davies, Kimberley T. A.; Gentleman, W. C.; DiBacco, C.; Johnson, C. L.

    2015-09-01

    This study examined whether a measured increase in average body size of adult sea scallops inside three fishery closed areas on Georges Bank (GB), United States (US), was sufficient to increase larval supply to closed areas and open fishing areas in both US and Canadian areas of the Bank. The effects of adult scallop density-at-size and fecundity-at-size on egg production were compared among open and closed fishery areas, countries, and time periods before and after the closed areas were established. Estimated egg production was then used to define spawning conditions in a coupled biological-physical larval tracking model that simulated larval development, mortality, and dispersal. Results showed that order of magnitude increases in larval settlement after closure were facilitated by increases in size-dependant egg production inside and dispersal from Closed Areas I and II, but not Nantucket Lightship Closed Area. The distributions of both egg production and larval settlement became more uniform across the Bank, causing the relative contribution of Canadian larvae to US scallop aggregations to decrease after establishment of Closed Areas I and II. Decreases in small and medium-sized scallop density in Canada and decreases in large scallops over the US-Southern Flank after closure caused local declines in egg production but were not sufficient to negatively affect larval settlement at the regional scale. Our model suggests that the establishment of fishery closed areas on GB considerably strengthened larval supply and settlement within and among several adult scallop aggregations.

  15. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    USGS Publications Warehouse

    Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  16. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees

    USDA-ARS?s Scientific Manuscript database

    In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diet are often complex and may interact with one another, necessitating the use of a geometric framework for und...

  17. PHOTO-INDUCED POLYCYCLIC AROMATIC HYDROCARBON TOXIC POTENTIALS OF NEAR SHORE LARVAL FISH HABITAT IN THE GREAT LAKES, USA

    EPA Science Inventory

    Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...

  18. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

    NASA Astrophysics Data System (ADS)

    Stach, Thomas

    2013-12-01

    Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".

  19. Mechanistic insights into the effects of climate change on larval cod.

    PubMed

    Kristiansen, Trond; Stock, Charles; Drinkwater, Kenneth F; Curchitser, Enrique N

    2014-05-01

    Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual-based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM-projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950-1999 and 2050-2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050-2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold-water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large-scale assessment of the impacts of climate change on larval cod in the North Atlantic. © 2013 John Wiley & Sons Ltd.

  20. The Implications of Temperature-Mediated Plasticity in Larval Instar Number for Development within a Marine Invertebrate, the Shrimp Palaemonetes varians

    PubMed Central

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications. PMID:24069450

  1. The implications of temperature-mediated plasticity in larval instar number for development within a marine invertebrate, the shrimp Palaemonetes varians.

    PubMed

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30 °C to assess their thermal scope for development. Larvae developed at 17, 25, and 30 °C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as 'repeat' instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25 °C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20 °C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications.

  2. The Neuro-Ecology of Drosophila Pupation Behavior

    PubMed Central

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Godoy-Herrera, Raúl

    2014-01-01

    Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild. PMID:25033294

  3. Measuring larval nematode contamination on cattle pastures: Comparing two herbage sampling methods.

    PubMed

    Verschave, S H; Levecke, B; Duchateau, L; Vercruysse, J; Charlier, J

    2015-06-15

    Assessing levels of pasture larval contamination is frequently used to study the population dynamics of the free-living stages of parasitic nematodes of livestock. Direct quantification of infective larvae (L3) on herbage is the most applied method to measure pasture larval contamination. However, herbage collection remains labour intensive and there is a lack of studies addressing the variation induced by the sampling method and the required sample size. The aim of this study was (1) to compare two different sampling methods in terms of pasture larval count results and time required to sample, (2) to assess the amount of variation in larval counts at the level of sample plot, pasture and season, respectively and (3) to calculate the required sample size to assess pasture larval contamination with a predefined precision using random plots across pasture. Eight young stock pastures of different commercial dairy herds were sampled in three consecutive seasons during the grazing season (spring, summer and autumn). On each pasture, herbage samples were collected through both a double-crossed W-transect with samples taken every 10 steps (method 1) and four random located plots of 0.16 m(2) with collection of all herbage within the plot (method 2). The average (± standard deviation (SD)) pasture larval contamination using sampling methods 1 and 2 was 325 (± 479) and 305 (± 444)L3/kg dry herbage (DH), respectively. Large discrepancies in pasture larval counts of the same pasture and season were often seen between methods, but no significant difference (P = 0.38) in larval counts between methods was found. Less time was required to collect samples with method 2. This difference in collection time between methods was most pronounced for pastures with a surface area larger than 1 ha. The variation in pasture larval counts from samples generated by random plot sampling was mainly due to the repeated measurements on the same pasture in the same season (residual variance component = 6.2), rather than due to pasture (variance component = 0.55) or season (variance component = 0.15). Using the observed distribution of L3, the required sample size (i.e. number of plots per pasture) for sampling a pasture through random plots with a particular precision was simulated. A higher relative precision was acquired when estimating PLC on pastures with a high larval contamination and a low level of aggregation compared to pastures with a low larval contamination when the same sample size was applied. In the future, herbage sampling through random plots across pasture (method 2) seems a promising method to develop further as no significant difference in counts between the methods was found and this method was less time consuming. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.

    PubMed

    Christiansen-Jucht, Céline; Parham, Paul E; Saddler, Adam; Koella, Jacob C; Basáñez, María-Gloria

    2014-11-05

    Malaria transmission depends on vector life-history parameters and population dynamics, and particularly on the survival of adult Anopheles mosquitoes. These dynamics are sensitive to climatic and environmental factors, and temperature is a particularly important driver. Data currently exist on the influence of constant and fluctuating adult environmental temperature on adult Anopheles gambiae s.s. survival and on the effect of larval environmental temperature on larval survival, but none on how larval temperature affects adult life-history parameters. Mosquito larvae and pupae were reared individually at different temperatures (23 ± 1°C, 27 ± 1°C, 31 ± 1°C, and 35 ± 1°C), 75 ± 5% relative humidity. Upon emergence into imagoes, individual adult females were either left at their larval temperature or placed at a different temperature within the range above. Survival was monitored every 24 hours and data were analysed using non-parametric and parametric methods. The Gompertz distribution fitted the survivorship data better than the gamma, Weibull, and exponential distributions overall and was adopted to describe mosquito mortality rates. Increasing environmental temperature during the larval stages decreased larval survival (p < 0.001). Increases of 4°C (from 23°C to 27°C, 27°C to 31°C, and 31°C to 35°C), 8°C (27°C to 35°C) and 12°C (23°C to 35°C) statistically significantly increased larval mortality (p < 0.001). Higher environmental temperature during the adult stages significantly lowered adult survival overall (p < 0.001), with increases of 4°C and 8°C significantly influencing survival (p < 0.001). Increasing the larval environment temperature also significantly increased adult mortality overall (p < 0.001): a 4°C increase (23°C to 27°C) did not significantly affect adult survival (p > 0.05), but an 8°C increase did (p < 0.05). The effect of a 4°C increase in larval temperature from 27°C to 31°C depended on the adult environmental temperature. The data also suggest that differences between the temperatures of the larval and adult environments affects adult mosquito survival. Environmental temperature affects Anopheles survival directly during the juvenile and adult stages, and indirectly, since temperature during larval development significantly influences adult survival. These results will help to parameterise more reliable mathematical models investigating the potential impact of temperature and global warming on malaria transmission.

  5. Efficacy of Four Nematicides Against the Reproduction and Development of Pinewood Nematode, Bursaphelenchus xylophilus

    PubMed Central

    Bi, Zhenzhen; Gong, Yanting; Huang, Xiaojuan; Yu, Hongshi; Bai, Liqun; Hu, Jiafu

    2015-01-01

    To understand the efficacy of emamectin benzoate, avermectin, milbemectin, and thiacloprid on the reproduction and development of Bursaphelenchus xylophilus, seven parameters, namely population growth, fecundity, egg hatchability, larval lethality, percent larval development, body size, and sexual ratio, were investigated using sublethal (LC20) doses of these compounds in the laboratory. Emamectin benzoate treatment led to a significant suppression in population size, brood size, and percent larval development with 411, 3.50, and 49.63%, respectively, compared to 20850, 24.33, and 61.43% for the negative control. The embryonic and larval lethality increased obviously from 12.47% and 13.70% to 51.37% and 75.30%, respectively. In addition, the body length was also significantly reduced for both males and females in the emamectin benzoate treatment. Avermectin and milbemectin were also effective in suppressing population growth by increasing larval lethality and reducing larval development, although they did not affect either brood size or embryonic lethality. Body length for both male and female worms was increased by avermectin. Thiacloprid caused no adverse reproductive effects, although it suppressed larval development. Sexual ratio was not affected by any of these four nematicides. Our results indicate that emamectin benzoate, milbemectin, and avermectin are effective against the reproduction of B. xylophilus. We think these three nematicides can be useful for the control of pine wilt disease. PMID:26170474

  6. Efficacy of Four Nematicides Against the Reproduction and Development of Pinewood Nematode, Bursaphelenchus xylophilus.

    PubMed

    Bi, Zhenzhen; Gong, Yanting; Huang, Xiaojuan; Yu, Hongshi; Bai, Liqun; Hu, Jiafu

    2015-06-01

    To understand the efficacy of emamectin benzoate, avermectin, milbemectin, and thiacloprid on the reproduction and development of Bursaphelenchus xylophilus, seven parameters, namely population growth, fecundity, egg hatchability, larval lethality, percent larval development, body size, and sexual ratio, were investigated using sublethal (LC20) doses of these compounds in the laboratory. Emamectin benzoate treatment led to a significant suppression in population size, brood size, and percent larval development with 411, 3.50, and 49.63%, respectively, compared to 20850, 24.33, and 61.43% for the negative control. The embryonic and larval lethality increased obviously from 12.47% and 13.70% to 51.37% and 75.30%, respectively. In addition, the body length was also significantly reduced for both males and females in the emamectin benzoate treatment. Avermectin and milbemectin were also effective in suppressing population growth by increasing larval lethality and reducing larval development, although they did not affect either brood size or embryonic lethality. Body length for both male and female worms was increased by avermectin. Thiacloprid caused no adverse reproductive effects, although it suppressed larval development. Sexual ratio was not affected by any of these four nematicides. Our results indicate that emamectin benzoate, milbemectin, and avermectin are effective against the reproduction of B. xylophilus. We think these three nematicides can be useful for the control of pine wilt disease.

  7. Alfalfa weevil (Coleoptera:Curculionidae) management in alfalfa by spring grazing with cattle.

    PubMed

    Buntin, G D; Bouton, J H

    1996-12-01

    The effect of continuous, intensive grazing by cattle in the 1st alfalfa growth cycle on larval densities of the alfalfa weevil, Hyera postica (Gyllenhal), was evaluated in "Alfagraze' and "Apollo' alfalfa, which are tolerant and not tolerant to grazing, respectively. In small-cage exclusion trials, grazing reduced larval numbers in 1991 by 65% in Alfagraze and by 32% in Apollo. Larval numbers in 1992 were low (< or = 0.6 larvae per stem) and were not reduced significantly by grazing. Grazing and use of early insecticide treatments of permethrin or carbofuran at low rates with < or = 7-d grazing restrictions to suppress larval numbers before grazing also were examined in large-plot exclusion trails in 1993 and 1994. Grazing reduced larval densities by 60% in 1993 and 45% in 1994 during a 3-wk period beginning 3 wk after grazing was initiated. However, alfalfa weevil larvae caused moderate leaf injury in 1993 and severe injury in 1994 before grazing reduced larval numbers. Use of permethrin at 0.11 kg (AI)/ha or carbofuran or chlorpyrifos at 0.28 kg (AI)/ha effectively reduced larval numbers and prevented leaf injury before grazing began. Therefore, a combination of an early application of an insecticide treatment with a short grazing restriction followed by continuous grazing will control alfalfa weevil larvae while allowing cattle to graze and directly use forage of grazing-tolerant alfalfa.

  8. Detecting larval export from marine reserves

    PubMed Central

    Pelc, R. A.; Warner, R. R.; Gaines, S. D.; Paris, C. B.

    2010-01-01

    Marine reserve theory suggests that where large, productive populations are protected within no-take marine reserves, fished areas outside reserves will benefit through the spillover of larvae produced in the reserves. However, empirical evidence for larval export has been sparse. Here we use a simple idealized coastline model to estimate the expected magnitude and spatial scale of larval export from no-take marine reserves across a range of reserve sizes and larval dispersal scales. Results suggest that, given the magnitude of increased production typically found in marine reserves, benefits from larval export are nearly always large enough to offset increased mortality outside marine reserves due to displaced fishing effort. However, the proportional increase in recruitment at sites outside reserves is typically small, particularly for species with long-distance (on the order of hundreds of kilometers) larval dispersal distances, making it very difficult to detect in field studies. Enhanced recruitment due to export may be detected by sampling several sites at an appropriate range of distances from reserves or at sites downcurrent of reserves in systems with directional dispersal. A review of existing empirical evidence confirms the model's suggestion that detecting export may be difficult without an exceptionally large differential in production, short-distance larval dispersal relative to reserve size, directional dispersal, or a sampling scheme that encompasses a broad range of distances from the reserves. PMID:20181570

  9. Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl.

