Science.gov

Sample records for laser ablation spectroscopy

  1. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  2. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  3. Laser Ablation Solid Sampling processes investigated usinginductively coupled plasma - atomic emission spectroscopy (ICP-AES)

    SciTech Connect

    Mao, X.L.; Ciocan, A.C.; Borisov, O.V.; Russo, R.E.

    1997-07-01

    The symbiotic relationship between laser ablation mechanismsand analytical performance using inductively coupled plasma-atomicemission spectroscopy are addressed in this work. For both cases, it isimportant to ensure that the ICP conditions (temperature and electronnumber density) are not effected by the ablated mass. By ensuring thatthe ICP conditions are constant, changes in spectral emission intensitywill be directly related to changes in laser ablation behavior. Mg ionicline to atomic line ratios and excitation temperature were measured tomonitor the ICP conditions during laser-ablation sample introduction. Thequantity of ablated mass depends on the laser pulse duration andwavelength. The quantity of mass removed per unit energy is larger whenablating with shorter laser wavelengths and pulses. Preferential ablationof constituents from a multicomponent sample was found to depend on thelaser beam properties (wavelength and pulse duration). Fornanosecond-pulsed lasers, thermal vaporization dominates the ablationprocess. For picosecond-pulsed lasers, a non-thermal mechanism appears todominate the ablation process. This work will describe the mass ablationbehavior during nanosecond and picosecond laser sampling into the ICP.The behavior of the ICP under mass loading conditions is firstestablished, followed by studies of the ablation behavior at variouspower densities. A thermal vaporization model is used to explainnanosecond ablation, and a possible non-thermal mechanism is proposed toexplain preferential ablation of Zn and Cu from brass samples duringpicosecond ablation.

  4. Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Cabalin, L.; Laserna, J.; Kanicky, V.; Nicolas, G.

    2009-03-01

    The presented work proves the capacities of laser-induced breakdown spectroscopy (LIBS) as a fast, universal, and versatile technique for analysis of complex materials as ceramics. This paper reports on the analysis of ceramic raw materials (brick clays and kaolin) submitted to laser ablation in the form of pressed pellets. Spectrographic study was provided by standard single-pulse LIBS technique and orthogonal reheating double-pulse LIBS. It was found that both methods are comparable in terms of analytical performance, if adequate experimental parameters and signal detection systems are used.

  5. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  6. Laser-ablated active doping technique for visible spectroscopy measurements on Z.

    SciTech Connect

    Gomez, Matthew Robert

    2013-09-01

    Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

  7. Time-resolved EUV spectroscopy in the early stage of laser ablation of carbon

    NASA Astrophysics Data System (ADS)

    Loiseleur, Pierre; Hansen, Tue N.; Larour, Jean; Lunney, James G.

    2002-09-01

    In the early stages of laser ablation the combination of high density and optical opacity makes it difficult to use visible spectroscopy for plasma diagnosis. However, these problems can be overcome by working at shorter wavelengths in the EUV. We have used time-resolved EUV emission spectroscopy to study the early stages (1-30 ns) of plasma development in the laser ablation of carbon at an irradiance of 5 GW cm -2. The ablation was done using a 6 ns Nd:YAG laser at 1.06 μm. The spectra were recorded using a grazing incidence spectrometer with a 5 ns-gated micro-channel plate (MCP) detector. An ion probe operating in the time-of-flight mode was used to measure the ion velocity distribution of the plasma outflow. In the 10-35 nm region the predominant line emission was due to Li-like carbon. The temporal variation of the electron density and temperature was deduced by fitting the observed spectrum to a synthetic spectrum calculated using the FLY numerical model of the plasma ionisation and excitation. The temperature deduced from spectroscopy was in good agreement with the estimation from the measured ion velocity distribution in the plasma outflow.

  8. Emission spectroscopy of laser ablation plasma with time gating by acousto-optic modulator

    SciTech Connect

    Sakka, Tetsuo; Irie, Kyohei; Fukami, Kazuhiro; Ogata, Yukio H.

    2011-02-15

    The capability of acousto-optic modulator (AOM) to perform time-gated measurements for laser ablation plasma spectroscopy has been examined. Especially, we focused on the capability of the ''AOM gating'' to exclude the continuum and extremely broadened spectra usually observed immediately after the laser ablation. Final goal of the use of the AOM is to achieve considerable downsizing of the system for in situ and on-site analyses. In the present paper, it is shown that narrow and clear spectral lines can be obtained with the AOM gating even if the target is submerged in water. Also, application of this technique to the targets in air is demonstrated. It has been revealed that the AOM gating is fast enough to exclude the continuum and broadened lines, while effectively acquiring sufficiently narrow atomic lines lasting slightly longer than the continuum.

  9. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  10. Two-tracer spectroscopy diagnostics of temperature profile in the conduction layer of a laser-ablated plastic foil

    SciTech Connect

    Zhang Jiyan; Yang Guohong; Hu Xin; Yang Jiamin; Ding Yaonan; Ding Yongkun; Zhang Baohan; Zheng Zhijian; Xu Yan; Yan Jun; Pei Wenbin

    2010-11-15

    A technique that combines the diagnostics of electron temperature history and the measurements of ablation velocity with two-tracer x-ray spectroscopy has been developed for diagnosing the temperature profiles in the thermal conduction layers of laser-ablated plastic foils. The electron temperature in the plastic ablator was diagnosed using the isoelectronic line ratios of Al Ly{alpha} line to Mg Ly{alpha} line, emitted from a tracer layer of Al/Mg mixture buried under the ablator. The ablation velocity was inferred from the time delay between the onset time of x-ray line emissions from Al and Mg tracer layers buried at two depths in the ablator, respectively. From the measured electron temperatures and ablation velocity, the electron temperature profile in the conduction layer was inferred. The measured temperature profile was compared with the simulated one and reasonable agreement was found.

  11. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions

    NASA Astrophysics Data System (ADS)

    Ciocan, A. C.; Mao, X. L.; Borisov, Oleg V.; Russo, R. E.

    1998-03-01

    The amount of ablated mass can influence the temperature and excitation characteristics of the inductively coupled plasma (ICP) and must be taken into account to ensure accurate chemical analysis. The ICP electron number density was investigated by using measurements of the Mg ionic to atomic resonant-line ratios during laser ablation of an aluminum matrix. The ICP excitation temperature was measured by using selected Fe lines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulse duration) at 266 nm was used for these ablation-sampling studies. Laser energy, power density, and repetition rate were varied in order to change the quantity of ablated mass into the ICP. Over the range of laser operating conditions studied herein, the ICP was not significantly influenced by the quantity of solid sample. Therefore, analytical measurements can be performed accurately and fundamental studies of laser ablation processes (such as ablation mass roll-off, fractional vaporization) can be investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  12. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  13. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy

    SciTech Connect

    Verhoff, B.; Harilal, S. S.; Freeman, J. R.; Diwakar, P. K.; Hassanein, A.

    2012-11-01

    We investigated the spatial and temporal evolution of temperature and electron density associated with femto- and nanosecond laser-produced plasmas (LPP) from brass under similar laser fluence conditions. For producing plasmas, brass targets were ablated in vacuum employing pulses either from a Ti:Sapphire ultrafast laser (40 fs, 800 nm) or from a Nd:YAG laser (6 ns, 1064 nm). Optical emission spectroscopy is used to infer the density and temperature of the plasmas. The electron density (n{sub e}) was estimated using Stark broadened profiles of isolated lines while the excitation temperature (T{sub exc}) was estimated using the Boltzmann plot method. At similar fluence levels, continuum and ion emission are dominant in ns LPP at early times (<50 ns) followed by atomic emission, while the fs LPP provided an atomic plume throughout its visible emission lifetime. Though both ns and fs laser-plasmas showed similar temperatures ({approx}1 eV), the fs LPP is found to be significantly denser at shorter distances from the target surface as well as at early phases of its evolution compared to ns LPP. Moreover, the spatial extension of the plume emission in the visible region along the target normal is larger for fs LPP in comparison with ns LPP.

  14. Calcium detection of human hair and nail by the nanosecond time-gated spectroscopy of laser-ablation plume

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Ohmi, Masato; Nakamura, Mitsuo; Morimoto, Shigeto

    2000-04-01

    We demonstrate the nanosecond time-gated spectroscopy of plume in laser ablation of biological tissue, which allows us to detect calcium (Ca) with high sensitivity by the use of either a UV or a near-IR laser pulse. Clear and sharp peaks of Ca+ appear in the luminescence spectrum of laser-ablation plume although the Ca content is only 0.1 percent in human hair and nail. Luminescence peaks of sodium atom (Na) and ionized carbon are also detectable. This specific spectroscopy is low invasive because a single low-energy laser pulse illuminates the tissue sample, and it does not require any poisonous sensititizers like fluorescence dye. This method, therefore, is a promising candidate for optical biopsy in the near future. In particular, Ca detection of human hair may lead to new diagnosis, including monitor of daily intake of Ca and a screening diagnosis of osteoporosis.

  15. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  16. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  17. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    PubMed

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-01

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors. PMID:27180875

  18. Characteristics of the ablation plume induced on glasses for analysis purposes with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Sokolova, Ekaterina B.; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been demonstrated as an efficient tool for elemental analyses of transparent dielectric materials such as glasses or crystals for more than ten years. The induced plasma is however much less studied compared to that induced on the surface of a metal. The purpose of this work is therefore to characterize the plasma induced on the surface of a glass sample for analytical purpose as a function of the ablation laser wavelength, infrared (IR) or ultraviolet (UV), and the ambient gas, air or argon. The surface damage of the samples was also observed for ablation with IR or UV laser pulse when the sample was a float glass or a frosted one. Optimized ablation fluence was then determined. The morphology of the plasma was observed with time-resolved spectroscopic imaging, while the profiles of the electron density and temperature were extracted from time- and space-resolved emission spectroscopy. The analytical performance of the plasmas was then studied in terms of the signal-to-noise ratio for several emission lines from some minor elements, Al, Fe, contained in glasses, and of the behavior of self-absorption for another minor element, Ca, in the different ablation conditions.

  19. Representative sampling using single-pulse laser ablation withinductively coupled plasma mass spectroscopy

    SciTech Connect

    Liu, Haichen; Mao, Xianglei; Russo, Richard E.

    2001-04-02

    Single pulse laser ablation sampling with inductively coupled plasma mass spectrometry (ICP-MS) was assessed for accurate chemical analysis. Elemental fractionation (e.g. Pb/U), the quantity of ablated mass (crater volume), ICP-MS intensity and the particle contribution (spike signal) during single pulse ablation of NIST 610 glass were investigated. Pb/U fractionation significantly changed between the first and second laser pulse and showed strong irradiance dependence. The Pb/U ratio obtained by the first pulse was usually higher than that of the second pulse, with the average value close to the representative level. Segregation during laser ablation is proposed to explain the composition change between the first and second pulse. Crater volume measurements showed that the second pulse produced significantly more ablated mass. A roll-off of the crater depth occurred at {approx}750 GW/cm{sup 2}. The absolute ICP-MS intensity from the second pulse showed no correlation with crater depth. Particle induced spikes on the transit signal showed irradiance and elemental species dependence.

  20. Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study

    NASA Astrophysics Data System (ADS)

    Quarles, C. Derrick, Jr.; Gonzalez, Jhanis; Choi, Inhee; Ruiz, Javier; Mao, Xianglei; Marcus, R. Kenneth; Russo, Richard E.

    2012-10-01

    The use of a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma source as an alternative to conventional inductively coupled plasma (ICP) detection of laser ablation (LA) produced particles using a Nd:YAG laser at 1064 nm is demonstrated. This configuration utilizes a 180° geometry, which is different from the 40° geometry that was used to ionize ablated particles followed by mass spectrometric detection. The use of a hollow counter electrode (nickel, 0.3 cm o.d., 0.1 cm i.d.) was implemented to introduce ablated particles directly into the APGD plasma with helium as a carrier gas. The LS-APGD source was optimized using ablated copper as the test sample (helium carrier gas flow rate (0.30 L min- 1 He), discharge current (60 mA), laser power (44 mJ), and solution electrode sheath gas (0.2 L min- 1 He) and solution flow rates (10 μL min- 1 5% HNO3)). Standard brass samples having known Zn/Cu percentages were ablated and analyzed using the LS-APGD source. As a comparison, the established technique of laser-induced breakdown spectroscopy (LIBS) was used to analyze the same set of brass standards under similar ablation conditions to the LS-AGPD measurements, yielding comparable results. The Zn/Cu ratio results for the LS-APGD and LIBS measurements showed good similarity to previous measurements using ICP-MS detection. The performance of the LS-APGD-OES microplasma, comparable to well established methods, with lower capital and operational overhead expenses, suggests a great deal of promise as an analytical excitation source.

  1. In situ deuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy

    NASA Astrophysics Data System (ADS)

    Gierse, N.; Brezinsek, S.; Coenen, J. W.; Giesen, T. F.; Huber, A.; Laengner, M.; Möller, S.; Nonhoff, M.; Philipps, V.; Pospieszczyk, A.; Schweer, B.; Sergienko, G.; Xiao, Q.; Zlobinski, M.; Samm, U.; the TEXTOR Team

    2014-04-01

    Laser induced ablation spectroscopy (LIAS) is a diagnostic to provide temporally and spatially resolved in situ measurements of tritium retention and material migration in order to characterize the status of the first wall in future fusion devices. In LIAS, a ns-laser pulse ablates the first nanometres of the first wall plasma-facing components into the plasma edge. The resulting line radiation by plasma excitation is observed by spectroscopy. In the case of the full ionizing plasma and with knowledge of appropriate photon efficiencies for the corresponding line emission the amount of ablated material can be measured in situ. We present the photon efficiency for the deuterium Balmer α-line resulting from ablation in TEXTOR by performing LIAS on amorphous hydrocarbon (a-C:D) layers deposited on tungsten substrate of thicknesses between 0.1 and 1.1 μm. An experimental inverse photon efficiency of [ {\\frac{{D}}{{{XB}}}} ]_{{D}_\\alpha({EXP})}^{{a {- C:D}}\\mathop {\\mathop \\to \\limits_{{LIAS}} } D}= 75.9 +/- 23.4 was determined. This value is a factor 5 larger than predicted values from the ADAS database for atomic injection of deuterium under TEXTOR plasma edge conditions and about twice as high, assuming normal wall recycling and release of molecular deuterium and break-up of D2 via the molecular ion which is usually observed at the high temperature tokamak edge (Te > 30 eV).

  2. Pb distribution in bones from the Franklin expedition: synchrotron X-ray fluorescence and laser ablation/mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Ronald Richard; Naftel, Steven; Macfie, Sheila; Jones, Keith; Nelson, Andrew

    2013-04-01

    Synchrotron micro-X-ray Fluorescence has been used to map the metal distribution in selected bone fragments representative of remains associated with the Franklin expedition. In addition, laser ablation mass spectroscopy using a 25 μm diameter circular spot was employed to compare the Pb isotope distributions in small regions within the bone fragments. The X-ray Fluorescence mapping shows Pb to be widely distributed in the bone while the Pb isotope ratios obtained by laser ablation within small areas representative of bone with different Pb exchange rates do not show statistically significant differences. These results are inconsistent with the hypothesis that faulty solder seals in tinned meat were the principle source of Pb in the remains of the expedition personnel.

  3. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  4. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  5. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  6. Characterization of Air Plane Soot Surrogates using Raman spectroscopy and laser ablation techniques

    NASA Astrophysics Data System (ADS)

    Chazallon, Bertrand; Ortega, Ismael Kenneth; Ikhenazene, Raouf; Pirim, Claire; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier

    2016-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. Aircraft exhaust plumes contain species (gases and soot particles) produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Soot particles emitted by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied for many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. The reasons behind these discrepancies reside in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g., with respect to fuel or combustion techniques. In this work, we use Raman microscopy (514 and 785 nm excitation wavelengths) and ablation techniques (Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particle surrogates produced from a CAST generator (propane fuel, four different global equivalence ratios). They are produced as analogues of air-plane soot collected at different engine regimes (PowerJet SaM-146 turbofan) simulating a landing and take-off (LTO) cycle (MERMOSE project (http://mermose.onera.fr/)) [6]. The spectral parameters of the first-order Raman bands of these soot samples are analyzed using a de-convolution approach described by Sadezky et al. (2005) [5]. A systematic Raman analysis is carried out to select a number of parameters (laser wavelength, irradiance at sample, exposure time) that will alter the sample and the

  7. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  8. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  9. Laser ablation and spectroscopy of copper in liquid and solid {sup 4}He

    SciTech Connect

    Moroshkin, P.; Lebedev, V.; Weis, A.

    2011-11-15

    We present an experimental study of the laser-induced fluorescence spectra of Cu atoms in bulk liquid and solid helium matrices as well as in the dense plasma created by the laser ablation of copper in liquid helium. We observe transitions of the valence electron and of inner-shell electrons. The former produce structureless line shapes, a large broadening, and a blueshift. The latter practically are not shifted with respect to the free atom and possess a substructure consisting of a zero-phonon line and phonon wings. We suggest a qualitative interpretation of the observed spectra based on the atomic bubble model that takes the lifting of the |M{sub J}| degeneracy due to the bubble deformation and matrix-phonon interactions into account.

  10. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  11. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  12. Laser ablation plume thermalization dynamics in background gases: Combined imaging, optical absorption and emission spectroscopy, and ion probe measurements

    SciTech Connect

    Geohegan, D.B.; Puretzky, A.A. |

    1995-02-01

    Combined diagnostic measurements are employed to characterize the penetration of energetic ablation plumes through background gases during a key transitional regime in which the ion flux is observed to split into distinct fast and slowed components. This apparently general phenomenon occurs over a limited range of distances at ambient pressures typically used for PLD (pulsed laser deposition) and may be important to film growth by PLD because a ``fast`` component of ions can arrive at the probe (or substrate) with little or no delay compared to propagation in vacuum. At longer distances, this ``fast`` component is completely attenuated, and only slowed distributions of ions are observed. Interestingly, this ``fast`` component is easily overlooked in imaging studies because the bright plume luminescence occurs in the slowed distribution. Time- and spatially-resolved optical absorption and emission spectroscopy are applied to experimentally determine the composition of the ``fast`` and ``slow`` propagating plume components for a single-component target ablation (yttrium) into an inert gas (argon) for correlation with quantitative imaging and ion probe measurements. The yttrium/argon system was chosen because optical absorption spectroscopy of both Y and Y+ was simultaneously possible and the inert nature of argon. Experimental results for several other systems, including Si/Ar, Si/He, YBCO/O{sub 2} are presented to illustrate variations in scattering mechanisms.

  13. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  14. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  15. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  16. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  17. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    SciTech Connect

    Xiao, Qingmei; Li, Cong; Hai, Ran; Zhang, Lei; Feng, Chunlei; Ding, Hongbin; Zhou, Yan; Yan, Longwen; Duan, Xuru

    2014-05-15

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ∼20 nm in depth and ∼500 μm or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

  18. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  19. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  20. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  1. Laser Ablated Carbon Nanodots for Light Emission

    NASA Astrophysics Data System (ADS)

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-09-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  2. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength. PMID:27659953

  3. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  4. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  5. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  6. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensed liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.

  7. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  8. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  9. UV laser ablation of parylene films from gold substrates

    SciTech Connect

    O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

    2009-11-19

    Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

  10. Silver-silver oxide core-shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Schinca, D. C.; Scaffardi, L. B.; Videla, F. A.; Torchia, G. A.; Moreno, P.; Roso, L.

    2009-11-01

    The generation of small silver metal nanoparticles (Nps) by ultrashort pulsed laser ablation has been an active area of research in recent years due to their interest in several fields of applied research such as biotechnology and material research, in particular those with sizes smaller than 10 nm. In general, laser ablation tends to produce environmentally clean metal Nps compared with wet chemical methods. However, since silver may be oxidized in the presence of water or ethanol, core-shell silver-silver oxide (Ag-Ag2O) Nps can be formed, whose size and thickness must be determined and characterized for functionalization related to future applications. This work analyses the size characteristics of core-shell Ag-Ag2O colloid nanostructures (smaller than 10 nm) obtained by femtosecond laser ablation of solid silver targets in different liquid media (water or ethanol) through the study of their optical extinction spectra. A fit of full experimental spectrum using Mie theory allows the determination of core size and shell thickness distributions as a function of fluence. The red-shift of the plasmon peak wavelength with respect to the bare-core peak wavelength at 400 nm, produced by the oxide shell, may be easily measured even for very small thicknesses. It was found that the dominant Ag2O effective thickness is inversely proportional to the fluence, reaching a maximum of 0.2 nm for a fluence of 60 J cm-2 and a minimum of 0.04 nm for a fluence of 1000 J cm-2.

  11. Real-Time Analysis of Individual Airborne Microparticles Using Laser Ablation Mass Spectroscopy and Genetically Trained Neural Networks

    SciTech Connect

    Parker, E.P.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.

    1999-01-22

    We are developing a method for analysis of airborne microparticles based on laser ablation of individual molecules in an ion trap mass spectrometer. Airborne particles enter the spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a pulsed excimer laser as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. The mass spectra are then analyzed using genetically-trained neural networks (NNs). A number of mass spectra are averaged to obtain training cases which contain a recognizable spectral signature. Averaged spectra for a bacteria and a non-bacteria are shown to the NNs, the response evaluated, and the weights of the connections between neurodes adjusted by a Genetic Algorithm (GA) such that the output from the NN ranges from 0 for non-bacteria to 1 for bacteria. This process is iterated until the population of the GA converges or satisfies predetermined stopping criteria. Using this type of bipolar training we have obtained generalizing NNs able to distinguish five new bacteria from five new non-bacteria, none of which were used in training the NN.

  12. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  13. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  14. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  15. Observation of femtosecond-laser-induced ablation plumes of aluminum using space- and time-resolved soft x-ray absorption spectroscopy

    SciTech Connect

    Okano, Yasuaki; Oguri, Katsuya; Nishikawa, Tadashi; Nakano, Hidetoshi

    2006-11-27

    The dynamics of the laser ablation plume expansion of aluminum was investigated by using space- and time-resolved soft x-ray absorption spectroscopy. Blueshifts of the Al L-shell photoabsorption edge indicating the state of aluminum were observed in the plumes, which were generated by irradiating an aluminum target with 120 fs near-infrared pulses at an intensity of 10{sup 14} W/cm{sup 2}. The spatiotemporal evolution of the plumes exhibited a multilayer structure consisting of vaporized aluminum and condensed aluminum particles, following the expansion of plasma, with expansion velocities of 10{sup 4} m/s for the atomic state and 10{sup 3} m/s for the condensed state.

  16. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo; Bergquist, James Charles; Kasevich, Mark A.

    2008-04-01

    Degenerate gases. Probing vortex pair sizes in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates / V. Schweikhard ... [et al.]. Interacting Bose-Einstein condensates in random potentials / P. Bouyer ... [et al.]. Towards quantum magnetism with ultracold atoms in optical lattices / I. Bloch -- Precision measurement and fundamental physics. T-violation and the search for a permanent electric dipole moment of the mercury atom / E. N. Fortson -- Quantum information and control I. Quantum information processing and ramsey spectroscopy with trapped ions / C. F. Roos ... [et al.]. Quantum non-demolition counting of photons in a cavity / S. Haroche ... [et al.] -- Ultra-fast control and spectroscopy. Frequency-Comb- assisted mid-infrared spectroscopy / P. de Natale ... [et al.] -- Precision measurement and applications. Precision gravity tests by atom interferometry / G. M. Tino ... [et al.] -- Novel spectroscopic applications. On a variation of the proton-electron mass ratio / W. Ubachs ... [et al.] -- Quantum information and control II. Quantum interface between light and atomic ensembles / H. Krauter ... [et al.] -- Degenerate Fermi gases. An atomic Fermi gas near a P-wave Feshbach resonance / D. S. Jin, J. P. Gaebler and J. T. Stewart. Bragg scattering of correlated atoms from a degenerate Fermi gas / R. J. Ballagh, K. J. Challis and C. W. Gardiner -- Spectroscopy and control of atoms and molecules. Stark and Zeeman deceleration of neutral atoms and molecules / S. D. Hogan ... [et al.]. Generation of coherent, broadband and tunable soft x-ray continuum at the leading edge of the driver laser pulse / A. Jullien ... [et al.]. Controlling neural atoms and photons with optical conveyor belts and ultrathin optical fibers / D. Meschede. W. Alt and A. Rauschenbeutel -- Spectroscopy on the small scale. Wide-field cars-microscopy / C. Heinrich ... [et al.]. Atom nano-optics and nano-lithography / V. I. Balykin ... [et al

  17. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  18. Pulsed laser ablation and deposition of niobium carbide

    NASA Astrophysics Data System (ADS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  19. H3PAgI: generation by laser-ablation and characterization by rotational spectroscopy and ab initio calculations.

    PubMed

    Stephens, Susanna L; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2016-07-28

    The new compound H3PAgI has been synthesized in the gas phase by means of the reaction of laser-ablated silver metal with a pulse of gas consisting of a dilute mixture of ICF3 and PH3 in argon. Ground-state rotational spectra were detected and assigned for the two isotopologues H3P(107)AgI and H3P(109)AgI in their natural abundance by means of a chirped-pulse, Fourier-transform, microwave spectrometer. Both isotopologues exhibit rotational spectra of the symmetric-top type, analysis of which led to accurate values of the rotational constant B0, the quartic centrifugal distortion constants DJ and DJK, and the iodine nuclear quadrupole coupling constant χaa(I) = eQqaa. Ab initio calculations at the explicitly-correlated level of theory CCSD(T)(F12*)/aug-cc-pVDZ confirmed that the atoms PAg-I lie on the C3 axis in that order. The experimental rotational constants were interpreted to give the bond lengths r0(PAg) = 2.3488(20) Å and r0(Ag-I) = 2.5483(1) Å, in good agreement with the equilibrium lengths of 2.3387 Å and 2.5537 Å, respectively, obtained in the ab initio calculations. Measures of the strength of the interaction of PH3 and AgI (the dissociation energy De for the process H3PAgI = H3P + AgI and the intermolecular stretching force constant FPAg) are presented and are interpreted to show that the order of binding strength is H3PHI < H3PICl < H3PAgI for these metal-bonded molecules and their halogen-bonded and hydrogen-bonded analogues. PMID:27354204

  20. Laser ablation studies using RIS

    SciTech Connect

    Beekman, D.W.; Callcott, T.A.

