High-resolution record of the Laschamp geomagnetic excursion at the Blake-Bahama Outer Ridge
NASA Astrophysics Data System (ADS)
Bourne, Mark D.; Mac Niocaill, Conall; Thomas, Alex L.; Henderson, Gideon M.
2013-12-01
Geomagnetic excursions are brief deviations of the geomagnetic field from behaviour expected during `normal secular' variation. The Laschamp excursion at ˜41 ka was one such deviation. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity associated with this excursion. Accurate dating of excursions, and determination of their durations from multiple locations, is vital to our understanding of global field behaviour during these deviations. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites, 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172). High sedimentation rates (˜30-40 cm kyr-1) at these locations allow determination of transitional field behaviour during the excursion. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. We determine the age and duration of the Laschamp excursion using a stratigraphy linked to the δ18O record from the Greenland ice cores. This chronology dates the Laschamp excursion at the Blake Ridge to 41.3 ka. The excursion is characterized by rapid transitions (less than 200 yr) between stable normal polarity and a partially reversed polarity state. The palaeointensity record is in good agreement between the two sites, revealing two prominent minima. The first minimum is associated with the Laschamp excursion at 41 ka and the second corresponds to the Mono Lake excursion at ˜35.5 ka. We determine that the directional excursion during the Laschamp at this location was no longer than ˜400 yr, occurring within a palaeointensity minimum that lasted 2000 yr. The Laschamp excursion at this location is much shorter in duration than the Blake and Iceland Basin excursions.
NASA Astrophysics Data System (ADS)
Lascu, I.; Feinberg, J. M.; Dorale, J. A.; Cheng, H.; Edwards, R. L.
2015-12-01
Short-lived geomagnetic events are reflections of geodynamo behavior at small length scales. A rigorous documentation of the anatomy, timing, duration, and frequency of centennial-to-millennial scale geomagnetic events can be invaluable for theoretical and numerical geodynamo models, and for the understanding the finer dynamics of the Earth's core. A critical ingredient for characterizing such geomagnetic instabilities are tightly constrained age models that enable high-resolution magnetostratigraphies. Here we focus on a North American speleothem geomagnetic record of the Laschamp excursion, which was the first geomagnetic excursion recognized and described in the paleomagnetic record, and remains the most studied event of its kind. The geological significance of the Laschamp lies chiefly in the fact that it constitutes a global time-synchronous geochronological marker. The Laschamp excursion occurred around the time of the demise of Homo neanderthalensis, in conjunction with high-amplitude, rapid climatic oscillations leading into the Last Glacial Maximum, and precedes a major supervolcano eruption in the Mediterranean. Thus, the precise determination of the timing and duration of the Laschamp would help in elucidating major scientific questions situated at the intersection of geology, paleoclimatology, and anthropology. Here we present a geomagnetic record from a stalagmite collected in Crevice Cave, Missouri, which we have dated using a combination of high-precision 230Th ages and annual layer counting using confocal microscopy. We have found a maximum duration for the Laschamp that spans the interval 42,250-39,700 years BP, and an age of 41,100 ± 350 years BP for the height of the excursion. During this period relative paleointensity decreased by an order of magnitude and the virtual geomagnetic pole was located at southerly latitudes. Our chronology provides the first robust bracketing for the Laschamp excursion, and improves on previous age determinations based on 40Ar/39Ar dating of lava flows, and orbitally-tuned sedimentary and ice-core records.
NASA Astrophysics Data System (ADS)
Bourne, M. D.; Henderson, G. M.; Thomas, A. L.; Mac Niocaill, C.
2012-12-01
The Laschamp geomagnetic excursion (~41 ka) was a brief global deviation in geomagnetic field behaviour from that expected during normal secular variation. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) and compare this record with previously published records of the Blake and Iceland Basin Excursions. Relatively high sedimentation rates (>10 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of 230Thxs concentration in the sediment to assess variations in the sedimentation rates through the core sections of interest. This allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 500 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two minima, where the second dip in intensity is associated with a more limited directional deviation. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years.
High-resolution palaeomagnetic records of the Laschamp geomagnetic excursion from the Blake Ridge
NASA Astrophysics Data System (ADS)
Mac Niocaill, C.; Bourne, M. D.; Thomas, A. L.; Henderson, G. M.
2013-05-01
Geomagnetic excursions are brief (1000s of years) deviations in geomagnetic field behaviour from that expected during 'normal secular' variation. The Laschamp excursion (~41 ka) was a global deviation in geomagnetic field behaviour. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. Accurate dating of excursions and determinations of their durations from multiple locations is vital to our understanding to global field behaviour during these deviations. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) Relatively high sedimentation rates (~30-40 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Despite their advantages, sedimentary records can be limited by the potential for unrecognized variations in sedimentation rates between widely spaced age-constrained boundaries. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of the concentration of 230Thxs in the sediment. 230Thxs is a constant flux proxy and may be used to assess variations in the sedimentation rates through the core sections of interest. Following this approach, we present a new age model for Site 1061 that allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 200 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two prominent minima, the first associated with the Laschamp excursion at 41 ka and the second at ~34 ka, possibly associated with the elusive 'Mono-Lake' excursion. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years. Using the 230Thxs derived sedimentation rate, we determine that the directional excursion at this location was no longer than ~400 years, occurring within a palaeointensity low lasting 2000 years. We compare this record with previously published records of the Blake and Iceland Basin Excursions from nearby locations. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions.
NASA Astrophysics Data System (ADS)
Ingham, E. M.; Roberts, A. P.; Turner, G. M.; Heslop, D.; Ronge, T.; Conway, C.; Leonard, G.; Townsend, D.; Tiedemann, R.; Lamy, F.; Calvert, A. T.
2014-12-01
Geomagnetic excursions are short-lived deviations of the geomagnetic field from the normal range of secular variation. Despite significant advances in geomagnetic excursion research over the past 20 years, fundamental questions remain concerning the typical duration and global morphology of excursional geomagnetic fields. To answer such questions, more high-resolution, chronologically well-constrained excursion records are required, particularly from the Southern Hemisphere. We present preliminary paleomagnetic records of the Laschamp (~41 ka) and Mono Lake (~35 ka) excursions from three marine sediment cores from the Bounty Trough, New Zealand margin, and complementary volcanic records of the Laschamp excursion from lavas of Mt Ruapehu, New Zealand. Relatively high sedimentation rates of 12 - 26 cm/kyr in the Bounty Trough during glacial periods allow identification of excursional field behavior at each of the studied core locations. Each core displays one or two excursional events, with rapid directional swings between stable normal polarity and reversed excursional directions, each associated with coincident relative paleointensity minima. These anomalous paleomagnetic directions are interpreted to represent the Laschamp and Mono Lake excursions, based on a combination of tephrochronology, radiocarbon dating, and cyclostratigraphy (defined from core-scanning X-ray fluorescence and magnetic susceptibility records). Beside these records, we present results from fourteen lava flows, on Mt Ruapehu, for which 40Ar-39Ar dating indicates ages of between 39 and 45 ka. The step heating 40Ar-39Ar experiments produced particularly flat age plateaus, with corresponding 2 s.d. errors mostly approaching 1 kyr. The youngest and oldest flows carry normal polarity magnetization, however six flows, dated between 41 and 43 ka, display transitional field characteristics. Three of these flows display a declination swing of around 180o, which coincides with a previously published result from the Auckland Basalt Field. Together, these data provide rare excursion records from the southern hemisphere, which will provide an improved view of geomagnetic field morphology during these excursions.
The Laschamp geomagnetic excursion featured in nitrate record from EPICA-Dome C ice core
Traversi, R.; Becagli, S.; Poluianov, S.; Severi, M.; Solanki, S. K.; Usoskin, I. G.; Udisti, R.
2016-01-01
Here we present the first direct comparison of cosmogenic 10Be and chemical species in the period of 38–45.5 kyr BP spanning the Laschamp geomagnetic excursion from the EPICA-Dome C ice core. A principal component analysis (PCA) allowed to group different components as a function of the main sources, transport and deposition processes affecting the atmospheric aerosol at Dome C. Moreover, a wavelet analysis highlighted the high coherence and in-phase relationship between 10Be and nitrate at this time. The evident preferential association of 10Be with nitrate rather than with other chemical species was ascribed to the presence of a distinct source, here labelled as “cosmogenic”. Both the PCA and wavelet analyses ruled out a significant role of calcium in driving the 10Be and nitrate relationship, which is particularly relevant for a plateau site such as Dome C, especially in the glacial period during which the Laschamp excursion took place. The evidence that the nitrate record from the EDC ice core is able to capture the Laschamp event hints toward the possibility of using this marker for studying galactic cosmic ray flux variations and thus also major geomagnetic field excursions at pluri-centennial-millennial time scales, thus opening up new perspectives in paleoclimatic studies. PMID:26819064
Volcanic records of the Laschamp geomagnetic excursion from Mt Ruapehu, New Zealand
NASA Astrophysics Data System (ADS)
Ingham, E.; Turner, G. M.; Conway, C. E.; Heslop, D.; Roberts, A. P.; Leonard, G.; Townsend, D.; Calvert, A.
2017-08-01
We present palaeodirectional records of the Laschamp geomagnetic excursion from lavas on Mt Ruapehu, New Zealand. Fourteen lava flows on the northwestern and southern flanks of Mt Ruapehu, with 40Ar/39Ar weighted mean plateau ages that range from 46.3 ± 2.0 to 39.9 ± 1.4 ka, were studied. The youngest and older flows carry a normal polarity magnetization; however, six flows, dated between 46.3 ± 2.0 and 42.7 ± 1.8 ka, record excursional directions. Three of these flows record southerly palaeomagnetic declinations and negative inclinations that agree well with a published Laschamp record from the Auckland Volcanic Field (AVF). Together, the AVF and Mt Ruapehu lavas currently represent the only volcanic records of the Laschamp excursion outside the Chaîne des Puys region, France. Thus, they make an important contribution to the global set of Laschamp excursion records. Virtual geomagnetic pole (VGP) groups for the New Zealand and French records early in the excursion are compatible with a dipole-dominated field that rotated to an equatorial orientation while simultaneously decaying in strength. In contrast, younger excursional flows from France and New Zealand yield separate VGP groups, which suggest either that the field had a nondipolar morphology in this later phase, or that the VGP groups were not synchronous. 40Ar/39Ar ages for the Mt Ruapehu record are on average slightly older than published northern hemisphere ages and from the relative palaeointensity minimum in the GLOPIS sedimentary stack. Although few individual ages differ significantly at the 2σ level, the spread suggests an overall excursion duration that is longer than the currently accepted 1500 years. This age spread may result from excess Ar in magmas at the time of the eruption biasing the results to slightly older ages, or from non-synchronous excursional field behaviour at near-antipodal locations, or, possibly, a precursory phase prior to the main excursion.
NASA Astrophysics Data System (ADS)
Laj, Carlo; Guillou, Hervé; Kissel, Catherine
2014-02-01
We report here on a new paleomagnetic (directions and intensities) and coupled K/Ar and 40Ar/39Ar analysis of 35 different flows, emplaced in the Chaîne des Puys during the 75 to 10 kyr interval, which contains the Mono Lake and Laschamp excursions. There is a remarkable agreement between the new set of absolute volcanic intensities and published sedimentary (GLOPIS-75) and cosmogenic (10Be and 36Cl) records. The Laschamp and Mono Lake excursions are clearly revealed by a very significant intensity drop at 41.2±1.6 ka and 34.2±1.2 ka respectively. The duration of the Laschamp excursion is ˜1500 yr and about 640 yr when the drop of paleointensity or the directional change are considered respectively. The intensity drop at the Mono Lake is twice as short. In the ˜7 ka interval separating the two excursions, the field intensity recovers to almost non-transitional values. The rate of decrease of the field intensity during these excursions attains 18 nT/yr for the Laschamp and even greater value (33 nT/yr) for the Mono Lake. This figure is, for the Laschamp excursion, similar to the present field intensity decrease in the last two centuries so that one may wonder whether such a high rate of change may be characteristic of an impending geomagnetic event (reversal or excursion). We suggest that the name Auckland excursion should be used for the present-day called Mono Lake.
NASA Astrophysics Data System (ADS)
Staff, Richard; Hardiman, Mark; Bronk Ramsey, Christopher; Hare, Vincent; Koutsodendris, Andreas; Pross, Jörg
2017-04-01
Cosmogenic radionuclides, such as 10Be and 14C, share a common production signal, with their formation in the Earth's upper atmosphere modulated by changes to the geomagnetic field, as well as variations in the intensity of the solar wind. Here, we present 54 14C measurements from a terrestrial fen peat core extracted from the site of Tenaghi Philippon, NE Greece, contiguously spanning the time period between 48,000 and 39,000 cal. BP. Utilising the most pronounced cosmogenic production peak of the last 100,000 years - that associated with the Laschamp geomagnetic excursion circa 41,000 years ago - we exploit this common production signal, comparing Greenland 10Be with our Tenaghi Philippon 14C record, thereby providing a means to assess the concordance between the radiocarbon (IntCal) and Greenland ice-core (GICC05) timescales themselves for this, the oldest portion of the radiocarbon technique.
A paleomagnetic record in loess-paleosol sequences since late Pleistocene in the arid Central Asia
NASA Astrophysics Data System (ADS)
Li, Guanhua; Xia, Dunsheng; Appel, Erwin; Wang, Youjun; Jia, Jia; Yang, Xiaoqiang
2018-03-01
Geomagnetic excursions during Brunhes epoch have been brought to the forefront topic in paleomagnetic study, as they provide key information about Earth's interior dynamics and could serve as another tool for stratigraphic correlation among different lithology. Loess-paleosol sequences provide good archives for decoding geomagnetic excursions. However, the detailed pattern of these excursions was not sufficiently clarified due to pedogenic influence. In this study, paleomagnetic analysis was performed in loess-paleosol sequences on the northern piedmont of the Tianshan Mountains (northwestern China). By radiocarbon and luminance dating, the loess section was chronologically constrained to mainly the last c.130 ka, a period when several distinct geomagnetic excursions were involved. The rock magnetic properties in this loess section are dominated by magnetite and maghemite in a pseudo-single-domain state. The rock magnetic properties and magnetic anisotropy indicate weakly pedogenic influence for magnetic record. The stable component of remanent magnetization derived from thermal demagnetization revealed the presence of two intervals of directional anomalies with corresponding intensity lows in the Brunhes epoch. The age control in the key layers indicates these anomalies are likely associated with the Laschamp and Blake excursions, respectively. In addition, relative paleointensity in the loess section is basically compatible with other regional and global relative paleointensity records and indicates two low-paleointensity zones, possibly corresponding to the Blake and Laschamp excursions, respectively. As a result, this study suggests that the loess section may have the potential to record short-lived excursions, which largely reflect the variation of dipole components in the global archives.
NASA Astrophysics Data System (ADS)
Singer, Brad S.; Guillou, Hervé; Jicha, Brian R.; Laj, Carlo; Kissel, Catherine; Beard, Brian L.; Johnson, Clark M.
2009-08-01
A brief period of enhanced 10Be flux that straddles the interstadial warm period known as Dansgaard-Oeschger event 10 in Greenland and its counterpart in Antarctica, the Antarctic Isotope Maximum 10 is but one consequence of the weakening of Earth's magnetic field associated with the Laschamp excursion. This 10Be peak measured in the GRIP ice core is dated at 41,250 y b2k (= before year 2000 AD) in the most recent GICC05 age model obtained from the NorthGRIP core via multi-parameter counting of annual layers. Uncertainty in the age of the 10Be peak is, however, no better than ± 1630 y at the 95% confidence level, reflecting accumulated error in identifying annual layers. The age of the Laschamp excursion [Guillou, H., Singer, B.S., Laj, C., Kissel, C., Scaillet, S., Jicha, B., 2004. On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett. 227, 331-343.] is revised on the basis of new 40Ar/ 39Ar, unspiked K-Ar and 238U- 230Th data from three lava flows in the Massif Central, France, together with the 40Ar/ 39Ar age of a transitionally magnetized lava flow at Auckland, New Zealand. Combined, these data yield an age of 40,700 ± 950 y b2k, where the uncertainty includes both analytical and systematic ( 40K and 230Th decay constant) errors. Taking the radioisotopic age as a calibration tie point suggests that the layer-counting chronologies for the NorthGRIP and GISP2 ice cores are more accurate and precise than previously thought at depths corresponding to the Laschamp excursion.
Age and Structure of the Laschamp Geomagnetic Excursion
NASA Astrophysics Data System (ADS)
Scaillet, S.; Laj, C.; Kissel, C.; Guillou, H.; Singer, B. S.
2004-12-01
The age of the Laschamp geomagnetic excursion has been recently re-investigated using unspiked K/Ar and Ar/Ar techniques (Guillou et al., Session V01, this conference). The new age determination of 40.4 +/- 2.0 ka (2 sigma) is more precise than those previously reported in the literature and agrees precisely with that deduced from the GLOPIS-75 sedimentary paleointensity stack calibrated against the GISP2 ice core chronology. Two of the North Atlantic cores used in GLOPIS-75 (MD95-2034 and PS2644-5) yield rather detailed transitional VGP paths. In the two cases the paths show large similarities, with the VGP initially descending along mid-western Pacific, then returning to normal polarities with a large clockwise loop over Africa and Europe. Differences in the highest southern latitudes reached by the VGP can be explained assuming more different degrees of smearing of the paleomagnetic record due to differences in sedimentation rate in the two cores. In the most detailed record, MD95-2034 , two smaller loops are present preceding the main excursion. In the two cores, the excursion is characterized by a significant drop in intensity. The reversal paths observed for the Laschamp event are very close in position to those reported for the Icelandic Basin Event (IBE) from sites in the North Atlantic and the South China Sea (Laj et al., this conference) but differ in the sense of looping: while a clockwise loop is observed here, a counterclockwise loop is observed for the IBE. Despite this difference, the similarity of the transitional records tends to suggest that a similar, relatively simple, geometry has dominated the two excursions and therefore that similar dynamo mechanisms have prevailed during the reversal process.
Quaternary magnetic excursions recorded in marine sediments.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2017-12-01
This year is the golden (50th) anniversary of the first documentation of a magnetic excursion, the Laschamp excursion in volcanics from the Chaine des Puys (Bonhommet and Babkine, 1967). The first recording of an excursion in sediments was from the Blake Outer Ridge (Smith and Foster, 1969). Magnetic excursions are directional aberrations of the geomagnetic field apparently involving short-lived reversal of the main dipole field. They have durations of a few kyrs, and are therefore rarely recorded in sediments with mean sedimentation rates <10 cm/kyr. Certain Brunhes-aged excursions are now well documented having been recorded in both marine sediments and in lavas (Laschamp excursion, 41 ka). Other excursions have not been adequately recorded in lavas, but have been widely recorded in marine and lake sediments (Iceland Basin excursion, 190 ka). The recording of excursions is fortuitous both in lava sequences and in marine sediments due to their millennial/centennial-scale duration, however, the global recording of the Laschamp and Iceland Basin excursions imply that excursions involve the main dipole field, are recorded synchronously over the globe, and are therefore important in stratigraphic correlation. The marine sediment record includes magnetic excursions at 26 ka (Rockall), 32 ka (Mono Lake), 41 ka (Laschamp), 115 ka (Blake), 190 ka (Iceland Basin), 238 ka (Pringle Falls?), 286 ka (Portuguese Orphan), 495 ka (Bermuda), 540 ka (Big Lost), 590 ka (La Palma), and 670 ka (Osaka Bay), implying at least 11 excursions in the Brunhes Chron. For the Matuyama Chron, excursions have been recorded in marine sediments at 868 ka (Kamikatsura?), 932 ka (Santa Rosa), 1051 ka (Intra-Jaramillo), 1115 ka (Punaruu), 1255 ka (Bjorn), 1476 ka (Gardar), 1580 ka (Gilsa), and 2737 ka (Porcupine). Excursions coincide with minima in relative paleointensity (RPI) records. Ages are from correlation of excursion records to oxygen isotope records in the same cores, and ice-volume calibration of the oxygen isotope template. The marine sediment record of excursions, combined with independent documentation of excursions in lavas with Ar/Ar age control, is progressively strengthening our knowledge of the excursion inventory in the Quaternary, and enhancing the importance of excursions and RPI in Quaternary stratigraphy.
NASA Astrophysics Data System (ADS)
Singer, Brad S.; Jicha, Brian R.; He, Huaiyu; Zhu, Rixiang
2014-04-01
New 40Ar/39Ar dating of a comenditic lava atop Tianchi Volcano, China, indicates eruption at 17.1 ± 0.9 ka. The flow interior records a pair of transitional virtual geomagnetic poles and a low paleointensity of ~25 μT. Thus, it records a geomagnetic field excursion that is younger than the 41 ka Laschamp or 32 ka Auckland excursions. Implications are: (1) following a repose of several tens of kyr, Tianchi Volcano became highly active immediately following termination of the last glaciation maximum. The flare-up of silicic eruptions may reflect rapid deglaciation of the edifice. (2) A 17 ka age for the Tianchi excursion provides the first direct radioisotopic evidence that excursional behavior, which is imprecisely dated and less well documented magnetically at several other sites, is a global feature of geodynamo behavior. (3) During the Brunhes chron, 13 well-dated excursions cluster into two periods, including seven between 17 and 212 ka, and six between about 530 and 730 ka.
Earth's magnetic field is probably not reversing.
Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney
2018-05-15
The geomagnetic field has been decaying at a rate of ∼5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.
NASA Astrophysics Data System (ADS)
Belmaker, Reuven; Stein, Mordechai; Beer, Jürg; Christl, Marcus; Fink, David; Lazar, Boaz
2014-08-01
The content of the cosmogenic isotope 10Be (t1/2=1.39 Ma) in lacustrine sediments that deposit in lakes with a large watershed is susceptible to both climate and cosmogenic production rate variations. In order to distinguish between these two controls, we measured 10Be and major elements in several sections of the annually laminated sediments of the Lake Lisan (the last Glacial precursor of the Dead Sea) that are composed of detrital sediments and primary (evaporitic) aragonites. The sections were selected to represent regional hydrology and climate as reflected by different lake configurations (level rise, drop and high-stands) and rapid change in the 10Be production rate during the Laschamp geomagnetic excursion. Since the short-lived cosmogenic “sister” of 10Be, 7Be (t1/2=53.3 d) has virtually no recycled component, the recycled 10Be in Lake Lisan detrital sediments was evaluated by measuring 7Be in their modern equivalents: modern flood suspended matter, dust and mud cracks. Our results demonstrate that although the recycled 10Be component is significant, secular variations in the 10Be concentration in Lake Lisan sediments correlate with hydrological variations and geomagnetic excursions. During periods of moderate variations in 10Be production rate, the 10Be concentration in the Lisan detrital sediments positively correlates with lake level, Al + Fe content and the (Al + Fe)/(Ca + Mg) ratio. These correlations suggest that the 10Be is adsorbed on the fine silicate component (probably clays) of the detrital laminae. The fine silicates together with carbonates were transported to Dead Sea drainage basin mainly as airborne dust that after a short residence time was washed into Lake Lisan as flood suspended matter. We suggest that preferential dissolution of carbonates in the flood suspended matter concentrated the residual fine component leading to the positive correlation between 10Be and the (Al + Fe)/(Ca + Mg) ratio. During periods of increased water discharge more carbonates were dissolved and hence the 10Be concentration in the detrital laminae increased. During periods of rapid increase in the 10Be production rate (e.g. the Laschamp excursion), 10Be showed a ∼2 fold increase, beyond the above-mentioned correlations (lake levels and Al + Fe contents). This observation suggests that Lake Lisan can serve as a potential high-resolution archive of 10Be production rate variations during periods of geomagnetic excursions.
Mono Lake excursion recorded in sediment of the Santa Clara Valley, California
Mankinen, Edward A.; Wentworth, Carl M.
2004-01-01
Two intervals recording anomalous paleomagnetic inclinations were encountered in the top 40 meters of research drill hole CCOC in the Santa Clara Valley, California. The younger of these two intervals has an age of 28,090 ± 330 radiocarbon years B.P. (calibrated age ∼32.8 ka). This age is in excellent agreement with the latest estimate for the Mono Lake excursion at the type locality and confirms that the excursion has been recorded by sediment in the San Francisco Bay region. The age of an anomalous inclination change below the Mono Lake excursion was not directly determined, but estimates of sedimentation rates indicate that the geomagnetic behavior it represents most likely occurred during the Mono Lake/Laschamp time interval (∼45–28 ka). If true, it may represent one of several recurring fluctuations of magnetic inclination during an interval of a weak geomagnetic dipole, behavior noted in other studies in the region.
NASA Astrophysics Data System (ADS)
Stoner, J. S.; Lund, S.; Channell, J. E.; Mix, A. C.; Davies, M. H.; Lamy, F.
2008-12-01
Sediments that accumulate at around 1-m/kyr or greater preserve a paleomagnetic record that, under favorable conditions, may record the original geomagnetic input with little smoothing. However, such great rates of accumulation come with a price as features of interest are often deeply buried and may only be adequately recovered using drilling technologies. Here we present a full-vector geomagnetic reconstruction for the last 70,000 yrs from ultrahigh resolution records obtained through ODP drilling (Leg 202) on the Chilean Margin. ODP Site 1233 (41.0 S, 74.26 W, water depth 838 m) provides a 135-mcd u-channel derived directional paleomagnetic secular variation (PSV) and relative paleointensity (RPI) records. The chronology is constrained by AMS radiocarbon dates and tuning of alkenone sea surface temperature to Antarctic ice core temperature records back to 70,000 years BP. To the north, ODP Sites 1234 (36.13 S, 73.40W, water depth 1015 m) and 1235 (36.9 S, 73.33 W, water depth 489 m) provide independently dated shipboard and developing u-channel paleomagnetic records that reproduce many of the geomagnetic features observed at Site 1233 including excursions and high amplitude PSV intervals, while providing additional radiocarbon and isotopic constraints for development of a regional master chronology. All three Sites have exceptionally high glacial sedimentation rates that average 2-m/kyr for 1233, 80-cm/kyr for 1234 and 1-m/kyr for 1235. Fortuitously, the Laschamp magnetic excursion at Site 1233 occurs during an interval where sedimentation rates exceed 3-m/kyr. The Site 1233 chronology indicates that the Laschamp event, centered at 41,000 yrs BP, has a duration in reverse polarity of only 600 yrs, with polarity transitions occurring in less than 200 yrs within a 1500 yr long interval of low RPI. The path of virtual geomagnetic pole (VGP) positions for the Laschamp excursion at Site 1233 is generally consistent with the hypothesis of a simple field geometry because the large clockwise VGP loop mimics the path seen for other sites recording the same excursion. Unlike prior observations, this path begins and ends at approximately the same Alaskan location after making a complete loop through the Pacific to high (> 80 degrees) southerly latitudes. Insights into the dynamics PSV and RPI, the resolution of magnetic stratigraphies, the geomagnetic controls on cosmic ray shielding and whether these might affect climate will also be touched upon.
Is the Earth's magnetic field heading for a flip? Hints from the past
NASA Astrophysics Data System (ADS)
Laj, C. E.; Kissel, C.
2017-12-01
The magnitude of the Earth's dipole magnetic field has decreased significantly over the last centuries at a mean rate of 16 nT/y. This decrease, which correlates with the growth of the South Atlantic Anomaly (SAA) therefore occurs at a rate which is about 10 times larger than expected from a free Ohmic decay process. This situation has led to speculations that an attempt to a reversal or a geomagnetic excursion might be underway. We investigate this hypothesis by examining past geomagnetic instabilities, focussing on the well documented Laschamp and Mono Lake excursions. We have selected high accumulation sedimentary records with very precise age model, leading to unprecedented temporal resolution, and accurate calibration of RPI between 20 and 75 kyr B.P. We also used the 10Be and 36Cl records from the Greenland ice cores. The rate of decay of the field intensity during these two excursions is virtually identical to that observed over the last centuries and much higher than that observed for another period of low intensity (around 65 kyr BP) not associated with a polarity change. Moreover, the global morphology of the Laschamp excursion obtained by Bayesian inversion (Leonhardt et al. (2009) is that reverse magnetic field patches at the core-mantle boundary are formed near the equator and then move poleward, a scenario reminiscent of that described for the present field in the litterature. Therefore, although these results from two excursions do not provide undisputable information on future evolution of the field, they show similarities with several aspects of the present-day geomagnetic field. Assuming that the dynamo processes for an eventual future instability would be similar to those of the past two excursions, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, some 1000 years would be needed for the directional changes to start to be significant.
Mankinen, Edward A.; Wentworth, Carl M.
2016-01-01
The Mono Lake (ca. 32 ka), Pringle Falls (ca. 210 ka), and Big Lost (ca. 565 ka) geomagnetic excursions all seem to be represented in the Santa Clara Valley wells. Possible correlations to the Laschamp (ca. 40 ka) and Blake (ca. 110 ka) excursions are also noted. Three additional excursions that have apparently not been previously reported from western North America occur within cycle 6 (between 536 and 433 ka), near the base of cycle 5 (after 433 ka), and near the middle of cycle 2 (before ca. 75 ka).
Paleomagnetic record for the past 80 ka from the Mahanadi basin, Bay of Bengal
NASA Astrophysics Data System (ADS)
Usapkar, A.; Dewangan, P.; Mazumdar, A.; Krishna, K. S.; Ramprasad, T.; Badesab, F. K.; Patil, M.; Gaikwad, V. V.
2018-01-01
High resolution paleomagnetic investigations were performed on a 50.08 m long sediment core (MD161/20) from Mahanadi basin, Bay of Bengal. Core yielded reliable paleomagnetic results for top 20 m below seafloor (mbsf) which spans about 80 ka. Based on the analysis of rock magnetic data, the core is subdivided into five distinct Zones: Zone 1 and Zone 2 cover top 20 mbsf and do not show any abrupt change in magnetic mineralogy, concentration and grain size. Zones 3 and 5 show significant reduction in χLF, χARM and SIRM due to dissolution of magnetic minerals. Zone 4 shows moderate values of χLF and SIRM. The low value of χARM suggests that magnetic signal is mostly carried by magnetic grains in PSD/MD state. The paleomagnetic data for the top 20 mbsf show four prominent geomagnetic excursions at ∼9 mbsf, ∼13.5 to 15 mbsf, ∼16.3 mbsf and ∼18 to 18.2 mbsf. The age-depth relationship is established using stratigraphic correlation between well-dated sedimentary core NGHP-01-19B and the core MD161/20. The ages of the observed excursions correspond to ∼18 to 20 ka, ∼42 to 49 ka, ∼54 to 57 ka and ∼69 to 70 ka. The excursions at ∼42 to 49 ka, ∼54 to 57 ka, and ∼67 to 70 ka is similar to the known excursions the Laschamp and the split Norwegian-Greenland Sea events (NGS-I and NGS-II). The excursion at 18-20 ka is not observed globally and may be related to lithological/sedimentological changes occurring during last glacial maxima (LGM). The virtual geomagnetic path (VGP) of Laschamp excursion traces clockwise loop. All excursions identified in present study fall in the periods of relatively low paleointensity.
NASA Astrophysics Data System (ADS)
Zhou, W.; Xian, F.; Beck, J.; An, Z.; Wu, Z.; Liu, M.; Chen, M.; Priller, A.; Kutschera, W.; Jull, A. T.; Yu, H.; Song, S.; Cheng, P.; Kong, X.
2009-12-01
Chinese loess is well-known archive for the paleogeomagnetic and paleoclimatic studies [Zhou et al., 1990; An et al., 1990; Zhu et al., 2007]. However, earlier efforts to extract weak geomagnetic excursion signals from Chinese loess 10Be were always unsuccessful due to the complexities of loess 10Be, which results in the fact that loess 10Be was only used as a climatic proxy [Shen et al., 1992; Beer et al.,1993; Gu et al.,1996]. Meanwhile, knowledge on the precise stratigraphic horizons of geomagnetic excursions with a reliable dating [Channell, 2006], on whether the short-lived excursions such as Blake can not be recorded in paleosol unit are still controversial. Here, we present the reconstructed past 130ka geomagnetic excursions and relative paleointensities for the first time from 10Be records in two Chinese loess sections. Results are comparative with those of independent geomagnetic research on Atlantic and Pacific sediments. The derived Laschamp and Blake events lie in the loess-paleosol (L1SS1 and S1SS3) corresponding to mid MIS 3 and 5e respectively. Our studies prove the potential application of the complex loess 10Be for long-term geomagnetic tracing and provide new evidence to answer the long-existing debates on the precise stratigraphic horizon of geomagnetic excursions. Our study suggests the potential application of loess-paleosol 10Be for reconstructing geomagnetic intensity variations spanning the whole Quaternary. References 1. Zhou, L. P., F. Oldfield, A. G. Wintle, S. G. Robinson, and J. T. Wang (1990), Partly pedogenic origin of magnetic variations in Chinese loess, Nature, 346, 737-739. 2. An, Z. S., T. S. Liu, Y. C. Lu, S. C. Porter, G. Kukla, X. H. Wu, and Y. M. Hua (1990), The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China, Quat. Int., 7-8, 91-95. 3. Zhu, R. X., R. Zhang, C. L. Deng, Y. X. Pan, Q. S. Liu, and Y. B. Sun (2007), Are Chinese loess deposits essentially continuous?, Geophys. Res. Lett., 34, L17306. 4. Shen, C. D., J. Beer, T. S. Liu, H. Oeschger, G. Bonani, M. Suter, and W.Wolfli (1992), 10Be in Chinese loess, Earth Planet. Sci. Lett., 109(1-2), 169-177. 5. Gu, Z. Y., D. Lal, T. S. Liu, J. Southon, M. W. Caffee, Z. T. Guo, and M. Y.Chen (1996), Five million year 10Be record in Chinese loess and red-clay: climate and weathering relationships, Earth Planet. Sci. Lett., 144(1-2), 273-287. 6. Beer, J., C. D. Shen, F. Heller ,T.S. Liu, G. Bonani, B. Dittrich, M. Suter, and P.W. Kubik (1993), 10Be and magnetic susceptibility in Chinese Loess, Geophys. Res. Lett., 20(1), 57-60 7. Channell, J. E. T.(2006), Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin), Earth Planet. Sci. Lett., 244(1-2), 378-393.
The Record of Geomagnetic Excursions from a ~150 m Sediment Core: Clear Lake, Northern California
NASA Astrophysics Data System (ADS)
Levin, E.; Byrne, R.; Looy, C. V.; Wahl, D.; Noren, A. J.; Verosub, K. L.
2015-12-01
We are studying the paleomagnetic properties of a new ~150 meter drill core from Clear Lake, CA. Step-wise demagnetization of the natural remanent magnetism (NRM) yields stable directions after 20 mT, implying that the sediments are reliable recorders of geomagnetic field behavior. Several intervals of low relative paleointensity (RPI) from the core appear to be correlated with known geomagnetic excursions. At about 46 m depth, and ~33 ka according to an age model based on radiocarbon dates obtained from pollen and the Olema ash bed, a low RPI zone seems to agree with the age and duration of the Mono Lake Excursion, previously identified between 32 and 35 ka. Slightly lower in the core, at about 50 m depth and ~40 ka, noticeably low RPI values seem to be coeval with the Laschamp excursion, which has been dated at ~41 ka. A volcanic ash near the bottom of the core (141 mblf) is near the same depth as an ash identified in 1988 by Andrei Sarna-Wojcicki and others as the Loleta ash bed in a previous Clear Lake core. If the basal ash in the new core is indeed the, Loleta ash bed, then the core may date back to about 270-300 ka. Depending on the age of the lowest ash, a sequence of low RPI intervals could correlate with the Blake (120 ka), Iceland Basin (188 ka), Jamaica/Pringle Falls (211 ka), and CR0 (260 ka) excursions. Correlation of the low RPI intervals to these geomagnetic excursions will help in the development of a higher resolution chronostratigraphy for the core, resolve a long-standing controversy about a possible hiatus in the Clear Lake record, and provide information about climatically-driven changes in sedimentation.
Simon, Quentin; Thouveny, Nicolas; Bourlès, Didier L; Valet, Jean-Pierre; Bassinot, Franck; Ménabréaz, Lucie; Guillou, Valéry; Choy, Sandrine; Beaufort, Luc
2016-11-01
Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium-10 ( 10 Be) production rates. Authigenic 10 Be/ 9 Be ratios (proxy of atmospheric 10 Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic 10 Be/ 9 Be ratio results obtained from cores MD05-2920 and MD05-2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05-2920, MD05-2930 and MD90-0961 have been stacked and averaged. Variations of the authigenic 10 Be/ 9 Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest 10 Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 10 22 Am 2 ) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant 10 Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The 10 Be-derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes-Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial-scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities.
Geomagnetic excursions in the Brunhes and Matuyama Chrons: Do they come in bunches?
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2012-04-01
Geomagnetic excursions, defined here as brief directional aberrations of the main dipole field outside the range of expected secular variation, remain controversial. Poorly-correlated records of apparent excursions from lavas and sediments can often be assigned to sampling artifacts, sedimentological phenomena, volcanic terrane effects, or local secular variation, rather than behavior of the main dipole field. Although records of magnetic excursions date from the 1960s, the number of Brunhes excursions in recent reviews of the subject have reached the 12-17 range, of which only about ~7 are adequately and/or consistently recorded. For the Matuyama Chron, the current inventory of excursions stands at about 10. The better quality excursion records, with reasonable age control, imply millennial-scale or even sub-millennial-scale durations. When "adequately" recorded, excursions are manifest as paired polarity reversals flanking virtual geomagnetic poles (VGPs) that reach high latitudes in the opposite hemisphere. At the young end of the excursion record, the Mono Lake (~33 ka) and Laschamp (~41 ka) excursions are well documented, although records of the former are not widely distributed. Several excursions younger than the Mono Lake excursion (at 17 ka and 25 ka) have recently been recorded in lavas and sediments, respectively. Is the 17-41 ka interval characterized by multiple excursions? Similarly, multiple excursions have been recorded in the 188-238 ka interval that encompasses records of the Iceland Basin excursion (~188 ka) and the Pringle Falls (PF) excursion. The PF excursion has been assigned ages in the 211-238 ka range. Does this mean that this interval is also characterized by several discrete excursions? The 500-600 ka interval incorporates not only the Big Lost excursion at ~565 ka, but also anomalous magnetization directions from lava flows, particularly in the West Eifel volcanics that yield mid-latitude northern-hemisphere VGPs with a range of Ar/Ar ages. The key question is whether such intervals of mid-latitude VGPs denote high-amplitude secular variation or inadequately recorded magnetic excursions. We propose that excursions characterized by high VGP latitudes in the opposite hemisphere should be termed Category 1 excursions, and those manifest by low/mid-latitude VGPs should be termed Category 2 excursions. In the future, improved records may "elevate" Category 2 excursions to Category 1. We do not view this subdivision of Category 1 and Category 2 excursions as necessarily a geomagnetic distinction, but possibly a distinction based on recording fidelity.
Thouveny, Nicolas; Bourlès, Didier L.; Valet, Jean‐Pierre; Bassinot, Franck; Ménabréaz, Lucie; Guillou, Valéry; Choy, Sandrine; Beaufort, Luc
2016-01-01
Abstract Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium‐10 (10Be) production rates. Authigenic 10Be/9Be ratios (proxy of atmospheric 10Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic 10Be/9Be ratio results obtained from cores MD05‐2920 and MD05‐2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05‐2920, MD05‐2930 and MD90‐0961 have been stacked and averaged. Variations of the authigenic 10Be/9Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest 10Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 1022 Am2) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant 10Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The 10Be‐derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes‐Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial‐scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities. PMID:28163989
Cosmogenic 10Be signature of geomagnetic dipole moment variations over the last 2 Ma
NASA Astrophysics Data System (ADS)
Simon, Q.; Thouveny, N.; Bourlès, D. L.; Valet, J. P.; Bassinot, F. C.; Savranskaia, T.; Duvivier, A.; Choy, S.; Gacem, L.; Villedieu, A.
2017-12-01
Long-term variations of the geomagnetic dipole moment (GDM) during periods of stable polarity and in transitional states (reversals and excursions) provide key information for understanding the geodynamo regime. Authigenic 10Be/9Be ratios (Be-ratio, proxy of atmospheric 10Be production) from marine sedimentary cores give independent and additional insights on the evolution of the geomagnetic intensity, completing information from absolute and relative paleointensity (RPI) records. Here we present new Be-ratio results obtained on several marine cores from the North Atlantic, Indian and Pacific Oceans which permit to extent into the Matuyama chron our previous 10Be-derived GDM reconstructions (Simon et al., 2016 JGR 121). Stratigraphic offsets measured between Be-ratio peaks and the corresponding RPI minima in each studied cores are assigned to (post-) detrital remanent magnetization (pDRM) effects leading to magnetization locking-in delays varying from 0 to 16 cm (up to 12 ka). All these results were compiled in order to obtain a continuous Be-ratio record covering the last 2 Ma. 10Be overproduction episodes triggered by geomagnetic dipole moment lows (GDL) linked to polarity reversals and excursions confirm the global control exerted by the GDM on cosmogenic radionuclides production. A dipole moment reconstruction derived from the Be-ratio stack (BeDiMo2Ma) was calibrated using absolute paleointensity data. This independent record completes the available paleomagnetic RPI records and permits: 1) to confront and increase the robustness and precision of GDM reconstructions; and, 2) to better constrain geomagnetic field instabilities during the mid- to late- Matuyama chron. Our new 10Be derived inventory is fully compatible with the GDL series linked to polarity reversals (Matuyama-Brunhes transition, Jaramillo and Olduvai boundaries), geomagnetic events (Cobb Mountain, Réunion) and Brunhes' excursions (e.g. Laschamp, Blake, Iceland-Basin, Big Lost). It further strengthens the occurrence of several Matuyama's excursions (Kamikatsura, Santa Rosa, Punaruu, Bjorn, Gilsa, Gardar) that were reported only from sparse locations.
Mankinen, Edward A.; Wentworth, Carl M.
2003-01-01
Paleomagnetic samples were obtained from cores taken during the drilling of a research well along Coyote Creek in San Jose, California, in order to use the geomagnetic field behavior recorded in those samples to provide age constraints for the sediment encountered. The well reached a depth of 308 meters and material apparently was deposited largely (entirely?) during the Brunhes Normal Polarity Chron, which lasted from 780 ka to the present time. Three episodes of anomalous magnetic inclinations were recorded in parts of the sedimentary sequence; the uppermost two we correlate to the Mono Lake (~30 ka) geomagnetic excursion and 6 cm lower, tentatively to the Laschamp (~45 ka) excursion. The lowermost anomalous interval occurs at 305 m and consists of less than 10 cm of fully reversed inclinations underlain by 1.5 m of normal polarity sediment. This lower anomalous interval may represent either the Big Lost excursion (~565 ka) or the polarity transition at the end of the Matuyama Reversed Polarity Chron (780 ka). The average rates of deposition for the Pleistocene section in this well, based on these two alternatives, are approximately 52 or 37 cm/kyr, respectively.
NASA Astrophysics Data System (ADS)
Vazquez, Jorge A.; Lidzbarski, Marsha I.
2012-12-01
Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.
Vazquez, Jorge A.; Lidzbarski, Marsha I.
2012-01-01
Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.; Curtis, J. H.
2012-02-01
An age model for the Brunhes Chron of Ocean Drilling Program (ODP) Site 1063 (Bermuda Rise) is constructed by tandem correlation of oxygen isotope and relative paleointensity data to calibrated reference templates. Four intervals in the Brunhes Chron where paleomagnetic inclinations are negative for both u-channel samples and discrete samples are correlated to the following magnetic excursions with Site 1063 ages in brackets: Laschamp (41 ka), Blake (116 ka), Iceland Basin (190 ka), Pringle Falls (239 ka). These ages are consistent with current age estimates for three of these excursions, but not for "Pringle Falls" which has an apparent age older than a recently published estimate by ˜28 kyr. For each of these excursions (termed Category 1 excursions), virtual geomagnetic poles (VGPs) reach high southerly latitudes implying paired polarity reversals of the Earth's main dipole field, that apparently occurred in a brief time span (<2 kyr in each case), several times shorter than the apparent duration of regular polarity transitions. In addition, several intervals of low paleomagnetic inclination (low and negative in one case) are observed both in u-channel and discrete samples at ˜318 ka (MIS 9), ˜412 ka (MIS 11) and in the 500-600 ka interval (MIS 14-15). These "Category 2" excursions may constitute inadequately recorded (Category 1) excursions, or high amplitude secular variation.
NASA Astrophysics Data System (ADS)
Simon, Q.; Thouveny, N.; Bourles, D. L.; Ménabréaz, L.; Valet, J. P.; Valery, G.; Choy, S.
2015-12-01
The atmospheric production rate of cosmogenic nuclides is linked to the geomagnetic dipole moment (GDM) by a non-linear inverse relationship. Large amplitude GDM variations associated with reversals and excursions can potentially be reconstructed using time variation of the cosmogenic beryllium-10 (10Be) production recorded in ocean sediments. Downcore profiles of authigenic 10Be/9Be ratios (proxy of atmospheric 10Be production) in oceanic cores provide independent and additional records of the evolution of the geomagnetic intensity and complete previous information derived from relative paleointensity (RPI). Here are presented new authigenic 10Be/9Be results obtained from cores MD05-2920 and from the top of core MD05-2930 collected in the West Equatorial Pacific Ocean. Completing data of Ménabréaz et al. (2012, 2014), these results provide the first continuous 10Be production rate sedimentary record covering the last 800 ka. Along these cores, authigenic 10Be/9Be ratio peaks are recorded - within methodological errors - at the stratigraphic level of RPI lows. High-resolution chronologies (δ18O-derived) lead to interpret these peaks as successive global 10Be overproduction events triggered by geomagnetic dipole lows present in the PISO-1500 and Sint-2000 stacks. The largest amplitude 10Be production enhancement is synchronous to the very large decrease of the dipole field associated with the last polarity reversal (772 ka). It is consistent in shape and duration with the peak recorded in core MD90-0961 from the Maldive area (Indian Ocean) (Valet et al. 2014). Two significant 10Be production enhancements are coeval with the Laschamp (41 ka) and Icelandic basin (190 ka) excursions, while 10Be production peaks of lower amplitude correlate to other recognized excursions such as the Blake (120 ka), Pringle-Falls (215 ka), Portuguese Margin (290 ka), Big Lost (540 ka) among others. This study provides new data on the amplitude and timing of dipole field variations, helping to understand the difference between paleosecular variation, excursions, aborted reversals and reversals regimes.
NASA Astrophysics Data System (ADS)
Wiers, Steffen; Snowball, Ian; O'Regan, Matt; Almqvist, Bjarne
2017-04-01
The Yermak Plateau, situated north of Svalbard, has been recognized as one of several places in the Arctic Ocean where paleomagnetism yields controversial results. Despite low sedimentation rates, excursional paleomagnetic directions have been reconstructed from many cores in the region. Commonly reported geomagnetic excursions, i.e. Laschamp, Norwegian-Greenland-Sea and Blake, show considerably longer durations and younger ages compared to established short-lived geomagnetic polarity microchrons. An environmental control on the paleomagnetic record, connected to self-reversal during maghemitization of titanomagnetite has been proposed as one explanation for the wide occurrence of anomalous paleomagnetic data in the Arctic Ocean, but it remains unclear what mechanisms are responsible. Without independent stratigraphic control and independent dating it is difficult to distinguish between true and false records of the paleomagnetic field. Here we present a paleo- and environmental magnetic record from an 8.6 m long oriented Kasten core (PS92/39-02) collected at 1464 m water depth on the Yermak Plateau (81.94°N 13.82°E). The density and magnetic susceptibility fit well into the regional stratigraphy and allow for correlation of different parameters with independently dated records. During AF demagnetization zones with a weak-medium gyro-remanence and/or spurious ARM acquisition were observed at fields above 70 mT, but in some instances above 50 mT, coinciding with shallow to positive inclination zones. Based on a gyro-cleaned record the initial paleomagnetic age model fits well into the regional constraints. The top of the core was assigned to be recent, the first observed excursion was assigned to Laschamp (ca. 41ka), the second to Norwegian-Greenland Sea (ca. 70-80 ka) and the top of the third to Blake (ca. 110 ka). With no excursions observed below Blake, the bottom of the sediment sequence was assumed to be younger than 180 ka (the age of the Iceland Basin/Pringle Falls excursion). We applied this basic age model to kARM/k (magnetic grain size proxy) and the resulting temporal trend is very similar to the global oxygen isotope record of ice volume. The waxing and waning of the Svalbard-Barent Sea Ice Sheet is the main control on terrigenous input to the Yermak Plateau and thus link d18O and magnetic grain-size. With records spanning more than 2-3 glacial cycles orbital tuning could further support our findings. Finally, we propose the use of magnetic grain-size (as of kARM/k) as an independent tuning mechanism for dating sediments from the Yermak Plateau.
Age of the Mono Lake excursion and associated tephra
Benson, L.; Liddicoat, J.; Smoot, J.; Sarna-Wojcicki, A.; Negrini, R.; Lund, S.
2003-01-01
The Mono Lake excursion (MLE) is an important time marker that has been found in lake and marine sediments across much of the Northern Hemisphere. Dating of this event at its type locality, the Mono Basin of California, has yielded controversial results with the most recent effort concluding that the MLE may actually be the Laschamp excursion (Earth Planet. Sci. Lett. 197 (2002) 151). We show that a volcanic tephra (Ash #15) that occurs near the midpoint of the MLE has a date (not corrected for reservoir effect) of 28,620 ?? 300 14C yr BP (??? 32,400 GISP2 yr BP) in the Pyramid Lake Basin of Nevada. Given the location of Ash #15 and the duration of the MLE in the Mono Basin, the event occurred between 31,500 and 33,300 GISP2 yr BP, an age range consistent with the position and age of the uppermost of two paleointensity minima in the NAPIS-75 stack that has been associated with the MLE (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009). The lower paleointensity minimum in the NAPIS-75 stack is considered to be the Laschamp excursion (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009).
NASA Astrophysics Data System (ADS)
Ménabréaz, Lucie; Thouveny, Nicolas; Bourlès, Didier; Demory, François
2010-05-01
Over millennial time scales, the atmospheric production of the cosmonuclid 10Be (half-life 1.387 ± 0.012 Ma [Shmeleff et al., 2009; Korschinek et al., 2009]) is modulated by the geomagnetic field strength, following a negative power law (e.g. Lal, 1988; Masarik and Beer, 2009). With respect to paleomagnetic reconstructions, 10Be-derived paleointensity records can therefore constitute an alternative, global and independent reading of the dipole moment variations. During the last years, efforts have been made to extract a geomagnetic signal from single and stacked 10Be records in natural archives such as ice and marine sediments (e.g. Carcaillet et al., 2004; Christl et al., 2007; Muscheler et al., 2005). In marine sediments, the 10Be concentration results from complex interplay of several processes: cosmogenic production, adsorption on sediment particles, redistribution by fluviatile and oceanic transport, and deposition. Therefore, a correction procedure is required to consider both sediment redistribution and enhanced scavenging, which can alter the primary signatures. To reconstruct the succession of field intensity lows accompanying excursions during the Brunhes chron, we investigated authigenic 10Be/9Be record of marine sequences also studied for paleomagnetism and oxygen isotopes. Mid and low latitude sites were preferred in order to benefit from the most efficient modulation by the magnetospheric shielding. We present a high resolution authigenic 10Be/9Be record of the last 50 ka recovered from the Portuguese Margin, that deciphers the cosmonuclide 10Be overproduction created by the geomagnetic dipole low associated with the Laschamp excursion. This record is compared to other proxy records of the geomagnetic field variations for the same time interval: (1) the relative paleointensity (RPI) reconstructed from the same sediments and the GLOPIS-75 record (Laj et al., 2004), (2) the absolute VDM record based on absolute paleointensities measured on lava flows, (3) the high-resolution deep sea floor magnetization record of the South East Pacific (Gee et al., 2000) and (4) other cosmogenic records obtained from different archives. A second normalization method using the 230Thxs (e.g. Frank et al., 1997) is presently applied on these samples and the results will allow establishing a cross evaluation and intercalibration. Two other marine sequences collected in the west-equatorial Pacific are also under investigation. These data and their combination to previous 10Be/9Be records will constitute the basis for the construction of a global marine 10Be-stack covering the whole Brunhes period and the numerous relevant excursions, as well as the Brunhes-Matuyama boundary. This study is funded through the "MAG-ORB" project ANR- 09-BLAN-0053-01.
NASA Astrophysics Data System (ADS)
Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.
2018-02-01
A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic marine sediments between 69°N and 81°N. Thus, the pronounced intensity minimum at 64.5 ka and described directional variations might be the effect of a weak geomagnetic field with a multi-polar geometry in the middle of MIS 4.
NASA Astrophysics Data System (ADS)
Panovska, Sanja; Constable, Catherine
2015-04-01
Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals. Currently reversals can only be detected after they have occurred. A baseline for the new index is established using modern and Holocene geomagnetic field data and models to analyze 'normal' variability. We extend our analyses to the 100 ka interval where several excursions have been identified. We discuss the diminished or absent signatures of excursions in some records, the apparent transgressive behavior of detected excursions, and implications for transitional field behavior. The absence of specific excursions in some sediment records is attributed to smoothing by the sedimentary remanence acquisition process and low sedimentation rates. Overall PSV activity index is inversely correlated with dipole moment, indicating stronger impacts of non-axial-dipole secular variations during periods of low axial dipole strength. Excursional events found with the PSV activity index are analyzed in the context of global probability density functions for VGP positions. We studied the appearance of VGP clusters of the excursions to find the common characteristics of these instabilities, including the non-axial dipole features of the geomagnetic field. A better understanding of geomagnetic excursions will aid attempts to predict when such events might occur in the future.
The Blake geomagnetic excursion recorded in a radiometrically dated speleothem
NASA Astrophysics Data System (ADS)
Osete, María-Luisa; Martín-Chivelet, Javier; Rossi, Carlos; Edwards, R. Lawrence; Egli, Ramon; Muñoz-García, M. Belén; Wang, Xianfeng; Pavón-Carrasco, F. Javier; Heller, Friedrich
2012-11-01
One of the most important developments in geomagnetism has been the recognition of polarity excursions of the Earth's magnetic field. Accurate timing of the excursions is a key point for understanding the geodynamo process and for magnetostratigraphic correlation. One of the best-known excursions is the Blake geomagnetic episode, which occurred during marine isotope stage MIS 5, but its morphology and age remain controversial. Here we show, for the first time, the Blake excursion recorded in a stalagmite which was dated using the uranium-series disequilibrium techniques. The characteristic remanent magnetisation is carried by fine-grained magnetite. The event is documented by two reversed intervals (B1 and B2). The age of the event is estimated to be between 116.5±0.7 kyr BP and 112.0±1.9 kyr BP, slightly younger (∼3-4 kyr) than recent estimations from sedimentary records dated by astronomical tuning. Low values of relative palaeointensity during the Blake episode are estimated, but a relative maximum in the palaeofield intensity coeval with the complete reversal during the B2 interval was observed. Duration of the Blake geomagnetic excursion is 4.5 kyr, two times lower than single excursions and slightly higher than the estimated diffusion time for the inner core (∼3 kyr).
NASA Astrophysics Data System (ADS)
Bourne, Mark; Mac Niocaill, Conall; Thomas, Alex L.; Knudsen, Mads Faurschou; Henderson, Gideon M.
2012-06-01
Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (∼125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (∼10 cm ka-1) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.