    PubMed

    Ferrari, Ana; Anguiano, Olga L; Soleño, Jimena; Venturino, Andrés; Pechen de D'Angelo, Ana M

    2004-12-01

    We studied the effect of two insecticides azinphos methyl and carbaryl on two resident aquatic species (Oncorhynchus mykiss and Bufo arenarum). Juvenile trout and larval stages of toad were used for exposure and recovery assays. O. mykiss was more sensitive to azinphos methyl exposure than B. arenarum larvae, with a mean 96-h LC50 of 0.007 mg/l. Carbaryl is markedly less toxic than the organophosphate and the differences in potency, expressed as LC50, for both species varies only by five-fold. The relationship between cholinesterase (ChE) inhibition and lethality is not straightforward: O. mykiss survives with an almost complete inhibition of the brain enzyme when exposed to azinphos methyl and carbaryl. Their IC50 values are one or two orders of magnitude lower than the corresponding 96-h LC50 value. In B. arenarum larvae, the IC50 values for azinphos methyl and carbaryl are one half and one third of their 96-h LC50s, respectively. The time courses of enzyme inhibition and recovery also points out differences between both types of pesticides and species. Identifying the key features conferring species selectivity can be exploited to minimize the incidence and severity of intoxication of non-target organism. The data presented here highlight the necessity of including several species and endpoint analyses in the pesticide risk evaluations of aquatic ecosystems.

  10. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.

    PubMed

    Pereira, Talita Carneiro Brandão; Campos, Maria Martha; Bogo, Maurício Reis

    2016-07-01

    Copper is an essential micronutrient and a key catalytic cofactor in a wide range of enzymes. As a trace element, copper levels are tightly regulated and both its deficit and excess are deleterious to the organism. Under inflammatory conditions, serum copper levels are increased and trigger oxidative stress responses that activate inflammatory responses. Interestingly, copper dyshomeostasis, oxidative stress and inflammation are commonly present in several chronic diseases. Copper exposure can be easily modeled in zebrafish; a consolidated model in toxicology with increasing interest in immunity-related research. As a result of developmental, economical and genetic advantages, this freshwater teleost is uniquely suitable for chemical and genetic large-scale screenings, representing a powerful experimental tool for a whole-organism approach, mechanistic studies, disease modeling and beyond. Copper toxicological and more recently pro-inflammatory effects have been investigated in both larval and adult zebrafish with breakthrough findings. Here, we provide an overview of copper metabolism in health and disease and its effects on oxidative stress and inflammation responses in zebrafish models. Copper-induced inflammation is highlighted owing to its potential to easily mimic pro-oxidative and pro-inflammatory features that combined with zebrafish genetic tractability could help further in the understanding of copper metabolism, inflammatory responses and related diseases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Evolutionary stability of mutualism: interspecific population regulation as an evolutionarily stable strategy.

    PubMed

    Holland, J Nathaniel; DeAngelis, Donald L; Schultz, Stewart T

    2004-09-07

    Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.

  12. Conochironomus (Diptera: Chironomidae) in Asia: new and redescribed species and vouchering issues.

    PubMed

    Cranston, Peter S

    2016-05-09

    The presence of the Afro-Australian genus Conochironomus Freeman, 1961 (Diptera: Chironomidae) in Asia has been recognised only informally. An unpublished thesis included Conochironomus from Singapore, and the genus has been keyed from Malaysia without named species. Here, the Sumatran Conochironomus tobaterdecimus (Kikuchi & Sasa, 1980) comb. n. is recorded from Singapore and Thailand. The species is transferred from Sumatendipes Kikuchi & Sasa, 1980, rendering the latter a junior synonym (syn. n.) of Conochironomus Freeman. Conochironomus nuengthai sp. n. and Conochironomus sawngthai sp. n. are described as new to science, based on adult males from Chiang Mai, Thailand. All species conform to existing generic diagnoses for all life stages, with features from male and female genitalia, pupal cephalic tubercles and posterolateral 'spurs' of tergite VIII providing evidence for species distinction. Some larvae are linked to C. tobaterdecimus through molecular barcoding. Variation in other larvae, which clearly belong to Conochironomus and are common throughout Thailand, means that they cannot be segregated to species. Larval habitats include pools in river beds, urban storage reservoirs, drains with moderately high nutrient loadings, and peat swamps. Endochironomus effusus Dutta, 1994 from north-eastern India may be a congener but may differ in adult morphology, thereby precluding formal new combination until discrepancies can be reconciled. Many problems with vouchering taxonomic and molecular material are identified that need to be rectified in the future.

  13. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae).

    PubMed

    Rotheray, Graham E

    2014-12-19

    Two hundred and ninety-eight rearing records and 87 larvae and puparia were obtained of seven species of Palloptera Fallén (Diptera, Pallopteridae), mainly in Scotland during 2012-2013. The third stage larva and puparium of each species were assessed morphologically and development sites and feeding modes investigated by rearing, observation and feeding tests. Early stages appear to be distinguished by the swollen, apico-lateral margins of the prothorax which are coated in vestiture and a poorly developed anal lobe with few spicules. Individual pallopteran species are separated by features of the head skeleton, locomotory spicules and the posterior respiratory organs. Five species can be distinguished by unique character states. Observations and feeding tests suggest that the frequently cited attribute of zoophagy is accidental and that saprophagy is the primary larval feeding mode with autumn/winter as the main period of development. Food plants were confirmed for flowerhead and stem developing species and rain is important for maintaining biofilms on which larvae feed. Due to difficulties in capturing adults, especially males, the distribution and abundance of many pallopteran species is probably underestimated. Better informed estimates are possible if early stages are included in biodiversity assessments. To facilitate this for the species investigated, a key to the third stage larva and puparium along with details on finding them, is provided. 

  14. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products.

    PubMed

    van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A

    2015-02-01

    Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of corticosterone on larval growth, antipredator behaviour and metamorphosis of Hylarana indica.

    PubMed

    Kulkarni, P S; Gramapurohit, N P

    2017-09-15

    Corticosterone (CORT), a principal glucocorticoid in amphibians, is known to regulate diverse physiological processes including growth and metamorphosis of anuran tadpoles. Environmental stressors activate the neuroendocrine stress axis (hypothalamus-pituitary-interrenal axis, HPI) leading to an acute increase in CORT, which in turn, helps in coping with particular stress. However, chronic increase in CORT can negatively affect other physiological processes such as growth and metamorphosis. Herein, we studied the effect of exogenous CORT on larval growth, antipredator behaviour and metamorphic traits of Hylarana indica. Embryonic exposure to 5 or 20μg/L CORT did not affect their development, hatching duration as well as larval growth and metamorphosis. Exposure of tadpoles to 10 or 20μg/L CORT throughout larval development caused slower growth and development leading to increased body mass at stage 37. However, body and tail morphology of tadpoles was not affected. Interestingly, larval exposure to 5, 10 or 20μg/L CORT enhanced their antipredator response against kairomones in a concentration-dependent manner. Further, larval exposure to increasing concentrations of CORT resulted in the emergence of heavier froglets at 10 and 20μg/L while, delaying metamorphosis at all concentrations. Interestingly, the heavier froglets had shorter hindlimbs and consequently shorter jump distances. Tadpoles exposed to 20μg/L CORT during early, mid or late larval stages grew and developed slowly but tadpole morphology was not altered. Interestingly, exposure during early or mid-larval stages resulted in an enhanced antipredator response. These individuals metamorphosed later but at higher body mass while SVL was unaffected. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  17. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

    NASA Astrophysics Data System (ADS)

    Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.

    2009-06-01

    The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

  18. Evaluation of nine genotypes of oilseed rape (Brassica napus L.) for larval infestation and performance of rape stem weevil (Ceutorhynchus napi Gyll.)

    PubMed Central

    Becker, Heiko C.; Vidal, Stefan

    2017-01-01

    The rape stem weevil, Ceutorhynchus napi Gyll., is a serious pest of winter oilseed rape (Brassica napus L.) crops in Europe causing severe yield loss. In currently used oilseed rape cultivars no resistance to C. napi has been identified. Resynthesized lines of B. napus have potential to broaden the genetic variability and may improve resistance to insect pests. In this study, the susceptibility to C. napi of three cultivars, one breeding line and five resynthesized lines of oilseed rape was compared in a semi-field plot experiment under multi-choice conditions. Plant acceptance for oviposition was estimated by counting the number of C. napi larvae in stems. The larval instar index and the dry body mass were assessed as indicators of larval performance. The extent of larval feeding within stems was determined by the stem injury coefficient. Morphological stem traits and stem contents of glucosinolates were assessed as potential mediators of resistance. The resynthesized line S30 had significantly fewer larvae than the cultivars Express617 and Visby and the resynthesized lines L122 and L16. The low level of larval infestation in S30 was associated with a low larval instar and stem injury index. Low numbers of larvae were not correlated with the length or diameter of stems, and the level of stem glucosinolates. As indicated by the low larval infestation and slow larval development the resistance of S30 to C. napi is based on both antixenotic and antibiotic properties of the genotypes. The resynthesized line S30 should therefore be introduced into B. napus breeding programs to enhance resistance against C. napi. PMID:28686731

  19. Larval habitat for the avian malaria vector culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2009-01-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at ' Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  20. Survival dynamics of scleractinian coral larvae and implications for dispersal

    NASA Astrophysics Data System (ADS)

    Graham, E. M.; Baird, A. H.; Connolly, S. R.

    2008-09-01

    Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals ( Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales, coupled with the maintenance of extensive geographic ranges observed in many coral species.

  1. Novel methodologies in marine fish larval nutrition.

    PubMed

    Conceição, Luis E C; Aragão, Cláudia; Richard, Nadège; Engrola, Sofia; Gavaia, Paulo; Mira, Sara; Dias, Jorge

    2010-03-01

    Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of (14)C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for different species of larval fish.

  2. Larval development to the first eighth zoeal stages in the deep-sea caridean shrimp Plesionika grandis Doflein, 1902 (Crustacea, Decapoda, Pandalidae).

    PubMed

    Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei

    2017-01-01

    The larvae of the deep-sea pandalid shrimp Plesionika grandis Doflein, 1902 were successfully reared in the laboratory for the first time. The larvae reached the eighth zoeal stage in 36 days, both of which are longest records for the genus. Early larval stages of P. grandis bear the general characters of pandalid shrimps and differ from the other two species of Plesionika with larval morphology known in the number of spines on the anteroventral margin of carapace, number of tubercles on antennule, endopod segmentation in antenna, and third maxilliped setation. Although members in Plesionika are often separated into species groups, members of the same species group do not necessarily have similar early larval morphology. Since the zoea VIII of P. grandis still lacks pleopods and fifth pereiopod, this shrimp likely has at least 12 zoeal stages and a larval development of 120 days.

  3. Circatrigintan instead of lunar periodicity of larval release in a brooding coral species.

    PubMed

    Linden, Bart; Huisman, Jef; Rinkevich, Baruch

    2018-04-04

    Larval release by brooding corals is often assumed to display lunar periodicity. Here, we show that larval release of individual Stylophora pistillata colonies does not comply with the assumed tight entrainment by the lunar cycle, and can better be classified as a circatrigintan pattern. The colonies exhibited three distinct reproductive patterns, characterized by short intervals, long intervals and no periodicity between reproductive peaks, respectively. Cross correlation between the lunar cycle and larval release of the periodic colonies revealed an approximately 30-day periodicity with a variable lag of 5 to 10 days after full moon. The observed variability indicates that the lunar cycle does not provide a strict zeitgeber. Other factors such as water temperature and solar radiation did not correlate significantly with the larval release. The circatrigintan patterns displayed by S. pistillata supports the plasticity of corals and sheds new light on discussions on the fecundity of brooding coral species.

  4. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix.

    PubMed

    Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W

    2005-10-01

    Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut.

  5. Effect of contrasting agents on survival, performance, and condition of larval hybrid striped bass Morone chrysops x M. saxatilis in tanks

    USDA-ARS?s Scientific Manuscript database

    Contrasting agents, either algae or inert soil, cause turbidity, which is important in the tank culture of larval cannibalistic fish. Optimization of turbidity is critical to successful tank culture of new larval fish, which should include 100 mg/L of sub 5 um particle size in the assessed range. ...