    1984-01-01

    Here we describe a Resonance Ionization Mass Spectroscopy system which includes a Nd:YAG laser microprobe, multiphoton resonance ionization, a time-of-flight mass spectrometer, and a novel data acquisition system. With this system we have measured the relative population of thermally populated energy levels and the velocity distribution of samarium atoms vaporized by the laser microprobe to determine the excitation and kinetic temperatures, respectively.

  1. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  2. Fractal Character of Titania Nanoparticles Formed by Laser Ablation

    SciTech Connect

    Musaev, O.; Midgley, A; Wrobel, J; Yan, J; Kruger, M

    2009-01-01

    Titania nanoparticles were fabricated by laser ablation of polycrystalline rutile in water at room temperature. The resulting nanoparticles were analyzed with x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electron micrograph image of deposited nanoparticles demonstrates fractal properties.

  3. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  4. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  5. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  6. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  7. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  8. Femtosecond laser ablation of cadmium tungstate for scintillator arrays

    NASA Astrophysics Data System (ADS)

    Richards, S.; Baker, M. A.; Wilson, M. D.; Lohstroh, A.; Seller, P.

    2016-08-01

    Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm-2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.

  9. Dynamics of mid-infrared femtosecond laser resonant ablation

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yunxuan; Wang, Qingyue

    2014-06-01

    Resonant ablation is beneficial to avoiding uncontrollable subsurface damages in the laser ablation of polymers. In this paper the dynamics of mid-infrared laser resonant ablation of polylactic acid and toluene was calculated by using fluid dynamic equations. The merits and drawbacks of mid-infrared femtosecond laser resonant ablation of high molecular weight polymers have been discussed.

  10. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  11. Optimization of La{sub 0.7}Ba{sub 0.3}MnO{sub 3-{delta}} complex oxide laser ablation conditions by plume imaging and optical emission spectroscopy

    SciTech Connect

    Amoruso, S.; Bruzzese, R.; Scotti di Uccio, U.; Aruta, C.; Granozio, F. Miletto; Wang, X.; Maccariello, D.; Maritato, L.; Orgiani, P.

    2010-08-15

    The properties of thin films of complex oxides, such as La{sub 1-x}D{sub x}MnO{sub 3-{delta}} (D=Ba, Ca, Sr, etc.), produced by pulsed laser deposition depend critically on the experimental parameters in which laser ablation is carried out. Here, we report a comparative analysis of the pulsed laser ablation process of La{sub 0.7}Ba{sub 0.3}MnO{sub 3-{delta}}, in oxygen background, in the ambient pressure range from 10{sup -2} to 1 mbar, typically employed in pulsed laser deposition of manganites. The laser ablation plume was studied by using time-gated imaging and optical emission spectroscopy techniques. It was found that at a pressure of {approx_equal}10{sup -2} mbar, the plume species arriving at the substrate are characterized by hyperthermal kinetic energy ({approx_equal}10 eV), and high degree of excitation. On the contrary, at larger oxygen pressure (0.1-1 mbar), the velocity of plume species reaching the substrate, and their degree of excitation are much reduced by the confining effects of the background gas. These features explain why an appropriate choice of the experimental conditions in which the deposition process is carried out leads to better quality films, providing helpful indications to improve control over the growth process of both La{sub 1-x}D{sub x}MnO{sub 3-{delta}} and other perovskitic oxides.

  12. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  13. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal.

  14. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  15. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  16. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  17. Optical modeling of laser ablated microstructures

    NASA Astrophysics Data System (ADS)

    Gower, M. C.; Davies, E.; Holmes, A. S.

    2012-11-01

    From only an a priori knowledge of the optical parameters of a laser beam, the delivery system together with a substrate's material properties, a ray-tracing model capable of predicting the 3-D topology of micro/nanostructures machined by pulsed laser ablation has been developed. The model includes secondary illumination effects produced by the microstructure created by successive pulses (wall reflections, refraction, wave guiding, shadowing, etc.) as well as the complete optical properties of the beam delivery system. We have used material ablation by pulsed excimer lasers and associated beam delivery systems to demonstrate some of the capabilities of the model. Good agreement is obtained between computations and experimental results in terms of the predicted ablation depth per pulse and the wall taper angle of channels and holes. The model can predict ablated profiles of holes and indicate the most efficient drilling strategy in terms of material removal rates. The model also shows diffraction effects are not required to explain the tapering vertical walls observed when ablating microstructures. Finally, the model has been used to demonstrate aberrations in an optical imaging system limiting the creation of submicron features in an ablated microstructure. Provided photons are absorbed linearly in a substrate according to Beer's law with negligible thermal diffusion effects, the model is equally applicable to using other types of pulsed laser sources and systems with imaged or focused beams.

  18. The rotational spectrum of CuCCH(X̃  1Σ+): a Fourier transform microwave discharge assisted laser ablation spectroscopy and millimeter/submillimeter study.

    PubMed

    Sun, M; Halfen, D T; Min, J; Harris, B; Clouthier, D J; Ziurys, L M

    2010-11-01

    The pure rotational spectrum of CuCCH in its ground electronic state (X̃  (1)Σ(+)) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues ((63)CuCCH, (65)CuCCH, (63)Cu(13)CCH, (63)CuC(13)CH, (63)Cu(13)C(13)CH, and (63)CuCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for (63)CuCCH and (65)CuCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an r(m)(2) structure for CuCCH was established, with r(Cu-C) = 1.8177(6) Å, r(C-C) = 1.2174(6) Å, and r(C-H) = 1.046(2) Å. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the C≡C-H moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.

  19. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  20. Nanosecond laser ablation of silver nanoparticle film

    NASA Astrophysics Data System (ADS)

    Chung, Jaewon; Han, Sewoon; Lee, Daeho; Ahn, Sanghoon; Grigoropoulos, Costas P.; Moon, Jooho; Ko, Seung H.

    2013-02-01

    Nanosecond laser ablation of polyvinylpyrrolidone (PVP) protected silver nanoparticle (20 nm diameter) film is studied using a frequency doubled Nd:YAG nanosecond laser (532 nm wavelength, 6 ns full width half maximum pulse width). In the sintered silver nanoparticle film, absorbed light energy conducts well through the sintered porous structure, resulting in ablation craters of a porous dome shape or crown shape depending on the irradiation fluence due to the sudden vaporization of the PVP. In the unsintered silver nanoparticle film, the ablation crater with a clean edge profile is formed and many coalesced nanoparticles of 50 to 100 nm in size are observed inside the ablation crater. These results and an order of magnitude analysis indicate that the absorbed thermal energy is confined within the nanoparticles, causing melting of nanoparticles and their coalescence to larger agglomerates, which are removed following melting and subsequent partial vaporization.

  1. Resonant laser ablation: mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1996-10-01

    We report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation is presented.

  2. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  3. Surface Decontamination Using Laser Ablation Process - 12032

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-07-01

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  4. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  5. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  6. Laser ablation of phenylazide in an argon matrix: direct observation and chemical reactivity of ablated fragments

    NASA Astrophysics Data System (ADS)

    Niino, H.; Sato, T.; Yabe, A.

    Ablation of pentafluorophenylazide (FPA) in an Ar matrix at 8-10 K was carried out upon irradiation with ns-pulsed UV lasers in a vacuum. The plume of ablated products was monitored by a time-resolved imaging/spectroscopic technique using a gated and intensified CCD camera system. A large amount of pentafluorophenylnitrene (FPN) having a high kinetic energy ( 6 eV) was ejected as fragments from the matrix film during ablation. A quantitative formation of triplet FPN from the photolysis of the FPA was observed by spectroscopic measurements in the IR and UV-visible regions, and was confirmed by a theoretical IR spectrum calculated according to density functional theory. A FPN beam is useful for chemical surface modification of organic materials, such as aromatic polyester and alkylthiol. A surface analysis of these materials by X-ray photoelectron spectroscopy and Fourier transform infrared reflection absorption spectroscopy showed that the FPN was immobilized onto the surface through chemical bonds. This technique for the chemical surface modification of materials is made possible by a pulsed beam of reactive fragments with a high density in the laser ablation process.

  7. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  8. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  9. Deposition of fibrous nanostructure by ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, K.

    2010-05-01

    This research work demonstrated that laser-induced reverse transfer (LIRT) can be used for controllable site-specific deposition of fibrous nanostructure. The LIRT method makes it possible to generate and deposit the fibrous nanostructure of a wide variety of materials on a transparent acceptor in a single-step process at an ambient condition. The deposition of fibrous nanostructures was conducted using ultrafast laser ablation of silicon and aluminum targets placed behind a glass acceptor. Femtosecond laser pulses pass through the transparent acceptor and hit the bulk donor. Consequently a mass quantity of nanoparticles ablates from the donor and then aggregates and forms a porous fibrous nanostructure on the transparent acceptor. Our experiments demonstrated that the gap between the target and the glass acceptor was critical in the formation and accumulation of nanofibers and it determines the density of the formed nanostructure. The formation mechanism of the nanostructures can be explained by the well-established theory of vapor condensation within the plume induced by ultrafast laser ablation. Experimental results also show that the length of the nanostructure can be controlled by the gap between the target and glass acceptor. Lastly, energy-dispersive x-ray spectroscopy (EDS) analysis shows the oxygen concentration in the nanofibrous structure which is associated with oxidation of ablated material at ambient atmosphere.

  10. Laser ablation studies in southern Africa

    NASA Astrophysics Data System (ADS)

    McKenzie, Edric; Forbes, A.; Turner, G. R.; Michaelis, Max M.

    2000-08-01

    With the launch of the South African National Laser Centre, new programs will need to be defined. Medical, environmental and industrial laser applications must obviously take top priority -- as opposed to the uranium isotope separation and military applications of the past. We argue however, that a small effort in laser ablation for space propulsion is justifiable, since a few very large CO2 lasers are available and since two tentative propulsion experiments have already been conducted in South Africa. We attempt to give LISP (Laser Impulse Space Propulsion) an equatorial and a Southern dimension.

  11. Laser ablation of gall bladder stones

    NASA Astrophysics Data System (ADS)

    Marafi, M.; Makdisi, Y.; Bhatia, K. S.; Abdulah, A. H.; Kokaj, Y.; Mathew, K.; Quinn, F.; Qabazard, A.

    1999-06-01

    Study of laser interaction with calculi is presented. A system of Nd-Yag and Ho-Yag pulsed lasers were used to produce fluorescence and plasma signals at the stone surface surrounded by saline and bile fluids. Fourth harmonic from Nd-Yag laser was transmitted to the samples by graded UV optical fibres. Gall bladder stones of various compositions were subjected to the high power Ho-Yag laser. Temporal transients and spectral evolution of plasma and fluorescence signals were monitored by a streak camera. A profile of acoustic pressures generated by shock waves was recorded with sensitive hydrophones placed in the surrounding fluids. Ablation threshold, cavitation process and fluorescence dependence on the laser parameters were studied in detail. Potential of stone identification by fluorescence and possible hydrodynamic model for ablation of biological samples is discussed.

  12. Dispersive effects in laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Ştefan Andrei; Agop, Maricel; Nica, Petru; Gurlui, Silviu; Mihăileanu, Doina; Toma, Ştefan; Focşa, Cristian

    2014-11-01

    The dynamics of transient plasmas generated by high-fluence nanosecond laser ablation has been investigated by recording the ionic current with a Langmuir probe. Systematic measurements have been carried out on a plasma produced in vacuum by Nd:YAG laser irradiation of a copper target. The temporal evolution of the ionic current for different fluences was investigated, revealing the presence of some periodic oscillations. A theoretical model is proposed in order to describe the nonlinear behavior of the expanding plasma by assuming that the motion curves of the ablated particles are fractals. The behaviors predicted by the proposed theoretical model are in good agreement with the experimental findings.

  13. Spectroscopic and morphological study of laser ablated Titanium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muahmamd Shahid; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Saman; Dawood, Asadullah; Arooj

    2016-07-01

    The laser-induced breakdown spectroscopy (LIBS) and surface morphology of Titanium (Ti) plasma as a function of laser irradiance have been investigated under ambient environment of argon at fixed pressure of 50 Torr. Ablation was performed by employing Q-switched Nd:YAG laser pulses (λ ≈ 1064 nm, τ ≈ 10 ns, repetition rate ≈ 10 Hz). Ti targets were exposed to various laser intensities ranging from 6 to 50 GW/cm2. LIBS analysis has been employed for the investigation of plasma parameters. Scanning Electron Microscope (SEM) analysis was employed for investigation of surface morphology. Ablation depth was measured by optical microscopy technique. It was observed that both plasma parameters, i.e., excitation temperature and electron density have been significantly influenced by laser irradiance. It is observed that with increasing laser irradiance up to 13 GW/cm2, the electron temperature decreases whereas number density significantly increases and attains its maxima. Afterwards by increasing irradiance electron temperature increases, attains its maxima and a decrease in electron number density is observed at irradiance of 19 GW/cm2. Further increase in irradiance causes saturation with insignificant changes in both electron temperature and electron number density. This saturation in both excitation temperature and electron number density is explainable on the basis of self-sustaining regime. SEM micrographs reveal the ripple and coneformation at the boundaries of ablated region of Ti. The height of cones as well as the ablation depth is maximum at irradiance of 13 GW/cm2 whereas electron number density is also maximum. The maximum electron number density is considered to be responsible for maximum ablation as well as mass removal. A strong correlation between plasma parameters and surface morphology is established.

  14. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchick, A.M.; Gold, D.M.; Darrown, C.B.; Da Silva, L.B.

    1998-01-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using ultrashort pulse laser (USPL). Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  15. Laser Ablation for Small Hepatocellular Carcinoma

    PubMed Central

    Pacella, Claudio Maurizio; Francica, Giampiero; Di Costanzo, Giovanni Giuseppe

    2011-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and is increasingly detected at small size (<5 cm) owing to surveillance programmes in high-risk patients. For these cases, curative therapies such as resection, liver transplantation, or percutaneous ablation have been proposed. When surgical options are precluded, image-guided tumor ablation is recommended as the most appropriate therapeutic choice in terms of tumor local control, safety, and improvement in survival. Laser ablation (LA) represents one of currently available loco-ablative techniques: light is delivered via flexible quartz fibers of diameter from 300 to 600 μm inserted into tumor lesion through either fine needles (21g Chiba needles) or large-bore catheters. The thermal destruction of tissue is achieved through conversion of absorbed light (usually infrared) into heat. A range of different imaging modalities have been used to guide percutaneous laser ablation, but ultrasound and magnetic resonance imaging are most widely employed, according to local experience and resource availability. Available clinical data suggest that LA is highly effective in terms of tumoricidal capability with an excellent safety profile; the best results in terms of long-term survival are obtained in early HCC so that LA can be proposed not only in unresectable cases but, not differently from radiofrequency ablation, also as the first-line treatment. PMID:22191028

  16. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  17. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  18. Multidiagnostic analysis of ultrafast laser ablation of metals with pulse pair irradiation

    NASA Astrophysics Data System (ADS)

    Amoruso, S.; Bruzzese, R.; Wang, X.; O'Connell, G.; Lunney, J. G.

    2010-12-01

    Copper targets are irradiated in the ablation regime by pairs of equal, time-delayed collinear laser pulses separated on a timescale going from ≈2 ps to ≈2 ns. The ablation plume is characterized by ion probe diagnostic, fast imaging, and temporally and spatially resolved optical emission spectroscopy. The variation in the ablation efficiency with the delay between the pulses is analyzed by measuring the ablation crater profile with a contact profilometer. The second laser pulse modifies the characteristics of the plasma plume produced by the first pulse and the ablation efficiency. The different mechanisms involved in double pulse ultrafast laser ablation are identified and discussed. The experimental findings are interpreted in the frame of a simple model of the interaction of the second pulse with the nascent ablation plume produced by the first pulse. This model yields consistent and quantitative agreement with the experimental findings predicting the observed experimental trends of the ablation depth reduction and ion yield increase with the delay between the pulses, as well as the characteristic timescale of the observed changes. The possibility of controlling the characteristics of the plumes produced during ultrafast laser ablation via an efficient coupling of the energy of the second pulse to the various ablation components produced by the first pulse is of particular interest in ultrafast pulsed laser deposition and microprobe analyses of materials.

  19. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  20. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  1. Innovative Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Chen, Winston C. H.

    2003-06-01

    The objective of this project is to develop a novel laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination. Another aim is to make this surface decontamination technology becomes economically feasible for large scale decontamination.

  2. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  3. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  4. A Review of Laser Ablation Propulsion

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Sänger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing "Lightcraft" and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important rôle in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  5. Online monitoring of nanoparticles formed during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nováková, Hana; Holá, Markéta; Vojtíšek-Lom, Michal; Ondráček, Jakub; Kanický, Viktor

    2016-11-01

    The particle size distribution of dry aerosol originating from laser ablation of glass material was monitored simultaneously with Laser Ablation - Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis and two aerosol spectrometers - Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS). The unique combination of LA-ICP-MS and FMPS offers the possibility of measuring the particle size distribution every 1 s of the ablation process in the size range of 5.6-560 nm. APS extends the information about particle concentration in the size range 0.54-17 μm. Online monitoring of the dry aerosol was performed for two ablation modes (spot and line with a duration of 80 s) with a 193 nm excimer laser system, using the glass reference material NIST 610 as a sample. Different sizes of laser spot for spot ablation and different scan speeds for line ablation were tested. It was found that the FMPS device is capable of detecting changes in particle size distribution at the first pulses of spot laser ablation and is suitable for laser ablation control simultaneously with LA-ICP-MS analysis. The studied parameters of laser ablation have an influence on the resulting particle size distribution. The line mode of laser ablation produces larger particles during the whole ablation process, while spot ablation produces larger particles only at the beginning, during the ablation of the intact layer of the ablated material. Moreover, spot ablation produces more primary nano-particles (in ultrafine mode size range < 100 nm) than line ablation. This effect is most probably caused by a reduced amount of large particles released from the spot ablation crater. The larger particles scavenge the ultrafine particles during the line ablation mode.

  6. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices.

  7. Ultrafast femtosecond laser ablation of graphite

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Mel'nik, N. N.; Saltuganov, Pavel N.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.

    2015-06-01

    Fluence dependences of IR and UV reflectivity of femtosecond laser pulses on a HOPG surface demonstrate their saturation in a certain fluence range, starting from 0.2 J cm-2, where single-shot non-linear plasma emission is detected by electric probe measurements. This correlation between prompt solid-state optical/electronic dynamics and electron-ion plasma emission indicates prompt ‘freezing’ of surface electronic dynamics via its plasma-emission cooling and simultaneous ultrafast shallow laser ablation of the surface. Strong HOPG disordering is observed in Raman spectra for laser fluences, exceeding the plasma emission threshold.

  8. A novel method for the identification of inorganic and organic gunshot residue particles of lead-free ammunitions from the hands of shooters using scanning laser ablation-ICPMS and Raman micro-spectroscopy.

    PubMed

    Abrego, Zuriñe; Grijalba, Nagore; Unceta, Nora; Maguregui, Maite; Sanchez, Alicia; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2014-12-01

    A method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (SLA-ICPMS) and Raman micro-spectroscopy for the detection and identification of compounds consistent with gunshot residue particles (GSR) has been developed. The method has been applied to the characterization of particles resulting from the discharge of firearms using lead-free ammunition. Modified tape lifts were used to collect the inorganic and organic residues from skin surfaces in a single sample. Using SLA-ICPMS, aggregates related to the composition of the ammunition, such as Cu-Zn-Sn, Zr-Sr, Cu-Zn, Al-Ti, or Al-Sr-Zr were detected, but this composition is only consistent with GSR from lead-free ammunitions. Additional evidence was provided by micro-Raman spectroscopy, which identified the characteristic organic groups of the particles as centralite, diphenylamine or their nitrated derivatives, which are indicative of GSR. PMID:25303642

  9. A novel method for the identification of inorganic and organic gunshot residue particles of lead-free ammunitions from the hands of shooters using scanning laser ablation-ICPMS and Raman micro-spectroscopy.

    PubMed

    Abrego, Zuriñe; Grijalba, Nagore; Unceta, Nora; Maguregui, Maite; Sanchez, Alicia; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2014-12-01

    A method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (SLA-ICPMS) and Raman micro-spectroscopy for the detection and identification of compounds consistent with gunshot residue particles (GSR) has been developed. The method has been applied to the characterization of particles resulting from the discharge of firearms using lead-free ammunition. Modified tape lifts were used to collect the inorganic and organic residues from skin surfaces in a single sample. Using SLA-ICPMS, aggregates related to the composition of the ammunition, such as Cu-Zn-Sn, Zr-Sr, Cu-Zn, Al-Ti, or Al-Sr-Zr were detected, but this composition is only consistent with GSR from lead-free ammunitions. Additional evidence was provided by micro-Raman spectroscopy, which identified the characteristic organic groups of the particles as centralite, diphenylamine or their nitrated derivatives, which are indicative of GSR.

  10. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Herren, Kenneth A.

    2005-04-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period. This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered. The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  11. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  12. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  13. Ultrafast laser ablation of transparent materials

    NASA Astrophysics Data System (ADS)

    Bauer, Lara; Russ, Simone; Kaiser, Myriam; Kumkar, Malte; Faißt, Birgit; Weber, Rudolf; Graf, Thomas

    2016-03-01

    The present work investigates the influence of the pulse duration and the temporal spacing between pulses on the ablation of aluminosilicate glass by comparing the results obtained with pulse durations of 0.4 ps and 6 ps. We found that surface modifications occur already at fluences below the single pulse ablation threshold and that laser-induced periodic surface structures (LIPSS) emerge as a result of those surface modifications. For 0.4 ps the ablation threshold fluences is lower than for 6 ps. Scanning electron micrographs of LIPSS generated with 0.4 ps exhibit a more periodic and less coarse structure as compared to structures generated with 6 ps. Furthermore we report on the influence of temporal spacing between the pulses on the occurrence of LIPSS and the impact on the quality of the cutting edge. Keywords: LIPSS,

  14. Ultraviolet laser ablation of polyimide films

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Braren, B.; Dreyfus, R. W.

    1987-01-01

    Pulsed laser radiation at 193, 248, or 308 nm can etch films of polyimide (DuPont KaptonTM). The mechanism of this process has been examined by the chemical analysis of the condensible products, by laser-induced fluorescence analysis of the diatomic products, and by the measurement of the etch depth per pulse over a range of fluences of the laser pulse. The most important product as well as the only one condensible at room temperature is carbon. Laser-induced fluorescence analysis showed that C2 and CN were present in the ablation plume. At 248 nm, even well below the fluence threshold of 0.08 J/cm2 for significant ablation, these diatomic species are readily detected and are measured to leave the polymer surface with translational energy of ˜5 eV. These results, when combined with the photoacoustic studies of Dyer and Srinivasan [Appl. Phys. Lett. 48, 445 (1986)], show that a simple photochemical mechanism in which one photon or less (on average) is absorbed per monomer is inadequate. The ablation process must involve many photons per monomer unit to account for the production of predominantly small (<4 atoms) products and the ejection of these fragments at supersonic velocities.

  15. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  16. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  17. UV-laser ablation of ionic liquid matrices.

    PubMed

    Hellwig, Nils; Thrun, Alexander; Muskat, Tassilo; Grotemeyer, Jürgen

    2009-12-01

    Ionic liquid matrices are a new class of matrices used in MALDI mass spectrometry. The ablation process of several ionic liquid matrices was studied by determining the velocity distribution of ablated neutral matrix molecules. This was done by a postionization approach, where the neutrals were ionized in the ablation plume by a second laser pulse. It was found that a second, time-delayed ablation event occurs consisting completely of neutral molecules. To explain this, the reflected-shockwave model is used, which assumes that the shockwave emerging from the laser ablation is reflected at the sample holder surface. When the shockwave arrives at the sample surface it causes a second ablation.

  18. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  19. KTP-532 laser ablation of urethral strictures

    NASA Astrophysics Data System (ADS)

    Malloy, Terrence R.

    1991-07-01

    In 1988, the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision, as in urethrotomy, strictures were treated with a 360$DEG contact photoradiation. Thirty-one males, average age 53.2 years, received 37 treatments. Six patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and post-gonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of a circumferential ablation followed by foley catheter placement (mean 10 days). Follow-up on 29 of 31 patients ranged from 1 to 16 months (mean 9.7) Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptoms but no stricture recurrence. Six patients (20.5%) failed therapy requiring additional surgery or regular dilatations. No complications were encountered. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious.

  20. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  1. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  2. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  3. Effect of Laser Wavelength and Ablation Time on Pulsed Laser Ablation Synthesis of AL Nanoparticles in Ethanol

    NASA Astrophysics Data System (ADS)

    Baladi, A.; Mamoory, R. Sarraf

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 5-15 minutes using the 1064 and 533 nm wavelengths of a Nd:YAG laser with energies of 280-320 mJ per pulse. It has been found that higher wavelength leads to significantly higher ablation efficiency, and finer spherical nanoparticles are also synthesized. Besides, it was obvious that higher ablation time resulted in higher ablated mass, while lower ablation rate was observed. Finer nanoparticles, moreover, are synthesized in higher ablation times.

  4. Oxidation of uranium nanoparticles produced via pulsed laser ablation

    SciTech Connect

    Trelenberg, T W; Glade, S C; Tobin, J G; Felter, T E; Hamza, A V

    2005-12-07

    An experimental apparatus designed for the synthesis, via pulsed laser deposition, and analysis of metallic nanoparticles and thin films of plutonium and other actinides was tested on depleted uranium samples. Five nanosecond pulses from a Nd:YAG laser produced films of {approx}1600 {angstrom} thickness that were deposited showing an angular distribution typical thermal ablation. The films remained contiguous for many months in vacuum but blistered due to induced tensile stresses several days after exposure to air. The films were allowed to oxidize from the residual water vapor within the chamber (2 x 10{sup -10} Torr base pressure). The oxidation was monitored by in-situ analysis techniques including x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and scanning tunneling microscopy (STM) and followed Langmuir kinetics.