NASA Astrophysics Data System (ADS)
Kirana, Kartika Hajar; Bijaksana, Satria; King, John; Tamuntuan, Gerald Hendrik; Russell, James; Ngkoimani, La Ode; Dahrin, Darharta; Fajar, Silvia Jannatul
2018-02-01
Past changes in the Earth's magnetic field can be highlighted through reconstructions of magnetic paleointensity. Many magnetic field variation features are global, and can be used for the detailed correlation and dating of sedimentary records. On the other hand, sedimentary magnetic records also exhibit features on a regional, rather than a global scale. Therefore, the development of regional scale magnetic field reconstructions is necessary to optimize magnetic paleointensity dating. In this paper, a 60 thousand year (kyr) paleointensity record is presented, using the core TOW10-9B of Lake Towuti, located in the island of Sulawesi, Indonesia, as a part of the ongoing research towards understanding the Indonesian environmental history, and reconstructing a high-resolution regional magnetic record from dating the sediments. Located in the East Sulawesi Ophiolite Belt, the bedrock surrounding Lake Towuti consists of ultramafic rocks that render the lake sediments magnetically strong, creating challenges in the reconstruction of the paleointensity record. These sediment samples were subject to a series of magnetic measurements, followed by testing the obtained paleointensity records resulting from normalizing natural remanent magnetization (NRM) against different normalizing parameters. These paleointensity records were then compared to other regional, as well as global, records of magnetic paleointensity. The results show that for the magnetically strong Lake Towuti sediments, an anhysteretic remanent magnetization (ARM) is the best normalizer. A series of magnetic paleointensity excursions are observed during the last 60 kyr, including the Laschamp excursion at 40 kyr BP, that provide new information about the magnetic history and stratigraphy of the western tropical Pacific region. We conclude that the paleointensity record of Lake Towuti is reliable and in accordance with the high-quality regional and global trends.
An activity index for geomagnetic paleosecular variation, excursions, and reversals
NASA Astrophysics Data System (ADS)
Panovska, S.; Constable, C. G.
2017-04-01
Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, Pi, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, σPi, provides a measure of field stability through the temporal standard deviation of Pi. Pi can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, Pi ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by Pi exceeding 0.5. Strong field intensities are associated with low Pi unless they are accompanied by large deviations from axial dipole field directions. σPi provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of Pi for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.
An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia
Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.
1996-01-01
We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments.
NASA Astrophysics Data System (ADS)
Bourne, M.; Mac Niocaill, C.; Knudsen, M. F.; Thomas, A. L.; Henderson, G. M.
2012-04-01
A full picture of geomagnetic field behaviour during the Blake excursion is currently limited by a paucity of robust, high-resolution records of this ambiguous event. Some records seem to point towards a 'double-excursion' character whilst others fail to record the Blake excursion at all. We present here a high-resolution record of the Blake excursion obtained from Ocean Drilling Program (ODP) Site 1062 on the Blake Outer Ridge (ODP Leg 172). Palaeomagnetic measurements in three cores reveal a single excursional feature associated with a broad palaeointensity low, characterised by rapid transitions (less than 500 years) between a stable normal polarity and a fully-reversed, pseudo-stable polarity. A relatively high sedimentation rate (~10 cm kyr-1) allows the determination of transitional field behaviour during the excursion. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of 230Thxs concentrations in the sediment to assess variations in the sedimentation rates through the core sections of interest. This allows us to determine an age and duration for the two excursions with greater accuracy and known uncertainty. Our new age model gives an age of 127 ka for the midpoint of the Blake event at Site 1062. The age model also gives a duration for the directional excursion of 7.1±1.6 kyr. This duration is similar to that previously reported for the Iceland Basin Excursion (~185 ka) from the nearby Bermuda Rise (ODP Site 1063), which recorded a ~7-8 kyr event. Similarly, a high sedimentation rate (10-15 cm kyr-1) at this site allows a high-resolution reconstruction of the geomagnetic field behaviour during the Iceland Basin Excursion. The Site 1063 palaeomagnetic record suggests more complicated behaviour than that of the Blake excursion at Site 1062. Instead, transitional VGP paths are characterised by stop-and-go behaviour between VGP clusters that may be related to long-standing thermo-dynamic features of the core-mantle system. The long duration of fully reversed directions at the two sites is somewhat longer than that typically assumed for excursions and appears to suggest that there may be a degree of stability associated with the two excursional events. We will present a comparison of the geomagnetic field behaviour of the two excursions as recorded at these two sites.
Geomagnetic paleointensities from excursion sequences in lavas on Oahu, Hawaii
Coe, Robert S.; Gromme, Sherman; Mankinen, Edward A.
1984-01-01
Paleomagnetic data demonstrating three late Tertiary excursions in the direction of the geomagnetic field recorded in sequences of basaltic lavas on the island of Oahu, Hawaii were published by R. R. Doell and G. B. Dalrymple in 1973. We have determined geomagnetic paleointensities by the Thelliers' method for 14 lavas from the three sites. During these experiments, considerable difficulty was encountered because of the presence of titanomaghemite in many lavas and the contamination of natural remanent magnetization by lightning in many others. Moreover, we often observed the production of spurious high‐temperature chemical remanent magnetization during the Thellier experiments. An analysis of this particularly troublesome problem is presented. Two of the sites showed low paleointensities associated with angular departures of the paleomagnetic field direction from that of a geocentric axial dipole, which suggests that these excursions represent aborted reversals or fragments of reversals. At the third site, however, the paleointensity did not become low as the field diverged. This excursion may reflect the variation of a large nondipole source near Hawaii.
NASA Astrophysics Data System (ADS)
Marcaida, M.; Vazquez, J. A.; Calvert, A. T.; Miller, J. S.
2016-12-01
During late Pleistocene-Holocene time, repeated explosive and effusive eruptions of high-silica rhyolite magma south of Mono Lake, California, have produced a chain of massive domes known as the Mono Craters and a time-series of tephra deposits preserved in sediments of the Wilson Creek formation of ancestral Mono Lake. The record of late Holocene volcanism at Mono Craters is relatively well constrained by tephrostratigraphy and 14C dating, and the timing of late Pleistocene eruptions is similarly well constrained by tephrochronology and magnetostratigraphy of the Wilson Creek formation. However, the chronology of eruptions for the Mono Craters chain, comprising at least 28 individual domes, has thus far been based on age estimates from hydration rind dating of obsidian that is highly dependent on local calibration. We constrain the timing of late Pleistocene dome emplacement by linking independently dated Wilson Creek tephras to their dome equivalents in the Mono Craters using combined titanomagnetite geochemistry and U-Th geochronology. Ion microprobe 238U-230Th dating of unpolished allanite and zircon rims gives isochron dates of ca. 42 ka, ca. 38 ka, ca. 26 ka, and ca. 20 ka for domes 19, 24, 31 (newly recognized), and 11 of the Mono Craters, respectively. These domes are biotite-bearing rhyolites with titanomagnetites that are compositionally identical to those from several Wilson Creek tephras. Specifically, we correlate Ash 15, Ash 7, and Ash 3 of the Wilson Creek formation to domes 19, 31, and 11 of the Mono Craters, respectively, based on matching titanomagnetite compositions and indistinguishable U-Th ages. 40Ar/39Ar dating of single sanidines from domes 19 and 31 yield mean dates that are 10 k.y. older than their corresponding U-Th dates, likely due to excess argon from melt inclusions and/or incompletely re-equilibrated antecrysts. Based on our new U-Th isochron date of ca. 34 ka for allanite-zircon from Ash 8 pumice and the ca. 26-27 ka age of Ash 7 and its extrusive equivalent dome 31, we infer that the stratigraphic position of the ca. 32 ka Auckland/Mono Lake geomagnetic excursion, if recorded in beds of the Wilson Creek formation, is between Ashes 7 and 8. Accordingly, the prominent geomagnetic excursion bisected by Ash 15 lower in the section is the ca. 41 ka global Laschamp event.
Visual evidence of the Sterno-Etrussia geomagnetic excursion (~2700 BP)?
NASA Astrophysics Data System (ADS)
Raspopov, O. M.; Dergachev, V. A.; Goos'kova, E. G.; Morner, N.-A.
2003-04-01
In the Bible's Old Testament Book of Ezekiel there is a description of the Ezekiel's vision of "a great cloud with brightness round about it" to the north of the observation site. The event described in the Bible occurred in 593 BC, i.e., approximately 2600 years ago. Ezekiel was at that time approximately 100 km south of Babylon (latitude ~ 32 N, longitude ~ 45 E). Auroral specialists interpret the Ezekiel's vision as observation of coronal auroral displays at low latitudes. However, to support this hypothesis, it is necessary to understand the physical mechanism responsible for generation of these forms of auroras at low latitudes. Analysis of palaeo- and archaeomagnetic data, including our data on magnetic properties of sediments of the Barents and White Seas and the literature data, has shown that about 2700 BP, i.e., in Ezekiel's time, development of a geomagnetic "Sterno-Etrussia" excursion took place. The duration of the excursion during which the northern geomagnetic pole wandered to the Southern Hemisphere was no more than 200-300 years. Manifestations of this excursion were found in 16 regions of the Eurasian continent and adjacent seas and also in the North and South America. By plotting the path along which the northern geomagnetic pole wandered to the southern latitudes during this excursion on the basis of palaeomagnetic data, we have found that it wandered in the longitude sector plus or minus 30 degrees, and about 2700 BP the northern geomagnetic pole was at the longitude close to the Babylon longitude, where Ezekiel had his vision. Thus, at that time Babylon was at high geomagnetic latitudes where regular coronal auroral displays occur. Records of observation of the unusual brightness of the sky in the V-VI centuries BC can also be found in Greek chronicles. This indicates that the Ezekiel's vision was not the only observation of auroras at low latitudes during the period considered here. This work was supported by INTAS, Grant 97-31008 and PFBR, Grant 00-05-64921.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.; Conrad, Joy
1996-01-01
The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field intensity, and mean geomagnetic dipole power excursion and axial dipole reversal frequencies. We conclude that McLeod's Rule helps unify geo-paleomagnetism, correctly relates theoretically predictable statistical properties of the core geodynamo to magnetic observation, and provides a priori information required for stochastic inversion of paleo-, archeo-, and/or historical geomagnetic measurements.
Unexpected Southern Hemisphere ionospheric response to geomagnetic storm of 15 August 2015
NASA Astrophysics Data System (ADS)
Edemskiy, Ilya; Lastovicka, Jan; Buresova, Dalia; Bosco Habarulema, John; Nepomnyashchikh, Ivan
2018-01-01
Geomagnetic storms are the most pronounced phenomenon of space weather. When studying ionospheric response to a storm of 15 August 2015, an unexpected phenomenon was observed at higher middle latitudes of the Southern Hemisphere. This phenomenon was a localized total electron content (TEC) enhancement (LTE) in the form of two separated plumes, which peaked southward of South Africa. The plumes were first observed at 05:00 UT near the southwestern coast of Australia. The southern plume was associated with local time slightly after noontime (1-2 h after local noon). The plumes moved with the Sun. They peaked near 13:00 UT southward of South Africa. The southern plume kept constant geomagnetic latitude (63-64° S); it persisted for about 10 h, whereas the northern plume persisted for about 2 h more. Both plumes disappeared over the South Atlantic Ocean. No similar LTE event was observed during the prolonged solar activity minimum period of 2006-2009. In 2012-2016 we detected altogether 26 LTEs and all of them were associated with the southward excursion of Bz. The negative Bz excursion is a necessary but not sufficient condition for the LTE occurrence as during some geomagnetic storms associated with negative Bz excursions the LTE events did not appear.
NASA Astrophysics Data System (ADS)
Simon, Quentin; Bourlès, Didier L.; Thouveny, Nicolas; Horng, Chorng-Shern; Valet, Jean-Pierre; Bassinot, Franck; Choy, Sandrine
2018-01-01
Long-term variations of the geomagnetic dipole moment (GDM) during periods of stable polarity and in transitional states (reversals and excursions) provide key information for understanding the geodynamo regime. Following several studies dealing with the Brunhes chron and the Matuyama-Brunhes transition, this study presents a new authigenic 10Be/9Be ratio (Be-ratio) record obtained from the MD97-2143 core (western Pacific Ocean). This new Be-ratio series yields a record of GDM variations covering the early Brunhes and mid to late Matuyama time period (i.e. 700-2140 ka), independently from the relative paleointensity (RPI) record obtained from the same core, that can be compared with available RPI records and stacks. Stratigraphic offsets measured between the Be-ratio peaks and the corresponding RPI minima reach 2 to 14 cm. They can be assigned to (post-) detrital remanent magnetization (pDRM) effects leading to magnetization locking-in delays varying from 2 to 12 ka in the studied core. 10Be overproduction episodes triggered by geomagnetic dipole moment lows (GDL) linked to polarity reversals and excursions confirm the global control exerted by the GDM on cosmogenic radionuclides production. A dipole moment reconstruction derived from the Beryllium-10 (BeDiMo) was compiled and calibrated using absolute paleointensity data. This independent record complements the available paleomagnetic RPI records, permitting 1) to overcome the pDRM lock-in offsets induced below the mixing layer, 2) to confront and increase the robustness and precision of GDM reconstructions and, 3) to better constrain the chronology of geomagnetic field instabilities during the mid to late Matuyama chron. Our new 10Be derived inventory is fully compatible with the GDL series linked to geomagnetic polarity reversals and events (Matuyama-Brunhes transition, Jaramillo and Olduvai subchron boundaries, Cobb Mountain, Réunion) and it strengthens the occurrence of several excursions (Kamikatsura, Santa Rosa, Punaruu, Bjorn, Gilsa, Gardar) that were until now reported from only sparse locations.
NASA Astrophysics Data System (ADS)
Vazquez, J. A.; Lidzbarski, M. I.
2012-12-01
Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and interbedded rhyolitic tephras yield discordant 14C and 40Ar/39Ar results due to open-system effects, carbon reservoir uncertainties, as well as abundant xenocrysts entrained during eruption. Ion microprobe (SIMS) 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yields ages that effectively date eruption of key tephra beds and resolve age uncertainties about the Wilson Creek stratigraphy. To date the final several micrometers of crystal growth, individual allanite and zircon crystals were embedded in soft indium to allow sampling of unpolished rims. Isochron ages derived from rims on coexisting allanite and zircon (± glass) from hand-selected pumiceous pyroclasts delimit the timing of Wilson Creek sedimentation between Ashes 7 and 19 (numbering of Lajoie, 1968) to the interval between ca. 27 to ca. 62 ka. The interiors of individual allanite and zircon crystals sectioned in standard SIMS mounts yield model 238U-230Th ages that are mostly <10 k.y. older than their corresponding rim age, suggesting a relatively brief interval of allanite + zircon crystallization before eruption. A minority of allanite and zircon crystals yield rim and interior model ages of ca. 90-100 ka, and are likely to be antecrysts recycled from relatively early Mono Craters volcanism and/or intrusions. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields a rim isochron age of ca. 41 ka indicating that the recorded event is instead the Laschamp excursion. The results are consistent with a depositional chronology from correlation of relative paleointensity (Zimmerman et al., 2006) that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation. Moreover, the results demonstrate that high-spatial resolution SIMS dating of accessory mineral rims is an alternative and promising approach for resolving the depositional ages of silicic tephras containing minerals that crystallized over protracted intervals or that are plagued by incorporation of xenocrysts and/or antecrysts. References: Lajoie, K., 1968, PhD Dissertation, UC Berkeley; Zimmerman et al., 2006, EPSL 252: 94-106.
NASA Astrophysics Data System (ADS)
Muscheler, Raimund; Adolphi, Florian; Bronk Ramsey, Christopher; Rasmussen, Sune; Hughen, Konrad; Cooper, Alan; Turney, Chris
2017-04-01
The production rates of cosmogenic radionuclides (such as 10Be and 14C) are modulated by the solar and geomagnetic shielding of galactic cosmic rays. In addition, 14C and 10Be are influenced by the carbon cycle and the atmospheric transport and deposition, respectively. Isolating and identifying the common production signal allows us to synchronize ice core 10Be and tree ring 14C records during the Holocene (Adolphi and Muscheler, 2016), thereby connecting ice core climate records with 14C-dated records. Extending this comparison further back in time is challenging due to deteriorating quality of the 14C calibration record, IntCal13, (Reimer et al., 2013) and possible unidentified climate influences on the ice-core 10Be records. Nevertheless, by focusing on the most prominent production-rate features this comparison can be extended far back into the last glacial where, for example, the linkage of tree-ring based Kauri 14C data and the Greenland ice-core time scale (GICC05) suggested unresolved data and/or time scale differences around the period of the Laschamp geomagnetic field minimum at about 42000 yrs BP (Muscheler et al., 2014). Here we show that the data underlying the IntCal13 14C record and the ice-core 10Be records exhibit common variability that allows us to tentatively link the ice core GICC05 time scale to the radiocarbon time scale for almost the complete radiocarbon dating range. The observed time scale differences could be related to uncertainties in both the U/Th-based dating of the IntCal13 calibration data set and the GICC05 time scale, and we show that the two can be reconciled within the uncertainties of the ice-core layer counting. This direct comparison between IntCal13 and 10Be also suggests that the 14C differences shown in (Muscheler et al., 2014) around the Laschamp geomagnetic field minimum can be reduced by moderate adjustments to the GICC05 time scale. References: Adolphi, F., and Muscheler, R., 2016, Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene - Bayesian wiggle-matching of cosmogenic radionuclide records: Clim. Past. , v. 12, p. 15-30. Muscheler, R., Adolphi, F., and Svensson, A., 2014, Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum: Earth Planet. Sci. Lett., v. 394, p. 209-215. Reimer, P., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P., Guilderson, T. P., Haflidison, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013, IntCal13 AND Marine13 radiocarbon age calibration curves 0-50,000 years cal BP: Radiocarbon, v. 55, No. 4, p. 1869-1887.
NASA Astrophysics Data System (ADS)
Hambach, U.; Hark, M.; Zeeden, C.; Reddersen, B.; Zöller, L.; Fuchs, M.
2009-04-01
One of the youngest and worldwide documented geomagnetic excursions in the Brunhes Chron is the Mono Lake excursion (MLE). It has been detected in marine and terrestrial sedimentary archives as well as in lavas. Recent age determinations and age estimates for the MLE centre around an age interval of approximately 31 - 34 ka. Likewise the Laschamp excursion the MLE goes along with a distinct peak in cosmogenic radionuclides in ice cores and sedimentary archives. It provides therefore an additional geomagnetic time marker for various geoarchives to synchronise different climate archives. Here we report on a detailed record of the MLE from a loess site at Krems, Lower Austria. The site is situated on the southern slope of the Wachtberg hill in the vicinity of the old city centre of Krems. The archive comprises Middle to Upper Würmian (Late Pleistocene) loess in which an Upper Palaeolithic (Early Gravettian) cultural layer is embedded. The most spectacular finds are a double infant burial found in 2005 and a single burial discovered in 2006 (Einwögerer et al., 2006). Generally, archaeological findings show an extraordinarily good preservation due to embedding in rapidly sedimented loess (Händel et al., 2008). The about 10 m thick loess pile consists of calcareous sandy, coarse silt which is rich in mica indicating local sources. It is well stratified with brownish horizons representing embryonic soils pointing to incipient pedogenesis. Some of the pedo-horizons show occasionally indications of minor erosion and bedding-parallel sediment transport, but no linear erosional features. Pale greyish horizons are the result of partial gleying under permafrost conditions. No strong pedogenesis including decalcification and clay formation is present. The cultural layer is still covered by more than 5 m of loess, and dated by radiocarbon to ~27 ka 14C BP (Einwögerer et al., 2006). Below this layer up to 2.5 m of loess resting on Lower Pleistocene fluvial gravels are preserved. Thus, the loess section represents a palaeoclimatic record of alternating cold-dry and warm-humid conditions on millennial scale. Optical stimulated luminescence dating of aeolian loess around the cultural layer reveals ages of 30 to 32 ka which is supported by thermoluminesence dating of burnt loess from a hearth belonging to the archaeological living floor. In summer 2005 and 2006, two overlapping sections were continuously sampled in for palaeomagnetic investigations. The sampled sections are located outside the centre of the main archaeological occupation in the northwestern corner of the excavation pit. Sample spacing is strictly 2.1 cm, measured from centre to centre of the specimens. In total, 432 individually oriented specimens were recovered from the almost 8 m thick section. Magnetic susceptibility (MS) as function of depth resembles generally the lithology. Low MS-values represent pure unaltered or weakly gleyed loess, whereas higher values represent the enhancement of magnetic minerals caused by incipient soil formation. Anhysteretic remanent magnetisation (ARM) versus MS reveals an enhancement of super-paramagnetic particles where MS is increased. Consequently, the rock magnetic variations with depth can be taken as a palaeoclimatic record representing the climatic variations between drier and slightly more humid conditions at the transition from Middle to Upper Pleniglacial. Based on the ARM/MS record a correlation of the geoarchive at the Krems-Wachtberg site with the NORTH-GRIP isotopic record (NGRIP Members, 2004) and with sedimentological data from Maar-lake sediments of the Eifel area (ELSA; Schaber and Sirocko, 2005), Germany can be established. The general correlation suggests the dating of the loess at the excavation site to a time interval between approx. 20 to 40 ka, covering Greenland interstadials (GI) 2 to 8 and Heinrich Events 3 and 4 (top). The Gravettian living floor is assigned to the base of GI 5 and thus to an age of 32 to 33 ka. The directional palaeomagnetic record is of high quality and shows variations in the bandwidth of secular variation in the upper and in the lower part of the section, whereas in the central part shallow (? 30Ë ) and oversteep inclinations reveal the record of a geomagnetic excursion just above the find horizon. The shallow inclinations are preceded by and go along with westerly declinations, whereas the steep inclinations are preceded by easterly declinations. This directional pattern is similar to what was found at the Mono Lake in California (e.g. Liddicoat and Coe, 1979; Lund et al., 1988). A relative palaeointensity (RPI) record was constructed by using MS and ARM as normalisers. This record corresponds quite well to the GLOPIS (Laj et al., 2004) and thus provides additional dating. The peak of the directional excursion coincides with a relative minimum of RPI. The average RPI during the excursional interval, however, is significantly higher than during normal periods, contrary to what is usually reported. Furthermore, just before and after the directional excursion the highest values of RPI occur. The largest amplitude of the directional excursion does not correspond to the well defined minimum in RPI preceding this interval which is usually taken for the MLE in the marine RPI records. This offset between the RPI and the directional record may indicate the presence of strong non-dipole components and may also explain the blur in dating of the MLE. The calculated VGPs of the directional excursion lie over North America but do not correspond to the looping behaviour as reported from the Mono Lake VGPs itself (Liddicoat and Coe, 1979). The cultural layer at the Krems-Wachtberg site is located in the centre of the RPI minimum which is slightly older than the peak of the directional excursion. The radiocarbon ages from the cultural layer (~27 ka 14C age BP = ~32 ka calendric age calBP) fit well to the age estimates of the MLE at the Mono Lake based on radiocarbon dating and tephrochronology (31.5 - 33.3 ka; Benson et al., 2003). Furthermore, the recently published 40Ar/39Ar ages of one excursional group (Auckland cluster 1: 31.6 ± 1.8 ka) from the Auckland volcanic field, New Zealand correspond to the ages discussed above. Thus, the MLE is a perfect time marker occurring globally but is probably dominated by strong non-dipole components. Benson et al. (2003). Quaternary Science Reviews, 22,135-140; Cassata et al. (2008). Earth and Planetary Science Letters, 268, 76-88; Einwögerer et al. (2006). Nature, 444, 285; Händel et al. (in press). Quaternary International; Laj et al. (2004). Geophysical Monograph Series, 145, 255-265; Liddicoat and Coe (1979). Journal of Geophysical Research, 84, 261-271; Lund et al. (1988). Geophysical Research Letters,15,10, 1101-1104; North Greenland Ice Core Project Members (2004). Nature 431, 147-151; Schaber and Sirocko (2005). Mainzer geowiss. Mitt., 33, 295-340.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1979-01-01
A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.
A gaussian model for simulated geomagnetic field reversals
NASA Astrophysics Data System (ADS)
Wicht, Johannes; Meduri, Domenico G.
2016-10-01
Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.
NASA Astrophysics Data System (ADS)
Panaiotu, C. G.; Jicha, B. R.; Singer, B. S.; Ţugui, A.; Seghedi, I.; Panaiotu, A. G.; Necula, C.
2013-08-01
Quaternary volcanism in the Perşani Mountains forms an Na-alkali basaltic province inside the bend area of the Carpathians in the southeastern part of Europe. Previous K-Ar ages and paleomagnetic data reveal several transitional virtual geomagnetic poles, which were tentatively associated with the Cobb Mountain subchron and a Brunhes chron excursion. We report a new paleomagnetic and rock-magnetic study coupled with 40Ar/39Ar geochronology to better constrain the age of geomagnetic reversals or excursions that might be recorded and the timing of volcanism. Of the paleomagnetic directions obtained from sampled lava flows 4 are reversed polarity, 19 are normal polarity and 16 have transitional polarity. 40Ar/39Ar plateau ages determined from incremental heating experiments on groundmass indicate that two of the reversely magnetized lavas erupted at 1142 ± 41 and 800 ± 25 ka, four of the normally magnetized lavas erupted at 1060 ± 10, 1062 ± 24, 684 ± 21, and 683 ± 28 ka, and two transitionally magnetized lavas formed at 1221 ± 11 and 799 ± 21 ka. Both the new 40Ar/39Ar ages and the paleomagnetic data suggest at least five episodes of volcanic activity with the most active periods during the Jaramillo and Brunhes chrons. This results shows that the last phases of alkalic and calc-alkaline magmatism in the South-East Carpathians were contemporaneous. The age of the older transitionally magnetized lava flow is within error of recent unspiked K-Ar and astrochronologic ages for the reversal that defines the onset of the Cobb Mountain normal polarity subchron. The age of the younger transitional lava is similar to that of an excursion that preceded the Matuyama-Brunhes polarity reversal and which has come to be known as the Matuyama-Brunhes precursor. Omitting the excursion data, the dispersion of the virtual geomagnetic poles (around 19°) is larger than the expected value around 45°N from the global compilation, but closer to the value obtained only from the Time Averaged geomagnetic Field Initiative studies.
A Quaternary Geomagnetic Instability Time Scale
NASA Astrophysics Data System (ADS)
Singer, B. S.
2013-12-01
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals. I will address analytical issues, including the size and consistency of system blanks, that have led to the recognition of minor (1%) discrepencies between the 40Ar/39Ar age for a particular reversal or excursion and the best astrochronologic estimates from ODP sediment cores. For example, re-analysis of lava flows from Haleakala volcano, Maui that record in detail the Matuyama-Brunhes polarity reversal have been undertaken with blanks an order of magntitude smaller and more stable than was common a decade ago. Using the modern astrochronologic calibration of 28.201 Ma for the age of the Fish Canyon sanidine standard, results thus far yield an 40Ar/39Ar age of 772 × 11 ka for the reversal that is identical to the most precise and accurate astrochronologic age of 773 × 2 ka for this reversal from ODP cores. Similarly, new dating of sanidine in the Cerro Santa Rosa I rhyolite dome, New Mexico reveals an age of 932 × 5 ka for the excursion it records, in perfect agreement with astrochronologically dated ODP core records. Work underway aims at refining the 40Ar/39Ar ages that underpin the entire GITS by further eliminating the bias between the radioisotopic and astrochronologically determined ages for several reversals and excursions.
NASA Astrophysics Data System (ADS)
Kindley, C.; Macho, A.; Tsegaye, M. A.; Feinberg, J. M.; Singer, B. S.; Jicha, B. R.; Brown, M. C.; Birke, T. K.
2012-12-01
Characterization of the geomagnetic field during subchrons, reversals, and excursions is vital to understanding geodynamo processes and interactions across the core-mantle boundary. Moreover, an accurate timescale for geomagnetic field instabilities is critical to global high resolution stratigraphy. The Réunion subchron and Huckleberry Ridge excursion are ideal candidates for study due to globally distributed recordings in both sedimentary and igneous rocks. We present new full-vector paleomagnetic data for 30 basaltic flows from the Gamarri volcanic section in the Afar region of Ethiopia and 11 40Ar/39Ar ages. Paleointensities were calculated using the LTD-DHT Shaw technique and results generally agree with those of Carlut et al. (1999). Two geomagnetic instabilities are recorded, an older excursion and a younger period of normal polarity within the reversed Matuyama chron. Our results show a longer duration of low (<20 μT) paleointensity in the oldest flows and more variable low paleointensity values in the younger flows, and are generally lower than Thellier-style values of Carlut et al. (1999). Relative to 28.201 Ma Fish Canyon sanidine, plateau 40Ar/39Ar ages of the youngest (GB21) and oldest (GA02) flows are 2.029 ± 0.041 (2σ) and 2.410 ± 0.130 Ma, respectively. This eruptive duration is longer than that reported by Kidane et al. (1999), where the unspiked K-Ar method yields ages for GB23 (2 flows overlying GB21) and GA02 of 2.02 ± 0.08 (2σ) and 2.14 ± 0.12 Ma, respectively. 40Ar/39Ar ages of 4 lavas within the normal polarity zone in the upper section are between 2.063 ± 0.044 and 2.118 ± 0.057 Ma, but are indistinguishable at 2σ. These flows may sample the Huckleberry Ridge excursion (2.086 ± 0.016 Ma, Singer et al. 2004), the Réunion subchron (2.153-2.115 Ma, Channell et al. 2003), or both. Given several 40Ar/39Ar ages >2.2 Ma, the older excursion in the Gamarri section is not consistent with the Réunion subchron, and can be linked to any of several excursions occurring between ~2.2 and ~2.5 Ma. These excursions have been observed within records from ODP 982 (Channell & Guyodo, 2004) and IODP U1314 (Ohno et al., 2012), as well as within the GPTS as cryptochron C2r.2r-1 (originally dated as 2.420 to 2.441 Ma by Cande & Kent, 1995). Thus, we no longer interpret the excursion recorded in the lower portion of the Gamarri section to be part of the Réunion subchron and recommend that it be omitted from efforts to construct integrated global field models across the Huckleberry Ridge excursion and Réunion subchron.
NASA Astrophysics Data System (ADS)
Channell, J. E.
2013-12-01
Improving the resolution of Quaternary marine stratigraphy is one of the major challenges in paleoceanography. IODP Expedition 303/306, and ODP Legs 162 and 172, have yielded multiple high-resolution records (mean sedimentation rates in the 7-20 cm/kyr range) of relative paleointensity (RPI) that are accompanied by oxygen isotope data and extend through much of the Quaternary. Tandem fit of RPI and oxygen isotope data to calibrated templates (LR04 and PISO), using the Match protocol, yields largely consistent stratigraphies, implying that both RPI and oxygen isotope data are dominated by regional/global signals. Based on the recent geomagnetic field, RPI can be expected to be a global signal (i.e. dominated by the axial dipole field) when recorded at sedimentation rates less than several decimeters/kyr. Magnetic susceptibility, on the other hand, is a local/regional lithologic signal, and therefore less useful for long-distance correlation. Magnetic excursions are directional phenomena and, when adequately recorded, are manifest as paired reversals in which the virtual geomagnetic poles (VGPs) reach high latitudes in the opposite hemisphere, and they occupy minima in RPI records. Reversed VGPs imply that excursions are attributable to the main axial dipole, and therefore provide global stratigraphy. The so-called Iceland Basin excursion is recorded at many IODP/ODP sites and lies at the MIS 6/7 boundary at ~188 ka, with a duration of 2-3 kyr. Other excursions in the Brunhes chron are less commonly recorded because their duration (perhaps <~1 kyr) requires sedimentation rates >20 cm/kyr to be adequately recorded. On the other hand, several excursions within the Matuyama Chron are more commonly recorded in North Atlantic drift sediments due to relatively elevated durations. With some notable exceptions (e.g. Iberian Margin), high quality RPI records from North Atlantic sediments, together with magnetic excursions, can be used in tandem with oxygen isotope data to strengthen Quaternary (North Atlantic) stratigraphy.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1981-01-01
Revisions in the dates of reported geomagnetic excursions during the Brunhes Epoch are proposed in light of possible correlations between a section at Gioia Tauro, Italy, deep-sea cores, a core from Lake Biwa, Japan, and some lava flows. The anomalously long, double Blake Event reported at Gioia Tauro is here correlated with the Blake Event (approximately 110 kyr) and the Biwa 1 event (180 plus or minus 5 kyr); an hiatus may be present in the section between these two events. The alpha event at Gioia Tauro is correlated with the Biwa 2 event at about 295 kyr; the beta event with the 'Biwa 3' event at about 400 kyr; the gamma event with the Snake River event at 480 plus or minus 50; and the delta event, not recorded elsewhere, is estimated to have occurred at approximately 620 kyr. These proposed refinements in the age estimates of the excursions suggest an approximately 100 kyr cyclicity. If the events are real and the revised dating is correct, the timing of the geomagnetic events seems to coincide with times of peak eccentricity of the earth's orbit, suggesting a causal connection.
NASA Astrophysics Data System (ADS)
Richter, C.; Jensen, S. R.; Acton, G. D.; Evans, H. F.
2017-12-01
We present new paleomagnetic results from Quaternary sediment samples recovered during the Baffin Bay Scientific Coring Expedition conducted by the JOIDES Resolution in 2012. The expedition recovered well-preserved core material from the Arctic Basin, providing an outstanding opportunity for the study of the behavior of the geomagnetic field at high latitude. We analyzed material from 12 sites cored at latitudes between 74°45.32'N and 75°46.68'N in the Melville Bay region (Cape York and Melville Ridge) of Baffin Bay located at an average water depth of 394 m. The Quaternary glaciomarine sediments are up to 150 m thick and consist of very soft diatom-bearing muds to clast-rich sandy and muddy diamicts, which suggest deposition in a subglacial to ice-procimal environment. We carried out paleomagnetic and rock magnetic measurements on the shipboard cryogenic magnetometer at 5-cm resolution on 32 split-core sections and a selected number of discrete samples, and recently processed measurements taken at 1-cm resolution on eight U-channel samples from the uppermost Holocene part of the section. Stepwise demagnetization of the NRM demonstrates excellent demagnetization behavior, with a viscous isothermal remanent magnetization overprint, induced by the coring and sampling process, and typically removed by the 20 mT demagnetization step. The magnetic inclination data are characterized by steep, 80°, normal inclinations, consistent with the site position near the North Pole. Thermal demagnetization, magnetic susceptibility, isothermal remanent magnetization, and hysteresis parameters indicate that the primary magnetic carrier consists of a low-coercivity mineral, e.g., magnetite and/or titanomagnetite, with minor traces of higher-coercivity minerals. Well-developed geomagnetic excursions in the upper part of the section can be correlated between several sites. Although dating of these sediments remains a challenge because of the lack of carbonates we will discuss possible age models and use them to assign ages to the geomagnetic excursions.
Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns
NASA Astrophysics Data System (ADS)
Pan, Y.; Zhu, R.
2017-12-01
The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in strong solar irradiation, which is harmful to many organisms. Together, newly accumulated lines of evidence strongly indicate that the geomagnetic field and its variations have important impacts on life and its evolution. In this paper we will provide an overview of recent observations, progresses and perspectives in this subject.
Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany
NASA Astrophysics Data System (ADS)
Sirocko, Frank; Dietrich, Stephan; Veres, Daniel; Grootes, Pieter M.; Schaber-Mohr, Katja; Seelos, Klemens; Nadeau, Marie-Josée; Kromer, Bernd; Rothacker, Leo; Röhner, Marieke; Krbetschek, Matthias; Appleby, Peter; Hambach, Ulrich; Rolf, Christian; Sudo, Masafumi; Grim, Stephanie
2013-02-01
During the last twelve years the ELSA Project (Eifel Laminated Sediment Archive) at Mainz University has drilled a total of about 52 cores from 27 maar lakes and filled-in maar basins in the Eifel/Germany. Dating has been completed for the Holocene cores using 6 different methods (210Pb and 137Cs activities, palynostratigraphy, event markers, varve counting, 14C). In general, the different methods consistently complement one another within error margins. Event correlation was used for relating typical lithological changes with historically known events such as the two major Holocene flood events at 1342 AD and ca 800 BC. Dating of MIS2-MIS3 core sections is based on greyscale tuning, radiocarbon and OSL dating, magnetostratigraphy and tephrochronology. The lithological changes in the sediment cores demonstrate a sequence of events similar to the North Atlantic rapid climate variability of the Last Glacial Cycle. The warmest of the MIS3 interstadials was GI14, when a forest with abundant spruce covered the Eifel area from 55 to 48 ka BP, i.e. during a time when also other climate archives in Europe suggested very warm conditions. The forest of this "Early Stage 3 warm phase" developed subsequently into a steppe with scattered birch and pine, and finally into a glacial desert at around 25 ka BP. Evidence for Mono Lake and Laschamp geomagnetic excursions is found in two long cores. Several large eruptions during Middle and Late Pleistocene (Ulmener Maar - 11,000 varve years BP, Laacher See - 12,900 varve years BP, Mosenberg volcanoes/Meerfelder Maar 41-45 cal ka BP, Dümpel Maar 116 ka BP, Glees Maar - 151 ka BP) produced distinct ash-layers crucial for inter-core and inter-site correlations. The oldest investigated maar of the Eifel is 40Ar/39Ar dated to the time older than 520 ka BP.
NASA Astrophysics Data System (ADS)
Leonard, Graham S.; Calvert, Andrew T.; Hopkins, Jenni L.; Wilson, Colin J. N.; Smid, Elaine R.; Lindsay, Jan M.; Champion, Duane E.
2017-09-01
The Auckland Volcanic Field (AVF), which last erupted ca. 550 years ago, is a late Quaternary monogenetic basaltic volcanic field (ca. 500 km2) in the northern North Island of New Zealand. Prior to this study only 12 out of the 53 identified eruptive centres of the AVF had been reliably dated. Careful sample preparation and 40Ar/39Ar analysis has increased the number of well-dated centres in the AVF to 35. The high precision of the results is attributed to selection of fresh, non-vesicular, non-glassy samples from lava flow interiors. Sample selection was coupled with separation techniques that targeted only the groundmass of samples with < 5% glass and with groundmass feldspars > 10 μm wide, coupled with ten-increment furnace step-heating of large quantities (up to 200 mg) of material. The overall AVF age data indicate an onset at 193.2 ± 2.8 ka, an apparent six-eruption flare-up from 30 to 34 ka, and a ≤ 10 kyr hiatus between the latest and second-to-latest eruptions. Such non-uniformity shows that averaging the number of eruptions over the life-span of the AVF to yield a mean eruption rate is overly simplistic. Together with large variations in eruption volumes, and the large sizes and unusual chemistry within the latest eruptions (Rangitoto 1 and Rangitoto 2), our results illuminate a complex episodic eruption history. In particular, the rate of volcanism in AVF has increased since 60 ka, suggesting that the field is still in its infancy. Multiple centres with unusual paleomagnetic inclination and declination orientations are confirmed to fit into a number of geomagnetic excursions, with five identified in the Mono Lake, two within the Laschamp, one within the post-Blake or Blake, and two possibly within the Hilina Pali.
NASA Astrophysics Data System (ADS)
Peña, Rafael Maciel; Goguitchaichvili, Avto; Guilbaud, Marie-Noëlle; Martínez, Vicente Carlos Ruiz; Rathert, Manuel Calvo; Siebe, Claus; Reyes, Bertha Aguilar; Morales, Juan
2014-04-01
More than 350 oriented paleomagnetic cores were obtained for rock-magnetic and paleomagnetic analysis from radiometrically dated (40Ar-39Ar) magmatic rocks occurring in the southern segment (Jorullo and Tacámbaro areas) of the Michoacán-Guanajuato Volcanic Field in the Trans-Mexican Volcanic Belt. Most of the lavas (37) stem from monogenetic volcanoes dated at less than 4 Ma. Two additional sites were sampled from the plutonic basement dated at 33-30 Ma. Primary remanences carried by low-Ti titanomagnetites allowed to determining 34 reliable site-mean directions of mostly normal (27) but also reversed (7) polarities. The mean directions of these two populations are antipodal, and suggest neither major vertical-axis rotations with respect to the North America craton nor tilting in the region for the last 4 Ma (rotation and flattening of the inclination parameters being less than -5.9 ± 3.8 and 0.1 ± 3.9, respectively). The corresponding paleomagnetic pole obtained for Pliocene-Pleistocene times is PLAT = 83.4°, PLON = 2.4° (N = 32, A95 = 2.7°). Virtual geomagnetic poles also contribute to the time averaged field global database and to the paleosecular variation (PSV) investigations at low latitudes from lavas for the last 5 Ma, showing a geomagnetic dispersion value that is in agreement with available PSV models. When comparing the magnetic polarities and corresponding radiometric ages of the studied sites with the Cenozoic geomagnetic polarity time scale (GPTS), a good correlation is observable. This finding underscores the suitability of data obtained on lavas in Central Mexico for contributing to the GPTS. Furthermore, the detection of short-lived geomagnetic features seems possible, since the possible evidence of Intra-Jaramillo geomagnetic excursion could be documented for the first time in these volcanic rocks.
IODP Expedition 303 (North Atlantic): Excursions and Reversals in the Brunhes and Matuyama Chrons
NASA Astrophysics Data System (ADS)
Channell, J. E.; Mazaud, A.; Stoner, J. S.
2005-12-01
The primary objective of IODP Expedition 303 (Sept.-Nov., 2004) was to recover complete and continuous records of Pliocene-Quaternary millennial-scale environmental and geomagnetic variability, and place these records into high-resolution isotopic and magnetic stratigraphies (including relative paleointensity). Some of the Exp. 303 site locations (Orphan Knoll, Eirik and Gardar Drifts, and DSDP Site 609) have already been instrumental in developing marine records of suborbital climate variability for the last climate cycle, and the goal of Exp. 303 was to extend the records back through the Quaternary and into the Pliocene. High mean sedimentation rates (15-20 cm/ky) at sites located on Orphan Knoll (Site U1302/3), Eirik Drift (Sites U1305 and U1306) and Gardar Drift (Site U1304) have resulted in shipboard records of excursions and reversals in the Brunhes and Matuyama Chrons. Site U1308 (DSDP Site 609) has lower mean sedimentation rate (7.9 cm/kyr) and extends the record into the Gauss Chron to ~3.1 Ma. Initial u-channel magnetic data support the existence of a number of polarity excursions in the Matuyama Chron, but only a single polarity excursion (Iceland Basin Event) has so far been observed in the Brunhes Chron. The Matuyama-Brunhes (M-B) polarity reversal yields virtual geomagnetic polar (VGP) paths that are reminiscent of those recovered from the northern Gardar and Bjorn drifts during ODP Leg 162. VGP clusters in the South Atlantic and off NE Asia accompany a Pacific loop, in what appears to be a repetitive but complex pattern for the M-B transition recorded in 9 holes from three Exp. 303 North Atlantic sites.
The Formation of CIRs at Stream-Stream Interfaces and Resultant Geomagnetic Activity
NASA Technical Reports Server (NTRS)
Richardson, I. G.
2005-01-01
Corotating interaction regions (CIRs) are regions of compressed plasma formed at the leading edges of corotating high-speed solar wind streams originating in coronal holes as they interact with the preceding slow solar wind. Although particularly prominent features of the solar wind during the declining and minimum phases of the 11-year solar cycle, they may also be present at times of higher solar activity. We describe how CIRs are formed, and their geomagnetic effects, which principally result from brief southward interplanetary magnetic field excursions associated with Alfven waves. Seasonal and long-term variations in these effects are briefly discussed.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.
2017-12-01
Relative paleointensity (RPI) proxies have been used to improve the resolution of Quaternary stratigraphies, and have been matched to oxygen isotope stratigraphies over the last 2 Myrs. The archeomagnetic archive has been important for the Holocene RPI record, and the older Quaternary record has come largely from ODP/IODP and MD (Marion Dufresne - Calypso) marine cores. Beyond the range of archeomagnetic data, published RPI stacks have poor consistency in the 10-30 ka (latest Pleistocene) interval, possibly due to poor quality of ODP/IODP and MD cores in the upper few meters of the sedimentary sections. We report RPI data from a suite of conventional piston cores and Kasten cores from the SW Iberian margin collected during cruise JC089 of the RSS James Cook in August 2013. The age models were acquired by correlation of Ca/Ti XRF core-scanning data to L* reflectance from the Cariaco Basin that is tied to the Greenland ice-core chronology. Mean sedimentation rates are in the 10-20 cm/kyr range. The Holocene RPI record from these marine cores can be broadly correlated to the archeomagnetic RPI compilations. The preceding RPI data are characterized by a short-lived minimum at 13-15 ka, a high in RPI at 17-20 ka, preceded by a discontinuous RPI decrease to 40 ka at the time of the well-documented Laschamp geomagnetic excursion. A stack of 12 RPI records from the SW Iberian margin for the 0-45 ka interval are compared with 11 records from elsewhere, including marine and lake records from the Pacific and South Atlantic realms, chosen on the basis of mean sedimentation rates (>20 cm/kyr) and superior age models. The resulting stacks are very different to previously published RPI stacks, particularly for the 10-30 ka interval, and imply a global (dipole-field) high at 17-20 ka that has implications for the 190 ‰ drop in atmospheric 14C during the so-called "mystery interval" (17.5-14.5 ka).
Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)
NASA Astrophysics Data System (ADS)
Svensson, A.; Bigler, M.; Blunier, T.; Clausen, H. B.; Dahl-Jensen, D.; Fischer, H.; Fujita, S.; Goto-Azuma, K.; Johnsen, S. J.; Kawamura, K.; Kipfstuhl, S.; Kohno, M.; Parrenin, F.; Popp, T.; Rasmussen, S. O.; Schwander, J.; Seierstad, I.; Severi, M.; Steffensen, J. P.; Udisti, R.; Uemura, R.; Vallelonga, P.; Vinther, B. M.; Wegner, A.; Wilhelms, F.; Winstrup, M.
2013-03-01
The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho
Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.
2009-01-01
A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7) indicates varying degrees of post-depositional alteration between cold and warm substages, with greigite forming in fresher conditions and pyrite in the more saline conditions. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Goos'kova, E.; Volkova, Y.; Piskarev, A.; Morner, N.-A.; Abrahamsen, N.; Dergachev, V.; Raspopov, O.
2003-04-01
Palaeomagnetic characteristics of cores from three boreholes (AK-56, AK-87, AK-98) collected in the northern part of the Barents sea (79-80 N) during the expedition of the Research Vessel "Academician Karpinsky" in 1998 have been studied. The cores were taken from depths of 329, 377, and 473 m, respectively. In all three cores, changes in inclination from -80 to -150 degrees were observed at a depth of 110-130 cm (in 6-8 core samples), which suggests that this phenomenon can be attributed to a geomagnetic field excursion. Basing on dating of the lithologic Holocene-Pleistocene boundary, the sedimentation rate in this part of the Barents Sea can be estimated to be 5-7 cm/1000 years. In this case the age of the excursion is about 24 000 BP, i.e., it corresponds to the Mono Lake excursion. In the Barents Sea sediments, the manifestation of this excursion was revealed for the first time in the ACB-2 core taken in the central part of the sea. At a depth of 150-180 cm, all three cores (in 8-10 samples) were found to have a layer with abnormally high natural remanent magnetization (up to 6-11 nT with a mean value of 1.5 nT) and magnetic susceptibility (up to 1.0-1.7 x 10-3 SI with a mean value of 0.4 x 10-3 SI). Basing on lithological data, the time of formation of this layer can be estimated as approximately 30 000 - 35 000 BP. A reference layer at the depth corresponding to the Holocene-Pleistocene boundary with similar changes in magnetic susceptibility attributed to climate change was found in the cores taken from the central part of the Barents sea earlier. It is likely that sharp changes in magnetic properties of sediments in the northern part of the Barents Sea about 30 000 - 35 000 BP are also attributable to a sharp climate change (warming) during that period of time. This work was supported by INTAS, Grant 97-31008 and PFBR, Grant 00-05-64921.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Liebrecht, C.; Berthelier, J.-J.; Parrot, M.; Lebreton, J.-P.
2008-01-01
Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are presented that were gathered with probes on the DEMETER and DMSP satellites during geomagnetic storms. Data from successive orbits reveal how the density structure and irregularities evolve with changes in the Dst. The observations reveal that precisely during the main phase of severe geomagnetic storms, increased ambient plasma densities and broad regions of irregularities are observed at 700 km, initially at storm commencement near the magnetic equator and then extending to mid- and sub-auroral latitudes within the approximately 8 hour period corresponding to the negative Dst excursions. Furthermore, intense, broadband electric and magnetic field irregularities are often observed at sub-auroral latitudes and are typically associated with the trough region and its poleward plasma density gradient. The observations provide a general framework showing how low, mid, and sub-auroral latitude plasma density structuring and associated irregularities respond to geomagnetic storms.
Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr
NASA Astrophysics Data System (ADS)
Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.
2008-07-01
All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.
Camps; Prevot
1996-08-09
The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania K
Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bz
NASA Astrophysics Data System (ADS)
Lee, Y.; Kirkwood, S.; Kwak, Y. S.
2016-12-01
The EISCAT VHF incoherent scatter radar in Tromsö, Norway, makes occasional observations of electron densities and Polar Mesosphere Summer Echoes, in the summer polar D-region ionosphere. In one of those datasets, pulsating polar mesospheric summer echoes (PMSE) are observed, with periodicities in the ultra-low frequency (ULF) Pc5 band (1.6-6.7 mHz), following an abrupt increase of the radar reflectivity when a geomagnetic field excursion is started, in turn linked to dynamic pressure (Pdyn) enhancement in the solar wind. At the excursion of the magnetic field, at auroral altitudes of 90 km and above, electron density is abruptly enhanced, followed by a series of short-lived peaks, superimposed on an enhanced level. The short-lived peaks are likely a signature of transient Pc5 geomagnetic pulsations and associated energetic electron precipitation from pitch-angle scattering into the loss cone in the magnetosphere. At the same time, at altitudes around 80-90 km, a sharp increase of PMSE reflectivity occurs, 100 times greater than the increase of electron density, and is followed by pulsating PMSE reflectivity with periodicities in the Pc5 band, increasing and decreasing in magnitude during the course of the next hour. The increase of the pulsation magnitude may be attributed to an increase of high-energy electron precipitation flux ( >30 keV) penetrating to at least the height of maximum PMSE reflectivity. This study suggests that Pc5 pulsation bursts in both magnetic field and high energy electron precipitation could play a crucial role in producing PMSE fluctuations on minute-to-minute time scales.
Marine Magnetic Anomalies, Oceanic Crust Magnetization, and Geomagnetic Time Variations
NASA Astrophysics Data System (ADS)
Dyment, J.; Arkani-Hamed, J.
2005-12-01
Since the classic paper of Vine and Matthews (Nature, 1963), marine magnetic anomalies are commonly used to date the ocean floor through comparison with the geomagnetic polarity time scale and proper identification of reversal sequences. As a consequence, the classical model of rectangular prisms bearing a normal / reversed magnetization has been dominant in the literature for more than 40 years. Although the model explains major characteristics of the sea-surface magnetic anomalies, it is contradicted by (1) recent advances on the geophysical and petrologic structure of the slow-spreading oceanic crust, and (2) the observation of short-term geomagnetic time variations, both of which are more complex than assumed in the classical model. Marine magnetic anomalies may also provide information on the magnetization of the oceanic crust as well as short-term temporal fluctuations of the geomagnetic field. The "anomalous skewness", a residual phase once the anomalies have been reduced to the pole, has been interpreted either in terms of geomagnetic field variations or crustal structure. The spreading-rate dependence of anomalous skewness rules out the geomagnetic hypothesis and supports a spreading-rate dependent magnetic structure of the oceanic crust, with a basaltic layer accounting for most of the anomalies at fast spreading rates and an increasing contribution of the deeper layers with decreasing spreading rate. The slow cooling of the lower crust and uppermost mantle and serpentinization, a low temperature alteration process which produces magnetite, are the likely cause of this contribution, also required to account for satellite magnetic anomalies over oceanic areas. Moreover, the "hook shape" of some sea-surface anomalies favors a time lag in the magnetization acquisition processes between upper and lower magnetic layers: extrusive basalt acquires a thermoremanent magnetization as soon as emplaced, whereas the underlying peridotite and olivine gabbro cool slowly and pass through serpentinization to bear a significant magnetization. Our analysis of the amplitude of Anomaly 25 shows a sharp threshold at the spreading rate of 30 km/Ma, which corresponds to the transition between oceanic lithosphere built at axial domes and axial valleys. The twice lower amplitudes are in agreement with a much disrupted and altered basaltic layer at slow rates and a significant contribution from the deeper layers. Oceanic lithosphere created at fast and slow spreading rates therefore exhibits contrasted magnetic structures. High resolution magnetic anomaly measurements carried out with deep tows and submersibles show that the magmatic (fast spreading and parts of the slow spreading) crust is a good recorder of short-term geomagnetic time variations, such as short polarity intervals, excursions, or paleointensity variations. Surface and deep-sea magnetic anomalies therefore help to confirm or infirm geomagnetic findings obtained by other means. Many excursions and paleointensity variations within Brunhes and Matuyama periods are confirmed, but the "saw tooth pattern" inferred from sediment cores - a possible candidate to explain the anomalous skewness - is not, which suggests a bias in the sedimentary approach.
Domino model for geomagnetic field reversals.
Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M
2013-01-01
We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.
Gravitational dynamos and the low-frequency geomagnetic secular variation.
Olson, P
2007-12-18
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.
Gravitational dynamos and the low-frequency geomagnetic secular variation
Olson, P.
2007-01-01
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345
NASA Astrophysics Data System (ADS)
Stauning, Peter
2018-04-01
The Polar Cap (PC) indices were approved by the International Association for Geomagnetism and Aeronomy (IAGA) in 2013 and made available at the web portal http://pcindex.org holding prompt (real-time) as well as archival index values. The present note provides the first reported examination of the validity of the IAGA-endorsed method to generate real-time PC index values. It is demonstrated that features of the derivation procedure defined by Janzhura and Troshichev (2011) may cause considerable excursions in the real-time PC index values compared to the final index values. In examples based on occasional downloads of index values, the differences between real-time and final values of PC indices were found to exceed 3 mV m-1, which is a magnitude level that may indicate (or hide) strong magnetic storm activity.
Our Magnetic Planet (Arthur Holmes Medal Lecture)
NASA Astrophysics Data System (ADS)
Laj, Carlo
2015-04-01
It is a great honour to receive the Arthur Holmes Medal, certainly the highest scientific award of my life. My first thoughts and deep gratitude are with the people who have contributed to me being here today, from my PhD mentors, Pierre Berge and Pierre Pério, later Jacques Labeyrie, my colleagues and students and last, but not least, the members of the Committee on Education of EGU, with whom I have shared over 10 years of a wonderful educational activity. In this presentation, among the various scientific arguments in which I have been involved, I will recall only those mentioned in my letter of nomination to the Holmes Medal, trying to replace them in what was known at the time. After a PhD in Solid State Physics, working in a laboratory of the Commissariat à l'Énergie Atomique, I obtained a post doctoral research position for the the study of liquid binary critical fluids, and worked on this topics for 5 years. I then joined the Centre des Faibles Radioactivités, a CNRS-CEA Institute dedicated to the study of geological-environmental phenomena. My first task there has been to develop a paleomagnetic laboratory, dedicated to the study of Earth Sciences, through the study of the magnetic properties of sediments and igneous rocks. From there on, my entire scientific activity has been devoted to the study of our "Magnetic Planet". My first project in Geophysics dealt with the geodynamical evolution of the Aegean Arc. At the time, only a few paleomagnetic studies existed in the Mediterranean realm, and none in the Aegean region. Moreover all of them dealt with rather old geological formations, so that almost nothing was known about the recent post-cretaceous evolution. The originality of our study was to start from the most recent to the older formations, in order to precisely describe "retro-tectonically" the different phases of rotational deformation. This intensive study (over 700 sampling sites, over 10,000 samples spread over continental Greece, the Aegean and Turkey) allowed to show that the main post-cretaceous geodynamical evolution of the Aegean Realm is dominated since 30 My by two phases of rotational deformation in opposite sense around two poles: one just north of Albania for the western part, the second in the South Eastern Mediterranean for the eastern part. During the sampling of Mio-Pliocene marls in Crete, using a LETI portable magnetometer to the development of which I have participated, we sampled a geomagnetic reversal registered over about 50 cm of sediments. Interestingly, some intermediate directions were clearly apparent. This gave me the idea that the dynamical directional behaviour of the reversing field could be studied. At the time, only a very few and very incomplete similar records existed. For me, this has been the beginning of an extraordinary adventure still going on today. From the accumulation of data, first from Crete, then from other worldwide spread sites, it became apparent, as illustrated in a cover of Nature, that sedimentary reversal transition paths had a tendency to coincide with the seismically cold deep regions, suggesting that a lower mantle control existed over the reversing geodynamo. This idea, sometimes greeted with scepticism, has stimulated joint efforts to test it both from different disciplines and different experimental and theoretical approaches. It is fair to say that 25 years after it was proposed, our idea is still "on the table" and discussed. We then turned to the study of the changes of the geomagnetic field intensity, still inadequately described at the time. Because measurements of traditional small cubic samples was largely too time consuming to allow surveys of the amplitude we had in mind, I adapted the u-channel measurement techniques to small access pass-through cryogenic magnetometers, and suggested to W. Goree of 2G-Enterprises a modification of the standard pick-up coil geometry (called the Laj-system by the manufacturer) to allow high spatial resolution measurements. With this equipment we intensively worked on sedimentary sequences, focusing on those with high deposition rates. We successively constructed two paleointensity stacks, first NAPIS-75 (from cores in the North Atlantic), then a more global stack, GLOPIS-75. We could show that the main part of the fluctuations in 14C atmospheric concentration arises from changes in the geomagnetic dipole intensity modulating the flux of cosmic rays at the origin of the 14C production in the upper atmosphere. Finally, the GLOPIS record, augmented with volcanic data, has allowed a reconstruction of the absolute geomagnetic field intensity for the last 75 kyr with a unique precision in both the intensity and the age model. This reconstruction shows that the Laschamp and the Mono Lake excursions are two distinct events separated by a period of 7 kyr when the intensity recovered to almost non-transitional values. The present rate of decrease of the Earth dipole appears consistent with an impeding reversal or excursion, rather than with a simple fluctuation not related to a polarity change. Considered together with other results from different authors, this leads to the still unanswered question: are we witnessing the beginning of a polarity change of the geomagnetic field?