  6. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  7. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  8. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure.

    PubMed

    Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H

    2017-12-01

    Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.

  9. Fast versus slow larval growth in an invasive marine mollusc: does paternity matter?

    PubMed

    Le Cam, Sabrina; Pechenik, Jan A; Cagnon, Mathilde; Viard, Frédérique

    2009-01-01

    Reproductive strategies and parental effects play a major role in shaping early life-history traits. Although polyandry is a common reproductive strategy, its role is still poorly documented in relation to paternal effects. Here, we used as a case study the invasive sessile marine gastropod Crepidula fornicata, a mollusc with polyandry and extreme larval growth variation among sibling larvae. Based on paternity analyses, the relationships between paternal identity and the variations in a major early life-history trait in marine organisms, that is, larval growth, were investigated. Using microsatellite markers, paternities of 437 fast- and slow-growing larvae from 6 broods were reliably assigned to a set of 20 fathers. No particular fathers were found responsible for the specific growth performances of their offspring. However, the range of larval growth rates within a brood was significantly correlated to 1) an index of sire diversity and 2) the degree of larvae relatedness within broods. Multiple paternity could thus play an important role in determining the extent of pelagic larval duration and consequently the range of dispersal distances achieved during larval life. This study also highlighted the usefulness of using indices based on fathers' relative contribution to the progeny in paternity studies.

  10. Establishment of a medium-scale mosquito facility: optimization of the larval mass-rearing unit for Aedes albopictus (Diptera: Culicidae).

    PubMed

    Zhang, Dongjing; Zhang, Meichun; Wu, Yu; Gilles, Jeremie R L; Yamada, Hanano; Wu, Zhongdao; Xi, Zhiyong; Zheng, Xiaoying

    2017-11-13

    Standardized larval rearing units for mosquito production are essential for the establishment of a mass-rearing facility. Two larval rearing units, developed respectively by the Guangzhou Wolbaki Biotech Co. Ltd. (Wolbaki) and Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (FAO/IAEA-IPCL), are tested to assess their potential uses to mass-rear the larval stages of Aedes albopictus in support of the establishment of a medium-scale mosquito facility for the application of mosquito genetic control strategies. The triple Wolbachia-infected Ae. albopictus strain (HC strain) was used in this study. The effects of larval densities of two larval rearing trays (corresponding to 2.4, 3.0 and 3.6 larvae/cm 2 ) and tray size/position (top, middle and bottom layers) on the pupae production and larval survival were assessed when trays were stacked within the larval rearing units. The male pupae production, female pupae contamination after sex separation, and male mating competitiveness were also studied by using both larval rearing units in their entirety. The optimal larval rearing density for Wolbaki-tray (Wol-tray) was 6,600 larvae (equal to 3.0 larvae/cm 2 ) and 18,000 larvae (3.6 larvae/cm 2 ) for the FAO/IAEA-IPCL tray (IAEA-tray). No significant difference in pupae production was observed when trays were stacked within top, middle or bottom layers for both units. At thirty-four hours after the first pupation, the average male pupae production was (0.89 × 10 5 ) for the Wol-unit and (3.16 × 10 5 ) for the IAEA-unit. No significant difference was observed in female pupae contamination between these two units. The HC males showed equal male mating competitiveness to wild type males for mating with wild type females in large cages, regardless of whether they were reared in the Wol-unit or IAEA-unit. The current study has indicated that both the Wol-unit and IAEA-unit are suitable for larvae mass-rearing for Ae. albopictus. However, the IAEA-unit, with higher male production and less space required compared to the Wol-unit, is recommended to be used in support of the establishment of a medium-sized mosquito facility.

  11. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay.

    PubMed

    Teh, Chien Huey; Nazni, Wasi Ahmad; Nurulhusna, Ab Hamid; Norazah, Ahmad; Lee, Han Lim

    2017-02-16

    Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS). The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml -1 . Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica. The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

  12. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity.

    PubMed

    Chung, J Sook; Maurer, Leah; Bratcher, Meagan; Pitula, Joseph S; Ogburn, Matthew B

    2012-09-03

    Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5' and 3' RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.

  13. Reproductive traits of tropical deep-water pandalid shrimps ( Heterocarpus ensifer) from the SW Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Briones-Fourzán, Patricia; Barradas-Ortíz, Cecilia; Negrete-Soto, Fernando; Lozano-Álvarez, Enrique

    2010-08-01

    Heterocarpus ensifer is a tropical deep-water pandalid shrimp whose reproductive features are poorly known. We examined reproductive traits of a population of H. ensifer inhabiting the continental slope (311-715 m in depth) off the Yucatan Peninsula, Mexico (SW Gulf of Mexico). Size range of the total sample ( n=816) was 10.4-38.9 mm carapace length. Females grow larger than males, but both sexes mature at 57% of their maximum theoretical size and at ˜30% of their total lifespan. Among adult females, the proportion of ovigerous females was high in all seasons, indicating year-round reproduction. Most females carrying embryos in advanced stages of development had ovaries in advanced stages of maturation, indicating production of successive spawns. In the autumn, however, the proportion of ovigerous females and the condition index of these females were lower compared to other seasons. This pattern potentially reflects a reduction in food resources following the summer minimum in particulate organic carbon flux to the deep benthos, as reported in previous studies. Spawns consisting of large numbers (16024±5644, mean±SD) of small eggs (0.045±0.009 mm 3) are consistent with extended planktotrophic larval development, an uncommon feature in deep-water carideans. Egg number increased as a power function of female size but with substantial variability, and egg size varied widely within and between females. There was no apparent trade-off between egg number and egg size and neither of these two variables was influenced by female condition. These results indicate iteroparity and a high and variable reproductive effort, reflecting a reproductive strategy developed to compensate for high larval mortality. The present study provides a baseline to compare reproductive traits between Atlantic populations of this tropical deep-water pandalid.

  14. dSet1 Is the Main H3K4 Di- and Tri-Methyltransferase Throughout Drosophila Development

    PubMed Central

    Hallson, Graham; Hollebakken, Robert E.; Li, Taosui; Syrzycka, Monika; Kim, Inho; Cotsworth, Shawn; Fitzpatrick, Kathleen A.; Sinclair, Donald A. R.; Honda, Barry M.

    2012-01-01

    In eukaryotes, the post-translational addition of methyl groups to histone H3 lysine 4 (H3K4) plays key roles in maintenance and establishment of appropriate gene expression patterns and chromatin states. We report here that an essential locus within chromosome 3L centric heterochromatin encodes the previously uncharacterized Drosophila melanogaster ortholog (dSet1, CG40351) of the Set1 H3K4 histone methyltransferase (HMT). Our results suggest that dSet1 acts as a “global” or general H3K4 di- and trimethyl HMT in Drosophila. Levels of H3K4 di- and trimethylation are significantly reduced in dSet1 mutants during late larval and post-larval stages, but not in animals carrying mutations in genes encoding other well-characterized H3K4 HMTs such as trr, trx, and ash1. The latter results suggest that Trr, Trx, and Ash1 may play more specific roles in regulating key cellular targets and pathways and/or act as global H3K4 HMTs earlier in development. In yeast and mammalian cells, the HMT activity of Set1 proteins is mediated through an evolutionarily conserved protein complex known as Complex of Proteins Associated with Set1 (COMPASS). We present biochemical evidence that dSet1 interacts with members of a putative Drosophila COMPASS complex and genetic evidence that these members are functionally required for H3K4 methylation. Taken together, our results suggest that dSet1 is responsible for the bulk of H3K4 di- and trimethylation throughout Drosophila development, thus providing a model system for better understanding the requirements for and functions of these modifications in metazoans. PMID:22048023

  15. Variability in supply and cross-shelf transport of pink shrimp (Farfantepenaeus duorarum) postlarvae into western Florida Bay

    USGS Publications Warehouse

    Criales, Maria M.; Wang, John D.; Browder, Joan A.; Robblee, Michael B.; Jackson, Thomas L.; Hittle, Clinton D.

    2006-01-01

    The variability in the supply of pink shrimp (Farfantepenaeus duorarum) postlarvae and the transport mechanisms of planktonic stages were investigated with field data and simulations of transport. Postlarvae entering the nursery grounds of Florida Bay were collected for three consecutive years at channels that connect the Bay with the Gulf of Mexico, and in channels of the Middle Florida Keys that connect the southeastern margin of the Bay with the Atlantic Ocean. The influx of postlarvae in the Middle Florida Keys was low in magnitude and varied seasonally and among years. In contrast, the greater postlarval influx occurred at the northwestern border of the Bay, where there was a strong seasonal pattern with peaks in influx from July through September each year. Planktonic stages need to travel up to 150 km eastward between spawning grounds (northeast of Dry Tortugas) and nursery grounds (western Florida Bay) in about 30 days, the estimated time of planktonic development for this species. A Lagrangian trajectory model was developed to estimate the drift of planktonic stages across the SW Florida shelf. The model simulated the maximal distance traveled by planktonic stages under various assumptions of behavior.  Simulation results indicated that larvae traveling with the instantaneous current and exhibiting a diel behavior travel up to 65 km and 75% of the larvae travel only 30 km. However, the eastward distance traveled increased substantially when a larval response to tides was added to the behavioral variable (distance increased to 200 km and 85% of larvae traveled 150 km). The question is, when during larval development, and where on the shallow SW Florida shelf, does the tidal response become incorporated into the behavior of pink shrimp.

  16. Routine implementation costs of larviciding with Bacillus thuringiensis israelensis against malaria vectors in a district in rural Burkina Faso.

    PubMed

    Dambach, Peter; Schleicher, Michael; Stahl, Hans-Christian; Traoré, Issouf; Becker, Norbert; Kaiser, Achim; Sié, Ali; Sauerborn, Rainer

    2016-07-22

    The key tools in malaria control are early diagnosis and treatment of cases as well as vector control. Current strategies for malaria vector control in sub-Saharan Africa are largely based on long-lasting insecticide-treated nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). An additional tool in the fight against malaria vectors, larval source management (LSM), has not been used in sub-Saharan Africa on a wider scale since the abandonment of environmental spraying of DDT. Increasing concerns about limitations of LLINs and IRS and encouraging results from large larvicide-based LSM trials make a strong case for using biological larviciding as a complementary tool to existing control measures. Arguments that are often quoted against such a combined approach are the alleged high implementation costs of LSM. This study makes the first step to test this argument. The implementation costs of larval source management based on Bacillus thuringiensis israelensis (Bti) (strain AM65-52) spraying under different implementation scenarios were analysed in a rural health district in Burkina Faso. The analysis draws on detailed cost data gathered during a large-scale LSM intervention between 2013 and 2015. All 127 villages in the study setup were assigned to two treatment arms and one control group. Treatment either implied exhaustive spraying of all available water collections or targeted spraying of the 50 % most productive larval sources via remote-sensing derived and entomologically validated risk maps. Based on the cost reports from both intervention arms, the per capita programme costs were calculated under the assumption of covering the whole district with either intervention scenario. Cost calculations have been generalized by providing an adaptable cost formula. In addition, this study assesses the sensitivity of per capita programme costs with respect to changes in the underlying cost components. The average annual per capita costs of exhaustive larviciding with Bti during the main malaria transmission period (June-October) in the Nouna health district were calculated to be US$ 1.05. When targeted spraying of the 50 % most productive larval sources is used instead, average annual per capita costs decrease by 27 % to US$ 0.77. Additionally, a high sensitivity of per capita programme costs against changes in total surface of potential larval sources and the number of spraying repetitions was found. The per capita costs for larval source management interventions with Bti are roughly a third of the annual per capita expenditures for anti-malarial drugs and those for LLINs in Burkina Faso which are US$ 3.80 and 3.00, respectively. The average LSM costs compare to those of IRS and LLINs for sub-Saharan Africa. The authors argue that in such a setting LSM based on Bti spraying is within the range of affordable anti-malarial strategies and, consequently, should deserve more attention in practice. Future research includes a cost-benefit calculation, based on entomological and epidemiological data collected during the research project.

  17. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle

    PubMed Central

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-01-01

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792

  18. Bioenergetics models to estimate numbers of larval lampreys consumed by smallmouth bass in Elk Creek, Oregon

    USGS Publications Warehouse

    Schultz, Luke; Heck, Michael; Kowalski, Brandon M; Eagles-Smith, Collin A.; Coates, Kelly C.; Dunham, Jason B.

    2017-01-01

    Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream-migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater-resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2-month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations.

  19. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.

    PubMed

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-08-04

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.

  20. Using larval fish community structure to guide long-term monitoring of fish spawning activity

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.

    2015-01-01

    Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.

  1. The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.

    We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.