  5. Spectroscopic characterization of laser ablation brass plasma

    SciTech Connect

    Shaikh, Nek M.; Hafeez, Sarwat; Kalyar, M. A.; Ali, R.; Baig, M. A.

    2008-11-15

    We present optical emission studies of the laser ablation brass plasma generated by the fundamental, second, and third harmonics of a neodymium doped yttrium aluminum garnet laser. The spectra predominantly reveal the spectral lines of the neutral and singly ionized copper and zinc. The excitation temperatures are determined by the Boltzmann plot method, whereas the electron number densities have been extracted from the Stark broadened line profiles. The spatial variations in the spectral line intensities and the plasma parameters at 1000, 500, and 100 mbar air pressures have been evaluated. Besides, the effect of the ambient gases (He, Ne, and Ar), the laser irradiance, and the laser wavelengths on the plasma parameters have been investigated.

  6. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  7. Growth modes of ZnO nanostructures from laser ablation

    NASA Astrophysics Data System (ADS)

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-01

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  8. Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation.

    PubMed

    Chen, Yuheng; Bulatov, Valery; Singer, Liviu; Stricker, Josef; Schechter, Israel

    2005-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to map the distribution of particulate matter inside the plume created by laser ablation of a brass target. The spatial density distribution of the different components of the plume was determined in an attempt to reveal the mechanism of fractionation in the process of the laser ablation. In this experiment two Nd:YAG pulsed lasers were used. The first beam was focused on the target to generate a plume after breakdown of the surface. The second laser was focused on the plume and generated the second breakdown. The composition of the region probed by the second beam was determined by analyzing the spectral emission from the second breakdown. By scanning the probe time and position, the temporal and spatial evolution of the laser ablative plume could be discovered. Spatial and temporal fractionation was observed in brass plume.

  9. Spectroscopic characterization of laser ablated silicon plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Mumtaz, M.; Shahzada, S.; Nadeem, A.; Haq, S. U.

    2014-06-01

    We report plasma parameters of laser ablated silicon plasma using the fundamental (1064 nm) and second harmonics (532 nm) of a Nd : YAG laser. The electron temperature and electron number density are evaluated using the Boltzmann plot method and Stark broadened line profile, respectively. The electron temperature and electron number density are deduced using the same laser irradiance 2-16 GW cm-2 for 1064 nm and 532 nm as 6350-7000 K and (3.42-4.44) × 1016 cm-3 and 6000-6400 K and (4.20-5.72) × 1016 cm-3, respectively. The spatial distribution of plasma parameters shows a decreasing trend of 8200-6300 K and (4.00-3.60) × 1016 cm-3 for 1064 nm and 6400-5500 K and (5.10-4.50) × 1016 cm-3 for 532 nm laser ablation. Furthermore, plasma parameters are also investigated at low pressure from 45 to 550 mbar, yielding the electron temperature as 4580-5535 K and electron number density as (1.51-2.12) × 1016 cm-3. The trend of the above-mentioned results is in good agreement with previous investigations. However, wavelength-dependent studies and the spatial evolution of plasma parameters have been reported for the first time.

  10. Depth Profiling of Polymer Composites by Ultrafast Laser Ablation

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Clayton, Clive; Longtin, Jon

    2009-03-01

    Past work has shown femtosecond laser ablation to be an athermal process at low fluences in polymer systems. The ablation rate in this low fluence regime is very low, allowing for micro-scale removal of material. We have taken advantage of this fact to perform shallow depth profiling ablation on carbon fiber reinforced polymer (CFRP) composites. Neat composite and resin samples were studied to establish reference ablation profiles. These profiles and the effects of the heterogeneous distribution of carbon fibers were observed through confocal laser profilometry and optical and scanning electron microscopy. Weathered materials that have been subjected to accelerated tests in artificial sunlight or water conditions were ablated to determine the correlation between exposure and change in ablation characteristics. Preliminary Raman and micro-ATR analysis performed before and after ablation shows no chemical changes indicative of thermal effects. The low-volume-ablation property was utilized in an attempt to expose the sizing-matrix interphase for analysis.

  11. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  12. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hormes, J.; Roy, A.; Bovenkamp, G.-L.; Simon, K.; Kim, C.-Y.; Börste, N.; Gai, S.

    2013-04-01

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile—the most stable form of TiO2—but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds.

  13. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices. PMID:26301907

  14. Langmuir probe characterization of laser ablation plasmas

    SciTech Connect

    Doggett, Brendan; Lunney, James G.

    2009-02-01

    For laser ablation plumes that are significantly ionized, Langmuir probes have proved to be a useful tool for measuring the plume shape, ion energy distribution, and electron temperature. Typically in laser ablation plasmas the flow velocity is supersonic, which complicates the interpretation of the current-voltage probe characteristic. In this paper we describe some recent developments on the application of Langmuir probes for laser ablation plume diagnosis. We have investigated the behavior of the probe when it is orientated perpendicular, and parallel, to the plasma flow, and show how an analytical model developed for plasma immersion ion implantation, can quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The ion signal recorded by a probe in the parallel position is proportional to the ion density and the square root of the bias voltage. It is shown that the current varies as m{sub i}{sup -1/2} so that by comparing the ion signals from the parallel and perpendicular positions it is possible to estimate the mass of the ions detected. We have also determined the temporal variation of electron temperature. A planar probe oriented parallel to the plasma flow, where the ion current due to the plasma flow is eliminated, gives a more reliable measurement of T{sub e} (<0.6 eV). The measured T{sub e} is consistent with the measured ion current, which is dependent on T{sub e} when the time taken for an element of plasma to traverse the probe is longer than the time taken for the matrix ion sheath extraction phase.

  15. Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Oderji, Hassan Yousefi; Farid, Nazar; Sun, Liying; Fu, Cailong; Ding, Hongbin

    2016-08-01

    A non-equilibrium mechanism for nanosecond laser ablation is suggested herein, and its predictions are compared to the results of W experiments performed under vacuum conditions. A mechanism of particle formation is explained via this model, with partial sublimation of the superheated irradiated zone of the target considered to be the mechanism of laser ablation. In this study, a mixture of vapor and particles was explosively generated and subsequently prevented the rest of a laser pulse from reaching its intended target. This mechanism was found to play an essential role in the ablation of W under vacuum conditions, and it provides a theoretical justification for particle formation. Moreover, special considerations were taken into account for the expansion of plasma into a vacuum. The model was evaluated by measuring the mass of ablated particles using a quartz crystal deposition monitor and time-resolved optical emission spectroscopy. The results of this model were found to be in good agreement with experimental values.

  16. Femtosecond ultraviolet laser ablation of silver and comparison with nanosecond ablation

    SciTech Connect

    Toftmann, B.; Schou, J.; Doggett, B.; Budtz-Jorgensen, C.; Lunney, J. G.

    2013-02-28

    The ablation plume dynamics arising from ablation of silver with a 500 fs, 248 nm laser at {approx}2 J cm{sup -2} has been studied using angle-resolved Langmuir ion probe and thin film deposition techniques. For the same laser fluence, the time-of-flight ion signals from femtosecond and nanosecond laser ablation are similar; both show a singly peaked time-of-flight distribution. The angular distribution of ion emission and the deposition are well described by the adiabatic and isentropic model of plume expansion, though distributions for femtosecond ablation are significantly narrower. In this laser fluence regime, the energy efficiency of mass ablation is higher for femtosecond pulses than for nanosecond pulses, but the ion production efficiency is lower.

  17. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  18. Treatment of ulcers with ablative fractional lasers.

    PubMed

    Morton, Laurel M; Dover, Jeffrey S; Phillips, Tania J; Krakowski, Andrew C; Uebelhoer, Nathan S

    2015-03-01

    Chronic, nonhealing ulcers are a frustrating therapeutic challenge and investigation of innovative therapies continues to be an important research pursuit. One unique and newly applied intervention is the use of ablative fractional lasers. This technology has recently been employed for the treatment of hypertrophic, disfiguring and function-limiting scars, and was first shown to induce healing of chronic wounds in patients with persistent ulcers and erosions within traumatic scars. Recent reports suggest it may be applicable for other types of chronic wounds as well. The mechanism of action for this modality remains to be elucidated but possible factors include laser-induced collagen remodeling, photomicrodebridement and disruption of biofilms, and induction of a proper wound healing cascade.

  19. Laser ablation plume dynamics in nanoparticle synthesis

    SciTech Connect

    Osipov, V V; Platonov, V V; Lisenkov, V V

    2009-06-30

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO{sub 2} laser pulse with a duration of {approx}500 {mu}s (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 {mu}s after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large ({approx}10 {mu}m) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes. (interaction of laser radiation with matter. laser plasma)

  20. Femtosecond laser ablation of brass in air and liquid media

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-07

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  1. Excimer laser ablation of aluminum: influence of spot size on ablation rate

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2016-11-01

    The dependence of ablation rate of an Al alloy on laser beam spot size (10–150 µm) was investigated using an ArF excimer laser operating at a wavelength of 193 nm and pulse width less than 4 ns. Ablation was conducted in air at a fluence of 11 J cm‑2 and at a repetition rate of 20 Hz. Surface morphology and depth of craters produced by a variable number of laser pulses were characterized using optical and scanning electron microscopy. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used as an additional diagnostic technique to estimate the amount of material ablated from craters produced by a laser beam of different diameters. Laser beam spot size and number of laser pulses applied to the same spot were found to influence crater morphology, ablation rate, shape and amount of particles deposited at or around the crater rim. Ablation rate was found to be less dependent on spot size for craters greater than 85 µm. A four-fold increase in ablation rate was observed with decreasing crater size from 150 µm to 10 µm.

  2. Influence of the Liquid on Femtosecond Laser Ablation of Iron

    NASA Astrophysics Data System (ADS)

    Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.

    Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.

  3. Deposition of polyimide precursor by resonant infrared laser ablation

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Gies, A. P.; Schriver, K. E.; Haglund, R. F., Jr.

    2007-11-01

    We report the successful deposition of a polyimide precursor using resonant infrared laser ablation (RIR-LA). A solution of poly(amic acid) (PAA) dissolved in N-methyl-2-pyrrolidinone (NMP), the melt processable precursor to polyimide, was frozen in liquid nitrogen for use as an ablation target in a high-vacuum chamber. Fourier transform infrared spectroscopy was used to determine that the local chemical structure remained unaltered. Gel permeation chromatography demonstrated that the transferred PAA retained its molecular weight, showing that RIR-LA is able to transfer the polymer intact, with no detectable chain fragmentation. These results are in stark contrast to UV-processing which degrades the polymer. After deposition the PAA may be removed with a suitable solvent; however, once the material has undergone cyclodehydration it forms an impenetrable three-dimensional network associated with thermosetting polymers. The transfer of uncured PAA precursor supports the hypothesis that RIR-LA is intrinsically a low temperature process, because the PAA is transferred without reaching the curing temperature. The RIR-LA also effectively removes the solvent NMP from the PAA, during both the ablation and deposition phases; this is a necessary step in generating PI films.

  4. Laser ablated copper plasmas in liquid and gas ambient

    SciTech Connect

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  5. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  6. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  7. Renaissance of laser interstitial thermal ablation.

    PubMed

    Missios, Symeon; Bekelis, Kimon; Barnett, Gene H

    2015-03-01

    Laser interstitial thermal therapy (LITT) is a minimally invasive technique for treating intracranial tumors, originally introduced in 1983. Its use in neurosurgical procedures was historically limited by early technical difficulties related to the monitoring and control of the extent of thermal damage. The development of magnetic resonance thermography and its application to LITT have allowed for real-time thermal imaging and feedback control during laser energy delivery, allowing for precise and accurate provision of tissue hyperthermia. Improvements in laser probe design, surgical stereotactic targeting hardware, and computer monitoring software have accelerated acceptance and clinical utilization of LITT as a neurosurgical treatment alternative. Current commercially available LITT systems have been used for the treatment of neurosurgical soft-tissue lesions, including difficult to access brain tumors, malignant gliomas, and radiosurgery-resistant metastases, as well as for the ablation of such lesions as epileptogenic foci and radiation necrosis. In this review, the authors aim to critically analyze the literature to describe the advent of LITT as a neurosurgical, laser excision tool, including its development, use, indications, and efficacy as it relates to neurosurgical applications. PMID:25727222

  8. Metal particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  9. Optimization of laser ablation and signal enhancement for nuclear material detection

    NASA Astrophysics Data System (ADS)

    LaHaye, Nicole L.

    The purpose of the study was to investigate the role of different laser parameters on laser ablation properties, specifically in terms of performance in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Many laser parameters affect laser ablation performance, including laser wavelength and pulse duration, as presented here. It was previously thought that wavelength plays no role in ultrafast laser ablation; however, it was found that shorter wavelength yields lower detection limits and ablation threshold. Our results also demonstrate that in the laser pulse duration range of 40 fs to 1 ps, negligible differences occur in signal intensity, elemental ratios, and detection limits. U/Pb and U/Th ratios, which were examined to ensure limited fractionation, give comparable results at all pulse widths investigated. A parametric study of plasma hydrodynamics will also be presented. An elemental detection method combining laser induced breakdown spectroscopy (LIBS) and LA-ICP-MS is developed, with plasma density and temperature actively monitored to investigate how plasma conditions affect ICP-MS results. The combination of these two methods will help to mitigate the disadvantages of using each technique individually. Depth and spatial analysis of thin films was performed using femtosecond LA-ICP-MS to study the stoichiometric distribution of the films. The thin film-substrate interface was probed, revealing intermixing between the two layers. Lastly, the persistence of uranium emission in laser-produced plasmas (LPP) was investigated under various Ar ambient environments. Plasma collisional effects and confinement play a very important role in emission intensity and persistence, yielding important results for future LIBS and laser absorption spectroscopy (LAS) research. Lastly, suggestions for future work are made, which include extension of the LIBS and LA-ICP-MS systems to other samples like oxide thin films and spatial and depth profiling of known

  10. CO2 TEA Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Recently, it has been shown that the relative abundance of isotopes in enriched materials can be determined via laser-induced breakdown spectroscopy (LIBS) in a technique known as laser-ablation molecular isotopic spectroscopy (LAMIS). The original LAMIS work has focused on single-pulse (SP) LIBS for the excitation. However, dual-pulse (DP) LIBS reduces shot-to-shot variation and can lower detection limits of an element by about an order of magnitude or more. It also has the potential to improve the accuracy of the determination of the relative abundances of isotopes in LAMIS by minimizing the signal-to-noise ratio. In this work, a DP-LIBS technique for improving LAMIS relative-abundance information from a sample is presented. The new technique, called (TEA) Transverse-Excited breakdown in Atmosphere Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS), uses a carbon dioxide (CO2) laser to increase the breakdown emission from LIBS in the LAMIS method. This technique is demonstrated on a collection of relative abundance isotopes of boron- 10 and boron-11 in varying concentrations in boric acid. Least-squares fitting to theoretical models are used to deduce plasma parameters and understand reproducibility of results. DTRA.

  11. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  12. The role of laser wavelength on plasma generation and expansion of ablation plumes in air

    SciTech Connect

    Hussein, A. E.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2013-04-14

    We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photography and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.

  13. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  14. A prototype transition-metal olefin complex C2H4⋯AgCl synthesised by laser ablation and characterised by rotational spectroscopy and ab initio methods

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David P.; Mikhailov, Victor A.; Walker, Nicholas R.; Legon, Anthony C.

    2011-07-01

    C2H4⋯Ag-Cl has been synthesised in the gas phase in a pulsed-jet, Fourier-transform microwave spectrometer by the reaction of laser-ablated metallic silver with carbon tetrachloride to give AgCl, which subsequently reacts with ethene to give the complex. The ground-state rotational spectra of six isotopologues (C2H4⋯107Ag35Cl, C2H4⋯109Ag35Cl, C2H4⋯107Ag37Cl, C2H4⋯109Ag37Cl, 13C2H4⋯107Ag35Cl, and 13C2H4⋯109Ag35Cl) were recorded and analysed to give rotational constants A0, B0, and C0, centrifugal distortion constants ΔJ and ΔJK, and Cl nuclear quadrupole coupling constants χaa(Cl) and χbb(Cl) - χcc(Cl). These spectroscopic constants were interpreted in terms of a geometry for C2H4⋯Ag-Cl of C2V symmetry in which the AgCl molecule lies along the C2 axis of ethene that is perpendicular to the C2H4 plane. The Ag atom forms a bond to the midpoint (*) of the ethene π bond. A partial rs-geometry and a r0-geometry were determined, with the values r(*⋯Ag) = 2.1719(9) Å, r(C-C) = 1.3518(4) Å, and r(Ag-Cl) = 2.2724(8) Å obtained in the latter case. The C-C bond lengthens on formation of the complex. Detailed ab initio calculations carried out at the CCSD(T)/cc-pVQZ level of theory give results in good agreement with experiment and also reveal that the ethene molecule undergoes a small angular distortion. The distortion is such that the four H atoms move in a direction away from Ag but remain coplanar. The two C atoms are no longer contained in this plane, however. The electric charge redistribution when C2H4⋯Ag-Cl is formed and the strength of the π⋯Ag bond are discussed.

  15. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  16. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  17. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    PubMed Central

    2012-01-01

    Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types) were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA), followed by linear discriminant analysis (LDA). To assess the potential of tissue differentiation, area under the curve (AUC), sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%). However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85). Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the surrounding lipid-rich nerve

  18. Ablation of crystalline oxides by infrared femtosecond laser pulses

    SciTech Connect

    Watanabe, Fumiya; Cahill, David G.; Gundrum, Bryan; Averback, R. S.

    2006-10-15

    We use focused laser pulses with duration of 180 fs and wavelength of 800 nm to study the interactions of high power near-infrared light with the surfaces of single-crystal transparent oxides (sapphire, LaAlO{sub 3}, SrTiO{sub 3}, yttria-stabilized ZrO{sub 2}, and MgO); the morphologies of the ablation craters are studied by atomic force microscopy and scanning electron microscopy. With the exception of LaAlO{sub 3}, the high temperature annealing of these oxide crystals produces atomically flat starting surfaces that enable studies of the morphology of ablation craters with subnanometer precision. The threshold fluence for ablation is determined directly from atomic-force microscopy images and increases approximately linearly with the band gap of the oxide. For all oxides except sapphire, the depth of the ablation crater increases approximately as the square root of the difference between the peak laser fluence and the threshold fluence for ablation. Sapphire shows unique behavior: (i) at laser fluences within 1 J/cm{sup 2} of the threshold for ablation, the depth of the ablation crater increases gradually instead of abruptly with laser fluence, and (ii) the rms roughness of the ablation crater shows a pronounced minimum of <0.2 nm at a laser fluence of 1 J/cm{sup 2} above the threshold.

  19. Laser ablation methods for analysis of urinary calculi: Comparison study based on calibration pellets

    NASA Astrophysics Data System (ADS)

    Štěpánková, K.; Novotný, K.; Vašinová Galiová, M.; Kanický, V.; Kaiser, J.; Hahn, D. W.

    2013-03-01

    Methods based on laser ablation, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass/Optical Emission Spectrometry (LA-ICP-MS/OES) are particularly suitable for urinary calculi bulk and micro analysis. Investigation of spatial distribution of matrix and trace elements can help to explain their emergence and growth. However, quantification is still very problematic and these methods are often used only for qualitative elemental mapping. There are no commercially available standards, which would correspond to the urinary calculi matrix. Internal standardization is also difficult, mainly due to different crystalline phases in one kidney stone. The aim of this study is to demonstrate the calibration capabilities and examine the limitations of laser ablation based techniques. Calibration pellets were prepared from powdered human urinary calculi with phosphate, oxalate and urate matrix. For this comparative study, the most frequently used laser-ablation based analytical techniques were chosen, such as LIBS and LA-ICP-MS. Moreover, some alternative techniques such as simultaneous LIBS-LA-ICP-OES and laser ablation LA-LIBS were also utilized.

  20. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  1. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  2. Laser ablation in analytical chemistry-a review.

    PubMed

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  3. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  4. Wetting and other physical characteristics of polycarbonate surface textured using laser ablation

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Khaled, M.; Abu-Dheir, N.; Al-Aqeeli, N.; Said, S. A. M.; Ahmed, A. O. M.; Varanasi, K. K.; Toumi, Y. K.

    2014-11-01

    Surface texturing of polycarbonate glass is carried out for improved hydrophobicity via controlled laser ablation at the surface. Optical and physical characteristics of the laser treated layer are examined using analytical tools including optical, atomic force, and scanning electron microscopes, Fourier transform infrared spectroscopy, and X-ray diffraction. Contact angle measurements are carried out to assess the hydrophobicity of the laser treated surface. Residual stress in the laser ablated layer is determined using the curvature method, and microhardnes and scratch resistance are analyzed using a micro-tribometer. Findings reveal that textured surfaces compose of micro/nano pores with fine cavities and increase the contact angle to hydrophobicity such a way that contact angles in the range of 120° are resulted. Crystallization of the laser treated surface reduces the optical transmittance by 15%, contributes to residual stress formation, and enhances the microhardness by twice the value of untreated polycarbonate surface. In addition, laser treatment improves surface scratch resistance by 40%.

  5. Tailored ablation processing of advanced biomedical hydroxyapatite by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ozono, K.; Obara, M.

    The micromachining of hydroxyapatite (HAp) is highly important for orthopedics and dentistry, since human bone and teeth consist mainly of HAp. We demonstrate ultrashort Ti:sapphire laser ablation of HAp, using pulse-widths of 50 fs, 500 fs, and 2 ps at a wavelength of 820 nm and at 1 kpps. The crucial medical issue is to preserve the chemical properties of the machined (ablated) surface. If the chemical properties of HAp change, the human bone or tooth cannot re-grow after laser processing. Using X-ray photoelectron spectroscopy, we observe chemical properties of HAp ablated in air. The HAp is ablated at laser fluences of 3.2 J/cm2 (6.4×1013 W/cm2 at 50 fs), 3.3 J/cm2 (6.6×1012 W/cm2 at 500 fs), and 9.6 J/cm2 (4.8×1012 W/cm2 at 2 ps), respectively. As a result it is found that the ablated surface is unchanged after laser ablation over the pulse-width range used in this experiment.

  6. Erbium oxide thin films on Si(100) obtained by laser ablation and electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Queralt, X.; Ferrater, C.; Sánchez, F.; Aguiar, R.; Palau, J.; Varela, M.

    1995-02-01

    Erbium oxide thin films have been obtained by laser ablation and electron beam evaporation techniques on Si(100) substrates. The samples were grown under different conditions of oxygen atmosphere and substrate temperature without any oxidation process after deposition. The crystal structure has been studied by X-ray diffraction. Films obtained by laser ablation are highly textured in the [ hhh] direction, although this depends on the conditions of oxygen pressure and substrate temperature. In order to study the depth composition profile of the thin films and the interdiffusion of erbium metal and oxygen towards the silicon substrates, X-ray photoelectron spectroscopy analyses have been carried out.

  7. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    SciTech Connect

    Gebauer, Bernhard Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-04-15

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation.

  8. Enhancement of pulsed laser ablation in environmentally friendly liquid.

    PubMed

    Luo, Fangfang; Guan, Yingchun; Ong, Weili; Du, Zheren; Ho, Ghimwei; Li, Fengping; Sun, Shufeng; Lim, Gniancher; Hong, Minghui

    2014-10-01

    Enhancement of pulsed laser ablation can be achieved in acetic acid as an environmentally friendly liquid. This paper evaluates microholes and textured features induced by a nanosecond pulsed laser under different processing circumstances. The microholes are fabricated by laser drilling in acetic acid and found to be 100% deeper than in air. The textured features achieved in the liquid demonstrate a higher content of Copper and a lower content of Oxygen. The improvement of laser ablation efficiency in the liquid is attributed to the strong confinement of plasma plume accompanying with shockwave and cavitation bubbles. Meanwhile, the laser enhanced chemical etching by the weak acid plays a critical role.

  9. Laser ablation of paper: Raman identification of products

    NASA Astrophysics Data System (ADS)

    Balakhnina, Irina; Brandt, Nikolay; Chikishev, Andrey; Rebrikova, Natalia; Yurchuk, Yuliya

    2014-12-01

    Old paper samples are bleached using pulsed laser radiation with a wavelength of 532 nm. The ablation products of five paper samples that differ by composition and production dates are studied using Raman microspectroscopy. Cellulose, protein, calcite, titanium dioxide (anatase, rutile, and brookite), quartz, lazurite, bonattite, and dolomite are identified as ablation products.

  10. Laser ablation synthesis and spectral characterization of ruby nanoparticles

    NASA Astrophysics Data System (ADS)

    Baranov, M. S.; Bardina, A. A.; Savelyev, A. G.; Khramov, V. N.; Khaydukov, E. V.

    2016-04-01

    The laser ablation method was implemented for synthesis of ruby nanoparticles. Nanoparticles were obtained by nanosecond ablation of bulk ruby crystal in 10% ethanol water solution. The nanoparticles enable water colloid stability and exhibit narrow photoluminescent line at 694 nm when pumped at blue-green spectral range. The ruby nanoparticles were characterized by SEM and Z-sizer.

  11. Hydrocarbon level detection with nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hosseinian S, Raheleh; Nugroho, Waskito; Mohd Marsin, Faridah; Zainal, Jasman

    2013-12-01

    Nanosecond laser induced breakdown in liquid is used as a technique to detect hydrocarbon levels in water. A Q-switched Nd:YAG laser was focused to generate optical breakdown associated with shock wave generation. The shock wave was propagated at the speed of sound in the medium after travelling 1 μs outward from the center of optical breakdown. Different amplitudes of sound were traced with the aid of an ultrasonic probe. The optical properties of the hydrocarbon solution were quantified via fundamental refractive index measurement (the Snell law). A continuous mode diode pumped solid state laser with second harmonic generation was used as the illumination light source. A CCD video camera with Matrox version 4.2 software was utilized to analyze the recording image. Option line analysis was performed to analyze the intensity of optical breakdown at different input energies. Gray level analysis was also conducted on the scattering light after passing through the hydrocarbon solution at different concentrations. The hydrocarbon solution comprised impurities or particles that varied according to the concentration. The average of the gray level is assumed to present the size of the particle. Inherently, as the acoustic wave propagates outward, it transports the mass (particles or impurities) and impacts on the ultrasonic probe. As a result a higher concentration of hydrocarbons reveals a larger amplitude of sound waves. This phenomenon is identified as a finger print for hydrocarbon levels between 100 and 1000 ppm. The transient detection, without complicated sampling preparation and no hazardous chemical involvement, makes laser ablation a promising technique to detect in situ hydrocarbon levels in water.