Geomagnetic dipole strength and reversal rate over the past two million years.
Valet, Jean-Pierre; Meynadier, Laure; Guyodo, Yohan
2005-06-09
Independent records of relative magnetic palaeointensity from sediment cores in different areas of the world can be stacked together to extract the evolution of the geomagnetic dipole moment and thus provide information regarding the processes governing the geodynamo. So far, this procedure has been limited to the past 800,000 years (800 kyr; ref. 3), which does not include any geomagnetic reversals. Here we present a composite curve that shows the evolution of the dipole moment during the past two million years. This reconstruction is in good agreement with the absolute dipole moments derived from volcanic lavas, which were used for calibration. We show that, at least during this period, the time-averaged field was higher during periods without reversals but the amplitude of the short-term oscillations remained the same. As a consequence, few intervals of very low intensity, and thus fewer instabilities, are expected during periods with a strong average dipole moment, whereas more excursions and reversals are expected during periods of weak field intensity. We also observe that the axial dipole begins to decay 60-80 kyr before reversals, but rebuilds itself in the opposite direction in only a few thousand years.
Hunting for eruption ages in accessory minerals
NASA Astrophysics Data System (ADS)
Vazquez, J. A.
2012-12-01
A primary goal in geochronology is to provide precise and accurate ages for tephras that serve as chronostratigraphic markers for constraining the timing and rates of volcanism, sedimentation, climate change, and catastrophic events in Earth history. Zircon remains the most versatile accessory mineral for dating silicic tephras due to its common preservation in distal pyroclastic deposits, as well as the robustness of its U-Pb and U-series systems even after host materials have been hydrothermally altered or weathered. Countless studies document that zircon may be complexly zoned in age due to inheritance, contamination, recycling of antecrysts, protracted crystallization in long-lived magma reservoirs, or any combination of these. Other accessory minerals such as allanite or chevkinite can retain similar records of protracted crystallization. If the goal is to date the durations of magmatic crystallization, differentiation, and/or magma residence, then these protracted chronologies within and between accessory minerals are a blessing. However, if the goal is to date the timing of eruption with high precision, i.e., absolute ages with millennial-scale uncertainties, then this age zoning is a curse. Observations from ion microprobe 238U-230Th dating of Pleistocene zircon and allanite provide insight into the record of near-eruption crystallization in accessory minerals and serve as a guide for high-precision whole-crystal dating. Although imprecise relative to conventional techniques, ion probe analysis allows high-spatial resolution 238U-230Th dating that can document multi-millennial age distributions at the crystal scale. Analysis of unpolished rims and continuous depth profiling of zircon from small and large volume eruptions (e.g., Coso, Mono Craters, Yellowstone) reveals that the final several micrometers of crystallization often yield ages that are indistinguishable from associated eruption ages from the 40Ar/39Ar or (U-Th)/He methods. Using this approach, we have derived relatively precise (± ~ 5%, 2σ) U-Th isochron ages from the unpolished rims of pumice-derived allanite and zircon from late Pleistocene Wilson Creek Formation tephras in eastern California, whose ages are controversial and have been difficult to resolve via 40Ar/39Ar and radiocarbon dating. Allanite and zircon rims from Ashes 7-19 in the lower portion of Wilson Creek sediments yield stratigraphically consistent ages of ca. 27 ka to ca. 62 ka, with a minority of crystals identifiable as xenocrysts from early Mono Craters rhyolites. Model ages for the interiors of allanite crystals are mostly < 10 k.y. older than their rims. Tephra deposited during the geomagnetic excursion debated to be either the Mono Lake or Laschamp event yields a rim isochron age of ca. 41 ka. This age is indistinguishable from an independent age of 41 ka derived at the latter excursion's type locality in France (Singer et al., 2009) as well as from age-models for deep-sea sediments. The results are in excellent agreement with a previously determined chronology derived from magnetostratigraphy (Zimmerman et al., 2006). Refs: Singer et al., 2009, EPSL 286: 80-88; Zimmerman et al., 2006, EPSL 252: 94-106
NASA Astrophysics Data System (ADS)
Kodama, K. P.
2017-12-01
The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a primary depositional origin for the excursion, and strengthens the argument for oxidation of the world ocean in the Ediacaran. Future work must learn how global climate is encoded by rock magnetics, but our work to date suggests that variations in continental run-off are detected by rock magnetics.
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Bats respond to very weak magnetic fields.
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
NASA Astrophysics Data System (ADS)
Heil, C. W., Jr.; Stoner, J. S.; St-Onge, G.; King, J. W.
2015-12-01
The paucity of paleomagnetic records from the western South Atlantic Ocean presents a significant gap in our understanding of the spatial variations in geomagnetic field dynamics as they relate to the occurrence of geomagnetic excursions and changes in field strength. As such, high quality records from this region can help build upon Holocene observations and extend the geographic and temporal data coverage for spherical harmonic models. To that end, we present paleomagnetic directional (inclination) and strength (relative paleointensity) records from two cores from the Argentine Basin (RC11-49 and RC16-88). Although the cores were collected more than 40 years ago, the sediments appear to hold a stable remanence and reliable magnetic directions, as evidenced by their reproducibility between the two cores that are separated by ~25 km. The records show evidence of 4 excursional features in the uppermost 16-m of the sediments from the basin. A comparison of the relative paleointensity records from these cores to the South Atlantic Paleointensity Stack (SAPIS) (Stoner et al., 2002) and the relative paleointensity record from ODP Site 1089 (Stoner et al., 2003) indicate that the sediments reliably record relative changes in geomagnetic field intensity and suggests that the longest record (RC11-49) spans the last ~125 kyrs. Our results indicate that the sediments of the Argentine Basin are an important sedimentary archive of geomagnetic field behavior and strength at least through the Holocene and Late Pleistocene and highlight the need for further studies of cores within the basin.
NASA Astrophysics Data System (ADS)
King, J. W.; Heil, C.; O'Regan, M.; Moran, K.; Gattacecca, J.; Backman, J.; Jakobsson, M.; Moore, T.
2005-12-01
Two major conclusions can be drawn from magnetic studies of Pleistocene sediments drilled on Lomonosov Ridge, central Arctic Ocean during IODP Leg 302. The first conclusion is that central Arctic Ocean sedimentation rates approach 2 cm/ka during the Pleistocene, thereby resolving the Arctic sedimentation rate controversy in favor of "fast" rates. The second conclusion is that abundant broad intervals of reversed polarity during the Pleistocene are a consistent characteristic of Arctic sedimentary records. These broad reversed intervals have helped perpetuate the Arctic sedimentation rate controversy. The weight of evidence strongly indicates that these reversal intervals are excursions. They do not occur during the late Brunhes Epoch (approximately 0-250,000 BP), but occur during the mid to lower Brunhes Epoch and persist into the upper Matuyama Epoch. We observe a strong correlation between rock magnetic variations, color changes, and physical property stratigraphy and these excursions. The model for Arctic sedimentation indicates that the excursions primarily occur during "interglacial" intervals. Previous high quality paleomagnetic studies of Bermuda Rise sediments have shown that approximately 85 % of Brunhes age excursions occur during interglacial periods (Lund, et al., 2001). In addition, similar excursions do not appear to occur at high southern latitudes (e.g. Acton, et al., 2002). For these reasons, we feel that hypotheses that attribute the interesting observed Arctic paleomagnetic behavior to environmental controls (e.g. sedimentation processes) are favored over those involving geomagnetic field behavior within the tangent cylinder. Acton, G. D., Guyodo, Y., and S. A. Brachfeld, 2002. Magnetostratigraphy of sediment drifts on the continental rise of West Antarctica (ODP Leg 178, Sites 1095, 1096, and 1101). In Barker, P. F., Camerlenghi, A., Acton, G. D., and Ramsay, A.T.S (Eds.), Proc. ODP Sci. Results, v. 178; 1-61 (CD ROM). Lund, S. P., G. D. Acton, B. Clement, M. Okada, and T. Williams. 2001. Brunhes chron magnetics excursions recovered from Leg 172 sediments. In Keigwin, L. D., Rio, D., Acton, G. D., and Arnold, E., (eds.) Proc. ODP Sci. Results, v. 172; p. 1-18 (Online)
Climatology of Neutral vertical winds in the midlatitude thermosphere
NASA Astrophysics Data System (ADS)
Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.
2017-12-01
More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.
Rosenbaum, Joseph; Reynolds, Richard T.; Smoot, Joseph; Meyer, Robert
2000-01-01
At Owens Lake, California, paleomagnetic data document the Matuyama/Brunhes polarity boundary near the bottom of a 323-m core (OL-92) and display numerous directional fluctuations throughout the Brunhes chron. Many of the intervals of high directional dispersion were previously interpreted to record magnetic excursions. For the upper ~120 m, these interpretations were tested using the anisotropy of magnetic susceptibility (AMS), which typically defines a subhorizontal planar fabric for sediments deposited in quiet water. AMS data from intervals of deformed core, determined from detailed analysis of sedimentary structures, were compared to a reference AMS fabric derived from undisturbed sediment. This comparison shows that changes in the AMS fabric provide a means of screening core samples for deformation and the associated paleomagnetic record for the adverse effects of distortion. For that portion of core OL-92 studied here (about the upper 120 m), the combined analyses of sedimentary structures and AMS data demonstrate that most of the paleomagnetic features, previously interpreted as geomagnetic excursions, are likely the result of core deformation.
NASA Astrophysics Data System (ADS)
Nishitani, N.; Hori, T.; Kataoka, R.; Ebihara, Y.; Shiokawa, K.; Otsuka, Y.; Suzuki, H.; Yoshikawa, A.
2016-12-01
The SuperDARN HOkkaido Pair of (HOP) radars, consisting of the Hokkaido East (2006-) and West (2014-) radars, are the SuperDARN radars located at the lowest geomagnetic latitude (36.5 degrees), and have been continuously measuring ionospheric convection at high to subauroral and middle latitudes with high temporal resolutions (<= 1 to 2 mins). These radars enable us to study the two-dimensional evolution of ionospheric convection ever 1 or 2 minutes. In this paper we study two low latitude aurora events observed in Hokkaido, Japan from 15 to 19 UT on March 17, 2015 and from 1900 to 2030 UT on December 20, 2015, identified using optical instruments such as all-sky CCD camera, wide field of view digital camera and meridian scanning photometer. Both events occurred during the main phase of the relatively large geomagnetic storms with minimum Dst of -223 nT and -170 nT respectively. The ionospheric convection at mid-latitude regions associated with the low-latitude auroral emission is characterized by (1) transient equatorward flows up to about 500 m/s in the initial phase of the emission (the geomagnetic field data at Paratunka, Far East Russia show corresponding negative excursions), and (2) sheared flow structure consisting of westward flow (about 500 m/s) equatorward of eastward flow (1000 m/s), with the equatorward boundary of auroral emission embedded in the westward flow region which expanded up to below 50 deg geomagnetic latitude. These observations imply that the electric field / convection distribution plays important roles in continuously generating the low latitude auroral emission. In particular the observation of the equatorward flow (dawn-dusk electric field) up to as low as about 50 deg geomagnetic latitude is the direct evidence for the presence of electric field to drive ring current particles into the plasmaspheric regions.
NASA Astrophysics Data System (ADS)
Acton, G. D.; Clement, B. M.; Lund, S. P.; Okada, M.; Williams, T.
2003-04-01
With the advent of the Hydraulic Piston Corer at the end of the Deep Sea Drilling Program and its enhanced successor, the Advanced Piston Corer (APC), developed by the Ocean Drilling Program (ODP), coring through thick (>100 m), rapidly deposited sequences of unconsolidated to partially consolidated sediments with near 100% recovery has become common place. Although much of the emphasis for site selection has been based on paleoceanographic objectives, the impact to the field of paleomagnetism has been dramatic, both in the instruments used to analyze the large quantity of core recovered and in the questions that can be answered concerning geomagnetic field behavior and paleoenvironmental conditions. The largest change has come in the construction of relative paleointensity records, which have provided previously unimagined details about how the geomagnetic field varies in strength during stable polarity intervals as well as during reversals and excursions. These records have allowed more realistic models of the geomagnetic field to be developed while also providing a new chronologic tool for high-resolution dating and global correlation of geomagnetic events. Studies of how the paleomagnetic direction varies through time have not advanced as rapidly and have instead mainly been focused on short time intervals across a few geomagnetic reversals. It should, however, be possible to construct and compare secular variation records with millennial or better resolution that span the past one million years from sites around the world as correlation and chronologies between sites improve. We will give an overview that focuses on secular variation records that are being constructed from sediment drifts drilled in the western North Atlantic during ODP Leg 172. Our results will be used to address questions concerning what percent of time the geomagnetic field is in a stable state versus transitional or excursional states, what the relationship is between directional variability and relative paleointensity, which secular variation features are global and which are local, what is the origin of local directional changes, and how climate and rock magnetic changes influence the paleomagnetic signal.
Ezekiel's vision: Visual evidence of Sterno-Etrussia geomagnetic excursion?
NASA Astrophysics Data System (ADS)
Raspopov, Oleg M.; Dergachev, Valentin A.; Goos'kova, Elena G.
In the Eos article,“Ezekiel and the Northern Lights: Biblical Aurora Seems Plausible” (16 April 2002), Siscoe et al. presented arguments showing that coronal auroras can occur at low latitudes under the condition of increased geomagnetic dipole field strength. From this standpoint, they give an interpretation of the “reported” Ezekiel's vision (the Bible's Book of Ezekiel in the Old Testament). The site of the Ezekiel's vision was about 100 km south of Babylon (latitude ˜32° N, longitude ˜5°E), and the date of the vision was around 593 B.C. Auroral specialists believe that Ezekiel's vision was inspired by a very strong magnetic storm accompanied by coronal auroras at low latitudes. However, as justly noted by Siscoe et al. [2002],to adopt this interpretation, several questions should be answered. Can auroras be seen at the latitude where Ezekiel reportedly was? More important, can they reach a coronal stage of development, which is what the vision requires? Was the tilt of the dipole axis favorable? Was the general level of solar activity favorable? The principal question is, no doubt, the second one.
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Jicha, B.
2017-12-01
New paleomagnetic measurements, coupled with 40Ar/39Ar dating are revolutionizing our understanding of the geodynamo by providing terrestrial lava records of the short-term behavior of the paleofield. As part of an investigation of the Koolau volcano, Oahu, and the short-term behavior of the geomagnetic field, we have sampled the exposed flows of a long volcanic section (i.e. 191-m) located on the volcano's southwest collapsed flank at a locality known as Makapuu Point. Paleomagnetic and K-Ar investigations of the Koolau Volcanic Series have revealed excursional directions for lavas ranging from 2-3 Ma. The easy access and close geographical proximity to the K-Ar dated lava flows made this newly studied 191-m thick sequence of flows an excellent candidate for detailed paleomagnetic analysis. At least 10 samples, collected from each of the successive sites, were stepwise demagnetized by both a.f. (5-100 mT) and thermal (28 to 700 °C) methods. Mean directions were obtained by p.c. analysis. All samples yielded a strong and stable ChRM vector demagnetization diagrams based on 7 or more demagnetization steps, with thermal and a.f. results differing insignificantly. k-T analysis conducted on individual lava flows indicated 50% with reversible curves. Curie points from these analyses revealed a temperature close to or equal to 150-250oC, 575°C and 620oC, indicative of Ti-poor and Ti-rich magnetite as well as titanomaghemite ranging from single domain to pseudosingle domain grain sizes. The mean directions of the base of the section sampled up to ˜14m of the section are excursional ( 10 flows). We have also conducted absolute paleointensity (PI) determinations of the excursional flows using the Thellier-Coe protocol yielding PI values as low as 19 mT and up to 88 mT within the excursional zone of the record. 40Ar/39Ar incremental heating experiments on the groundmass from at least one flow site at 9-m from sea level that yields a plateau with an age of 2.60±0.13 Ma, suggesting that the excursion corresponds to the Porcupine excursion (ca. 2737 ka) reported by Channell et al., (2016). This is the first terrestrial record of the Porcupine excursion and the age is 2-3% younger than in the reported timescale. The obtained VGPs are located over the northeastern part of Asia, close to the artic Circle and as far south as the East China Sea.
NASA Astrophysics Data System (ADS)
Pupim, Fabiano do N.; Sawakushi, André O.; Hartmann, Gelvam A.; Savian, Jairo F.; Kern, Andrea K.; Mineli, Thays D.; Cruz, Francisco W.; Almeida, Renato P.; Grohmann, Carlos H.; Ribas, Camila C.; d'Horta, Fernando M.; Bertassoli, Dailson J.; Marconato, André; Nogueira, Luciana; Lohmann, Lúcia G.
2017-04-01
The shift from a large wetland dominated by avulsive channels and flooded forests to the incised transcontinental Amazon River valley (Várzea) bounded by non-flooded forests (Terra Firme) is suggested as one of the main drivers of diversification of the mega diverse Amazonian Biota. Nonetheless, there is no consensus about the timing of this landscape shift, with the current literature suggesting a period that ranges from the Miocene (11 Ma) and the Late Pleistocene (100 ka). This uncertainty may be due to a lack of absolute ages for the sediments forming Terra Firme forest substrates in western Amazonian lowlands. In Brazil, the Içá Formation represents the uppermost fluvial deposits of Terra Firme forests substrates in western Amazonia. Therefore, a reliable chronology for the last depositional stage of the Içá Formation is key for an improved understanding of the formation of the current Terra Firme-Várzea system. Four sediment profiles were sampled along the margins of the Solimões and Içá rivers for Optically Stimulated Luminescence (OSL) dating, geomagnetic excursions, and palynological analysis. OSL dating was performed in twelve samples using a Single Aliquot Regeneration (SAR) protocol in quartz sand grains. The equivalent doses ranged from 47 to 130 Gy (Central Age Model) and the dose rate values ranged from 0.4 to 2.0 Gy/ka. The resulting sediment burial ages range from 48 to 112 ka. Paleomagnetic data were obtained from samples collected at same profiles sampled for OSL dating and results suggest the presence of Post-Blake geomagnetic excursion ( 100 ka). The age of 100 ka for Post-Blake excursion are adopted for the Geomagnetic Instability Time Scale. Pollen assemblage data show a similarity to a more modern flora and the presence of Alnus clearly points towards Pleistocene deposition as it is unknown before in South America. The combined OSL, paleomagnetism and pollen data is a robust geochronological dataset that indicates Late Pleistocene ages for the last stage of built up of the Terra Firme in a broad region of the western Brazilian Amazonian lowlands. Therefore, the present-day unconformity between Terra Firme and Várzea deposits were formed by fluvial incision during the late Pleistocene and Holocene, which seems to be related with precipitation changes in the South American monsoon system. Our geochronological dataset point to important landscape changes during the late Pleistocene, with expansion of non-flooded Terra Firme and retraction of Várzea floodplain forests. This transition probably had important implications for the development of modern phylogeographical and biogeographical patterns in western Amazonia during the Quaternary. Future efforts will focus on dating drill-core sediment records using cosmogenic nuclides to extend the age range. Financial support: FAPESP 2009/53988-8, 2012/50260-6, 2014/23334-4, 2014/09800-2, 2016/09293-9; 2016/02656-9; CNPq 3009223/2014-8, 307647/2015-3; NSF DEB 1241066 and NASA.
NASA Astrophysics Data System (ADS)
Liu, Jiabo; Nowaczyk, Norbert R.; Frank, Ute; Arz, Helge W.
2018-06-01
A comprehensive magnetostratigraphic investigation on sixteen sediment cores from the southeastern Black Sea yielded a very detailed high-quality paleosecular variation (PSV) record spanning from 20 to 15 ka. The age models are based on radiocarbon dating, stratigraphic correlation, and tephrochronology. Further age constraints were obtained by correlating four meltwater events, described from the western Black Sea, ranging in age from about 17 to 15 ka, with maxima in K/Ti ratios, obtained from X-ray fluorescence (XRF) scanning, and minima in S-ratios, reflecting increased hematite content, in the studied cores. Since the sedimentation rates in the investigated time window are up to 50 cm ka-1, the obtained PSVs records enabled a stacking using 50-yr bins. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in relative paleointensity (rPI), is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60°N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean.
On the unique structure of the magnetic fields of Uranus and Neptune
NASA Technical Reports Server (NTRS)
Dolginov, Sh. SH.
1993-01-01
The magnetic fields of Uranus and Neptune, which have comparable dipole, quadrupole, and octupole harmonics, are unique in the present-day solar system, but they resemble the geomagnetic field at the epochs of excursions and reversals known from paleomagnetic data. The precession dynamo model, in which the dominant role in the generation of the planetary magnetic fields is played by external gravitational forces, allows us to propose two scenarios for the formation of the unique topology of the magnetic fields of Uranus and Neptune. In the first case, tidal flows in the 'oceans' of these two planets extend down to the depths where the matter has a noticeable electric conductivity and velocity. A hydromagnetic interaction of the moving conducting fluid with the planetary magnetic field outside the generation region results in the deformation of the field and the deceleration of the motion under the action of the radial magnetic field. In the second case, the deformation of the field facilitates drastic changes in cyclonic cells within the generation region causing instabilities that result in a multi-polar field structure, excursions, and inversions. This paper considers this problem in greater detail by using the Neptune-Triton system as an example.
Are U-channels measurements appropriate for reversal or excursion records ?
NASA Astrophysics Data System (ADS)
Philippe, E. G. H.; Valet, J. P.
2017-12-01
Sampling of sediment cores by U-channel plastic tubes is a very successful technique that allows to perform measurements of the magnetic remanence and demagnetization of long sections of sediment. This approach made possible the acquisition of detailed records of paleosecular variation, geomagnetic polarity and relative paleointensity over the past million years and yielded significant advances in our knowledge of the geomagnetic field changes. The major pitfall is that the resolution of the signal which is imposed by the deposition rate of the sediment is also attenuated by the response curve of the magnetic sensors used for measurements. This is not so critical to document the dipole field changes, but may have a significant impact to recover fast field changes typical of the non-dipole field that prevail during reversals and excursions. We have investigated possible consequences by comparing 150 successive individual directions of 1 cm side successive single samples with the measurement of the 1.5m equivalent U-channel obtained by placing the same samples adjacent to each other. We compared different transition lengths and generated transitional directions that produce records with similar characteristics as those derived from volcanic records of reversals with a magnetization intensity dropping to 5% of the full polarity value during the transition. The results show that even with transitional intervals as long as 30 cm and therefore associated with deposition rates as high as 10 cm/ka the U-channels considerably smooth all variations with significant consequences on the VGP paths that become more constrained in longitude. Despite little similarity with the global structure of the transition, the U-channels fail to reproduce the complexity of the transitional period. The transitional VGPs never duplicate the variations of the non-dipole field even within several centimeters and generate artificial clusters or periods of apparent fast changes. We are currently testing whether deconvolution techniques can recover the original directions.
NASA Astrophysics Data System (ADS)
Thouveny, N.
2006-12-01
Paleomagnetic directions, relative paleointensities (RPI) and authigenic 10Be/9Be ratio were measured along sedimentary clayey-carbonate sequences in high accumulation rate sites of the Portuguese margin (0-400 ka BP) and West-Equatorial Pacific (600-1300 ka BP. Series of high and low RPI features are placed on the chronological scale using C-14 ages, using correlations with of delta O-18 records with the Greenland ice cores and SPECMAP records, and using the ages of polarity reversals. During the time intervals of dramatically low RPI anomalous paleodirections document excursions or polarity reversals. Significant peaks of the authigenic 10Be/9Be ratio point in stratigraphic layers recording all low RPI phases. Plotted against RPI data the 10Be/9Be ratios statistically follow the expected power law (Elsasser et al. ,1958 and Lal, 1988), which strongly establishes the unique and direct link between the recorded cosmogenic enhancement and dipole moment loss, allowing us to univocally interpret our 10Be/9Be ratio and RPI records in terms of geomagnetic dipole moment lows and highs (DML and DMH) alternation. delta O-18 records of the same cores (e.g. Abreu et al. 2004), provide the frame to interpret dipole moment variations in a paleoclimatic context within strict stratigraphic terms. We note that most DML of the last 400 ka fall in the end of interglacial stages, while DMH are rather related with full glacials. We then confirm this coincidence, though whithout strict stratigraphic control, by comparing the SINT-800 curve (Guyodo and Valet, 1999) and the S. E. Pacific near Sea Floor mag. record (Gee et al., 2000), with the highest resolution 18O record yet available (Bassinot et al. 1994). Complex Wavelet analyses using modulus and phase reveal that the geomagnetic moment proxy records contain a maximum power for periods between 30 and 100 ka. DML do not occur in any fixed eccentricity context, but several DML fall at the time of obliquity minima. The comparison of phases of the SINT-800 and Indian Ocean 18O records, at the 100 ka period, indicates that the ice volume fluctuations lead the geomagnetic moment fluctuations. These observations shed the light on mechanical couplings via Earth's rotation rate and/or orbital changes : 1) Alternations of ice accretion/melting at high and mid-latitude may have resulted in acceleration/deceleration of the Earth's rotation (Doake, 1977), although the mass of the 130 m equivalent sea level only represents 7 ppm of the Earth mass. However, acceleration/braking effects generated by tides friction on large/reduced continental platform at low/high sea level conditions (in glacial/interglacial conditions resp.)may have contribute. A coupling between Earth's rotation and geomagnetic regime was suggested for the 20th century (Courtillot and Le Mouel, 1984; Jing, 1992). An alternative - or complementary- explanation can be envisaged: lots of DML occured at the time of low obliquity, i.e. at the time of low angle precession, (rejoining Fuller's (2006)observation and re-introducing the long standing debate about possible forcing by astronomical precession on the geodynamo (Malkus, 1963,1968, Rochester, 1976). It has to be emphasized that because deglaciation are explained by maximum summer insolation of the Northern hemisphere (i.e. at high obliquity), dipole lows occurring at low obliquity, would logically lagg the deglaciation by obliquity period (20.5 ka), and thus occur near the end of interglacials.
Extreme EEJ and Topside Ionospheric Response to the 22-23 June 2015 Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Zakharenkova, I.; Alken, P.; Coisson, P.
2016-12-01
In this work, we study the ionospheric and thermospheric response to the intense geomagnetic storm of 22-23 June 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the 2nd strongest geomagnetic storm in the current 24th solar cycle. The storm started with the arrival of a coronal mass ejection at 18:37UT on 22 June 2015. The interplanetary magnetic field (IMF) Bz component changed polarity several times during this storm. Consequently, the interplanetary electric field Ey component repeated this oscillatory behavior, and varied from -15 to +20 mV/m, which is comparable with storm-time levels. Data from multiple ground-based and space-borne instruments showed that both positive and negative ionospheric storms occurred during this storm at middle and low latitudes on both day and night sides. To study the drivers of the observed ionospheric effects, we further analyze variations of thermospheric parameters (neutral mass density and thermospheric O/N2 ratio), as well as the equatorial electrojet (EEJ) data as retrieved from magnetic measurements onboard Swarm satellites. One of the most interesting features of the June 2015 storm is observation of extremely high EEJ values (both eastward and westward), that correlate with variations of the IEF Ey. We find that the storm-time penetration electric fields were, most likely, the main driver of the observed ionospheric effects at the initial phase of the storm, and at the beginning of the main phase. At the end of the main phase, the thermospheric composition changes seemed to contribute as well.
NASA Astrophysics Data System (ADS)
Raposo, M. I. B.; Canon-Tapia, E.; Guimarães, L. F.; Janasi, V. A.
2015-12-01
The magmatism in the LIP Paraná-Etendeka comprises basic and acid rocks. On the Paraná side, these rocks are basalt tholeiitic with high (>2%) and low TiO2 content, and dacites, rhyodacites, rhyolites and quartz latites forming the acid types Chapecó and Palmas. The volcanic acid Palmas are found in the South part of Brazil, and based on TiO2 and P2O5 contents are subdivided into Caxias do Sul, Santa Maria, Anita Garibaldi, Jacuí, Clevelândia and Barros Cassal units. In the studied region, the first stratigraphic sequence is low TiO2 basalt followed by Caxias do Sul, Barros Cassal and Santa Maria on top. We sampled all these units in the Gramado Xavier (Rio Grande do Sul State, South Brazil) region. To determine the mean magnetization directions of each site, samples were demagnetized by both thermal and AF techniques. The results show that the basalt flows recorded both normal and reverse polarities of the geomagnetic field. All sites from Caxias do Sul registered an anomalous direction suggesting an excursion of the geomagnetic field. Sites from Barros Cassal present both normal and reverse polarities. All sites from Santa Maria unit show a reverse polarity of the geomagnetic field. The normal and reverse polarities recorded in the different units are similar indicating contemporaneity of the magmatic source. Due to the existence of only one reversal event, a short duration of volcanism is suspected.
Response of ionospheric electric fields at mid-low latitudes during sudden commencements
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.
2015-06-01
Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.
NASA Astrophysics Data System (ADS)
Sahai, Y.; Fagundes, P. R.; de Jesus, R.; de Abreu, A. J.; Crowley, G.; Pillat, V. G.; Guarnieri, F. L.; Abalde, J. R.; Bittencourt, J. A.
2009-12-01
Ionospheric storms are closely associated with geomagnetic storms and are an extreme example of space weather events. The response of the ionosphere to storms is rather complicated. In the present investigation, we have studied the response of the ionospheric F-region in the Latin American sector during the intense geomagnetic storm of 21-22 January 2005 (with storm sudden commencement (SSC) at 1712 UT on 21 January). This geomagnetic storm is anomalous (minimum Dst reached -105 nT at 0700 UT on 22 January) because the main phase occurred during the northward excursion of the Bz component of interplanetary magnetic fields (IMFs). The monthly mean F10.7 solar flux for the month of January 2005 was 99.0 sfu. The ionospheric F-region parameters observed at Ramey (18.5 N, 67.1 W; RAM), Puerto Rico, Jicamarca (12.0 S, 76.8 W; JIC), Peru, Manaus (2.9 S, 60.0 W; MAN), and São José dos Campos (23.2 S, 45.9 W; SJC), Brazil, during 21-22 January (geomagnetically disturbed) and 25 January (geomagnetically quiet) have been analyzed. Both JIC and MAN, the equatorial stations, show unusually rapid uplifting of the F-region peak heights(hpF2/hmF2) and a decrease in the NmF2 coincident with the time of SSC. At both RAM and SJC an uplifting of the F-region peak height is observed at about 2000 UT. The low-latitude station SJC shows a coincident decrease in NmF2 with the uplifting, whereas the mid-latitude station RAM shows a decrease in NmF2 earlier than the uplifting. Also, the observed variations in the F-region ionospheric parameters are compared with the TIMEGCM model run for 21-22 January and the model results show both similarities and differences from the observed results. Average GPS-TEC (21-22 and 25 January) and phase fluctuations (21, 22, 25, 26 January) observed at Belem (1.5 S, 48.5 W; BELE), Brasilia (15.9 S, 47.9 W; BRAZ), Presidente Prudente (22.3o S, 51.4 W; UEPP), and Porto Alegre (30.1 S, 51.1 W; POAL), Brazil, are also presented. These GPS stations belong to the RBMC/IBGE network of Brazil. Few hours after the onset of the storm, large enhancements in VTEC between 2000 and 2400 UT on 21 January was observed at all the stations. However, the increase in VTEC was greater at the near equatorial station and enhancements in VTEC decreased with latitude. No phase fluctuations were observed during the pre-reversal time during the geomagnetic disturbance (21 January).
NASA Astrophysics Data System (ADS)
Sahai, Y.; Fagundes, P. R.; de Jesus, R.; de Abreu, A. J.; Crowley, G.; Kikuchi, T.; Huang, C.-S.; Pillat, V. G.; Guarnieri, F. L.; Abalde, J. R.; Bittencourt, J. A.
2011-05-01
In the present investigation, we have studied the response of the ionospheric F-region in the Latin American sector during the intense geomagnetic storm of 21-22 January 2005. This geomagnetic storm has been considered "anomalous" (minimum Dst reached -105 nT at 07:00 UT on 22 January) because the main storm phase occurred during the northward excursion of the Bz component of interplanetary magnetic fields (IMFs). The monthly mean F10.7 solar flux for the month of January 2005 was 99.0 sfu. The F-region parameters observed by ionosondes at Ramey (RAM; 18.5° N, 67.1° W), Puerto Rico, Jicamarca (JIC; 12.0° S, 76.8° W), Peru, Manaus (MAN; 2.9° S, 60.0° W), and São José dos Campos (SJC; 23.2° S, 45.9° W), Brazil, during 21-22 January (geomagnetically disturbed) and 25 January (geomagnetically quiet) have been analyzed. Both JIC and MAN, the equatorial stations, show unusually rapid uplifting of the F-region peak heights (hpF2/hmF2) and a decrease in the NmF2 coincident with the time of storm sudden commencement (SSC). The observed variations in the F-region ionospheric parameters are compared with the TIMEGCM model run for 21-22 January and the model results show both similarities and differences from the observed results. Average GPS-TEC (21, 22 and 25 January) and phase fluctuations (21, 22, 25, 26 January) observed at Belem (BELE; 1.5° S, 48.5° W), Brasilia (BRAZ; 15.9° S, 47.9° W), Presidente Prudente (UEPP; 22.3° S, 51.4° W), and Porto Alegre (POAL; 30.1° S, 51.1° W), Brazil, are also presented. These GPS stations belong to the RBMC/IBGE network of Brazil. A few hours after the onset of the storm, large enhancements in the VTEC and NmF2 between about 20:00 and 24:00 UT on 21 January were observed at all the stations. However, the increase in VTEC was greatest at the near equatorial station (BELE) and enhancements in VTEC decreased with latitude. It should be pointed out that no phase fluctuations or spread-F were observed in the Latin American sector during the post-sunset pre-reversal time in the geomagnetic disturbance (21 January). The disturbance dynamo electric field possibly resulted in downward drift of the F-region plasma and inhibited the formation of spread-F.
On Geomagnetism and Paleomagnetism
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1998-01-01
A statistical description of Earth's broad scale, core-source magnetic field has been developed and tested. The description features an expected, or mean, spatial magnetic power spectrum that is neither "flat" nor "while" at any depth, but is akin to spectra advanced by Stevenson and McLeod. This multipole spectrum describes the magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Natural variations of core multipole powers about their mean values are to be expected over geologic time and are described via trial probability distribution functions that neither require nor prohibit magnetic isotropy. The description is thus applicable to core-source dipole and low degree non-dipole fields despite axial dipole anisotropy. The description is combined with main field models of modem satellite and surface geomagnetic measurements to make testable predictions of: (1) the radius of Earth's core, (2) mean paleomagnetic field intensity, and (3) the mean rates and durations of both dipole power excursions and durable axial dipole reversals. The predicted core radius is 0.7% above the 3480 km seismologic value. The predicted root mean square paleointensity (35.6 mu T) and mean Virtual Axial Dipole Moment (about 6.2 lx 1022 Am(exp 2)) are within the range of various mean paleointensity estimates. The predicted mean rate of dipole power excursions, as defined by an absolute dipole moment <20% of the 1980 value, is 9.04/Myr and 14% less than obtained by analysis of a 4 Myr paleointensity record. The predicted mean rate of durable axial dipole reversals (2.26/Myr) is 2.3% more than established by the polarity time-scale for the past 84 Myr. The predicted mean duration of axial dipole reversals (5533 yr) is indistinguishable from an observational value. The accuracy of these predictions demonstrates the power and utility of the description, which is thought to merit further development and testing. It is suggested that strong stable stratification of Earth's uppermost outer core leads to a geologically long interval of no dipole reversals and a very nearly axisymmetric field outside the core. Statistical descriptions of other planetary magnetic fields are outlined.
NASA Astrophysics Data System (ADS)
Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger
2000-08-01
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.
NASA Astrophysics Data System (ADS)
Hayashida, Akira; Ali, Mohammed; Kuniko, Yoshiki; Kitagawa, Hiroyuki; Torii, Masayuki; Takemura, Keiji
2007-07-01
We have conducted paleomagnetic and environmental magnetic analysis of a sediment piston core recovered from Lake Biwa, central Japan. Tephrochronology and AMS radiocarbon dating showed that this core covers the time period since about 40 kyr BP. The variation of paleomagnetic direction shows a good agreement with the PSV record for the last 10 kyrs from the deeper water site (BIWA SV-3; Ali et al., 1999), although the amplitudes are subdued probably due to the relatively lower accumulation rate at the shallower site. Inclination lows of the pre-Holocene interval are correlated to PSV records reported from the marine sediments off Shikoku and in the Japan Sea. In addition, the variation of magnetic mineral concentration reflects environmental changes during the last glacial period. It is suggested that the flux of fine-grained magnetite, probably associated with greater precipitation, was increased during interstadial periods. The variation of anhysteretic remanent magnetization is likely correlated to the Dansgaard-Oeschger (D-O) cycles recorded in Greenland ice cores. An apparent swing of the PSV curve is recognized at about 27 ka, but evidence for the Mono Lake excursion at 32 ka around the D-O events 6 and 7 is unclear. Combination of the detailed paleomagnetic record and the sub-Milankovitch climate cycles thus provides better resolution for understanding geomagnetic secular variation and polarity excursions in space and time.
NASA Astrophysics Data System (ADS)
Salcher, Bernhard C.; Frank-Fellner, Christa; Lomax, Johanna; Preusser, Frank; Ottner, Franz; Scholger, Robert; Wagreich, Michael
2017-10-01
Tectonic basins can represent valuable archives of the environmental history. Presented here are the stratigraphy and multi-proxy analyses of two adjacent alluvial fans in the Quaternary active parts of the Vienna Basin, situated at the interface of the Atlantic, European continental and Mediterranean climate. Deposits comprise a sequence of coarse-grained fluvial deposits intercalated by laterally extensive horizons of pedogenically altered fine sediments. To establish palaeoenvironmental reconstructions, fine-grained sequences from a drill core and outcrop data were analysed according to its malacofauna, palaeopedology, susceptibility and sedimentology. The chronological framework is provided by 38 luminescence ages and supported by geomagnetic polarity investigations. Distinct warm periods each associated with a geomagnetic excursion, are recorded in three pedocomplexes formed during the Last Interglacial and two earlier interglacial periods, indicted to correlate with Marine Isotope Stage (MIS) 9 and MIS 11, respectively. Environmental conditions during the early last glacial period (MIS 5, c. 100-70 ka) are reconstructed from mollusc-shell rich overbank fines deposited along a former channel belt, covered by massive sheetflood deposits during MIS 2. Analysed warm phases suggest strong variations in humidity, ranging from steppe to forest dominated environments. The study presents one of the few numerically dated Middle Pleistocene multi-proxy records and one of the most comprehensive malacological datasets covering the early phases of last glacial period of continental Europe.
NASA Astrophysics Data System (ADS)
Escobar Wolf, R. P.; Diehl, J. F.; Rose, W. I.; Singer, B. S.
2005-12-01
Paleomagnetic directions determined from oriented block samples collected by Rose et al. in 1977 ( Journal of Geology) and from eight paleomagnetic sites drilled in lava flows from Santa Maria volcano, Guatemala in 1990 define a pattern of variation similar to the pattern of geomagnetic field changes recorded by the sediments of the Wilson Creek Formation near Mono Lake, California. This led Conway et al. in 1994 ( Journal of Geology) to suggest that these flows had recorded the Mono Lake Excursion (MLE). The correlation was made on pattern recognition alone and relied almost entirely the well- defined inclination dataset than on the declination data; no radioisotopic ages were available. In March of 2005 we returned to the crater of Santa Mariá and drilled 23 lava flows from the original sections of Rose et al; block samples for 40Ar/39Ar were also collected. Unfortunately aggradation in the crater due to mass wasting made it impossible to sample all the flows of Rose et al. At each site or lava flow, four to seven cores were drilled and oriented with a sun compass. Samples cut from the drilled cores were magnetically cleaned using alternation field demagnetization and analyzed using principle component analysis. Thermal demagnetization is currently underway. The resulting inclination waveform (over 70° of change from +60° to -12°) is very similar to those previously reported in the literature for the MLE, but the declination waveform shows little variation (<25°; mean declination is 13.4°) throughout the stratigraphic sequence that we collected. Consequently, VGP data from the lava flows do not show the classic clockwise and counterclockwise loops as seen at the Wilson Creek section and at other MLE locations. Instead the directions (VGPs) tend to cluster in three distinct groups with the lowermost lava flows (5) and uppermost lava flows (3) clustering near the expected axial dipole inclination for the region (~28 °) while lava flows from the middle of the stratigraphic section have inclinations near zero (+8 ° to -12°). The transition between the low-inclination middle section and the upper section is marked by flows with inclinations up to +60°. This is also seen in the Conway data set. Preliminary 40Ar/39Ar dates from lava flows having near zero inclinations suggest an age of 20 ka. Therefore the possibility exists that the Santa Maria lava flows have recorded the Hilina Pali Excursion (HPE). In fact the magnitude of the inclination change recorded in the Santa Maria lava flows is very similar to that recorded by the lava flows from the Hawaiian Scientific Drilling Project. This suggests that the HPE is at least a regional geomagnetic event and may be useful as a tool for stratigraphic correlation. However, paleointensity data is needed before any firm conclusions can be drawn.
NASA Astrophysics Data System (ADS)
Oda, Hirokuni; Xuan, Chuang
2014-10-01
development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1976-01-01
A perturbation analysis, allowing for temperature and opacity feedbacks, is developed to calculate depletions in the O3 abundance and reductions of stratospheric solar heating that result from increases in NOx concentration. A pair of perturbation coefficients give the reduction in O3 and temperature through the stratosphere for a specified NOx increase. This type of analysis illustrates the tendency for various levels to self-heal when a perturbation occurs. Physical arguments indicate that the expected sign of the climatic effect is correct, with colder surface temperatures produced by reduced magnetic shielding. In addition, four qualitative reasons are suggested for thinking that significant ozone reductions by cosmic ray influxes will lead to an increased terrestrial albedo from stratospheric condensation. In this view, long-term (approximately 10,000 years) climatic changes have resulted from secular geomagnetic variations while shorter (approximately 100 years) excursions are related to changes in solar activity.
Paleomagnetic dates of hominid remains from Yuanmou, China, and other Asian sites.
Hyodo, Masayuki; Nakaya, Hideo; Urabe, Atsushi; Saegusa, Haruo; Shunrong, Xue; Jiyun, Yin; Xuepin, Ji
2002-07-01
Two hominid upper central incisors found in the Yuanmou Basin in southwest China in 1965 have affinities with Homo erectus fossils from Zhoukoudian, but exhibit primitive features. The Yuanmou hominid remains are alleged to be coeval with or older than African specimens dated at about 1.8 m.y.a. Recent age refinements of geomagnetic short reversal events and excursions permit assigning the Yuanmou hominid-bearing bed to the early Brunhes chron (about 0.7 m.y.a.). Magnetochronological assessments confirm that the Lantian calotte which has been dated to about 1.2 m.y.a., is the oldest reliable evidence for the emergence of Homo in eastern Asia as well as China, and that hominid fossils from Sangiran and Mojokerto, Java, do not exceed 1.1 Ma in age. These results refute the view that the genus Homo migrated into eastern Asia in the late Pliocene or the earliest Pleistocene. Copyright 2002 Elsevier Science Ltd. All rights reserved.
Le Mouël, Jean-Louis; Allègre, Claude J.; Narteau, Clément
1997-01-01
A scaling law approach is used to simulate the dynamo process of the Earth’s core. The model is made of embedded turbulent domains of increasing dimensions, until the largest whose size is comparable with the site of the core, pervaded by large-scale magnetic fields. Left-handed or right-handed cyclones appear at the lowest scale, the scale of the elementary domains of the hierarchical model, and disappear. These elementary domains then behave like electromotor generators with opposite polarities depending on whether they contain a left-handed or a right-handed cyclone. To transfer the behavior of the elementary domains to larger ones, a dynamic renormalization approach is used. A simple rule is adopted to determine whether a domain of scale l is a generator—and what its polarity is—in function of the state of the (l − 1) domains it is made of. This mechanism is used as the main ingredient of a kinematic dynamo model, which displays polarity intervals, excursions, and reversals of the geomagnetic field. PMID:11038547
Benson, Larry; Smoot, J.P.; Lund, S.P.; Mensing, S.A.; Foit, F.F.; Rye, R.O.
2013-01-01
A synthesis of old and new paleoclimatic data from the Pyramid and Winnemucca lake basins indicates that, between 48.0 and 11.5·103 calibrated years BP (hereafter ka), the climate of the western Great Basin was, to a degree, linked with the climate of the North Atlantic. Paleomagnetic secular variation (PSV) records from Pyramid Lake core PLC08-1 were tied to the GISP2 ice-core record via PSV matches to North Atlantic sediment cores whose isotopic and(or) carbonate records could be linked to the GISP2 δ18O record. Relatively dry intervals in the western Great Basin were associated with cold Heinrich events and relatively wet intervals were associated with warm Dansgaard-Oeschger (DO) oscillations. The association of western Great Basin dry events with North Atlantic cold events (and vice versa) switched sometime after the Laurentide Ice Sheet (LIS) reached its maximum extent. For example, the Lahontan highstand, which culminated at 15.5 ka, and a period of elevated lake level between 13.1 and 11.7 ka were associated with cold North Atlantic conditions, the latter period with the Youngest Dryas event. Relatively dry periods were associated with the Bølling and Allerød warm events. A large percentage of the LIS may have been lost to the North Atlantic during Heinrich events 1 and 2 and may have resulted in the repositioning of the Polar Jet Stream over North America. The Trego Hot Springs, Wono, Carson Sink, and Marble Bluff tephras found in core PLC08-1 have been assigned GISP2 calendar ages of respectively, 29.9, 33.7, 34.1, and 43.2 ka. Given its unique trace-element chemistry, the Carson Sink Bed is the same as Wilson Creek Ash 15 in the Mono Lake Basin. This implies that the Mono Lake magnetic excursion occurred at approximately 34 ka and it is not the Laschamp magnetic excursion. The entrance of the First Americans into the northern Great Basin is dated to approximately 14.4 ka, a time when the climate was relatively dry. Evidence for human occupation of the Great Basin is lacking for the next 1100 years (y); i.e., the oldest western stemmed point site in the Great Basin dates to 13.3 ka. Two hypotheses are suggested for this cultural hiatus: (1) the climate had deteriorated to the point that people vacated the Great Basin, or (2) people moved to basin-bottom wetlands that persisted during the dry period, and then the subsequent Younger Dryas wet event erased the archaeological evidence deposited around the low-elevation wetland sites.
Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico)
NASA Astrophysics Data System (ADS)
Rodríguez Ceja, M.; Goguitchaichvili, A.; Calvo-Rathert, M.; Morales-Contreras, J.; Alva-Valdivia, L.; Rosas Elguera, J.; Urrutia Fucugauchi, J.; Delgado Granados, H.
2006-10-01
This paper presents new paleomagnetic results from 24 independent cooling units in Tequila area (western Trans-Mexican Volcanic Belt). These units were recently dated by means of state-of-the-art 40Ar-39Ar method (Lewis-Kenedy et al., 2005) and span from 1130 to 150 ka. The characteristic paleodirections are successfully isolated for 20 cooling units. The mean paleodirection, discarding intermediate polarity sites, is I = 29.6°, D = 359.2°, k = 26, α95 = 7.1°, n = 17, which corresponds to the mean paleomagnetic pole position Plat = 85.8°, Plong = 84.3°, K = 27.5, A95 = 6.9°. These directions are practically undistinguishable from the expected Plestocene paleodirections, as derived from reference poles for the North American polar wander curve and in agreement with previously reported directions from western Trans-Mexican Volcanic Belt. This suggests that no major tectonic deformation occurred in studied area since early-middle Plestocene to present. The paleosecular variation is estimated trough the study of the scatter of virtual geomagnetic poles giving SF = 15.4 with SU = 19.9 and SL = 12.5 (upper and lower limits respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (1991) for the last 5 Myr. The interesting feature of the paleomagnetic record obtained here is the occurrence of an intermediate polarity at 671± 13 ka which may correspond the worldwide observed Delta excursion at about 680-690 ka. This gives the volcanic evidence of this event. Two independent lava flows dated as 362± 13 and 354± 5 ka respectively, yield transitional paleodirections as well, probably corresponding to the Levantine excursion.
Bertea, Cinzia M; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T; Maffei, Massimo E
2015-11-30
One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.
Ground-based Instrumentations in Africa and its Scientific and Societal Benefits to the region
NASA Astrophysics Data System (ADS)
Yizengaw, Endawoke
2012-07-01
Much of what we know about equatorial physics is based on Jicamarca Incoherent Scattering Radar (ISR) observations. However, Jicamarca is in the American sector where the geomagnetic equator dips with a fairly large excursion between the geomagnetic and geodetic equator. On the other hand, in the African sector the geomagnetic equator is fairly well aligned with the geodetic equator. Satellites (e.g. ROCSAT, DMSP, C/NOFS) observations have also indicated that the equatorial ionosphere in the African sector responds differently than other sectors. However, these satellite observations have not been confirmed, validated or studied in detail by observations from the ground due to lack of suitable ground-based instrumentation in the region. Thus, the question of what causes or drives these unique density irregularities in the region is still not yet fully understood, leading the investigation of the physics behind each effect into speculative dead ends. During the past couple of years very few (compared to the land-mass that Africa covers) small instruments, like GPS receivers, magnetometers, VHF, and VLF have been either deployed in the region or in process. However, to understand the most dynamic region in terms of ionospheric irregularities, those few instruments are far from enough. Recently, significant progress has been emerging in securing more ground-based instrument into the region, and thus three ionosondes are either deployed or in process. In this paper, results from AMBER magnetometer network, ionosonde, and GPS receivers will be presented. By combining the multi instrument independent observations, this paper will show a cause and effect of space weather impact in the region for the first time. While the magnetometer network, such as those operated under the umbrella of AMBER project, estimates the fundamental electrodynamics that governs equatorial ionospheric motion, the GPS receivers will track the structure and dynamics of the ionosphere. In addition to the scientific importance, the ground-based instrumentations have also direct impact in advancing space science research by establishing and furthering sustainable research/training infrastructure within Africa so that more young scientists will be educated in their own country. The paper will present research results performed by graduate students who utilize data from the recently deployed instruments within the African universities.
Paleointensities of the Auckland Excursion from Volcanic Rocks in New Zealand
NASA Astrophysics Data System (ADS)
Mochizuki, N.; Tsunakawa, H.; Shibuya, H.; Cassidy, J.; Smith, I. E.
2001-12-01
Shibuya et al. (1992) reported the Auckland excursion from several basaltic lava flows of monogenetic volcanic centers (<50 ka) in the Auckland Volcanic Field, New Zealand. The Auckland excursion was recorded in five centers in three intermediate direction groups of north-down, west and south. We carried out paleointensity and rock-magnetic studies in order to obtain the absolute paleointensities associated with three intermediate geomagnetic fields. Thermomagnetic analyses indicated typical Curie temperatures of 150-200, 450-500 and/or 550-580 oC. The Day plot (Day et al., 1977) showed a linear trend in the pseudo-single-domain range of magnetic carriers. Those results, combined with the reflection microscope observations, identified the magnetic carriers as titanomagnetites with wide variation in titanium content and grain size. First, the Coe's version of the Thellier method (Coe, 1967) was applied to the samples. Several samples seemed to give paleointensities ranging from 3.2 to 6.4 μ T (Shibuya and Cassidy, 1995 AGU fall meeting), but they were often affected by thermal alteration in the furnace even from fairly low temperature steps like 200oC. We were forced to introduce correction for thermal alterations in laboratory heating, using low temperature part of the Arai plot. We, therefore, applied the double heating technique (DHT) of Shaw method (Tsunakawa and Shaw, 1994), which was capable of detecting inappropriate results by the ARM correction, to the samples. The low temperature demagnetization (LTD) was combined with DHT (Yamamoto et al., submitted) before AF demagnetization and samples were heated in a vacuum of 10-100 Pa. Sixty-one samples from the five lava flows were subjected to the LTD-DHT Shaw method. Twenty-three of these samples yielded successful results passing the selection criteria. Five out of six paleointensities from the Crater Hill lava were consistent with each other. A mean paleointensity was given to be 10.9+/- 1.9 μ T (N=5) for the Crater Hill lava. Five out of seven paleointensities from the Wiri lava, were consistent and a mean was 10.8+/- 1.2 μ T (N=5). Three samples from the Puketutu lava gave a mean paleointensity of 11.4+/- 0.8 μ T (N=3). These three lava flows, Crater Hill, Wiri and Puketutu lava, all recorded the north-down paleodirection and gave almost the same paleointensities of ~ 11 μ T. This concordance of paleointensities and paleodirections supports the reliability of the paleointensity determination. Four paleointensities were obtained from the Hampton Park lava of the west paleodirection, and gave a mean paleointensity of 10.1+/- 1.1 μ T (N=4). The field strength was comparable to that of the north-down group. Three samples from the McLennan Hills lava of the south paleodirection gave quite low paleointensities, a mean of which was calculated to be 2.4+/- 0.6 μ T (N=3). These five paleointensities from the Auckland excursion are no more than one-fifth of the present-field intensity. The corresponding VDMs range from 0.6x1022 to 2.3*E22Am2, which are similar to those of about 45ka excursion; 1.2*E22} ~2.3*E{22Am2 from France (Roperch et al., 1988; Chauvin et al., 1989) and 1.1*E22Am2 from Iceland (Marshall et al., 1988; Levi et al., 1990).
ERIC Educational Resources Information Center
Portnova, Tatiana V.
2016-01-01
The paper deals with various practices and methods for actualization of the scientific information in art excursions. The modern society is characterized by commitment to information richness. The range of cultural and historical materials used as the basis for art excursions is really immense. However if to consider the number of excursions with…
Scalar excursions in large-eddy simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheou, Georgios; Dimotakis, Paul E.
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
Scalar excursions in large-eddy simulations
Matheou, Georgios; Dimotakis, Paul E.
2016-08-31
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
NASA Astrophysics Data System (ADS)
Lourens, Lucas J.