  2. Key Program Features to Enhance the School-to-Career Transition for Youth with Disabilities

    ERIC Educational Resources Information Center

    Doren, Bonnie; Yan, Min-Chi; Tu, Wei-Mo

    2013-01-01

    The purpose of the article was to identify key features within research-based school-to-career programs that were linked to positive employment outcomes for youth disabilities. Three key program features were identified and discussed that could be incorporated into the practices and programs of schools and communities to support the employment…

  3. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation.

    PubMed

    Salze, G; Craig, S R; Smith, B H; Smith, E P; McLean, E

    2011-05-01

    The morphological development of larval cobia Rachycentron canadum from 3 days post hatch (dph) until weaning (27 dph) was examined using S.E.M. Two groups of fish were studied: a control group (CF), reared under standard feeding protocol, and a group in which prey items were enriched with supplemental taurine (4 g l(-1) day(-1) ; TF). TF fish grew faster (P < 0·001), attained greater size (mean ±s.e. 55·1 ± 1·5 v. 33·9 ± 1·0 mm total length) and had better survival (mean ±s.e. 29·3 ± 0·4 v. 7·1 ± 1·2 %) than CF fish. Canonical variance analysis confirmed findings with respect to differences in growth between the treatment groups with separation being explained by two cranial measurements. S.E.M. revealed that 3 dph larvae of R. canadum (in both groups) possess preopercular spines, superficial neuromasts on the head and body, taste buds in the mouth, an olfactory epithelium which takes the form of simple concave depressions, and primordial gill arches. Gill filaments start to form as early as 6 dph and lamellae buds are visible at 8 dph in both groups. In CF fish, the cephalic lateral line system continues its development at 12-14 dph with invagination of both supra- and infraorbital canals. At the same time, a thorn-like or acanthoid crest forms above the eye. At 14 dph, invaginations of the mandibular and preopercular canals are visible and around 22 dph enclosure of all cranial canals nears completion. In CF larvae, however, completely enclosed cranial canals were not observed within the course of the trial, i.e. 27 dph. In TF larvae, grooves of the cephalic lateral line system form 4 days earlier than observed in CF larvae of R. canadum (i.e. at 8 dph), with enclosure commencing at 16 dph, and completed by 27 dph. Along the flanks of 6 dph larvae of either treatment, four to five equally spaced neuromasts delineate the future position of the trunk lateral line. As myomeres are added to the growing larvae, new neuromasts appear such that at 16 dph a neuromast is associated with each myomere. By 27 dph, the trunk lateral line starts to invaginate in CF larvae, while it initiates closure in TF larvae. These findings elucidate important features of the larval development of R. canadum and show that dietary taurine supplementation benefits larval development, growth and survival in this species. Moreover, they suggest a conditional requirement for taurine in larval R. canadum. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  4. Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus.

    PubMed

    Neves, Raquel A F; Contins, Mariana; Nascimento, Silvia M

    2018-04-01

    Blooms of the benthic dinoflagellate Ostreopsis cf. ovata have been recorded with increasing frequency, intensity and geographic distribution. This dinoflagellate produces potent toxins that may cause mortality of marine invertebrates. Adults of sea urchins are commonly affected by O. cf. ovata exposure with evidence of spines loss and high mortality during periods of high dinoflagellate abundances. Here, we report on the effects of the toxic dinoflagellate O. cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus, a key ecological herbivore. Lytechinus variegatus eggs and sperm were experimentally exposed to different concentrations of Ostreopsis cf. ovata (4, 40, 400, and 4000 cells ml -1 ) to test the hypothesis that fertilization success, embryonic and larval development of the sea urchin are negatively affected by the toxic dinoflagellate even at low abundances. Reduced fertilization, developmental failures, embryo and larval mortality, and occurrence of abnormal offspring were evident after exposure to O. cf. ovata. Fertilization decreased when gametes were exposed to high O. cf. ovata abundances (400 and 4000 cells ml -1 ), but just the exposure to the highest abundance significantly reduced fertilization success. Sea urchin early development was affected by O. cf. ovata in a dose-dependent way, high dinoflagellate abundances fully inhibited the early development of L. variegatus. Ostreopsis cf. ovata significantly increased the mortality of sea urchin eggs and embryos in the first hours of exposure (∼1-3 h), regardless of dinoflagellate abundance. Abundances of 400 and 4000 O. cf. ovata cells ml -1 induced significantly higher mortality on sea urchin initial stages in the first hours, and no egg or embryo was found in these treatments after 18 h of incubation. The early echinopluteus larva was only reached in the control and in treatments with low Ostreopsis cf. ovata abundances (4 and 40 cells ml -1 ). The exposure to O. cf. ovata led to significantly higher occurrence of skeletal anomalies in the early larva of L. variegatus. Interactions of sea urchin gametes and Ostreopsis cells may naturally occur in coastal areas due to the match between O. cf. ovata blooms and L. variegatus reproductive period. Reduced larval density and increased larval abnormalities were observed even at low abundances (4 and 40 cells ml -1 ) frequently found in tropical environments all year round. The chronic exposure to O. cf. ovata could significantly impact larval fitness, thus compromising recruitment success, and highlight the negative effects of benthic HABs on sea urchin populations and its possible broader ecological implications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Metamorphosis in Teleosts

    PubMed Central

    McMenamin, Sarah K.; Parichy, David M.

    2017-01-01

    Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, “metamorphoses,” as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories. PMID:23347518

  6. Two-photon calcium imaging during fictive navigation in virtual environments.

    PubMed

    Ahrens, Misha B; Huang, Kuo Hua; Narayan, Sujatha; Mensh, Brett D; Engert, Florian

    2013-01-01

    A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features-such as turning responses to whole-field motion and dark avoidance-are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.

  7. A guide to the larvae of the Nearctic Diamesinae (Diptera; Chironomidae), the genera Boreoheptagyia, Protanypus, Diamesa, and Pseudokiefferiella

    USGS Publications Warehouse

    Doughman, J.S.

    1983-01-01

    The subfamily Diamesinae consists of the monogeneric tribes Boreoheptagnini and Parotanypini and the diverse tribe Diamesini with seven genera. These midges are prevalent in clean, cool arctic-alpine waters, but less abundant in the lowlands. Keys and descriptions herein to the known species of these nine genera may prove valuable in the biomonitoring of these cool aquatic habitats. The larvae of Protanypus saetheri Wiederholm is described for the first time. Identification is based upon the absence of other species in the collection area. Examination of a series of larval D. incallida Walker collected in Wyoming and a review of pertinent literature shows that there is considerable variation in the procerus and the labral armature. Because these characters are often used in keys, this variability can lead to misidentification of less recognizable species of Diamesa. (USGS)

  8. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.

    PubMed

    Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W

    2017-09-15

    Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results provide evidence for a proximate cause of the physiological trade-off between larval growth and development, and provide insight into the energetic and nutrient costs that shape fitness trade-offs across life stages. © 2017. Published by The Company of Biologists Ltd.

  9. Occurrence of Terranova larval types (Nematoda: Anisakidae) in Australian marine fish with comments on their specific identities

    PubMed Central

    Suthar, Jaydipbhai

    2016-01-01

    Pseudoterranovosis is a well-known human disease caused by anisakid larvae belonging to the genus Pseudoterranova. Human infection occurs after consuming infected fish. Hence the presence of Pseudoterranova larvae in the flesh of the fish can cause serious losses and problems for the seafood, fishing and fisheries industries. The accurate identification of Pseudoterranova larvae in fish is important, but challenging because the larval stages of a number of different genera, including Pseudoterranova, Terranova and Pulchrascaris, look similar and cannot be differentiated from each other using morphological criteria, hence they are all referred to as Terranova larval type. Given that Terranova larval types in seafood are not necessarily Pseudoterranova and may not be dangerous, the aim of the present study was to investigate the occurrence of Terranova larval types in Australian marine fish and to determine their specific identity. A total of 137 fish belonging to 45 species were examined. Terranova larval types were found in 13 species, some of which were popular edible fish in Australia. The sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2 respectively) of the Terranova larvae in the present study showed a high degree of similarity suggesting that they all belong to the same species. Due to the lack of a comparable sequence data of a well identified adult in the GenBank database the specific identity of Terranova larval type in the present study remains unknown. The sequence of the ITS regions of the Terranova larval type in the present study and those of Pseudoterranova spp. available in GenBank are significantly different, suggesting that larvae found in the present study do not belong to the genus Pseudoterranova, which is zoonotic. This study does not rule out the presence of Pseudoterranova larvae in Australian fish as Pseudoterranova decipiens E has been reported in adult form from seals in Antarctica and it is known that they have seasonal presence in Australian southern coasts. The genetic distinction of Terranova larval type in the present study from Pseudoterranova spp. along with the presence of more species of elasmobranchs in Australian waters (definitive hosts of Terranova spp. and Pulchrascaris spp.) than seals (definitive hosts of Pseudoterranova spp.) suggest that Terranova larval type in the present study belong to either genus Terranova or Pulchrascaris, which are not known to cause disease in humans. The present study provides essential information that could be helpful to identify Australian Terranova larval types in future studies. Examination and characterisation of further specimens, especially adults of Terranova and Pulchrascaris, is necessary to fully elucidate the identity of these larvae. PMID:27014510

  10. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region.

  11. A review of postfeeding larval dispersal in blowflies: implications for forensic entomology

    NASA Astrophysics Data System (ADS)

    Gomes, Leonardo; Godoy, Wesley Augusto Conde; von Zuben, Claudio José

    2006-05-01

    Immature and adult stages of blowflies are one of the primary invertebrate consumers of decomposing animal organic matter. When the food supply is consumed or when the larvae complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as postfeeding larval dispersal. Several important ecological and physiological aspects of this process were studied since the work by Green (Ann Appl Biol 38:475, 1951) 50 years ago. An understanding of postfeeding larval dispersal can be useful for determining the postmortem interval (PMI) of human cadavers in legal medicine, particularly because this interval may be underestimated if older dispersing larvae or those that disperse longer, faster, and deeper are not taken into account. In this article, we review the process of postfeeding larval dispersal and its implications for legal medicine, in particular showing that aspects such as burial behavior and competition among species of blowflies can influence this process and consequently, the estimation of PMI.

  12. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  13. In Vitro Anti-Echinococcal and Metabolic Effects of Metformin Involve Activation of AMP-Activated Protein Kinase in Larval Stages of Echinococcus granulosus.

    PubMed

    Loos, Julia A; Cumino, Andrea C

    2015-01-01

    Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy.

  14. The effects of dispersal patterns on marine reserves: does the tail wag the dog?

    PubMed

    Lockwood, Dale R; Hastings, Alan; Botsford, Louis W

    2002-05-01

    The concept of marine reserves as a method of improving management of fisheries is gaining momentum. While the list of benefits from reserves is frequently promoted, precise formulations of theory to support reserve design are not fully developed. To determine the size of reserves and the distances between reserves an understanding of the requirements for persistence of local populations is required. Unfortunately, conditions for persistence are poorly characterized, as are the larval dispersal patterns on which persistence depends. With the current paucity of information regarding meroplanktonic larval transport processes, understanding the robustness of theoretical results to larval dispersal is of key importance. From this formulation a broad range of dispersal patterns are analyzed. Larval dispersal is represented by a probability distribution that defines the fraction of successful settlers from an arbitrary location, the origin of the distribution, to any other location along the coast. While the effects of specific dispersal patterns have been investigated for invasion processes, critical habitat size and persistence issues have generally been addressed with only one or two dispersal types. To that end, we formulate models based on integrodifference equations that are spatially continuous and temporally discrete. We consider a range of dispersal distributions from leptokurtic to platykurtic. The effect of different dispersal patterns is considered for a single isolated reserve of varying size receiving no external larvae, as well as multiple reserves with varying degrees of connectivity. While different patterns result in quantitative differences in persistence, qualitatively similar effects across all patterns are seen in both single- and multiple reserve models. Persistence in an isolated reserve requires a size that is approximately twice the mean dispersal distance and regardless of the dispersal pattern the population in a patch is not persistent if the reserve size is reduced to just the mean dispersal distance. With an idealized coastline structure consisting of an infinite line of equally spaced reserves separated by regions of coastline in which reproduction is nil, the relative settlement as a function of the fraction of coastline and size of reserve is qualitatively very similar over a broad range of dispersal patterns. The upper limit for the minimum fraction of coastline held in reserve is about 40%. As the fraction of coastline is reduced, the minimum size of reserve becomes no more than 1.25 times the mean dispersal distance.

  15. In Vitro Anti-Echinococcal and Metabolic Effects of Metformin Involve Activation of AMP-Activated Protein Kinase in Larval Stages of Echinococcus granulosus

    PubMed Central

    Loos, Julia A.; Cumino, Andrea C.

    2015-01-01

    Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy. PMID:25965910

  16. Survival and growth of larval coastal giant salamanders (Dicamptodon tenebrosus) in streams in the Oregon Coast Range.