  12. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  13. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM. PMID:27607281

  14. Mid-IR enhanced laser ablation molecular isotopic spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis

    2016-08-01

    A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.

  15. Analysis and removal of ITER relevant materials and deposits by laser ablation

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Huber, Alexander; Philipps, Volker; Sergienko, Gennady; Gierse, Niels; Mertens, Philippe; Hai, Ran; Ding, Hongbin

    2014-12-01

    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1-27 J/cm2, power density 0.3-3.9 GW/cm2). The mixed deposits consisted of W-Al-C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated.

  16. Production of silver nanoparticles by laser ablation in open air

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; del Val, J.; Pou, J.

    2015-05-01

    Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  17. Growth and characterization of laser ablated boron nitride thin films

    SciTech Connect

    Wu, Z.L.; Villanueva, S.; Padmanabhan, K.R.

    1995-12-31

    Recent work is reported on the growth and characterization of boron nitride thin films on 1 cm{sup 2} Si (100) substrates by a newly developed reactive laser ablation technique. The exact nature of the resulting films is highly process dependent and is analyzed by ion channeling and Fourier transform infrared spectroscopy (FTIR). The thermal properties of these films are studied by thermal wave analysis, and they are found to be highly dependent on the crystallographic structure. The hetroepitaxial cBN films show high thermal conductivity, and a value of 9.5 W/cm-K has been measured. This value is believed to be the best thermal conductivity measured for boron nitride films to date.

  18. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  19. Laser tattoo removal with preceding ablative fractional treatment

    NASA Astrophysics Data System (ADS)

    Cencič, Boris; Možina, Janez; Jezeršek, Matija

    2013-06-01

    A combined laser tattoo removal treatment, first the ablative fractional resurfacing (AFR) with an Er:YAG laser and then the q-switched (QSW) Nd:YAG laser treatment, was studied. Experiments show that significantly higher fluences can be used for the same tissue damage levels.

  20. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  1. Selective ablation of sub- and supragingival calculus with a frequency-doubled Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1995-05-01

    In a preceding trial the absorption characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to contain chromophores absorbing in the ultraviolet spectral region up to 420 nm. The aim of the actual study was the ablation of sub- and supragingival calculus using a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz). Extracted human teeth presenting sub- and supragingival calculus were irradiated perpendicular to their axis with a laser fluence of 1 Jcm-2. Using a standard application protocol calculus was irradiated at the enamel surface, at the junction between enamel and root, and at the root surface (located on dentin or on cementum). During the irradiation procedure an effective water cooling-system was engaged. For light microscopical investigations undecalcified histological sections were prepared after treatment. The histological sections revealed that a selective and total removal of calculus is possible at all locations without ablation of healthy enamel, dentin or cementum. Even low fluences provide us with a high effectiveness for the ablation of calculus. Thus, based on different absorption characteristics and ablation thresholds, engaging a frequency doubled Alexandrite-laser a fast and, even more, a selective ablation of sub- and supragingival calculus is possible without adverse side effects to the surrounding tissues. Even more, microbial dental plaque can be perfectly removed.

  2. Low-order harmonic generation in nanosecond laser ablation plasmas of carbon containing materials

    NASA Astrophysics Data System (ADS)

    Lopez-Quintas, I.; Oujja, M.; Sanz, M.; Martín, M.; Ganeev, R. A.; Castillejo, M.

    2013-08-01

    In this work we report on a systematic study of the spatiotemporal behaviour of low-order harmonics generated in nanosecond laser ablation plasmas of carbon containing materials. Plasmas were generated from targets of graphite and boron carbide ablated with a nanosecond Q-switched Nd:YAG laser at 1064 nm. Low-order harmonics (3rd and 5th) of the fundamental wavelength of a ns Nd:YAG driving laser, propagating perpendicularly to the ablation laser at variable time delays, were observed. The temporal study of the low-order harmonics generated under vacuum and atmospheres of Kr and Xe, revealed the presence of two populations that contribute to the harmonic generation (HG) at different times. It was found that under vacuum only small species contribute to the HG process, whereas under buffer gas, heavier species, such as clusters and nanoparticles, contribute to the HG at longer times. Optical emission spectroscopy, time of flight mass spectrometry and characterization of deposits collected on-line on a nearby substrate provided additional information that complemented the results of the spatiotemporal study of the generated harmonics. This approach to ablation plume analysis allows elucidating the identity of the nonlinear emitters in laser ablation plasmas and facilitates the investigation of efficient, nanoparticle-enhanced, coherent short wavelength generation processes.

  3. Wavefront control of optical components by laser-ablative figuring

    NASA Astrophysics Data System (ADS)

    Jitsuno, Takahisa; Akashi, Tomoyoshi; Nakatsuka, Masahiro; Nakai, Sadao; Tokumura, Keiu

    1997-12-01

    A new method for figuring the surface profile of optical plastics and optical glass have been proposed and demonstrated. An ArF excimer laser is used to ablate very thin layer of the surface of the substrates. The shape of the ablated surface is monitored by an interferometer in site condition. The ablation rate of PMMA is 0.08 micrometers per pulse at the energy density of 50 mJ/cm2. The optical glass (BK-7) can be ablated 0.15 micrometers per pulse at the fluence of 1.5 J/cm2.

  4. A laser ablation source for offline ion production at LEBIT

    NASA Astrophysics Data System (ADS)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  5. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  6. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  7. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2010-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of side pumped, preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  8. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  9. Preparation of platinum nanoparticles in liquids by laser ablation method

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, The; Dinh Nguyen, Thanh; Nguyen, Quang Dong; Trinh Nguyen, Thi

    2014-09-01

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7-9 nm and 10-12 nm, respectively. The results showed advantages of the laser ablation method.

  10. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C; Eklund, Peter C; Smith, Michael W; Jordan, Kevin C; Shinn, Michelle

    2012-11-27

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  11. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  12. Laser Ablation Increases PEM/Catalyst Interfacial Area

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  13. Reflection of femtosecond laser light in multipulse ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2011-08-15

    The shot-to-shot reflectance of high-intensity laser light is studied as a function of both the number of laser shots and laser fluence in multipulse ablation of a metal when the irradiated surface undergoes structural changes from an initially smooth surface to a deep crater. Our study shows that the reflectance of the irradiated surface significantly decreases due to the high intensity of laser pulses and the laser-induced surface structures in ablation regimes typically used for femtosecond laser processing of materials. The high-intensity effect dominates in the reflection reduction at low numbers of laser shots when laser-induced surface structures do not cause the reflectance to decrease noticeably. With increasing the number of laser shots, the structural effect comes into play, and both high-intensity and structural effects quickly reduce the reflectance of the sample to a low value.

  14. Graphene patterning by nanosecond laser ablation: the effect of the substrate interaction with graphene

    NASA Astrophysics Data System (ADS)

    Pérez-Mas, Ana M.; Álvarez, Patricia; Campos, Nuria; Gómez, David; Menéndez, Rosa

    2016-08-01

    This paper focuses on the development of patterned graphene/substrate by means of green nanosecond pulse laser irradiation. Monolayer graphene samples supported on a Si/SiO2 substrate were patterned using 532 nm laser irradiation under fluence conditions ranging from 31 mJ cm‑2 to 4240 mJ cm‑2. Raman spectroscopy was used to investigate the effect of laser irradiation on the graphene. It was found that at 356 mJ cm‑2 selective ablation of the graphene occurs. However, at fluence values above 1030 mJ cm‑2 (when damage to the substrate is observed) no ablation of the graphene takes place. In contrast, its graphenic structure was found to have been modified. Only at fluence values where the ablation of the substrate occurs, is graphene eliminated in an area almost equivalent to that of the ablated substrate. In this case, additional damage to the graphene sheet edges is produced. The increment in the number of oxygenated functional groups in these regions, as measured by x-ray photoelectron spectroscopy (XPS), suggests that this damage is probably caused by thermal phenomena during the ablation of the substrate.

  15. Graphene patterning by nanosecond laser ablation: the effect of the substrate interaction with graphene

    NASA Astrophysics Data System (ADS)

    Pérez-Mas, Ana M.; Álvarez, Patricia; Campos, Nuria; Gómez, David; Menéndez, Rosa

    2016-08-01

    This paper focuses on the development of patterned graphene/substrate by means of green nanosecond pulse laser irradiation. Monolayer graphene samples supported on a Si/SiO2 substrate were patterned using 532 nm laser irradiation under fluence conditions ranging from 31 mJ cm-2 to 4240 mJ cm-2. Raman spectroscopy was used to investigate the effect of laser irradiation on the graphene. It was found that at 356 mJ cm-2 selective ablation of the graphene occurs. However, at fluence values above 1030 mJ cm-2 (when damage to the substrate is observed) no ablation of the graphene takes place. In contrast, its graphenic structure was found to have been modified. Only at fluence values where the ablation of the substrate occurs, is graphene eliminated in an area almost equivalent to that of the ablated substrate. In this case, additional damage to the graphene sheet edges is produced. The increment in the number of oxygenated functional groups in these regions, as measured by x-ray photoelectron spectroscopy (XPS), suggests that this damage is probably caused by thermal phenomena during the ablation of the substrate.

  16. High Current Cathodes Fabricated by KrF Laser Ablation

    SciTech Connect

    Gilgenbach, Ronald M.; Lau, Y. Y.; Jones, M. C.; Johnston, M. D.; Jordan, N. M.; Hoff, B. W.

    2010-10-08

    In this paper we review several high power laser ablation techniques that have been utilized to fabricate high current (1-80 kA) electron beam cathodes for accelerators and microwave sources: 1) Projection Ablation Lithography (PAL) cathodes, 2) Ablation Line Focus (ALF) cathodes, and 3) Metal-Oxide-Junction (MOJ) cathodes. Laser-ablative micromachining techniques (PAL and ALF) have been utilized to generate micron-scale features on metal substrates that provide electric field (beta) enhancement for Fowler-Nordheim emission and plasma cathodes. Since these laser-ablated patterns are directly, laser-written on the substrate metal they exhibit much higher thermal conductivity for higher current capability and increased damage thresholds. Metal-Oxide-Junction (MOJ) cathodes exploit the triple-point electron emission that occurs at the interface between metal, insulator and vacuum.The ablation laser is a KrF excimer laser with a pulse energy of 600 mJ and pulselength of 20 ns. Cathode experiments were performed on the MELBA-C accelerator: V = -300 kV, pulselength = 0.5 microsecond. Data will be presented for PAL, ALF and MOJ cathodes.

  17. Ablation of CsI by XUV Capillary Discharge Laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  18. Dynamics of Laser Ablation in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    Buelna, X.; Popov, E.; Eloranta, J.

    2016-10-01

    Pulsed laser ablation of metal targets immersed in superfluid ^4He is visualized by time-resolved shadowgraph photography and the products are analyzed by post-experiment atomic force microscopy (AFM) measurements. The expansion dynamics of the gaseous ablation half-bubble on the target surface appears underdamped and follows the predicted behavior for the thermally induced bubble growth mechanism. An inherent instability of the ablation bubble appears near its maximum radius and no tightly focused cavity collapse or rebound events are observed. During the ablation bubble retreat phase, the presence of sharp edges in the target introduces flow patterns that lead to the creation of large classical vortex rings. Furthermore, on the nanometer scale, AFM data reveal that the metal nanoparticles created by laser ablation are trapped in spherical vortex tangles and quantized vortex rings present in the non-equilibrium liquid.

  19. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  20. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  1. Mechanisms of Carbon Nanotube Production by Laser Ablation Process

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Arepalli, Sivaram; Nikolaev, Pavel; Smalley, Richard E.; Nocholson, Leonard S. (Technical Monitor)

    2000-01-01

    We will present possible mechanisms for nanotube production by laser oven process. Spectral emission of excited species during laser ablation of a composite graphite target is compared with that of laser irradiated C60 vapor. The similarities in the transient and spectral data suggest that fullerenes are intermediate precursors for nanotube formation. The confinement of the ablation products by means of a 25-mm diameter tube placed upstream of the target seems to improve the production and purity of nanotubes. Repeated laser pulses vaporize the amorphous/graphitic carbon and possibly catalyst particles, and dissociate fullerenes yielding additional feedstock for SWNT growth.

  2. Laser ablation of a platinum target in water. I. Ablation mechanisms

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the first in a series of three papers aimed at better understanding the processes that lead to nanomaterial formation during laser ablation of solid targets in liquids. Here we study the variation of the target surface morphology versus laser fluence and wavelength in order to suggest an ablation mechanism. A key finding is that an explosive ablation mechanism is prominent for a wide range of laser fluences for all wavelengths tested. Interestingly, however, ultraviolet (355 nm) and infrared (1064 nm) wavelengths show characteristically different explosive behaviors. In the infrared case, numerous large craters with diameters around 20 {mu}m form at localized points within the laser irradiated area. In contrast, ultraviolet ablation results in a striking transition to nanoscale surface roughness across the entire irradiated area. This texture is attributed to spinodal decomposition at the molten target surface. We propose that the wavelength and fluence dependence of the ablation craters can be explained by the amount of energy absorbed in the target. The consequences of the ablation mechanism for nanomaterial synthesis are discussed.

  3. The effect of laser environment on the characteristics of ZnO nanoparticles by laser ablation

    NASA Astrophysics Data System (ADS)

    Farahani, Sahar Varvani; Mahmoodi, Azam; Goranneviss, Mahmood

    2016-11-01

    In this paper, zinc oxide (ZnO) nanoparticles were prepared by laser ablation of Zinc (purity of 99/99 %) target. The effect of solvents, methanol and distilled water on the characterization of ZnO has been investigated. The beam of a Q-switched Nd: Yag laser with the length wave of 1064 nm and pulse duration of 6 ns was used. ZnO nanoparticles which were produced in distilled water and methanol were characterized by transmission electron microscopy, X-ray diffraction (XRD) and the optical absorption spectroscopy-ultraviolet (UV-VIS-IR). The XRD results showed that the ZnO nanoparticles have a hexagonal crystal structure. Different size of ZnO nanoparticles were formed because of different environment of laser pulse generated.

  4. Polarization-selective alignment of a carbon nanotube film by using femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Choi, S. B.; Byeon, C. C.; Park, D. J.; Jeong, M. S.

    2016-01-01

    We report on a considerable alignment of single-walled carbon nanotubes (SWCNTs) in randomly oriented bundles, by using a simple drop-and-dry method and irradiation with high-intensity femtosecond laser pulses. A remarkable third-harmonic generation was observed after irradiation with the laser pulses, whereas a narrow-band white-light continuum was generated in the as-prepared films. This observation, combined with scanning electron microscopy images, confirmed the high degree of alignment of the SWCNTs. In contrast to the pulsed irradiation of carbon soot, the powerdependent laser irradiation of a highly-purified SWCNT film show polarization-dependent ablation of individual nanotubes caused by polarization-dependent absorption. Raman spectroscopy results confirmed the presence of fractured nanotubes caused by the ablation processes. Polarizationresolved absorption spectroscopy results revealed that the aligned SWCNT film had potential usage in optical polarizers.

  5. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Vaccaro, L.; Popescu, R.; Messina, F.; Camarda, P.; Schneider, R.; Gerthsen, D.; Gelardi, F. M.; Cannas, M.

    2016-07-01

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO2 and amorphous fully oxidized SiO2, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystals emit a μs-decaying red band; defects of SiO2 give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.

  6. Combination of erbium and holmium laser radiation for tissue ablation

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans S.; Frenz, Martin; Koenz, Flurin; Altermatt, Hans J.; Weber, Heinz P.

    1996-05-01

    Erbium lasers emitting at 2.94 micrometers and holmium lasers emitting at 2.1 micrometers are interesting tools for cutting, drilling, smoothing and welding of water containing tissues. The high absorption coefficient of water at these wavelengths leads to their good ablation efficiency with controlled thermally altered zones around the ablation sites. Combination of pulses with both wavelengths transmitted through one fiber were used to perform incisions in soft tissue and impacts in bone disks. Histological results and scanning electron microscope evaluations reveal the strong influence of the absorption coefficient on tissue effects, especially on the ablation efficiency and the zone of thermally damaged tissue. It is demonstrated that the combination of high ablation rates and deep coagulation zones can be achieved. The results indicate that this laser system can be considered as a first step towards a multi-functional medical instrument.

  7. Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis

    NASA Astrophysics Data System (ADS)

    Rode, Andrei V.; Madsen, Nathan R.; Kolev, Vesselin Z.; Gamaly, Eugene G.; Luther-Davies, Barry; Dawes, Judith M.; Chan, A.

    2004-06-01

    We report the use of sub-picosecond near-IR and ps UV pulsed lasers for precision ablation of freshly extracted human teeth. The sub-picosecond laser wavelength was ~800nm, with pulsewidth 150 fs and pulse repetition rate of 1kHz; the UV laser produced 10 ps pulses at 266 nm with pulse rate of ~1.2x105 pulses/s; both lasers produced ~1 W of output energy, and the laser fluence was kept at the same level of 10-25 J/cm2. Laser radiation from both laser were effectively absorbed in the teeth enamel, but the mechanisms of absorption were radically different: the near-IR laser energy was absorbed in a plasma layer formed through the optical breakdown mechanism initiated by multiphoton absorption, while the UV-radiation was absorbed due to molecular photodissociation of the enamel and conventional thermal deposition. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain low with subpicosecond laser pulses, but risen up to 30°C, well above the 5°C pain level with the UV-laser. This study demonstrates the potential for ultra-short-pulsed lasers to precision and painless ablation of dental enamel, and indicated the optimal combination of laser parameters in terms of pulse energy, duration, intensity, and repetition rate, required for the laser ablation rates comparable to that of mechanical drill.

  8. Successive laser ablation ignition of premixed methane/air mixtures.

    PubMed

    Bak, Moon Soo; Cappelli, Mark A

    2015-06-01

    Laser ablation has been used to study successive ignition in premixed methane/air mixtures under conditions in which the flow speed leads to flame blow-out. A range of laser pulse frequencies is experimentally mimicked by varying the time interval between two closely spaced laser pulses. Emission intensities from the laser ablation kernels are measured to qualitatively estimate laser energy coupling, and flame CH* chemiluminescence is recorded in a time-resolved manner to capture the flame evolution and propagation. A comparison of the measurements is made between the two successive breakdown ignition events. It is found that the formation of the subsequent ablation kernel is almost independent of the previous one, however, for the successive breakdowns, the first breakdown and its ensuing combustion created temporal regions of no energy coupling as they heat the gas and lower the density. Flame imaging shows that the second ablation event successfully produces another flame kernel and is capable of holding the flame-base even at pulse intervals where the second laser pulse cannot form a breakdown. This study demonstrates that successive ablation ignition can allow for the use of higher laser frequencies and enhanced flame stabilization than successive breakdown ignition. PMID:26072866

  9. Vaporization and deposition of an intact polyimide precursor by resonant infrared pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Schriver, K. E.; Haglund, R. F., Jr.

    2006-02-01

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent N-methyl pyrrolidinone (NMP). RIR-PLD transferred material showed two distinct geometries, droplets and string-like moieties. The unaltered nature of the deposited PAA was confirmed by Fourier transform infrared spectroscopy (FTIR). Thermal curing was achieved by heating for one hour on a 250°C hotplate, and the transformation to polyimide was demonstrated from changes in the FTIR spectrum following curing. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, with additional contrast shown between the various resonant frequencies used.

  10. YSGG 2790-nm superficial ablative and fractional ablative laser treatment.

    PubMed

    Smith, Kevin C; Schachter, G Daniel

    2011-05-01

    The 2790-nm wavelength YSGG laser was introduced for aesthetic purposes under the trade name Pearl by Cutera in 2007. In clinical use, the Pearl superficial resurfacing laser has proved effective and well tolerated for the correction of superficial brown epidermal dyschromia and superficial fine lines and scars, and the Pearl Fractional laser produces excellent improvement in both dyschromia and improvement of deeper lines and moderately deep acne scarring. The two laser treatments can be combined in a single treatment session on different parts of the face or on the entire face, depending on patient needs and priorities. PMID:21763987

  11. Dissecting microtubule structures by laser ablation.

    PubMed

    Decker, Franziska; Brugués, Jan

    2015-01-01

    Here, we describe a detailed protocol, based on laser ablation and fluorescence optical microscopy, to measure the microtubule organization in spindles, including microtubule length distribution, polarity, and plus and minus end densities. The method uses the asymmetry in microtubule depolymerization after a cut, where the newly created microtubule plus ends depolymerize all the way to the minus ends, whereas the newly created minus ends remain stable. The protocol described in this chapter is optimized for spindles, but can be easily applied to any microtubule-based structure. The chapter is divided into two parts. First, we provide the theoretical basis for the method. Second, we describe in detail all steps necessary to reconstruct the microtubule organization of a spindle assembled in Xenopus laevis egg extract. Compared to electron microscopy, which in theory can resolve individual microtubules in spindles and provide similar structural information, our method is fast and simple enough to allow for a full quantitative reconstruction of the microtubule organization of several X. laevis spindles—which have volumes tens of thousands of times larger than spindles whose structures have been previously solved by electron microscopy—in a single experimental session, as well as to explore how the architecture of these structures changes in response to biochemical perturbations.

  12. Efficient space propulsion engines based on laser ablation

    SciTech Connect

    Phipps, C.R.

    1993-08-01

    Recent results have shown laser momentum transfer coefficients C{sub m} as large as 700 dynes/J from visible and near-infrared laser pulses with heterogeneous targets. Using inexpensive target materials, it is now possible to deliver a 1-tonne satellite from LEO to GEO in 21 days using a 10-kW onboard laser ablation engine, or to maintain several 1-tonne GEO satellites on station from Earth indefinitely using a laser with 100-W average power.

  13. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu, Jin; Lei, Wenqi; Bai, Xueshi; Zheng, Lijuan; Zeng, Heping

    2012-03-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  14. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  15. Endovenous laser ablation with TM-fiber laser

    NASA Astrophysics Data System (ADS)

    Somunyudan, Meral Filiz; Topaloglu, Nermin; Ergenoglu, Mehmet Umit; Gulsoy, Murat

    2011-03-01

    Endovenous Laser Ablation (EVLA) has become a popular minimally invasive alternative to stripping in the treatment of saphenous vein reflux. Several wavelengths have been proposed; of which 810, 940 and 980- nm are the most commonly used. However, the most appropriate wavelength is still the subject of debate. Thermal shrinkage of collagenous tissue during EVLA plays a significant role in the early and late results of the treatment. The aim of this study is to compare the efficacy of 980 and 1940-nm laser wavelengths in the treatment of varicose veins. In this study, 980 and 1940-nm lasers at different power settings (8/10W for 980-nm, 2/3W for 1940-nm) were used to irradiate stripped human veins. The most prominent contraction and narrowing in outer and inner diameter were observed with the 1940-nm at 2W, following 980-nm at 8W, 1940-nm at 3W and finally 980-nm at 10W. The minimum carbonization was observed with the 1940-nm at 2W. As a conclusion, 1940-nm Tm-fiber laser which has a significant effect in the management of varicose veins due to more selective energy absorption in water and consequently in the vein is a promising method in the management of varicose veins.

  16. Production of microscale particles from fish bone by gas flow assisted laser ablation

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  17. Picosecond and subpicosecond visible laser ablation of optically transparent polymers

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Skordoulis, C. D.; Makropoulou, M. I.; Kar, A. K.

    1998-09-01

    The ablation rates, as a function of the laser fluence, of the optically transparent polymers, Nylon-6,6 and PMMA, are reported using picosecond and subpicosecond laser pulses, obtained from a Regenerative Amplified Nd:YAG laser system. The laser pulses had a duration of 100 ps at 1064 and 532 nm wavelengths and 0.8 ps at 595 nm. The ablation rate results indicate a strong saturation behaviour for both polymers in the investigated irradiation conditions. The material removal is 2-3 times higher in the case of the visible (532 nm) picosecond laser ablation experiments. The surface topology of the polymers was also studied. The obtained Atomic Force Microscopy images reveal no mechanical damage in the inner ablation crater wall. The qualitative analysis of the ablation mechanism for ultrashort pulse laser irradiation reveals a combination of photochemically induced direct bond dissociation and a photothermal process due to the relaxation of the excited polymers within the vibrational levels of the ground state.

  18. Utilization of selected laser-ablation-based diagnostic methods for study of elemental distribution in various solid samples

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Novotný, K.; Hrdlička, A.; Malina, R.; Novotný, J.; Prochazka, D.; Petrilak, M.; Krajcarová, L.; Vítková, G.; Kučerová, P.

    2010-12-01

    Here we report on the recent developments and upgrades of our Laser-Induced Breakdown Spectroscopy setups and their different modification for high-resolution mapping. Mapping capabilities of Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry are compared. The applied improvements as an autofocus algorithm, together with the realization of double-pulse LIBS or combination of LIBS by Laser-Induced Fluorescence Spectroscopy (LIFS) with technique are detailed. The signal enhancement obtained by double-pulse approach is demonstrated. The state of the art on development of portable remote LIBS apparatus is also presented.

  19. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  20. Laser Spectroscopy and Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    2013-12-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation.

  1. Formation of nanostructures under femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Ashitkov, S. I.; Romashevskii, S. A.; Komarov, P. S.; Burmistrov, A. A.; Zhakhovskii, V. V.; Inogamov, N. A.; Agranat, M. B.

    2015-06-01

    We present the results of studying the morphology of the modified surface of aluminium, nickel and tantalum after ablation of the surface layer by a femtosecond laser pulse. The sizes of characteristic elements of a cellular nanostructure are found to correlate with thermo-physical properties of the material and the intensity of laser radiation.