2004-09-01
High-resolution color reflectance records of KC01 and KC01B (Calabrian Ridge, Ionian Sea) are presented and compared with a modified spliced high-resolution color reflectance record of Ocean Drilling Program (ODP) Site 964. This comparison revealed that KC01B is characterized by intensive deformation between ~27 and 28.5 m piston depth and that some sapropels are tectonically reduced in thickness. Moreover, the piston coring has caused considerable stretching in the top of KC01 and KC01B. Using a new splice of ODP Site 964 as guide, previous astronomical tuned timescales of KC01B and ODP Site 964 were evaluated. This evaluation resulted in a new sapropel-based astronomical timescale for the last 1.1 Myr. The new timescale implies a much more uniform change in sedimentation rate for the Ionian Sea cores. Two prominent excursions to lighter values in the δ18O record of the planktonic foraminiferal species Globigerinoides ruber occur during marine isotopic stages 12 and 16 applying the new timescale. These shifts correspond with maxima in obliquity and are punctuated by minima in the precession cycle. They are absent in global ice volume records and are interpreted as reflecting a (summer) low-salinity surface water lens that floats on top of extremely saline intermediate and deep waters at times of the very low sea levels during these glacial periods. All biostratigraphic and magnetostratigraphic events found in KC01B and ODP Site 964 were re-dated according to the new timescale, and the ages of 33 tephra layers were reviewed. The new ages for the Calabrian Ridge 2 and 3 magnetic events in the Brunhes are concordant with minima in the global Sint800 composite record, derived from worldwide deep-sea records of relative paleointensity and have been attributed to the Big Lost and La Palma excursions, respectively.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2017-02-01
Integrated Ocean Drilling Program (IODP) Site U1302/3 (Orphan Knoll, off Newfoundland) recorded magnetic excursions in marine isotope stages (MIS) 9a (at 286 ka) and 13a (at 495 ka). Sites U1306 and U1305 (Eirik Drift, off SE Greenland) record excursions in MIS 14a/b (at 540 ka) and 15b/c (at 590 ka). In the excursion intervals, magnetic measurements of continuous "u-channel" samples from multiple holes within site are augmented by measurements of cubic (8 cm3) discrete samples. The excursions lie in relative paleointensity (RPI) minima at each site and in RPI reference stacks, and correspond to dated intervals of 10Be overproduction in other deep-sea sediment records. Although observed at multiple holes at each site, and from u-channel and discrete samples, the excursions are not observed at all three sites, and often at only one of the three sites. Sporadic recording of these magnetic excursions, and excursions in general, is attributed to a combination of filtering by the process of acquisition of detrital remanent magnetization (DRM), postdepositional overprint of weak excursion magnetizations, the millennial or even centennial duration of directional excursions, and nonuniform sedimentation rates at these timescales in North Atlantic sediment drifts.
NASA Astrophysics Data System (ADS)
Krylov, Viacheslav V.; Zotov, Oleg D.; Klain, Boris I.; Ushakova, Natalia V.; Kantserova, Nadezhda P.; Znobisheva, Anna V.; Izyumov, Yuri G.; Kuz'mina, Victoria V.; Morozov, Alexey A.; Lysenko, Liudmila A.; Nemova, Nina N.; Osipova, Elena A.
2014-04-01
Naturally occurring geomagnetic storms have been shown to correlate with changes in organisms' biological processes. Changes in the geomagnetic field during a geomagnetic storm are complex and contain both slow changes of the geomagnetic field with frequencies of up to 0.001 Hz, and various geomagnetic pulsations observed in general to be within the range of 0.001-5 Hz. Little is known about what frequency constituent of geomagnetic storms has the strongest effect on living organisms. This paper uses an experimental approach to demonstrate that organisms from different taxa principally respond to slow changes of the geomagnetic field corresponding with the main phase and the initial period of the recovery phase of a geomagnetic storm. Pc1 type pulsations, which are commonly regarded as biologically effective elements of geomagnetic disturbances, did not affect controlled parameters in our experiments. This paper may serve as a starting point for a thorough inquiry into the influence of slow fluctuations of the geomagnetic field on organisms.
Paleomagnetic investigation of late Quaternary sediments of south San Francisco Bay, California
Hillhouse, John W.
1977-01-01
Paleomagnetic inclinations of the Late Quaternary sediments of South San Francisco Bay were determined from bore hole samples collected near Dumbarton Bridge. The sediments consist of estuarine muds and nonmarine sand deposits, floored by bedrock of the Mesozoic Franciscan Formation. - Beneath Dumbarton Bridge the entire sedimentary fill is normally polarized; therefore, the fill postdates the Brunhes-Matayama polarity reversal (700,000 y. B.P.). Magnetic time lines such as the Mono Lake excursion (24,000 y. B.P.) and the reversed Blake event (110,000 y B.P.) were not found in this bore hole. In addition to Holocene and modern deposits of San Francisco Bay, an older estuarine unit occurs in the stratigraphic section. The older unit was deposited during a period of high sea level, tentatively correlated with the Sangamon interglacial period. Because evidence of the Blake event is not present in the older estuarine unit, the proposed age of this unit could not be confirmed. Although the Holocene estuarine deposits of South San Francisco Bay carry stable remanent magnetization, a reliable record of geomagnetic secular variation could not be recovered because the water-saturated sdiment was deformed by drilling.
NASA Astrophysics Data System (ADS)
Stoner, J. S.; Morey, A. E.; Mix, A. C.; Velle, J. H.; St-Onge, G.; Ge, S.; Asahi, H.
2016-12-01
Our understanding of the geomagnetic field and its application as a stratigraphic dating method are fundamentally limited by a lack of high quality records from many regions of the globe. The NE Pacific is one such region, not only lacking in quality paleomagnetic records, but as a region that is difficult to date using traditional Quaternary marine sediment methods, that would greatly benefit from detailed magnetic stratigraphies. We present u-channel and shipboard paleomagnetic data focusing on Matuyama-Brunhes transitional interval ( 0.7 to 1.25 Ma) from two IODP Sites (U1417 and U1418) drilled during Expedition 341 (South Alaska). Progressive AF demagnetization of u-channel samples, constrained by hysteresis data in the 100 to 200 m (CCSF-a) interval of Site U1417 define a well resolved, low coercivity, magnetization consistent with geocentric axial dipole expectations that improves upon reliable shipboard directions and intensities. Although ultrahigh resolution (>1 m /kyr) Site U1418 could not be u-channeled through the 400 to 900 m (CSF-a) rotary cored interval, correlations between u-channel data at Site U1417 and shipboard data at Site U1418 are robust enough to allow transference of its substantially more complete oxygen isotopic record to Site U1417. Passing all criteria for reliability, normalized remanence at Site U1417 using both ARM acquisition and ARM demagnetization, provides a relative paleointensity proxy that can be correlated with well-dated paleointensity stacks. This comparison allows an initial paleointensity assisted chronology to be developed; facilitating evaluation of both regional climate records through the middle Pleistocene transition, and the paleo-geomagnetic record that preserves polarity transitions, excursions, intensity variations, and secular variation during both polarities.
Bertea, Cinzia M.; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T.; Maffei, Massimo E.
2015-01-01
One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution. PMID:26649488
Statistical analysis of geomagnetic field variations during solar eclipses
NASA Astrophysics Data System (ADS)
Kim, Jung-Hee; Chang, Heon-Young
2018-04-01
We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.
Analysis of key technologies in geomagnetic navigation
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Zhao, Yan
2008-10-01
Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.
Progress of Geomagnetism towards integration of data and services in EPOS
NASA Astrophysics Data System (ADS)
Flower, Simon; Hejda, Pavel; Chambodut, Aude; Curto, Juan-Jose; Matzka, Jürgen; Thomson, Alan; Korja, Toivo; Rasmussen, Thorkild; Smirnov, Maxim; Viljanen, Ari; Kauristie, Kirsti
2017-04-01
The geomagnetism community is involved in the European Plate Observing System (EPOS), a European Research Infrastructure through which science communities will offer a number of services that will integrate to simplify cross-disciplinary research. The Geomagnetism community will provide data from geomagnetic observatories, from producers of geomagnetic indices and events, from geomagnetic models and from magneto-telluric observations. A number of these services (data from the INTERMAGNET network and the World Data Centre, indices and events from the International Service of Geomagnetic Indices and the access to the International Geomagnetic Reference Field and World Magnetic Model) will be integrated into EPOS systems in the first wave of services to be connected. This poster will describe the contribution from geomagnetism to EPOS. It will include a description of the data and services that the geomagnetic community will provide and also discuss how metadata will be made available from the community to the EPOS core IT systems. Finally it will describe how the provision of geomagnetic services in EPOS will be guided and governed by members of the community .
A Whale of an Interest in Sea Creatures: The Learning Potential of Excursions
ERIC Educational Resources Information Center
Hedges, Helen
2004-01-01
Excursions, or field trips, are a common component of early childhood programs, seen as a means of enriching the curriculum by providing experiences with people, places, and things in the community. Although excursions have been used as a framework for research on children's memory development, research on the efficacy of excursions in terms of…
Jeon, Suk Ha; Chung, Moon Sang; Baek, Goo Hyun; Lee, Young Ho; Gong, Hyun Sik
2011-01-01
We attempted to determine whether muscle excursion observed during operation can be a prognostic indicator of muscle recovery after delayed tendon repair in a rabbit soleus model. Eighteen rabbits underwent tenotomy of the soleus muscles bilaterally and were divided into three groups according to the period from tenotomy to repair. The tendons of each group were repaired 2, 4, and 6 weeks after tenotomy. The excursion of each soleus muscle was measured at the time of tenotomy (baseline), at 2, 4, 6 weeks after tenotomy, and 8 weeks after tendon repair. The amount of muscle recovery after tendon repair in terms of muscle excursion independently depended on the timing of repair and on the muscle excursion observed during repair. The regression model predicted that the muscle excursion recovered on average by 0.6% as the muscle excursion at the time of repair increased by 1% after adjusting for the timing of repair. This study suggests that measuring the muscle excursion during tendon repair may help physicians estimate the potential of muscle recovery in cases of delayed tendon repair. Copyright © 2010 Orthopaedic Research Society.
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
NASA Astrophysics Data System (ADS)
Zentner, Andrew R.
I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set theory (with a constant barrier height) makes a simple and general prediction for the relation between halo accretion histories and the large-scale environments of halos: regions of high density preferentially contain late-forming halos and conversely for regions of low density. I conclude with a brief discussion of the importance of this prediction relative to recent numerical studies of the environmental dependence of halo properties.
NASA Astrophysics Data System (ADS)
Popeskov, Mirjana; Cukavac, Milena; Lazovic, Caslav
This paper should consider interpretation of geomagnetic field changes on the basis of possible connection with geological composition of deformation zone. Analysis of total magnetic field intensity data from 38 surveys, carried out in the period may 1980 november 2001 in Kopaonik thrust region, central Serbia, reveals anomalous behaviour of local field changes in particular time intervals. These data give us possibility to observe geomagnetic changes in long period of time. This paper shall consider if and how different magnetizations of geological composition of array are in connection with anomalous geomagnetic field change. We shall consider how non-uniform geological structure or rocks with different magnetizations can effect geomagnetic observations and weather sharp contrast in rock magnetization between neighbour layers can give rise to larger changes in the geomagnetic total intensity than those for a uniform layer. For that purpose we are going to consider geological and tectonical map of Kopaonik region. We shall also consider map of vertical component of geomagnetic field because Kopaonik belongs to high magnetic anomaly zone. Corelation of geomagnetic and geological data is supposed to give us some answers to the question of origine of some anomalious geomagnetic changes in total intensity of geomagnetic field. It can also represent first step in corelationof geomagnetic field changes to other geophysical, seismological or geological data that can be couse of geomagnetic field change.
Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A
2013-03-01
This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed.
Ellis, Richard; Osborne, Samantha; Whitfield, Janessa; Parmar, Priya; Hing, Wayne
2017-01-01
Objectives Research has established that the amount of inherent tension a peripheral nerve tract is exposed to influences nerve excursion and joint range of movement (ROM). The effect that spinal posture has on sciatic nerve excursion during neural mobilisation exercises has yet to be determined. The purpose of this research was to examine the influence of different sitting positions (slump-sitting versus upright-sitting) on the amount of longitudinal sciatic nerve movement during different neural mobilisation exercises commonly used in clinical practice. Methods High-resolution ultrasound imaging followed by frame-by-frame cross-correlation analysis was used to assess sciatic nerve excursion. Thirty-four healthy participants each performed three different neural mobilisation exercises in slump-sitting and upright-sitting. Means comparisons were used to examine the influence of sitting position on sciatic nerve excursion for the three mobilisation exercises. Linear regression analysis was used to determine whether any of the demographic data represented predictive variables for longitudinal sciatic nerve excursion. Results There was no significant difference in sciatic nerve excursion (across all neural mobilisation exercises) observed between upright-sitting and slump-sitting positions (P = 0.26). Although greater body mass index, greater knee ROM and younger age were associated with higher levels of sciatic nerve excursion, this model of variables offered weak predictability (R2 = 0.22). Discussion Following this study, there is no evidence that, in healthy people, longitudinal sciatic nerve excursion differs significantly with regards to the spinal posture (slump-sitting and upright-sitting). Furthermore, although some demographic variables are weak predictors, the high variance suggests that there are other unknown variables that may predict sciatic nerve excursion. It can be inferred from this research that clinicians can individualise the design of seated neural mobilisation exercises, using different seated positions, based upon patient comfort and minimisation of neural mechanosensitivity with the knowledge that sciatic nerve excursion will not be significantly influenced. PMID:28559669
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-04-17
Impairments in dynamic balance have a detrimental effect in older adults at risk of falls (OARF). Gait initiation (GI) is a challenging transitional movement. Centre of pressure (COP) excursions using force plates have been used to measure GI performance. The Nintendo Wii Balance Board (WBB) offers an alternative to a standard force plate for the measurement of CoP excursion. To determine the reliability of COP excursions using the WBB, and its feasibility within a 4-week strength and balance intervention (SBI) treating OARF. Ten OARF subjects attending SBI and ten young healthy adults, each performed three GI trials after 10 s of quiet stance from a standardised foot position (shoulder width) before walking forward 3 m to pick up an object. Averaged COP mediolateral (ML) and anteroposterior (AP) excursions (distance) and path-length time (GI-onset to first toe-off) were analysed. WBB ML (0.866) and AP COP excursion (0.895) reliability (ICC 3,1 ) was excellent, and COP path-length reliability was fair (0.517). Compared to OARF, healthy subjects presented with larger COP excursion in both directions and shorter COP path length. OARF subjects meaningfully improved their timed-up-and-go and ML COP excursion between weeks 1-4, while AP COP excursions, path length, and confidence-in-balance remained stable. COP path length and excursion directions probably measure different GI postural control attributes. Limitations in WBB accuracy and precision in transition tasks needs to be established before it can be used clinically to measure postural aspects of GI viably. The WBB could provide valuable clinical evaluation of balance function in OARF.
The Egyptian geomagnetic reference field to the Epoch, 2010.0
NASA Astrophysics Data System (ADS)
Deebes, H. A.; Abd Elaal, E. M.; Arafa, T.; Lethy, A.; El Emam, A.; Ghamry, E.; Odah, H.
2017-06-01
The present work is a compilation of two tasks within the frame of the project ;Geomagnetic Survey & Detailed Geomagnetic Measurements within the Egyptian Territory; funded by the ;Science and Technology Development Fund agency (STDF);. The National Research Institute of Astronomy and Geophysics (NRIAG), has conducted a new extensive land geomagnetic survey that covers the whole Egyptian territory. The field measurements have been done at 3212 points along all the asphalted roads, defined tracks, and ill-defined tracks in Egypt; with total length of 11,586 km. In the present work, the measurements cover for the first time new areas as: the southern eastern borders of Egypt including Halayeb and Shlatin, the Quattara depresion in the western desert, and the new roads between Farafra and Baharia oasis. Also marine geomagnetic survey have been applied for the first time in Naser lake. Misallat and Abu-Simble geomagnetic observatories have been used to reduce the field data to the Epoch 2010. During the field measurements, whenever possible, the old stations occupied by the previous observers have been re-occupied to determine the secular variations at these points. The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF) and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF) 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF) 2010 is indicated.
Results of geomagnetic observations in Central Africa by Portuguese explorers during 1877 1885
NASA Astrophysics Data System (ADS)
Vaquero, José M.; Trigo, Ricardo M.
2006-08-01
In this short contribution, geomagnetic measurements in Central Africa made by Capelo and Ivens - two Portuguese explorers - during the years 1877 and 1885 are provided. We show the scarce number of geomagnetic observation in Africa compiled until now. These Portuguese explorers performed a considerable amount of measurements of geomagnetic declination (44 measurements), inclination (50) and horizontal component (50) of the geomagnetic field. We compared the results attained by these keen observers with those derived from the global geomagnetic model by Jackson et al. [Jackson, A., Jonkers, A.,Walker, M., 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. 358, 957-990].
Indonesian Geomagnetic Maps for Epoch 2015.0 to cover of Indonesian Regions
NASA Astrophysics Data System (ADS)
Syirojudin, M.; Murjaya, J.; Zubaidah, S.; Hasanudin; Ahadi, S.; Efendi, N.; Suroyo, T.
2018-03-01
In compliance with the resolutions of IAGA (International Association of Geomagnetism and Aeronomy), Since 1960’s, every five years BMKG or Meteorology, Climatology and Geophysics Agency of Indonesia made geomagnetic field maps based on actual measurements in 53 repeat stations. It’s the map for more accurate result of Geomagnetic maps Epoch 2015.0, the number of repeat stations has been increased to 68 locations. Analysis data was conducted by spatial analyses using collocated co-kriging and kriging with external drift to map the observation data in five components, such as Declination (D), Inclination (I), Vertical (Z), Horizontal (H), and Total Geomagnetic Field (F). The data reduction used one permanent observatory i.e., Kupang Geophysical Observatory, as a reference standard. The results of this Geomagnetic Maps, that the contour lines of Indonesian geomagnetic declination in range -1 to 4.5 degree, Inclination component are -5 to -37 degree, Vertical component are -4000 to -28000 nT, Horizontal component are 36000 to 42000 nT, and Total Geomagnetic Field are 39000 to 46000 nT. In conclusion, Indonesian Geomagnetic Maps for Epoch 2015.0 can be used to compute geomagnetic data around Indonesian regions until next 5 years.
The Causes of Geomagnetic Storms During Solar Maximum
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Gonzalez, W. D.
1998-01-01
One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).
The effects of texting on driving performance in a driving simulator: the influence of driver age.
Rumschlag, Gordon; Palumbo, Theresa; Martin, Amber; Head, Doreen; George, Rajiv; Commissaris, Randall L
2015-01-01
Distracted driving is a significant contributor to motor vehicle accidents and fatalities, and texting is a particularly significant form of driver distraction that continues to be on the rise. The present study examined the influence of driver age (18-59 years old) and other factors on the disruptive effects of texting on simulated driving behavior. While 'driving' the simulator, subjects were engaged in a series of brief text conversations with a member of the research team. The primary dependent variable was the occurrence of Lane Excursions (defined as any time the center of the vehicle moved outside the directed driving lane, e.g., into the lane for oncoming traffic or onto the shoulder of the road), measured as (1) the percent of subjects that exhibited Lane Excursions, (2) the number of Lane Excursions occurring and (3) the percent of the texting time in Lane Excursions. Multiple Regression analyses were used to assess the influence of several factors on driving performance while texting, including text task duration, texting skill level (subject-reported), texting history (#texts/week), driver gender and driver age. Lane Excursions were not observed in the absence of texting, but 66% of subjects overall exhibited Lane Excursions while texting. Multiple Regression analysis for all subjects (N=50) revealed that text task duration was significantly correlated with the number of Lane Excursions, and texting skill level and driver age were significantly correlated with the percent of subjects exhibiting Lane Excursions. Driver gender was not significantly correlated with Lane Excursions during texting. Multiple Regression analysis of only highly skilled texters (N=27) revealed that driver age was significantly correlated with the number of Lane Excursions, the percent of subjects exhibiting Lane Excursions and the percent of texting time in Lane Excursions. In contrast, Multiple Regression analysis of those drivers who self-identified as not highly skilled texters (N=23) revealed that text task duration was significantly correlated with the number of Lane Excursions. The present studies confirm past reports that texting impairs driving simulator performance. Moreover, the present study demonstrates that for highly skilled texters, the effects of texting on driving are actually worse for older drivers. Given the increasing frequency of texting while driving within virtually all age groups, these data suggest that 'no texting while driving' education and public service messages need to be continued, and they should be expanded to target older drivers as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
What do we mean by accuracy in geomagnetic measurements?
Green, A.W.
1990-01-01
High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.
On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling
NASA Technical Reports Server (NTRS)
Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance
2004-01-01
We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.
Geomagnetic effects caused by rocket exhaust jets
NASA Astrophysics Data System (ADS)
Lipko, Yuriy; Pashinin, Aleksandr; Khakhinov, Vitaliy; Rahmatulin, Ravil
2016-09-01
In the space experiment Radar-Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in flux tubes crossed by the spacecraft. When analyzing experimental data, we took into account space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kp, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations in various time ranges.
Effect of geomagnetic storms on VHF scintillations observed at low latitude
NASA Astrophysics Data System (ADS)
Singh, S. B.; Patel, Kalpana; Singh, A. K.
2018-06-01
A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.
Autonomous excursions using tablets and smartphones
NASA Astrophysics Data System (ADS)
Marra, Wouter; Groothengel, Marin; van de Grint, Liesbeth; Karssenberg, Derek; Stouthamer, Esther
2017-04-01
Excursions and fieldworks are valuable components for geosciences education. However, field activities can be time consuming for teachers and pose a logistical challenge to fit in regular courses. Furthermore, the participation of students diminishes with group size in case of instructor-led outings. We are developing excursions that students can follow autonomously without a teacher present, using instructions, assignments and background information on tablets and smartphones. The goal of this approach is to increase the level of active participation, and to reduce logistical and time table issues. We developed a bike-excursion about the landscape and geology in the vicinity of our University. Such excursion was on the wish-list for several years, but posed a logistical challenge for the group of about 80 students in the available timeslot. In our approach, students had a time-window of two weeks in which they could finish the excursion in groups of 2. 8-Inch tablets with water- and shock-proof cases were available for this excursion. For the excursion we used three apps: 1) IZI-Travel for providing the route, spoken navigation instructions, spoken explanations at stops, location-related images, assignments as text, and multiple-choose questions. 2) PDF-Maps for providing geo-referenced maps. 3) ESRI Collector which the students used to digitize polygons on a map, and to collect geo-referenced photos with explanation. These data were answers to assignments and were later used in a tutorial on campus. The assignments where students had to collect data, and the small group size (pairs) increased the level of active participation. The use of a final tutorial on campus was important for the autonomous excursion, as it gave students the opportunity to discuss their observations and questions with their teacher. The developed teaching materials are available online to use and adapt for others. Parts could be useful for other universities and schools in the vicinity of the excursion location.
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
49 CFR 38.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false Ferries, excursion boats and other vessels. [Reserved] 38.177 Section 38.177 Transportation Office of the Secretary of Transportation AMERICANS WITH....177 Ferries, excursion boats and other vessels. [Reserved] ...
Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H
2017-08-01
Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.
Condylar motion in children with primary dentition during lateral excursion.
Yamasaki, Youichi; Hayasaki, Haruaki; Nishi, Megumi; Nakata, Shiho; Nakata, Minoru
2002-07-01
Normal development of primary and mixed dentition is indispensable for establishing a healthy mandibular function of the permanent dentition. Because condylar movements are crucial for mandibular function, extensive studies have been reported. However, most of these studies have dealt with mandibular functions in adults, and there is less known about children with primary dentition. The purpose of this study was to clarify the condylar movements during lateral excursions in children with primary dentition and compare these movements with those of adults from the viewpoint of functional development. With use of an optoelectronic recording system with six degrees of freedom, the lateral excursions of 24 children and 20 young women, with sound dentition, were recorded at 100 Hz. The results show that the balancing side condyle of the children had a significantly smaller vertical excursion and a significantly larger anteroposterior excursion than that of adults, indicating the shallower and more anteriorly directed movements of the entire mandible during lateral excursions in children with primary dentition.
Verster, Joris C; Roth, Thomas
2014-07-01
The traditional outcome measure of the Dutch on-the-road driving test is the standard deviation of lateral position (SDLP), the weaving of the car. This paper explores whether excursions out-of-lane are a suitable additional outcome measure to index driving impairment. A literature search was conducted to search for driving tests that used both SDLP and excursions out-of-lane as outcome measures. The analyses were limited to studies examining hypnotic drugs because several of these drugs have been shown to produce next-morning sedation. Standard deviation of lateral position was more sensitive in demonstrating driving impairment. In fact, solely relying on excursions out-of-lane as outcome measure incorrectly classifies approximately half of impaired drives as unimpaired. The frequency of excursions out-of-lane is determined by the mean lateral position within the right traffic lane. Defining driving impairment as having a ΔSDLP > 2.4 cm, half of the impaired driving tests (51.2%, 43/84) failed to produce excursions out-of-lane. Alternatively, 20.9% of driving tests with ΔSDLP < 2.4 cm (27/129) had at least one excursion out-of-lane. Excursions out-of-lane are neither a suitable measure to demonstrate driving impairment nor is this measure sufficiently sensitive to differentiate adequately between differences in magnitude of driving impairment. Copyright © 2014 John Wiley & Sons, Ltd.
Long series of geomagnetic measurements - unique at satellite era
NASA Astrophysics Data System (ADS)
Mandea, Mioara; Balasis, Georgios
2017-04-01
We have long appreciated that magnetic measurements obtained at Earth's surface are of great value in characterizing geomagnetic field behavior and then probing the deep interior of our Planet. The existence of new magnetic satellite missions data offer a new detailed global understanding of the geomagnetic field. However, when our interest moves over long-time scales, the very long series of measurements play an important role. Here, we firstly provide an updated series of geomagnetic declination in Paris, shortly after a very special occasion: its value has reached zero after some 350 years of westerly values. We take this occasion to emphasize the importance of long series of continuous measurements, mainly when various techniques are used to detect the abrupt changes in geomagnetic field, the geomagnetic jerks. Many novel concepts originated in dynamical systems or information theory have been developed, partly motivated by specific research questions from the geosciences. This continuously extending toolbox of nonlinear time series analysis is a key to understand the complexity of geomagnetic field. Here, motivated by these efforts, a series of entropy analysis are applied to geomagnetic field time series aiming to detect dynamical complex changes associated with geomagnetic jerks.
Major geomagnetic storm due to solar activity (2006-2013).
NASA Astrophysics Data System (ADS)
Tiwari, Bhupendra Kumar
Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.
NASA Astrophysics Data System (ADS)
Lau, J. K.; Herrero-Bervera, E.
2006-12-01
Absolute Paleointensity determinations coupled with directional analyses and precise 40Ar/39Ar radioisotopic dating, have rendered a record of an excursion of the geomagnetic field providing an insight of the rapid variation of the short-term behavior of the paleomagnetic field. We have sampled a long volcanic section located on the buttressed flank of the Koolau volcano within the Halawa Valley, Oahu, Hawaii and studied 120 m thick sequence of flows providing an excellent candidate for detailed paleomagnetic analysis. At least eight samples collected from each of 28 successive flow-sites were stepwise demagnetized by both alternating field (5mT to 100mT) and thermal (from 28° C to 575-650°C) methods, and the mean directions obtained by principal component analysis. All samples yielded a strong and stable ChRM trending towards the origin based on no less than seven to nine steps, with thermal and AF results agreeing to a very high degree. Low field susceptibility versus temperature (k-T) analyses were conducted for individual lava flows, and the majority of them show reversible curves. Curie point determinations revealed a temperature close to or equal to 580°C, indicative of almost pure magnetite for most of the flows. Magnetic grain sizes analysis indicated SD-PSD sizes. The mean directions of magnetization of the entire section sampled indicate that about 10 m of the section are characterized by excursional directions (5 lava flows). In addition to the directional analyses we performed absolute paleointensity determinations on the 28 lavas sampled. We used the modified Thellier- Coe double heating method to determine paleointensities. pTRM checks were performed systematically one temperature step down the last pTRM acquisition in order to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50° C between room temperature and 500°C and every 25-30° C. The paleointensity determinations were obtained from the slope of the Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range of temperatures lower than 300°C unless a clear and unique slope would be present. Our paleointensity results indicate a near-zero reduced strength of the field during the excursional period ranging from 5 to 9 micro-Tesla but high absolute paleointensity values prior to the excursional lavas The corresponding VGPs are located off the southeast part of Africa, close to Madagascar. The 40Ar/39Ar incremental heating experiments on groundmass from nine flow-sites located at different stratigraphic levels yielded an isochron age of 2.514+/-0.039 Ma indicating that the excursion may correlate with the C2r.2r-l Cryptochron of Cande and Kent [1995].
Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data
NASA Astrophysics Data System (ADS)
KIM, J. H.; Chang, H. Y.
2017-12-01
We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.
46 CFR 2.01-45 - Excursion permit.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., on Coast Guard Form CG-950, Application for Excursion Permit. If, after inspection, permission is... the application process for excursion permits for inspected passenger vessels are contained in §§ 71.10, 115.204, or 176.204 of this chapter. Details concerning the application process for special...
Feigin, Valery L; Parmar, Priya G; Barker-Collo, Suzanne; Bennett, Derrick A; Anderson, Craig S; Thrift, Amanda G; Stegmayr, Birgitta; Rothwell, Peter M; Giroud, Maurice; Bejot, Yannick; Carvil, Phillip; Krishnamurthi, Rita; Kasabov, Nikola
2014-06-01
Although the research linking cardiovascular disorders to geomagnetic activity is accumulating, robust evidence for the impact of geomagnetic activity on stroke occurrence is limited and controversial. We used a time-stratified case-crossover study design to analyze individual participant and daily geomagnetic activity (as measured by Ap Index) data from several large population-based stroke incidence studies (with information on 11 453 patients with stroke collected during 16 031 764 person-years of observation) in New Zealand, Australia, United Kingdom, France, and Sweden conducted between 1981 and 2004. Hazard ratios and corresponding 95% confidence intervals (CIs) were calculated. Overall, geomagnetic storms (Ap Index 60+) were associated with 19% increase in the risk of stroke occurrence (95% CI, 11%-27%). The triggering effect of geomagnetic storms was most evident across the combined group of all strokes in those aged <65 years, increasing stroke risk by >50%: moderate geomagnetic storms (60-99 Ap Index) were associated with a 27% (95% CI, 8%-48%) increased risk of stroke occurrence, strong geomagnetic storms (100-149 Ap Index) with a 52% (95% CI, 19%-92%) increased risk, and severe/extreme geomagnetic storms (Ap Index 150+) with a 52% (95% CI, 19%-94%) increased risk (test for trend, P<2×10(-16)). Geomagnetic storms are associated with increased risk of stroke and should be considered along with other established risk factors. Our findings provide a framework to advance stroke prevention through future investigation of the contribution of geomagnetic factors to the risk of stroke occurrence and pathogenesis. © 2014 American Heart Association, Inc.
The causes of geomagnetic storms during solar maximum
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.
1994-01-01
One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
46 CFR 115.204 - Permit to carry excursion party.
Code of Federal Regulations, 2010 CFR
2010-10-01
... jacket, fire safety, and manning standards applicable to a vessel in the service for which the excursion... crew required, any additional lifesaving or safety equipment required, the route for which the permit... applicable minimum safety standards when issuing an excursion permit. In particular, a vessel that is being...
46 CFR 115.204 - Permit to carry excursion party.
Code of Federal Regulations, 2012 CFR
2012-10-01
... jacket, fire safety, and manning standards applicable to a vessel in the service for which the excursion... crew required, any additional lifesaving or safety equipment required, the route for which the permit... applicable minimum safety standards when issuing an excursion permit. In particular, a vessel that is being...
46 CFR 115.204 - Permit to carry excursion party.
Code of Federal Regulations, 2011 CFR
2011-10-01
... jacket, fire safety, and manning standards applicable to a vessel in the service for which the excursion... crew required, any additional lifesaving or safety equipment required, the route for which the permit... applicable minimum safety standards when issuing an excursion permit. In particular, a vessel that is being...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... required to submit Periodic Reports semiannually or quarterly. The first semiannual period is the 6-month... excursions. (5) For the fifth semiannual period—two excused excursions. (6) For the sixth and all subsequent... during the entire test period. The monitoring level(s) shall be those established during from the...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
36 CFR 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Ferries, excursion boats and other vessels. [Reserved] 1192.177 Section 1192.177 Parks, Forests, and Public Property ARCHITECTURAL... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
Hadlock, Tessa A; Malo, Juan S; Cheney, Mack L; Henstrom, Douglas K
2011-01-01
Free muscle transfer for facial reanimation has become the standard of care in recent decades and is now the cornerstone intervention for dynamic smile reanimation. We sought to quantify smile excursion and quality-of-life (QOL) changes in our pediatric free gracilis recipients following reanimation. We quantified gracilis muscle excursion in 17 pediatric patients undergoing 19 consecutive pediatric free gracilis transplantation operations, using our validated SMILE program, as an objective measure of functional outcome. These were compared against excursion measured the same way in a cohort of 17 adults with 19 free gracilis operations. In addition, we prospectively evaluated QOL outcomes in these children using the Facial Clinimetric Evaluation (FaCE) instrument. The mean gracilis excursion in our pediatric free gracilis recipients was 8.8 mm ± 5.0 mm, which matched adult results, but with fewer complete failures of less than 2-mm excursion, with 2 (11%) and 4 (21%), respectively. Quality-of-life measures indicated statistically significant improvements following dynamic smile reanimation (P = .01). Dynamic facial reanimation using free gracilis transfer in children has an acceptable success rate, yields improved commissure excursion, and improves QOL in the pediatric population. It should be considered first-line therapy for children with lack of a meaningful smile secondary to facial paralysis.
McLean, Kathleen E.; Yao, Jiayun; Henderson, Sarah B.
2015-01-01
The British Columbia Asthma Monitoring System (BCAMS) tracks forest fire smoke exposure and asthma-related health outcomes, identifying excursions beyond expected daily counts. Weekly reports during the wildfire season support public health and emergency management decision-making. We evaluated BCAMS by identifying excursions for asthma-related physician visits and dispensations of the reliever medication salbutamol sulfate and examining their corresponding smoke exposures. A disease outbreak detection algorithm identified excursions from 1 July to 31 August 2014. Measured, modeled, and forecasted concentrations of fine particulate matter (PM2.5) were used to assess exposure. We assigned PM2.5 levels to excursions by choosing the highest value within a seven day window centred on the excursion day. Smoky days were defined as those with PM2.5 levels ≥ 25 µg/m3. Most excursions (57%–71%) were assigned measured or modeled PM2.5 concentrations of 10 µg/m3 or higher. Of the smoky days, 55.8% and 69.8% were associated with at least one excursion for physician visits and salbutamol dispensations, respectively. BCAMS alerted most often when measures of smoke exposure were relatively high. Better performance might be realized by combining asthma-related outcome metrics in a bivariate model. PMID:26075727
NASA Astrophysics Data System (ADS)
Richey, J. D.; Upchurch, G. R.; Joeckel, R.; Smith, J. J.; Ludvigson, G. A.; Lomax, B. H.
2013-12-01
Past geological greenhouse intervals are associated with Ocean Anoxic Events (OAEs), which result from an increase in marine primary productivity and/or an increase in the preservation of organic matter. The end point is widespread black shale deposition combined with a long-term atmospheric positive δ13C excursion and an increase in the burial of 12C. Some OAEs show a negative δ13C excursion preceding the positive excursion, indicating a perturbation in the global carbon cycle prior to the initiation of these events. The Rose Creek (RCP) locality, southeastern Nebraska, is the only known terrestrial section that preserves OAE1d (Cretaceous, Albian-Cenomanian Boundary) and has abundant charcoal and plant cuticle. These features allow for a combined carbon isotope and stomatal index (SI) analysis to determine both changes in the cycling between carbon pools (C isotope analysis) and changes in paleo-CO2 via changes in SI. Preliminary (and ongoing) SI data analysis using dispersed cuticle of Pandemophyllum kvacekii (an extinct Laurel) collected at 30 cm intervals indicate changes in SI consistent with changes in CO2. Fitting our samples to a published RCP δ13C profile, pre-excursion CO2 concentrations are high. CO2 decreases to lower concentrations in the basal 1.2 m of the RCP section, where δ13Cbulk shows a negative excursion and δ13Ccharcoal remains at pre-excursion values. CO2 concentrations become higher toward the top of the negative δ13C excursion, where δ13Cbulk and δ13Ccharcoal are at their most negative values, and drop as the negative carbon excursion terminates. Using published transfer functions, we estimate that pre-excursion CO2 concentrations were a maximum of 900 ppm. In the basal 1.2 m of RCP, CO2 drops to a maximum of 480 ppm, and rises to a maximum of 710 ppm near the top of the negative excursion. As δ13C values rise towards pre-excursion values, CO2 declines to a maximum of 400 ppm. The trend in SI is comparable to the trend in δ13Ccharcoal and follows recognized patterns, while SI shows partial divergence from δ13Cbulk. These data, while preliminary, highlight the importance of considering isotope substrate when investigating carbon cycle perturbations.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.; Curtis, J. H.
2016-01-01
Integrated Ocean Drilling Program (IODP) Site U1308 (49°53‧N, 24°14‧W; water depth 3871 m) provides a record of relative paleointensity (RPI) and benthic stable isotope stratigraphy back to 3.2 Ma. The record since 1.5 Ma was published previously, and here we present the interval from 1.5 Ma to 3.2 Ma (Early Pleistocene-Late Pliocene). The benthic oxygen isotope record in this interval is correlated to Marine Isotope Stage (MIS) 51 to KM2, with an apparent hiatus that removed part of the interval spanning MIS 104-G2 (2.6-2.65 Ma), at the Gauss-Matuyama boundary. The mean sedimentation rate for the 1.5-3.2 Ma period is 8.5 cm/kyr. The age model was built by correlation of the benthic oxygen isotope record to a global stack (LR04). Apart from the expected polarity reversals, three magnetic excursions are recorded: Punaruu in MIS 31/32 at 1092 ka, Gilsa in MIS 54/55 at 1584 ka, and a newly recognized excursion labeled Porcupine (after the nearby Porcupine Abyssal Plain) in MIS G6/G7 at 2737 ka. The ages of polarity reversals at Site U1308, on the LR04 time scale, are consistent with the current geomagnetic polarity timescale (GPTS) with the exception of the base of the Olduvai Subchron that occurred in MIS 73, corresponding to 1925 ka on the LR04 time scale, 25 kyr younger than in the current GPTS. The RPI record at Site U1308 is calibrated using the oxygen isotope age model, and combined with four other North Atlantic records to obtain a North Atlantic RPI stack for 1.2-2.2 Ma (NARPI-2200) that is compared with published RPI stacks: Epapis, Sint-2000 and PADM2M. For 2.2-3.2 Ma, the Site U1308 RPI record is compared with a RPI record from North Atlantic IODP Site U1314, and with the Pacific Epapis stack. The mean sedimentation rates of the North Atlantic sites in NARPI-2200 are greater (by about an order of magnitude) than most of the records incorporated in other stacks. The comparison of Epapis and NARPI-2200 yields an apparent lag for NARPI-2200 relative to Epapis, attributed the Epapis age model constructed by correlation of magnetic concentration parameters (a proxy for carbonate percentage) to a calibrated oxygen isotope record. The long RPI record from Site U1308 yields a very similar mean value for the Brunhes and Matuyama virtual axial dipole moments (7.05 × 1022 Am2), implying no polarity bias in the strength of the main geomagnetic dipole, in contrast to interpretations from Sint-2000 and PADM2M. The results strengthen the case that RPI can be used to improve global stratigraphic correlation for sites with mean sedimentation rates up to several decimeters/kyr.
Peddie, N.W.
1992-01-01
The secular variation of the main geomagnetic field during the periods 1980-1985 and 1985-1990 was analyzed in terms of spherical harmonics up to the eighth degree and order. Data from worldwide magnetic observatories and the Navy's Project MAGNET aerial surveys were used. The resulting pair of secular-variation models was used to update the Definitive Geomagnetic Reference Field (DGRF) model for 1980, resulting in new mainfield models for 1985.0 and 1990.0. These, along with the secular-variation model for 1985-1990, were proposed for the 1991 revision of the International Geomagnetic Reference Field (IGRF). -Author
NASA Astrophysics Data System (ADS)
Wang, Z.; Gu, Z.; Chen, B.; Yuan, J.; Wang, C.
2016-12-01
The CHAOS-6 geomagnetic field model, presented in 2016 by the Denmark's national space institute (DTU Space), is a model of the near-Earth magnetic field. According the CHAOS-6 model, seven component data of geomagnetic filed at 30 observatories in China in 2015 and at 3 observatories in China spanning the time interval 2008.0-2016.5 were calculated. Also seven component data of geomagnetic filed from the geomagnetic data of practical observations in China was obtained. Based on the model calculated data and the practical data, we have compared and analyzed the spatial distribution and the secular variation of the geomagnetic field in China. There is obvious difference between the two type data. The CHAOS-6 model cannot describe the spatial distribution and the secular variation of the geomagnetic field in China with comparative precision because of the regional and local magnetic anomalies in China.
Conjugate Event Study of Geomagnetic ULF Pulsations with Wavelet-based Indices
NASA Astrophysics Data System (ADS)
Xu, Z.; Clauer, C. R.; Kim, H.; Weimer, D. R.; Cai, X.
2013-12-01
The interactions between the solar wind and geomagnetic field produce a variety of space weather phenomena, which can impact the advanced technology systems of modern society including, for example, power systems, communication systems, and navigation systems. One type of phenomena is the geomagnetic ULF pulsation observed by ground-based or in-situ satellite measurements. Here, we describe a wavelet-based index and apply it to study the geomagnetic ULF pulsations observed in Antarctica and Greenland magnetometer arrays. The wavelet indices computed from these data show spectrum, correlation, and magnitudes information regarding the geomagnetic pulsations. The results show that the geomagnetic field at conjugate locations responds differently according to the frequency of pulsations. The index is effective for identification of the pulsation events and measures important characteristics of the pulsations. It could be a useful tool for the purpose of monitoring geomagnetic pulsations.
NASA Technical Reports Server (NTRS)
Pennypacker, C. R.; Smoot, G. F.; Buffington, A.; Muller, R. A.; Smith, L. H.
1973-01-01
We report a high-statistics magnetic spectrometer measurement of the geomagnetic cutoff rigidity and related effects at Palestine, Texas. The effective cutoffs we observe are in agreement with computer-calculated cutoffs. We also report measured spectra of albedo and atmospheric secondary particles that come below geomagnetic cutoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennypacker, C.R.; Smoot, G.F.; Buffington, A.
1973-04-01
A high-statistics magnetic spectrometer measurement of the geomagnetic cutoff rigidity and related effects at Palestine, Texas is reported. The effective cutoffs observed are in agreement with computer-calculated cutoffs. Measured spectra of albedo and atmospheric secondary particles that come below geomagnetic cutoff are also reported. (auth)
Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?
Erdmann, Weronika; Idzikowski, Bogdan; Kowalski, Wojciech; Szymański, Bogdan; Kosicki, Jakub Z.; Kaczmarek, Łukasz
2017-01-01
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth’s organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field. PMID:28886031
Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements
NASA Technical Reports Server (NTRS)
Lyatsky, W.; Khazanov, G. V.
2007-01-01
Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.
Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?
Erdmann, Weronika; Idzikowski, Bogdan; Kowalski, Wojciech; Szymański, Bogdan; Kosicki, Jakub Z; Kaczmarek, Łukasz
2017-01-01
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
36 CFR § 1192.177 - Ferries, excursion boats and other vessels. [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Ferries, excursion boats and other vessels. [Reserved] § 1192.177 Section § 1192.177 Parks, Forests, and Public Property... GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.177 Ferries, excursion boats and...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
46 CFR 72.25-15 - Passenger accommodations for excursion boats, ferryboats, and passenger barges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Passenger accommodations for excursion boats, ferryboats, and passenger barges. 72.25-15 Section 72.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... accommodations for excursion boats, ferryboats, and passenger barges. (a) Except as specifically excluded by this...
Cruising through Research: Library Skills for Young Adults.
ERIC Educational Resources Information Center
Volkman, John D.
This book presents an approach for school librarians to use to introduce basic research tools to students in grades 7-12. Twelve "Excursions" (i.e., library research projects) are described. Excursions 1 and 2 provide an introduction to reference books, and Excursions 3 and 4 explore note-taking and basic organization of research papers. The…
NASA Astrophysics Data System (ADS)
Wang, Y.; Pan, Y.
2015-12-01
Solar radiation and galactic cosmic radiation is believed to be major restriction factors influencing survival and evolution of life. On planet earth, geomagnetic field along with atmosphere protect living beings from the harmful radiation. During a geomagnetic reversal or excursion, however, the efflux of charged particles on earth surface would increase as the shielding effect of magnetic field decrease. The stratospheric ozone can also be partially stripped away by solar wind when the strength of the field is weak, leading to an increasing ultraviolet radiation penetration to the earth surface. However, studies on the mechanism of radiation induced stress and damage are focused only on bacteria that have no response to magnetic field. This study was motivated by the need to fill the gap upon knowledge of that on magnetic field sensitive microorganism. Magnetotactic bacteria (MTB) are a group of microbes that are able to synthesis intracellular nano-sized magnetic particles (named magnetosomes). These chain-arranged magnetosomes help MTB sense and swim along the magnetic field to find their optimal living environment efficiently. In this paper, in silico prediction of stress and damage repair genes in response to different radiation were carried out on the complete genome of four nonmagnetotactic and four magnetotactic spirilla. In silico analyses of the genomes of magnetic field sensitive and non-sensitive spirilla revealed: 1) all strains contain genes for regulate responses superoxide and peroxide stress, DNA pyrimidine dimer and string breaks; 2) non-magnetotactic spirilla have more genes dealing with oxidative stress, while magnetotactic spirilla may benefit from magnetotaxis by swimming into oxic-anoxic zone away from oxidative stress and direct radiation damage; yet, the lipid hydroperoxide peroxidase gene in MTB may be responsible for possible ROS generated by the membrane enveloped magnetite magnetosome; 3) magnetotactic spirilla possess SOS recA mediated umuCD genes and double copied ssb gene, these low fidelity DNA polymerase along with Ssb protein may endow MTB high adaptive mutation under stress condition; 4) also, magnetosome crystals (magnetite or greigite) can reduce radiation oxidative damage and protect MTB.
NASA Astrophysics Data System (ADS)
Ichinose, S.; Baba, H.
2015-12-01
In 2009 to 2014, total geomagnetic and geological surveys by School of Marine Science & Technology, Tokai University, were conducted on Suruga Bay, located on the Pacific coast of Honshu in Shizuoka Prefecture, central Japan, where a large thrust earthquake, often referred to as the Tokai earthquake, has been supposed to occur soon (Ishibashi, 1981). Suruga Bay area, where the Philippine Sea plate subducts beneath Japan, had some local magnetic anomalies on the overriding plate side. The past investigation of ship-borne survey conducted in Suruga Bay area is geomagnetic anomaly data of the Hydrographic Department of the Maritime Safety Agency in 1997. Detailed geomagnetic surveys carried out in the Suruga Bay area, is 50 km x 35km in S-N and W-E, respectively. Total geomagnetic anomaly values range from +100nT to +600nT. In this report, we carried out newly geomagnetic survey lines which costal region on Suruga Bay. The following results were found. (1) The costal region of Izu Peninsula in Northern part of Izu-Ogasawara arc is indicated high geomagnetic anomaly. This cause is regarded as something to come near to some volcanos. (2) And costal region of the Fujigawa fault system in the Sourath Fossa Magna region is indicated high geomagnetic anomaly. We present features of total geomagnetic anomalies on and around Suruga Bay with the results of inversion.
Investigation of Characteristics of Large dB/dt for Geomagnetically Induced Currents
NASA Astrophysics Data System (ADS)
Munoz, D.; Ngwira, C.; Damas, M. C.
2016-12-01
When geomagnetically induced currents (GICs) flow through electrical networks, they become a potential threat for electrical power systems. Changes in the geomagnetic field (dB/dt) during severe geomagnetic disturbances are the main sources of GICs. These dB/dt phenomena were studied by selecting 24 strong geomagnetic storms with Dst ≤ - 150 nT. ACE spacecraft solar wind data: flow speed, proton density, By and Bz IMF components of the solar wind were correlated with measurements of the magnetic field detected on ground stations at different latitudes. This article reports characteristics of the solar wind during time intervals of large changes in the horizontal geomagnetic field with a threshold of dB/dt ≥ ± 20 nT/min for the 24 geomagnetic storms. The results of this investigation can help scientists to understand the mechanisms responsible for causing large magnetic field variations in order to predict and mitigate possible large events in the future, which is critical for our society that relies constantly on electricity for livelihood and security. In addition, this ongoing project will continue to investigate electron flux response before, during, and after large changes in geomagnetic field.
Error model of geomagnetic-field measurement and extended Kalman-filter based compensation method
Ge, Zhilei; Liu, Suyun; Li, Guopeng; Huang, Yan; Wang, Yanni
2017-01-01
The real-time accurate measurement of the geomagnetic-field is the foundation to achieving high-precision geomagnetic navigation. The existing geomagnetic-field measurement models are essentially simplified models that cannot accurately describe the sources of measurement error. This paper, on the basis of systematically analyzing the source of geomagnetic-field measurement error, built a complete measurement model, into which the previously unconsidered geomagnetic daily variation field was introduced. This paper proposed an extended Kalman-filter based compensation method, which allows a large amount of measurement data to be used in estimating parameters to obtain the optimal solution in the sense of statistics. The experiment results showed that the compensated strength of the geomagnetic field remained close to the real value and the measurement error was basically controlled within 5nT. In addition, this compensation method has strong applicability due to its easy data collection and ability to remove the dependence on a high-precision measurement instrument. PMID:28445508
NASA Astrophysics Data System (ADS)
Piersanti, M.; Alberti, T.; Vecchio, A.; Lepreti, F.; Villante, U.; Carbone, V.; De Michelis, P.
2015-12-01
Geomagnetic storms (GS) are global geomagnetic disturbances that result from the interaction between magnetized plasma that propagates from the Sun and plasma and magnetic fields in the near-Earth space plasma environment. The Dst (Disturbance Storm Time) global Ring Current index is still taken to be the definitive representation for geomagnetic storm and is used widely by researcher. Recent in situ measurements by satellites passing through the ring-current region (i.e. Van Allen probes) and computations with magnetospheric field models showed that there are many other field contributions on the geomagnetic storming time variations at middle and low latitudes. Appling the Empirical Mode Decomposition [Huang et al., 1998] to magnetospheric and ground observations, we detect the different magnetic field contributions during a GS and introduce the concepts of modulated baseline and fluctuations of the geomagnetic field. This allows to define local geomagnetic indices that can be used in discriminating the ionospheric from magnetospheric origin contribution.
NASA Astrophysics Data System (ADS)
Macouin, Mélina; Ader, Magali; Moreau, Marie-Gabrielle; Poitou, Charles; Yang, Zhenyu; Sun, Zhimming
2012-10-01
Rock magnetism is used here to investigate the genesis of one of the puzzling negative carbon isotopic excursions of the Neoproterozoic in the Yangtze platform (South China). A detailed characterization of the magnetic mineralogy, which includes low-temperature and high-field magnetometry and classical magnetic measurement (ARM, IRM, susceptibility), was therefore performed along upper Doushantuo and lower Dengying Formations outcropping in the Yangjiaping section. The derived magnetic parameters show variations that can be interpreted as variations in magnetic grains size and in oxide contents. They show that the magnetic content is significantly reduced in samples presenting negative δ13Ccalcite values. We interpret this as a result of magnetite dissolution and secondary carbonate precipitation during early diagenesis bacterial sulfate reduction. Combined with C and O isotopic data, paleomagnetic techniques thus show that the upper Doushantuo-lower Dengying negative excursion of the Yangjiaping section is largely due to diagenesis, although the preservation of a genuine δ13C excursion of lower magnitude from +7‰ down to 0‰, instead of down to -9‰ as usually considered, cannot be ruled out. A corrected δ13Ccarbonate chemostratigraphic curve is therefore proposed. The unambiguous identification of a strong diagenetic component for this excursion casts doubts on the primary nature of other potentially time equivalent negative excursions of the Yangtze platform and thus to its correlation to negative excursions in other cratons (i.e. Shuram excursion). More generally, this study illustrates the potential of magnetic mineralogy characterization, a low cost, time efficient and non-destructive technique, as screening tool for diagenetic overprints of δ13C and δ18O.
VLF Wave Properties During Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.
2017-12-01
Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.
Boberg, P R; Tylka, A J; Adams, J H; Beahm, L P; Fluckiger, E O; Kleis, T; Kobel, E
1996-01-01
The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagnetic transmission by tracing particles through the combination of the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 degrees inclination space station orbit.
Li, Hong; Liu, Mingyong; Liu, Kun; Zhang, Feihu
2017-12-25
By simulating the geomagnetic fields and analyzing thevariation of intensities, this paper presents a model for calculating the objective function ofan Autonomous Underwater Vehicle (AUV)geomagnetic navigation task. By investigating the biologically inspired strategies, the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity. An adapted strategy is then implemented, which is biased on the specific target. The results show thereliabilityandeffectivenessofthe proposed algorithm.
Geomagnetic field models incorporating physical constraints on the secular variation
NASA Technical Reports Server (NTRS)
Constable, Catherine; Parker, Robert L.
1993-01-01
This proposal has been concerned with methods for constructing geomagnetic field models that incorporate physical constraints on the secular variation. The principle goal that has been accomplished is the development of flexible algorithms designed to test whether the frozen flux approximation is adequate to describe the available geomagnetic data and their secular variation throughout this century. These have been applied to geomagnetic data from both the early and middle part of this century and convincingly demonstrate that there is no need to invoke violations of the frozen flux hypothesis in order to satisfy the available geomagnetic data.
Some topics and historical episodes in geomagnetism and aeronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, N.
1994-10-01
The author provides historical perspective on work in the area of geomagnetism and aeronomy. He discusses early ideas discussed in the literature, work by Birkelund on current flows, ideas on the curl-freeness of the geomagnetic fields, studies of auroral records recorded by man, studies of magnetic storms, geomagnetic field measurements, and of late the wealth of satellite information of the magnetosphere and solar wind effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkinson, W.D.
1983-01-01
This book examines a wide range of subjects in geomagnetism. It presents a brief introduction to physical principles of magnetism, and then focuses on the properties of the geomagnetic field as the sum of four interrelated phenomena: the main field, the local or crustal field, the external field, and the induced field. Additional topics, including paleomagnetism and magnetic methods in exploration, and the history of geomagnetism, are also discussed.
Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin
NASA Astrophysics Data System (ADS)
Ou, Jiaming; Du, Aimin; Finlay, Christopher C.
2017-05-01
Quasi-biennial oscillations (QBOs), with periods in the range 1-3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also of crucial importance in studies of rapid core field variations. In this paper, we document the global characteristics of the geomagnetic QBO, using ground-based data collected by geomagnetic observatories between 1985 and 2010, and reexamine the origin of the signals. Fast Fourier transform analysis of second-order derivatives of the geomagnetic X, Y, and Z components reveals salient QBO signals at periods of 1.3, 1.7, 2.2, 2.9, and 5.0 years, with the most prominent peak at 2.2 years. The signature of geomagnetic QBO is generally stronger in the X and Z components and with larger amplitudes on geomagnetically disturbed days. The amplitude of the QBO in the X component decreases from the equator to the poles, then shows a local maximum at subauroral and auroral zones. The QBO in the Z component enhances from low latitudes toward the polar regions. At high latitudes (poleward of 50°) the geomagnetic QBO exhibits stronger amplitudes during LT 00:00-06:00, depending strongly on the geomagnetic activity level, while at low latitudes the main effect is in the afternoon sector. These results indicate that the QBOs at low-to-middle latitudes and at high latitudes are influenced by different magnetospheric and ionospheric current systems. The characteristics of the multiple peaks in the QBO range are found to display similar latitudinal and local time distributions, suggesting that these oscillations are derived from a common source. The features, including the strong amplitudes seen on disturbed days and during postmidnight sectors, and the results from spherical harmonic analysis, verify that the majority of geomagnetic QBO is of external origin. We furthermore find a very high correlation between the geomagnetic QBO and the QBOs in solar wind speed and solar wind dynamic pressure. This suggests the geomagnetic QBO primarily originates from the current systems due to the solar wind-magnetosphere-ionosphere coupling process.