    Treesearch

    J.P. Sagar; D.H. Olson; R.A. Schmitz

    2007-01-01

    The purpose of this study was to estimate the variation in growth and survival that occur during the larval stage of Dicamptodon tenebrosus. We used mark-recapture to assess the rates of apparent survival and growth for two larval age classes (first-years and second/third-years), in winter and summer seasons and in the presence of culverts. By...

  17. Quantification of larval resistance to Cypermethrin in tobacco budworm (Lepidoptera: Noctuidae) and the effects of larval weight

    Treesearch

    Michael J. Firko; Janes Leslie Hayes

    1990-01-01

    We examined relationships between larval weight and degree of resistance to cypermethrin in tobacco budworm, Heliothis virescens (F.). Laboratory-reared larvae (9.0-175.4 mg) were treated with either 0.1 or 1.0 mg cypermethrin in acetone. Degree of debilitation of each larva was assessed at intervals from 0.5 h to 5 d after treatment cumulative...

  18. Biology and feeding requirements larval hunter flies Coenosia attenuata (Diptera:Muscidae) reared in larvae of the fungus gnat Bradysia impatiens (Diptera:Sciaridae)

    USDA-ARS?s Scientific Manuscript database

    The larval feeding requirements and biology of the generalist predatory muscid fly Coenosia attenuata were investigated at 25 deg C. Larval C. attenuata were fed 2nd-, 3rd-, and 4th-instar (L2, L3, and L4) larvae of the fungus gnat Bradysia impatiens at variable rates to determine minimum and optimu...

  19. Obligate larval inhibition of Ostertagia gruehneri in Rangifer tarandus? Causes and consequences in an Arctic system.

    PubMed

    Hoar, Bryanne M; Eberhardt, Alexander G; Kutz, Susan J

    2012-09-01

    Larval inhibition is a common strategy of Trichostrongylidae nematodes that may increase survival of larvae during unfavourable periods and concentrate egg production when conditions are favourable for development and transmission. We investigated the propensity for larval inhibition in a population of Ostertagia gruehneri, the most common gastrointestinal Trichostrongylidae nematode of Rangifer tarandus. Initial experimental infections of 4 reindeer with O. gruehneri sourced from the Bathurst caribou herd in Arctic Canada suggested that the propensity for larval inhibition was 100%. In the summer of 2009 we infected 12 additional reindeer with the F1 and F2 generations of O. gruehneri sourced from the previously infected reindeer to further investigate the propensity of larval inhibition. The reindeer were divided into 2 groups and half were infected before the summer solstice (17 June) and half were infected after the solstice (16 July). Reindeer did not shed eggs until March 2010, i.e. 8 and 9 months post-infection. These results suggest obligate larval inhibition for at least 1 population of O. gruehneri, a phenomenon that has not been conclusively shown for any other trichostrongylid species. Obligate inhibition is likely to be an adaptation to both the Arctic environment and to a migratory host and may influence the ability of O. gruehneri to adapt to climate change.

  20. Incorporation of habitat information in the development of indices of larval bluefin tuna (Thunnus thynnus) in the Western Mediterranean Sea (2001-2005 and 2012-2013)

    NASA Astrophysics Data System (ADS)

    Ingram, G. Walter; Alvarez-Berastegui, Diego; Reglero, Patricia; Balbín, Rosa; García, Alberto; Alemany, Francisco

    2017-06-01

    Fishery independent indices of bluefin tuna larvae in the Western Mediterranean Sea are presented utilizing ichthyoplankton survey data collected from 2001 through 2005 and 2012 through 2013. Indices were developed using larval catch rates collected using two different types of bongo sampling, by first standardizing catch rates by gear/fishing-style and then employing a delta-lognormal modeling approach. The delta-lognormal models were developed three ways: 1) a basic larval index including the following covariates: time of day, a systematic geographic area variable, month and year; 2) a standard environmental larval index including the following covariates: mean water temperature over the mixed layer depth, mean salinity over the mixed layer depth, geostrophic velocity, time of day, a systematic geographic area variable, month and year; and 3) a habitat-adjusted larval index including the following covariates: a potential habitat variable, time of day, a systematic geographic area variable, month and year. Results indicated that all three model-types had similar precision in index values. However, the habitat-adjusted larval index demonstrated a high correlation with estimates of spawning stock biomass from the previous stock assessment model, and, therefore, is recommended as a tuning index in future stock assessment models.

  1. Developmental Effects of Ocean Acidification Conditions and Elevated Temperature on Homarus Americanus Larvae

    NASA Astrophysics Data System (ADS)

    Mcveigh, H.; Waller, J. D.

    2016-02-01

    The Gulf of Maine is experiencing a rapid warming in sea surface temperature and a marked decrease in pH. This study aimed to quantify the impact of elevated temperature and acidification on the larval development of the iconic American lobster (Homarus americanus). Experimental conditions were reflective of current and IPCC predicted levels of temperature and pCO2 to be reached by the end of the century. Larvae were measured for growth (carapace length), development time, and survivorship over the larval duration. Treatments of elevated temperatures experienced decreased development time across the larval stages of H. americanus. Consequently mortality increased at a significantly higher rate under elevated temperature. An increase in larval mortality may decrease recruitment to the commercial fishery, thus impacting the most valuable single species in the state of Maine. Furthermore, experimental pCO2 treatments yielded a significantly decreased development time between larval stages II and III, yet did not have a significant impact on carapace length or mortality. This study indicates that warmer temperatures may have a greater influence than decreased pH on larval development and survival. Determining how this species may respond to changing climactic conditions will better inform the sustainability efforts of such a critical marine fishery.

  2. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect.

    PubMed

    Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín

    2016-07-12

    Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms.

  3. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect

    PubMed Central

    Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín

    2016-01-01

    Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms. PMID:27406923

  4. Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test

    PubMed Central

    Hardy, Sarah M.; Smith, Craig R.; Thurnherr, Andreas M.

    2015-01-01

    Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686

  5. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology.

    PubMed

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-09-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.

  6. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology

    PubMed Central

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-01-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655

  7. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gunathilaka, P A D H N; Uduwawala, U M H U; Udayanga, N W B A L; Ranathunge, R M T B; Amarasinghe, L D; Abeyewickreme, W

    2017-11-23

    Larval diet quality and rearing conditions have a direct and irreversible effect on adult traits. Therefore, the current study was carried out to optimize the larval diet for mass rearing of Aedes aegypti, for Sterile Insect Technique (SIT)-based applications in Sri Lanka. Five batches of 750 first instar larvae (L 1) of Ae. aegypti were exposed to five different concentrations (2-10%) of International Atomic Energy Agency (IAEA) recommended the larval diet. Morphological development parameters of larva, pupa, and adult were detected at 24 h intervals along with selected growth parameters. Each experiment was replicated five times. General Linear Modeling along with Pearson's correlation analysis were used for statistical treatments. Significant differences (P < 0.05) among the larvae treated with different concentrations were found using General Linear Modeling in all the stages namely: total body length and the thoracic length of larvae; cephalothoracic length and width of pupae; thoracic length, thoracic width, abdominal length and the wing length of adults; along with pupation rate and success, sex ratio, adult success, fecundity and hatching rate of Ae. aegypti. The best quality adults can be produced at larval diet concentration of 10%. However, the 8% larval diet concentration was most suitable for adult male survival.

  8. Building a Beetle: How Larval Environment Leads to Adult Performance in a Horned Beetle

    PubMed Central

    Reaney, Leeann T.; Knell, Robert J.

    2015-01-01

    The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle’s ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength. PMID:26244874

  9. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  10. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development.

    PubMed

    Wang, Xiaoming; Liu, Tong; Wu, Yang; Zhong, Daibin; Zhou, Guofa; Su, Xinghua; Xu, Jiabao; Sotero, Charity F; Sadruddin, Adnan A; Wu, Kun; Chen, Xiao-Guang; Yan, Guiyun

    2018-05-30

    Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes' capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva-to-adult emergence rate. This finding was consistent in two types of larval habitats examined-discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology. © 2018 John Wiley & Sons Ltd.

  11. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  12. Therapeutic potential of larval excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease.

    PubMed

    Ebner, F; Hepworth, M R; Rausch, S; Janek, K; Niewienda, A; Kühl, A; Henklein, P; Lucius, R; Hamelmann, E; Hartmann, S

    2014-11-01

    Gastrointestinal nematodes are currently being evaluated as a novel therapeutic in the treatment of chronic human inflammatory disorders, due to their unique ability to induce immunoregulatory pathways in their hosts. In particular, administration of ova from the pig whipworm Trichuris suis (T. suis; TSO) has been proposed for the treatment of allergic, inflammatory and autoimmune disorders. Despite these advances, the biological pathways through which TSO therapy modulates the host immune system in the context of human disease remain undefined. We characterized the dominant proteins present in the excretory/secretory (E/S) products of first-stage (L1) T. suis larvae (Ts E/S) using LC-MS/MS analysis and examined the immunosuppressive properties of whole larval Ts E/S in vitro and in a murine model of allergic airway disease. Administration of larval Ts E/S proteins in vivo during the allergen sensitization phase was sufficient to suppress airway hyperreactivity, bronchiolar inflammatory infiltrate and allergen-specific IgE production. Three proteins in larval Ts E/S were unambiguously identified. The immunomodulatory function of larval Ts E/S was found to be partially dependent on the immunoregulatory cytokine IL-10. Taken together, these data demonstrate that the released proteins of larval T. suis have significant immunomodulatory capacities and efficiently dampen allergic airway hyperreactivity. Thus, the therapeutic potential of defined larval E/S proteins should be exploited for the treatment of human allergic disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Effects of beach morphology and waves on onshore larval transport

    NASA Astrophysics Data System (ADS)

    Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.

    2015-12-01

    Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.

  14. Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris).

    PubMed

    Rumrill, Caitlin T; Scott, David E; Lance, Stacey L

    2016-08-01

    Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.

  15. Effects of climate change on the survival of larval cod

    NASA Astrophysics Data System (ADS)

    Kristiansen, T.; Stock, C. A.; Drinkwater, K. F.; Curchitser, E. N.

    2011-12-01

    Understanding how climate change may impact important commercial fisheries is critical for developing sustainable fisheries management strategies. In this study, we used simulations from an Earth System Model (NOAA GFDL ESM2.1) coupled with an individual-based model (IBM) for larval fish to provide a first assessment of the potential importance of climate-change driven changes in primary productivity and temperature on cod recruitment in the North Atlantic to the year 2100. ESM model output was averaged for 5 regions, each with an area of 5x5 on a latitude-longitude grid, and representing the geographic boundaries of the current cod range. The physical and environmental data were incorporated into a mechanistic IBM used to simulate the critical early phases in the life of larval fish (e.g. cod) in a changing environment. Large phytoplankton production was predicted to decrease in most regions, thereby lowering the number of meso-zooplankton in the water column. Meso-zooplankton is the most important prey item for larval cod and a reduction in their numbers have strong impacts on larval cod survival. The combination of lowered prey abundance with increased energy requirement for growth and metabolism through increased temperature had a negative impact on cod recruitment in all modeled regions of the North Atlantic. The probability of survival past the larval stages was reduced with 20-30% at all five spawning grounds by the year 2100. Together, these results suggest climate change could have significant impacts on the survival of larval cod in the North Atlantic.

  16. Small bilaterian fossils from 40 to 55 million years before the cambrian.

    PubMed

    Chen, Jun-Yuan; Bottjer, David J; Oliveri, Paola; Dornbos, Stephen Q; Gao, Feng; Ruffins, Seth; Chi, Huimei; Li, Chia-Wei; Davidson, Eric H

    2004-07-09

    Ten phosphatized specimens of a small (<180 micrometers) animal displaying clear bilaterian features have been recovered from the Doushantuo Formation, China, dating from 40 to 55 million years before the Cambrian. Seen in sections, this animal (Vernanimalcula guizhouena gen. et sp. nov.) had paired coeloms extending the length of the gut; paired external pits that could be sense organs; bilateral, anterior-posterior organization; a ventrally directed anterior mouth with thick walled pharynx; and a triploblastic structure. The structural complexity is that of an adult rather than a larval form. These fossils provide the first evidence confirming the phylogenetic inference that Bilateria arose well before the Cambrian.

  17. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes.

  18. Modeled differences of coral life-history traits influence the refugium potential of a remote Caribbean reef

    NASA Astrophysics Data System (ADS)

    Davies, Sarah W.; Strader, Marie E.; Kool, Johnathan T.; Kenkel, Carly D.; Matz, Mikhail V.