  2. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}≫1, Pe_{E}≫1, and Da_{E}≪1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  3. Absorption-Ablation-Excitation Mechanism of Laser-Cluster Interactions in a Nanoaerosol System

    NASA Astrophysics Data System (ADS)

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D.; Long, Marshall B.

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16 GW /cm2 , the scattering cross section of TiO2 clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal SlE , Peclet PeE , and Damköhler DaE numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where SlE≫1 , PeE≫1 , and DaE≪1 , the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  4. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}≫1, Pe_{E}≫1, and Da_{E}≪1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption. PMID:25793812

  5. UV solid state laser ablation of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  6. Laser fiber migration into the pelvic cavity: A rare complication of endovenous laser ablation.

    PubMed

    Lun, Yu; Shen, Shikai; Wu, Xiaoyu; Jiang, Han; Xin, Shijie; Zhang, Jian

    2015-10-01

    Endovenous laser ablation is an established alternative to surgery with stripping for the treatment of varicose veins. Ecchymoses and pain are frequently reported side effects of endovenous laser ablation. Device-related complications are rare but serious. We describe here an exceptional complication, necessitating an additional surgical procedure to remove a segment of laser fiber that had migrated into the pelvic cavity. Fortunately, severe damage had not occurred. This case highlights the importance of checking the completeness of the guidewire, catheter, and laser fiber after endovenous laser ablation.

  7. Preparation of GaN Nanostructures by Laser Ablation of ga Metal

    NASA Astrophysics Data System (ADS)

    El Nadi, Lotfia; Omar, Magdy M.; Mehena, Galila A.; Moniem, Hussien M. A.

    2011-06-01

    In the present study, GaN nanodots (0D) and nanowires (1D) nanostructures were prepared on stainless steal substrates applying laser ablation technique. The target of Ga metal mixed with NaNO2 was introduced in a central bore of a graphite rod of a confined geometry set up. The laser beam was normally focused onto the central bore and the ablated plume of Ga metal was deposited on stainless steal substrate lying below the graphite rod in an atmosphere of slow flow of nitrogen gas with or without ammonia vapor. The pulsed N2 laser beam having a wavelength of 337± 2 nm, pulse duration 15±1 ns and energy per pulse of 15±1 m J, could be focused on the central bore by a cylindrical quartz lens to a spot of dimensions 500 × 700 μm2 t providing target irradiance of 0.2-0.3 GW/cm2 per pulse. The ablated plum was collected after several thousand laser shots. The morphology and structure of the formed nanostructures were investigated by Scanning electron microscope and Energy Dispersive X-Ray Spectroscopy. The growth mechanism is most likely by Solid-Liquid-Vapor phase during the laser ablation processes. The role of the carbon, the NaNO2 and the flowing gas on the growth of Nanostructures of GaN are discussed.

  8. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  9. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  10. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)

    NASA Astrophysics Data System (ADS)

    Valverde-Alva, M. A.; García-Fernández, T.; Esparza-Alegría, E.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; de la Mora, M. B.; Márquez-Herrera, C. E.; Sánchez Llamazares, J. L.

    2016-10-01

    We studied the effect of the repetition rate of laser pulses (RRLP) in the range from 1-10 Hz in the production of silver nanoparticles (Ag-NPs) by laser ablation in ethanol. Laser pulses with a duration of 7 ns, a wavelength of 1064 nm and an energy of 60 mJ were used to ablate a 99.99% pure silver target immersed in 10 ml of ethanol. Transmittance analysis and atomic absorption spectroscopy were used to study the silver concentration in the colloidal solutions. The ablation process was studied by measuring the transmission of the laser pulses through the colloid. It is shown that for a fixed number of laser pulses (NLP) the ablation efficiency, in terms of the ablated silver mass per laser pulse, increases with the RRLP. This result contradicts what had previously been established in the literature.

  11. Nanometer thickness laser ablation for spatial control of cell attachment

    NASA Astrophysics Data System (ADS)

    Thissen, H.; Hayes, J. P.; Kingshott, P.; Johnson, G.; Harvey, E. C.; Griesser, H. J.

    2002-10-01

    We demonstrate here a new method to control the location of cells on surfaces in two dimensions, which can be applied to a number of biomedical applications including diagnostic tests and tissue engineered medical devices. Two-dimensional control over cell attachment is achieved by generation of a spatially controlled surface chemistry that allows control over protein adsorption, a process which mediates cell attachment. Here, we describe the deposition of thin allylamine plasma polymer coatings on silicon wafer and perfluorinated poly(ethylene-co-propylene) substrates, followed by grafting of a protein resistant layer of poly(ethylene oxide). Spatially controlled patterning of the surface chemistry was achieved in a fast, one-step procedure by nanometer thickness controlled laser ablation using a 248 nm excimer laser. X-ray photoelectron spectroscopy and atomic force microscopy were used to confirm the production of surface chemistry patterns with a resolution of approximately 1 µm, which is significantly below the dimensions of a single mammalian cell. Subsequent adsorption of the extracellular matrix proteins collagen I and fibronectin followed by cell culture experiments using bovine corneal epithelial cells confirmed that cell attachment is controlled by the surface chemistry pattern. The method is an effective tool for use in a number of in vitro and in vivo applications.

  12. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    SciTech Connect

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  13. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    SciTech Connect

    Lindley, R.A.

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  14. Generation of low work function, stable compound thin films by laser ablation

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  15. Optical, structural and morphological properties of zirconia nanoparticles prepared by laser ablation in liquids

    SciTech Connect

    Borodina, T I; Val'yano, G E; Gololobova, O A; Karpukhin, V T; Malikov, M M; Strikanov, D A

    2014-09-30

    Absorption, fluorescence and Raman spectra, the structural composition and morphology of zirconia nanoparticles synthesised via the laser ablation of a metal in water and aqueous solutions of the sodium dodecyl sulphate (SDS) surfactant have been studied using absorption spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The results demonstrate that, exposing zirconium to intense nanosecond laser pulses at a high repetition rate in these liquids, one can obtain stable cubic, tetragonal and monoclinic crystalline phases of nanozirconia with a particle size in the range 40 – 100 nm and a Zr – SDS organic – inorganic composite. The absorption and fluorescence of the synthesised zirconia strongly depend on the SDS concentration in the starting solution. The gas – vapour bubbles forming during ablation are shown to serve as templates for the formation of hollow nanoand microstructures. (nanostructures)

  16. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.

  17. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  18. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  19. Nanostructures synthesis by femtosecond laser ablation of glasses

    NASA Astrophysics Data System (ADS)

    Vipparty, D.; Tan, B.; Venkatakrishnan, K.

    2012-10-01

    In this article, we investigate the variations in ablation dynamics that result in diverse nanostructures on SiO2 based glass samples. A three-dimensional fibrous nanoparticle agglomerate was observed on sodalime glass when exposed to femtosecond laser irradiation. The fused nanoparticles have diameters ranging from 30 nm to 70 nm. Long continuous nanofibers of extremely high aspect ratio (certain fibers up to 100 000:1) were obtained by exposing silica glass surface to femtosecond laser irradiation at MHz repetition rate in air. A nanostructure assembly comprising of nanofiber and nanoparticle agglomerates was also observed by ablating silica glass. From our experimental analysis, it was determined that variation in bandgap and material composition alters ablation dynamics and dictates the response of glass to femtosecond laser irradiation, ultimately leading to the formation of structures with varying morphology on silica and sodalime glass. The possible underlying mechanisms that produce such nanostructures on glass specimens have also been explored.

  20. Glass particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  1. Visual servoing of a laser ablation based cochleostomy

    NASA Astrophysics Data System (ADS)

    Kahrs, Lüder A.; Raczkowsky, Jörg; Werner, Martin; Knapp, Felix B.; Mehrwald, Markus; Hering, Peter; Schipper, Jörg; Klenzner, Thomas; Wörn, Heinz

    2008-03-01

    The aim of this study is a defined, visually based and camera controlled bone removal by a navigated CO II laser on the promontory of the inner ear. A precise and minimally traumatic opening procedure of the cochlea for the implantation of a cochlear implant electrode (so-called cochleostomy) is intended. Harming the membrane linings of the inner ear can result in damage of remaining organ functions (e.g. complete deafness or vertigo). A precise tissue removal by a laser-based bone ablation system is investigated. Inside the borehole the pulsed laser beam is guided automatically over the bone by using a two mirror galvanometric scanner. The ablation process is controlled by visual servoing. For the detection of the boundary layers of the inner ear the ablation area is monitored by a color camera. The acquired pictures are analyzed by image processing. The results of this analysis are used to control the process of laser ablation. This publication describes the complete system including image processing algorithms and the concept for the resulting distribution of single laser pulses. The system has been tested on human cochleae in ex-vivo studies. Further developments could lead to safe intraoperative openings of the cochlea by a robot based surgical laser instrument.

  2. Dentin mid-infrared laser ablation at various lasing parameters

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dimitris N.; Papagiakoumou, Eirini I.; Makropoulou, Mersini I.; Khabbaz, Marouan G.; Serafetinides, Alexander A.

    2005-01-01

    In this study a frustrated total internal reflection (FTIR) Q-switched and free-running Er:YAG laser, as well as a novel design transversally excited atmospheric pressure (TEA) oscillator-double amplifier corona preionised high beam quality Hydrogen-Fluoride (HF) laser system, all developed in our lab, were used in dentin ablation experiments. In the case of the Er:YAG laser, pulses of 190 ns in Q-switched operation and of 80 μs pulse width in free-running operation at 2.94 μm were used, while HF laser pulses of 39 ns in the wavelength range of 2.6-3.1 μm in a predominantly TEM00 beam were also used to interact in vitro with dentin tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of 0.4-1.5 mm thick. Ablation experiments were conducted with the laser beam directly focused on the tissue or after being waveguided through suitable mid-IR fiber/waveguide alternatively ended with quartz end-sealing caps. The correlation between the various laser beam parameters, as wavelength, pulse duration, repetition rate, energy and spatial distribution of the beam profile and the ablative characteristics (ablation rates, tissue surface morphology) of dentin surface were investigated.

  3. Laser ablation in liquids: an efficient sample preparation technique in ICP elemental analysis of art materials

    NASA Astrophysics Data System (ADS)

    Klyachkovskaya, E. V.; Kozhukh, N. M.; Muravitskaya, E. V.; Rosantsev, V. A.; Belkov, M. V.; Ershov-Pavlov, E. A.

    2007-06-01

    Laser ablation in liquid media is proposed as a new sample preparation technique in elemental composition analysis of art pigments using inductively coupled plasma optical emission spectroscopy (ICP-OES). Solid samples are transformed to colloidal solutions of nanosized analyte particles. This makes the technique compatible with convevtional solutionbased standardization. The dissociation of particles in solution is improved, which increases the accuracy of quantitative ICP measurements.

  4. Preparation of iron oxide nanoparticles by laser ablation in DMF under effect of external magnetic field

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.

    2016-05-01

    We have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV-Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.

  5. Nanosecond and femtosecond laser spectroscopy of molecules of biological interest

    NASA Astrophysics Data System (ADS)

    Villani, P.; Orlando, S.; Santagata, A.; De Bonis, A.; Veronesi, S.; Giardini, A.

    2007-07-01

    This paper mainly concerns on nanosecond and femtosecond laser spectroscopy of aromatic organic compounds as neurotransmitters, and plume diagnostics of the ablated species, in order to characterize the plasma dynamics, i.e. the temporal and spatial evolution of the plume. Optical emission spectroscopy has been applied to characterize the transient species produced in the femtosecond (fs) and nanosecond (ns) regimes. The laser sources employed for optical emission spectroscopy are a frequency-doubled Nd:YAG Handy ( λ = 532 nm, τ = 5 ns) and a frequency-doubled Nd:glass ( λ = 527 nm, τ = 250 fs). These studies aim to detect and give information on the photoexcitation and photodissociation of these biological molecules and to compare the plasma characteristics in the two ablation regimes.

  6. Ultrathin sectioning with DUV-pulsed laser ablation: development of a laser ablation nano tome.

    PubMed

    Kanemaru, Takaaki; Oki, Yuji

    2015-08-01

    The electrically automated ultrathin sectioning apparatus, which has been developed in recent years, can produce consecutive ultrathin sections with a diamond knife and a gallium ion beam. These newly developed apparatuses, however, have several shortcomings, such as the limited block cutting area, thermal damage to the sample by the focused ion beam and a sample electronic charge. To overcome these faults and for easier scanning electron microscopy three-dimensional fine structural reconstruction, we have developed a new cutting method using a deep ultraviolet laser, which we have named the 'LANTome (Light Ablation Nanotome)'. Using this method, we confirmed the widening of sectioning areas, shortening of the sectioning time, automatic smoothing of rough surfaces, no sample electronic charge and minimal heat effects on the sample tissue, such as thermal denaturation. PMID:25888714

  7. Laser ablated zirconium plasma: A source of neutral zirconium

    SciTech Connect

    Yadav, Dheerendra; Thareja, Raj K.

    2010-10-15

    The authors report spectroscopic investigations of laser produced zirconium (Zr) plasma at moderate laser fluence. At low laser fluence the neutral zirconium species are observed to dominate over the higher species of zirconium. Laser induced fluorescence technique is used to study the velocity distribution of ground state neutral zirconium species. Two-dimensional time-resolved density distributions of ground state zirconium is mapped using planner laser induced fluorescence imaging and total ablated mass of neutral zirconium atoms is estimated. Temporal and spatial evolutions of electron density and temperature are discussed by measuring Stark broadened profile and ratio of intensity of emission lines, respectively.

  8. Production of copper and brass nanoparticles upon laser ablation in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A; Voronov, Valerii V

    2004-10-31

    The production of nanoparticles upon ablation of copper and brass by pulsed radiation from Nd:YAG and copper lasers in water, ethanol, and acetone is studied. The nanoparticles were investigated by the methods of X-ray diffractometry, optical spectroscopy, and transmission electron microscopy. The produced copper and brass nanoparticles were shown to exhibit a plasmon resonance lying in the visible spectral range near 580 and 510 nm. The brass nanoparticles produced by ablation in ethanol have a shell approximately 10-nm thick for an average dimension of 20-30 nm. A chemical modification of ethanol was observed, which manifested itself in the appearance of intense UV absorption bands. Upon laser irradiation of brass nanoparticles in a liquid their absorption spectrum gradually transformed into the spectrum of copper nanoparticles. (interaction of laser radiation with matter)

  9. Investigation of nanoparticle formation in a plasma produced by femtosecond laser ablation of gold

    SciTech Connect

    Spiga, P.; Hermann, J.; Itina, T.; Grojo, D.; Neamtu, D.; Pailharey, D.; Marine, W.

    2005-10-31

    The formation of nanoparticles in a plasma produced by the interaction of ultrashort laser pulses with gold has been investigated. Three different experimental techniques were employed. (i) The plume expansion was characterized using fast imaging with the aid of an intensified charge-coupled device. (ii) The plasma composition was analyzed using time- and space-resolved optical emission spectroscopy. (iii) The ablated material was deposited on mica substrates and analyzed by means of atomic force microscopy. As a result, the size-distribution and the overall number of nanoparticles were determined as a function of the laser energy density incident on the target surface. The detection of particles with sizes in the nanometer range supports theoretical modeling according to which phase explosion is the dominant mechanism of metal ablation by ultrashort laser pulses.

  10. Optical time of flight studies of lithium plasma in double pulse laser ablation: Evidence of inverse Bremsstrahlung absorption

    SciTech Connect

    Sivakumaran, V.; Joshi, H. C.; Singh, R. K.; Kumar, Ajai

    2014-06-15

    The early stage of formation of lithium plasma in a collinear—double pulse laser ablation mode has been studied using optical time of flight (OTOF) spectroscopy as a function of inter-pulse delay time, the distance from the target surface and the fluence of the ablation lasers. The experimental TOF measurements were carried out for lithium neutral (670.8 nm and 610.3 nm), and ionic (548.4 nm and 478.8 nm) lines. These experimental observations have been compared with that for single pulse laser ablation mode. It is found that depending on the fluence and laser pulse shape of the first pre-ablation laser and the second main ablation laser, the plasma plume formation and its characteristic features can be described in terms of plume-plume or laser-plume interaction processes. Moreover, the enhancement in the intensity of Li neutral and ionic lines is observed when the laser-plume interaction is the dominant process. Here, we see the evidence of the role of inverse Bremsstrahlung absorption process in the initial stage of formation of lithium plasma in this case.

  11. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  12. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  13. Below-Band-Gap Laser Ablation Of Diamond For TEM

    NASA Technical Reports Server (NTRS)

    George, Thomas; Foote, Marc C.; Vasquez, Richard P.; Fortier, Edward P.; Posthill, John B.

    1995-01-01

    Thin, electron-transparent layers of diamond for examination in transmission electron microscope (TEM) fabricated from thicker diamond substrates by using laser beam to ablate surface of substrate. Involves use of photon energy below band gap. Growing interest in use of diamond as bulk substrate and as coating material in variety of applications has given rise to increasing need for TEM for characterization of diamond-based materials. Below-band-gap laser ablation method helps to satisfy this need. Also applied in general to cutting and etching of diamonds.

  14. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  15. Plume dynamics of cross-beam pulsed-laser ablation of graphite

    SciTech Connect

    Sanchez Ake, C.; Sangines de Castro, R.; Sobral, H.; Villagran-Muniz, M.

    2006-09-01

    The dynamics of the interaction between two plasmas induced by cross-beam pulsed-laser ablation was analyzed by time resolved optical emission spectroscopy and fast photography. The plasmas were created in vacuum by irradiating two perpendicular graphite targets with an excimer (248 nm) and a Nd:yttrium-aluminum-garnet (1064 nm) laser. In this configuration, a laser is focused onto a target generating a highly directed plume; subsequently, an additional laser produces a second plasma from the perpendicular target which expands through the first plume. Collisional processes cause a reduction of the kinetic energy of the second plume species as compared to the single pulse experiment. For a fixed delay between lasers of 2 {mu}s, the second plume was divided in two perpendicular directions. The dynamics of this plasma has been compared with laser-induced plume propagation through a background gas in terms of the drag model.

  16. Laser physics and laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1990-04-01

    Two essential difficulties must be addressed in any low-power frequency conversion device; boosting the efficiency above that of simple single-pass bulk devices (which are typically less than 1 percent/W) and achieving phase-matching for the desired interaction. Waveguide interactions were used to increase the conversion efficiency, and explored quasi-phase-matching (QPM) as a broadly applicable approach to meeting the phasematching condition. Both oxide forrelectrics like LiNbO3 and quantum-wells in III-V semiconductors have been investigated for these applications. Second harmonic generation (SHG) of near-infrared lasers to produce green and blue radiation, as well as SHG of the 9 to 11 micrometer output of a CO2 laser have been demonstrated in these materials. These media together constitute a significant step towards the goal of generic nonlinear media for the far infrared - ultraviolet, based on readily available materials and fabricated with standard technologies, applicable to essentially any frequency conversion application.

  17. Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Svetlichnyi, Valery A.

    2015-12-01

    Laser ablation of bulk targets in a fluid -- a promising new method for the synthesis of "pure" nanocolloids. Nanocrystalline materials produced by laser ablation are widely used in biology, medicine, and catalysis. High local temperature during ablation and large surface area of the particles promote chemical reactions and the formation of a complex composition of nanoparticles. In this paper the characteristics of the process of ablation and the obtaining of nanoparticles in a liquid by laser ablation of active materials (Zn, Ce, Ti, Si) were studied. Ways of increasing the productivity of laser ablation were discussed. Characterization of nanocolloids and nanocrystalline powders were performed.

  18. KrF pulsed laser ablation of thin films made from fluorinated heterocyclic poly(naphthyl-imide)s.

    PubMed

    Damaceanu, Mariana-Dana; Rusu, Radu-Dan; Olaru, Mihaela Adriana; Timpu, Daniel; Bruma, Maria

    2012-06-01

    Among the many aspects of laser ablation, development of conical structures induced by excimer laser radiation on polyimide surfaces has been thoroughly investigated. Because the mechanisms that produce these surface textures are not fully understood, two theories, photochemical bond breaking and thermal reaction, have been introduced. Here we present the first study of ultraviolet laser ablation behavior of thin films made from fluorinated poly(naphthyl-imide)s containing oxadiazole rings and the investigation of the mechanism of cone-like structure formation at two laser fluences, 57 and 240 mJ/cm(2). The morphology of thin films before and after laser ablation was studied by using various spectroscopy techniques such as Fourier transform infrared spectroscopy, time-resolved emission and X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. All of the data suggest impurities shielded at low fluence radiation (57 mJ/cm(2)) and a radiation hardening process at high value fluence (240 mJ/cm(2)), which are proposed as the main mechanisms for laser ablation of our polyimide films, and we bring evidence to support them.

  19. Cluster Generation Under Pulsed Laser Ablation Of Compound Semiconductors

    SciTech Connect

    Bulgakov, Alexander V.; Evtushenko, Anton B.; Shukhov, Yuri G.; Ozerov, Igor; Marine, Wladimir

    2010-10-08

    A comparative experimental study of pulsed laser ablation in vacuum of two binary semiconductors, zinc oxide and indium phosphide, has been performed using IR- and visible laser pulses with particular attention to cluster generation. Neutral and cationic Zn{sub n}O{sub m} and In{sub n}P{sub m} particles of various stoichiometry have been produced and investigated by time-of-flight mass spectrometry. At ZnO ablation, large cationic (n>9) and all neutral clusters are mainly stoichiometric in the ablation plume. In contrast, indium phosphide clusters are strongly indium-rich with In{sub 4}P being a magic cluster. Analysis of the plume composition upon laser exposure has revealed congruent vaporization of ZnO and a disproportionate loss of phosphorus by the irradiated InP surface. Plume expansion conditions under ZnO ablation are shown to be favorable for stoichiometric cluster formation. A delayed vaporization of phosphorus under InP ablation has been observed that results in generation of off-stoichiometric clusters.

  20. Infrared laser ablation of dental enamel: influence of an applied water layer on ablation rate and peripheral damage

    NASA Astrophysics Data System (ADS)

    Ashouri, Nahal; Shori, Ramesh K.; Cheung, Jason M.; Fried, Daniel

    2001-04-01

    Studies have shown that a water spray may augment the laser ablation rate of dental hard tissues in addition to reducing heat accumulation. However, the mechanism of augmentation is controversial and poorly understood. The influence of an optically thick applied water layer on the ablation rate was investigated at wavelengths in which water is a primary absorber and the magnitude of absorption varies markedly. Water was manually applied with a pipette and troughs were cut in enamel blocks using a laser scanning system. Q- switched and free running Er:YSGG and Er:YAG, free running Ho:YAG and 9.6 micrometers TEA CO2 laser systems were investigated. The addition of water increased the rate of ablation and produced a more desirable surface morphology during enamel ablation with all the erbium systems. Ablation was markedly more efficient for the Q-switched erbium lasers than for the longer free-running laser systems when a water layer was added. Although, the addition of a thick water layer reduced the rate of ablation during CO2 laser ablation, the addition of the water removed undesirable deposits of non-apatite mineral phases from the crater surface. There was extensive peripheral damage after irradiation with the Ho:YAG laser with and without added water without effective ablation of enamel. The results of this study suggest that water augments the ablation of dental enamel by aiding in the removal of loosely attached deposits of non-apatite mineral phase from the crater surface, thus producing a more desirable crater surface morphology. The non-apatite mineral phase interfere with subsequent laser pulses during erbium laser irradiation reducing the rate of ablation and their removal aids in maintaining efficient ablation during multiple pulses irradiation.

  1. Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks

    NASA Astrophysics Data System (ADS)

    Difato, Francesco; Dal Maschio, Marco; Marconi, Emanuele; Ronzitti, Giuseppe; Maccione, Alessandro; Fellin, Tommasso; Berdondini, Luca; Chieregatti, Evelina; Benfenati, Fabio; Blau, Axel

    2011-05-01

    Regeneration of functional connectivity within a neural network after different degrees of lesion is of utmost clinical importance. To test pharmacological approaches aimed at recovering from a total or partial damage of neuronal connections within a circuit, it is necessary to develop a precise method for controlled ablation of neuronal processes. We combined a UV laser microdissector to ablate neural processes in vitro at single neuron and neural network level with infrared holographic optical tweezers to carry out force spectroscopy measurements. Simultaneous force spectroscopy, down to the sub-pico-Newton range, was performed during laser dissection to quantify the tension release in a partially ablated neurite. Therefore, we could control and measure the damage inflicted to an individual neuronal process. To characterize the effect of the inflicted injury on network level, changes in activity of neural subpopulations were monitored with subcellular resolution and overall network activity with high temporal resolution by concurrent calcium imaging and microelectrode array recording. Neuronal connections have been sequentially ablated and the correlated changes in network activity traced and mapped. With this unique combination of electrophysiological and optical tools, neural activity can be studied and quantified in response to controlled injury at the subcellular, cellular, and network level.

  2. Laser Fabrication of Silica Gratings by Ablation and Modification of Silicone Films

    NASA Astrophysics Data System (ADS)

    Dittrich, A.; Fricke-Begemann, T.; Ihlemann, J.

    Silicone (polydimethylsiloxane) films are irradiated with a nanosecond F2-laser at a wavelength of 157 nm. Low fluence irradiation < 100 mJ/cm2 causes elimination of the organic groups leading to the formation of silica like material. Irradiation at fluences> 200 mJ/cm2 causes precise ablation of the silicone material. By combining ablative patterning and low fluence modification, the fabrication of silica devices with precise shape control is possible. Using spin coating of a diluted silicone solution (type ACCUGLASS), the preparation of thin silicone films (100 nm to 1 μm thickness) is possible. High resolution patterns like surface relief gratings with 1 μm period are obtained in these films by patterned ablation using a mask projection system and subsequent large area irradiation for the modification to silica. The chemical modification to carbon free silica is confirmed by Raman spectroscopy.