ERIC Educational Resources Information Center
Molfenter, Sonja M.; Steele, Catriona M.
2014-01-01
Purpose: Traditional methods for measuring hyoid excursion from dynamic videofluoroscopy recordings involve calculating changes in position in absolute units (mm). This method shows a high degree of variability across studies but agreement that greater hyoid excursion occurs inmen than in women. Given that men are typically taller than women, the…
Stanley, Steven M.
2010-01-01
Conspicuous global stable carbon isotope excursions that are recorded in marine sedimentary rocks of Phanerozoic age and were associated with major extinctions have generally paralleled global stable oxygen isotope excursions. All of these phenomena are therefore likely to share a common origin through global climate change. Exceptional patterns for carbon isotope excursions resulted from massive carbon burial during warm intervals of widespread marine anoxic conditions. The many carbon isotope excursions that parallel those for oxygen isotopes can to a large degree be accounted for by the Q10 pattern of respiration for bacteria: As temperature changed along continental margins, where ∼90% of marine carbon burial occurs today, rates of remineralization of isotopically light carbon must have changed exponentially. This would have reduced organic carbon burial during global warming and increased it during global cooling. Also contributing to the δ13C excursions have been release and uptake of methane by clathrates, the positive correlation between temperature and degree of fractionation of carbon isotopes by phytoplankton at temperatures below ∼15°, and increased phytoplankton productivity during “icehouse” conditions. The Q10 pattern for bacteria and climate-related changes in clathrate volume represent positive feedbacks for climate change. PMID:21041682
Verster, Joris C; Mooren, Loes; Bervoets, Adriana C; Roth, Thomas
2017-10-24
The primary outcome measure of the on-road driving test is the Standard Deviation of Lateral Position. However, other outcome measures, such as lapses and excursions out-of-lane, also need to be considered as they may be related to crash risk. The aim of this study was to determine the direction of lapses and excursions out-of-lane (i.e. towards/into the adjacent traffic lane or towards/into the road shoulder). In total, data from 240 driving tests were re-analysed, and 628 lapses and 401 excursions out-of-lane were identified. The analyses revealed that lapses were made equally frequently over left (49.4%) and over right (43.3%). In contrast, excursions out-of-lane were almost exclusively directed over right into the (safer) road shoulder (97.3%). These findings suggest that drivers are unaware of having lapses, whereas excursions out-of-lane are events where the driver is aware of loss of vehicle control. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
On the Slow time Geomagnetic field Modulation of Cosmic Rays
NASA Astrophysics Data System (ADS)
Okpala, K. C.; Egbunu, F.
2016-12-01
Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (CRdiff)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.
NASA Astrophysics Data System (ADS)
Cuttler, S. W.; Love, J. J.; Swidinsky, A.
2017-12-01
Geomagnetic field data obtained through the INTERMAGNET program are convolved with four validated EarthScope USArray impedances to estimate the geoelectric variations throughout the duration of a geomagnetic storm. A four day long geomagnetic storm began on June 22, 2016, and was recorded at the Brandon (BRD), Manitoba and Fredericksburg (FRD), Virginia magnetic observatories over four days. Two impedance tensors corresponding to each magnetic observatory produce extremely different responses, despite being within close geographical proximity. Estimated time series of the geoelectric field throughout the duration of the geomagnetic storm were calculated, providing an understanding of how the geoelectric field differs across small geographic distances within the same geomagnetic hazard zones derived from prior geomagnetic hazard assessment. We show that the geoelectric response of two sites within 200km of one another can differ by up to two orders of magnitude (4245 mV/km at one location and 38 mV/km at another location 125km away). In addition, we compare these results with estimations of the geoelectric field generated from synthetic 1-dimensional resistivity models commonly used to represent large geographic regions when assessing geomagnetically induced current (GIC) hazards. This comparison shows that estimations of the geomagnetic field from these models differ greatly from estimations produced from Earthscope USArray sites (1205 mV/km in the 1D and 4245 mV/km in the 3D case in one example). This study demonstrates that the application of uniform 1-dimensional resistivity models of the subsurface to wide geographic regions is insufficient to predict the geoelectric hazard at a given location. Furthermore an evaluation of the 3-dimensional resistivity distribution at a given location is necessary to produce a reliable estimation of how the geoelectric field evolves over the course of a geomagnetic storm.
Nonlinear Behavior of the Geomagnetic Fluctuations Recorded in Different Geomagnetic Latitudes
NASA Astrophysics Data System (ADS)
Kovacs, P.; Heilig, B.; Koppan, A.; Vadasz, G.; Echim, M.
2014-12-01
The paper concerns with the nonlinear properties of geomagnetic variations recorded in different geomagnetic latitudes, in the years of solar maximum and minimum. For the study, we use the geomagnetic time-series recorded by some of the stations of the EMMA quasi-meridional magnetometer network, established for pulsation study, in September 2001. The stations are located approx. along the magnetic meridian of 100 degree, and the sampling frequency of the series is 1 Hz. It is argued that the geomagnetic field exhibits nonlinear intermittent fluctuations in certain temporal scale range. For quantitatively investigating the scaling ranges and the variation of intermittent properties with latitude and time, we analyse the higher order moments of the time records (probability density function or structure function analyses). The multifractal or self-similar scaling of the fluctuations is investigated via the fitting of the P model to structure function scaling exponents. We also study the power-law behaviour of the power-spectral density functions of the series in order to evaluate the possible inertial frequency (and temporal) range of the geomagnetic field and compare them with the scaling ranges of structure functions. The range where intermittent geomagnetic variation is found falls typically between 100 and 20.000 s, i.e. covers the temporal range of the main phases of geomagnetic storms. It is shown that the intensity of intermittent fluctuations increases from solar minimum to solar maximum. The expected increase in the level of intermittency with the geomagnetic latitude can be evidenced only in the years of solar minimum. The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n° 313038/STORM.
Daily variation characteristics at polar geomagnetic observatories
NASA Astrophysics Data System (ADS)
Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.
2011-08-01
This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.
Effect of local and global geomagnetic activity on human cardiovascular homeostasis.
Dimitrova, Svetla; Stoilova, Irina; Yanev, Toni; Cholakov, Ilia
2004-02-01
The authors investigated the effects of local and planetary geomagnetic activity on human physiology. They collected data in Sofia, Bulgaria, from a group of 86 volunteers during the periods of the autumnal and vernal equinoxes. They used the factors local/planetary geomagnetic activity, day of measurement, gender, and medication use to apply a four-factor multiple analysis of variance. They also used a post hoc analysis to establish the statistical significance of the differences between the average values of the measured physiological parameters in the separate factor levels. In addition, the authors performed correlation analysis between the physiological parameters examined and geophysical factors. The results revealed that geomagnetic changes had a statistically significant influence on arterial blood pressure. Participants expressed this reaction with weak local geomagnetic changes and when major and severe global geomagnetic storms took place.
NASA Astrophysics Data System (ADS)
Holappa, L.; Mursula, K.
2017-12-01
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSSs) are the most important large-scale solar wind structures driving geomagnetic activity. It is well known that CMEs cause the strongest geomagnetic storms, while HSSs drive mainly moderate or small storms. Here we study the spatial-temporal distribution of geomagnetic activity at annual resolution using local geomagnetic indices from a wide range of latitudes in 1966-2014. We show that the overall contribution of HSSs to geomagnetic activity exceeds that of CMEs at all latitudes. Only in a few sunspot maximum years CMEs have a comparable contribution to HSSs. While the relative contribution of HSSs maximizes at high latitudes, the relative contribution of CMEs maximizes at subauroral and low latitudes. We show that this is related to different latitudinal distribution of CME and HSS-driven substorms. We also show that the contributions of CMEs and HSSs to annual geomagnetic activity are highly correlated with the intensity of the interplanetary magnetic field and the solar wind speed, respectively. Thus, a very large fraction of the long-term variability in annual geomagnetic activity is described only by the variation of IMF strength and solar wind speed.
NASA Astrophysics Data System (ADS)
Liu, Lianguang; Ge, Xiaoning; Zong, Wei; Zhou, You; Liu, Mingguang
2016-10-01
To study the impact of geomagnetic storm on the equipment of traction electrification system in the high-speed railway, geomagnetically induced current (GIC) monitoring devices were installed in the Hebi East traction power supply substation of the Beijing-Hong Kong Dedicated Passenger Line in January 2015, and GICs were captured during the two geomagnetic storms on 17 March and 23 June 2015. In order to investigate the GIC flow path, both in the track circuit and in the traction network adopting the autotransformer feeding system, a GIC monitor plan was proposed for the electrical system in the Hebi East traction power supply substation. This paper analyzes the correlation between the GIC captured on 17 March and the geomagnetic data obtained from the Malingshan Geomagnetic Observatory and presents a regression analysis between the measured GIC and the calculated geoelectric fields on 23 June in the high-speed railway. The maximum GICs measured in the track circuit are 1.08 A and 1.74 A during the two geomagnetic storms. We find that it is necessary to pay attention on the throttle transformers and track circuits, as the most sensitive elements responding to the extreme geomagnetic storms in the high-speed railway.
Improved geomagnetic referencing in the Arctic environment
Poedjono, B.; Beck, N.; Buchanan, A. C.; Borri, L.; Maus, S.; Finn, Carol; Worthington, E. William; White, Tim
2016-01-01
Geomagnetic referencing uses the Earth’s magnetic field to determine accurate wellbore positioning essential for success in today's complex drilling programs, either as an alternative or a complement to north-seeking gyroscopic referencing. However, fluctuations in the geomagnetic field, especially at high latitudes, make the application of geomagnetic referencing in those areas more challenging. Precise crustal mapping and the monitoring of real-time variations by nearby magnetic observatories is crucial to achieving the required geomagnetic referencing accuracy. The Deadhorse Magnetic Observatory (DED), located at Prudhoe Bay, Alaska, has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate, real-time data to the oilfield drilling industry. Geomagnetic referencing is enhanced with real-time data from DED and other observatories, and has been successfully used for accurate wellbore positioning. The availability of real-time geomagnetic measurements leads to significant cost and time savings in wellbore surveying, improving accuracy and alleviating the need for more expensive surveying techniques. The correct implementation of geomagnetic referencing is particularly critical as we approach the increased activity associated with the upcoming maximum of the 11-year solar cycle. The DED observatory further provides an important service to scientific communities engaged in studies of ionospheric, magnetospheric and space weather phenomena.
Geomagnetically Induced Currents: Principles
NASA Astrophysics Data System (ADS)
Oliveira, Denny M.; Ngwira, Chigomezyo M.
2017-10-01
The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.
The Development of a Dynamic Geomagnetic Cutoff Rigidity Model for the International Space Station
NASA Technical Reports Server (NTRS)
Smart, D. F.; Shea, M. A.
1999-01-01
We have developed a computer model of geomagnetic vertical cutoffs applicable to the orbit of the International Space Station. This model accounts for the change in geomagnetic cutoff rigidity as a function of geomagnetic activity level. This model was delivered to NASA Johnson Space Center in July 1999 and tested on the Space Radiation Analysis Group DEC-Alpha computer system to ensure that it will properly interface with other software currently used at NASA JSC. The software was designed for ease of being upgraded as other improved models of geomagnetic cutoff as a function of magnetic activity are developed.
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments. PMID:28747884
NASA Astrophysics Data System (ADS)
Babayev, Elchin S.; Allahverdiyeva, Aysel A.
There are collaborative and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences conducted with purposes of revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems. This paper describes some results of the experimental studies of influence of the periodical and aperiodical changes of geomagnetic activity upon human brain, human health and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe geomagnetic storms of the solar cycle 23 on the mentioned systems in middle-latitude location. It is experimentally established that weak and moderate geomagnetic storms do not cause significant changes in the brain's bioelectrical activity and exert only stimulating influence while severe disturbances of geomagnetic conditions cause negative influence, seriously disintegrate brain's functionality, activate braking processes and amplify the negative emotional background of an individual. It is concluded that geomagnetic disturbances affect mainly emotional and vegetative spheres of human beings while characteristics reflecting personality properties do not undergo significant changes.
Study of Proton cutoffs during geomagnetically disturbed times
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.
2005-12-01
It is currently believed that solar energetic particles (SEP) may be accelerated at solar flares and/or at interplanetary shocks driven by coronal mass ejections (CMEs). CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted.SEP fluxes penetrate the terrestrial magnetosphere and reach specific regions depending upon the geomagnetic field configuration. The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity (momentum per unit charge) arriving from a given direction cannot penetrate. SEP cutoff location can therefore be potentially useful in determining the geomagnetic field configuration. This paper reports on the measurements of solar energetic proton cutoffs made by two satellites, SAMPEX and Polar during geomagnetically disturbed times. We study select SEP events and compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field. The measured SEP proton cutoffs cover a wide range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET detctor onboard SAMPEX.
Fast directional changes in the geomagnetic field recovered from archaeomagnetism of ancient Israel
NASA Astrophysics Data System (ADS)
Shaar, R.; Hassul, E.; Raphael, K.; Ebert, Y.; Marco, S.; Nowaczyk, N. R.; Ben-Yosef, E.; Agnon, A.
2017-12-01
Recent archaeomagnetic intensity data from the Levant revealed short-term sub-centennial changes in the geomagnetic field such as `archaeomagnetic jerks' and `geomagnetic spikes'. To fully understand the nature of these fast variations a complementary high-precision time-series of geomagnetic field direction is required. To this end we investigated 35 heat impacted archaeological objects from Israel, including cooking ovens, furnaces, and burnt walls. We combine the new dataset with previously unpublished data and construct the first archaeomagnetic compilation of Israel which, at the moment, consists of a total of 57 directions. Screening out poor quality data leaves 30 acceptable archaeomagnetic directions, 25 of which spanning the period between 1700 BCE to 400 BCE. The most striking result of this dataset is a large directional anomaly with deviation of 20°-25° from geocentric axial dipole direction during the 9th century BCE. This anomaly in field direction is contemporaneous with the Levantine Iron Age Anomaly (LIAA) - a local geomagnetic anomaly over the Levant that was characterized by a high averaged geomagnetic field (nearly twice of today's field) and short decadal-scale geomagnetic spikes.
The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas
NASA Technical Reports Server (NTRS)
Mather, J. W.; Ahluwalia, H. S.
1988-01-01
The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.
Geomagnetic Field During a Reversal
NASA Technical Reports Server (NTRS)
Heirtzler, J. R.
2003-01-01
It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.
THE COSMIC RAY EQUATOR AND THE GEOMAGNETISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, K.
1960-01-01
It was formerly thought that the disagreement of the position of geomagnetic dipole equator with that of the cosmic ray equator was caused by 45 deg westward shifting of the latter. Referring to the theory of geomagnetic effect on cosmic rays, it was determined whether such westward shifting could be existent or not. It was found that the deviation of the cosmic ray equator from the geomagnetic dipole equator is negligible even if the magnetic cavity is present around the earth's outer atmosphere. Taking into account such results, the origin of the cosmic ray equator was investigated. It was foundmore » that this equater could be produced by the higher harmonic components combined with the dipole component of geomagnetism. The relation of the origin of the cosmic ray equater to the eccentric dipoles, near the outer pant of the earth's core, contributing to the secular variation of geomagnetism was considered. (auth)« less
Lagged association between geomagnetic activity and diminished nocturnal pain thresholds in mice.
Galic, M A; Persinger, M A
2007-10-01
A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Pratt, L. M.
2004-12-01
Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by the ocean, vegetation, and soil reservoirs. Ten to twenty five-year cycles of drought and fire are not recorded as individual excursions in the soil reservoir as the rate of transfer between the vegetation and soil reservoirs homogenizes the signal. A wildfire-modeled excursion does not propagate a geologically significant excursion through time. Combustion of a peat reservoir is necessary to drive and validate a geologically and isotopically significant excursion. Assuming 0.5% of the standing early Cretaceous peat reservoir is consumed by fire for each year for ten years coupled with the earlier scenario, the atmospheric CO2 increases from 2.0 to 3.1x P.A.L., atmosphere, vegetation, and the surface ocean record a negative carbon isotope excursion of -5.1 ‰ , -3.8 ‰ and -1.8 ‰ respectively, with a duration of 741 years. Increasing the size of the vegetation reservoir translates the excursions from the centennial to millennial scale. For example, doubling the vegetation reservoir (from 1.4 to 2.8E+16 gC) for a 25 year global peat conflagration (0.5% combusted each year) results in a CO2 increase from 2.0 to 4.0x P.A.L., and the atmosphere, vegetation, and the surface ocean reservoirs with a negative carbon isotope excursion of -5.7 ‰ , -8.7 ‰ and -2.3 ‰ respectively. Addition of carbonaceous aerosols (black carbon and polycyclic aromatic hydrocarbons) to pelagic marine sediments could potentially serve as a high-resolution record of ancient fires and firmly tie isotopic shifts to paleofires.
Assessment of vertical excursions and open-sea psychological performance at depths to 250 fsw.
Miller, J W; Bachrach, A J; Walsh, J M
1976-12-01
A series of 10 two-man descending vertical excursion dives was carried out in the open sea from an ocean-floor habitat off the coast of Puerto Rico by four aquanauts saturated on a normoxic-nitrogen breathing mixture at a depth of 106 fsw. The purpose of these dives was two-fold: to validate laboratory findings with respect to decompression schedules and to determine whether such excursions would produce evidence of adaptation to nitrogen narcosis. For the latter, tests designed to measure time estimation, short-term memory, and auditory vigilance were used. The validation of experimental excursion tables was carried out without incidence of decompression sickness. Although no signs of nitrogen narcosis were noted during testing, all subjects made significantly longer time estimates in the habitat and during the excursions than on the surface. Variability and incomplete data prevented a statistical analysis of the short-term memory results, and the auditory vigilance proved unusable in the water.
Human risk factors associated with pilots in runway excursions.
Chang, Yu-Hern; Yang, Hui-Hua; Hsiao, Yu-Jung
2016-09-01
A breakdown analysis of civil aviation accidents worldwide indicates that the occurrence of runway excursions represents the largest portion among all aviation occurrence categories. This study examines the human risk factors associated with pilots in runway excursions, by applying a SHELLO model to categorize the human risk factors and to evaluate the importance based on the opinions of 145 airline pilots. This study integrates aviation management level expert opinions on relative weighting and improvement-achievability in order to develop four kinds of priority risk management strategies for airline pilots to reduce runway excursions. The empirical study based on experts' evaluation suggests that the most important dimension is the liveware/pilot's core ability. From the perspective of front-line pilots, the most important risk factors are the environment, wet/containment runways, and weather issues like rain/thunderstorms. Finally, this study develops practical strategies for helping management authorities to improve major operational and managerial weaknesses so as to reduce the human risks related to runway excursions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The metatarsosesamoid joint: an in vitro 3D quantitative assessment.
Jamal, Bilal; Pillai, Anand; Fogg, Quentin; Kumar, Senthil
2015-03-01
The anatomy of the first metatarsophalangeal (MTP) joint, particularly the metatarsosesamoid articulation, remains poorly understood. Our goal was to quantitatively define the excursion of the sesamoids. Seven cadavers were dissected to assess the articulating surfaces throughout a normal range of motion. The dissections were digitally reconstructed in various positions using a MicroScribe. For first MTP joint, excursion averaged 14.7mm for the tibial sesamoid in the sagittal plane and 7.5mm for the fibular sesamoid. The sesamoids also moved medially to laterally when the joint was dorsiflexed. For the maximally dorsiflexed joint, excursion averaged 2.8mm for the tibial sesamoid and 3.5mm for the fibular sesamoid. Hallucal sesamoids appear to have differential tracking: the tibial sesamoid has greater longitudinal excursion; the fibular sesamoid has greater lateral excursion. The anatomical data will interest those involved with the design of an effective hallux arthroplasty. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
The Geoeffectiveness of ICMEs from 1996 to 2013
NASA Astrophysics Data System (ADS)
Shen, C.; Chi, Y.; Wang, Y.; Wang, S.; Ye, P.
2015-12-01
In a previous study (Chi et al. (2015)), we have established interplanetary coronal mass ejections (ICMEs) catalogue in the near earth solar wind from 1996 to 2013. ICMEs are the predominant drivers of intense geomagnetic storms. In this paper we study the geoeffectiveness of ICMEs based on the ICME catalogue and the Dst indices the geoeffectiveness of ICMEs during 1996-2013. Based on the different in situ observation signatures, all ICMEs (338 events) are divided into three types of: isolated ICMEs (I-ICMEs), multiple ICMEs (M-ICMEs) and shock-embedded ICMEs (S-ICMEs). We find that about 58% of ICMEs caused geomagnetic storms with Dst_min <-30nT. Meanwhile, about 21% of ICMEs caused intense geomagnetic storms and almost all the intense geomagnetic storms are caused by the ICMEs. It also find that the south component of the magnetic field (Bs), the solar wind velocity (V) and the dawn-dust electric field Ey=VxBs are most important parameters in determine the geoeffectiveness of the ICMEs. We further get the critical values of these parameters of the ICMEs which can be used to determine whether a ICME can cause a geomagnetic storm. During solar cycle 24th, there are extremely low number of geomagnetic storms by the reason that the number of strong ICMEs arrived at the Earth is small. The S-ICMEs structures can cause the geomagnetic storms especially intense geomagnetic storms with high possibility. It statistically show the result that the S-ICMEs are important sources of the geomagnetic storms especially for intense storms.
NASA Astrophysics Data System (ADS)
Rivera, Tiffany A.; Darata, Rachel; Lippert, Peter C.; Jicha, Brian R.; Schmitz, Mark D.
2017-12-01
Small-volume rhyolitic eruptions preceding and following a caldera-forming eruption can provide insights into the tempo of eruption cycles and timing of magmatic recharge. In this contribution, high-precision 40Ar/39Ar eruption ages were obtained on the three effusive eruptions bracketing the Huckleberry Ridge Tuff, which comprise Yellowstone's first volcanic cycle. These dates are supplemented with detailed paleomagnetic and rock magnetic analyses to resolve discrepancies with previous reported stratigraphy. The Huckleberry Ridge Tuff (2.08 Ma) was preceded by an eruption at 2.14 Ma, and followed by eruptions at 1.98 and 1.95 Ma, all of which occurred during four distinct periods of geomagnetic instability within the Matuyama chron. The first volcanic cycle of Yellowstone has now been constrained to within a 200 kyr timespan, or half of the previously proposed duration, and similar to the duration of volcanic activity for caldera-forming systems in the Jemez Volcanic Field. The maximum duration for magmatic recharge for the first Yellowstone volcanic cycle is no greater than 100 kyr, and likely closer to 40 kyr. Furthermore, the combined 40Ar/39Ar eruption ages and paleomagnetic results provide polarity anchors for the Pre-Olduvai excursion and Olduvai subchron, which are often used as tie-points in studies of early Pleistocene hominin evolution.
NASA Astrophysics Data System (ADS)
Pattisahusiwa, Asis; Houw Liong, The; Purqon, Acep
2016-08-01
In this study, we compare two learning mechanisms: outliers and novelty detection in order to detect ionospheric TEC disturbance by November 2004 geomagnetic storm and January 2005 substorm. The mechanisms are applied by using v-SVR learning algorithm which is a regression version of SVM. Our results show that both mechanisms are quiet accurate in learning TEC data. However, novelty detection is more accurate than outliers detection in extracting anomalies related to geomagnetic events. The detected anomalies by outliers detection are mostly related to trend of data, while novelty detection are associated to geomagnetic events. Novelty detection also shows evidence of LSTID during geomagnetic events.
Head Excursion of Restrained Human Volunteers and Hybrid III Dummies in Steady State Rollover Tests
Moffatt, Edward; Hare, Barry; Hughes, Raymond; Lewis, Lance; Iiyama, Hiroshi; Curzon, Anne; Cooper, Eddie
2003-01-01
Seatbelts provide substantial benefits in rollover crashes, yet occupants still receive head and neck injuries from contacting the vehicle roof interior when the roof exterior strikes the ground. Prior research has evaluated rollover restraint performance utilizing anthropomorphic test devices (dummies), but little dynamic testing has been done with human volunteers to learn how they move during rollovers. In this study, the vertical excursion of the head of restrained dummies and human subjects was measured in a vehicle being rotated about its longitudinal roll axis at roll rates from 180-to-360 deg/sec and under static inversion conditions. The vehicle’s restraint design was the commonly used 3-point seatbelt with continuous loop webbing and a sliding latch plate. This paper presents an analysis of the observed occupant motion and provides a comparison of dummy and human motion under similar test conditions. Thirty-five tests (eighteen static and seventeen dynamic) were completed using two different sizes of dummies and human subjects in both near and far-side roll directions. The research indicates that far-side rollovers cause the restrained test subjects to have greater head excursion than near-side rollovers, and that static inversion testing underestimates head excursion for far-side occupants. Human vertical head excursion of up to 200 mm was found at a roll rate of 220 deg/sec. Humans exhibit greater variability in head excursion in comparison to dummies. Transfer of seatbelt webbing through the latch plate did not correlate directly with differences in head excursion. PMID:12941241
Cramer, Bradley D.; Saltzman, Matthew R.; Day, J.E.; Witzke, B.J.
2008-01-01
Latest Famennian marine carbonates from the mid-continent of North America were examined to investigate the Late Devonian (very late Famennian) Hangenberg positive carbon-isotope (??13 Ccarb) excursion. This global shift in the ?? 13C of marine waters began during the late Famennian Hangenberg Extinction Event that occurred during the Middle Siphonodella praesulcata conodont zone. The post-extinction recovery interval spans the Upper S. praesulcata Zone immediately below the Devonian-Carboniferous boundary. Positive excursions in ?? 13 Ccarb are often attributed to the widespread deposition of organic-rich black shales in epeiric sea settings. The Hangenberg ??13 Ccarb excursion documented in the Louisiana Limestone in this study shows the opposite trend, with peak ??13 Ccarb values corresponding to carbonate production in the U.S. mid-continent during the highstand phase of the very late Famennian post-glacial sea level rise. Our data indicate that the interval of widespread black shale deposition (Hangenberg Black Shale) predates the peak isotope values of the Hangenberg ??13 Ccarb excursion and that peak values of the Hangenberg excursion in Missouri are not coincident with and cannot be accounted for by high Corg burial in epeiric seas. We suggest instead that sequestration and burial of Corg in the deep oceans drove the peak interval of the ??13Ccarb excursion, as a result of a change in the site of deep water formation to low-latitude epeiric seas as the global climate shifted between cold and warm states.
Engaging students in research learning experiences through hydrology field excursions and projects
NASA Astrophysics Data System (ADS)
Ewen, T.; Seibert, J.
2014-12-01
One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. In the field projects, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. In one of the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, which also allows students to retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. With in-house film expertise, these field excursions were also filmed and short virtual excursions were produced, which we plan to use in a large introductory course, exposing students to field research at an early stage.
Geophysics: A reversal of geomagnetic polarity
Mankinen, Edward A.
1986-01-01
The detailed behaviour of the geomagnetic field during reversals is documented by palaeomagnetists to constrain models of the geomagnetic dynamo. Reversals are studied by measuring the magnetic remanence preserved in rocks to obtain both the direction and intensity of the ancient magnetic field.
What are the evidences of solar activity influence on coronary heart disease?
NASA Astrophysics Data System (ADS)
Gurfinkel, Yury; Breus, Tamara
Researches of last two decades have shown that the cardiovascular system represents the most probable target for influence of helio - and geomagnetic activity. Both cardiovascular system and blood connect very closely: one system cannot exist without another. For the same reason the effects perceived by one system, are easily transferred to another. Laboratory tests as blood coagulation, platelet aggregation, and capillary blood velocity performed in our hospital in patients suffering from coronary heart disease (CHD) revealed a high their dependence on a level of geomagnetic activity (Gurfinkel et al., 1995, 1998). Later Gmitrov and Ohkubo (2002) in experiments on animals also found a significant negative correlation between geomagnetic field disturbances and capillary blood velocity. The analyzing data collected by the Moscow ambulance services covering more then one million observations over three years, cleaned up by seasonal effects of meteorological and social causes, showed that the number of cases of myocardial infarction increased during geomagnetic storms (Breus et al., 1995). During 14 years we collected more than 25000 cases of acute myocardial infarction and brain stroke at seven medical hospitals located in Russia, China and some other countries. We used only cases with established date of acute attack of diseases. Undated cases were excluded from the analysis. Average numbers of patients on geomagnetic active days and days with quiet geomagnetic condition were compared. It was shown statistically that during geomagnetic disturbances the frequency of myocardial infarction and brain stroke cases increased on the average by a factor of two in comparison with quiet geomagnetic conditions. These results are close to results obtained by (Stoupel, 1999), for patients suffering with acute cardiological pathology. Our recent study (with L.Parfeonova) revealed the relation between heart ventricular ectopic activity (VEA) and geomagnetic conditions in patients with CHD. On the average 1995 episodes of VEA having on one patient within 24 hours have been revealed in patients, whose records coincided with the periods of geomagnetic storms and 1440 VEA episodes for active conditions. Minimal quantity of VEA episodes was found for unsettled condition: 394. In a quiet geomagnetic condition VEA episodes appeared more often than in periods of unsettled condition: 1109, in comparison with. VEA episodes between groups of the patients coincided with periods of geomagnetic storms and unsettled geomagnetic conditions with statistical significance (p<0,05). Our investigations show the red blood cells are very sensitive to electromagnetic forces. Most probable that geomagnetic fluctuations (frequency) acting on blood, brain, adrenals involves the adaptation system. This leads to increasing a level of catecholamines in blood responsible for activation of the clotting system, rise in aggregation and spasm in the afferent vessels of the microcirculatory network. In persons suffering from CHD, the foreground problem is the reversibility of these pathological processes. Gurfinkel Yu.I. et al. The effect of geomagnetic disturbances in capillary blood flow in ischemic heart disease patients. // Biophysics. V.40, No 4, pp. 793-799, 1995. Gmitrov and C. Ohkubo (2002) Bioelectromagnetics 23:531-541. Breus, T.K., Halberg, F., and Cornelissen, G., Biological Effects of Solar Activity, Biofizika,1995, vol. 40, no. 4. Stoupel, E. Effect of geomagnetic activity on cardiovascular parameters. J.Clin. Basic Cardiol. 2, 34-40, 1999.
Investigation of geomagnetic induced current at high latitude during the storm-time variation
NASA Astrophysics Data System (ADS)
Falayi, E. O.; Ogunmodimu, O.; Bolaji, O. S.; Ayanda, J. D.; Ojoniyi, O. S.
2017-06-01
During the geomagnetic disturbances, the geomagnetically induced current (GIC) are influenced by the geoelectric field flowing in conductive Earth. In this paper, we studied the variability of GICs, the time derivatives of the geomagnetic field (dB/dt), geomagnetic indices: Symmetric disturbance field in H (SYM-H) index, AU (eastward electrojet) and AL (westward electrojet) indices, Interplanetary parameters such as solar wind speed (v), and interplanetary magnetic field (Bz) during the geomagnetic storms on 31 March 2001, 21 October 2001, 6 November 2001, 29 October 2003, 31 October 2003 and 9 November 2004 with high solar wind speed due to a coronal mass ejection. Wavelet spectrum based approach was employed to analyze the GIC time series in a sequence of time scales of one to twenty four hours. It was observed that there are more concentration of power between the 14-24 h on 31 March 2001, 17-24 h on 21 October 2001, 1-7 h on 6 November 2001, two peaks were observed between 5-8 h and 21-24 h on 29 October 2003, 1-3 h on 31 October 2003 and 18-22 h on 9 November 2004. Bootstrap method was used to obtain regression correlations between the time derivative of the geomagnetic field (dB/dt) and the observed values of the geomagnetic induced current on 31 March 2001, 21 October 2001, 6 November 2001, 29 October 2003, 31 October 2003 and 9 November 2004 which shows a distributed cluster of correlation coefficients at around r = -0.567, -0.717, -0.477, -0.419, -0.210 and r = -0.488 respectively. We observed that high energy wavelet coefficient correlated well with bootstrap correlation, while low energy wavelet coefficient gives low bootstrap correlation. It was noticed that the geomagnetic storm has a influence on GIC and geomagnetic field derivatives (dB/dt). This might be ascribed to the coronal mass ejection with solar wind due to particle acceleration processes in the solar atmosphere.
Relationship Between Human Physiological Parameters And Geomagnetic Variations Of Solar Origin
NASA Astrophysics Data System (ADS)
Dimitrova, S.
This study attempts to assess the influence of increased geomagnetic activity on some human physiological parameters. The blood pressure, heart rate and general well-being of 86 volunteers were measured (the latter by means of a standardized questionnaire) on work days in autumn 2001 (01/10 to 09/11) and in spring 2002 (08/04 to 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether, 2799 recordings were obtained and analysed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The three factors were the following: 1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; 2) gender - males and females; 3) blood pressure degree - persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure reached 9%, which deserves attention from a medical point of view. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase. During severe geomagnetic storms 30% of the persons examined reported subjective complaints and the highest sensitivity was revealed for the hypertensive females. The results obtained add further evidence that blood pressure seems to be affected by geomagnetic variations of solar origin. The examinations and analyses performed show that space weather prediction may be utilized for the purpose of pharmacological and regime measures to limit the adverse physiological reactions to geomagnetic storms.
Do migratory flight paths of raptors follow constant geographical or geomagnetic courses?
Thorup, K.; Fuller, M.; Alerstam, T.; Hake, M.; Kjellen, N.; Strandberg, R.
2006-01-01
We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.
Are migrating raptors guided by a geomagnetic compass?
Thorup, Kasper; Fuller, Mark R.; Alerstam, T.; Hake, M.; Kjellen, N.; Standberg, R.
2006-01-01
We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.
Halford, Alexa J.; Fraser, Brian J; Morley, Steven Karl; ...
2016-06-08
As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. Here we showmore » that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. Then in this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts.« less
Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.
Azcárate, T; Mendoza, B
2017-09-01
We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halford, Alexa J.; Fraser, Brian J; Morley, Steven Karl
As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. Here we showmore » that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. Then in this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts.« less
Influence of geomagnetic activity and atmospheric pressure in hypertensive adults
NASA Astrophysics Data System (ADS)
Azcárate, T.; Mendoza, B.
2017-09-01
We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.
Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years,
1981-02-09
movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8
On the watch for geomagnetic storms
Green, Arthur W.; Brown, William M.
1997-01-01
Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.
The Geomagnetic Field During a Reversal
NASA Technical Reports Server (NTRS)
Heirtzler, James R.
2003-01-01
By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.
2017-08-01
We conducted geomagnetically conjugate observations of 630-nm airglow for a midnight brightness wave (MBW) at Kototabang, Indonesia [geomagnetic latitude (MLAT): 10.0°S], and Chiang Mai, Thailand (MLAT: 8.9°N), which are geomagnetically conjugate points at low latitudes. An airglow enhancement that was considered to be an MBW was observed in OI (630-nm) airglow images at Kototabang around local midnight from 2240 to 2430 LT on February 7, 2011. This MBW propagated south-southwestward, which is geomagnetically poleward, at a velocity of 290 m/s. However, a similar wave was not observed in the 630-nm airglow images at Chiang Mai. This is the first evidence of an MBW that does not have geomagnetic conjugacy, which also implies generation of MBW only in one side of the hemisphere from the equator. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the wave was observed. This indicates that the observed MBW was generated by the poleward winds which push ionospheric plasma down along geomagnetic field lines, thereby increasing the 630-nm airglow intensity. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai. We suggest that the polarization electric field inside the observed MBW is projected to the northern hemisphere, causing the small height increase observed at Chiang Mai. This implies that electromagnetic coupling between hemispheres can occur even though the original disturbance is caused purely by the neutral wind.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Mendes, Odim; Oliveira Domingues, Margarete; Echer, Ezequiel; Hajra, Rajkumar; Everton Menconi, Varlei
2017-08-01
Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975-2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere-ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.
Geomagnetic storms of cycle 24 and their solar sources
NASA Astrophysics Data System (ADS)
Watari, Shinichi
2017-05-01
Solar activity of cycle 24 following the deep minimum between cycle 23 and cycle 24 is the weakest one since cycle 14 (1902-1913). Geomagnetic activity is also low in cycle 24. We show that this low geomagnetic activity is caused by the weak dawn-to-dusk solar wind electric field ( E d-d) and that the occurrence rate of E d-d > 5 mV/m decreased in the interval from 2013 to 2014. We picked up seventeen geomagnetic storms with the minimum Dst index of less than -100 nT and identified their solar sources in cycle 24 (2009-2015). It is shown that the relatively slow coronal mass ejections contributed to the geomagnetic storms in cycle 24.
Intense Geomagnetic Storms of Solar Cycle 24 and Associated Energetics
NASA Astrophysics Data System (ADS)
Rawat, R.; Echer, E.; Gonzalez, W. D.
2013-12-01
Solar cycle 24 commenced in November 2008 following a deep solar minimum. The solar activity picked up gradually and consequently led to increase in geomagnetic activity during the ascending phase of new cycle. From the start of this cycle till July 2013, only 12 intense geomagnetic storms (Dst < -100 nT) have occurred. We investigate the solar wind-interplanetary drivers for these intense geomagnetic storms using satellite data. Total energy Poynting flux (ɛ) representing the fraction of solar wind energy transferred into the magnetosphere during different storms will be calculated. Solar cycle 24 is weaker as compared to previous solar cycle (23). In this work, a comparative study of solar and geomagnetic signatures during the ascending phase of the two cycles will be carried out.
NASA Astrophysics Data System (ADS)
Buchan, K. L.; Ernst, R. E.; Kumarapeli, P. S.
2004-05-01
The Vendian-early Cambrian drift of Laurentia is important for theories of `Snowball Earth' and the continental breakup that formed the Iapetus Ocean. However, estimates of Laurentia's paleolatitude in this period differ widely. Some authors have proposed that Laurentia remained in low latitude throughout this period, whereas others have supported rapid drift of the continent from low to high and back to low latitude. To assist in evaluating these models, a paleomagnetic study was conducted on the mid Vendian Grenville dyke swarm of southeastern Laurentia. This 700 km long swarm was emplaced along the Ottawa graben, an aulacogen associated with rifting that preceded the opening of the Iapetus Ocean. The swarm was the subject of an early paleomagnetic study by Murthy (1971). More recently, U-Pb baddeleyite and zircon ages of ca. 590 Ma have been described for three Grenville dykes (Kamo et al. 1995). At one of these sites, on the `Mattawa' dyke, a positive paleomagnetic baked contact test was also reported (Hyodo and Dunlop 1993). In that detailed test thermoremanent overprinting in the zone of hybrid magnetization was shown to match that expected from heat conduction for a cooling dyke. Nevertheless, Hyodo and Dunlop suggested that the steep down remanence in the dyke, although primary, was likely acquired during a geomagnetic excursion because it did not appear to fit the then-available polar wander path. In our study, paleomagnetic sampling was carried out at 36 sites, including all three dated locations. A detailed analysis has been completed for the dated sites and preliminary analysis for the remaining sites. A stable steep down remanence was obtained for all samples in the Mattawa dyke, and in most samples from a second dated site. The third dated site is less stably magnetized and has not yielded a usable remanence direction. Ten additional sites yield stable steep down or occasionally steep up remanences. The presence of a steep remanence in two dated dykes and several others demonstrates that the remanence was not simply acquired during a short-term geomagnetic excursion. The positive baked contact test suggests that it is a primary remanence. If so, this would indicate that Laurentia was at high latitude 590 Ma ago. This would correspond to interpretations of steep magnetizations in the 577 Ma Callander Complex of the Ottawa graben (Symons and Chiasson 1991). However, other dykes in our study do not carry the steep down remanence. Six have an intermediate up WNW magnetization (or its reversal to the SE), suggesting that these dykes may not be 590 Ma in age. The WNW remanence is similar to that reported for the poorly-dated Buckingham volcanics of the Ottawa graben (Dankers and Lapointe 1981). Five additional sites carry other SE directions (both up and down) that are scattered along or near a great circle through the Mattawa and Buckingham volcanic directions, indicating that unresolved overprinting may have smeared the site directions. Therefore, caution should be exercised in interpreting the overall paleomagnetic data set until further U-Pb dating and paleomagnetic analysis have clarified whether more than one age of dyke swarm is present and whether significant overprinting has occurred. References: Dankers and Lapointe, 1981, Can. J. Earth Sci. 18: 1174; Hyodo and Dunlop, 1993, J. Geophys. Res. 98: 7997; Kamo, Krogh, and Kumarapeli, 1995, Can. J. Earth Sci. 32: 273; Murthy, 1971, Can. J. Earth Sci. 8: 802; Symons and Chiasson, 1991, Can. J. Earth Sci. 28: 355.
Comment on “Error made in reports of main field decay”
NASA Astrophysics Data System (ADS)
IAGA Working Group V-MOD on Geomagnetic Field Modeling,; Maus, Stefan; Macmillan, Susan
2004-09-01
As the International Association of Geomagnetism and Aeronomy (IAGA) Working Group on Geomagnetic Field Modeling (http://www.ngdc.noaa.gov/IAGA/vmod/), responsible for the International Geomagnetic Reference Field (IGRF) [Macmillan et al., 2003], we would like to comment on the Forum article by Wallace H.Campbell (Eos,85(16),20 April 2004). Campbell claims that reports of dipole decay at a special session held at the AGU 2003 Fall Meeting were misleading due to an incorrect choice of the coordinate system for the spherical harmonic analysis (SHA) of the geomagnetic field used for the IGRF the model on which the decay calculation was based.Campbell alleges that the dipole moment of a spherical harmonic expansion depends on the choice of the origin of the coordinate system. In his textbook on geomagnetism, Campbell goes one step further in asserting that, without changing the origin, the process of “tilting the analysis axis to align with the geomagnetic axis…would enhance the dipole term at the expense of the higher multipoles” [Campbell, 2003].
Geomagnetic Workshop, Canberra
NASA Astrophysics Data System (ADS)
Barton, C. E.; Lilley, F. E. M.; Milligan, P. R.
On May 14-15, 1985, 63 discerning geomagnetists flocked to Canberra to attend the Geomagnetic Workshop coorganized by the Australian Bureau of Mineral Resources (BMR) and the Research School of Earth Sciences, Australian National University (ANU). With an aurorally glowing cast that included an International Association of Geomagnetism and Aeronomy (IAGA) president, former president, and division chairman, the Oriental Magneto-Banquet (which was the center of the meeting), was assured of success. As a cunning ploy to mask the true nature of this gastronomic extravagance from the probings of income tax departments, a presentation of scientific papers on Australian geomagnetism in its global setting was arranged.The Australian region, including New Zealand, Papua New Guinea, Indonesia, and a large sector of the Antarctic, covers one eighth of the Earth's surface and historically has played an important role in the study of geomagnetism. The region contains both the south magnetic and geomagnetic poles, and two Australian Antarctic stations (Casey and Davis) are situated in the region of the south polar cusp (see Figure 1).
On the geomagnetic jerk of 1969
NASA Technical Reports Server (NTRS)
Mcleod, M. G.
1985-01-01
Courtillot et al. (1978) have first reported a sudden change in the slope of the first time derivatives of the geomagnetic field components which occurred around 1970. It was found that the change took place in a large part of the northern hemisphere. Malin and Hodder (1982) reported on studies which were conducted to determine whether this 1970 step change in the second time derivative of the geomagnetic field components, which they termed a geomagnetic 'jerk', was of internal or external origin. It was concluded that internal sources can give rise to changes in secular variation on time scales as short as one or two years and that these were the major factor in the geomagnetic jerk which occurred around 1970. The present paper provides new supporting evidence for the existence of a worldwide geomagnetic jerk, its (average) time of occurrence, and its internal nature. New estimates are given of the spherical harmonic coefficients of the jerk and of the pre-1969 and post-1969 secular acceleration.
The causes of recurrent geomagnetic storms
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lepping, R. P.
1976-01-01
The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.
A case study of the thermospheric neutral wind response to geomagnetic storm
NASA Astrophysics Data System (ADS)
Jiang, Guoying; Zhang, Shunrong; Wang, Wenbin; Yuan, Wei; Wu, Qian; Xu, Jiyao
A minor geomagnetic storm (Kp=5) occurred on March 27-28, 2012. The response of the thermospheric neutral wind at ~ 250 km to this storm was investigated by the 630.0 nm nightglow measurements of Fabry-Perot interferometers (FPIs) over Xinglong (geographic location: 40.2N, 117.4E; geomagnetic location: 29.8N, 193.2E) and Millstone Hill (geographic location: 42.6N, 71.5W; geomagnetic location: 53.1N, 65.1W). Our results show that the minor storm on March 27-28, 2012 obviously effected on the thermospheric neutral winds over Xinglong and Millstone Hill, especially Millstone Hill had larger response because of its higher geomagnetic latitude. Another interesting result is that a small variation in geomagnetic activity (Kp=2.7) could enough introduce a clear disturbance in the nighttime thermospheric neutral wind over Millstone hill. NCAR-TIME-GCM (National Center for Atmospheric Research-Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model) was employed to study the evolution and mechanism of the thermospheric neutral wind response.
The quasi-biennial variation in the geomagnetic field: a global characteristics analysis
NASA Astrophysics Data System (ADS)
Ou, Jiaming; Du, Aimin
2016-04-01
The periodicity of 1.5-3 years, namely the quasi-biennial oscillation (QBO), has been identified in the solar, geophysical, and atmospheric variability. Sugiura (1976) investigated the observatory annual means over 1900-1970 and confirmed the QBO in the geomagnetic field. At present, studying the quasi-biennial oscillation becomes substantial for separating the internal/external parts in the geomagnetic observations. For the internal field, two typical periodicities, namely the 6-year oscillation in the geomagnetic secular acceleration (SA) and the geomagnetic jerk (occurs in 1-2 years), have close period to the QBO. Recently, a global quasi-biennial fluctuation was identified in the geomagnetic core field model (Silva et al., 2012). Silva et al. speculated this 2.5 years signal to either external source remaining in the core field model or consequence of the methods used to construct the model. As more high-quality data from global observatories are available, it is a good opportunity to characterize the geomagnetic QBO in the global range. In this paper, we investigate the QBO in the observatory monthly geomagnetic field X, Y, and Z components spanning 1985-2010. We employ the observatory hourly means database from the World Data Center for Geomagnetism (WDC) for the investigation. Wavelet analysis is used to detect and identify the QBO, while Fast Fourier Transform (FFT) analysis to obtain the statistics of the QBO. We apply the spherical harmonic analysis on QBO's amplitude, in order to quantify and separate internal and external sources. Three salient periods respectively at 2.9, 2.2, and 1.7 years, are identified in the amplitude spectrum over 1988-2008. The oscillation with the period of ~2.2 years is most prominent in all field components and further studied. In the X component the QBO is attenuated towards the polar regions, while in the Z component the amplitude of QBO increases with increasing of the geomagnetic latitude. At the high latitudes, the QBO exhibits distinct anisotropic in the local time distribution. The QBO of the X and Z components are both stronger over LT 00:00-06:00. The results of spherical harmonic analysis indicate that the QBO is mainly contributed by the external sources. The QBO is highly correlated with various parameters of solar activity, solar wind at 1AU, and geomagnetic activity. Reference 1. Sugiura, M. (1976). Quasi-biennial geomagnetic variation caused by the Sun. Geophys. Res. Lett., 3(11), 643-646. 2. Silva, L., Jackson, L., and Mound, J., (2012), Assessing the importance and expression of the 6 year geomagnetic oscillation, J. Geophys. Res.: Solid Earth (1978-2012), 117.
NASA Astrophysics Data System (ADS)
Padilha, Antonio L.; Alves, Livia R.; Silva, Graziela B. D.; Espinosa, Karen V.
2017-04-01
We describe here an analysis of the H-component of the geomagnetic field recorded in several temporary stations operating simultaneously in the central-eastern region of Brazil during nighttime pulsation events in 1994 and the sudden commencement of the St. Patrick's Day magnetic storm in 2015. A significant amplification in the amplitude of the geomagnetic variations is consistently observed in one of these stations. Magnetovariational analysis indicates that the amplification factor is period dependent with maximum amplitude around 100 s. Integrated magnetotelluric (MT) and geomagnetic depth soundings (GDS) have shown that this station is positioned just over a huge 1200-km-long crustal conductor (estimated bulk conductivity greater than 1 S/m). We propose that the anomalous signature of the geomagnetic field at this station is due to the high reflection coefficient of the incident electromagnetic wave at the interface with the very good conductor and by skin effects damping the electromagnetic wave in the conducting layers overlying the conductor. There are some indication from the GDS data that the conductor extends southward beneath the sediments of the Pantanal Basin. In this region is being planned the installation of a new geomagnetic observatory, but its preliminary data suggest anomalous geomagnetic variations. We understand that a detailed MT survey must be carried out around the chosen observatory site to evaluate the possible influence of induced currents on the local geomagnetic field.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Dimitrova, S.; Babayev, E.; Mustafa, F.
2017-01-01
Limited studies exist on comparing the possible effects of heliogeophysical activity (solar and geomagnetic) on the dynamics of sudden cardiac death (SCD) as a function of latitude on Earth. In this work we continue our earlier studies concerning the changing space environment and SCD dynamics at middle latitudes. The study covered 25 to 80-year old males and females, and used medical data provided by all emergency and first medical aid stations in the Grand Baku Area, Azerbaijan. Data coverage includedthe second peak of Solar Cycle 23 and its descending activity years followed by its long-lasting minimum. Gradation of geomagnetic activity into six levels was introduced to study the effect of space weather on SCD. The ANalysis Of VAriance (ANOVA) test was applied to study the significance of the geomagnetic activity effect, estimated by different geomagnetic indices, on SCD dynamics. Variations inthe number of SCDs occurring on days preceding and following the development of geomagnetic storms were also studied. Results revealed that the SCD number was largest on days of very low geomagnetic activity and on days proceeding and following geomagnetic storms with different intensities. Vulnerability for males was found to be higher around days of major and severe geomagnetic storms. Females, on the other hand, were more threatened around days of lower intensity storms. It is concluded that heliogeophysical activity could be considered as one of the regulating external/environmental factors in human homeostasis.
Lessan, N; Hannoun, Z; Hasan, H; Barakat, M T
2015-02-01
Ramadan fasting represents a major shift in meal timing and content for practicing Muslims. This study used continuous glucose monitoring (CGM) to assess changes in markers of glycaemic excursions during Ramadan fasting to investigate the short-term safety of this practice in different groups of patients with diabetes. A total of 63 subjects (56 with diabetes, seven healthy volunteers; 39 male, 24 female) had CGM performed during, before and after Ramadan fasting. Mean CGM curves were constructed for each group for these periods that were then used to calculate indicators of glucose control and excursions. Post hoc data analyses included comparisons of different medication categories (metformin/no medication, gliptin, sulphonylurea and insulin). Medication changes during Ramadan followed American Diabetes Association guidelines. Among patients with diabetes, there was a significant difference in mean CGM curve during Ramadan, with a slow fall during fasting hours followed by a rapid rise in glucose level after the sunset meal (iftar). The magnitude of this excursion was greatest in the insulin-treated group, followed by the sulphonylurea-treated group. Markers of control deteriorated in a small number (n=3) of patients. Overall, whether fasting or non-fasting, subjects showed no statistically significant changes in mean interstitial glucose (IG), mean amplitude of glycaemic excursion (MAGE), high and low blood glucose indices (HBGI/LBGI), and number of glucose excursions and rate of hypoglycaemia. The main change in glycaemic control with Ramadan fasting in patients with diabetes is in the pattern of excursions. Ramadan fasting caused neither overall deterioration nor improvement in the majority of patients with good baseline glucose control. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Anand, R.
2016-01-01
Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery. PMID:27525116
Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith
2016-01-01
Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery.
Myrow, P.M.; Strauss, J.V.; Creveling, J.R.; Sicard, K.R.; Ripperdan, R.; Sandberg, C.A.; Hartenfels, S.
2011-01-01
New carbon isotopic data from upper Famennian deposits in the western United States reveal two previously unrecognized major positive isotopic excursions. The first is an abrupt ~. 3??? positive excursion, herein referred to as ALFIE (A Late Famennian Isotopic Excursion), recorded in two sections of the Pinyon Peak Limestone of north-central Utah. Integration of detailed chemostratigraphic and biostratigraphic data suggests that ALFIE is the Laurentian record of the Dasberg Event, which has been linked to transgression in Europe and Morocco. Sedimentological data from the Chaffee Group of western Colorado also record transgression at a similar biostratigraphic position, with a shift from restricted to open-marine lithofacies. ALFIE is not evident in chemostratigraphic data from age-equivalent strata in Germany studied herein and in southern Europe, either because it is a uniquely North American phenomenon, or because the German sections are too condensed relative to those in Laurentia. A second positive carbon isotopic excursion from the upper Chaffee Group of Colorado is recorded in transgressive strata deposited directly above a previously unrecognized paleokarst interval. The age of this excursion, and the duration of the associated paleokarst hiatus, are not well constrained, although the events occurred sometime after the Late Famennian Middle expansa Zone. The high positive values recorded in this excursion are consistent with those associated with the youngest Famennian Middle to Late praesulcata Hangenberg Isotopic Excursion in Europe, the isotopic expression of the Hangenberg Event, which included mass extinction, widespread black shale deposition, and a glacio-eustatic fall and rise. If correct, this would considerably revise the age of the Upper Chaffee Group strata of western Colorado. ?? 2011 Elsevier B.V.
Kim, Ji-Wan; Kovalenko, Oleksandr; Liu, Yu; Bigot, Jean-Yves
2016-12-27
We report the anharmonic angstrom dynamics of self-assembled Au nanoparticles (Au:NPs) away from a nickel surface on top of which they are coupled by their near-field interaction. The deformation and the oscillatory excursion away from the surface are induced by picosecond acoustic pulses and probed at the surface plasmon resonance with femtosecond laser pulses. The overall dynamics are due to an efficient transfer of translational momentum from the Ni surface to the Au:NPs, therefore avoiding usual thermal effects and energy redistribution among the electronic states. Two modes are clearly revealed by the oscillatory shift of the Au:NPs surface plasmon resonance-the quadrupole deformation mode due to the transient ellipsoid shape and the excursion mode when the Au:NPs bounce away from the surface. We find that, contrary to the quadrupole mode, the excursion mode is sensitive to the distance between Au:NPs and Ni. Importantly, the excursion dynamics display a nonsinusoidal motion that cannot be explained by a standard harmonic potential model. A detailed modeling of the dynamics using a Hamaker-type Lennard-Jones potential between two media is performed, showing that each Au:NPs coherently evolves in a nearly one-dimensional anharmonic potential with a total excursion of ∼1 Å. This excursion induces a shift of the surface plasmon resonance detectable because of the strong near-field interaction. This general method of observing the spatiotemporal dynamics with angstrom and picosecond resolutions can be directly transposed to many nanostructures or biosystems to reveal the interaction and contact mechanism with their surrounding medium while remaining in their fundamental electronic states.
NASA Astrophysics Data System (ADS)
Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.
2017-09-01
Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.