    2017-09-01

    Remote populations can influence connectivity and may serve as refugia from climate change. We investigated two reef-building corals ( Pseudodiploria strigosa and Orbicella franksi) from the Flower Garden Banks (FGB), the most isolated, high-latitude Caribbean reef system, which, until recently, retained high coral cover. We characterized coral size-frequency distributions, quantified larval mortality rates and onset of competence ex situ, estimated larval production, and created detailed biophysical models incorporating these parameters to evaluate the source-sink dynamics at the FGB from 2009 to 2012. Estimated mortality rates were similar between species, but pre-competency differed dramatically; P. strigosa was capable of metamorphosis within 2.5 d post-fertilization (dpf) and was competent at least until 8 dpf, while O. franksi was not competent until >20 dpf and remained competent up to 120 dpf. To explore the effect of such contrasting life histories on connectivity, we modeled larval dispersal from the FGB assuming pelagic larval durations (PLD) of either 3-20 d, approximating laboratory-measured pre-competency of P. strigosa, or 20-120 d, approximating pre-competency observed in O. franksi. Surprisingly, both models predicted similar probabilities of local retention at the FGB, either by direct rapid reseeding or via long-term persistence in the Loop Current with larvae returning to the FGB within a month. However, our models predicted that short PLDs would result in complete isolation from the rest of the Caribbean, while long PLDs allowed for larval export to more distant northern Caribbean reefs, highlighting the importance of quantifying larval pre-competency dynamics when parameterizing biophysical models to predict larval connectivity. These simulations suggest that FGB coral populations are likely to be largely self-sustaining and highlight the potential of long-PLD corals, such as endangered Orbicella, to act as larval sources for other degraded Caribbean reefs.

  19. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem.

    PubMed

    Walsh, Harvey J; Richardson, David E; Marancik, Katrin E; Hare, Jonathan A

    2015-01-01

    Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.

  20. Environmental variables associated with anopheline larvae distribution and abundance in Yanomami villages within unaltered areas of the Brazilian Amazon.

    PubMed

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Gimnig, John E; Pereira-Ribeiro, Cleomar; Santos-Neves, Maycon Sebastião Alberto; Silva-do-Nascimento, Teresa Fernandes

    2017-11-16

    Many indigenous villages in the Amazon basin still suffer from a high malaria burden. Despite this health situation, there are few studies on the bionomics of anopheline larvae in such areas. This publication aims to identify the main larval habitats of the most abundant anopheline species and to assess their associations with some environmental factors. We conducted a 19-month longitudinal study from January 2013 to July 2014, sampling anopheline larvae in two indigenous Yanomami communities, comprised of four villages each. All natural larval habitats were surveyed every two months with a 350 ml manual dipper, following a standardized larval sampling methodology. In a third study area, we conducted two field expeditions in 2013 followed by four systematic collections during the long dry season of 2014-2015. We identified 177 larval habitats in the three study areas, from which 9122 larvae belonging to 13 species were collected. Although species abundance differed between villages, An. oswaldoi (s.l.) was overall the most abundant species. Anopheles darlingi, An. oswaldoi (s.l.), An. triannulatus (s.s.) and An. mattogrossensis were primarily found in larval habitats that were partially or mostly sun-exposed. In contrast, An. costai-like and An. guarao-like mosquitoes were found in more shaded aquatic habitats. Anopheles darlingi was significantly associated with proximity to human habitations and larval habitats associated with river flood pulses and clear water. This study of anopheline larvae in the Brazilian Yanomami area detected high heterogeneities at micro-scale levels regarding species occurrence and densities. Sun exposure was a major modulator of anopheline occurrence, particularly for An. darlingi. Lakes associated with the rivers, and particularly oxbow lakes, were the main larval habitats for An. darlingi and other secondary malaria vectors. The results of this study will serve as a basis to plan larval source management activities in remote indigenous communities of the Amazon, particularly for those located within low-order river-floodplain systems.

  1. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate

    PubMed Central

    Hollar, Amy R.; Choi, Jinyoung; Grimm, Adam T.; Buchholz, Daniel R.

    2011-01-01

    Spadefoot toad species display extreme variation in larval period duration, due in part to evolution of thyroid hormone (TH) physiology. Specifically, desert species with short larval periods have higher tail tissue content of TH and exhibit increased responsiveness to TH. To address the molecular basis of larval period differences, we examined TH receptor (TR) expression across species. Based on the dual function model for the role of TR in development, we hypothesized that desert spadefoot species with short larval periods would have 1) late onset of TR expression prior to the production of endogenous TH and 2) higher TR levels when endogenous TH becomes available. To test these hypotheses, we cloned fragments of TRα and TRβ genes from the desert spadefoot toads Scaphiopus couchii and Spea multiplicata and their non-desert relative Pelobates cultripes and measured their mRNA levels in tails using quantitative PCR in the absence (premetamorphosis) or presence (natural metamorphosis) of TH. All species express TRα and TRβ from the earliest stages measured (from just after hatching), but S. couchii, which has the shortest larval period, had more TRα throughout development compared to P. cultripes, which has the longest larval period. TRβ mRNA levels were similar across species. Exogenous T3 treatment induced faster TH-response gene expression kinetics in S. couchii compared to the other species, consistent with its increased TRα mRNA expression and indicative of a functional consequence of more TRα activity at the molecular level. To directly test whether higher TRα expression may contribute to shorter larval periods, we overexpressed TRα via plasmid injection into tail muscle cells of the model frog Xenopus laevis and found an increased rate of muscle cell death in response to TH. These results suggest that increased TRα expression evolved in S. couchii and contribute to its higher metamorphic rates. PMID:21651912

  2. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    NASA Astrophysics Data System (ADS)

    Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.

    2017-09-01

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.

  3. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya.

    PubMed

    Mwangangi, Joseph M; Shililu, Josephat; Muturi, Ephantus J; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John; Novak, Robert J

    2010-08-09

    The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.

  4. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem

    PubMed Central

    2015-01-01

    Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services. PMID:26398900

  5. Complex effect of projected sea temperature and wind change on flatfish dispersal.

    PubMed

    Lacroix, Geneviève; Barbut, Léo; Volckaert, Filip A M

    2018-01-01

    Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability in larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (-9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%) and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management. © 2017 John Wiley & Sons Ltd.

  6. Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: a modelling synthesis of empirical survey data

    USGS Publications Warehouse

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Quinlan, Henry R.; Berglund, Eric K.

    2014-01-01

    The relative importance of predation and food availability as contributors to larval cisco (Coregonus artedi) mortality in Lake Superior were investigated using a visual foraging model to evaluate potential predation pressure by rainbow smelt (Osmerus mordax) and a bioenergetic model to evaluate potential starvation risk. The models were informed by observations of rainbow smelt, larval cisco, and zooplankton abundance at three Lake Superior locations during the period of spring larval cisco emergence and surface-oriented foraging. Predation risk was highest at Black Bay, ON, where average rainbow smelt densities in the uppermost 10 m of the water column were >1000 ha−1. Turbid conditions at the Twin Ports, WI-MN, affected larval cisco predation risk because rainbow smelt remained suspended in the upper water column during daylight, placing them alongside larval cisco during both day and night hours. Predation risk was low at Cornucopia, WI, owing to low smelt densities (<400 ha−1) and deep light penetration, which kept rainbow smelt near the lakebed and far from larvae during daylight. In situ zooplankton density estimates were low compared to the values used to develop the larval coregonid bioenergetics model, leading to predictions of negative growth rates for 10 mm larvae at all three locations. The model predicted that 15 mm larvae were capable of attaining positive growth at Cornucopia and the Twin Ports where low water temperatures (2–6 °C) decreased their metabolic costs. Larval prey resources were highest at Black Bay but warmer water temperatures there offset the benefit of increased prey availability. A sensitivity analysis performed on the rainbow smelt visual foraging model showed that it was relatively insensitive, while the coregonid bioenergetics model showed that the absolute growth rate predictions were highly sensitive to input parameters (i.e., 20% parameter perturbation led to order of magnitude differences in model estimates). Our modelling indicated that rainbow smelt predation may limit larval cisco survival at Black Bay and to a lesser extent at Twin Ports, and that starvation may be a major source of mortality at all three locations. The framework we describe has the potential to further our understanding of the relative importance of starvation and predation on larval fish survivorship, provided information on prey resources available to larvae are measured at sufficiently fine spatial scales and the models provide a realistic depiction of the dynamic processes that the larvae experience.

  7. Reverse osmosis and ultrafiltration for recovery and reuse of larval rearing water in Anopheles arabiensis mass production: Effect of water quality on larval development and fitness of emerging adults.

    PubMed

    Mamai, Wadaka; Hood-Nowotny, Rebecca; Maiga, Hamidou; Ali, Adel Barakat; Bimbile-Somda, Nanwintoun S; Soma, Diloma Dieudonné; Yamada, Hanano; Lees, Rosemary Susan; Gilles, Jeremie R L

    2017-06-01

    Countries around the world are showing increased interest in applying the sterile insect technique against mosquito disease vectors. Many countries in which mosquitoes are endemic, and so where vector control using the sterile insect technique may be considered, are located in arid zones where water provision can be costly or unreliable. Water reuse provides an alternate form of water supply. In order to reduce the cost of mass rearing of Anopheles arabiensis mosquitoes, the possibility of recycling and reusing larval rearing water was explored. The used rearing water ('dirty water') was collected after the tilting of rearing trays for collection of larvae/pupae, and larvae/pupae separation events and underwent treatment processes consisting of ultrafiltration and reverse osmosis. First-instar An. arabiensis larvae were randomly assigned to different water-type treatments, 500 larvae per laboratory rearing tray: 'clean' dechlorinated water, routinely used in rearing; dirty water; and 'recycled' dirty water treated using reverse osmosis and ultrafiltration. Several parameters of insect quality were then compared: larval development, pupation rate, adult emergence, body size and longevity. Water quality of the samples was analyzed in terms of ammonia, nitrite, nitrate, sulphate, dissolved oxygen, chloride, and phosphate concentrations after the larvae had all pupated or died. Surface water temperatures were also recorded continuously during larval development. Pupation rates and adult emergence were similar in all water treatments. Adult body sizes of larvae reared in recycled water were similar to those reared in clean water, but larger than those reared in the dirty larval water treatment, whereas the adult longevity of larvae reared in recycled water was significantly increased relative to both 'clean' and 'dirty' water. Dirty larval water contained significantly higher concentrations of ammonium, sulfate, phosphate and chloride and lower levels of dissolved oxygen than clean water. These parameters significantly varied during the period of larval development. After dirty water was recycled by ultrafiltration and reverse osmosis, all the parameters measured were the same as those in clean water. This study demonstrated the potential for using recycled larval rearing water to supplement clean dechlorinated water supplies. Recycling used water improved its quality and of the reared mosquitoes. As water demands and environmental pressures grow, recycling of larval rearing water will improve the sustainability and affordability of mosquito mass-rearing. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Explaining variation in adult Anopheles indoor resting abundance: the relative effects of larval habitat proximity and insecticide-treated bed net use.

    PubMed

    McCann, Robert S; Messina, Joseph P; MacFarlane, David W; Bayoh, M Nabie; Gimnig, John E; Giorgi, Emanuele; Walker, Edward D

    2017-07-17

    Spatial determinants of malaria risk within communities are associated with heterogeneity of exposure to vector mosquitoes. The abundance of adult malaria vectors inside people's houses, where most transmission takes place, should be associated with several factors: proximity of houses to larval habitats, structural characteristics of houses, indoor use of vector control tools containing insecticides, and human behavioural and environmental factors in and near houses. While most previous studies have assessed the association of larval habitat proximity in landscapes with relatively low densities of larval habitats, in this study these relationships were analysed in a region of rural, lowland western Kenya with high larval habitat density. 525 houses were sampled for indoor-resting mosquitoes across an 8 by 8 km study area using the pyrethrum spray catch method. A predictive model of larval habitat location in this landscape, previously verified, provided derivations of indices of larval habitat proximity to houses. Using geostatistical regression models, the association of larval habitat proximity, long-lasting insecticidal nets (LLIN) use, house structural characteristics (wall type, roof type), and peridomestic variables (cooking in the house, cattle near the house, number of people sleeping in the house) with mosquito abundance in houses was quantified. Vector abundance was low (mean, 1.1 adult Anopheles per house). Proximity of larval habitats was a strong predictor of Anopheles abundance. Houses without an LLIN had more female Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus than houses where some people used an LLIN (rate ratios, 95% CI 0.87, 0.85-0.89; 0.84, 0.82-0.86; 0.38, 0.37-0.40) and houses where everyone used an LLIN (RR, 95% CI 0.49, 0.48-0.50; 0.39, 0.39-0.40; 0.60, 0.58-0.61). Cooking in the house also reduced Anopheles abundance across all species. The number of people sleeping in the house, presence of cattle near the house, and house structure modulated Anopheles abundance, but the effect varied with Anopheles species and sex. Variation in the abundance of indoor-resting Anopheles in rural houses of western Kenya varies with clearly identifiable factors. Results suggest that LLIN use continues to function in reducing vector abundance, and that larval source management in this region could lead to further reductions in malaria risk by reducing the amount of an obligatory resource for mosquitoes near people's homes.