  3. Scaling ablation rates for picosecond lasers using burst micromachining

    NASA Astrophysics Data System (ADS)

    Knappe, Ralf; Haloui, Hatim; Seifert, Albert; Weis, Alexander; Nebel, Achim

    2010-02-01

    High-precision micromachining with picosecond lasers became an established process. Power scaling led to industrial lasers, generating average power levels well above 50 W for applications like structuring turbine blades, micro moulds, and solar cells. In this paper we report, how a smart distribution of energy into groups of pulses can significantly improve ablation rates for some materials, also providing a better surface quality. Machining micro moulds in stainless steel, a net ablation rate of ~1 mm3/min is routinely achieved, e.g. using pulse energy of 200 μJ at a repetition rate of 200 kHz. This is industrial standard, and demonstrates an improvement by two orders of magnitude over the recent years. When the energy was distributed to a burst of 10 pulses (25 μJ), repeated with 200 kHz, the ablation rate of stainless steel was 5 times higher with the same 50 W average power. Bursts of 10 pulses repeated with 1 MHz (5 μJ) even resulted in an ablation rate as high as 12 mm3/min. In addition, optimized pulse delays achieved a reduction of the surface roughness by one order of magnitude, providing Ra values as low as 200 nm. Similar results were performed machining silicon, scaling the ablation rate from 1.2 mm3/min (1 pulse, 250 μJ, 200 kHz) to 15 mm3/min (6 pulses, 8 μJ, 1 MHz). Burst machining of ceramics, copper and glass did not change ablation rates, only improved surface quality. For glass machining, we achieved record-high ablation rates of >50 mm3/min, using a new state-of-the-art laser which could generate >70 W of average power and repetition rates as high as 2 MHz.

  4. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    SciTech Connect

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-11-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated.

  5. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser.

  6. Laser induced modification and ablation of InAs nanowires

    SciTech Connect

    He Jiayu; Chen Pingping; Lu Wei; Dai Ning; Zhu Daming

    2012-05-01

    InAs nanowires were irradiated locally under an ambient condition using a focused laser beam, which led to laser ablation and thinning of the nanowires. We show that the laser beam can induce a reduction of the local As concentration in an InAs nanowire; the change leads to a significant decrease of local melting temperature of InAs, which results in the thinning and eventually breaking of the nanowire. The results indicate that chemical and mechanical modifications of an InAs nanowire can be accomplished by using a confocal laser beam, which may prove to be a convenient approach in fabricating nanostructural materials and nanodevices.

  7. Diagnostics and Impulse Performance of Laser-Ablative Propulsion

    SciTech Connect

    Sasoh, Akihiro; Mori, Koichi; Anju, Kohei; Suzuki, Koji; Shimono, Masaya; Sawada, Keisuke

    2008-04-28

    Pressure time variations and associated flows induced by pulsed laser ablation were experimentally studied using the Velocity Interferometer System for Any Reflector (VISAR) and framing Schlieren visualization. The combination of either aluminum or polyacetal target and TEA CO{sub 2} laser pulse were examined. The VISAR measurement resolved that the pressure modulated from the laser power variation in the impulse generation processes. Integrated impulse induced by repetative CO{sub 2} laser pulses was measured using a torsion-type impulse balance. The effect of the ambient pressure was significant. The measured impulse characteristics were closely associated with target surface morphology and fluid dynamics.

  8. Production of nanoparticles from natural hydroxylapatite by laser ablation

    PubMed Central

    2011-01-01

    Laser ablation of solids in liquids technique has been used to obtain colloidal nanoparticles from biological hydroxylapatite using pulsed as well as a continuous wave (CW) laser. Transmission electron microscopy (TEM) measurements revealed the formation of spherical particles with size distribution ranging from few nanometers to hundred nanometers and irregular submicronic particles. High resolution TEM showed that particles obtained by the use of pulsed laser were crystalline, while those obtained by the use of CW laser were amorphous. The shape and size of particles are consistent with the explosive ejection as formation mechanism. PMID:21711800

  9. Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study

    NASA Astrophysics Data System (ADS)

    Novotný, K.; Kaiser, J.; Galiová, M.; Konečná, V.; Novotný, J.; Malina, R.; Liška, M.; Kanický, V.; Otruba, V.

    2008-10-01

    Laser-ablation based analytical techniques represent a simple way for fast chemical analysis of different materials. In this work, an exploratory study of multi-element (Ca, Al, Fe, Mn) mappings of a granite sample surface was performed by laser-induced breakdown spectroscopy (LIBS) and subsequently by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The operating parameters (e.g. pulse energy, ablation-crater size) were optimized for both techniques in order to achieve the appropriate conditions for two-dimensional high-resolution compositional mappings of mineral microstructures in large sample areas. The sample was scanned with 100 × 100 individual sample points to map an area of 20 × 20 mm 2. The normalized signals were used for construct of contour plots which were colored according local distribution of the selected elements. The results of two laser-based methods were compared and found to be similar.

  10. Effects of laser ablated silver nanoparticles on Lemna minor.

    PubMed

    Üçüncü, Esra; Özkan, Alper D; Kurşungöz, Canan; Ülger, Zeynep E; Ölmez, Tolga T; Tekinay, Turgay; Ortaç, Bülend; Tunca, Evren

    2014-08-01

    The present study investigates and models the effect of laser ablated silver nanoparticles (AgNPs) on the development of the aquatic macrophyte Lemna minor. Toxic effects of five different AgNP concentrations (8, 16, 32, 96 and 128 μg L(-1)) on L. minor were recorded over seven days under simulated natural conditions. Biosorption of AgNPs by L. minor was modeled using four sorption isotherms, and the sorption behavior was found to agree most closely with the Langmuir-Freundlich model (R(2)=0.997). While toxic effects of AgNPs could be observed in all models and concentrations, the greatest increase in toxicity was in the 8-32 μg L(-1) range. Dry weight- and frond number-based inhibition experiments suggest that growth inhibition does not necessarily scale with AgNP concentration, and that slight fluctuations in inhibition rates exist over certain concentration ranges. Very close fits (R(2)=0.999) were obtained for all removal models, suggesting that the fluctuations are not caused by experimental variation. In addition, L. minor was found to be a successful bioremediation agent for AgNPs, and displayed higher removal rates for increasing AgNP doses. FT-IR spectroscopy suggests that carbonyl groups are involved in AgNP remediation.

  11. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.

    2011-02-01

    Femtosecond laser induced breakdown spectroscopy (LIBS) was used to identify the spatial resolution limitations and assess the minimal detectable mass restrictions in laser-ablation based chemical analysis. The atomic emission of sodium (Na) and potassium (K) dopants in transparent dielectric Mica matrices was studied, to find that both these elements could be detected from 450 nm diameter ablation craters, full-width-at-half-maximum (FWHM). Under optimal conditions, mass as low as 220 ag was measured, demonstrating the feasibility of using laser-ablation based chemical analysis to achieve high spatial resolution elemental analysis in real-time and at atmospheric pressure conditions.

  12. Laser ablative surface treatment for enhanced bonding of Ti-6Al-4V alloy.

    PubMed

    Palmieri, Frank L; Watson, Kent A; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J; Hopkins, John W; Connell, John W

    2013-02-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable adhesive bonds. Surface preparation by laser ablation provides an alternative to the expensive, hazardous, polluting, and less precise practices used currently such as chemical-dip, manual abrasion and grit blast. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Surface roughness and surface chemical composition were characterized using interference microscopy and X-ray photoelectron spectroscopy, respectively. A technique for fluorescence visualization was developed which allowed for quantitative failure mode analysis. Wedge crack extension testing in a hot, humid environment indicated the relative effectiveness of various surface treatments. Increasing ablation duty cycle reduced crack propagation and adhesive failure. Single lap shear testing showed an increase in strength and durability as laser ablation duty cycle and power were increased. Chemical analyses showed trends for surface chemical species, which correlated with improved bond strength and durability.

  13. Spin-offs from laser ablation in art conservation

    NASA Astrophysics Data System (ADS)

    Asmus, J.; Elford, J.; Parfenov, V.

    2013-05-01

    In 1973 The Center for Art Conservation Studies (CASS) was established at the University of California, San Diego (UCSD). This was in response to demonstrations that were conducted during January-March 1972 in Venice for UNESCO, Venice in Peril, International Fund for Monuments, and the Italian Petroleum Institute (ENI). The feasibility investigation explored in-situ pulsed holography, holographic interferometry, and laser ablation divestment for applications in art conservation practice. During subsequent decades scores of UCSD graduate and undergraduate students as well as conservators, conservation scientists, academics, and engineers who resided in CASS as "Visiting Scholars" contributed to advancing the understanding and performance of radiation technologies in the arts. Several technologies in addition to those involving optical wavelengths were also investigated to aid in art conservation and conservation science. Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) were employed to detect and map moisture within masonry. Lead isotopic analyses revealed authenticity and provenance of Benin bronzes. Inside-out x-ray radiography facilitated the detection of defects in stone. Ultrasonic imaging was introduced for the mapping of fresco strata. Photoacoustic Spectroscopy (PAS) was used to characterize varnish layers on paintings. Digital image processing was introduced in order to detect and visualize pentimenti within paintings as well as to perform virtual restoration and provide interactive museum displays. Holographic images were employed as imaginary theater sets. In the years that followed the graduation of students and the visits of professional collaborators, numerous other applications of radiation ablation began appearing in a wide variety of other fields such as aircraft maintenance, ship maintenance, toxic chemical remediation, biological sterilization, food processing, industrial fabrication, industrial maintenance, nuclear

  14. Fabrication of X-ray Spiral Masks by Laser Ablation

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Nugent, K. A.; McMahon, P. J.; Paterson, D.; Tran, C. Q.

    2002-01-01

    The authors describe microfabrication of a spiral mask modulation structure by excimer laser ablation. A multi-step fabrication using 15 separate chrome-on-quartz mask pattern is used to create a 16 step spiral staircase structure approximating the desired spiral ramp. The results of simulations and experimental results are presented.

  15. Laser Ablation of Materials for Propulsion of Spacecraft

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Carruth, Ralph; Campbell, Jonathan; Gray, Perry

    2004-01-01

    A report describes experiments performed as part of a continuing investigation of the feasibility of laser ablation of materials as a means of propulsion for small spacecraft. In each experiment, a specimen of ablative material was mounted on a torsion pendulum and irradiated with a laser pulse having an energy of 5 J. The amplitude of the resulting rotation of the torsion pendulum was taken to be an indication of the momentum transferred from the laser beam. Of the ablative materials tested, aluminum foils yielded the smallest rotation amplitudes of the order of 10 degrees. Black coating materials yielded rotation amplitudes of the order of 90 degrees. Samples of silver coated with a fluorinated ethylene propylene (FEP) copolymer yielded the largest rotation amplitudes 6 to 8 full revolutions. The report presents a theory involving heating of a confined plasma followed by escape of the plasma to explain the superior momentum transfer performance of the FEP specimens. It briefly discusses some concepts for optimizing designs of spacecraft engines to maximize the thrust obtainable by exploiting the physical mechanisms of the theory. Also discussed is the use of laser-ablation engines with other types of spacecraft engines.

  16. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  17. Comparative study on laser tissue ablation between PV and HPS lasers

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Jebens, David; Mitchell, Gerald; Koullick, Ed

    2008-02-01

    Laser therapy for obstructive benign prostatic hyperplasia (BPH) has gained broad adoption due to effective tissue removal, immediate hemostasis, and minor complications. The aim of this study is to quantitatively compare ablation characteristics of PV (Photoselective Vaporization) and the newly introduced HPS (High Performance System) 532 nm lasers. Bovine prostatic tissues were ablated in vitro, using a custom-made scanning system. Laser-induced volume produced by two lasers was quantified as a function of applied power, fiber working distance (WD), and treatment speed. Given the same power of 80 W and speed of 4 mm/s, HPS created up to 50 % higher tissue ablation volume than PV did. PV induced a rapid decrease of ablation volume when WD increased from 0.5 mm to 3 mm while HPS yielded almost constant tissue removal up to 3 mm for both 80 W and 120 W. As the treatment speed increased, both lasers reached saturation in tissue ablation volume. Lastly, both PV and HPS lasers exhibited approximately 1 mm thick heat affected zone (HAZ) in this study although HPS created twice deeper ablation channels with a depth of up to 4 mm. Due to a smaller beam size and a higher output power, HPS maximized tissue ablation rate with minimal thermal effects to the adjacent tissue. Furthermore, more collimated beam characteristics provides more spatial flexibility and may even help to decrease the rate of fiber degradation associated with thermal damage from debris reattachment to the tip.

  18. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  19. Laser ablation in liquids as a new technique of sampling in elemental analysis of solid materials

    NASA Astrophysics Data System (ADS)

    Muravitskaya, E. V.; Rosantsev, V. A.; Belkov, M. V.; Ershov-Pavlov, E. A.; Klyachkovskaya, E. V.

    2009-02-01

    Laser ablation in liquid media is considered as a new sample preparation technique in the elemental composition analysis of materials using optical emission spectroscopy of inductively coupled plasma (ICP-OES). Solid samples are transformed into uniform colloidal solutions of nanosized analyte particles using laser radiation focused onto the sample surface. High homogeneity of the resulting solution allows performing the ICP-OES quantitative analysis especially for the samples, which are poorly soluble in acids. The technique is compatible with the conventional solution-based standards.

  20. Laser ablation of Al-Ni alloys and multilayers

    NASA Astrophysics Data System (ADS)

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  1. Porous nanoparticles of Al and Ti generated by laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Kuzmin, P. G.; Shafeev, G. A.; Viau, G.; Warot-Fonrose, B.; Barberoglou, M.; Stratakis, E.; Fotakis, C.

    2012-09-01

    Experimental results are presented on the generation of porous nanoparticles of either Al or Ti by laser ablation of solid targets in ethanol, water, and n-propanol saturated with hydrogen. The nanoparticles are characterized by high resolution transmission electron microscopy (HR TEM) and optical absorption spectroscopy. Saturation of the liquid with gaseous hydrogen leads to the formation of internal cavities in nanoparticles. In the case of short laser pulses (180 fs, Ti:sapphire laser at 800 nm wavelength), the nanoparticles are mostly spherical with the size of 30-50 nm at concentration about 1015 cm-3. The cavity occupies from 20 to 50% of the particle volume. Longer laser pulses (70 ns, Nd:YAG laser at 1064 nm wavelength) generate facetted nanoparticles with facetted cavities inside. The mechanism of formation of cavities is discussed on the basis of temperature-dependent solubility of hydrogen in metals.

  2. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    SciTech Connect

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-07-15

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T{sub c}/T{sub tr} of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E{sub abl} normalized to the cohesion energy, {epsilon}{sub abl}=E{sub abl}/E{sub coh}, are surprisingly universal: all are near 0.3 with {+-}30% scattering. The difference in the ratio T{sub c}/T{sub tr} means that for metals the melting threshold {epsilon}{sub m} is low, {epsilon}{sub m}<{epsilon}{sub abl}, while for LJ it is high, {epsilon}{sub m}>{epsilon}{sub abl}. This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in {epsilon}{sub abl}, metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation.

  3. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  4. Ultrasensitive Laser Spectroscopy.

    ERIC Educational Resources Information Center

    Kliger, David S.

    1985-01-01

    Examines techniques used to make ultrasensitive spectroscopic measurements. They include excitation, thermal lens, photo acoustic, and ionization spectroscopies. Guidelines and methods are provided for each technique; common uses and applications are explained. (DH)

  5. Preparation of bismuth-based nanosheets by ultrasound-assisted liquid laser ablation

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Velarde Granados, E.; Solís-Casados, D. A.; Olea-Mejía, O.; Espinosa-Pesqueira, M.; Haro-Poniatowski, E.

    2016-04-01

    The preparation of bismuth nanosheets ablating a high purity Bi target immersed in water subjected to an ultrasound wave is reported. The effect of the laser fluence used for ablation on the size and shape of the nanostructures synthesized was investigated. The obtained results reveal the formation of nanosheets with square-like shape and sizes from approximately 140-543 nm. In comparison, experiments without the ultrasound field lead to the formation of quasi-spherical nanoparticles. The nanosheets were characterized by means of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), UV-Vis and Raman spectroscopies. The bismuth nanosheets, as deposited, are highly crystalline, and depending on the preparation conditions, the α or β phases of Bi2O3 are obtained. UV-Vis measurements show the typical band absorption characteristic of bismuth with nanometric size. Raman spectra confirm the formation of Bi2O3 nanostructures.

  6. [Aspheric profiles for refractive laser ablation of the cornea].

    PubMed

    Neuhann, Th; Neuhann, I M; Hassel, J M

    2008-03-01

    Conventional ablation profiles for excimer lasers for myopic refractive correction of the cornea are of spheric geometry. Therefore, they induce additional imaging aberrations into the optical system of the eye, most notably spherical aberration. This is a major cause of the observed deterioration of visual quality after such corrections, especially under low illumination and ensuing larger pupil diameter. Therefore, aspheric ablation profiles compromizing the preexisting imaging/visual quality of the eye as little as possible are currently being developed and optimized for all laser platforms. Employed methods include customized correction profiles on the basis of individual wavefront data of the anterior corneal topography on the one hand, and correction profiles that minimize the induced spherical aberration in a "standardized" way on the other hand. We demonstrate for a particular laser platform how such profiles must be developed and optimized. Mathematical theoretical calculations appear to be an indispensable but insufficient prerequisite. The biological reaction of the corneal stroma and epithelium ("biodynamic response") can only be determined experimentally and must lead to adjustment of the calculated ablation algorithm. The results show that aspheric profiles developed on this basis can lead to significant reduction of induced spherical aberration. The obtainable effect is, however, limited by the biological response and the ensuing peripheral ablation depth and volume.

  7. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGESBeta

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  8. Ultraviolet laser ablation of polycarbonate and glass in air

    SciTech Connect

    Bormotova, T. A.; Blumenthal, R.

    2009-02-01

    The fundamental physical processes that follow ultraviolet laser ablation of polycarbonate and borosilicate glass in air have been investigated using photodeflection as a function of the distance from the surface to probe laser. Four features were observed in the data sets for each material. Two of these features correlate well with gas dynamical predictions for the expansion of the shock wave and gas plume. The third feature is consistent with the propagation of the popping sound of the laser ablation event. The final feature, which occurs at very early times and does not shift significantly in time as the surface to probe distance is increased from 0 to greater than 6 mm, has been tentatively ascribed to the ejection of fast electrons. The final significant observation is complete blocking of the probe laser, only observed during borosilicate ablation, which is attributed to scattering of the probe laser light by macroscopic SiO{sub x} particles that grow in the final stages of plume expansion and cooling.

  9. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    NASA Astrophysics Data System (ADS)

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    2008-04-01

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO2 laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.

  10. Trace contaminant determination in fish scale by laser ablation technique

    SciTech Connect

    Lee, I.; Coutant, C.C.; Arakawa, E.T.

    1993-06-01

    Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish`s chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy`s (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.

  11. Trace contaminant determination in fish scale by laser ablation technique

    SciTech Connect

    Lee, I.; Coutant, C.C.; Arakawa, E.T.

    1993-01-01

    Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish's chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy's (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.

  12. Frequency mixing in boron carbide laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  13. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    SciTech Connect

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    2008-04-28

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.

  14. Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge

    NASA Astrophysics Data System (ADS)

    Kexue, L. I.; Zhou, Weidong; Shen, Qinmei; Shao, Jie; Qian, Huiguo

    2010-05-01

    In comparison to the traditional single pulse laser induced breakdown spectroscopy (SP-LIBS), a significant enhancement of atomic emission of lead and arsenic from laser plasma of soil has been demonstrated by the use of a laser ablation and fast pulse discharge plasma spectroscopy technique (LA-FPDPS). In this technique, a specifically designed high voltage and rapid discharge circuit was used to reheat the laser plasma and to enhance the plasma emission. A rapid and time damped alternating discharge current was observed with a short oscillating period ˜ 0.6 μs and sustained for about 6 μs. The peak intensities of Pb (283.31 nm) and As (286.04 nm) lines from soil plasma emission were greatly enhanced when compare to the traditional single pulse (SP) LIBS system. In addition, the precision of measurements in terms of the relative standard deviation (RSD) and the signal to noise ( S/ N) ratios were also improved. Scanning electron microscopy (SEM) images of the laser ablation regions indicated that the plasma reheating by the discharge spark was presumably the main mechanism for observed signal enhancement in the LA-FPDPS technique.

  15. Pulsed laser ablation plasmas generated in CO{sub 2} under high-pressure conditions up to supercritical fluid

    SciTech Connect

    Kato, Toru; Stauss, Sven; Kato, Satoshi; Urabe, Keiichiro; Terashima, Kazuo; Baba, Motoyoshi; Suemoto, Tohru

    2012-11-26

    Pulsed laser ablation of solids in supercritical media has a large potential for nanomaterials fabrication. We investigated plasmas generated by pulsed laser ablation of Ni targets in CO{sub 2} at pressures ranging from 0.1 to 16 MPa at 304.5 K. Plasma species were characterized by optical emission spectroscopy, and the evolution of cavitation bubbles and shockwaves were observed by time-resolved shadowgraph imaging. Ni and O atomic emissions decreased with increasing gas pressure; however, near the critical point the intensities reached local maxima, probably due to the enhancement of the plasma excitation and effective quenching resulting from the large density fluctuation.

  16. Surfactant-free small Ni nanoparticles trapped on silica nanoparticles prepared by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Mafuné, Fumitaka; Okamoto, Takumi; Ito, Miho

    2014-01-01

    Small Ni nanoparticles supported on silica nanoparticles were formed by pulsed laser ablation in liquid. Water dispersing surfactant-free silica particles was used here as a solvent, and a bulk Ni metal plate as a target. The nanoparticles formed by laser ablation in water were readily stabilized by the silica particles, whereas Ni nanoparticles prepared in water without silica were found to be precipitated a few hours after aggregation into 5-30 nm particles. The nanoparticles were characterized by TEM, dark-field STEM and optical absorption spectroscopy, which indicated that small 1-3 nm Ni nanoparticles were adsorbed on the surface of silica.

  17. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-01

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  18. Modeling of dynamical processes in laser ablation

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-12-31

    Various physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed-laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume, plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms, hydrodynamic and collisional descriptions of plume transport, and molecular dynamics models of the interaction of plume particles with the deposition substrate.

  19. Angular distribution of laser ablation plasma

    SciTech Connect

    Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.

    2010-05-23

    An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.

  20. Surface modification of a biodegradable composite by UV laser ablation: in vitro biological performance.

    PubMed

    Martins, Albino; Gang, Wu; Pinho, Elisabete D; Rebollar, Esther; Chiussi, Stefano; Reis, Rui L; León, Betty; Neves, Nuno M

    2010-08-01

    Melt blends of chitosan and biodegradable aliphatic polyester have been physically and biologically studied, presenting great potential for biomedical applications. Structurally, poly(butylene succinate)-chitosan (PBS/Cht) composite scaffolds are covered by a thin PBS layer, preventing the desired interaction of cells/tissues with the chitosan particules. In the present work, a selective and controlled ablation of this skin layer was induced by UV laser processing. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data demonstrated an increment of chitosan components and others resulting from the laser ablation process. The biological activity (i.e. cell viability and proliferation) on the inner regions of the composite scaffolds is not significantly different from those of the external layer, despite the observed differences in surface roughness (determined by interferometric optical profilometry) and wettability (water contact angle). However, the morphology of human osteoblastic cells was found to be considerably different in the case of laser-processed samples, since the cells tend to aggregate in multilayer columnar structures, preferring the PBS surface and avoiding the chitosan-rich areas. Thus, UV laser ablation can be considered a model technique for the physical surface modification of biomaterials without detrimental effects on cellular activity. PMID:20112276

  1. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  2. Thermal-mechanical modeling of laser ablation hybrid machining

    NASA Astrophysics Data System (ADS)

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of

  3. Two-dimensional fluorescence spectroscopy of laser-produced plasmas.

    PubMed

    Harilal, S S; LaHaye, N L; Phillips, M C

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of a solid aluminum target at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous wave (cw) Ti:sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the cw laser at one transition. Time-delayed, gated detection of the emission spectrum is used to isolate resonantly excited fluorescence emission from thermally excited emission from the plasma. In addition, the tunable cw laser measures the absorption spectrum of the Al transition with ultrahigh resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing cw laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods. PMID:27472615

  4. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    NASA Astrophysics Data System (ADS)

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please

  5. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  6. Ablation of silicon with bursts of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  7. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors.

    PubMed

    Chen, H; Li, H; Sun, Yc; Wang, Y; Lü, Pj

    2016-02-11

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  8. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  9. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    PubMed Central

    Chen, H.; Li, H.; Sun, YC.; Wang, Y.; Lü, PJ.

    2016-01-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application. PMID:26864679

  10. Laser-induced-plasma-assisted ablation for glass microfabrication

    NASA Astrophysics Data System (ADS)

    Hong, Minghui; Sugioka, Koji; Wu, Ding J.; Wong, L. L.; Lu, Yongfeng; Midorikawa, Katsumi; Chong, Tow Chong

    2001-10-01

    Glass is a hard transparent material with many applications in Photonics and advanced display industries. It is a high challenge to achieve crack-free glass microfabrication due to its special material characteristics. Laser-induced-plasma- assisted ablation is applied in this study to get the high quality glass microfabrication. In this processing, the laser beam goes through the glass substrate first and then irradiates on a solid target behind. For laser fluence above ablation threshold for the target, the generated plasma flies forward at a high speed. At a small target-to-substrate distance, there are strong interactions among laser light, target plasma and glass materials at the rear side of the substrate. Light absorption characteristic at the glass substrate is modified since the plasma may soften and dope into the glass in the interaction area. To have a better understanding of this processing, signal diagnostics are carried out to study the dynamic interaction. It is found that glass microfabrication is closely related to laser fluence, target-to-substrate distance, laser spot size and laser beam scanning speed. With proper control of the processing parameters, glass surface marking patterning and cutting can be achieved. With different materials as the targets, color marking of glass substrate can be obtained.

  11. Practical Laser Ablation U-Th Thermochronology and Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Van Soest, M. C.; Tripathy, A.; Boyce, J. W.