Fission yield and criticality excursion code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
2000-06-30
The ANSI/ANS 8.3 standard allows a maximum yield not to exceed 2 x 10 fissions to calculate requiring the alarm system to be effective. It is common practice to use this allowance or to develop some other yield based on past criticality accident history or excursion experiments. The literature on the subject of yields discusses maximum yields larger and somewhat smaller than the ANS 8.3 permissive value. The ability to model criticality excursions and vary the various parameters to determine a credible maximum yield for operational specific cases has been available for some time but is not in common usemore » by criticality safety specialists. The topic of yields for various solution, metal, oxide powders, etc. in various geometry's and containers has been published by laboratory specialists or university staff and students for many decades but have not been available to practitioners. The need for best-estimate calculations of fission yields with a well-validated criticality excursion code has long been recognized. But no coordinated effort has been made so far to develop a generalized and well-validated excursion code for different types of systems. In this paper, the current practices to estimate fission yields are summarized along with its shortcomings for the 12-Rad zone (at SRS) and Criticality Alarm System (CAS) calculations. Finally the need for a user-friendly excursion code is reemphasized.« less
Do Coronal Holes Cause 27 Day Recurring Geomagnetic Storms?
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tang, Frances; Park, Dan; Okada, Masaki; Arballo, John
1994-01-01
We examine 3 years of interplanetary data and geomagnetic activity indices (1973-1975) to determine the causes of geomagnetic storms and substorms during the descending phase of the solar cycle. In this paper, we specifically studied the year 1974 where two long lasting coronating streams existed.
Search for correlation between geomagnetic disturbances and mortality
NASA Technical Reports Server (NTRS)
Lipa, B. J.; Barnes, C. W.; Sturrock, P. A.; Feinleib, M.; Rogot, E.
1975-01-01
Statistical evaluation of death rates in the U.S.A. from heart diseases or stroke did not show any correlation with measured geomagnetic pulsations and thus do not support a claimed relationship between geomagnetic activity and mortality rates to low frequency fluctuations of the earth's magnetic field.
Scaphoid tuberosity excursion is minimized during a dart-throwing motion: A biomechanical study.
Werner, Frederick W; Sutton, Levi G; Basu, Niladri; Short, Walter H; Moritomo, Hisao; St-Amand, Hugo
2016-01-01
The purpose of this study was to determine whether the excursion of the scaphoid tuberosity and therefore scaphoid motion is minimized during a dart-throwing motion. Scaphoid tuberosity excursion was studied as an indicator of scaphoid motion in 29 cadaver wrists as they were moved through wrist flexion-extension, radioulnar deviation, and a dart-throwing motion. Study results demonstrate that excursion was significantly less during the dart-throwing motion than during either wrist flexion-extension or radioulnar deviation. If the goal of early wrist motion after carpal ligament or distal radius injury and reconstruction is to minimize loading of the healing structures, a wrist motion in which scaphoid motion is minimal should reduce length changes in associated ligamentous structures. Therefore, during rehabilitation, if a patient uses a dart-throwing motion that minimizes his or her scaphoid tuberosity excursion, there should be minimal changes in ligament loading while still allowing wrist motion. Bench research, biomechanics, and cross-sectional. Not applicable. The study was laboratory based. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Compensation for large thorax excursions in EIT imaging.
Schullcke, B; Krueger-Ziolek, S; Gong, B; Mueller-Lisse, U; Moeller, K
2016-09-01
Besides the application of EIT in the intensive care unit it has recently also been used in spontaneously breathing patients suffering from asthma bronchiole, cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). In these cases large thorax excursions during deep inspiration, e.g. during lung function testing, lead to artifacts in the reconstructed images. In this paper we introduce a new approach to compensate for image artifacts resulting from excursion induced changes in boundary voltages. It is shown in a simulation study that boundary voltage change due to thorax excursion on a homogeneous model can be used to modify the measured voltages and thus reduce the impact of thorax excursion on the reconstructed images. The applicability of the method on human subjects is demonstrated utilizing a motion-tracking-system. The proposed technique leads to fewer artifacts in the reconstructed images and improves image quality without substantial increase in computational effort, making the approach suitable for real-time imaging of lung ventilation. This might help to establish EIT as a supplemental tool for lung function tests in spontaneously breathing patients to support clinicians in diagnosis and monitoring of disease progression.
22. WILEY CITY LINE BICENTENNIAL EXCURSION TROLLEY NEAR CONGDON ...
22. WILEY CITY LINE - BICENTENNIAL EXCURSION TROLLEY NEAR CONGDON CASTLE - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA
Estimating the change in asymptotic direction due to secular changes in the geomagnetic field
NASA Technical Reports Server (NTRS)
Flueckiger, E. O.; Smart, D. F.; Shea, M. A.; Gentile, L. C.; Bathurat, A. A.
1985-01-01
The concept of geomagnetic optics, as described by the asymptotic directions of approach, is extremely useful in the analysis of cosmic radiation data. However, when changes in cutoff occur as a result of evolution in the geomagnetic field, there are corresponding changes in the asymptotic cones of acceptance. A method is introduced of estimating the change in the asymptotic direction of approach for vertically incident cosmic ray particles from a reference set of directions at a specific epoch by considering the change in the geomagnetic cutoff.
NASA Astrophysics Data System (ADS)
Esquivel, Darci M. S.; Wajnberg, E.; Do Nascimento, F. S.; Pinho, M. B.; de Barros, H. G. P. Lins; Eizemberg, R.
2007-02-01
Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata ( Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjeewa, Hakmana; He Xiaochun; Cleven, Christopher
The Muon charge ratio at the Earth's surface has been studied with a Geant4 based simulation for two different geomagnetic locations: Atlanta and Lynn Lake. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake, At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 {+-} 0.05 (without geomagnetic field), 1.12 {+-} 0.05 (with geomagnetic field) for Atlanta and 1.22 {+-} 0.04 (with geomagnetic field) for Lynn Lake. These types of studies aremore » very important for analyzing secondary cosmic ray muon flux distribution at Earth's surface and can be used to evaluate the parameter of atmospheric neutrino oscillations.« less
NASA Astrophysics Data System (ADS)
Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.
2017-08-01
We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.
Schizophrenia and season of birth: relationship to geomagnetic storms.
Kay, Ronald W
2004-01-01
An excess pattern of winter and spring birth, of those later diagnosed as schizophrenic, has been clearly identified in most Northern Hemisphere samples with none or lesser variation in Equatorial or Southern Hemisphere samples. Pregnancy and birth complications, seasonal variations in light, weather, temperature, nutrition, toxins, body chemistry and gene expression have all been hypothesized as possible causes. In this study, the hypothesis was tested that seasonal variation in the geomagnetic field of the earth primarily as a result of geomagnetic storms (GMS) at crucial periods in intrauterine brain development, during months 2 to 7 of gestation could affect the later rate of development of schizophrenia. The biological plausibility of this hypothesis is also briefly reviewed. A sample of eight representative published studies of schizophrenic monthly birth variation were compared with averaged geomagnetic disturbance using two global indices (AA*) and (aa). Three samples showed a significant negative correlation to both geomagnetic indices, a further three a significant negative correlation to one of the geomagnetic indices, one showed no significant correlation to either index and one showed a significant positive correlation to one index. It is suggested that these findings are all consistent with the hypothesis and that geomagnetic disturbance or factors associated with this disturbance should be further investigated in birth seasonality studies.
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-05-12
In the original publication, the article title was incorrectly published as 'Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of failing'. The correct title should read as 'Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of falling'.
NASA Astrophysics Data System (ADS)
Dean, David S.; Jansons, Kalvis M.
1993-03-01
In this paper we use techniques from Ito excursion theory to analyze Brownian motion on generalized combs. Ito excursion theory is a little-known area of probability theory and we therefore present a brief introduction for the uninitiated. A general method for analyzing transport along the backbone of the comb is demonstrated and the specific case of a comb whose teeth are scaling branching trees is examined. We then present a recursive method for evaluating the distribution of the first passage times on hierarchical combs.
Nonstationary envelope process and first excursion probability.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.
Sulfur cycling in plays an important role in the development of Ocean Anoxic Events
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Raven, M. R.; Fike, D. A.; Gill, B. C.; Johnston, D. T.
2017-12-01
Ocean Anoxic Events (OAEs) are major carbon cycle perturbations marked by enhanced organic carbon deposition in the marine realm and carbon isotope excursions in organic and inorganic carbon. Although not as severe as the "big five" mass extinctions, OAEs had dire consequences for marine ecosystems and thus influenced Mesozoic evolutionary patterns. Sulfur cycle reconstructions provide insight into the biogeochemical processes that played a role in the development of OAEs because the sulfur cycle is linked with the carbon and oxygen cycles. We present sulfur and oxygen isotope records from carbonate-associated sulfate from the Toarcian OAE that documents a positive sulfate-oxygen isotope excursion of +6‰, which is similar to the magnitude of the positive sulfur isotope excursion documented at the same site and other globally distributed sites. This high-resolution record allows us to explore temporal variability in the onset of the isotopic excursions: the onset of the positive sulfate-oxygen isotope excursion occurs at the same stratigraphic interval as the onset of the positive carbon isotope excursion and both precede the onset of the positive sulfate-sulfur isotope excursion. Because oxygen is rapidly recycled during oxidative sulfur cycling, changes in oxidative sulfur cycling affect oxygen isotope values of sulfate without impacting sulfur isotope values. Thus, the early onset of the sulfate-oxygen isotope excursion implies a change in oxidative sulfur cycling, which is likely due to a shoaling of the zone of sulfate reduction. We explore the consequences of sulfate reduction zone shoaling for organic carbon preservation. Specifically, the sulfurization of organic matter, which makes organic matter less susceptible to degradation, occurs more rapidly when the top of the zone of sulfate reduction is near or above the sediment water interface. Therefore, we suggest that the shoaling of the sulfate reduction zone locally changed pathways of oxidative sulfur cycling and enhanced organic carbon preservation. Given synchronous changes in similar, globally-distributed depositional environments, this impacted the global biogeochemical cycles of oxygen, carbon, and nutrients in ways that sustained decreased oxygen availability and influenced extinction patterns of marine organisms.
NASA Astrophysics Data System (ADS)
Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz
2018-01-01
In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.
Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena
2014-07-01
Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95% CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.
Constrains on the South Atlantic Anomaly from Réunion Island
NASA Astrophysics Data System (ADS)
Béguin, A.; de Groot, L. V.
2017-12-01
The South Atlantic Anomaly (SAA) is a region where the geomagnetic field intensity is about half as strong as would be expected from the current geomagnetic dipole moment that arises from geomagnetic field models. Those field models predict a westward movement of the SAA and predicts its origin East of Africa around 1500 AD. The onset and evolution of the SAA, however, are poorly constrained due to a lack of full-vector paleomagnetic data from Africa and the Indian Ocean for the past centuries. Here we present a full-vector paleosecular variation (PSV) curve for Réunion Island (21°S, 55°E) located East the African continent, in the region that currently shows the fastest increase in geomagnetic field strength in contrast to the average global decay. We sampled 27 sites covering the last 700 years, and subjected them to a directional and multi-method paleointensity study. The obtained directional records reveal shallower inclinations and less variation in the declination compared to current geomagnetic field model predictions. Scrutinizing the IZZI-Thellier, Multispecimen, and calibrated pseudo-Thellier results produces a coherent paleointensity record. The predicted intensity trend from the geomagnetic field models generally agrees with the trend in our data, however, the high paleointensities are higher than the models predict, and the low paleointensities are lower than the models. This illustrates the inevitable smoothing inherent to geomagnetic field modelling. We will discuss the constraints on the onset of the SAA that arise from the new full-vector PSV curve for Réunion that we present and the implications for the past and future evolution of this geomagnetic phenomenon.
A coupling between geometry of the main geomagnetic field tectonic margins and seismicity
NASA Astrophysics Data System (ADS)
Khachikyan, Galina
2013-04-01
Integrated studies involving geomagnetism, geodynamics, and seismology are essential for advances in understanding the Earth dynamics. This work presents recent results based of the International Geomagnetic Reference Field (IGRF-10) model, Digital Tectonic Activity Map (DTAM-1), and the global seismological catalogue (173477 events for 1973-2010 with ?≥4.5). It will be shown that: 1. The geometry of the main geomagnetic field controls a spatial distribution of seismicity around the globe. This becomes apparent when geomagnetic field components are analyzed using the geocentric solar magnetospheric (GSM) coordinate system. Earthquakes prefer occur in the regions where geomagnetic Z_GSM component reaches large positive value, that takes place at low and middle latitudes. In the areas of strongest seismicity, that takes place at low and mid latitudes in the eastern hemisphere, the Z_GSM values are largest compared to all other regions of the planet. The possible maximal magnitude of earthquake (Mmax) has a linear dependence on the logarithm of absolute Z_GSM value in the epicenter in the moment of earthquake occurrence. 2. There is a geomagnetic conjugacy between certain tectonic structures. In particular, the middle ocean ridges located in the southern hemisphere along the boundary of the Antarctic tectonic plate are magnetically conjugate with the areas of junction of continental orogens and platforms in the northern hemisphere. Close magnetic conjugacy exists between southern boundary of the Nazca tectonic plate and northern boundaries of the Cocos and Caribbean plates. 3. Variations in the total strength of the main geomagnetic field could be associated, to some extent, with the earthquake occurrence. In particular, the IGRF-10 model shows that in the area of the major 2004 Sumatra earthquake (epicenter 3.3N; 95.98E), the strength of the main geomagnetic field steadily increased from ~ 41338 nT in 1980 to ~ 41855 nT in 2004 with a mean change per year of about 21.6 nT. After the M=9.1 earthquake on December 26 2004, an increase in the geomagnetic field in this area slowed down: from 2005 to 2010, the mean change in geomagnetic field was only 4.7 nT per year. Another example, in the area of a major M=8.0 earthquake in 1995 (epicenter 19.060N; 104.210W) in the Mexican Manzanillo region, the strength of the main geomagnetic field systematically decreased from ~ 42369 nT in 1980 to ~ 41695 nT in 1994 with the mean change of about - 48.1 nT per year. After the earthquake on October 9 1995, the decrease in geomagnetic field speeded up, and from 1995 to 2010, the mean change per year was -77.1 nT. Possible reasons for the observed effects and future research directions in this area will be discussed.
An Excursion in Applied Mathematics.
ERIC Educational Resources Information Center
von Kaenel, Pierre A.
1981-01-01
An excursion in applied mathematics is detailed in a lesson deemed well-suited for the high school student or undergraduate. The problem focuses on an experimental missile guidance system simulated in the laboratory. (MP)
On the mid-latitude ionospheric storm association with intense geomagnetic storms
NASA Astrophysics Data System (ADS)
Okpala, Kingsley Chukwudi; Ogbonna, Chinasa Edith
2018-04-01
The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤ 100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.
A Study of Ionospheric Storm Association with Intense Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Okpala, K. C.
2017-12-01
The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.
[Influence of geomagnetic storms on the balance of autonomic regulatory mechanisms].
Chichinadze, G; Tvildiani, L; Kvachadze, I; Tarkhan-Mouravi, I
2005-09-01
The investigation aimed to evaluate autonomic regulatory mechanisms in practically healthy persons during the geomagnetically quiet periods and during geomagnetic storms. The examinations were conducted among the volunteer young men (n=64) 18-22 years of age. The autonomic function was studied on the basis of the heart rate variability. The geomagnetically quiet periods were considered when the value of the K-index was no more then 2 and a geomagnetic storm was considered when the value of the index was 5 and more. It is ascertained that in the both cases the basic statistical indices of the heart rate were identical. The analysis of R-R intervals spectral power gave the possibility to sort the persons examined into the three different groups. The data obtained allowed to suggest that geomagnetic storms influence human organisms through the vagus centers by means of their excitation. This phenomenon may be considered as a self-regulatory physiologic mechanism of the adaptive character. The analysis of the spectral power of R-R intervals may be considered as a sensitive method for the detection of the magnitolabile persons.
NASA Astrophysics Data System (ADS)
De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe
2015-04-01
Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and
Caswell, Joseph M; Singh, Manraj; Persinger, Michael A
2016-08-01
Previous research investigating the potential influence of geomagnetic factors on human cardiovascular state has tended to converge upon similar inferences although the results remain relatively controversial. Furthermore, previous findings have remained essentially correlational without accompanying experimental verification. An exception to this was noted for human brain activity in a previous study employing experimental simulation of sudden geomagnetic impulses in order to assess correlational results that had demonstrated a relationship between geomagnetic perturbations and neuroelectrical parameters. The present study employed the same equipment in a similar procedure in order to validate previous findings of a geomagnetic-cardiovascular dynamic with electrocardiography and heart rate variability measures. Results indicated that potential magnetic field effects on frequency components of heart rate variability tended to overlap with previous correlational studies where low frequency power and the ratio between low and high frequency components of heart rate variability appeared affected. In the present study, a significant increase in these particular parameters was noted during geomagnetic simulation compared to baseline recordings. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
The effect of space weather on human heart diseases in subauroral latitudes
NASA Astrophysics Data System (ADS)
Samsonov, S. N.; Kleimenova, N. G.; Kozyreva, O. V.; Petrova, P. G.
2014-12-01
In this work the relationship between emergency medical calls for myocardial infarction in Yakutsk (subauroral geomagnetic latitudes) and parameters of the space weather near maximum (1992) and minimum (1998) geomagnetic activity is studied. The comparison of the seasonal behavior of the number of calls with the simultaneous seasonal behavior of deaths from myocardial infarctions at low latitudes (Bulgaria) exhibited significant differences. Namely, in Bulgaria, the maximum and minimum of infarctions were observed in winter and in summer, respectively; in Yakutsk, several observed maximums coincided with the sharp and considerable increase in planetary geomagnetic activity. An analysis of experimental results made it possible to suppose that, in subauroral latitudes, unlike low latitudes, a major role in the increase in the number of infarctions is played by the increase in geomagnetic activity, namely, by the appearance of night magnetospheric substorms, which are also observed in subauroral latitudes in magnetically disturbed times. Substorms are always accompanied by irregular geomagnetic Pi1 pulsations with periods of 0.5-3 Hz. These pulsations can be biotropic, like stable quasi-sinusoidal geomagnetic Pc1 pulsations in middle and low latitudes.
A new method for distortion magnetic field compensation of a geomagnetic vector measurement system
NASA Astrophysics Data System (ADS)
Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang
2016-12-01
The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.
NASA Astrophysics Data System (ADS)
Yuan, J.
2014-12-01
In order to research the lithospheric magnetic field and the magnetization structure, the geomagnetic field was surveyed along the Nishan-Guyang profile with 900 km long in the Neimenggu and Shanxi provinces in China. The distance between the adjacent geomagnetic sites is about 7 km along the profile. The geomagnetic data were analyzed, and the lithospheric magnetic field was obtained. Using the upward continuation method, the geomagnetic anomalies in different depths were obtained: the basement anomaly, the upper crust anomaly and the superficial anomaly. Basing on these geomagnetic anomalies, the magnetization structure was obtained by using the software of the ModelVision 11.0. The preliminary results show: (1) The geomagnetic anomalies have good relationship with the local geological structure. (2) The magnetization structure is related to the depth variation of the Curie interface, the values of the magnetic susceptibility, the seismic activity and the tectonic block.
Effect of geomagnetic storms of different solar origin on the ionospheric TEC
NASA Astrophysics Data System (ADS)
Mansoori, Azad A.; Khan, Parvaiz A.; Purohit, P. K.
2018-05-01
We have studied the behaviour of ionospheric Total Electron Content (TEC) at a mid latitude station Usuda (36.130N, 138.360E), Japan during intense geomagnetic storms which were observed during 23 solar cycle (1998-2006). For the present study we have selected 47 intense geomagnetic storms (Dst≤-100nT), for the given period, which were then categorised into four categories depending upon their solar and interplanetary sources like Magnetic Cloud (MC), Co-rotating Interaction Region (CIR), Sheath driven Interplanetary Coronal Mass Ejection (SH+ICME) and Sheath driven Magnetic cloud (SH+MC). From our study we found that the geomagnetic storms significantly affect the ionosphere having any of the solar origin. However the geomagnetic storms which are either caused by SH+MC or SH+ICME produced maximum effect in TEC.
Paleointensity Behavior and Intervals Between Geomagnetic Reversals in the Last 167 Ma
NASA Astrophysics Data System (ADS)
Kurazhkovskii, A. Yu.; Kurazhkovskaya, N. A.; Klain, B. I.
2018-01-01
The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous-Paleogene boundary and the termination of paleointensity bursts after the boundary of 45-40 Ma are not marked by explicit features in the geomagnetic polarity behavior.
Geomagnetic Storm Impact On GPS Code Positioning
NASA Astrophysics Data System (ADS)
Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet
2017-04-01
This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm days cannot guarantee the improving accuracy due to the ionospheric scintillation.
Instant axis of rotation of L4-5 motion segment--a biomechanical study on cadaver lumbar spine.
Sengupta, Dilip K; Demetropoulos, Constantine K; Herkowitz, Harry N
2011-06-01
The instant axis of rotation (IAR) is an important kinematic property to characterise of lumbar spine motion. The goal of this biomechanical study on cadaver lumbar spine was to determine the excursion of the IAR for flexion (FE), lateral bending (LB) and axial rotation (AR) motion at L4-5 segment. Ten cadaver lumbar spine specimens were tested in a 6 degrees-of-freedom spine tester with continuous clyclical loading using pure moment and follower pre-load, to produce physiological motion. The specimens were x-rayed and CT scanned prior to testing to identify marker position. Continuous motion tracking was done by Optotrak motion capture device. A continuous tracking of the IAR excursion was calculated from the continuous motions capturedata using a computer programme. IAR translates forward in flexion and backwards in extension with mean excursion of 26.5 mm (+/- 5.6 SD). During LB motion, IAR translates laterally in the same direction, and the mean excursion was 15.35 mm (+/- 8.75 SD). During axial rotation the IAR translates in the horizontal plane in a semicircular arc, around the centre of the vertebral body, but the IAR translates in the opposite direction of rotation. The IAR excursion was faster and larger during neutral zone motion in FE and LB, but uniform for AR motion. This is the first published data on the continuous excursion of IAR of a lumbar motion segment. The methodology is accurate and precise, but not practicable for in vivo testing.
Effect of enhanced geomagnetic activity on hypothermia and mortality in rats
NASA Astrophysics Data System (ADS)
Bureau, Y. R. J.; Persinger, M. A.; Parker, G. H.
1996-12-01
The hypothesis was investigated that variability in the severity of limbic seizure-induced hypothermia in rats was affected by ambient geomagnetic activity. Data were obtained in support of this hypothesis. The depth of the hypothermia was significantly ( P < 0.001) reduced if the ambient geomagnetic activity exceeded 35 nT to 40 nT. Mortality during the subsequent 5 days was increased when the geomagnetic activity was > 20 nT. The magnitude of the effect was comparable to the difference between exposure to light or to darkness during the 20 h after the induction of limbic seizures.
Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.
Alldredge, L.R.; Benton, E.R.
1986-01-01
The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors
Search for correlation between geomagnetic disturbances and mortality
NASA Technical Reports Server (NTRS)
Lipa, B. J.; Sturrock, P. A.; Rogot, F.
1976-01-01
A search is conducted for a possible correlation between solar activity and myocardial infarction and stroke in the United States. A statistical analysis is performed using data on geomagnetic activity and the daily U.S. mortality due to coronary heart disease and stroke for the years 1962 through 1966. None of the results are found to yield any evidence of a correlation. It is concluded that correlations claimed by Soviet workers between geomagnetic activity and the incidence of various human diseases are probably not statistically significant or probably are not due to a causal relation between geomagnetic activity and disease.
Geomagnetic activity: Dependence on solar wind parameters
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1977-01-01
Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.
Geomagnetic storms: Potential economic impacts on electric utilities
NASA Astrophysics Data System (ADS)
Barnes, P. R.; Vandyke, J. W.
1991-03-01
Geomagnetic storms associated with sunspot and solar flare activity can disturb communications and disrupt electric power. A very severe geomagnetic storm could cause a major blackout with an economic impact of several billion dollars. The vulnerability of electric power systems in the northeast United States will likely increase during the 1990s because of the trend of transmitting large amounts of power over long distance to meet the electricity demands of this region. A comprehensive research program and a warning satellite to monitor the solar wind are needed to enhance the reliability of electric power systems under the influence of geomagnetic storms.
Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1992-01-01
Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.
On equatorially symmetric and antisymmetric geomagnetic secular variation timescales
NASA Astrophysics Data System (ADS)
Amit, Hagay; Coutelier, Maélie; Christensen, Ulrich R.
2018-03-01
It has been suggested that the secular variation (SV) timescales of the geomagnetic field vary as 1 / ℓ (where ℓ is the spherical harmonic degree), except for the dipole. Here we propose that the same scaling law applies for SV timescales defined for different symmetry classes of the geomagnetic field and SV. We decompose the field and its SV into symmetric and antisymmetric parts and show in geomagnetic field models and numerical dynamo simulations that the corresponding SV timescales also vary as 1 / ℓ , again except for the dipole. The time-average antisymmetric/symmetric SV timescales are larger/smaller than the total, respectively. The difference in SV timescales between these two symmetry classes is probably due to different degrees of alignment of the core flow with different magnetic field structures at the core-mantle boundary. The symmetric dipole SV timescale in the recent geomagnetic field and in long-term time-averages from numerical dynamos is below the extrapolated 1 / ℓ curve, whereas before ∼ 1965 the geomagnetic dipole tilt was rather steady and the symmetric dipole SV timescale exceeded the extrapolated 1 / ℓ curve. We hypothesize that the period of nearly steady geomagnetic dipole tilt between 1810-1965 was anomalous for the geodynamo. Overall, the deviation of the dipole SV timescales from the 1 / ℓ curves may indicate that magnetic diffusion contributes to the dipole SV more than it does for higher degrees.
NASA Technical Reports Server (NTRS)
Forbes, Kevin F.; Cyr, Chris St
2012-01-01
During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.
Marsula, K.; Tanskanen, E.; Love, J.J.
2011-01-01
We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.
NASA Astrophysics Data System (ADS)
Forbes, Kevin F.; St. Cyr, O. C.
2017-10-01
This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.
Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro
2016-01-01
NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.
The Carnian (Late Triassic) carbon isotope excursion: new insights from the terrestrial realm
NASA Astrophysics Data System (ADS)
Miller, Charlotte; Kürschner, Wolfram; Peterse, Francien; Baranyi, Viktoria; Reichart, Gert-Jan
2016-04-01
The geological record contains evidence for numerous pronounced perturbations in the global carbon cycle, some of which are associated with eruptions from large igneous provinces (LIP), and consequently, ocean acidification and mass extinction. In the Carnian (Late Triassic), evidence from sedimentology and fossil pollen points to a significant change in climate, resulting in biotic turnover: during a period termed the 'Carnian Pluvial Event' (CPE). Additionally, during the Carnian, large volumes of flood basalts were erupted from the Wrangellia LIP (western North America). Evidence from the marine realm suggests a fundamental relationship between the CPE, a global 'wet' period, and the injection of light carbon into the atmosphere from the LIP. Here we provide the first evidence from the terrestrial realm of a significant negative δ13C excursion through the CPE recorded in the sedimentary archive of the Wiscombe Park Borehole, Devon (UK). Both total organic matter and plant leaf waxes reflect a gradual carbon isotope excursion of ~-5‰ during this time interval. Our data provides evidence for the global nature of this isotope excursion, supporting the hypothesis that the excursion was likely the result of an injection of light carbon into the atmosphere from the Wrangellia LIP.
Abduo, Jaafar
2017-01-01
This study evaluated and compared the effect of conventional and digital wax-ups on three lateral occlusion variables: contact number, contact area, and steepness. Dental casts of 10 patients with Angle Class I relationship were included in the study. All patients required fixed prosthodontic treatment that would affect lateral occlusion. The casts of all patients received conventional and digital wax-ups. For pretreatment, conventional wax-up, and digital wax-up casts, contact number, contact area, and occlusion steepness were measured at four lateral positions, that is, at excursions of 0.5, 1.0, 2.0, and 3.0 mm from maximal intercuspation. Lateral occlusion scheme variables were affected by use of diagnostic wax-ups. For all types of casts, contact number decreased as excursion increased. The two types of wax-ups had similar contact number patterns, and contact number was significantly greater for these casts than for pretreatment casts in the earlier stages of excursion. Similarly, contact area gradually decreased with increasing excursion in the pretreatment and conventional and digital wax-up casts. There was only a minimal decrease in occlusion steepness as excursion increased. However, lateral occlusion was generally steeper for digital wax-up casts.
77 FR 74788 - Long-Term Cooling and Unattended Water Makeup of Spent Fuel Pools
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
... frequency estimate of 1 in 100 years (1E-2/yr) for extreme space weather/ geomagnetic disturbance to perform... Accidents B. Geomagnetic Storms and Effects on the Earth C. Frequency of Geomagnetic Storms With Potential... commercial electric power grids are vulnerable to prolonged outage caused by extreme space weather, such as...
Solar plasma geomagnetism and aurora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, S.
1968-01-01
This book is based on lectures given in July 1962 at the 12th session of the Les Houches Summer School of Theoretical Physics. Topics considered include geomagnetism and related phenomena, solar plasma in interplanetary space, mutual influence of the solar gas and the geomagnetic field. magnetic disturbance and aurorae, and the ring current and its DR field. (WDM)
Geomagnetic Reversals during the Phanerozoic.
McElhinny, M W
1971-04-09
An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.
F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission
NASA Astrophysics Data System (ADS)
Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.
2016-03-01
The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.
Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Chapagain, N. P.; Rana, B.; Adhikari, B.
2017-12-01
Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Waters, C. L.; Sciffer, M. D.
2010-05-01
Long, steel pipelines used to transport essential resources such as gas and oil are potentially vulnerable to space weather. In order to inhibit corrosion, the pipelines are usually coated in an insulating material and maintained at a negative electric potential with respect to Earth using cathodic protection units. During periods of enhanced geomagnetic activity, potential differences between the pipeline and surrounding soil (referred to as pipe-to-soil potentials (PSPs)) may exhibit large voltage swings which place the pipeline outside the recommended "safe range" and at an increased risk of corrosion. The PSP variations result from the "geoelectric" field at the Earth's surface and associated geomagnetic field variations. Previous research investigating the relationship between the surface geoelectric field and geomagnetic source fields has focused on the high-latitude regions where line currents in the ionosphere E region are often the assumed source of the geomagnetic field variations. For the Australian region Sq currents also contribute to the geomagnetic field variations and provide the major contribution during geomagnetic quiet times. This paper presents the results of a spectral analysis of PSP measurements from four pipeline networks from the Australian region with geomagnetic field variations from nearby magnetometers. The pipeline networks extend from Queensland in the north of Australia to Tasmania in the south and provide PSP variations during both active and quiet geomagnetic conditions. The spectral analyses show both consistent phase and amplitude relationships across all pipelines, even for large separations between magnetometer and PSP sites and for small-amplitude signals. Comparison between the observational relationships and model predictions suggests a method for deriving a geoelectric field proxy suitable for indicating PSP-related space weather conditions.
Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System
NASA Astrophysics Data System (ADS)
Rollison, Eric; Moura, John; Lauby, Mark
2011-08-01
In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html
NASA Astrophysics Data System (ADS)
Pavlov, A. V.; Pavlova, N. M.
2007-11-01
We present a study of anomalous night-time NmF2 peaks, ANNPs, observed by the La Paz, Natal, Djibouti, Kodaikanal, Madras, Manila, Talara, and Huancayo Jicamarca ionosonde stations close to the geomagnetic equator. It is shown for the first time that the probabilities of occurrence of the first and second ANNPs depend on the geomagnetic longitude, and there is a longitude sector close to 110° geomagnetic longitude where the first and second ANNPs occur less frequently in comparison with the longitude regions located close to and below about 34° geomagnetic longitude and close to and above about 144° geomagnetic longitude. The found frequencies of occurrence of the ANNPs increase with increasing solar activity, except of the Djibouti and Kodaikanal ionosonde stations, where the probability of the first ANNP occurrence is found to decrease with increasing solar activity from low to moderate solar activity, and except of the Natal ionosonde station, where the frequencies of occurrence of the first and second ANNPs decrease with increasing solar activity from moderate to high solar activity. We found that the occurrence probabilities of ANNPs during geomagnetically disturbed conditions are greater than those during geomagnetically quiet conditions. The ANNP probabilities are largest in summer and are lowest in winter for the La-Paz, Talara, and Huancayo Jicamarca sounders. These probabilities are lowest in summer for the Djibouti, Madras, and Manila ionosonde stations, and in spring for the Kodaikanal sounder. The maximums in the probabilities are found to be in autumn for the Djibouti, Madras, and Manila ionosonde stations, and in winter for the Kodaikanal sounder.
Martínez-Bretón, J L; Mendoza, B; Miranda-Anaya, M; Durán, P; Flores-Chávez, P L
2016-11-01
The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.
NASA Astrophysics Data System (ADS)
Kikuchi, T.
2004-12-01
The near instantaneous onset of a geomagnetic impulse such as the preliminary reverse impulse (PRI) of the geomagnetic sudden commencement at high latitude and at the dayside geomagnetic equator has been explained by means of the TM0 mode waves in the Earth-ionosphere waveguide (Kikuchi and Araki, J. Atmosph. Terrest. Phys., 41, 927-936, 1979). There is, on the other hand, a time lag of the order of 10 sec in the peak amplitude of the magnetic impulse at the dayside equator. To explain these two temporal aspects, we examine transmission of the TM0 mode in a finite-length Earth-ionosphere transmission line composed of a finitely conducting ionosphere and the perfectly conducting Earth, with a fixed electric potential at one end and null potential at the other end of the transmission line, corresponding to the foot of a field-aligned current on the dawn- or dusk-side in the polar cap and middle point on the noon-midnight meridian at low latitude, respectively. Successive transmission and reflection in the bounded transmission line lead to that the ionospheric currents start to grow instantaneously, but reach a steady state with a relaxation time proportional to the length of the transmission line and the ionospheric conductivity. The relaxation time is of the order of 10 sec when we give high conductivity applicable to the equatorial ionosphere, which matches the observed time lag in the peak amplitude of the equatorial geomagnetic impulse. Consequently, the TM0 mode in the finite-length Earth-ionosphere transmission line explains both the instantaneous onset and time lag in the peak amplitude of the geomagnetic impulse at the dayside geomagnetic equator.
The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation
Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.
1997-01-01
We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.
A Probabilistic Assessment of the Next Geomagnetic Reversal
NASA Astrophysics Data System (ADS)
Buffett, Bruce; Davis, William
2018-02-01
Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply well-established methods to evaluate the probability of the next geomagnetic reversal as a function of time. For a present-day axial dipole moment of 7.6 × 1022 A m2, the probability of the dipole entering a reversed state is less than 2% after 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomagnetic reversal is not supported by paleomagnetic observations. The current rate of decline in the dipole moment is unusual but within the natural variability predicted by the stochastic model.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, X.; Xiao, W.
2018-04-01
As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.
Improving magnetosphere in situ observations using solar sails
NASA Astrophysics Data System (ADS)
Parsay, Khashayar; Schaub, Hanspeter; Schiff, Conrad; Williams, Trevor
2018-01-01
Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA's Magnetospheric Multi-Scale mission.
The disturbed geomagnetic field at European observatories. Sources and significance
NASA Astrophysics Data System (ADS)
Greculeasa, Razvan; Dobrica, Venera; Demetrescu, Crisan
2014-05-01
The disturbed geomagnetic field recorded at Earth's surface is given by the effects of electric current systems in the magnetosphere and ionosphere, as a result of the interaction of geomagnetic field with the solar wind and the interplanetary magnetic field. In this paper the geomagnetic disturbance recorded at European observatories has been investigated as regards its sources, for the time interval August 1-10, 2010, in which a moderate storm (Dstmin= -70 nT) occurred (August 3-4). The disturbance has been evidenced against the solar quiet daily variation, for each of the 29 observatories with minute data in the mentioned time interval. Data have been downloaded from the INTERMAGNET web page. The contribution of the magnetospheric ring current and of the auroral electrojet to the observed disturbance field in the X, Z, and D geomagnetic elements is discussed and the corresponding geographical distribution is presented.
Geomagnetic Field Intensity during the Neolith in the Central East European Plain
NASA Astrophysics Data System (ADS)
Nachasova, I. E.; Pilipenko, O. V.; Markov, G. P.; Gribov, S. K.; Tsetlin, Yu. B.
2018-05-01
The conducted archeomagnetic studies resulted in data on variations in the geomagnetic field intensity in the central East European Plain (Sakhtysh I site area, ϕ = 56°48' N, λ = 40°33' E) during the time interval of 5-3 ka BC. The geomagnetic field intensity varied mainly within the range of 30-60 μT. In the first half of the 5th millennium BC, the mean level of geomagnetic field intensity was about 35 μT. In the second half of the 5th-early 4th millennium BC, it rose to about 50 μT and then decreased again to reach a mean value of about 40 μT in the period of 4-3 ka BC. Comparison of the geomagnetic field intensity variation based on the obtained data and the data on the Caucasus region for the same time interval demonstrates a certain similarity.
Geomagnetic activity and enhanced mortality in rats with acute (epileptic) limbic lability
NASA Astrophysics Data System (ADS)
Bureau, Yves R. J.; Persinger, M. A.
1992-12-01
Presumably unrelated behaviors (e.g. psychiatric admissions, seizures, heart failures) have been correlated with increased global geomagnetic activity. We have suggested that all of these behaviors share a common source of variance. They are evoked by transient, dopamine-mediated paroxysmal electrical patterns that are generated within the amygdala and the hippocampus of the temporal lobes. Both the probability and the propagation of these discharges to distal brain regions are facilitated when nocturnal melatonin levels are suppressed by increased geomagnetic activity. In support of this hypothesis, the present study demonstrated a significant correlation of Pearson r=0.60 between mortality during the critical 4-day period that followed induction of libic seizures in rats and the ambient geomagnetic activity during the 3 to 4 days that preceded death; the risk increased when the 24 h geomagnetic indices exceeded 20 nT for more than 1 to 2 days.
NASA Astrophysics Data System (ADS)
Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.
2017-12-01
One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.
A model of geomagnetic secular variation for 1980-1983
Peddie, N.W.; Zunde, A.K.
1987-01-01
We developed an updated model of the secular variation of the main geomagnetic field during 1980 through 1983 based on annual mean values for that interval from 148 worldwide magnetic observatories. The model consists of a series of 80 spherical harmonics, up to and including those of degree and order 8. We used it to form a proposal for the 1985 revision of the International Geomagnetic Reference Field (IGRF). Comparison of the new model, whose mean epoch is approximately 1982.0, with the Provisional Geomagnetic Reference Field for 1975-1980 (PGRF 1975), indicates that the moment of the centered-dipole part of the geomagnetic field is now decreasing faster than it was 5 years ago. The rate (in field units) indicated by PGRF 1975 was about -25 nT a-1, while for the new model it is -28 nT a-1. ?? 1987.
NASA Astrophysics Data System (ADS)
Vokhmyanin, M. V.; Ponyavin, D. I.
2016-12-01
The interplanetary magnetic field (IMF) By component affects the configuration of field-aligned currents (FAC) whose geomagnetic response is observed from high to low latitudes. The ground magnetic perturbations induced by FACs are opposite on the dawnside and duskside and depend upon the IMF By polarity. Based on the multilinear regression analysis, we show that this effect is presented at the midlatitude observatories, Niemegk and Arti, in the X and Y components of the geomagnetic field. This allows us to infer the IMF sector structure from the old geomagnetic records made at Ekaterinburg and Potsdam since 1850 and 1890, respectively. Geomagnetic data from various stations provide proxies of the IMF polarity which coincide for the most part of the nineteenth and twentieth centuries. This supports their reliabilities and makes them suitable for studying the large-scale IMF sector structure in the past.
NASA Astrophysics Data System (ADS)
Ahn, Hyeon-Seon; Sohn, Young Kwan; Lee, Jin-Young; Kim, Jin Cheul
2018-05-01
Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13-25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today's axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240-320 °C entirely having normal-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240-320 and 520-580 °C that have anomalous directions, concentrated in the 13-34-cm-depth interval ( 17-19 ka in inferred age) and possibly below 53 cm depth (before 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having 300 and 580 °C Curie temperature as remanence carriers, suggestive of (titano)maghemite and/or Ti-rich titanomagnetite and magnetite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub 300 °C, whereas the high-temperature components are of primary detrital origin that survived later chemical influence. Accordingly, the unusual directions might record geomagnetic instability within the 17-22 ka period manifested by multiple excursional swings, partly associated with the Tianchi/Hilina Pali excursion. However, further work is needed to verify this interpretation and distinguish it from alternative explanations that invoke rock magnetic complexities as the cause of the unusual directions.[Figure not available: see fulltext.
Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio
2017-07-01
Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function.
Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio
2017-01-01
Abstract Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles’ force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (–) r(14) = −0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function. PMID:28723790
NASA Astrophysics Data System (ADS)
Achitouv, I.; Rasera, Y.; Sheth, R. K.; Corasaniti, P. S.
2013-12-01
The excursion set approach provides a framework for predicting how the abundance of dark matter halos depends on the initial conditions. A key ingredient of this formalism is the specification of a critical overdensity threshold (barrier) which protohalos must exceed if they are to form virialized halos at a later time. However, to make its predictions, the excursion set approach explicitly averages over all positions in the initial field, rather than the special ones around which halos form, so it is not clear that the barrier has physical motivation or meaning. In this Letter we show that once the statistical assumptions which underlie the excursion set approach are considered a drifting diffusing barrier model does provide a good self-consistent description both of halo abundance as well as of the initial overdensities of the protohalo patches.
Jaw motion during gum-chewing in children with primary dentition.
Kubota, Naoko; Hayasaki, Haruaki; Saitoh, Issei; Iwase, Yoko; Maruyama, Tomoaki; Inada, Emi; Hasegawa, Hiroko; Yamada, Chiaki; Takemoto, Yoshihiko; Matsumoto, Yuko; Yamasaki, Youichi
2010-01-01
This study was undertaken to characterize jaw motion during mastication in children with primary dentition and to compare jaw motion with that in adults. The means and the variances of the traditional parameters for the chewing cycle, i.e., duration, excursive ranges and 3-D distances of travel at the lower incisor, molars and condyles were analyzed and compared in 23 children and 25 female adults. The duration of opening in children was significantly shorter than that of adults. Significant differences between children and adults were observed in lateral and vertical excursion of the incisor, lateral excursion at the molars, and vertical excursion at the condyles. Many of these measurements had larger between-subject and between-cycle variances in children than adults, suggesting that chewing motion in children has not yet matured. The results of this study indicate that chewing motion in children is different from that of adults.
NASA Technical Reports Server (NTRS)
Yumoto, K.; Takahashi, K.; Ogawa, T.; Tsunomura, S.; Nagai, T.
1989-01-01
The SC- and SI-associated ionospheric Doppler velocity oscillations and geomagnetic pulsations during the great geomagnetic storm of February 1986 are interpreted. This is done by considering the 'dynamo-motor' mechanism of ionospheric E-field and the global compressional oscillations of the magnetosphere and the ionosphere, respectively.
Campbell, Wallace H.
1995-01-01
The social uses of geomagnetism include the physics of the space environment, satellite damage, pipeline corrosion, electric power-grid failure, communication interference, global positioning disruption, mineral-resource detection, interpretation of the Earth's formation and structure, navigation, weather, and magnetoreception in organisms. The need for continuing observations of the geomagnetic field, together with careful archiving of these records and mechanisms for dissemination of these data, is emphasized.
Persinger, M A
1985-02-01
The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region.
NASA Technical Reports Server (NTRS)
Watanabe, S.; Ondoh, T.
1986-01-01
Several ion whistlers were observed by the polar orbiting satellites, Isis, during geomagnetic storms associated with large solar flares in 1982. It seems that the proton density ratio to the total ions deduced from the crossover frequency of the transequatorial ion whistlers observed at geomagnetic low latitudes during the main phase of the geomagnetic storm on July 14, 1982 was lower than the usual density ratio. An anomalous pattern seen on the time-compressed dynamic spectra of the ion whistlers on September 6, 1982 may suggest the existence of effects by the component He(3+) in a quite small amount.
The possible effects of the solar and geomagnetic activity on multiple sclerosis.
Papathanasopoulos, Panagiotis; Preka-Papadema, Panagiota; Gkotsinas, Anastasios; Dimisianos, Nikolaos; Hillaris, Alexandros; Katsavrias, Christos; Antonakopoulos, Gregorios; Moussas, Xenophon; Andreadou, Elisabeth; Georgiou, Vasileios; Papachristou, Pinelopi; Kargiotis, Odysseas
2016-07-01
Increasing observational evidence on the biological effects of Space Weather suggests that geomagnetic disturbances may be an environmental risk factor for multiple sclerosis (MS) relapses. In the present study, we aim to investigate the possible effect of geomagnetic disturbances on MS activity. MS patient admittance rates were correlated with the solar and geophysical data covering an eleven-year period (1996-2006, 23rd solar cycle). We also examined the relationship of patterns of the solar flares, the coronal mass ejections (CMEs) and the solar wind with the recorded MS admission numbers. The rate of MS patient admittance due to acute relapses was found to be associated with the solar and geomagnetic events. There was a "primary" peak in MS admittance rates shortly after intense geomagnetic storms followed by a "secondary" peak 7-8 months later. We conclude that the geomagnetic and solar activity may represent an environmental health risk factor for multiple sclerosis and we discuss the possible mechanisms underlying this association. More data from larger case series are needed to confirm these preliminary results and to explore the possible influence of Space Weather on the biological and radiological markers of the disease. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.
2018-05-01
We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton radiation storm that began on 21 June. We did not find a signal from this SEP at ground level. The details of these observations are presented.
Topside ionospheric irregularities as seen from multisatellite observations
NASA Astrophysics Data System (ADS)
Zakharenkova, Irina; Astafyeva, Elvira
2015-01-01
use in situ data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP satellite and ground-based GPS receivers to study the occurrence and global distribution of ionospheric irregularities during the main phase of the geomagnetic storm of 29-31 August 2004 (minimum Dst excursion of -128 nT). Using the CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities: (1) the region of the auroral oval at high latitudes of both hemispheres and (2) the low latitudes/equatorial region between Africa and South America. At high latitudes, the topside ionospheric irregularities appeared to be more intensive in the southern hemisphere, which is, most likely, due to seasonal variations in the interhemispheric field-aligned currents system. An analysis of multi-instrumental observations reveals reinforcement of the equatorial ionization anomaly after sunset in Atlantic sector on 30 August and formation of the significant plasma depletions and irregularities over a large longitudinal range. Equatorial irregularities were also found in the morning sector at the recovery phase of the storm. In addition to low Earth orbit (LEO) GPS measurements, we analyze the LEO in situ measurements, and we show that these two techniques cannot be interchangeable in all cases because of the altitudinal extent of plasma irregularities. Overall, we demonstrate that the LEO GPS technique can serve a useful tool for detection of the topside ionospheric irregularities during space weather events and may essentially contribute to other methods based on various instruments.
Thermal emission before earthquakes by analyzing satellite infra-red data
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.
2004-05-01
Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.
Mursula, K.; Tanskanen, E.; Love, J.J.
2011-01-01
We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.
2014-12-01
A midnight brightness wave (MBW) is the phenomenon that the OI (630-nm) airglow enhancement propagates poleward once at local midnight. In this study, we first conducted geomagnetically conjugate observations of 630nm airglow for an MBW at conjugate stations. An airglow enhancement which is considered to be an MBW was observed in the 630-nm airglow images at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0S) at around local midnight from 1540 to 1730 UT (from 2240 to 2430 LT) on 7 February 2011. This MBW was propagating south-southwestward, which is geomagnetically poleward, with a velocity of 290 m/s. However, similar wave was not observed in the 630-nm airglow images at Chiang Mai, Thailand (MLAT: 8.9N), which is close to being conjugate point of Kototabang. This result indicates that the MBW does not have geomagnetic conjugacy. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the MBW was observed. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai simultaneously with the MBW passage. In the presentation, we discuss the MBW generation by the observed poleward neutral winds at Kototabang, and the cause of the coinciding small height increase at Chiang Mai by the polarization electric field inside the observed MBW at Kototabang.
Reduction of the field-aligned potential drop in the polar cap during large geomagnetic storms
NASA Astrophysics Data System (ADS)
Kitamura, N.; Seki, K.; Nishimura, Y.; Hori, T.; Terada, N.; Ono, T.; Strangeway, R. J.
2013-12-01
We have studied photoelectron flows and the inferred field-aligned potential drop in the polar cap during 5 large geomagnetic storms that occurred in the periods when the photoelectron observations in the polar cap were available near the apogee of the FAST satellite (~4000 km) at solar maximum, and the footprint of the satellite paths in the polar cap was under sunlit conditions most of the time. In contrast to the ~20 V potential drop during geomagnetically quiet periods at solar maximum identified by Kitamura et al. [JGR, 2012], the field-aligned potential drop frequently became smaller than ~5 V during the main and early recovery phases of the large geomagnetic storms. Because the potential acts to inhibit photoelectron escape, this result indicates that the corresponding acceleration of ions by the field-aligned potential drop in the polar cap and the lobe region is smaller during the main and early recovery phases of large geomagnetic storms compared to during geomagnetically quiet periods. Under small field-aligned current conditions, the number flux of outflowing ions should be nearly equal to the net escaping electron number flux. Since ions with large flux originating from the cusp/cleft ionosphere convect into the polar cap during geomagnetic storms [e.g., Kitamura et al., JGR, 2010], the net escaping electron number flux should increase to balance the enhanced ion outflows. The magnitude of the field-aligned potential drop would be reduced to let a larger fraction of photoelectrons escape.
NASA Astrophysics Data System (ADS)
Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio
The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.
Aptian Carbon Isotope Stratigraphy in Sierra del Rosario, Northeastern Mexico
NASA Astrophysics Data System (ADS)
Barragan-Manzo, R.; Moreno-Bedmar, J.; Nuñez, F.; Company, M.
2013-05-01
In most recent years Aptian carbon isotope stratigraphy has been widely studied in Europe where isotopic stages have been developed to correlate global events. Two negative excursions have been recorded in the Lower Aptian, the older is OAE 1a in the middle part, and a younger negative excursion labeled "Aparein level", which occurs in the uppermost part of the Lower Aptian. In Mexico previous works reported a carbon isotope negative excursion in the lowermost part of the La Peña Formation that was assigned to the onset of Oceanic Anoxic Event 1a (=OAE 1a). In this work we study the isotopic record of the δ13Ccarb of 32 bulk rock samples of limestone from the uppermost part of the Cupido Formation and the lower part of the La Peña Formation at the Francisco Zarco Dam Section (=FZD), Durango State, northeastern Mexico. The isotopic data are calibrated using the latest ammonite biostratigraphic biozonation of the Aptian. This age calibration allows us to make a precise correlation between the carbon isotopic record of Mexico and several European sections (e.g. Spain and France). In the studied Francisco Zarco Dam section we recognize a negative carbon isotopic excursion in the Dufrenoyia justinae ammonite Zone that corresponds to the "Aparein level", which we correlate using the ammonite zonation of others European sections (Figure 1). This correlation allows us to see how the negative excursion that characterizes the "Aparein level" is consistent with the C7 segment. Thus, our recent stratigraphic study allows us to conclude that the ammonite record in the lowermost part of the La Peña Formation is regionally isochronous, and correlates with the Dufrenoyia justinae Zone and Lower Aptian isotope interval C7. In agreement to these biostratigraphic data, the supposed record of the OAE 1a in the lowermost part of the La Peña Formation is not correct, and the carbon isotope negative excursion must be assigned to the younger event "Aparein level". Taking this into account, other Lower Aptian negative excursions reported in the literature and assigned to the OAE 1a, perhaps, must be reconsidered to distinguish among the two Lower Aptian negative excursions.; Figure 1: Isotopic curve of the FZD section compared with one section of Spain. The sharp negative peak in the Mexican section is compared with the Spanish section (see the arrow).
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Maute, A. I.; Lu, G.; Richmond, A. D.
2017-12-01
Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with available satellite data, e.g. Swarm and COSMIC, and discuss the changes in the TI response due to the predicted main field changes to identify regions of potential increase and decrease in the storm time response. Aubert, J., Geophys. J. Int. 203, 1738-1751, 2015, doi: 10.1093/gji/ggv394 .
Scaling fixed-field alternating gradient accelerators with a small orbit excursion.
Machida, Shinji
2009-10-16
A novel scaling type of fixed-field alternating gradient (FFAG) accelerator is proposed that solves the major problems of conventional scaling and nonscaling types. This scaling FFAG accelerator can achieve a much smaller orbit excursion by taking a larger field index k. A triplet focusing structure makes it possible to set the operating point in the second stability region of Hill's equation with a reasonable sensitivity to various errors. The orbit excursion is about 5 times smaller than in a conventional scaling FFAG accelerator and the beam size growth due to typical errors is at most 10%.
Muschol, Michael; Wenders, Caroline; Wennemuth, Gunther
2018-01-01
Here high-speed Digital Holographic Microscopy (DHM) records sperm flagellar waveforms and swimming paths in 4 dimensions (X, Z, and t). We find flagellar excursions into the Z-plane nearly as large as the envelope of the flagellar waveform projected onto the XY-plane. These Z-plane excursions travel as waves down the flagellum each beat cycle. DHM also tracks the heads of free-swimming sperm and the dynamics and chirality of rolling of sperm around their long axis. We find that mouse sperm roll CW at the maximum positive Z-plane excursion of the head, then roll CCW at the subsequent maximum negative Z-plane excursion. This alternating chirality of rolling indicates sperm have a chiral memory. Procrustes alignments of path trajectories for sequences of roll-counterroll cycles show that path chirality is always CW for the cells analyzed in this study. Human and bull sperm lack distinguishable left and right surfaces, but DHM still indicates coordination of Z-plane excursions and rolling events. We propose that sperm have a chiral memory that resides in a hypothetical elastic linkage within the flagellar machinery, which stores some of the torque required for a CW or CCW roll to reuse in the following counter-roll. Separate mechanisms control path chirality.
Report of geomagnetic pulsation indices for space weather applications
Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.
2013-01-01
The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.
Kinematic reversal schemes for the geomagnetic dipole.
NASA Technical Reports Server (NTRS)
Levy, E. H.
1972-01-01
Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.
An introduction to quiet daily geomagnetic fields
Campbell, W.H.
1989-01-01
On days that are quiet with respect to solar-terrestrial activity phenomena, the geomagnetic field has variations, tens of gamma in size, with major spectral components at about 24, 12, 8, and 6 hr in period. These quiet daily field variations are primarily due to the dynamo currents flowing in the E region of the earth's ionosphere, are driven by the global thermotidal wind systems, and are dependent upon the local tensor conductivity and main geomagnetic field vector. The highlights of the behavior and interpretation of these quiet field changes, from their discovery in 1634 until the present, are discussed as an introduction to the special journal issue on Quiet Daily Geomagnetic Fields. ?? 1989 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Dimitrova, Svetla
2008-02-01
A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.
NASA Technical Reports Server (NTRS)
Gonzalez, W. D.; Pinto, O., Jr.; Mendes, O., Jr.; Mozer, F. S.
1986-01-01
Large plasmaspheric electric fields at L is approximately 2 measured by the S3-3 satellite during strong geomagnetic activity are reported. Since these measurements have amplitudes comparable to those of the local corotation electric field, during such events the plasmasphere is expected to get strongly altered event at such low L-values. Furthermore, those measurements could contribute to the understanding of the physics of the convection/electric field penetration to the low latitude plasmaphere as well as the disturbed dynamo, during strong geomagnetic activity. For this purpose, critical parameters related to geomagnetic activity are also presented for the reported electric field events.