  9. Superresolution imaging of Drosophila tissues using expansion microscopy.

    PubMed

    Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z

    2018-06-15

    The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.

  10. In vitro development of Strongylus edentatus to the fourth larval stage with notes on Strongylus vulgaris and Strongylus equinus.

    PubMed

    Farrar, R G; Klei, T R

    1985-08-01

    Strongylus edentatus was successfully cultured in vitro to the fourth larval stage (L4). Some growth continued for periods of 40-50 days at which time reductions in viability were observed in some of the culture systems tested. Various combinations of media, sera, buffers and organ explant cultures were tested. All cultures were incubated at 37 C in an atmosphere of 95% air and 5% CO2. Larvae underwent growth and differentiation to the L4 in all medium-serum combinations with and without organ explant cultures. Development and growth did occur but viability was reduced to insignificant levels in media without serum or cells. Optimal growth, differentiation, and longevity were observed in bicarbonate buffered RPMI-1640 containing 10% fetal calf serum and gerbil (Meriones unguiculatus) cecum explant cultures. Observations indicated that Strongylus vulgaris and Strongylus equinus also developed to the L4 stage using similar techniques. However, viability of S. vulgaris L4 was markedly limited. Specific morphological changes marked phases of development of S. edentatus, categorized as early, middle and late third stage, third molt and early fourth stage. Strongylus equinus appeared to follow the same developmental pattern in vitro as S. edentatus. Distinct differences in morphological features during differentiation were observed between S. edentatus and S. vulgaris.

  11. Morphology and ultrastructure of the esophagus during the ontogeny of the spider crab Maja brachydactyla (Decapoda, Brachyura, Majidae).

    PubMed

    Castejón, Diego; Rotllant, Guiomar; Ribes, Enric; Durfort, Mercè; Guerao, Guillermo

    2018-06-01

    The esophagus of the eucrustaceans is known as a short tube that connects the mouth with the stomach but has generally received little attention by the carcinologists, especially during the larval stages. By this reason, the present study is focused on the morphology and ultrastructure of the esophagus in the brachyuran Maja brachydactyla during the larval development and adult stage. The esophagus shows internally four longitudinal folds. The simple columnar epithelium is covered by a thick cuticle. The epithelial cells of the adults are intensively interdigitated and show abundant apical mitochondria and bundles of filamentous structures. The cuticle surface has microspines and mutually exclusive pores. Three muscle layers surrounded by the connective tissue are reported: circular muscles forming a broad continuous band, longitudinal muscle bundles adjacent to the circular muscles, and dilator muscles crossing the connective tissue vertically toward the epithelium. The connective tissue has rosette glands. The esophagus of the larvae have epithelial cells with big vesicles but poorly developed interdigitations and filamentous structures, the cuticle is formed by a procuticle without differentiated exocuticle and endocuticle, the connective layer is thin and the rosette glands are absent. The observed features can be explained by his role in the swallowing of the food. © 2018 Wiley Periodicals, Inc.

  12. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila

    PubMed Central

    Bischoff, Marcus

    2012-01-01

    Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614

  13. Kinesin Mutations Cause Motor Neuron Disease Phenotypes by Disrupting Fast Axonal Transport in Drosophila

    PubMed Central

    Hurd, D. D.; Saxton, W. M.

    1996-01-01

    Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases. PMID:8913751

  14. Modeling turbidity type and intensity effects on the growth and starvation mortality of age-0 yellow perch

    USGS Publications Warehouse

    Manning, Nathan M; Bossenbroek, Jonathan M.; Mayer, Christine M.; Bunnell, David B.; Tyson, Jeff T.; Rudstam, Lars G.; Jackson, James R.

    2014-01-01

    We sought to quantify the possible population-level influence of sediment plumes and algal blooms on yellow perch (Perca flavescens), a visual predator found in systems with dynamic water clarity. We used an individual-based model (IBM), which allowed us to include variance in water clarity and the distribution of individual sizes. Our IBM was built with laboratory data showing that larval yellow perch feeding rates increased slightly as sediment turbidity level increased, but that both larval and juvenile yellow perch feeding rates decreased as phytoplankton level increased. Our IBM explained a majority of the variance in yellow perch length in data from the western and central basins of Lake Erie and Oneida Lake, with R2 values ranging from 0.611 to 0.742. Starvation mortality was size dependent, as the greatest daily mortality rates in each simulation occurred within days of each other. Our model showed that turbidity-dependent consumption rates and temperature are key components in determining growth and starvation mortality of age-0 yellow perch, linking fish production to land-based processes that influence water clarity. These results suggest the timing and persistence of sediment plumes and algal blooms can drastically alter the growth potential and starvation mortality of a yellow perch cohort.

  15. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species

    NASA Astrophysics Data System (ADS)

    Hatzenbuhler, Chelsea; Kelly, John R.; Martinson, John; Okum, Sara; Pilgrim, Erik

    2017-04-01

    High-throughput DNA metabarcoding has gained recognition as a potentially powerful tool for biomonitoring, including early detection of aquatic invasive species (AIS). DNA based techniques are advancing, but our understanding of the limits to detection for metabarcoding complex samples is inadequate. For detecting AIS at an early stage of invasion when the species is rare, accuracy at low detection limits is key. To evaluate the utility of metabarcoding in future fish community monitoring programs, we conducted several experiments to determine the sensitivity and accuracy of routine metabarcoding methods. Experimental mixes used larval fish tissue from multiple “common” species spiked with varying proportions of tissue from an additional “rare” species. Pyrosequencing of genetic marker, COI (cytochrome c oxidase subunit I) and subsequent sequence data analysis provided experimental evidence of low-level detection of the target “rare” species at biomass percentages as low as 0.02% of total sample biomass. Limits to detection varied interspecifically and were susceptible to amplification bias. Moreover, results showed some data processing methods can skew sequence-based biodiversity measurements from corresponding relative biomass abundances and increase false absences. We suggest caution in interpreting presence/absence and relative abundance in larval fish assemblages until metabarcoding methods are optimized for accuracy and precision.

  16. Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx

    PubMed Central

    Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng

    2016-01-01

    The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated YorkieCA overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm. PMID:27489496

  17. Forensically important flesh fly species in Thailand: morphology and developmental rate.

    PubMed

    Sukontason, Kom; Bunchu, Nophawan; Chaiwong, Tarinee; Moophayak, Kittikhun; Sukontason, Kabkaew L

    2010-04-01

    Forensically important flesh fly species in Thailand have been investigated for their larval morphology and developmental rate to increase the forensic entomology database in Thailand and nearby countries. Sarcophaga (Liosarcophaga) dux Thomson, Sarcophaga (Liopygia) ruficornis (Fabricius), and Sarcophaga (Boettcherisca) peregrina (Robineau-Desvoidy) are the species of greatest forensic importance. The third instars of these species are similar in morphological appearance, making it difficult or impossible to differentiate between them based on external morphological characteristics. This study compares these important characteristics and reveals that the most distinctive is the posterior spiracle, followed by the number of papillae on the anterior spiracle. For confirmation of these species, the unique characteristics of adult males are also shown for accurate identification. Both the third instar and adult male characteristics are keys to identifying these species. In addition, the developmental rate of S. dux was examined in northern Thailand during 2002-2003 under natural ambient temperature (approximately 24-28 degrees C) and a natural light/dark photoperiod (approximately 12:12 h), indicating relatively rapid larval development in summer (March-June), pre-pupae (stop moving) initiated at 72 h. In the rainy season (July-October), pre-pupae initiated at 72 or 96 h, whereas pre-pupae initiated at 96 h in winter.

  18. Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2016-01-01

    In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish. PMID:26940285

  19. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats

    PubMed Central

    Devine, Gregor J.; Perea, Elvira Zamora; Killeen, Gerry F.; Stancil, Jeffrey D.; Clark, Suzanne J.; Morrison, Amy C.

    2009-01-01

    Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3–5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95–100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42–98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique. PMID:19561295

  20. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    PubMed Central

    Waissi, G.C; Bold, S; Pakarinen, K; Akkanen, J; Leppänen, M.T; Petersen, E.J; Kukkonen, J.V.K

    2016-01-01

    A key component of understanding the potential environmental risks of fullerenes (C60) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C60 in the sediment top layer ((0.025, 0.18 and 0.48) C60 mg/cm2) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates. PMID:27178647

  1. Towards a taxonomy for integrated care: a mixed-methods study

    PubMed Central

    Valentijn, Pim P.; Boesveld, Inge C.; van der Klauw, Denise M.; Ruwaard, Dirk; Struijs, Jeroen N.; Molema, Johanna J.W.; Bruijnzeels, Marc A.; Vrijhoef, Hubertus JM.

    2015-01-01

    Introduction Building integrated services in a primary care setting is considered an essential important strategy for establishing a high-quality and affordable health care system. The theoretical foundations of such integrated service models are described by the Rainbow Model of Integrated Care, which distinguishes six integration dimensions (clinical, professional, organisational, system, functional and normative integration). The aim of the present study is to refine the Rainbow Model of Integrated Care by developing a taxonomy that specifies the underlying key features of the six dimensions. Methods First, a literature review was conducted to identify features for achieving integrated service delivery. Second, a thematic analysis method was used to develop a taxonomy of key features organised into the dimensions of the Rainbow Model of Integrated Care. Finally, the appropriateness of the key features was tested in a Delphi study among Dutch experts. Results The taxonomy consists of 59 key features distributed across the six integration dimensions of the Rainbow Model of Integrated Care. Key features associated with the clinical, professional, organisational and normative dimensions were considered appropriate by the experts. Key features linked to the functional and system dimensions were considered less appropriate. Discussion This study contributes to the ongoing debate of defining the concept and typology of integrated care. This taxonomy provides a development agenda for establishing an accepted scientific framework of integrated care from an end-user, professional, managerial and policy perspective. PMID:25759607

  2. Towards a taxonomy for integrated care: a mixed-methods study.

    PubMed

    Valentijn, Pim P; Boesveld, Inge C; van der Klauw, Denise M; Ruwaard, Dirk; Struijs, Jeroen N; Molema, Johanna J W; Bruijnzeels, Marc A; Vrijhoef, Hubertus Jm

    2015-01-01

    Building integrated services in a primary care setting is considered an essential important strategy for establishing a high-quality and affordable health care system. The theoretical foundations of such integrated service models are described by the Rainbow Model of Integrated Care, which distinguishes six integration dimensions (clinical, professional, organisational, system, functional and normative integration). The aim of the present study is to refine the Rainbow Model of Integrated Care by developing a taxonomy that specifies the underlying key features of the six dimensions. First, a literature review was conducted to identify features for achieving integrated service delivery. Second, a thematic analysis method was used to develop a taxonomy of key features organised into the dimensions of the Rainbow Model of Integrated Care. Finally, the appropriateness of the key features was tested in a Delphi study among Dutch experts. The taxonomy consists of 59 key features distributed across the six integration dimensions of the Rainbow Model of Integrated Care. Key features associated with the clinical, professional, organisational and normative dimensions were considered appropriate by the experts. Key features linked to the functional and system dimensions were considered less appropriate. This study contributes to the ongoing debate of defining the concept and typology of integrated care. This taxonomy provides a development agenda for establishing an accepted scientific framework of integrated care from an end-user, professional, managerial and policy perspective.

  3. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

    PubMed Central

    Shang, Chunfeng; Yang, Wenbin; Bai, Lu; Du, Jiulin

    2017-01-01

    The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish. PMID:28930070

  4. Digestion in sea urchin larvae impaired under ocean acidification

    NASA Astrophysics Data System (ADS)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  5. Methods for conducting bioassays using embryos and larvae of Pacific herring, Clupea pallasi.

    PubMed

    Dinnel, Paul A; Middaugh, Douglas P; Schwarck, Nathan T; Farren, Heather M; Haley, Richard K; Hoover, Richard A; Elphick, James; Tobiason, Karen; Marshall, Randall R

    2011-02-01

    The rapid decrease of several stocks of Pacific herring, Clupea pallasi, in Puget Sound, Washington, has led to concerns about the effects of industrial and nonpoint source contamination on the embryo and larval stages of this and related forage fish species. To address these concerns, the state of Washington and several industries have funded efforts to develop embryo and larval bioassay protocols that can be used by commercial laboratories for routine effluent testing. This article presents the results of research to develop herring embryo and larval bioassay protocols. Factors evaluated during protocol development included temperature, salinity, dissolved oxygen (DO), light intensity, photoperiod, larval feeding regimes, use of brine and artificial sea salts, gonad sources, collection methods, and egg quality.