    2012-12-01

    (U-Th)/He thermochronology of the accessory phases apatite and zircon has become an essential tool for many landscape evolution and tectonic studies. Moreover, new geochronologic applications of the (U-Th)/He method -dating impact events, young volcanic eruptions, and secondary hydrothermal mineralization, for example - are only recently being explored. A significant impediment to all applications of the method is a commonly observed scatter of replicate dates for different crystals from an individual sample, typically greater than that which can be explained by analytical imprecision alone. While several reasons for this have been proposed, three are certainly important: 1) the propensity for many accessory minerals to be strongly and complexly zoned in U and Th; 2) inclusions of other (U+Th)-rich minerals in dated grains; and 3) frequently ignored and generally unquantifiable uncertainties in the alpha ejection corrections applied to dated crystals. For nearly a decade, we have worked to establish a new technique that avoids or minimizes the impact of these factors. Individual crystals are mounted, polished, and imaged to resolve internal zonation and inclusion content as a means of selecting appropriate grains for analysis. A 193 nm ArF excimer laser is used to ablate sample from the center of the polished surface, sufficiently far from the crystal rim to eliminate the need for an alpha ejection correction. 4He is measured in the ablated material by magnetic sector, gas-source mass spectrometry. After precise measurement of the ablation pit to permit the determination of 4He concentration, the sample is removed and mounted for U + Th analysis by laser ablation inductively coupled, plasma mass spectrometry. For parent element analyses, the ablation pit is targeted so as to encompass the 4He ablation pit on a scale large enough to integrate intragranular U + Th zoning and account for recoil redistribution of 4He within grains. We have documented the efficacy of

  12. Laser-driven ablation through fast electrons in PALS experiment

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Chodukowski, T.; Demchenko, N.; Kalinowska, Z.; Kasperczuk, A.; Krousky, E.; Pfeifer, M.; Pisarczyk, P.; Pisarczyk, T.; Renner, O.; Skala, J.; Smid, M.; Ullschmied, J.

    2016-03-01

    Energy transfer to shock wave in Al and Cu targets irradiated by a laser pulse with intensity of I≈1-50 PW/cm2 and duration of 250 ps was investigated at Prague Asterix Laser System (PALS). The iodine laser provided energy in the range of 100-600 J at the first and third harmonic frequencies. The focal spot radius of laser beam on the target was varied from 160 to 40 μm. The dominant contribution of fast electron energy transfer into the ablation process was found when using the first harmonic radiation, the focal spot radius of 40-100 μm, and the energy of 300-600 J. The fast electron heating results in the growth of ablation pressure from 60 Mbar at the intensity of 10 PW/cm2 to 180 Mbar at the intensity of 50 PW/cm2 and in the growth of the efficiency of the energy conversion into the shock wave from 2 to 7% under the conditions of 2D ablation.

  13. Laser Spectroscopy of Iridium Monochloride

    NASA Astrophysics Data System (ADS)

    Linton, Colan; Adam, Allan G.; Foran, Samantha; Ma, Tongmei; Steimle, Timothy

    2016-06-01

    Iridium monochloride (IrCl) molecules have been produced in the gas phase using laser ablation sources at the University of New Brunswick (UNB) and Arizona State University (ASU). Low resolution laser induced fluorescence (LIF) spectra, obtained at UNB using a pulsed dye laser, showed three bands at 557, 545 and 534 nm which appeared to form an upper state vibrational progression. Dispersed fluorescence (DF) spectra, obtained by exciting each band at its band head frequency, showed a ground state vibrational progression extending from v=0 to 6. High resolution spectra (FWHM=0.006 wn), taken using a cw ring dye laser, showed resolved rotational lines, broadened by unresolved Ir (I=3/2) hyperfine structure, in both the 193Ir35Cl and 191Ir35Cl isotopologues. Vibrational assignments of 0-0, 1-0 and 2-0 for the three bands were determined from the isotope structure and the rotational analysis showed the transition to be ^3Φ_4 - ^3Φ_4, similar to that previously observed in IrF. Higher resolution spectra (FWHM=0.001 wn) of the 1-0 band, obtained at ASU, showed resolved hyperfine structure from which the magnetic and quadrupole hyperfine parameters in the ground and excited states were determined. The interpretation of the hyperfine parameters in terms of the electron configurations will be presented along with a comparison of the properties of IrCl and IrF.

  14. Temperature profiles of 980- and 1,470-nm endovenous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation.

    PubMed

    Malskat, W S J; Stokbroekx, M A L; van der Geld, C W M; Nijsten, T E C; van den Bos, R R

    2014-03-01

    Endovenous thermal ablation (EVTA) techniques are very effective for the treatment of varicose veins, but their exact working mechanism is still not well documented. The lack of knowledge of mechanistic properties has led to a variety of EVTA protocols and a commercially driven dissemination of new or modified techniques without robust scientific evidence. The aim of this study is to compare temperature profiles of 980-and 1,470-nm endovenous laser ablation (EVLA), segmental radiofrequency ablation (RFA), and endovenous steam ablation (EVSA). In an experimental setting, temperature measurements were performed using thermocouples; raw potato was used to mimic a vein wall. Two laser wavelengths (980 and 1,470 nm) were used with tulip-tip fibers and 1,470 nm also with a radial-emitting fiber. Different powers and pullback speeds were used to achieve fluences of 30, 60, and 90 J/cm. For segmental RFA, 1 cycle of 20 s was analyzed. EVSA was performed with two and three pulses of steam per centimeter. Maximum temperature increase, time span of relevant temperature increase, and area under the curve of the time of relevant temperature increase were measured. In all EVLA settings, temperatures increased and decreased rapidly. High fluence is associated with significantly higher temperatures and increased time span of temperature rise. Temperature profiles of 980- and 1,470-nm EVLA with tulip-tip fibers did not differ significantly. Radial EVLA showed significantly higher maximum temperatures than tulip-tip EVLA. EVSA resulted in mild peak temperatures for longer durations than EVLA. Maximum temperatures with three pulses per centimeter were significantly higher than with two pulses. RFA temperature rises were relatively mild, resulting in a plateau-shaped temperature profile, similar to EVSA. Temperature increase during EVLA is fast with a high-peak temperature for a short time, where EVSA and RFA have longer plateau phases and lower maximum temperatures. PMID

  15. Mathematical Modeling of Laser Ablation in Liquids with Applications to Laser Ultrasonics

    SciTech Connect

    Conant, R. J.; Telschow, Kenneth Louis; Walter, John Bradley

    2002-12-01

    The use of laser ablation as a means of generating ultrasonic waves in liquid metals is studied in this paper. A mathematical model for predicting the onset of ablation is developed, as is a model of the ablation process based on steady state, one-dimensional gas dynamics in which the vapor phase is treated as an ideal gas. The results of this model are then used in a quasi-two-dimensional model of laser ablation that accounts for the spatial distribution of intensity in the laser beam. Model predictions are compared with experiments conducted on liquid mercury and excellent agreement is obtained. Based on these results, a simplified model is developed that shows excellent agreement with both the theory and the experiments.

  16. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  17. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  18. Complete prostatic ablation using a two-stage laser

    NASA Astrophysics Data System (ADS)

    Sayer, Jeanie; Cromeens, Douglas M.; Price, Roger E.; Johnson, Douglas E.

    1993-05-01

    Laser photoirradiation has been delivered endoscopically for the treatment of both benign prostatic hyperplasia and early localized prostatic carcinoma. In treating carcinoma, aggressive transurethral resection of the prostate has been followed with laser irradiation to the remnants of malignant capsular disease. No attempt has been made heretofore to completely destroy the glandular prostate using laser irradiation alone. We performed a two-stage endoscopic laser prostatectomy in 6 adult mongrel dogs in an attempt to completely destroy the glandular prostate. Although no complications developed, histologic evaluation of the prostate revealed viable glandular elements in the midst of necrosis and atrophy. We conclude that in order to accomplish total ablation of the glandular prostate using laser photoirradiation, more precise thermal telemetry is needed.

  19. Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser

    NASA Astrophysics Data System (ADS)

    Kim, Hoon-Young; Yoon, Ji-Wook; Choi, Won-Suk; Kim, Kwang-Ryul; Cho, Sung-Hak

    2016-09-01

    We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying x-y axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.

  20. Pre-ignition laser ablation of nanocomposite energetic materials

    NASA Astrophysics Data System (ADS)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-01

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 × 104 to 1.7 × 107 K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO2 lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO3) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO3 at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  1. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  2. Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusiona)

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Li, D.; Radha, P. B.; Sawada, H.; Seka, W.; Boehly, T. R.; Delettrez, J. A.; Gotchev, O. V.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Yaakobi, B.; Mancini, R. C.

    2007-05-01

    Direct-drive laser absorption, mass ablation rate, and shock heating are experimentally studied on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] to validate hydrodynamics simulations. High-gain, direct-drive inertial confinement fusion target implosions require accurate predictions of the shell adiabat α (entropy), defined as the pressure in the main fuel layer to the Fermi-degenerate pressure, and the implosion velocity of the shell. The laser pulse shape determines the shell adiabat and the hydrodynamic efficiency determines the implosion velocity. A comprehensive set of measurements tracking the flow of energy from the laser to the target was conducted. Time-resolved measurements of laser absorption in the corona are performed on spherical implosion experiments. The mass ablation rate is inferred from time-resolved Ti K-shell spectroscopic measurements of nonaccelerating, solid CH spherical targets with a buried tracer layer of Ti. Shock heating is diagnosed in planar-CH-foil targets using time-resolved x-ray absorption spectroscopy and noncollective spectrally resolved x-ray scattering. The highly reproducible experimental results achieved with a high level of laser drive uniformity [S. P. Regan et al., J. Opt. Soc. Am. B 22, 998 (2005)] constrain the modeling of direct-drive energy coupling. A detailed comparison of the experimental results and the simulations reveals that a single-value flux limiter in the thermal transport model cannot explain all of the experimental observables. Simulations of laser absorption measurements need a time-dependent flux limiter to match the data. Modeling of both resonance absorption and nonlocal effects in the electron thermal conduction from the critical density to the ablation front are underway to resolve the observed discrepancies.

  3. Hydrodynamic simulation of ultrashort pulse laser ablation of gold film

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Shi, Xuesong; Qu, Liangti; Lu, Yongfeng

    2015-06-01

    The electron collision frequency in a hydrodynamic model was improved to match the laser energy absorbed with experimental data. The model calculation was used to investigate the ablation depth and the dependence of the threshold fluence of gold film on pulse width and wavelength. Two methods for estimating the ablation depth are introduced here with their respective scope of application. The dependence of the threshold fluence of gold film on the pulse width of the laser with a 1053 nm center wavelength agreed well with the experimental data. It was also observed that for pulses shorter than ~200 ps, the threshold fluence showed linear dependence on the logarithm of pulse width and increased with the wavelength, which was different from previous results.

  4. Ablation and nanostructuring of metals by femtosecond laser pulses

    SciTech Connect

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B; Zhakhovskii, V V; Inogamov, N A

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  5. Tissue ablation via optical fibre delivery of UV laser radiation

    NASA Astrophysics Data System (ADS)

    Miller, Joseph; Yu, Xiaobo; Yu, Paula K.; Cringle, Stephen J.; Yu, Dao-Yi

    2008-04-01

    We report the use of an ultraviolet (UV) laser and optical fibre arrangement capable of precise and controllable tissue ablation. The 5th (213nm) and 4th (266nm) harmonics of a Nd:YAG laser were launched into optical fibres using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibres were used, all commercially available. The available energy and fluence, as a function of optical fibre length, were evaluated and maximised. Single 5ns pulses were used to ablate both fresh porcine retina and in vivo rat trabecular meshwork. Fluences of 0.4 to 4.0 J/cm2 of 266nm and 0.2 to 1.0 J/cm2 of 213nm were used respectively. Thus demonstrating the potential use of this system for intraocular surgical applications.

  6. CdTe nanoparticles synthesized by laser ablation

    SciTech Connect

    Semaltianos, N. G.; Logothetidis, S.; Perrie, W.; Romani, S.; Potter, R. J.; Dearden, G.; Watkins, K. G.; Sharp, M.

    2009-07-20

    Nanoparticle generation by laser ablation of a solid target in a liquid environment is an easy, fast, and 'green' method for a large scale production of nanomaterials with tailored properties. In this letter we report the synthesis of CdTe nanoparticles by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy=6 {mu}J (fluence=1.7 J/cm{sup 2})] ablation of the target material. Nanoparticles with diameters from {approx}2 up to {approx}25 nm were observed to be formed in the colloidal solution. Their size distribution follows the log-normal function with a statistical median diameter of {approx_equal}7.1 nm. Their crystal structure is the same as that of the bulk material (cubic zincblende) and they are slightly Cd-rich (Cd:Te percentage ratio {approx}1:0.9). Photoluminescence emission from the produced nanoparticles was detected in the deep red ({approx}652 nm)

  7. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  8. Ablation of dentin by irradiation of violet diode laser

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.

    2006-02-01

    Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.

  9. Laser spectroscopy and its applications

    SciTech Connect

    Radziemski, L.J.; Solarz, R.W.; Paisner, J.A.

    1987-01-01

    Laser spectroscopy has applications in diverse fields ranging from combustion studies and trace-sample detection to biological research. At the same time, it has also contributed greatly to the discovery of hundreds of new lasers. This symbiotic relationship has promoted an especially rapid expansion of the field. This book provides a review of the subject. It includes, for example, chapters on laser isotope separation techniques, enabling scientists to compare their relative advantages and drawbacks. This volume also gives numerous tables that summarize important features of lasers, experiments, and parameters for quick reference. In addition, it presents diagrams for visualizing rotational molecular energy levels of high J in order to enhance our understanding of molecular motions and their relationship to molecular energy levels. Offering insights into how experts think this technology will improve, it considers research and development in each topic discussed.

  10. Optical feedback signal for ultrashort laser pulse ablation of tissue

    SciTech Connect

    Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Mammini, B.M.; Da Silva, L.B.

    1997-07-01

    An optical feedback system for controlled precise tissue ablation is discussed. Our setup includes an ultrashort pulse laser (USPL), and a diagnostic system using analysis of either tissue fluorescence or plasma emission luminescence. Current research is focused on discriminating hard and soft tissues such as bone and spinal cord during surgery using either technique. Our experimental observations exhibit considerable spectroscopic contrast between hard and soft tissue, and both techniques offer promise for a practical diagnostic system.

  11. Particle size dependent chemistry from laser ablation of brass.

    PubMed

    Liu, Chunyi; Mao, Xianglei; Mao, Sam S; Greif, Ralph; Russo, Richard E

    2005-10-15

    The proportion of zinc and copper in particles formed by laser ablation of brass was found to vary with the particle diameter. Energy-dispersive X-ray analysis showed that smaller particles were zinc enhanced while larger particles were composed mostly of copper. A model based on condensation of vapor onto large droplets ejected from a melted liquid layer is proposed to describe the change in particle composition versus size. PMID:16223257

  12. Growth of epitaxial thin films by pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs. (DLC)

  13. Growth of epitaxial thin films by pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.

    1992-10-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs. (DLC)

  14. Beam Delivery System For UV Laser Ablation Of The Cornea

    NASA Astrophysics Data System (ADS)

    Yoder, P. R.; Telfair, W. B.; Warner, J. W.; Martin, C. A.; Bennett, P. S.

    1988-06-01

    We describe an electro-optical apparatus capable of delivering a homogenized, intensity-contoured 193 nm wavelength laser beam to the anterior surface of the cornea. Beam fluence is adequate to produce controlled ablation over areas as large as 7 mm diameter. Preliminary experimental results demonstrating recontouring of the corneal surface as a means of correcting myopia are presented. Means to be used for reducing hyperopia and astigmatism also are described.

  15. Nanofibre fabrication by femtosecond laser ablation of silica glass

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Krishnan; Vipparty, Dheeraj; Tan, Bo

    2011-08-01

    : This article presents a fabrication technique for generating densely populated and randomly oriented silica nanofibres by direct ablation of silica glass using a femtosecond laser with 12.4 MHz repetition rate and a pulse width of 214 fs, under ambient conditions. Four types of nanofibres with diameters ranging from a few tens of nanometers to a few hundreds of nanometers were formed. Some fibers reach lengths of 10 mm. The possible mechanisms for fibre formation have been explored.

  16. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    SciTech Connect

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  17. Microscopic and macroscopic modeling of femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Fokin, Vladimir B.; Levashov, Pavel R.

    2015-12-01

    Simulation of femtosecond laser ablation of a bulk aluminum target is performed using two complementary approaches. The first method is single-fluid two-temperature hydrodynamics (HD) completed with a two-temperature equation of state (EOS). The second approach is a combination of classical molecular dynamics (MD) and a continuum model of a free electron subsystem. In both methods, an identical and accurate description of optical and transport properties of the electron subsystem is based on wide-range models reproducing effects of electron heat wave propagation, electron-phonon/ion coupling and laser energy absorption on a time-dependent profile of the dielectric function. For simulation of homogeneous nucleation in a metastable liquid phase, a kinetic model of nucleation is implemented in the HD approach. The phase diagrams of the EOS and MD potential are in good agreement that gives opportunity to compare the dynamics of laser ablation obtained by both methods directly. Results of simulation are presented in the range of incident fluences 0.1-20 J/cm2 and match well with experimental findings for an ablation crater depth. The MD accurately reproduces nonequilibrium phase transitions and takes into account surface effects on nanoscale. The HD approach demonstrates good qualitative agreement with the MD method in the dynamics of phase explosion and spallation. Other advantages and disadvantages of both approaches are examined and discussed.

  18. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  19. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    SciTech Connect

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M.; Chang, T.D.; Neev, J.

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  20. Room temperature synthesized rutile TiO(2) nanoparticles induced by laser ablation in liquid and their photocatalytic activity.

    PubMed

    Liu, Peisheng; Cai, Weiping; Fang, Ming; Li, Zhigang; Zeng, Haibo; Hu, Jinlian; Luo, Xiangdong; Jing, Weiping

    2009-07-15

    TiO(2) nanoparticles were prepared by one-step pulsed laser ablation of a titanium target immersed in a poly-(vinylpyrrolidone) solution at room temperature. The products were systematically characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The results indicated that the rutile TiO(2) nanocrystalline particles were one-step synthesized at room temperature and the mean size in diameter is about 50 nm with a narrow size distribution. A probable formation process was proposed on the basis of the microstructure and the instantaneous plasma plume induced by the laser. Photocatalytic activity was monitored by degradation of a methylene blue solution. The as-prepared rutile TiO(2) nanoparticles demonstrate a good photocatalytic performance. This work shows that pulsed laser ablation in liquid media is a good method to synthesize some nanosized materials which are difficult to produce by other conventional methods.

  1. Feasibility of characterizing laser-ablated carbon plasmas via planar laser induced fluorescence

    SciTech Connect

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Constantin, C. G.; Clark, S. E.; Niemann, C.

    2012-10-15

    Planar laser induced fluorescence (PLIF) imaging can potentially assess ion distributions and coupling in the context of super-Alfvenic ablation plasma expansions into magnetized background plasmas. In this feasibility study, we consider the application of PLIF to rapidly expanding carbon plasmas generated via energetic laser ablation of graphite. By utilizing hydrodynamic and collisional-radiative simulations, we identify schemes accessible to commercially available tunable lasers for the C I atom, the C II ion, and the C V ion. We then estimate the signal-to-noise ratios yielded by the schemes under reasonable experimental configurations.

  2. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  3. Sub ablation effects of the KTP laser on wound healing.

    PubMed

    Kyzer, M D; Aly, A S; Davidson, J M; Reinisch, L; Ossoff, R H

    1993-01-01

    The KTP laser (wavelength 532 nm) was used in a sub ablative format to determine the effect of low energy density irradiation on the normal healing by primary intention of scalpel skin incisions in rats. Two longitudinal lased strips were created by a 1 cm diameter defocused beam on the shaved, cleaned dorsal epidermis of 32 Sprague-Dawley rates; one strip was produced with a 2.0 W beam (54 J, or 18 J/cm2 total dose), and the other with a 3.5 W beam (94.5 J or 31.5 J/cm2, total dose). Scalpel incisions were made longitudinally within the irradiated zones, using contra lateral scalpel incisions on unirradiated skin as controls. Tensiometric analysis of wound strength was performed at 3, 7, 14, and 23 days following surgery. The data from fresh tissue tensiometry indicate that KTP laser irradiation of skin incisions results in a lower tensile strength for the wound at 7 and 14 days. The decrease in tensile strength is proportional to the total energy density of the exposure. At day 3 and 23, the tensile strength of the wound was independent of the sub ablative laser exposure. The results are in general agreement with studies of the healing process of laser incisions and may help us to understand the details of the healing process from laser incisions. PMID:8426529

  4. Modeling nanoparticle formation by laser ablation and by spark discharges

    NASA Astrophysics Data System (ADS)

    Itina, Tatiana E.

    2016-03-01

    Nanoparticles have found numerous applications in such areas as photonics, electronics, medicine, etc. Further development of these fields requires reliable and versatile methods of nanoparticle synthesis with well-controlled properties. Among promising synthesis techniques, both laser ablation and plasma discharges are considered. These methods provide numerous advantages that are unique in several cases. On one hand, the main advantage of the laser ablation method is in the possibilities of changing laser parameters and background conditions and in its capacity to preserve stoichiometry. Laser-based methods also yield bio-compatible nanoparticles and nano-colloids with unique chemical properties. Laser-induced fragmentation provides additional control ways over nanoparticle sizes. To better understand and to optimize these processes, detailed numerical modeling is performed. The involved stages are considered and analyzed. The resulting nanoparticle parameters are investigated as a function of the experimental conditions. Nanoparticle properties, such as mean size and mean concentration are analyzed. Differences and similarities between the considered synthesis methods are discussed.

  5. Fabrication of paclitaxel nanocrystals by femtosecond laser ablation and fragmentation.

    PubMed

    Kenth, Sukhdeep; Sylvestre, Jean-Philippe; Fuhrmann, Kathrin; Meunier, Michel; Leroux, Jean-Christophe

    2011-03-01

    Nanonization, which involves formulating the drug powder as nanometer-sized particles, is a known method to improve drug absorption and allow the intravenous administration of insoluble drugs. This study investigated a novel femtosecond (fs) laser technique for the fabrication of nanocrystals in aqueous solution of the insoluble model drug paclitaxel. Two distinct methods of this technology, ablation and fragmentation, were investigated and the influence of laser power, focusing position and treatment time on the particle size, drug concentration, and degradation was studied. The colloidal suspensions were characterized with respect to size, chemical composition, morphology, and polymorphic state. Optimal laser fragmentation conditions generated uniformly sized paclitaxel nanoparticles (<500 nm) with quantifiable degradation, while ablation followed by fragmentation was associated with a larger polydispersity. Laser treatment at higher powers produced smaller particles with larger amount of degradation. The crystalline morphology of the drug was retained upon nanonization, but the anhydrous crystals were converted to a hydrated form, a phenomenon also observed during bead milling. These findings suggest that drug nanocrystals can be produced with fs laser technology using very little drug quantities, which may be an asset for preclinical evaluation of new drug candidates.

  6. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere

    SciTech Connect

    Harilal, S. S.; Miloshevsky, G. V.; Diwakar, P. K.; LaHaye, N. L.; Hassanein, A.

    2012-08-15

    We investigated spatio-temporal evolution of ns laser ablation plumes at atmospheric pressure, a favored condition for laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass-spectrometry. The 1064 nm, 6 ns pulses from a Nd:YAG laser were focused on to an Al target and the generated plasma was allowed to expand in 1 atm Ar. The hydrodynamic expansion features were studied using focused shadowgraphy and gated 2 ns self-emission visible imaging. Shadowgram images showed material ejection and generation of shock fronts. A secondary shock is observed behind the primary shock during the time window of 100-500 ns with instabilities near the laser cone angle. By comparing the self-emission images obtained using fast photography, it is concluded that the secondary shocks observed in the shadowgraphy were generated by fast moving target material. The plume front estimates using fast photography exhibited reasonable agreement with data obtained from shadowgraphy at early times {<=}400 ns. However, at later times, fast photography images showed plume confinement while the shadowgraphic images showed propagation of the plume front even at greater times. The structure and dynamics of the plume obtained from optical diagnostic tools were compared to numerical simulations. We have shown that the main features of plume expansion in ambient Ar observed in the experiments can be reproduced using a continuum hydrodynamics model which provided valuable insight into the expansion dynamics and shock structure of the plasma plume.

  7. Femtosecond pulsed laser ablation to enhance drug delivery across the skin.

    PubMed

    Garvie-Cook, Hazel; Stone, James M; Yu, Fei; Guy, Richard H; Gordeev, Sergey N

    2016-01-01

    Laser poration of the skin locally removes its outermost, barrier layer, and thereby provides a route for the diffusion of topically applied drugs. Ideally, no thermal damage would surround the pores created in the skin, as tissue coagulation would be expected to limit drug diffusion. Here, a femtosecond pulsed fiber laser is used to porate mammalian skin ex vivo. This first application of a hollow core negative curvature fiber (HC-NCF) to convey a femtosecond pulsed, visible laser beam results in reproducible skin poration. The effect of applying ink to the skin surface, prior to ultra-short pulsed ablation, has been examined and Raman spectroscopy reveals that the least, collateral thermal damage occurs in inked skin. Pre-application of ink reduces the laser power threshold for poration, an effect attributed to the initiation of plasma formation by thermionic electron emission from the dye in the ink. Poration under these conditions significantly increases the percutaneous permeation of caffeine in vitro. Dye-enhanced, plasma-mediated ablation of the skin is therefore a potentially advantageous approach to enhance topical/transdermal drug absorption. The combination of a fiber laser and a HC-NCF, capable of emitting and delivering femtosecond pulsed, visible light, may permit a compact poration device to be developed.

  8. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Miloshevsky, G. V.; Diwakar, P. K.; LaHaye, N. L.; Hassanein, A.