NASA Astrophysics Data System (ADS)
Safaraly-Oghlu Babayev, Elchin
The Sun is the main driver of space weather. The possibility that solar activity variations and related changes in the Earth's magnetosphere can affect human life and health has been debated for many decades. This problem is being studied extensively in the late 20th and early 21st centuries and it is still being contradictory in some cases. The relations between space weather changes and the human health have global implications, but they are especially significant for habitants living at high geomagnetic latitudes where the geomagnetic disturbances have larger amplitudes. Nevertheless, the relevant researches are also important for humans living at any geomagnetic latitudes with different levels of geomagnetic activity; recent researches show that weak geomagnetic disturbances can also have adverse effects. Unfortunately, limited comparison of results of investigations on possible effects to humans from geomagnetic activity exists between studies conducted in high, middle and low latitudes. Knowledge about the relationship between solar and geomagnetic activity and the human health would allow to get better prepared beforehand for any future geomagnetic event and its impacts anywhere. For these purposes there are conducted collaborative (jointly with scientists from Israel, Bulgaria, Russia and Belgium) and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences for revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems in different phases of solar cycle 23. This paper describes some recently obtained results of the complex (theoretical, experimental and statistical) studies of influence of the periodical and aperiodical changes of solar, geomagnetic and cosmic ray activities upon human cardio-health state as well as human physiological and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe geomagnetic storms of the solar cycle 23 on the mentioned systems in middle-latitude location. In these studies, direct and indirect indicators of space weather influence are used: 1) Indirect indicators are essentially epidemiological data showing the temporal and spatial distribution of defined events or health disturbances involving considerable numbers of test subjects over several years. The indirect indicators used in this paper are: temporal distribution of emergency calls and hospital admissions (sudden cardiac deaths, acute myocardial infarction mortality and morbidity, so on), dynamics of traffic accidents, epidemics, etc.; 2) Direct indicators. They are physiological parameters, which can be objectively verified and which are acquired either in vivo, directly on the subject (heart rate and its variability, blood pressure, human brain's functional state, human psycho-emotional state, so on), or in vitro by laboratory diagnostics or tissue investigations. The potential co-factors, e.g. terrestrial (tropospheric) weather, seasons, demographic factor, working environment, etc., were also considered in the interpretation of the indicators. Spectral analyses have revealed certain chronobiological periodicities in the considered data. There are also provided results of daily medical-physiological experiments (acupunctural studies of conductivity of the biologically active points of human body in days with different geomagnetic activity levels) conducted in the Laboratory of Heliobiology, Baku, Azerbaijan, as a part of collaborative studies with Russian institutions such as IZMIRAN and Space Research Institute. They show on the latitudinal and longitudinal dependence of space weather influence. Our complex studies enabled to conclude that not only extremely high, but also very low levels of geomagnetic activity may have signifi- cant influence on human health state, especially, in the cardio-vascular health state and human brain's bioelectrical activity.
Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Badruddin; Mustajab, F.; Derouich, M.
2018-05-01
A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.
Lunisolar tidal waves, geomagnetic activity and epilepsy in the light of multivariate coherence.
Mikulecky, M; Moravcikova, C; Czanner, S
1996-08-01
The computed daily values of lunisolar tidal waves, the observed daily values of Ap index, a measure of the planetary geomagnetic activity, and the daily numbers of patients with epileptic attacks for a group of 28 neurology patients between 1987 and 1992 were analyzed by common, multiple and partial cross-spectral analysis to search for relationships between periodicities in these time series. Significant common and multiple coherence between them was found for rhythms with a period length over 3-4 months, in agreement with seasonal variations of all three variables. If, however, the coherence between tides and epilepsy was studied excluding the influence of geomagnetism, two joint infradian periodicities with period lengths of 8.5 and 10.7 days became significant. On the other hand, there were no joint rhythms for geomagnetism and epilepsy when the influence of tidal waves was excluded. The result suggests a more primary role of gravitation, compared with geomagnetism, in the multivariate process studied.
Two types of geomagnetic storms and relationship between Dst and AE indexes
NASA Astrophysics Data System (ADS)
Shadrina, Lyudmila P.
2017-10-01
The study of the relationship between Dst and AE indices of the geomagnetic field and its manifestation in geomagnetic storms in the XXIII solar cycle was carried out. It is shown that geomagnetic storms are divided into two groups according to the ratio of the amplitude of Ds index decrease to the sum of the AE index during the main phase of the storm. For the first group it is characteristic that for small depressions of the Dst index, significant amounts of the AE index are observed. Most often these are storms with a gradual beginning and a long main phase associated with recurrent solar wind streams. Storms of the second group differ in large amplitudes of Dst index decrease, shorter duration of main phase and small amounts of AE-index. Usually these are sporadic geomagnetic storms with a sudden commencement caused by interplanetary disturbances of the CME type. The storms of these two types differ also in their geoeffects, including the effect on human health.
NASA Astrophysics Data System (ADS)
Esquivel, D. M. S.; Corrêa, A. A. C.; Vaillant, O. S.; de Melo, V. Bandeira; Gouvêa, G. S.; Ferreira, C. G.; Ferreira, T. A.; Wajnberg, E.
2014-03-01
Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.
Esquivel, D M S; Corrêa, A A C; Vaillant, O S; de Melo, V Bandeira; Gouvêa, G S; Ferreira, C G; Ferreira, T A; Wajnberg, E
2014-03-01
Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.
Galic, M A; Persinger, M A
2004-06-01
In five separate blocks over a period of several months for 33 female rats the amount of geomagnetic activity during the day before ad libitum access to 10% sucrose or water was positively correlated with the volume of sucrose consumed per 24-hr. period. The strength of the correlation (.62 to .77) declined over the subsequent 10 days from between .12 to -.18 and resembled an extinction curve. In a subsequent experiment four rats exposed to 5 nT to 8 nT, 0.5-Hz magnetic fields that ceased for 30 min. once every 4 hr. for 4 days consumed 11% more sucrose than the four rats exposed to no field. We suggest that the initial consumption of 10% sucrose may have been reinforced because it diminished the aversive physiological effects associated with the increased geomagnetic activity. However, over the subsequent days, as geomagnetic activity decreased or habituation occurred, negative reinforcement did not maintain this behavior.
(abstract) A Geomagnetic Contribution to Climate Change in this Century
NASA Technical Reports Server (NTRS)
Feynman, J.; Ruzmaikin, A.; Lawrence, J.
1996-01-01
There is a myth that all solar effects can be parameterized by the sun spot number. This is not true. For example, the level of geomagnetic activity during this century was not proportional to the sunspot number. Instead there is a large systematic increase in geomagnetic activity, not reflected in the sunspot number. This increase occurred gradually over at least 60 years. The 11 year solar cycle variation was superimposed on this systematic increase. Here we show that this systematic increase in activity is well correlated to the simultaneous increase in terrestrial temperature that occurred during the first half of this century. We discuss these findings in terms of mechanisms by which geomagnetics can be coupled to climate. These mechanisms include possible changes in weather patterns and cloud cover due to increased cosmic ray fluxes, or to increased fluxes of high energy electrons. We suggest that this systematic increase in geomagnetic activity contributed (along with anthropogenic effects and possible changes in solar irradiance) to the changes in climate recorded during this period.
On the Topological Changes of Local Hurst Exponent in Polar Regions
NASA Astrophysics Data System (ADS)
Consolini, G.; De Michelis, P.
2014-12-01
Geomagnetic activity during magnetic substorms and storms is related to the dinamical and topological changes of the current systems flowing in the Earth's magnetosphere-ionosphere. This is particularly true in the case of polar regions where the enhancement of auroral electrojet current system is responsible for the observed geomagnetic perturbations. Here, using the DMA-technique we evaluate the local Hurst exponent (H"older exponent) for a set of 46 geomagnetic observatories, widely distributed in the northern hemisphere, during one of the most famous and strong geomagnetic storm, the Bastille event, and reconstruct a sequence of polar maps showing the dinamical changes of the topology of the local Hurst exponent with the geomagnetic activity level. The topological evolution of local Hurst exponent maps is discussed in relation to the dinamical changes of the current systems flowing in the polar ionosphere. G. Consolini has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 313038/STORM for this research.
ERIC Educational Resources Information Center
Baldock, R. N.
1973-01-01
Provides many useful suggestions and cautions for planning and executing a biology field excursion. Specific procedures are outlined for investigating land communities and coastal areas, and a number of follow-up laboratory activities are described. The appendix provides an extensive bibliography with useful comments on the literature. (JR)
Improving the Science Excursion: An Educational Technologist's View
ERIC Educational Resources Information Center
Balson, M.
1973-01-01
Analyzes the nature of the learning process and attempts to show how the three components of a reinforcement contingency, the stimulus, the response and the reinforcement can be utilized to increase the efficiency of a typical science learning experience, the excursion. (JR)
North Europe power transmission system vulnerability during extreme space weather
NASA Astrophysics Data System (ADS)
Piccinelli, Roberta; Krausmann, Elisabeth
2018-01-01
Space weather driven by solar activity can induce geomagnetic disturbances at the Earth's surface that can affect power transmission systems. Variations in the geomagnetic field result in geomagnetically induced currents that can enter the system through its grounding connections, saturate transformers and lead to system instability and possibly collapse. This study analyzes the impact of extreme space weather on the northern part of the European power transmission grid for different transformer designs to understand its vulnerability in case of an extreme event. The behavior of the system was analyzed in its operational mode during a severe geomagnetic storm, and mitigation measures, like line compensation, were also considered. These measures change the topology of the system, thus varying the path of geomagnetically induced currents and inducing a local imbalance in the voltage stability superimposed on the grid operational flow. Our analysis shows that the North European power transmission system is fairly robust against extreme space weather events. When considering transformers more vulnerable to geomagnetic storms, only few episodes of instability were found in correspondence with an existing voltage instability due to the underlying system load. The presence of mitigation measures limited the areas of the network in which bus voltage instabilities arise with respect to the system in which mitigation measures are absent.
NASA Astrophysics Data System (ADS)
Ulukavak, Mustafa; Yalcinkaya, Mualla
2016-04-01
The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.
NASA Astrophysics Data System (ADS)
Shaar, R.; Tauxe, L.; Ebert, Y.
2017-12-01
Continuous decadal-resolution paleomagnetic data from archaeological and sedimentary sources in the Levant revealed the existence a local high-field anomaly, which spanned the first 350 years of the first millennium BCE. This so-called "the Levantine Iron Age geomagnetic Anomaly" (LIAA) was characterized by a high averaged geomagnetic field (virtual axial dipole moments, VADM > 140 Z Am2, nearly twice of today's field), short decadal-scale geomagnetic spikes (VADM of 160-185 Z Am2), fast directional and intensity variations, and substantial deviation (20°-25°) from dipole field direction. Similar high field values in the time frame of LIAA have been observed north, and northeast to the Levant: Eastern Anatolia, Turkmenistan, and Georgia. West of the Levant, in the Balkans, field values in the same time are moderate to low. The overall data suggest that the LIAA is a manifestation of a local positive geomagnetic field anomaly similar in magnitude and scale to the presently active negative South Atlantic Anomaly. In this presentation we review the overall archaeomagnetic and sedimentary evidences supporting the local anomaly hypothesis, and compare these observations with today's IGRF field. We analyze the global data during the first two millennia BCE, which suggest some unexpected large deviations from a simple dipolar geomagnetic structure.
NASA Astrophysics Data System (ADS)
Klausner, V.; Mendes, Odim; Domingues, Margarete O.; Papa, Andres R. R.; Tyler, Robert H.; Frick, Peter; Kherani, Esfhan A.
2014-04-01
The vertical component (Z) of the geomagnetic field observed by ground-based observatories of the International Real-Time Magnetic Observatory Network has been used to analyze the induced magnetic fields produced by the movement of a tsunami, electrically conducting sea water through the geomagnetic field. We focus on the survey of minutely sampled geomagnetic variations induced by the tsunami of 27 February 2010 at Easter Island (IPM) and Papeete (PPT) observatories. In order to detect the tsunami disturbances in the geomagnetic data, we used wavelet techniques. We have observed an 85% correlation between the Z component variation and the tide gauge measurements in period range of 10 to 30 min which may be due to two physical mechanisms: gravity waves and the electric currents in the sea. As an auxiliary tool to verify the disturbed magnetic fields, we used the maximum variance analysis (MVA). At PPT, the analyses show local magnetic variations associated with the tsunami arriving in advance of sea surface fluctuations by about 2 h. The first interpretation of the results suggests that wavelet techniques and MVA can be effectively used to characterize the tsunami contributions to the geomagnetic field and further used to calibrate tsunami models and implemented to real-time analysis for forecast tsunami scenarios.
Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.
Xu, Chunxiao; Wei, Shufeng; Lu, Yan; Zhang, Yuxia; Chen, Chuanfang; Song, Tao
2013-09-01
The influence of the geomagnetic field-removed environment on Arabidopsis growth was investigated by cultivation of the plants in a near-null magnetic field and local geomagnetic field (45 µT) for the whole growth period under laboratory conditions. The biomass accumulation of plants in the near-null magnetic field was significantly suppressed at the time when plants were switching from vegetative growth to reproductive growth compared with that of plants grown in the local geomagnetic field, which was caused by a delay in the flowering of plants in the near-null magnetic field. At the early or later growth stage, no significant difference was shown in the biomass accumulation between the plants in the near-null magnetic field and local geomagnetic field. The average number of siliques and the production of seeds per plant in the near-null magnetic field was significantly lower by about 22% and 19%, respectively, than those of control plants. These resulted in a significant reduction of about 20% in the harvest index of plants in the near-null magnetic field compared with that of the controls. These results suggest that the removal of the local geomagnetic field negatively affects the reproductive growth of Arabidopsis, which thus affects the yield and harvest index. Copyright © 2013 Wiley Periodicals, Inc.
Secular trends in storm-level geomagnetic activity
Love, J.J.
2011-01-01
Analysis is made of K-index data from groups of ground-based geomagnetic observatories in Germany, Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. Methods include nonparametric measures of trends and statistical significance used by the hydrological and climatological research communities. Among the three observatory groups, German K data systematically record the highest disturbance levels, followed by the British and, then, the Australian data. Signals consistently seen in K data from all three observatory groups can be reasonably interpreted as physically meaninginful: (1) geomagnetic activity has generally increased over the past 141 years. However, the detailed secular evolution of geomagnetic activity is not well characterized by either a linear trend nor, even, a monotonic trend. Therefore, simple, phenomenological extrapolations of past trends in solar and geomagnetic activity levels are unlikely to be useful for making quantitative predictions of future trends lasting longer than a solar cycle or so. (2) The well-known tendency for magnetic storms to occur during the declining phase of a sunspot-solar cycles is clearly seen for cycles 14-23; it is not, however, clearly seen for cycles 11-13. Therefore, in addition to an increase in geomagnetic activity, the nature of solar-terrestrial interaction has also apparently changed over the past 141 years. ?? Author(s) 2011.
NASA Astrophysics Data System (ADS)
Demetrescu, C.; Dobrica, V.; Stefan, C.
2017-12-01
A rich scientific literature is linking length-of-day (LOD) fluctuations to geomagnetic field and flow oscillations in the fluid outer core. We demostrate that the temporal evolution of the geomagnetic field shows the existence of several oscillations at decadal, inter-decadal, and sub-centennial time scales that superimpose on a so-called inter-centennial constituent. We show that while the subcentennial oscillations of the geomagnetic field, produced by torsional oscillations in the core, could be linked to oscillations of LOD at a similar time scale, the oscillations at decadal and sub-decadal time scales, of external origin, can be found in LOD too. We discuss these issues from the perspective of long time-span main field models (gufm1 - Jackson et al., 2000; COV-OBS - Gillet et al., 2013) that are used to retrieve time series of geomagnetic elements in a 2.5x2.5° network. The decadal and sub-decadal constituents of the time series of annual values in LOD and geomagnetic field were separated in the cyclic component of a Hodrick-Prescott filtering applied to data, and shown to highly correlate to variations of external sources such as the magnetospheric ring current.
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.
2008-01-01
For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new, PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating in high latitude ionosphere, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters is approximately 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.
Space weather and cardiovascular system. New findings
NASA Astrophysics Data System (ADS)
Gurfinkel, Yury; Breus, Tamara
2014-05-01
Researches of last two decades have shown that the cardiovascular system represents the most probable target for influence of helio - and geomagnetic activity. Both cardiovascular system and system of blood are connected very closely: one system cannot exist without another. For the same reason the effects perceived by one system, are easily transferred to another. Laboratory tests such as blood coagulation, platelet aggregation, and capillary blood velocity (CBV) performed in Scientific Clinical Center JSC "Russian Railways in patients suffering from coronary heart disease (CHD) revealed a high dependence with a level of geomagnetic activity. Results of these and other findings allow to assume that blood itself can be a sensor of geomagnetic fields variations because erythrocytes, platelets, and leucocytes bearing electric charge on membranes, and in a comparable magnetic field can change as own properties and properties of blood flow. It is interesting that not only geomagnetic disturbances, but also the periods of very quiet geomagnetic conditions affect a capillary blood velocity, slowing down it. It was shown during long-term experiment with isolation named 'MARS-500' in spatial facility of the Institute of Biomedical Problems in Moscow as imitation of an extended space mission to Mars. Using digital capillaroscope 'Russia', two crewmembers - medical doctors made records of microcirculation parameters at themselves and other four participants of 'Martian' team. Capillary records were performed before, during, and after period of isolation in medical module of MARS-500 facility. At the period of experiment nobody of crewmembers knew about real geomagnetic conditions. In days of active geomagnetic conditions average CBV has registered as 389 ± 167 μm/s, that statistically significant (p
Relationship between human physiological parameters and geomagnetic variations of solar origin
NASA Astrophysics Data System (ADS)
Dimitrova, S.
Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.
Paterson, M A; Smart, C E M; Lopez, P E; McElduff, P; Attia, J; Morbey, C; King, B R
2016-05-01
To determine the effects of protein alone (independent of fat and carbohydrate) on postprandial glycaemia in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Participants with Type 1 diabetes mellitus aged 7-40 years consumed six 150 ml whey isolate protein drinks [0 g (control), 12.5, 25, 50, 75 and 100] and two 150 ml glucose drinks (10 and 20 g) without insulin, in randomized order over 8 days, 4 h after the evening meal. Continuous glucose monitoring was used to assess postprandial glycaemia. Data were collected from 27 participants. Protein loads of 12.5 and 50 g did not result in significant postprandial glycaemic excursions compared with control (water) throughout the 300 min study period (P > 0.05). Protein loads of 75 and 100 g resulted in lower glycaemic excursions than control in the 60-120 min postprandial interval, but higher excursions in the 180-300 min interval. In comparison with 20 g glucose, the large protein loads resulted in significantly delayed and sustained glucose excursions, commencing at 180 min and continuing to 5 h. Seventy-five grams or more of protein alone significantly increases postprandial glycaemia from 3 to 5 h in people with Type 1 diabetes mellitus using intensive insulin therapy. The glycaemic profiles resulting from high protein loads differ significantly from the excursion from glucose in terms of time to peak glucose and duration of the glycaemic excursion. This research supports recommendations for insulin dosing for large amounts of protein. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.
Sex-specific gait adaptations prior to and up to six months after ACL reconstruction
Stasi, Stephanie L. Di; Hartigan, Erin H.; Snyder-Mackler, Lynn
2015-01-01
STUDY DESIGN Controlled longitudinal laboratory study. OBJECTIVES Compare sagittal plane gait mechanics of men and women before and up to 6 months after anterior cruciate ligament reconstruction (ACLR). BACKGROUND Aberrant gait patterns are ubiquitous after anterior cruciate ligament (ACL) rupture and persist after ACLR despite skilled physical therapy. Sex influences post-operative function and second ACL injury risk, but its influence on gait adaptations after injury have not been investigated. METHODS Sagittal plane knee and hip joint excursions during midstance and internal knee and hip extension moments at peak knee flexion were collected on 12 women and 27 men using 3-dimensional gait analysis before (Screen) and after pre-operative physical therapy (Pre-sx), and 6 months after ACLR (6mo). Repeated measures analysis of variance models were used to determine whether limb asymmetries changed differently over time in men and women. RESULTS Significant time x limb x sex interactions were identified for hip and knee excursions and internal knee extension moments (P≤.007). Both sexes demonstrated smaller knee excursions on the involved compared to the uninvolved knee at each time point (P≤.007), but only women demonstrated a decrease in the involved knee excursion from pre-sx to 6mo (P=.03). Women also demonstrated smaller hip excursions (P<.001) and internal knee extension moments (P=.005) on the involved limb compared to the uninvolved limb at 6mo. Men demonstrated smaller hip excursions and knee moments on the involved limb compared to the uninvolved limb (main effects, P<.001). CONCLUSION The persistence of limb asymmetries in men and women 6 months after ACLR indicates that current rehabilitation efforts are inadequate for some individuals following ACLR. PMID:25627155
NASA Astrophysics Data System (ADS)
Kotzé, P. B.; Korte, M.
2016-02-01
Geomagnetic field data from four observatories and annual field surveys between 2005 and 2015 provide a detailed description of Earth's magnetic field changes over South Africa, Namibia and Botswana on time scales of less than 1 year. The southern African area is characterized by rapid changes in the secular variation pattern and lies in close proximity to the South Atlantic Anomaly (SAA) where the geomagnetic field intensity is almost 30 % weaker than in other regions at similar latitudes around the globe. Several geomagnetic secular acceleration (SA) pulses (geomagnetic jerks) around 2007, 2010 and 2012 could be identified over the last decade in southern Africa. We present a new regional field model for declination and horizontal and vertical intensity over southern Africa (Southern African REGional (SAREG)) which is based on field survey and observatory data and covering the time interval from 2005 to 2014, i.e. including the period between 2010 and 2013 when no low Earth-orbiting vector field satellite data are available. A comparative evaluation between SAREG and global field models like CHAOS-5, the CHAMP, Orsted and SAC-C model of the Earth's magnetic field and International Geomagnetic Reference Field (IGRF-12) reveals that a simple regional field model based on a relatively dense ground network is able to provide a realistic representation of the geomagnetic field in this area. We particularly note that a global field model like CHAOS-5 does not always indicate similar short-period patterns in the field components as revealed by observatory data, while representing the general secular variation reasonably well during the time interval without near-Earth satellite vector field data. This investigation further shows the inhomogeneous occurrence and distribution of secular variation impulses in the different geomagnetic field components and at different locations in southern African.
Love, Jeffrey J.
2009-01-01
The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.
Dependence of sodium laser guide star photon return on the geomagnetic field
NASA Astrophysics Data System (ADS)
Moussaoui, N.; Holzlöhner, R.; Hackenberg, W.; Bonaccini Calia, D.
2009-07-01
Aims: The efficiency of optical pumping that increases the backscatter emission of mesospheric sodium atoms in continuous wave (cw) laser guide stars (LGSs) can be significantly reduced and, in the worst case, eliminated by the action of the geomagnetic field. Our goal is to present an estimation of this effect for several telescope sites. Methods: Sodium atoms precess around magnetic field lines that cycle the magnetic quantum number, reducing the effectiveness of optical pumping. Our method is based on calculating the sodium magnetic sublevel populations in the presence of the geomagnetic field and on experimental measurements of radiance return from sodium LGS conducted at the Starfire optical range (SOR). Results: We propose a relatively simple semi-empirical formula for estimating the effect of the geomagnetic field on enhancing the LGSs photon return due to optical pumping with a circularly polarized cw single-frequency laser beam. Starting from the good agreement between our calculations and the experimental measurements for the geomagnetic field effect, and in order to more realistically estimate the sodium LGSs photon return, we introduce the effect of the distance to the mesospheric sodium layer and the atmospheric attenuation. The combined effect of these three factors is calculated for several telescope sites. Conclusions: In calculating the return flux of LGSs, only the best return conditions are often assumed, relying on strong optical pumping with circularly polarized lasers. However, one can only obtain this optimal return along one specific laser orientation on the sky, where the geomagnetic field lines are parallel to the laser beam. For most of the telescopes, the optimum can be obtained at telescope orientations beyond the observation limit. For the telescopes located close to the geomagnetic pole, the benefit of the optical pumping is much more important than for telescopes located close to the geomagnetic equator.
Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics
NASA Astrophysics Data System (ADS)
Karan, Deepak K.; Pallamraju, Duggirala
2018-05-01
The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the zonal scale sizes brings to light, for the first time, the varying nature of the neutral wave coupling in the daytime thermosphere during periods of geomagnetic disturbances.
NASA Astrophysics Data System (ADS)
Pavlov, Anatoli
We present a study of anomalous night-time NmF2 peaks, ANNPs, observed by the La Paz, Natal, Djibouti, Kodaikanal, Madras, Manila, Talara, and Huancayo-Jicamarca ionosonde stations close to the geomagnetic equator. It is shown that the probabilities of occurrence of the first and second ANNPs depend on the geomagnetic longitude, and there is a longitude sector close to 110° geomagnetic longitude where the first and second ANNPs occur less frequently in comparisons with the longitude regions located close to and below about 34° geomagnetic longitude and close to and above about 144° geomagnetic longitude. The found frequencies of occurrence of the ANNPs increase with increasing solar activity, except of the Djibouti and Kodaikanal ionosonde stations, where the probability of the first ANNP occurrence is found to decrease with increasing solar activity from low (F10.7<100) to moderate (100≤F10.7≤170) solar activity, and except of the Natal ionosonde station, where the frequencies of occurrence of the first and second ANNPs decrease with increasing solar activity from moderate to high (F10.7>170) solar activity. We found that the occurrence probabilities of ANNPs during geomagnetically disturbed conditions are greater than those during geomagnetically quiet conditions. The calculated values of these probabilities have pronounced maximums in June (La-Paz and Talara) and in July (Huancayo-Jicamarca) at the ionosonde stations located in the southern geographic hemisphere. The first ANNP is least frequently observed in January (La-Paz, Talara, and Huancayo-Jicamarca), and the second ANNP is least frequently measured in January (La-Paz and Huancayo-Jicamarca) and in December (Talara). In the northern geographic hemisphere, the studied probabilities are lowest in June (Djibouti and Madras), in July (Manila), and in April (Kodaikanal). The maximums in the probabilities of occurrence of the first and second ANNPs are found to be in September (Djibouti), in October (Madras), in November (Manila), and in December (Kodaikanal).
NASA Astrophysics Data System (ADS)
Liu, T. C.; Shao, X.; Cao, C.; Zhang, B.; Fung, S. F.; Sharma, S.
2015-12-01
A G4 level (severe) geomagnetic storm occurred on March 17 (St. Patrick's Day), 2015 and it is among the strongest geomagnetic storms of the current solar cycle (Solar Cycle 24). The storm is identified as due to the Coronal Mass Ejections (CMEs) which erupted on March 15 from Region 2297 of solar surface. During this event, the geomagnetic storm index Dst reached -223 nT and the geomagnetic aurora electrojet (AE) index increased and reached as high as >2200 nT with large amplitude fluctuations. Aurora occurred in both hemispheres. Ground auroral sightings were reported from Michigan to Alaska and as far south as southern Colorado. The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. In this paper, DNB observations of aurora activities during the St. Patrick's Day geomagnetic storm are analyzed. Aurora are observed to evolve with salient features by DNB for orbital pass on the night side (~local time 1:30am) in both hemispheres. The radiance data from DNB observation are collected at the night sides of southern and northern hemispheres and geo-located onto geomagnetic local time (MLT) coordinates. Regions of aurora during each orbital pass are identified through image processing by contouring radiance values and excluding regions with stray light near day-night terminator. The evolution of aurora are characterized with time series of the poleward and low latitude boundary of aurora, their latitude-span and area, peak radiance and total light emission of the aurora region in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters.
Study of the mid-latitude ionospheric response to geomagnetic storms in the European region
NASA Astrophysics Data System (ADS)
Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad
2016-07-01
Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.
NASA Astrophysics Data System (ADS)
Metodiev, Metodi; Trifonova, Petya; Buchvarov, Ivan
2014-05-01
The most significant of the Earth's magnetic field elements is the geomagnetic declination, which is widely used in geodesy, cartography and their associated navigational systems. The geomagnetic declination is incorporated in the naval navigation maps and is used in the navigation process. It is also a very important factor for aviation where declination data have major importance for every airport (civil or military). As the geomagnetic field changes with time but maps of the geomagnetic declination are not published annually and are reduced to an epoch in the past, it is necessary to define two additional parameters in the maps, needed to determine the value of the geomagnetic declination for a particular moment in the future: 1) estimated value of the annual declination variation and 2) a table with the average diurnal variation of the declination for a given month and hour. The goal of our research is to analyze the annual mean values of geomagnetic declination on the territory of the Balkan Peninsula for obtaining of a best fitting model of that parameter which can be used for prediction of the declination value for the next 10 years. The same study was performed in 1990 for the purposes of Bulgarian declination map's preparation. As a result, a linear model of the declination annual variation was obtained for the neighboring observatories and repeat stations data, and a map of the obtained values for the Bulgarian territory was drawn. We use the latest version of the GFZ Reference Internal Magnetic Model (GRIMM-3.0) to compare the magnetic field evolution predicted by that model between 2001 and 2010 to the data collected in five independent geomagnetic observatories in the Balkan region (PAG, SUA, PEG, IZN, GCK) over the same time interval. We conclude that the geomagnetic core field secular variation in this area is well described by the global model. The observed small-scale differences might indicate induced lithospheric anomalies but it is still an open question in geomagnetism whether induction by the slowly changing main field in conductive structures in the lithosphere is a measurable part of what is observed as secular variation at and above the Earth's surface. In our study we test different time-scale periods and different order polynomials to create the most appropriate prediction model and to estimate our results. We find that linear models which are used to determine the annual declination variation in cartography provide enough accurate information for the declination map's users.
Speckle tracking as a method to measure hemidiaphragm excursion.
Goutman, Stephen A; Hamilton, James D; Swihart, Blake; Foerster, Bradley; Feldman, Eva L; Rubin, Jonathan M
2017-01-01
Diaphragm excursion measured via ultrasound may be an important imaging outcome measure of respiratory function. We developed a new method for measuring diaphragm movement and compared it to the more traditional M-mode method. Ultrasound images of the right and left hemidiaphragms were collected to compare speckle tracking and M-mode measurements of diaphragm excursion. Speckle tracking was performed using EchoInsight (Epsilon Imaging, Ann Arbor, Michigan). Six healthy subjects without a history of pulmonary diseases were included in this proof-of-concept study. Speckle tracking of the diaphragm is technically possible. Unlike M-mode, speckle tracking carries the advantage of reliable visualization and measurement of the left hemidiaphragm. Speckle tracking accounted for diaphragm movement simultaneously in the cephalocaudad and mediolateral directions, unlike M-mode, which is 1-dimensional. Diaphragm speckle tracking may represent a novel, more robust method for measuring diaphragm excursion, especially for the left hemidiaphragm. Muscle Nerve 55: 125-127, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sharan, Nek; Matheou, Georgios; Dimotakis, Paul
2017-11-01
Artificial numerical dissipation decreases dispersive oscillations and can play a key role in mitigating unphysical scalar excursions in large eddy simulations (LES). Its influence on scalar mixing can be assessed through the resolved-scale scalar, Z , its probability density function (PDF), variance, spectra, and the budget of the horizontally averaged equation for Z2. LES of incompressible temporally evolving shear flow enabled us to study the influence of numerical dissipation on unphysical scalar excursions and mixing estimates. Flows with different mixing behavior, with both marching and non-marching scalar PDFs, are studied. Scalar fields for each flow are compared for different grid resolutions and numerical scalar-convection term schemes. As expected, increasing numerical dissipation enhances scalar mixing in the development stage of shear flow characterized by organized large-scale pairings with a non-marching PDF, but has little influence in the self-similar stage of flows with marching PDFs. Flow parameters and regimes sensitive to numerical dissipation help identify approaches to mitigate unphysical excursions while minimizing dissipation.
Illness and injury to students on a school excursion to Peru.
Shaw, Marc T M; Harding, Elizabeth; Leggat, Peter A
2014-01-01
School-organized travels abroad provide an opportunity for students to undertake supervised travel that reinforces scholastic study of various geographical locations under the direction and protection of experienced tour leaders and health professional support. Little is known concerning the nature of illnesses and injuries occurring on overseas school excursions. This study was designed to investigate the prevalence of injury and illness suffered by older teenagers on a school excursion to South America. In 2010, the school's tour physician (EH) diagnosed and recorded all illnesses and injuries among 29 school girls and 6 accompanying adults on a school excursion to Peru. Information recorded included age, sex, the nature of the presenting illness, number of days into the tour, the assessment of the condition, and the treatment employed during the excursion's field phase of 21 days. A total of 32 (91%) travelers sought medical advice at least once for a total of 371 consultations, resulting in 153 separate diagnoses. The mean age of the students was 16 years with six adults accompanying the students being significantly older. Primary illnesses diagnosed were related to the following systems and conditions: gastrointestinal (58, 37%), respiratory (25, 16%), altitude sickness (19, 12%), genitourinary (8, 5%), dermatological (10, 7%), trauma (7, 5%), neurological (7, 5%), anxiety or psychological adjustment (7, 5%), adverse drug reactions (4, 3%), and musculoskeletal (5, 3%). The most commonly used medications were antidiarrheal and antiemetic medication. There were six accidents during the journey resulting in minor soft-tissue injuries. There were no deaths or other major accidents requiring emergency evacuation or hospitalization. On this school excursion, the health problems encountered were consistent with those reported for other specialized tours, including expeditions and premium tours, although altitude illness needs to be carefully planned for in tours to higher elevation destinations as in South America. As well as being part of the service provided to the school students, the inclusion of a physician with appropriate medical supplies for this tour increased the independence of the travel group. A proposed medical kit for such an excursion is presented. © 2014 International Society of Travel Medicine.
Occupant kinematics in low-speed frontal sled tests: Human volunteers, Hybrid III ATD, and PMHS.
Beeman, Stephanie M; Kemper, Andrew R; Madigan, Michael L; Franck, Christopher T; Loftus, Stephen C
2012-07-01
A total of 34 dynamic matched frontal sled tests were performed, 17 low (2.5g, Δv=4.8kph) and 17 medium (5.0g, Δv=9.7kph), with five male human volunteers of approximately 50th percentile height and weight, a Hybrid III 50th percentile male ATD, and three male PMHS. Each volunteer was exposed to two impulses at each severity, one relaxed and one braced prior to the impulse. A total of four tests were performed at each severity with the ATD and one trial was performed at each severity with each PMHS. A Vicon motion analysis system, 12 MX-T20 2 megapixel cameras, was used to quantify subject 3D kinematics (±1mm) (1kHz). Excursions of select anatomical regions were normalized to their respective initial positions and compared by test condition and between subject types. The forward excursions of the select anatomical regions generally increased with increasing severity. The forward excursions of relaxed human volunteers were significantly larger than those of the ATD for nearly every region at both severities. The forward excursions of the upper body regions of the braced volunteers were generally significantly smaller than those of the ATD at both severities. Forward excursions of the relaxed human volunteers and PMHSs were fairly similar except the head CG response at both severities and the right knee and C7 at the medium severity. The forward excursions of the upper body of the PMHS were generally significantly larger than those of the braced volunteers at both severities. Forward excursions of the PMHSs exceeded those of the ATD for all regions at both severities with significant differences within the upper body regions. Overall human volunteers, ATD, and PMHSs do not have identical biomechanical responses in low-speed frontal sled tests but all contribute valuable data that can be used to refine and validate computational models and ATDs used to assess injury risk in automotive collisions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geomagnetic disturbance and the orientation of nocturnally migrating birds.
Moore, F R
1977-05-06
Free-flying passerine migrants respond to natural fluctuations in the earth's magnetic field. The variability in flight directions of nocturnal migrants is significantly correlated with increasing geomagnetic disturbance as measured by both the K index and various components of the earth's magnetic field. The results indicate that such disturbances influence the orientation of free-flying migrants, but the evidence is not sufficient to show that geomagnetism is a cue in their orientation system.
A note on some measurements of geomagnetic declination in 1776 and 1778
NASA Astrophysics Data System (ADS)
Vaquero, J. M.; Gallego, M. C.; de Sanjosé, J. J.
2005-09-01
In this short contribution, measurements of magnetic declination across the Atlantic Ocean during the years 1776 and 1778 made by Antonio de Ulloa, a Spanish scientist and sailor, are provided and briefly analysed through a comparison with a global geomagnetic model by Jackson et al. [Jackson, A., Jonkers, A., Walker, M., 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. 358, 957-990].
The influence of the Earth's magnetosphere on the high-energy solar protons
NASA Technical Reports Server (NTRS)
Bazilevskaya, G. A.; Makhmutov, V. S.; Charakhchyan, T. N.
1985-01-01
In the Earth's polar regions the intensity of the solar protons with the energy above the critical energy of geomagnetic cutoff is the same as in the interplanetary space. The penumbra in the polar regions is small and the East-West effect is also small. However the geomagnetic cutoff rigidity R sub c in polar regions is difficult to calculate because it is not sufficient to include only the internal sources of the geomagnetic field. During the magneto-quiescent periods the real value of R sub c can be less by 0.1 GV than the calculated value because of the external sources. During the geomagnetic storms the real value of R sub c is still lower.
Interactive system for geomagnetic data analysis
NASA Astrophysics Data System (ADS)
Solovev, Igor
2017-10-01
The paper suggests the methods for analyzing geomagnetic field variations, which are implemented in "Aurora" software system for complex analysis of geophysical parameters. The software system allows one to perform a detailed magnetic data analysis. The methods allow one to estimate the intensity of geomagnetic perturbations and to allocate increased geomagnetic activity periods. The software system is publicly available (
Scaling laws from geomagnetic time series
Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.
1998-01-01
The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.
Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K
1994-10-21
Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.
Invariance in the recurrence of large returns and the validation of models of price dynamics
NASA Astrophysics Data System (ADS)
Chang, Lo-Bin; Geman, Stuart; Hsieh, Fushing; Hwang, Chii-Ruey
2013-08-01
Starting from a robust, nonparametric definition of large returns (“excursions”), we study the statistics of their occurrences, focusing on the recurrence process. The empirical waiting-time distribution between excursions is remarkably invariant to year, stock, and scale (return interval). This invariance is related to self-similarity of the marginal distributions of returns, but the excursion waiting-time distribution is a function of the entire return process and not just its univariate probabilities. Generalized autoregressive conditional heteroskedasticity (GARCH) models, market-time transformations based on volume or trades, and generalized (Lévy) random-walk models all fail to fit the statistical structure of excursions.
Marich, Andrej V; Lanier, Vanessa M; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R
2018-04-06
People with low back pain (LBP) may display an altered lumbar movement pattern of early lumbar motion compared to people with healthy backs. Modifying this movement pattern during a clinical test decreases pain. It is unknown whether similar effects would be seen during a functional activity. The objective of this study is was to examine the lumbar movement patterns before and after motor skill training, effects on pain, and characteristics that influenced the ability to modify movement patterns. The design consisted of a repeated-measures study examining early-phase lumbar excursion in people with LBP during a functional activity test. Twenty-six people with chronic LBP received motor skill training, and 16 people with healthy backs were recruited as a reference standard. Twenty minutes of motor skill training to decrease early-phase lumbar excursion during the performance of a functional activity were used as a treatment intervention. Early-phase lumbar excursion was measured before and after training. Participants verbally reported increased pain, decreased pain, or no change in pain during performance of the functional activity test movement in relation to their baseline pain. The characteristics of people with LBP that influenced the ability to decrease early-phase lumbar excursion were examined. People with LBP displayed greater early-phase lumbar excursion before training than people with healthy backs (LBP: mean = 11.2°, 95% CI = 9.3°-13.1°; healthy backs: mean = 7.1°, 95% CI = 5.8°-8.4°). Following training, the LBP group showed a decrease in the amount of early-phase lumbar excursion (mean change = 4.1°, 95% CI = 2.4°-5.8°); 91% of people with LBP reported that their pain decreased from baseline following training. The longer the duration of LBP (β = - 0.22) and the more early-phase lumbar excursion before training (β = - 0.82), the greater the change in early-phase lumbar excursion following training. The long-term implications of modifying the movement pattern and whether the decrease in pain attained was clinically significant are unknown. People with LBP were able to modify their lumbar movement pattern and decrease their pain with the movement pattern within a single session of motor skill training.
NASA Astrophysics Data System (ADS)
Ewen, Tracy; Seibert, Jan
2015-04-01
One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. Additionally, we produced short films of each of these research-based field excursions, with in-house film expertise. These films present a short overview of field methods applied in alpine regions and will be used for our larger introductory hydrology courses, exposing students to field research at an early stage, and for outreach activities, including for potential high school students curious about hydrology. In the field course, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. During the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, where students can also retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. Together, these field excursions give students the necessary tools they will need to carry out field research of their own in future projects, whether in academia or industry, while the short films give potential or first-year students an impression of what hydrology is all about and hopefully inspire them to become future hydrologists.
Influence of hip and knee osteoarthritis on dynamic postural control parameters among older fallers.
Mat, Sumaiyah; Ng, Chin Teck; Tan, Maw Pin
2017-03-06
To compare the relationship between postural control and knee and hip osteoarthritis in older adults with and without a history of falls. Fallers were those with ≥ 2 falls or 1 injurious fall over 12 months. Non-fallers were volunteers with no falls in the past year. Radiological evidence of osteoarthritis with no reported symptoms was considered "asymptomatic osteoarthritis", while "symptomatic osteoarthritis" was defined as radiographic osteoarthritis with pain or stiffness. Dynamic postural control was quantified with the limits of stability test measured on a balance platform (Neurocom® Balancemaster, California, USA). Parameters assessed were end-point excursion, maximal excursion, and directional control. A total of 102 older individuals, mean age 73 years (standard deviation 5.7) years were included. The association between falls and poor performance in maximal excursion and directional control was confounded by age and comorbidities. In the same linear equation model with falls, symptomatic osteoarthritis remained independently associated with poor end-point excursion (β-coefficient (95% confidence interval) -6.80 (-12.14 to -1.42)). Poor performance in dynamic postural control (maximal excursion and directional control) among fallers was not accounted for by hip/knee osteoarthritis, but was confounded by old age and comorbidities. Loss of postural control due to hip/knee osteoarthritis is not a risk factor for falls among community-dwelling older adults.
NASA Astrophysics Data System (ADS)
Wei, Hengye; Yu, Hao; Wang, Jianguo; Qiu, Zhen; Xiang, Lei; Shi, Guo
2015-06-01
The Late Permian environmental change, connecting the Guadalupian-Lopingian (G-L) (Middle-Upper Permian) boundary mass extinction and the Permain-Triassic (P-Tr) boundary mass extinction, has attracted more and more attentions. A significant negative shift for carbon isotope had been found at the Wuchiapingian-Changhsingian (W-C) boundary in the Upper Permian recently. However, the cause(s) of this negative excursion is still unknown. To resolve this problem, we analyzed the bulk organic carbon isotope, total organic carbon (TOC) content, pyritic sulfur (Spy) content, major element concentrations, and molecular organic biomarkers in the Wujiaping and Dalong formations in the Upper Permian from the Zhaojiaba section in western Hubei province, South China. Our results show that (1) there was a significant negative excursion in organic carbon isotopes at the W-C boundary and again a negative excursion at the top of Changhsingian stage; (2) the significant negative excursion at the W-C boundary was probably a global signal and mainly caused by the low primary productivity; and (3) the negative carbon isotope excursion at the top of Changhsingian was probably caused by the Siberian Traps eruptions. A decline in oceanic primary productivity at the W-C boundary probably represents a disturbance of the marine food web, leading to a vulnerable ecosystem prior to the P-Tr boundary mass extinction.
Global empirical model of TEC response to geomagnetic activity
NASA Astrophysics Data System (ADS)
Mukhtarov, P.; Andonov, B.; Pancheva, D.
2013-10-01
global total electron content (TEC) model response to geomagnetic activity described by the Kp index is built by using the Center for Orbit Determination of Europe (CODE) TEC data for a full 13 years, January 1999 to December 2011. The model describes the most probable spatial distribution and temporal variability of the geomagnetically forced TEC anomalies assuming that these anomalies at a given modified dip latitude depend mainly on the Kp index, local time (LT), and longitude. The geomagnetic anomalies are expressed by the relative deviation of TEC from its 15 day median and are denoted as rTEC. The rTEC response to the geomagnetic activity is presented by a sum of two responses with different time delay constants and different signs of the cross-correlation function. It has been found that the mean dependence of rTEC on Kp index can be expressed by a cubic function. The LT dependence of rTEC is described by Fourier time series which includes the contribution of four diurnal components with periods 24, 12, 8, and 6 h. The rTEC dependence on longitude is presented by Fourier series which includes the contribution of zonal waves with zonal wave numbers up to 6. In order to demonstrate how the model is able to reproduce the rTEC response to geomagnetic activity, three geomagnetic storms at different seasons and solar activity conditions are presented. The model residuals clearly reveal two types of the model deviation from the data: some underestimation of the largest TEC response to the geomagnetic activity and randomly distributed errors which are the data noise or anomalies generated by other sources. The presented TEC model fits to the CODE TEC input data with small negative bias of -0.204, root mean squares error RMSE = 4.592, and standard deviation error STDE = 4.588. The model offers TEC maps which depend on geographic coordinates (5° × 5° in latitude and longitude) and universal time (UT) at given geomagnetic activity and day of the year. It could be used for both science and possible service (nowcasting and short-term prediction); for the latter, a detailed validation of the model at different geophysical conditions has to be performed in order to clarify the model predicting quality.
Solar and Geomagnetic Activity Variations Correlated to Italian M6+ Earthquakes Occurred in 2016
NASA Astrophysics Data System (ADS)
Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino
2017-04-01
Between August 2016 and October 2016 in Italy were recorded three strong earthquakes: M6.2 on August 2016 at 01:36:32 UTC; M6.1 on October 26, 2016 at 19:18:08 UTC and M6,6 on October 30, 2016 at 06:40:18 UTC. The authors of this study wanted to verify the existence of a correlation between these earthquakes and solar/geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the three earthquakes. The data relating to the three earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark; Dikson Geomagnetic Observatory (DIK), Russia and by Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained by authors from 2012, have confirmed that the three strong Italian earthquakes were preceded by a clear increase of the solar wind proton density which subsequently generated perturbation of the Earth's geomagnetic field. The characteristics of ionic variation of the interplanetary medium and the subsequent perturbations of the Earth's geomagnetic field could be used as a global seismic trigger indicator to understand when it's possible expect a resumption of M6+ seismic activity.
NASA Astrophysics Data System (ADS)
Olsen, Nils; Whaler, Kathryn A.; Finlay, Christopher C.
2014-05-01
Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first differences for core surface advective flows. The flow is assumed steady over three consecutive months to ensure uniqueness; the effects of more rapid changes should be attenuated by the weakly conducting mantle. Observatory data are inverted directly for a regularised core flow, rather than deriving it from a secular variation spherical harmonic model. The main field is specified by the CHAOS-4 model. Data from up to 128 observatories between 1997 and 2013 were used to calculate 185 flow models from the omm and rmm, for each possible set of three consecutive months. The full 3x3 (non-diagonal) data covariance matrix was used, and two-norm (least squares) minimisation performed. We are able to fit the data to the target (weighted) misfit of 1, for both omm and rmm inversions, provided we incorporate the full data covariance matrix, and produce consistent, plausible flows. Fits are better for rmm flows. The flows exhibit noticeable changes over timescales of a few months. However, they follow rapid excursions in the omm that we suspect result from external field contamination; this tends to cause more erratic flow speeds rather than a change in the flow pattern. We resolve temporal changes in flows derived from the rmm associated with two geomagnetic jerks that occurred around 2003.5 and 2004.5. Throughout the interval investigated, the band of westward flow straddling the equator in the hemisphere centred on the Greenwich meridian is well developed, and flows are considerably weaker beneath the Pacific Ocean. At most times, including at the start and end of our period of interest, an anti-clockwise gyre is seen beneath the southern Indian Ocean. These are the well-established long-term features of the flow. However, the gyre disappears and re-develops twice in the mid-2000s. These changes imply quite rapid and significant changes in length-of-day (assuming such changes set up torsional oscillations), which mimics changes thought to be associated with geomagnetic jerks. The bulk westward drift speed decreases throughout the interval, with oscillations superimposed. Sharp minima in 2003, 2006, 2009 and 2011 are at times Chulliat and Maus identified secular acceleration pulses at the core surface, with particularly prominent signatures at low latitudes.
NASA Astrophysics Data System (ADS)
de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.
2016-09-01
This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.
Forecast of geomagnetic storms using CME parameters and the WSA-ENLIL model
NASA Astrophysics Data System (ADS)
Moon, Y.; Lee, J.; Jang, S.; Na, H.; Lee, J.
2013-12-01
Intense geomagnetic storms are caused by coronal mass ejections (CMEs) from the Sun and their forecast is quite important in protecting space- and ground-based technological systems. The onset and strength of geomagnetic storms depend on the kinematic and magnetic properties of CMEs. Current forecast techniques mostly use solar wind in-situ measurements that provide only a short lead time. On the other hand, techniques using CME observations near the Sun have the potential to provide 1-3 days of lead time before the storm occurs. Therefore, one of the challenging issues is to forecast interplanetary magnetic field (IMF) southward components and hence geomagnetic storm strength with a lead-time on the order of 1-3 days. We are going to answer the following three questions: (1) when does a CME arrive at the Earth? (2) what is the probability that a CME can induce a geomagnetic storm? and (3) how strong is the storm? To address the first question, we forecast the arrival time and other physical parameters of CMEs at the Earth using the WSA-ENLIL model with three CME cone types. The second question is answered by examining the geoeffective and non-geoeffective CMEs depending on CME observations (speed, source location, earthward direction, magnetic field orientation, and cone-model output). The third question is addressed by examining the relationship between CME parameters and geomagnetic indices (or IMF southward component). The forecast method will be developed with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the physics-based models.
Geomagnetic inverse problem and data assimilation: a progress report
NASA Astrophysics Data System (ADS)
Aubert, Julien; Fournier, Alexandre
2013-04-01
In this presentation I will present two studies recently undertaken by our group in an effort to bring the benefits of data assimilation to the study of Earth's magnetic field and the dynamics of its liquid iron core, where the geodynamo operates. In a first part I will focus on the geomagnetic inverse problem, which attempts to recover the fluid flow in the core from the temporal variation of the magnetic field (known as the secular variation). Geomagnetic data can be downward continued from the surface of the Earth down to the core-mantle boundary, but not further below, since the core is an electrical conductor. Historically, solutions to the geomagnetic inverse problem in such a sparsely observed system were thus found only for flow immediately below the core mantle boundary. We have recently shown that combining a numerical model of the geodynamo together with magnetic observations, through the use of Kalman filtering, now allows to present solutions for flow throughout the core. In a second part, I will present synthetic tests of sequential geomagnetic data assimilation aiming at evaluating the range at which the future of the geodynamo can be predicted, and our corresponding prospects to refine the current geomagnetic predictions. Fournier, Aubert, Thébault: Inference on core surface flow from observations and 3-D dynamo modelling, Geophys. J. Int. 186, 118-136, 2011, doi: 10.1111/j.1365-246X.2011.05037.x Aubert, Fournier: Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model, Nonlinear Proc. Geoph. 18, 657-674, 2011, doi:10.5194/npg-18-657-2011 Aubert: Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models, Geophys. J. Int., 2012, doi: 10.1093/gji/ggs051
NASA Astrophysics Data System (ADS)
Stoner, J. S.; Reilly, B. T.; Walczak, M. H.; Mix, A. C.; Lavoie, N.; Velle, J. H.; St-Onge, G.; Xuan, C.
2017-12-01
Paleomagnetic secular variation is a well-known centennial to millennial stratigraphic dating tool, but is generally considered to be regionally limited. Recent observations from the Holocene suggest that such spatial limitations may result from our incomplete understanding of field dynamics, rather than actual geomagnetic limitations. Comparisons of independently well-dated, high-resolution paleomagnetic secular variation records from the mid-latitudes of the Northern Hemisphere—including Asia, Northwest Pacific, Northeast Pacific, North America, North Atlantic, and Europe—reveal the existence of a primary (there may be others) coherent millennial scale oscillation of the geomagnetic field. This oscillation is observed using different geomagnetic parameters (e.g., inclination, declination, intensity) and signs depending on the site's location relative to the region of primary geomagnetic flux. This distinct spatial and temporal pattern is consistent with oscillations of geomagnetic flux recurring at just a few locations. The recurring persistence of this pattern, through the Holocene and possibly much longer, implicates lower mantle heterogeneity as a likely driver of field morphology. As with any paleo reconstructions, data coverage is far from perfect and as a result the geomagnetic details are just coming into focus. Yet, the stratigraphic potential is readily apparent and, if iteratively used, could significantly enhance our geomagnetic understanding as well as facilitate chronological control in a variety of settings. Here we explore the nature, uncertainties, and implications; including our initial attempt to extend the oscillation beyond the Holocene and through the radiocarbon interval starting from a Northeast Pacific perspective. Our intent is to develop a type curve with constrained uncertainties that can be used for stratigraphic correlation around the Northern Hemisphere as we move toward a process based dynamic magnetostratigraphic understanding.
Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)
NASA Technical Reports Server (NTRS)
Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.
1996-01-01
Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).
The International Geomagnetic Reference Field, 2005
Rukstales, Kenneth S.; Love, Jeffrey J.
2007-01-01
This is a set of five world charts showing the declination, inclination, horizontal intensity, vertical component, and total intensity of the Earth's magnetic field at mean sea level at the beginning of 2005. The charts are based on the International Geomagnetic Reference Field (IGRF) main model for 2005 and secular change model for 2005-2010. The IGRF is referenced to the World Geodetic System 1984 ellipsoid. Additional information about the USGS geomagnetism program is available at: http://geomag.usgs.gov/
The Geomagnetic Field and Radiation in Near-Earth Orbits
NASA Technical Reports Server (NTRS)
Heirtzler, J. R.
1999-01-01
This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.
Geomagnetic main field modeling using magnetohydrodynamic constraints
NASA Technical Reports Server (NTRS)
Estes, R. H.
1985-01-01
The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.
DREAM: An Integrated Space Radiation Nowcast System for Natural and Nuclear Radiation Belts
2011-09-01
requires a model of the global geomagnetic field which is represented by the red module in figure 1. The simplest assumption of a tilted dipole field...is grossly inadequate to describe the distorted, dynamic geomagnetic field. Stretching and compression of the field changes the both the local field... geomagnetic field ranging from static models like [Olsen and Pfitzer, 1974] to global MHD models. We believe the best results can be obtained with a
NASA Astrophysics Data System (ADS)
Calabia, A.; Matsuo, T.; Jin, S.
2017-12-01
The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.
Study of Proton cutoffs during geomagnetically disturbed times
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.
Solar energetic particles SEP are currently classified into impulsive and gradual events The former are understood be accelerated at solar flares and the latter at interplanetary shocks driven by coronal mass ejections CMEs It is well known that CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted During these times SEP fluxes penetrate the terrestrial magnetosphere and reach regions which may not be normally accessible to them The SEP access is of course controlled by the geomagnetic field configuration The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity momentum per unit charge arriving from a given direction cannot penetrate SEPs constitute a radiation hazard to spacecraft and humans and measurement and prediction of the cutoff location are an important aspect of space weather This paper reports on the measurements of solar energetic proton cutoffs made by two satellites SAMPEX and Polar during geomagnetically disturbed times We study select SEP events occuring during the period 1996 to 2005 when both SAMPEX and Polar provide high quality data We will compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field The measured SEP proton cutoffs cover a range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET and HILT detctors onboard SAMPEX
Improving geomagnetic observatory data in the South Atlantic Anomaly
NASA Astrophysics Data System (ADS)
Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia
2016-04-01
The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.
Vişan, Mădălina; Panaiotu, Cristian G.; Necula, Cristian; Dumitru, Anca
2016-01-01
Investigations of the paleosecular variation of the geomagnetic field on geological timescales depend on globally distributed data sets from lava flows. We report new paleomagnetic results from lava flows of the East Carpathian Mountains (23.6°E, 46.4°N) erupted between 4 and 6 Ma. The average virtual geomagnetic pole position (76 sites) includes the North Geographic Pole and the dispersion of virtual geomagnetic poles is in general agreement with the data of the Time Averaged geomagnetic Field Initiative. Based on this study and previous results from the East Carpathians obtained from 0.04–4 Ma old lava flows, we show that high value of dispersion are characteristic only for 1.5–2.8 Ma old lava flows. High values of dispersion during the Matuyama chron are also reported around 50°N, in the global paleosecular variation data set. More data are needed at a global level to determine if these high dispersions reflect the behaviour of the geomagnetic field or an artefact of inadequate number of sites. This study of the East Carpathians volcanic rocks brings new data from southeastern Europe and which can contribute to the databases for time averaged field and paleosecular variation from lavas in the last 6 Ma. PMID:26997549
Impact of the Lower Atmosphere on the Ionosphere Response to a Geomagnetic Superstorm
NASA Astrophysics Data System (ADS)
Pedatella, N. M.