  6. Effects of fish oil, DHA oil and lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata)

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Ke; Wang, Wen-Qi; Li, Kui-Ran; Lei, Ji-Lin

    2002-12-01

    The effects of natural fish oil, DHA oil and soybean lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata) were investigated after 15 days feeding trials. The tolerance of larval gilthead seabream to various stress factors such as exposure to air (lack of dissolved oxygen), changes in water temperature (low) and salinity (high) were determined. This study showed that microparticulate diet with natural fish oil and soybean lecithin was the most effective for increasing the tolerance of larval gilthead seabream to various stresses, and that microparticulate diet with natural fish oil and palmitic acid (16∶0) was more effective than microparticulate diet with DHA oil and soybean lecithin.

  7. Larval body patterning and apical organs are conserved in animal evolution

    PubMed Central

    2014-01-01

    Background Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data. Results To compare apical organs and larval body patterning, we have studied regionalization of the episphere, the upper hemisphere of the trochophore larva of the marine annelid Platynereis dumerilii. We examined the spatial distribution of transcription factors and of Wnt signaling components previously implicated in anterior neural development. Pharmacological activation of Wnt signaling with Gsk3β antagonists abolishes expression of apical markers, consistent with a repressive role of Wnt signaling in the specification of apical tissue. We refer to this Wnt-sensitive, six3- and foxq2-expressing part of the episphere as the ‘apical plate’. We also unraveled a molecular signature of the apical organ - devoid of six3 but expressing foxj, irx, nkx3 and hox - that is shared with other marine phyla including cnidarians. Finally, we characterized the cell types that form part of the apical organ by profiling by image registration, which allows parallel expression profiling of multiple cells. Besides the hox-expressing apical tuft cells, this revealed the presence of putative light- and mechanosensory as well as multiple peptidergic cell types that we compared to apical organ cell types of other animal phyla. Conclusions The similar formation of a six3+, foxq2+ apical plate, sensitive to Wnt activity and with an apical tuft in its six3-free center, is most parsimoniously explained by evolutionary conservation. We propose that a simple apical organ - comprising an apical tuft and a basal plexus innervated by sensory-neurosecretory apical plate cells - was present in the last common ancestors of cnidarians and bilaterians. One of its ancient functions would have been the control of metamorphosis. Various types of apical plate cells would then have subsequently been added to the apical organ in the divergent bilaterian lineages. Our findings support an ancient and common origin of primary ciliated larvae. PMID:24476105

  8. Modelling larval dispersal of the king scallop ( Pecten maximus) in the English Channel: examples from the bay of Saint-Brieuc and the bay of Seine

    NASA Astrophysics Data System (ADS)

    Nicolle, Amandine; Dumas, Franck; Foveau, Aurélie; Foucher, Eric; Thiébaut, Eric

    2013-06-01

    The king scallop ( Pecten maximus) is one of the most important benthic species of the English Channel as it constitutes the first fishery in terms of landings in this area. To support strategies of spatial fishery management, we develop a high-resolution biophysical model to study scallop dispersal in two bays along the French coasts of the English Channel (i.e. the bay of Saint-Brieuc and the bay of Seine) and to quantify the relative roles of local hydrodynamic processes, temperature-dependent planktonic larval duration (PLD) and active swimming behaviour (SB). The two bays are chosen for three reasons: (1) the distribution of the scallop stocks in these areas is well known from annual scallop stock surveys, (2) these two bays harbour important fisheries and (3) scallops in these two areas present some differences in terms of reproductive cycle and spawning duration. The English Channel currents and temperature are simulated for 10 years (2000-2010) with the MARS-3D code and then used by the Lagrangian module of MARS-3D to model the transport. Results were analysed in terms of larval distribution at settlement and connectivity rates. While larval transport in the two bays depended both on the tidal residual circulation and the wind-induced currents, the relative role of these two hydrodynamic processes varied among bays. In the bay of Saint-Brieuc, the main patterns of larval dispersal were due to tides, the wind being only a source of variability in the extent of larval patch and the local retention rate. Conversely, in the bay of Seine, wind-induced currents altered both the direction and the extent of larval transport. The main effect of a variable PLD in relation to the thermal history of each larva was to reduce the spread of dispersal and consequently increase the local retention by about 10 % on average. Although swimming behaviour could influence larval dispersal during the first days of the PLD when larvae are mainly located in surface waters, it has a minor role on larval distribution at settlement and retention rates. The analysis of the connectivity between subpopulations within each bay allows identifying the main sources of larvae which depend on both the characteristics of local hydrodynamics and the spatial heterogeneity in the reproductive outputs.

  9. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

    PubMed Central

    Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2018-01-01

    Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs. PMID:29672560

  10. Development and infectious disease in hosts with complex life cycles.

    PubMed

    Searle, Catherine L; Xie, Gisselle Yang; Blaustein, Andrew R

    2013-01-01

    Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.

  11. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes

    NASA Astrophysics Data System (ADS)

    Llopiz, Joel K.; Hobday, Alistair J.

    2015-03-01

    Scombroid fishes, including tunas, mackerels, and billfishes, constitute some of the most important fisheries in lower latitudes around the world. Though the early life stages of these taxa are relatively well-studied, worldwide patterns in larval feeding dynamics and how such patterns relate to environmental conditions are poorly resolved. We present a synthesis of feeding success (i.e. feeding incidences) and diets of larval scombroids from around the world, and relate these results to water column and sea surface properties for the several regions in which larval feeding studies have been conducted. Feeding success of larval tunas was shown to be distinctly different among regions. In some locations (the Straits of Florida and the Mediterranean Sea), nearly no larvae had empty guts, whereas in other locations (the Gulf of California and off NW Australia) 40-60% of larvae were empty. Diets were consistently narrow in each region (dominated by cyclopoid copepods, appendicularians, nauplii, and other fish larvae), and were usually, but not always, similar for a given scombroid taxon among regions (though diets differed among taxa). Larval habitat conditions were often similar among the 9 regions examined, but some clear differences included low levels of eddy kinetic energy and cooler waters (at the surface and at depth) in the Mediterranean, and lower chlorophyll concentrations around the Nansei Islands, Japan and off NW Australia where feeding success was low. When observed zooplankton abundances are also taken into account, the compiled results on feeding and environmental conditions indicate a bottom-up influence on feeding success. Moreover, the variability among regions highlights the potential for region-specific mechanisms regulating larval survival and, ultimately, levels of adult recruitment.

  12. Passive larval transport explains recent gene flow in a Mediterranean gorgonian

    NASA Astrophysics Data System (ADS)

    Padrón, Mariana; Costantini, Federica; Baksay, Sandra; Bramanti, Lorenzo; Guizien, Katell

    2018-06-01

    Understanding the patterns of connectivity is required by the Strategic Plan for Biodiversity 2011-2020 and will be used to guide the extension of marine protection measures. Despite the increasing accuracy of ocean circulation modelling, the capacity to model the population connectivity of sessile benthic species with dispersal larval stages can be limited due to the potential effect of filters acting before or after dispersal, which modulates offspring release or settlement, respectively. We applied an interdisciplinary approach that combined demographic surveys, genetic methods (assignment tests and coalescent-based analyses) and larval transport simulations to test the relative importance of demographics and ocean currents in shaping the recent patterns of gene flow among populations of a Mediterranean gorgonian ( Eunicella singularis) in a fragmented rocky habitat (Gulf of Lion, NW Mediterranean Sea). We show that larval transport is a dominant driver of recent gene flow among the populations, and significant correlations were found between recent gene flow and larval transport during an average single dispersal event when the pelagic larval durations (PLDs) ranged from 7 to 14 d. Our results suggest that PLDs that efficiently connect populations distributed over a fragmented habitat are filtered by the habitat layout within the species competency period. Moreover, a PLD ranging from 7 to 14 d is sufficient to connect the fragmented rocky substrate of the Gulf of Lion. The rocky areas located in the centre of the Gulf of Lion, which are currently not protected, were identified as essential hubs for the distribution of migrants in the region. We encourage the use of a range of PLDs instead of a single value when estimating larval transport with biophysical models to identify potential connectivity patterns among a network of Marine Protected Areas or even solely a seascape.

  13. Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Wheeler, J.; Anderson, E.

    2016-02-01

    Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.

  14. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    PubMed

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  15. Ontogenetic changes in responses to settlement cues by Anemonefish

    NASA Astrophysics Data System (ADS)

    Dixson, D. L.; Munday, P. L.; Pratchett, M.; Jones, G. P.

    2011-12-01

    Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred naïve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.

  16. Recruitment constraints in Singapore's fluted giant clam (Tridacna squamosa) population—A dispersal model approach

    PubMed Central

    Neo, Mei Lin; Erftemeijer, Paul L. A.; van Beek, Jan K. L.; van Maren, Dirk S.; Teo, Serena L-M.; Todd, Peter A.

    2013-01-01

    Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1–68.6 settled individuals per 10,000 m2). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks. PMID:23555597

  17. The effect of canopy cover and seasonal change on host plant quality for the endangered Karner blue butterfly (Lycaeides melissa samuelis)

    USGS Publications Warehouse

    Grundel, Ralph; Pavlovic, Noel B.; Sulzman, Christina L.

    1998-01-01

    Larvae of the Karner blue butterfly, Lycaeides melissa samuelis, feed solely on wild lupine, Lupinus perennis, from the emergence to summer senescence of the plant. Wild lupine is most abundant in open areas but Karner blue females oviposit more frequently on lupines growing in moderate shade. Can differences in lupine quality between open and shaded areas help explain this disparity in resource use? Furthermore, many lupines are senescent before the second larval brood completes development. How does lupine senescence affect larval growth? We addressed these questions by measuring growth rates of larvae fed lupines of different phenological stages and lupines growing under different shade conditions. The habitat conditions under which lupines grew and plant phenological stage did not generally affect final larval or pupal weight but did significantly affect duration of the larval period. Duration was shortest for larvae fed leaves from flowering lupines and was negatively correlated with leaf nitrogen concentration. Ovipositing in areas of moderate shade should increase second-brood larval exposure to flowering lupines. In addition, larval growth was significantly faster on shade-grown lupines that were in seed than on similar sun-grown lupines. These are possible advantages of the higher-than-expected oviposition rate on shade-grown lupines. Given the canopy-related trade-off between lupine abundance and quality, maintenance of canopy heterogeneity is an important conservation management goal. Larvae were also fed leaves growing in poor soil conditions and leaves with mildew infection. These and other feeding treatments that we anticipated would inhibit larval growth often did not. In particular, ant-tended larvae exhibited the highest weight gain per amount of lupine eaten and a relatively fast growth rate. This represents an advantage of ant tending to Karner blue larvae.

  18. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-11-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Calcified aquatic insect larval constructions in the Pleistocene tufa of Jebel El Mida, Gafsa, southern Tunisia: Recognition and paleoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Ben Ahmed, Walid; Henchiri, Mohsen; Mastouri, Amna; Slim S'himi, Najet

    2018-04-01

    Calcified aquatic larval cases were recognized and identified in the Pleistocene tufa masses of Jebel El Mida, Gafsa, southern Tunisia. These larval constructions belong to three main insect families: caddisflies (Trichoptera, Hydropsychidae), midges (Diptera, Chironomidae) and aquatic moths (Lepidoptera, Pyralidae) that inhabited tubes in the tufa and spun nets. Each insect community has its distinctive characteristics of larval constructions that allow their recognition. The larval constructions recognized comprise fixed and portable (for caddisflies) dwelling cases and silken retreats and feeding capture nets. These last-mentioned are almost completely eroded and only remnants are preserved. The spatial distribution of these larval cases within the tufa is not random but, rather imposed by some specific paleohydraulic conditions. It's the reason why aquatic insect larval constructions are considered as prominent tool for the reconstruction of tufa and travertine depositional environments. Chironomid fixed dwelling cases (diameters range from 0.6 mm for clustered tubes to 3 mm) indicate the deposition of tufa under lotic (flowing) or lentic (standing) water conditions. The later hydraulic condition is shared with hydropsychids with fixed retreats (0.2-4 mm in diameter). Portable case-building caddisflies (case length ranging from 5 to 20 mm, and diameter from 3 to 5 mm at the cephalic end) prefer lentic conditions and are almost completely missing in high-energy flowing water locations that are preferred by pyralids (tubes are between 5 and 10 mm long and 3 mm in diameter). These insect families benefit from inhabiting the tufa by the availability of construction materials of their cases and the necessary space for their development.

  20. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain.

    PubMed

    Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J

    2015-04-01

    Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces. © 2015 Marine Biological Laboratory.

Top