2016-12-01
Numerical simulations in the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are performed to elucidate the impacts of lower atmosphere forcing on the ionosphere response to a geomagnetic superstorm. In particular, how the ionosphere variability due to the October 2003 Halloween storm would be different if it occurred in January coincident with a major sudden stratosphere warming (SSW) event is investigated. The TIE-GCM simulations reveal that the E x B vertical drift velocity and total electron content (TEC) respond differently to the geomagnetic disturbance when the lower atmosphere forcing is representative of SSW conditions compared to climatological lower atmosphere forcing conditions. Notably, the storm time variations in the E x B vertical drift velocity differ when the effects of the SSW are considered, and this is in part due to effects of the SSW on the equatorial ionosphere being potentially misinterpreted as being of geomagnetic origin. Differences in the TEC response to the geomagnetic storm can be up to 100% ( 30 TECU) of the storm induced TEC change, and the temporal variability of the TEC during the storm recovery phase is considerably different if SSW effects are considered. The results demonstrate that even during periods of extreme geomagnetic forcing it is important to consider the effects of lower atmosphere forcing on the ionosphere variability.
46 CFR 176.204 - Permit to carry excursion party.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., survival craft, life jacket, fire safety, and manning standards applicable to a vessel in the service for... may carry, the crew required, any additional lifesaving or safety equipment required, the route for... waive the applicable minimum safety standards when issuing an excursion permit. In particular, a vessel...
46 CFR 176.204 - Permit to carry excursion party.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., survival craft, life jacket, fire safety, and manning standards applicable to a vessel in the service for... may carry, the crew required, any additional lifesaving or safety equipment required, the route for... waive the applicable minimum safety standards when issuing an excursion permit. In particular, a vessel...
46 CFR 176.204 - Permit to carry excursion party.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., survival craft, life jacket, fire safety, and manning standards applicable to a vessel in the service for... may carry, the crew required, any additional lifesaving or safety equipment required, the route for... waive the applicable minimum safety standards when issuing an excursion permit. In particular, a vessel...
40 CFR 63.1334 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... period for the storage vessel. (ii) If the monitoring plan does not specify monitoring a parameter and... semiannually or quarterly. The first semiannual period is the 6-month period starting the date the Notification... period—two excused excursions. (6) For the sixth and all subsequent semiannual periods—one excused...
NASA Astrophysics Data System (ADS)
Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.
2017-12-01
During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.
NASA Technical Reports Server (NTRS)
Kern, J. W.
1961-01-01
This paper describes a mechanism for charge separation in the geomagnetically trapped radiation which may account for some observed phenomena associated with the polar aurora and the electrojet current systems. The following development is proposed: given that there exist eastward or westward longitudinal gradients in the geomagnetic field resulting from distortion of the geomagnetic field by solar streams, if the trapped radiation is adiabatic in character, radial drift separation of positive and negative charged particles must occur. It follows that, for bounded or irregular distributions of plasma number density in such an adiabatic - drift region, electric fields will arise. The origin of such electric fields will not arrest the drift separation of the charged particles, but will contribute to exponential growth of irregularities in the trapped plasma density. An adiabatic acceleration mechanism is described, which is based on incorporating the electrostatic energy of the particle in the energy function for the particle. Direct consequences of polarization of the geomagnetically trapped radiation will be the polar electrojet current systems and the polar aurora.
Impacts of Geomagnetic Storms on the Terrestrial H-Exosphere Using Twins-Lyman Stereo Data
NASA Astrophysics Data System (ADS)
Nass, U.; Zoennchen, J.; Fahr, H. J.; Goldstein, J.
2015-12-01
Based on continuously monitored Lyman-alpha data registered by the TWINS1/2-LAD instruments we have studied the impact of a weaker and a stronger geomagnetic storm on the exospheric H-density distribution between heights of 3--8 Earth-radii. As is well known, solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H). The resulting resonance glow intensity in the optically thin regime is proportional to H column density along the line of sight (LOS). Here we present the terrestrial exospheric response to geomagnetic storms. We quantify the reaction to geomagnetic activity in form of amplitude and temporal response of the H-density, sampled at different geocentric distances. We find that even in case of a weak storm, the exospheric H-density in regions above the exobase reacts with a suprisingly large increase in a remarkably short time period of less than half a day. Careful analysis of this geomagnetic density effect indicates that it is an expansion in the radial scale height of the exospheric H-density, developing from exobasic heights.
Spectral characteristics of geomagnetic field variations at low and equatorial latitudes
Campbell, W.H.
1977-01-01
Geomagnetic field spectra from eight standard observations at geomagnetic latitudes below 30?? were studied to determine the field characteristics unique to the equatorial region. Emphasis was placed upon those variations having periods between 5 min and 4 hr for a selection of magnetically quiet, average, and active days in 1965. The power spectral density at the equator was about ten times that the near 30?? latitude. The initial manifestation of the equatorial electrojet as evidenced by the east-west alignment of the horizontal field or the change in vertical amplitudes occurred below about 20?? latitude. Induced current effects upon the vertical component from which the Earth conductivity might be inferred could best be obtained at times and latitudes unaffected by the electrojet current. Values of about 1.6 ?? 103 mhos/m for an effective skin depth of 500-600 km were determined. The spectral amplitudes increased linearly with geomagnetic activity index, Ap. The spectral slope had a similar behavior at all latitudes. The slope changed systematically with Ap-index and showed a diurnal variation, centered on local noon, that changed form with geomagnetic activity.
Anomalous propagation of Omega VLF waves near the geomagnetic equator
NASA Astrophysics Data System (ADS)
Ohtani, A.; Kikuchi, T.; Nozaki, K.; Kurihara, N.; Kuratani, Y.; Ohse, M.
1983-09-01
Omega HAIKU, REUNION, and LIBERIA signals were received and anomalous propagation characteristics were obtained near the geomagnetic equator. Short-period fluctuations were found in the phase of the HAIKU 10.2 kHz signal in November 1979 and in the phase and amplitude of the HAIKU 13.6 kHz signal in November 1981. These cyclic fluctuations are in close correlation with the phase cycle slippings, which occur most frequently when the receiver is located at 6 S geomagnetic latitude. On the basis of anisotropic waveguide mode theory indicating much less attenuation in WE propagation than in EW propagation at the geomagnetic equator, it is concluded that the short-period fluctuations in the phase and amplitude are due to interference between the short-path and the long-path signals.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.
Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.
2003-01-01
Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.
Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity
NASA Astrophysics Data System (ADS)
Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino
2013-04-01
From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends on solar activity: protons and electrons increase in the solar wind; increase of the electromagnetic emissions on Earth's magnetic poles; reducing of the magnetopause standoff distance; intense and sudden changes in the interplanetary magnetic field (IMF). The beginning of the geomagnetic disturbance that precedes the earthquake is activated by an protons and electrons density increase in the solar wind that can be monitored through telemetric data sent by satellite ACE (Advanced Composition Explorer) that currently operating in a Lissajous orbit near the Lagrange point "L1" (between the Sun and Earth, at a distance of approximately 1.5 million km from Earth).
Measurements of Ground-Level Muons at Two Geomagnetic Locations
NASA Astrophysics Data System (ADS)
Kremer, J.; Boezio, M.; Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Castellano, M.; Ciacio, F.; Circella, M.; de Marzo, C.; de Pascale, M. P.; Francke, T.; Finetti, N.; Golden, R. L.; Grimani, C.; Hof, M.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.
1999-11-01
We report new measurements of the muon spectra and the muon charge ratio at ground level in the momentum range from 200 MeV/c to 120 GeV/c for two different geomagnetic locations. Above 0.9 GeV/c the absolute spectra measured in the two locations are in good agreement and are about 10% to 15% lower than previous experimental results. At lower momenta the data show latitude dependent geomagnetic effects. These observations are important for the understanding of the observed neutrino anomaly.
NASA Technical Reports Server (NTRS)
Papitashvili, N. E.; Papitashvili, V. O.; Allen, J. H.; Morris, L. D.
1995-01-01
The National Geophysical Data Center has the largest collection of geomagnetic data from the worldwide network of magnetic observatories. The data base management system and retrieval/display software have been developed for the archived geomagnetic data (annual means, monthly, daily, hourly, and 1-minute values) and placed on the center's CD-ROM's to provide users with 'user-oriented' and 'user-friendly' support. This system is described in this paper with a brief outline of provided options.
Geomagnetic field models for satellite angular motion studies
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.
2018-03-01
Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.
2007-05-18
number and intensity are highest in sunspot maximum. CME’s are considered the sources of the most intense geomagnetic storms (Gonzalez et al., 2002... storm . High speed solar wind The geomagnetic activity during the declining phase of the solar cycle can be even higher that at sunspot maximum. In...characteristic “calm before the storm ” – the decrease a couple of days before the maximum disturbance – in the case of high speed streams (Borovsky and
Review of the GMD Benchmark Event in TPL-007-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backhaus, Scott N.; Rivera, Michael Kelly
2015-07-21
Los Alamos National Laboratory (LANL) examined the approaches suggested in NERC Standard TPL-007-1 for defining the geo-electric field for the Benchmark Geomagnetic Disturbance (GMD) Event. Specifically; 1. Estimating 100-year exceedance geo-electric field magnitude; The scaling of the GMD Benchmark Event to geomagnetic latitudes below 60 degrees north; and 3. The effect of uncertainties in earth conductivity data on the conversion from geomagnetic field to geo-electric field. This document summarizes the review and presents recommendations for consideration
On the source of flare-ejecta responsible for geomagnetic storms
NASA Technical Reports Server (NTRS)
Sakurai, K.
1974-01-01
It is shown that magnetic bottles as the sources of moving metric type 4 bursts are not responsible for the development of geomagnetic storms, despite the fact that shock waves producing type 2 bursts are the sources of the interplanetary shock waves, which produce SSC's on the geomagnetic field. These magnetic bottles, in general, tend to move in the solar envelope with the speed of several hundred Km/sec at most, which is much slower than that of the motion of type 2 radio sources.
Geomagnetic field observations at a new Antarctic site, within the AIMNet project
NASA Astrophysics Data System (ADS)
Lepidi, Stefania; Cafarella, Lili; Santarelli, Lucia; Pietrolungo, Manuela; Urbini, Stefano; Piancatelli, Andrea; Biasini, Fulvio; di Persio, Manuele; Rose, Mike
2010-05-01
During the 2007-2008 antarctic campaign, the Italian PNRA installed a Low Power Magnetometer within the framework of the AIMNet (Antarctic International Magnetometer Network) project, proposed and coordinated by BAS. The magnetometer is situated at Talos Dome, around 300 km geographically North-West from Mario Zucchelli Station (MZS), and approximately at the same geomagnetic latitude as MZS. In this work we present a preliminary analysis of the geomagnetic field 1-min data, and a comparison with simultaneous data from different Antarctic stations.
The Hirnantian δ13C Positive Excursion in the Nabiullino Section (South Urals)
NASA Astrophysics Data System (ADS)
Yakupov, R. R.; Mavrinskaya, T. M.; Smoleva, I. V.
2018-02-01
The upper Sandbian, Katian, and Hirnantian complexes of conodonts in the upper Ordovician section of the western slope of the Southern Urals near the village of Nabiullino were studied. The δ13C positive excursion with a maximum of 3.3‰ associated with the global Hirnantian isotopic event, HICE, was fixed for the first time. This excursion shows the beginning of the Hirnantian stage in the terrigenous-carbonate section of the upper Ordovician in the Southern Urals. It coincides with the first occurrence of the Hirnantian conodont species of Gamachignathus ensifer and the conodonts of shallow-water biophacies, Aphelognathus-Ozarkodina, reflecting the global glacio-eustatic event.
Multicultural Group Work on Field Excursions to Promote Student Teachers' Intercultural Competence
ERIC Educational Resources Information Center
Brendel, Nina; Aksit, Fisun; Aksit, Selahattin; Schrüfer, Gabriele
2016-01-01
As a response to the intercultural challenges of Geography Education, this study seeks to determine factors fostering intercultural competence of student teachers. Based on a one-week multicultural field excursion of eight German and eight Turkish students in Kayseri (Turkey) on Education for Sustainable Development, we used qualitative interviews…
ERIC Educational Resources Information Center
Steenekamp, Karen; van der Merwe, Martyn; Mehmedova, Aygul Salieva
2018-01-01
This paper explores the views of student teachers who were provided vicarious learning opportunities during an educational excursion, and how the learning enabled them to develop their teacher professional identity. This qualitative research study, using a social-constructivist lens highlights how vicarious learning influenced student teachers'…
NASA Astrophysics Data System (ADS)
Raub, T.; Lamb, M. P.; Fischer, W. W.; Myrow, P.; Perron, T.; Kunzmann, M.; Liu, C.; Prave, A. R.
2012-12-01
Neoproterozoic Snowball Earth is intellectually alluring in part because its remarkable sedimentary and geochemical record challenges uniformitarian description and demands multiple working hypotheses. Apparently exceptional features in that record may represent the end-products of truly nonuniformitarian processes acting on a fundamentally different Earth than the modern world: an Earth which is oxygen-poor, lacking terrestrial macrobiota, and of uncertain (or arguably bizarre) geomagnetic and geodynamic character. But many features in this remarkable rock record might be explained by perfectly ordinary processes acting on anomalous materials, or in systems bounded by conditions that are rare, but not mysterious, on modern Earth. I will present emerging examples of both interpretive modes. Exceptional bedforms known as cap carbonate megaripples can be explained under normal wave climates by aggradation of unusually large carbonate grains anomalously widespread in a shallow shelfal setting. Bedform topography may be inherited or else migrate laterally through discrete, episodic depositional events if cementation is fast. Trace metal isotopes excurse most prominently at the very base of conformable cap carbonate sections, and in the terminal stages of deglaciation, at times when the seawater saturation state is most dynamic. In the end, basic field geology without genetic presumption, and the interpretive context it lends specific geochemical analyses, remains most likely to successfully evaluate the likelihoods of both existing and new Snowball Earth scenarios. The most fundamental unanswered question remains one of stratigraphic architecture: what is the climatic phase, the timing, and the duration for both diamictite and cap carbonate deposition? End-member solutions remain viable: diamictite and cap carbonate may both be of prolonged duration and globally diachronous, with diamictite representing syn-glacial and interstadial cycles and cap carbonate spanning both deglacial and postglacial phases. Or diamictite may be a deglacial prelude to cap carbonate deposition, and both lithofacies must be mostly globally synchronous and relatively quick in order to respect uniformitarian icesheet dynamic considerations. This "deglacial diamictite and quick cap carbonate" scenario would require fully nonuniformitarian geophysical and likely unprecedented geochemical regimes. The most important sections to be further described or else newly discovered, with power to test between these end-members and intermediate solutions, are likely to be sections where basal diamictite appears to postdate preglacial strata by only a short hiatus; sections with multiple cap carbonate lithofacies and excursions, or else conformable contacts between siliciclastic and cap carbonate glaciogenic facies; and outcrop belts with potential shelf-to-slope transects. New descriptions are emerging of late Neoproterozoic outcrops with each of these four characters.
Rigler, E. Joshua
2017-04-26
A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.
The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone
NASA Astrophysics Data System (ADS)
Liu, J.; Jiang, C.; Shi, Z.
2017-09-01
Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.
NASA Technical Reports Server (NTRS)
Benton, E. R. (Principal Investigator)
1982-01-01
MAGSAT data were used to construct a variety of spherical harmonic models of the main geomagnetic field emanating from Earth's liquid core at poch 1980. These models were used to: (1) accurately determine the radius of Earth's core by a magnetic method, (2) calculate estimates, of the long-term ange of variation of geomagnetic Gauss coefficients; (3) establish a preferred truncation level for current spherical harmonic models of the main geomagnetic field from the core; (4) evaluate a method for taking account of electrical conduction in the mantle when the magnetic field is downward continued to the core-mantle boundary; and (5) establish that upwelling and downwelling of fluid motion at the top of the core is probably detectable, observationally. A fluid dynamics forecast model was not produced because of insufficient data.
NASA Astrophysics Data System (ADS)
Jin, Shuanggen; Jin, Rui; Kutoglu, H.
2017-06-01
The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI [O]/[N2] ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.
Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?
Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.
2011-01-01
Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.
Geometric effects of ICMEs on geomagnetic storms
NASA Astrophysics Data System (ADS)
Cho, KyungSuk; Lee, Jae-Ok
2017-04-01
It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.
NASA Astrophysics Data System (ADS)
Baishev, D. G.; Moiseyev, A. V.; Boroyev, R. N.; Kobyakova, S. E.; Stepanov, A. E.; Mandrikova, O. V.; Solovev, I. S.; Khomutov, S. Yu.; Polozov, Yu. A.; Yoshikawa, A.; Yumoto, K.
2015-12-01
Magnetic and ionospheric disturbances in the far eastern region of Russia during the magnetic storm of 5 April 2010 are studied using data of geophysical stations operated by IKFIA SB RAS and IKIR FEB RAS. By performing wavelet analysis of experimental data, the wavelet powers of geomagnetic perturbations at different stations are estimated, in an attempt to investigate the dynamical development of a geomagnetic storm. It is shown that, though weak geomagnetic disturbances were present prior to the main phase of magnetic storm, the variations of the magnetic field during a storm development were found to be rather strong. The highest intensity of geomagnetic disturbances during the interplanetary shock at the Earth's magnetosphere was observed at KTN (L~9) while at ZYK (L~4) strongest geomagnetic perturbations occurred during the magnetospheric substorm with the onset at 09:03 UT. Large geomagnetic fluctuations were recorded at TIX and CHD (L~5-6), when the High-Intensity Long-Duration Continuous AE Activity (HILDCAA) was observed on 6 April 2010. Ionospheric conditions at YAK (L~3.4) and PET (L~2.2) were characterized by a pre-storm enhancement in the electron density in the F2 layer on 4 April 2010 and prolonged negative phase of the ionospheric storm during the main and recovery phases of magnetic storm on 6-8 April 2010. These experimental results underscore the importance of multi-instrumental observations and provide clues to the complex interactive processes.
Possible psycho-physiological consequences of human long-term space missions
NASA Astrophysics Data System (ADS)
Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Kachanova, T. L.; Kalashnikova, I. V.
Experiments carried out on the Earth s surface during different years and under contrast periods of solar activity have shown that the functional state of biosystems including the human organisms are controlled by global and local geocosmical agents Our finding have a close relation to space research because they demonstrate the reactions of biosystems on variations of global and local geocosmical agents and the mechanisms of modulations of biosystems state by geocosmical agents We revealed the role of variations of the geomagnetic field for the stimulation of immune systems functional state of peripheral blood human brain growth of microflora skin covers and pathogenic microorganisms The study of the psycho-physiological state of the human organism has demonstrated that an increase of the neutron intensity near the Earth s surface is associated with anxiety decrease of normal and increase of paradox reactions of examinees The analysis of the human brain functional state in dependent on the geomagnetic variation structure dose under exposure to the variations of geomagnetic field in a certain amplitude-frequency range and also the intensity of the nucleon component of secondary cosmic rays showed that the stable and unstable states of the human brain are determined by geomagnetic field variations and the intensity of the nucleon component The stable state of the brain manifested under the periodic oscillations of the geomagnetic field in a certain amplitude-frequency range The low level of geomagnetic activity associated with an
Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?
NASA Astrophysics Data System (ADS)
Love, Jeffrey J.; Mursula, Kalevi; Tsai, Victor C.; Perkins, David M.
2011-11-01
Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically-significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction.
Wang, Jun-Sing; Lee, I-Te; Lee, Wen-Jane; Lin, Shi-Dou; Su, Shih-Li; Tu, Shih-Te; Tseng, Yao-Hsien; Lin, Shih-Yi; Sheu, Wayne Huey-Herng
2016-03-01
The aim of this study was to examine the association between glycemic excursions and duration of hypoglycemia after treatment intensification in patients with type 2 diabetes (T2D). Patients with T2D on oral anti-diabetes drug (OAD) with glycated hemoglobin (HbA1c) of 7.0-11.0% were switched to metformin monotherapy (500 mg thrice daily) for 8 weeks, followed by randomization to either glibenclamide or acarbose as add-on treatment for 16 weeks. Glycemic excursions were assessed as mean amplitude of glycemic excursions (MAGE) with 72-h ambulatory continuous glucose monitoring (CGM) before randomization and at the end of study. Hypoglycemia was defined as sensor glucose level of less than 60 mg/dl in two or more consecutive readings from CGM. A total of 50 patients (mean age 53.5 ± 8.2 years, male 48%, mean baseline HbA1c 8.4 ± 1.2%) were analyzed. Duration of hypoglycemia significantly increased after treatment with glibenclamide (from 5.5 ± 13.8 to 18.8 ± 35.8 min/day, p=0.041), but not with acarbose (from 2.9 ± 10.9 to 14.7 ± 41.9 min/day, p=0.114). Post treatment MAGE was positively associated with change from baseline in duration of hypoglycemia after treatment with either glibenclamide (β coefficient 0.345, p=0.036) or acarbose (β coefficient 0.674, p=0.046). The association remained significant after multivariate adjustment (p<0.05 for all models). Post treatment glycemic excursions are associated with changes in duration of hypoglycemia after treatment intensification with OAD in patients with T2D. Glycemic excursions should be an important treatment target for T2D to reduce the risk of hypoglycemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.
2001-05-01
The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.
Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott
2015-01-01
Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength. PMID:27030846
Zhou, Jian; Li, Hong; Zhang, Xiuzhen; Peng, Yongde; Mo, Yifei; Bao, Yuqian; Jia, Weiping
2013-06-01
Recent studies have identified postprandial glycemic excursions as risk factors for diabetes complications. This study aimed to compare the effects of nateglinide and acarbose treatments on postprandial glycemic excursions in Chinese subjects with type 2 diabetes. This was a multicenter, open-label, randomized, active-controlled, parallel-group study. One hundred three antihyperglycemic agent-naive subjects with type 2 diabetes (hemoglobin A1c range, 6.5-9.0%) were prospectively recruited from four hospitals in China. The intervention was nateglinide (120 mg three times a day) or acarbose (50 mg three times a day) therapy for 2 weeks. A continuous glucose monitoring system was used to calculate the incremental area under the curve of postprandial blood glucose (AUCpp), the incremental glucose peak (IGP), mean amplitude of glycemic excursions, SD of blood glucose, the mean of daily differences, and 24-h mean blood glucose (MBG). Subjects' serum glycated albumin and the plasma insulin levels were also analyzed. Both agents caused significant reductions on AUCpp and IGP. Similarly, both treatment groups showed significant improvements in the intra- and interday glycemic excursions, as well as the 24-h MBG and serum glycated albumin compared with baseline (P<0.001). However, neither of the agents produced a significantly better effect (P>0.05). Moreover, the nateglinide-treated group had significantly increased insulin levels at 30 min and at 120 min after a standard meal compared with baseline, whereas the acarbose-treated group decreased. No serious adverse events occurred in either group. The rates of hypoglycemic episodes were comparable in the two groups, and no severe hypoglycemic episode occurred in either group. Nateglinide and acarbose were comparably effective in reducing postprandial glycemic excursions in antihyperglycemic agent-naive Chinese patients with type 2 diabetes, possibly through different pathophysiological mechanisms.
Riboldi, Bárbara P; Luft, Vivian C; de Castilhos, Cristina D; de Cardoso, Letícia O; Schmidt, Maria I; Barreto, Sandhi M; de Sander, Maria F; Alvim, Sheila M; Duncan, Bruce B
2015-02-13
To assess glucose and triglyceride excursions 2 hours after the ingestion of a standardized meal and their associations with clinical characteristics and cardiovascular complications in individuals with diabetes. Blood samples of 898 subjects with diabetes were collected at fasting and 2 hours after a meal containing 455 kcal, 14 g of saturated fat and 47 g of carbohydrates. Self-reported morbidity, socio-demographic characteristics and clinical measures were obtained by interview and exams performed at the baseline visit of the ELSA-Brasil cohort study. Median (interquartile range, IQR) for fasting glucose was 150.5 (123-198) mg/dL and for fasting triglycerides 140 (103-199) mg/dL. The median excursion for glucose was 45 (15-76) mg/dL and for triglycerides 26 (11-45) mg/dL. In multiple linear regression, a greater glucose excursion was associated with higher glycated hemoglobin (10.7, 95% CI 9.1-12.3 mg/dL), duration of diabetes (4.5; 2.6-6.4 mg/dL, per 5 year increase), insulin use (44.4; 31.7-57.1 mg/dL), and age (6.1; 2.5-9.6 mg/dL, per 10 year increase); and with lower body mass index (-5.6; -8.4- -2.8 mg/dL, per 5 kg/m2 increase). In adjusted logistic regression models, a greater glucose excursion was marginally associated with the presence of cardiovascular comorbidities (coronary heart disease, myocardial infarction and angina) in those with obesity. A greater postprandial glycemic response to a small meal was positively associated with indicators of a decreased capacity for insulin secretion and negatively associated with obesity. No pattern of response was observed with a greater postprandial triglyceride excursion.
Zhou, Jian; Li, Hong; Zhang, Xiuzhen; Peng, Yongde; Mo, Yifei; Bao, Yuqian
2013-01-01
Abstract Background Recent studies have identified postprandial glycemic excursions as risk factors for diabetes complications. This study aimed to compare the effects of nateglinide and acarbose treatments on postprandial glycemic excursions in Chinese subjects with type 2 diabetes. Subjects and Methods This was a multicenter, open-label, randomized, active-controlled, parallel-group study. One hundred three antihyperglycemic agent–naive subjects with type 2 diabetes (hemoglobin A1c range, 6.5–9.0%) were prospectively recruited from four hospitals in China. The intervention was nateglinide (120 mg three times a day) or acarbose (50 mg three times a day) therapy for 2 weeks. A continuous glucose monitoring system was used to calculate the incremental area under the curve of postprandial blood glucose (AUCpp), the incremental glucose peak (IGP), mean amplitude of glycemic excursions, SD of blood glucose, the mean of daily differences, and 24-h mean blood glucose (MBG). Subjects' serum glycated albumin and the plasma insulin levels were also analyzed. Results Both agents caused significant reductions on AUCpp and IGP. Similarly, both treatment groups showed significant improvements in the intra- and interday glycemic excursions, as well as the 24-h MBG and serum glycated albumin compared with baseline (P<0.001). However, neither of the agents produced a significantly better effect (P>0.05). Moreover, the nateglinide-treated group had significantly increased insulin levels at 30 min and at 120 min after a standard meal compared with baseline, whereas the acarbose-treated group decreased. No serious adverse events occurred in either group. The rates of hypoglycemic episodes were comparable in the two groups, and no severe hypoglycemic episode occurred in either group. Conclusions Nateglinide and acarbose were comparably effective in reducing postprandial glycemic excursions in antihyperglycemic agent–naive Chinese patients with type 2 diabetes, possibly through different pathophysiological mechanisms. PMID:23631607
Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China
NASA Astrophysics Data System (ADS)
Li, Mingsong; Huang, Chunju; Hinnov, Linda; Chen, Weizhe; Ogg, James; Tian, Wei
2018-01-01
A high-precision global timescale for the Early and Middle Triassic is the key to understanding the nature, pattern and rates of biotic recovery following the end-Permian mass extinction. The Guandao section of Guizhou Province of South China is an important reference section for the magnetic polarity pattern, conodont datums, geochemical anomalies and interpreted temperature history through the Anisian (Middle Triassic). We analyzed the high-resolution gamma-ray and magnetic susceptibility series from the complete Anisian stage. Intensity variations are indicative of fluctuating terrestrial clay influxes showing strong signals that match predicted astronomical solutions for eccentricity and precession. Astronomical tuning of these series to interpreted 405-kyr long-eccentricity cycles yields a 5.3 Myr duration for the Anisian at Guandao. When combined with the astrochronology of the Early Triassic, then the projected age of the Anisian-Ladinian boundary relative to the base-Triassic date of 251.9 Ma is 241.5 ± 0.1 Ma. This provides a 10-Myr reference timescale for other key geological events, including conodont zones, geomagnetic polarity chrons, rates of marine carbon- and oxygen isotope excursions and global sea-level changes, that were associated with the repeated biotic crises and recovery episodes after the end-Permian mass extinction. The middle Anisian humid phase in ca. 244-244.5 Ma was probably a global event, which may have been linked to the middle Anisian warming event and sea-level change. Sea-level fluctuations at Guandao generally correlate with those in western Tethyan and Boreal regions in time, confirming sea-level changes during the Anisian were of eustatic origin.
Bode, Bruce; Gross, Kenneth; Rikalo, Nancy; Schwartz, Sherwyn; Wahl, Timothy; Page, Casey; Gross, Todd; Mastrototaro, John
2004-04-01
The purposes of this study were to demonstrate the accuracy and effectiveness of the Guardian Continuous Monitoring System (Medtronic MiniMed, Northridge, California) and to demonstrate that the application of real-time alarms to continuous monitoring alerts users to hypo and hyperglycemia and reduces excursions in people with diabetes. A total of 71 subjects with type 1 diabetes, mean hemoglobin A1c of 7.6 +/- 1.1%, age 44.0 +/- 11.4 years, and duration of diabetes 23.6 +/- 10.6 years were enrolled in this two-period, randomized, multicenter study. Subjects were randomized into either an Alert group or a Control group. The accuracy of the Guardian was evaluated by treating the study data as a single-sample correlational design. Effectiveness of the Guardian alerts was evaluated by comparing the Alert group with the Control group. The mean (median) absolute relative error between home blood glucose meter readings and sensor values was 21.3% (17.3%), and the Guardian, on average, read 12.8 mg/dL below the concurrent home blood glucose meter readings. The hypoglycemia alert was able to distinguished glucose values < or =70 mg/dL with 67% sensitivity, 90% specificity, and 47% false alerts. The hyperglycemia alert showed a similar ability to detect sensor values > or =250 mg/dL with 63% sensitivity, 97% specificity, and 19% false alerts. The Alert group demonstrated a median decrease in the duration of hypoglycemic excursions (-27.8 min) that was significantly greater than the median decrease in the duration of hypoglycemic excursions in the Control group (-4.5 min) (P = 0.03). A marginally significant increase in the frequency of hyperglycemic excursions (P = 0.07) between Period 1 and Period 2 was accompanied by a decrease of 9.6 min in the duration of hyperglycemic excursions in the Alert group. Glucose measurements differ between blood samples taken from the finger and interstitial fluid, especially when levels are changing rapidly; however, these results demonstrate that the Guardian is reasonably accurate while performing continuous glucose monitoring. The subjects' responses to hypoglycemia alerts resulted in a significant reduction in the duration of hypoglycemic excursions; however, overtreating hypoglycemia may have resulted in a marginally significant increase in the frequency of hyperglycemic excursions.
Tsunami related to solar and geomagnetic activity
NASA Astrophysics Data System (ADS)
Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino
2016-04-01
The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained by authors from 2012, have confirmed that the four strongest earthquakes (and then the four tsunami) were preceded by a clear increase of the solar wind proton density which subsequently generated perturbation of the Earth's geomagnetic field. The temporal characteristics of the proton increases and geomagnetic disturbances that preceded the four tsunami have a clear predictive significance especially in the face of recent studies on Seismic Solar Precursors (SSPs), on Interplanetary Seismic Precursors (ISPs) and on Seismic Geomagnetic Precursors (SGPs) presented by the authors in the last two years.
NASA Astrophysics Data System (ADS)
Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.
2017-12-01
Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.
Geomagnetically induced currents in the Irish power network during geomagnetic storms
NASA Astrophysics Data System (ADS)
Blake, Seán. P.; Gallagher, Peter T.; McCauley, Joe; Jones, Alan G.; Hogg, Colin; Campanyà, Joan; Beggan, Ciarán. D.; Thomson, Alan W. P.; Kelly, Gemma S.; Bell, David
2016-12-01
Geomagnetically induced currents (GICs) are a well-known terrestrial space weather hazard. They occur in power transmission networks and are known to have adverse effects in both high-latitude and midlatitude countries. Here we study GICs in the Irish power transmission network (geomagnetic latitude 54.7-58.5°N) during five geomagnetic storms (6-7 March 2016, 20-21 December 2015, 17-18 March 2015, 29-31 October 2003, and 13-14 March 1989). We simulate electric fields using a plane wave method together with two ground resistivity models, one of which is derived from magnetotelluric measurements (magnetotelluric (MT) model). We then calculate GICs in the 220, 275, and 400 kV transmission network. During the largest of the storm periods studied, the peak electric field was calculated to be as large as 3.8 V km-1, with associated GICs of up to 23 A using our MT model. Using our homogenous resistivity model, those peak values were 1.46 V km-1 and 25.8 A. We find that three 400 and 275 kV substations are the most likely locations for the Irish transformers to experience large GICs.
Improving the geomagnetic field modeling with a selection of high-quality archaeointensity data
NASA Astrophysics Data System (ADS)
Pavon-Carrasco, Francisco Javier; Gomez-Paccard, Miriam; Herve, Gwenael; Osete, Maria Luisa; Chauvin, Annick
2014-05-01
Geomagnetic field reconstructions for the last millennia are based on archeomagnetic data. However, the scatter of the archaeointensity data is very puzzling and clearly suggests that some of the intensity data might not be reliable. In this work we apply different selection criteria to the European and Western Asian archaeointensity data covering the last three millennia in order to investigate if the data selection affects geomagnetic field models results. Thanks to the recently developed archeomagnetic databases, new valuable information related to the methodology used to determine the archeointensity data is now available. We therefore used this information to rank the archaeointensity data in four quality categories depending on the methodology used during the laboratory treatment of the samples and on the number of specimens retained to calculate the mean intensities. Results show how the intensity geomagnetic field component given by the regional models hardly depends on the selected quality data used. When all the available data are used a different behavior of the geomagnetic field is observed in Western and Eastern Europe. However, when the regional model is obtained from a selection of high-quality intensity data the same features are observed at the European scale.
Geomagnetic matching navigation algorithm based on robust estimation
NASA Astrophysics Data System (ADS)
Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan
2017-08-01
The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.
Love, Jeffrey J.; Rigler, J.
2012-01-01
[1] Analysis is made of the geomagnetic-activityaaindex covering solar cycle 11 to the beginning of 24, 1868–2011. Autocorrelation shows 27.0-d recurrent geomagnetic activity that is well-known to be prominent during solar-cycle minima; some minima also exhibit a smaller amount of 13.5-d recurrence. Previous work has shown that the recent solar minimum 23–24 exhibited 9.0 and 6.7-d recurrence in geomagnetic and heliospheric data, but those recurrence intervals were not prominently present during the preceding minima 21–22 and 22–23. Using annual-averages and solar-cycle averages of autocorrelations of the historicalaadata, we put these observations into a long-term perspective: none of the 12 minima preceding 23–24 exhibited prominent 9.0 and 6.7-d geomagnetic activity recurrence. We show that the detection of these recurrence intervals can be traced to an unusual combination of sectorial spherical-harmonic structure in the solar magnetic field and anomalously low sunspot number. We speculate that 9.0 and 6.7-d recurrence is related to transient large-scale, low-latitude organization of the solar dynamo, such as seen in some numerical simulations.
Geomagnetic cutoffs: A review for space dosimetry applications
NASA Astrophysics Data System (ADS)
Smart, D. F.; Shea, M. A.
1994-10-01
The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has 'no solution in closed form'. The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, 'world-grids' of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time comsuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.
Wavelet analysis of long period oscillations in geomagnetic field over the magnetic equator
NASA Astrophysics Data System (ADS)
Issac, Molly; Renuka, G.; Venugopal, C.
2004-07-01
In this paper the complex Morlet Wavelet Transform is used to identify long period oscillations in the horizontal component (H) of the geomagnetic field over the magnetic equatorial location of Trivandrum (8.5°N 77°E dip lat. 0.5°N) during the solar maximum period 1990/1991 and solar minimum period 1995/1996. The Morlet WT of the geomagnetic data set indicates the presence of multiple timescales, which are localized in both frequency and time. Extra long period oscillations are observed in the period range of 40-80, and 80-130 days during 1995/1996 (October-April), and 30-60, 130-180 days during 1990/1991 (October-April). This is one of the first such observations in the nature of long period oscillations in the earth's magnetic field. These observations on the existence of different long wave periods in the geomagnetic field are consistent with their findings in the lower and middle atmosphere (J. Atmos. Sol. Terr. Phys. 63 (2001) 835; J. Atmos. Sci. 29 (1972) 1109). This analysis also brings out clearly the merging of long period oscillations with short period oscillations during conditions of geomagnetic disturbance.
Geological support for the Umbrella Effect as a link between geomagnetic field and climate
Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi
2017-01-01
The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect. PMID:28091595
NASA Astrophysics Data System (ADS)
Goguitchaichvili, Avto; Ruiz, Rafael García; Pavón-Carrasco, F. Javier; Contreras, Juan Julio Morales; Arechalde, Ana María Soler; Urrutia-Fucugauchi, Jaime
2018-06-01
Earth's Magnetic Field variation strength may provide crucial information to understand the geodynamo mechanism and elucidate the conditions on the physics of the Earth's deep interiors. Aimed to reveal the fine characteristics of the geomagnetic field during the last three millennia in Mesoamerica, we analyzed the available absolute geomagnetic intensities associated to absolute radiometric dating as well some ages provided by historical documents. This analysis is achieved using thermoremanent magnetization carried by volcanic lava flows and burned archaeological artefacts. A total of 106 selected intensities from Mesoamerica and other 100 from the southern part of the United States represent the main core of the dataset to construct the variation curve using both combined bootstrap method and temporal penalized B-spline methods. The obtained intensity paleosecular variation curve for Mesoamerica generally disagrees with the values predicted by the global geomagnetic field models. There is rather firm evidence of eastward drift when compared to similar reference curves in Western Europe, Asia and Pacific Ocean. The recent hypothesis about the relationship between the geomagnetic field strength and paleoclimate is also critically analyzed in the light of this new data compilation.
Geological support for the Umbrella Effect as a link between geomagnetic field and climate.
Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi
2017-01-16
The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect.
Geomagnetic referencing in the arctic environment
Podjono, Benny; Beck, Nathan; Buchanan, Andrew; Brink, Jason; Longo, Joseph; Finn, Carol A.; Worthington, E. William
2011-01-01
Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques.
Geomagnetic referencing in the arctic environment
Poedjono, B.; Beck, N.; Buchanan, A. C.; Brink, J.; Longo, J.; Finn, C.A.; Worthington, E.W.
2011-01-01
Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques. Copyright 2011, Society of Petroleum Engineers.
Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models
NASA Astrophysics Data System (ADS)
Rigler, E. J.; Wiltberger, M. J.; Love, J. J.
2017-12-01
Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.
ERIC Educational Resources Information Center
Stolpe, Karin; Bjorklund, Lars
2013-01-01
This study aims to investigate the science content remembered by biology students 6 and 12 months after an ecology excursion. The students' memories were tested during a stimulated recall interview. The authors identified three different types of memories: "recall," "recognition" and "narratives." The "dual…
First geomagnetic measurements in the Antarctic region
NASA Astrophysics Data System (ADS)
Raspopov, O. M.; Demina, I. M.; Meshcheryakov, V. V.
2014-05-01
Based on data from literature and archival sources, we have further processed and analyzed the results of geomagnetic measurements made during the 1772-1775 Second World Expedition by James Cook and the 1819-1821 overseas Antarctic Expedition by Russian mariners Bellingshausen and Lazarev. Comparison with the GUFM historical model showed that there are systematic differences in the spatial structure of both the declination and its secular variation. The results obtained can serve as a basis for the construction of regional models of the geomagnetic field for the Antarctic region.
Solar--geophysical data. Prompt reports. [Number 405, May 1978. Data for A/pril 1978--March 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, H.E.
1978-05-01
This prompt report provides data for April 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, inferred IP magnetic field polarities, mean solar magnetic field, solar wind measurements, geomagnetic substorms, and magnetograms of geomagnetic storm. It also provides data for March 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices. A new data page lists the North American magnetometer network.
NASA Astrophysics Data System (ADS)
Vorobev, A. V.; Vorobeva, G. R.
2018-03-01
The results of the analysis of geomagnetic data synchronously recorded by the INTERMAGNET magnetic stations are presented. The goal of this research was to distinguish internal correlations between the data and to determine the optimal spatial interval of the geographical coordinates within which the efficient operation of only one magnetic observatory would be satisfactory in most occasions. The results of the observation of correlations between the geomagnetic data on a global scale are summarized and presented. Possible regions of application of these results are determined.
Satellite Data for Geomagnetic Field Modeling
NASA Technical Reports Server (NTRS)
Langel, R. A.; Baldwin, R. T.
1992-01-01
Satellite measurements of the geomagnetic fields began with the launch of Sputnik 3 in May of 1958 and have continued sporadically. Spacecraft making significant contributions to main field geomagnetism will be reviewed and the characteristics of their data discussed, including coverage, accuracy, resolution and data availability. Of particular interest are Vanguard 3; Cosmos 49, Ogo's -2, -4, and -6; Magsat; DE-2; and POGS. Spacecraft make measurements on a moving platfrom above the ionosphere as opposed to measurements from fixed observatories and surveys, both below the ionosphere. Possible future missions, such as Aristoteles and GOS are reviewed.
Love, Jeffrey J.; Finn, Carol
2017-01-01
An examination is made of opportunities and challenges for enhancing global, real-time geomagnetic monitoring that would be beneficial for a variety of operational projects. This enhancement in geomagnetic monitoring can be attained by expanding the geographic distribution of magnetometer stations, improving the quality of magnetometer data, increasing acquisition sampling rates, increasing the promptness of data transmission, and facilitating access to and use of the data. Progress will benefit from new partnerships to leverage existing capacities and harness multisector, cross-disciplinary, and international interests.
A Review of Criticality Accidents 2000 Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost
Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. Themore » second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.« less
NASA Astrophysics Data System (ADS)
Pietrella, M.
2012-02-01
A short-term ionospheric forecasting empirical regional model (IFERM) has been developed to predict the state of the critical frequency of the F2 layer (foF2) under different geomagnetic conditions. IFERM is based on 13 short term ionospheric forecasting empirical local models (IFELM) developed to predict foF2 at 13 ionospheric observatories scattered around the European area. The forecasting procedures were developed by taking into account, hourly measurements of foF2, hourly quiet-time reference values of foF2 (foF2QT), and the hourly time-weighted accumulation series derived from the geomagnetic planetary index ap, (ap(τ)), for each observatory. Under the assumption that the ionospheric disturbance index ln(foF2/foF2QT) is correlated to the integrated geomagnetic disturbance index ap(τ), a set of statistically significant regression coefficients were established for each observatory, over 12 months, over 24 h, and under 3 different ranges of geomagnetic activity. This data was then used as input to compute short-term ionospheric forecasting of foF2 at the 13 local stations under consideration. The empirical storm-time ionospheric correction model (STORM) was used to predict foF2 in two different ways: scaling both the hourly median prediction provided by IRI (STORM_foF2MED,IRI model), and the foF2QT values (STORM_foF2QT model) from each local station. The comparison between the performance of STORM_foF2MED,IRI, STORM_foF2QT, IFELM, and the foF2QT values, was made on the basis of root mean square deviation (r.m.s.) for a large number of periods characterized by moderate, disturbed, and very disturbed geomagnetic activity. The results showed that the 13 IFELM perform much better than STORM_foF2,sub>MED,IRI and STORM_foF2QT especially in the eastern part of the European area during the summer months (May, June, July, and August) and equinoctial months (March, April, September, and October) under disturbed and very disturbed geomagnetic conditions, respectively. The performance of IFELM is also very good in the western and central part of the Europe during the summer months under disturbed geomagnetic conditions. STORM_foF2MED,IRI performs particularly well in central Europe during the equinoctial months under moderate geomagnetic conditions and during the summer months under very disturbed geomagnetic conditions. The forecasting maps generated by IFERM on the basis of the results provided by the 13 IFELM, show very large areas located at middle-high and high latitudes where the foF2 predictions quite faithfully match the foF2 measurements, and consequently IFERM can be used for generating short-term forecasting maps of foF2 (up to 3 h ahead) over the European area.
Geomagnetic research in the 19th century: a case study of the German contribution
NASA Astrophysics Data System (ADS)
Schröder, W.; Wiederkehr, K.-H.
2001-10-01
Even before the discovery of electromagnetism by Oersted, and before the work of Ampère, who attributed all magnetism to the flux of electrical currents, A.v. Humboldt and Hansteen had turned to geomagnetism. Through the ``Göttinger Magnetischer Verein'', a worldwide cooperation under the leadership of Gauss came into existence. Even today, Gauss's theory of geomagnetism is one of the pillars of geomagnetic research. Thereafter, J.v. Lamont, in Munich, took over the leadership in Germany. In England, the Magnetic Crusade was started by the initiative of John Herschel and E. Sabine. At the beginning of the 1840s, James Clarke Ross advanced to the vicinity of the southern magnetic pole on the Antarctic Continent, which was then quite unknown. Ten years later, Sabine was able to demonstrate solar-terrestrial relations from the data of the colonial observatories. In the 1980s, Arthur Schuster, following Balfour Stewart's ideas, succeeded in interpreting the daily variations of the electrical process in the high atmosphere. Geomagnetic research work in Germany was given a fresh impetus by the programme of the First Polar Year 1882-1883. Georg Neumayer, director of the ``Deutsche Seewarte'' in Hamburg, was one of the initiators of the Polar Year. He forged a close cooperation with the newly founded ``Kaiserliches Marineobservatorium'' in Wilhelmshaven, and also managed to gain the collaboration of the ``Gauss-Observatorium für Erdmagnetismus'' in Göttingen under E. Schering. In the Polar Year, the first automatic recording magnetometers (Kew-Model) were used in the German observatory at Wilhelmshaven. Here, M. Eschenhagen, who later became director of the geomagnetic section in the new Meteorological Magnetic Observatory in Potsdam, deserves special credit. Early hypotheses of geomagnetism and pioneering palaeomagnetic experiments are briefly reviewed. The essential seismological investigations at the turn of the 19th to the 20th century are also briefly described as they underpin the modern theory of the Eartdynamo.
Monitoring Auroral Electrojet from Polar Cap Stations
NASA Astrophysics Data System (ADS)
Tan, A.; Lyatsky, W.; Lyatskaya, S.
2004-12-01
The auroral electrojet AL and AE geomagnetic activity indices are important for monitoring geomagnetic substorms. In the northern hemisphere these indices are derived from measurements at a set of geomagnetic observatories located in the auroral zone. In the southern hemisphere the major portion of the auroral zone is located on the ocean; this does not allow us to derive the auroral electrojet indices in the same way. We showed that monitoring the auroral electrojet is possible from magnetic field measurements at polar cap stations. For this purpose we used hourly values of geomagnetic field variations at four polar cap stations, distributed along polar cap boundary and occupying a longitudinal sector of about 14 hours, and calculated mean values of the total magnetic field disturbance T = (X2 + Y2 + Z2)1/2 where X, Y, and Z are geomagnetic field components measured at these polar cap stations. The set of the obtained values were called the T index. This index has a clear physical mining: it is the summary of geomagnetic disturbance in all three components averaged over the polar cap boundary. We found that correlation coefficients for the dependence of the T index on both AL and AE indices are as high as ~0.9 and higher. The high correlation of the T index with the AL and AE indices takes place for any UT hour when the stations were located at the night side. The T index further shows good correlation with solar wind parameters: the correlation coefficient for the dependence of the T index on the solar wind-geomagnetic activity coupling function is ~0.8 and higher, which is close to the correlation coefficient for AL index. The T index may be especially important in the cases when ground-based measurements in the auroral zone are impossible as in the southern hemisphere.
NASA Astrophysics Data System (ADS)
Palmer, S. J.; Rycroft, M. J.; Cermack, M.
2006-09-01
The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10-15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body. Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.
NASA Astrophysics Data System (ADS)
Dimitrova, S.; Mustafa, F. R.; Stoilova, I.; Babayev, E. S.; Kazimov, E. A.
2009-02-01
This collaborative study is based on the analysis and comparison of results of coordinated experimental investigations conducted in Bulgaria and Azerbaijan for revealing a possible influence of solar activity changes and related geomagnetic activity variations on the human cardio-vascular state. Arterial blood pressure and heart rate of 86 healthy volunteers were measured on working days during a period of comparatively high solar and geomagnetic activity (2799 measurements in autumn 2001 and spring 2002) in Sofia. Daily experimental investigations of parameters of cardio-vascular health state were performed in Azerbaijan with a permanent group of examined persons. Heart rate and electrocardiograms were digitally registered (in total 1532 records) for seven functionally healthy persons on working days and Saturdays, in the Laboratory of Heliobiology at the Medical Center INAM in Baku, from 15.07.2006 to 13.11.2007. Obtained digital recordings were subjected to medical, statistical and spectral analyses. Special attention was paid to effects of solar extreme events, particularly those of November 2001 and December 2006. The statistical method of the analysis of variance (ANOVA) and post hoc analysis were applied to check the significance of the influence of geomagnetic activity on the cardio-vascular parameters under consideration. Results revealed statistically significant increments for the mean systolic and diastolic blood pressure values of the group with geomagnetic activity increase. Arterial blood pressure values started increasing two days prior to geomagnetic storms and kept their high values up to two days after the storms. Heart rate reaction was ambiguous and not significant for healthy persons examined (for both groups) under conditions with geomagnetic activity changes. It is concluded that heart rate for healthy persons at middle latitudes can be considered as a more stable physiological parameter which is not so sensitive to environmental changes while the dynamics of arterial blood pressure reveals a compensatory reaction of the human organism for adaptation.
Geomagnetic sudden impulses and storm sudden commencements - A note on terminology
NASA Technical Reports Server (NTRS)
Joselyn, J. A.; Tsurutani, B. T.
1990-01-01
The definitions of and distinctions between storm sudden commencements (SSCs) and geomagnetic sudden impulses (SIs) are examined and present definitions of SIs and SSCs are modernized. Quantitative definitions of the two terms are recommended.
NASA Astrophysics Data System (ADS)
Kushnarenko, G. P.; Yakovleva, O. E.; Kuznetsova, G. M.
2018-03-01
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003-2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° E) is examined. Variations of Ne at heights of 150-190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal-autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003-2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150-190 km.
International Geomagnetic Reference Field: the third generation.
Peddie, N.W.
1982-01-01
In August 1981 the International Association of Geomagnetism and Aeronomy revised the International Geomagnetic Reference Field (IGRF). It is the second revision since the inception of the IGRF in 1968. The revision extends the earlier series of IGRF models from 1980 to 1985, introduces a new series of definitive models for 1965-1976, and defines a provisional reference field for 1975- 1980. The revision consists of: 1) a model of the main geomagnetic field at 1980.0, not continuous with the earlier series of IGRF models together with a forecast model of the secular variation of the main field during 1980-1985; 2) definitive models of the main field at 1965.0, 1970.0, and 1975.0, with linear interpolation of the model coefficients specified for intervening dates; and 3) a provisional reference field for 1975-1980, defined as the linear interpolation of the 1975 and 1980 main-field models.-from Author
Quantifying Power Grid Risk from Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Homeier, N.; Wei, L. H.; Gannon, J. L.
2012-12-01
We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.
Auroral LSTIDs and SAR Arc Occurrences in Northern California During Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Bhatt, A.; Kendall, E. A.
2015-12-01
A 630nm allsky imager has been operated for two years in northern California at the Hat Creek Radio Observatory. F-region airglow data captured by the imager ranges from approximately L=1.7 -2.7. Since installation of the imager several geomagnetic storms have occurred with varying intensities. Two main manifestations of the geomagnetic storms are observed in the 630 nm airglow data: large-scale traveling ionospheric disturbances that are launched from the auroral zone and Stable Auroral Red (SAR) arcs during more intense geomagnetic storms. We will present a statistical analysis of these storm-time phenomena in northern California for the past eighteen months. This imager is part of a larger all-sky imaging network across the continental United States, termed MANGO (Midlatitude All-sky-imaging Network for Geophysical Observations). Where available, we will add data from networked imagers located at similar L-shell in other states as well.
What time does the recovery phase of geomagnetic storms start: A superposed epoch analysis
NASA Astrophysics Data System (ADS)
Du, A.; Zhang, Y.; Ou, J.; Luo, H.
2015-12-01
It is well known that the recovery phase of the geomagnetic storms start during Dst reaches a minimum. This present paper is a discussion of recovery phase onset of a superposed epoch analysis of 247 storm events (-450 < Dst < -50 nT). The data of the solar wind parameters, the geomagnetic index AE and Dst are by means of 1 hour OMNI database. The energy budget for the driver and decay terms introduced by Burton et al. (1975) are checked. As might be expected, the recovery phase of geomagnetic storms starts when the decay term is greater than the driver term. The balance of the decay and driver terms is also dependent on the solar wind energy input during the initial phase. In general, at the onset of the recovery phase, EK-L decreases to 70% of a maximum of EK-L.
Solar generated quasi-biennial geomagnetic variation
NASA Technical Reports Server (NTRS)
Sugiura, M.; Poros, D. J.
1977-01-01
The existence of highly correlated quasi-biennial variations in the geomagnetic field and in solar activity is demonstrated. The analysis uses a numerical filter technique applied to monthly averages of the geomagnetic horizontal component and of the Zurich relative sunspot number. Striking correlations are found between the quasi-biennial geomagnetic variations determined from several magnetic observatories located at widely different longitudes, indicating a worldwide nature of the obtained variation. The correlation coefficient between the filtered Dst index and the filtered relative sunspot number is found to be -0.79 at confidence level greater than 99% with a time-lag of 4 months, with solar activity preceding the Dst variation. The correlation between the unfiltered data of Dst and of the sunspot number is also high with a similar time-lag. Such a timelag has not been discussed in the literature, and a further study is required to establish the mode of sun-earth relationship that gives this time delay.
Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field
NASA Technical Reports Server (NTRS)
Jones, G. M.
1977-01-01
The effects of temperature changes at the earth's core-mantle boundary on the velocity field of the core are analyzed. It is assumed that the geomagnetic field is maintained by thermal convection in the outer core. A model for the thermal interaction of the core and the mantle is presented which is consistent with current views on the presence of heat sources in the core and the properties of the lower mantle. Significant long-term variations in the frequency of geomagnetic reversals may be the result of fluctuating temperatures at the core-mantle boundary, caused by intermittent convection in the lower mantle. The thermal structure of the lower mantle region D double prime, extending from 2700 to 2900 km in depth, constitutes an important test of this hypothesis and offers a means of deciding whether the geomagnetic dynamo is thermally driven.
F layer positive response to a geomagnetic storm - June 1972
NASA Technical Reports Server (NTRS)
Miller, N. J.; Grebowsky, J. M.; Mayr, H. G.; Harris, I.; Tulunay, Y. K.
1979-01-01
A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside midlatitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17-18, 1972. It is inferred that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F-layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in the apparent response to magnetospheric E x B drifts. A summer F-layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F-layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics.
Simultaneous stochastic inversion for geomagnetic main field and secular variation. II - 1820-1980
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1989-01-01
With the aim of producing readable time-dependent maps of the geomagnetic field at the core-mantle boundary, the method of simultaneous stochastic inversion for the geomagnetic main field and secular variation, described by Bloxham (1987), was applied to survey data from the period 1820-1980 to yield two time-dependent geomagnetic-field models, one for the period 1900-1980 and the other for 1820-1900. Particular consideration was given to the effect of crustal fields on observations. It was found that the existing methods of accounting for these fields as sources of random noise are inadequate in two circumstances: (1) when sequences of measurements are made at one particular site, and (2) for measurements made at satellite altitude. The present model shows many of the features in the earth's magnetic field at the core-mantle boundary described by Bloxham and Gubbins (1985) and supports many of their earlier conclusions.