    2012-08-01

    We investigated spatio-temporal evolution of ns laser ablation plumes at atmospheric pressure, a favored condition for laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass-spectrometry. The 1064 nm, 6 ns pulses from a Nd:YAG laser were focused on to an Al target and the generated plasma was allowed to expand in 1 atm Ar. The hydrodynamic expansion features were studied using focused shadowgraphy and gated 2 ns self-emission visible imaging. Shadowgram images showed material ejection and generation of shock fronts. A secondary shock is observed behind the primary shock during the time window of 100-500 ns with instabilities near the laser cone angle. By comparing the self-emission images obtained using fast photography, it is concluded that the secondary shocks observed in the shadowgraphy were generated by fast moving target material. The plume front estimates using fast photography exhibited reasonable agreement with data obtained from shadowgraphy at early times ≤400 ns. However, at later times, fast photography images showed plume confinement while the shadowgraphic images showed propagation of the plume front even at greater times. The structure and dynamics of the plume obtained from optical diagnostic tools were compared to numerical simulations. We have shown that the main features of plume expansion in ambient Ar observed in the experiments can be reproduced using a continuum hydrodynamics model which provided valuable insight into the expansion dynamics and shock structure of the plasma plume.

  9. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-11-01

    This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  10. Femtosecond pulsed laser ablation to enhance drug delivery across the skin.

    PubMed

    Garvie-Cook, Hazel; Stone, James M; Yu, Fei; Guy, Richard H; Gordeev, Sergey N

    2016-01-01

    Laser poration of the skin locally removes its outermost, barrier layer, and thereby provides a route for the diffusion of topically applied drugs. Ideally, no thermal damage would surround the pores created in the skin, as tissue coagulation would be expected to limit drug diffusion. Here, a femtosecond pulsed fiber laser is used to porate mammalian skin ex vivo. This first application of a hollow core negative curvature fiber (HC-NCF) to convey a femtosecond pulsed, visible laser beam results in reproducible skin poration. The effect of applying ink to the skin surface, prior to ultra-short pulsed ablation, has been examined and Raman spectroscopy reveals that the least, collateral thermal damage occurs in inked skin. Pre-application of ink reduces the laser power threshold for poration, an effect attributed to the initiation of plasma formation by thermionic electron emission from the dye in the ink. Poration under these conditions significantly increases the percutaneous permeation of caffeine in vitro. Dye-enhanced, plasma-mediated ablation of the skin is therefore a potentially advantageous approach to enhance topical/transdermal drug absorption. The combination of a fiber laser and a HC-NCF, capable of emitting and delivering femtosecond pulsed, visible light, may permit a compact poration device to be developed. PMID:26449289

  11. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study.

    PubMed

    Gill, Ruby K; Smith, Zachary J; Lee, Changwon; Wachsmann-Hogiu, Sebastian

    2016-01-01

    The aim of this study is to understand the effect of varying laser repetition rate on thermal energy accumulation and dissipation as well as femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) signals, which may help create the framework for clinical translation of femtosecond lasers for surgical procedures. We study the effect of repetition rates on ablation widths, sample temperature, and LIBS signal of bone. SEM images were acquired to quantify the morphology of the ablated volume and fsLIBS was performed to characterize changes in signal intensity and background. We also report for the first time experimentally measured temperature distributions of bone irradiated with femtosecond lasers at repetition rates below and above carbonization conditions. While high repetition rates would allow for faster cutting, heat accumulation exceeds heat dissipation and results in carbonization of the sample. At repetition rates where carbonization occurs, the sample temperature increases to a level that is well above the threshold for irreversible cellular damage. These results highlight the importance of the need for careful selection of the repetition rate for a femtosecond laser surgery procedure to minimize the extent of thermal damage to surrounding tissues and prevent misclassification of tissue by fsLIBS analysis.

  12. Nanostructuring of ITO thin films through femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Sahin, Ramazan; Kabacelik, Ismail

    2016-04-01

    Due to reduced thermal effects, tightly focused femtosecond laser beams can yield submicron resolution with minimal side effects. In laser direct writing applications, diffraction-free nature of the Bessel beams relaxes alignment of the sample and shortens the production time. Micron-sized central spots and long depth of focused beams can be simultaneously produced. We apply fs Bessel beam single-pulse ablation method to transparent conductive oxide films. We use laser of 1030 nm wavelength and two different axicons (base angles are 25° and 40°). Fabricated structures are characterized by optical microscope, atomic force microscope and scanning electron microscope. Laser beam shaping and virtues of non-diffracted Bessel beams provide periodic structures for scribing in the solar cells or high-resolution displays and reduce the process time.

  13. Ablation of biological tissues by radiation of strontium vapor laser

    SciTech Connect

    Soldatov, A. N. Vasilieva, A. V.

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  14. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (λ=193 nm, ν=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup −2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  15. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  16. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  17. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    PubMed Central

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  18. Optical probe investigation of laser ablated carbon plasma plume in nitrogen ambient

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2013-12-15

    We report the study of carbon plasma produced using 1064 nm laser in nitrogen ambient at atmospheric pressure using 2-dimensional fast imaging of ablated plume, optical emission spectroscopy, and optical probe at 532 nm for interferometry and shadowgraphy. The dominance of C{sub 2} and CN molecules over ionic species at later stages of expanding carbon plasma plume is reported. The observed ring structure in shadowgrams and change in the direction of fringe shift from positive to negative in recorded interferograms are correlated with the relative abundance of different species in the plasma plume as function of time delay with respect to ablating pulse. An agreement in observed onset time of formation of clusters/atomic species or low ionic species using different diagnostic techniques has been reported.

  19. Mass spectroscopic characterization of yttrium-containing metallofullerene YC82 using resonant laser ablation

    SciTech Connect

    Wang Shiliang; Tian Jiahe; Dai Songtao; Chen Dieyan; Luo Chuping; Tan Haisong; Gan Liangbing; Huang Chunhui

    1995-04-01

    In this paper, resonant laser ablation time-of-flight mass spectroscopy (RLA-TOF-MS) has been used to mass spectroscopic characterization of yttrium-containing fullerenes. Solvent soluble, yttrium-containing fullerenes are extracted from yttrium/carbon soot produced by the carbon-arc fullerene generation method. The RLA-TOF mass spectra indicate the presence of YC82. The metallofullerences YC60, YC70, Y2C82 and a series of Y2C2n are not observed by RLA-TOF-MS. This result is consistent with the ESR spectral result reported by Shinohara et al.

  20. Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie

    2016-05-01

    We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.

  1. Pulsed laser ablation of borax target in vacuum and hydrogen DC glow discharges

    NASA Astrophysics Data System (ADS)

    Kale, A. N.; Miotello, A.; Mosaner, P.

    2006-09-01

    The aim of our experiment was to produce a material with B sbnd H bonds for applications in hydrogen storage and generation. By using KrF excimer laser ( λ = 248 nm) ablation of borax (Na 2B 4O 7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm 2. Films were deposited under gas pressure of 1 × 10 -5 to 5 × 10 -2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of B sbnd O stretching and B sbnd O sbnd B bending bonds. Possible reasons for absence of B sbnd H bonds are attributed to binding enthalpy of the competing molecules.

  2. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  3. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  4. A study of particle generation during laser ablation with applications

    SciTech Connect

    Liu, Chunyi

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  5. Laser ablation laser induced fluorescence for sensitive detection of heavy metals in water

    NASA Astrophysics Data System (ADS)

    Godwal, Yogesh

    Laser Induced Breakdown Spectroscopy LIBS is a fast non-contact technique for the analysis of the elemental composition using spectral information of the emission from a laser-induced plasma. For the LIBS studies in this thesis the focus has been in using very low energy, microjoule pulses in order to give high spatial resolution and minimize the laser system requirements. This is a regime that we refer to as microLIBS. Under such conditions it is important to maximize the signal detected to give the lowest limit of detection LOD possible. One technique to improve the signal to noise ratios is by coupling LIBS with Laser Induced Fluorescence. This is a technique where the first pulse creates a vapor plume and the second pulse tuned to a resonant absorption line of the species of interest re-excites the plume. We term this technique as Laser ablation Laser Induced Fluorescence LA-LIF. We have been investigating the performance of LA-LIF at low pulse energies (≤ 1 mJ for both pulses) for the detection of elemental contaminants in water. This technique allows reasonable performance compared to high energy single-pulse LIBS, but at a much reduced total energy expenditure. This allows LODs in the parts per billion range ppb range which typically cannot be obtained with low energy single pulse probing of the systems. This approach or exceeds the sensitivities which can be obtained with many shots using much larger energy systems. In this thesis we investigated the performance of LIBS at low pulse energies for the detection of Pb as a contaminant in water. An LOD of 70 ppb was obtained for an accumulation of 100 shots with the ablation laser pulse energy of 250 muJ and an excitation laser pulse energy of 8 muJ. A systematic study of the detector conditions was made for the system for the detection of Pb. Scaling laws for the LOD in terms of the pump and probe energies were measured and also the effect of detector gain, the gate delay and the gate width were studied. In

  6. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    PubMed

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  7. Laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  8. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  9. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  10. Laser writing of nanostructures on bulk Al via its ablation in liquids.

    PubMed

    Stratakis, E; Zorba, V; Barberoglou, M; Fotakis, C; Shafeev, G A

    2009-03-11

    Experimental results are presented on the formation of self-organized nanostructures (NSs) on a bulk Al target under its ablation in liquids--water and ethanol--with short laser pulses from 180 femtoseconds (fs) through 350 picoseconds (ps). NSs are characterized by atomic force microscopy, field emission scanning electron microscopy, optical absorption spectroscopy and x-ray diffraction. The period of NSs does not depend on the laser wavelength used from 248 through 800 nm and is approximately 200 nm. NSs on Al show the characteristic absorption peak in the near UV which has been attributed to plasmon oscillation of electrons. The wings of this peak, extending to the visible, lead to a distinct yellow coloration of the processed Al surface. Ultrafast laser structuring of bulk aluminum in liquids may be potentially a promising technique for efficient production of nanosized aluminum.

  11. Laser spectroscopy of iridium monoboride

    NASA Astrophysics Data System (ADS)

    Ye, Jianjun; Pang, H. F.; Wong, A. M.-Y.; Leung, J. W.-H.; Cheung, A. S.-C.

    2008-04-01

    High resolution laser induced fluorescence spectrum of IrB in the spectral region between 545 and 610nm has been recorded and analyzed. Reacting laser-ablated iridium atoms with 1% B2H6 seeded in argon produced the IrB molecule. This is the first experimental observation of the IrB molecule. Four vibronic transition bands, (v,0) with v =0-3 of an electronic transition system, have been observed. Spectra of all four isotopic molecules, Ir191B10, Ir193B10, Ir191B11, and Ir193B11, were recorded. Isotopic relationships confirmed the carrier of the spectra and the vibrational quantum number assignment. Preliminary analysis of rotational lines showed that these vibronic bands are with Ω'=2 and Ω″=3. The electronic transition identified is assigned as the [16.5]Π23-XΔ33 system. Partially resolved hyperfine structure which conforms to the Hund's case aβ coupling scheme has been observed and analyzed. The bond length r0 of the lower XΔ33 state of IrB was determined to be 1.7675Å.

  12. Ablation of selected conducting layers by fiber laser

    NASA Astrophysics Data System (ADS)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2014-08-01

    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  13. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    NASA Astrophysics Data System (ADS)

    Ouyang, Peixuan; Li, Peijie; Leksina, E. G.; Michurin, S. V.; He, Liangju

    2016-01-01

    In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  14. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    SciTech Connect

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  15. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bullock, Anthony Burlingame

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time- delayed, two-color subpicoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence (θdivergence < 5°) shows the ablated plume temperature to be very low at long time delays (T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 μm films show these plumes to be of high neutral atom density (nn of order 10

  16. Peak polarity overturn for charged particles in laser ablation process

    SciTech Connect

    Zhang, P.; Ji, Y. J.; Lai, X. M.; Bian, B. M.; Li, Z. H.

    2006-07-01

    The charged particles emitted during laser ablation off a brass target are detected using a metal probe in air. A special phenomenon is found in the recorded signals: following a giant electromagnetic peak observed immediately after the emission of the pulsed laser, a minor peak occurs whose polarity merely depends on the distance between the probe and the laser focal spot on the target. Under the condition of our experiment, the overturn point is 1.47 mm, i.e., the minor peak remains negative when the probe distance is less than 1.47 mm; it becomes positive while the probe is set at a distance beyond 1.47 mm. A hypothesis is proposed to explain the overturn that takes the flight behavior of the charged particles both in plasma and propagating shock wave into consideration.

  17. Microfabrication of Fresnel zone plates by laser induced solid ablation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  18. Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures

    SciTech Connect

    Fiutowski, J.; Maibohm, C.; Kjelstrup-Hansen, J.; Rubahn, H.-G.

    2011-05-09

    Subdiffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures. The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron microscopy and atomic force microscopy. Thickness variation in the polymer film enables the investigation of either the initial ablation phase or ablation induced by collective enhancement effects.

  19. Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR

    NASA Astrophysics Data System (ADS)

    Wolynski, Alexander; Herrmann, Thomas; Mucha, Patrick; Haloui, Hatim; L'huillier, Johannes

    Laser processing of carbon fibre reinforced plastics (CFRP) has a great industrial relevance for high performance structural parts in airplanes, machine tools and cars. Through-holes drilled by nanosecond laser pulses show thermal induced molten layers and voids. Recently, picosecond lasers have demonstrated the ability to drill high-efficient and high-quality rivet through-holes. In this paper a high-power picosecond laser system operating at different wavelengths (355 nm, 532 nm and 1064 nm) has been used for CFRP ablation experiments to study the influence of different laser parameters in terms of machining quality and processing time.

  20. Nanosecond and femtosecond laser ablation of brass: Particulate and ICPMS measurements

    SciTech Connect

    Liu, C.; Mao, X.L.; Mao, S.; Zeng, X.; Greif, R.; Russo, R.E.

    2003-11-01

    Femtosecond and nanosecond lasers were compared for ablating brass alloys. All operating parameters from both lasers were equal except for the pulse duration. The ablated aerosol vapor was collected on silicon substrates for particle size measurements or sent into an inductively coupled plasma mass spectrometer. The diameters and size distribution of particulates were measured from scanning electron microscope (SEM) images of the collected ablated aerosol. SEM measurements showed that particles ablated using nanosecond pulses were single spherical entities ranging in diameter from several micrometers to several hundred nanometers. Primary particles ablated using femtosecond ablation were {approx}100 nm in diameter but formed large agglomerates. ICPMS showed enhanced signal intensity and stability using femtosecond compared to nanosecond laser ablation.

  1. Customized ablation using an all-solid-state deep-UV laser

    NASA Astrophysics Data System (ADS)

    Korn, G.; Lenzner, M.; Kittelmann, O.; Zatonski, R.; Kirsch, M.; Kuklin, Y.

    2003-07-01

    We show first deep UV ablation results achieved with our new all solid state laser system. The system parameters allow high repetition rate ablation with a small spot diameter of about 0.250mm and a fluence of 350 mJ/cm2 at a wavelength of 210 nm using sequential frequency conversion of a diode pumped laser source. The single shot and multishot ablation rates as well as the ablation profiles have been defined using MicroProf (Fries Research and Technology GmbH, Germany). By means of computer controlled scanning we produce smooth ablation profiles corresponding to a correction of myopia, hyperopia or astigmatism. Due to the small spot size and high repetition rate of the laser we are able to generate in short time intervals complicated ablation profiles described by higher order polynomial functions which are required for the needs of customized corneal ablation.

  2. Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Pershin, S. M.; Bunkin, A. F.; Samokhvalov, A. A.; Veiko, V. P.; Kudryashov, S. I.; Ionin, A. A.

    2016-10-01

    Single vs multimode laser beams were compared for double pulse laser ablation, plasma properties and laser induced breakdown spectroscopy (LIBS) analytical capabilities. Laser beams with Gaussian and multimode profiles were generated within the same Nd:YAG laser in single and double pulse regimes. Gaussian beam produced a small and deep crater while multimode beam formed a wide shallow crater. Greater double pulse enhancement of ablated material and plasma volume were observed for Gaussian beam sampling. The higher intensity for atomic/ionic lines in the plasma spectra was observed for multimode beam sampling due to greater laser pulse energy and larger ablated mass. Interestingly, spectra line intensity enhancement for double pulse ablation was 2-3 times greater for Gaussian than for multimode beam ablation. Background emission decreased for plasma induced by multimode beam when using double pulse mode while for Gaussian beam an opposite dependence was observed. Surprisingly, higher peak fluence at sample surface for Gaussian beam didn't provide higher plasma temperature and electron density for double pulse ablation. Analytical capabilities of LIBS method were compared for double pulse plasma induced by Gaussian and multimode beam in terms of precision, sensitivity and linearity of calibration curves. It was observed that Gaussian beam sampling leads to improvement of analysis precision while sensitivity was element dependent.

  3. Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry

    SciTech Connect

    Wicklein, S.; Koehl, A.; Dittmann, R.; Sambri, A.; Amoruso, S.; Wang, X.; Bruzzese, R.

    2012-09-24

    By combining structural and chemical thin film analysis with detailed plume diagnostics and modeling of the laser plume dynamics, we are able to elucidate the different physical mechanisms determining the stoichiometry of the complex oxides model material SrTiO{sub 3} during pulsed laser deposition. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O{sub 2} background gas. On the one hand, a progressive preferential ablation of the Ti species with increasing laser fluence leads to a regime of Ti-rich thin film growth at larger fluences. On the other hand, in the low laser fluence regime, a more effective scattering of the lighter Ti plume species results in Sr rich films.

  4. Particle generation by ultraviolet-laser ablation during surface decontamination.

    PubMed

    Lee, Doh-Won; Cheng, Meng-Dawn

    2006-11-01

    A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle > 500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at approximately 50-70 nm was detected by SMPS and a larger mode (peaked at approximately 0.70-0.85 microm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50-70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces.

  5. Ablation processing of biomedical materials by ultrashort laser pulse ranging from 50 fs through 2 ps

    NASA Astrophysics Data System (ADS)

    Ozono, Kazue; Obara, Minoru; Sakuma, Jun

    2003-06-01

    In recent years, femtosecond laser processing of human hard/soft tissues has been studied. Here, we have demonstrated ablation etching of hydroxyapatite. Hydroxyapatite (Ca10(PO4)6(OH)2) is a key component of human tooth and human bone. The human bone is mainly made of hydroxyapatite oriented along the collagen. The micromachining of hydroxyapatite is highly required for orthopedics and dentistry. The important issue is to preserve the chemical property of the ablated surface. If chemical properties of hydroxyapatite change once, the human bone or tooth cannot grow again after laser processing. As for nanosecond laser ablation (for example excimer laser ablation), the relative content of calcium and phosphorus in (Ca10(PO4)6(OH)2) is found to change after laser ablation. We used here pulsewidth tunable output from 50 fs through 2 ps at 820 nm and 1 kpps. We measured calcium spectrum and phosphorus spectrum of the ablated surface of hydroxyapatite by XPS. As a result, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs - 2-ps laser ablation. We also demonstrated ablation processing of human tooth with Ti:sapphire laser, and precise ablation processing and microstructure fabrication are realized.

  6. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism.

  7. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism. PMID:27056700

  8. Laser ablative cutting of ceramics for electronics applications

    SciTech Connect

    Warner, B. E., LLNL

    1996-03-01

    Pulsed, high-beam quality lasers offer unique materials processing characteristics. In processing metals, copper vapor and pulsed Nd:YAG lasers have produced micron-scale cuts and holes with submicron heat-affected zones. Since the cost of laser photons is high and average material removal rates can be slow with ablation, high value-added applications are necessary to justify processing costs. Ceramics present a special challenge for manufacturing because of their high hardness, relatively low thermal conductivity, and brittle nature. Surface damage typically limits the strength of a ceramic part to a small fraction of its bulk strength. This work investigates the use of copper vapor and pulsed diode-pumped Nd:YAG lasers to cut precision features in ceramic substrates. Variations in laser wavelength and power, processing speed, ceramic type, and assist gas were investigated with the goal of producing <100-{mu}m wide by 600-{mu}m deep cuts through silicon-carbide and alumina/titanium-carbide substrates for potential use in electronics. Silicon-carbide bars 250-{mu}m wide by 600-{mu}m high by 2.5-cm long were laser cut from substrates without fracture.

  9. Visual laser ablation of the prostate (VLAP) with the prostascope

    NASA Astrophysics Data System (ADS)

    Mattioli, Stefano; Cremona, M.; Ackaert, K. J.

    1997-12-01

    Introduction: Laser ablation of the prostatic tissue or laser prostatectomy, is used as an alternative method to traditional endoscopic resection of the prostate. The usual side-firing Nd:YAG laser fiber for the treatment of obstructive symptoms has operational difficulties, a high cost and often poor early results. Materials: We describe the laser coagulation of the prostate using a 600-um bare fiber inserted in a modified Albarran bridge which included at the tip, a new gold-plated deflectable reflector. The complete device passes through a 21Fr.rigid cysto- urethroscope. The system and the fiber can be used for several dozen treatments. The dosimetry was 2000 J per 1 cc of prostatic tissue. Methods: VLAP using the prostascope was performed on more than 70 men in one institution, and 150 in a second one, for obstructive symptoms due to benign prostatic hyperplasia. The parameter included AUA symptom score, flow rate, residual volume and complications. Data were obtained preoperatively and 1, 3, 6 and 12 months after treatment. Discussion: According to our data VLAP with this system is a save, minimal invasive and effective treatment. Results are comparable to other non-contact laser devices. As the gold-plated reflector is inexpensive and the standard bare fiber can be used repeatedly, the cost is less than of an usual side-firing laser fiber.

  10. Laser Ablation Plume Expansion In The Presence Of Charged Impurities

    SciTech Connect

    Djebli, M.

    2008-09-23

    The expansion of plasma created by laser ablation is investigated using the fluid model. At the first stage of the expansion, electrons are considered in thermal equilibrium. The presence of highly charged impurities is considered through Poisson's equation. The set of nonlinear differential equations is solved using a moving boundary and taken into account the charge separation effect. The uniformly distributed impurities can accelerate or decelerate the ion motion depending on their charge and concentration. It is also found that the separation of the charge is valid for a specific time which depends on the impurities parameters.

  11. Ablation layers to prevent pitting in laser peening

    DOEpatents

    Hackel, Lloyd A

    2016-08-09

    A hybrid ablation layer that comprises a separate under layer is applied to a material to prevent pitting resulting from laser peening. The underlayer adheres to the surface of the workpiece to be peened and does not have bubbles and voids that exceed an acceptable size. One or more overlayers are placed over and in contact with the underlayer. Any bubbles formed under the over layers are insulated from the surface to be peened. The process significantly reduces the incidence of pits on peened surfaces.

  12. Ultra-fast movies of thin-film laser ablation

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  13. Matrix Effects on Boron Containing Materials due to Laser Ablation Molecular Isotopic Spectrometry (LAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA

  14. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    DOEpatents

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  15. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    SciTech Connect

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  16. Effect of nanosecond pulse laser ablation on the surface morphology of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-09-01

    In this study, we investigated the ripple patterns formation on the surface of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass using a nanosecond pulse laser ablation in air with a wavelength of 1064 nm. The strong thermal ablation phenomenon could be observed on vit1 BMG surface at laser energy of 200 mJ as a result of the adhibition of confining overlay. Many periodic ripples had formed on the edge of the ablated area at laser energy of 400 mJ because of the high intensity pulsed laser beam. The underlying mechanism of the periodic ripples formation could be explained by the K-H hydrodynamic instability theory. It had been shown that laser ablation with 600 mJ and 200 pulses results in the formation of many micro-cracks on the ablated area. Further analysis showed that the spatial occupation of the laser ablated area and the spacing between two adjacent ripples increased as the laser energy and the number of incident laser pulses increasing. The surface ripples feature on the edge of ablated area became more obvious with increasing laser pulses, but it was not correlated closely with the laser energies variation.

  17. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    SciTech Connect

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  18. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  19. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    NASA Astrophysics Data System (ADS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong

    2014-10-01

    Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm2 to 0.63 J/cm2. The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium.

  20. Improved analytical characterization of solid waste-forms by fundamental development of laser ablation technology. 1998 annual progress report

    SciTech Connect

    Russo, R.E.

    1998-06-01

    'This EMSP research endeavors to understand fundamental laser-ablation sampling processes and to determine the influence of these processes on analytical characterization of EM waste-site samples. The issues germane to the EMSP are sensitivity and accuracy of analysis. These issues are researched by studying fractionation, sample transport, mass loading, and analytical system optimization. Inductively coupled plasma-mass spectroscopy (ICP-MS) is emphasized in this research because of its use throughout the DOE labs and sites. This report summarizes research performed over the first half of this three-year program. Four issues were emphasized to improve analytical sensitivity and accuracy, including the time dependent laser removal of mass from a solid sample, fractionation, particle generation and transport, and optimization of the ICP-MS for laser ablation sampling. This research has led to six journal publications.'

  1. Characterization of binary silver based alloys by nanosecond-infrared-laser-ablation-inductively coupled plasma-optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Márquez, Ciro; Sobral, Hugo

    2013-11-01

    A nanosecond infrared laser ablation (LA) system was examined to determine the composition of several silver-copper alloys through an inductively coupled plasma-optical emission spectrometer (ICP-OES). Samples with different concentrations were prepared and analyzed by atomic absorption, and ICP-OES after sample digestion, and compared with an energy-dispersive x-ray spectrometer-scanning electron microscopy (EDX-SEM). Elemental fractionation during the ablation process and within the ICP was investigated for different laser frequencies and fluences. Samples were used for optimizing and calibrating the coupling between LA to the ICP-OES system. Results obtained from the samples analysis were in agreement with those obtained by atomic absorption spectroscopy, ICP-OES and EDX-SEM, showing that fractionation was not significant for laser fluences higher than 55 J cm-2.

  2. Production of CeO2 Nanoparticles by Method of Laser Ablation of Bulk Metallic Cerium Targets in Liquid

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Lapin, I. N.

    2016-03-01

    The method of pulsed laser ablation in liquid was used to synthesize dispersions of cerium oxide nanoparticles when subjecting a metallic cerium target in water and alcohol to basic frequency radiation of the nanosecond Nd:YAG laser (1064 nm, 7 ns, 20 Hz). Researchers have studied the effect of laser radiation parameters, duration of impact, and optical scheme of experiment on the ablation process. The average rate of nanoparticle production was 50 mg/h in water and 25 mg/h in alcohol. Researchers have studied the size characteristics and crystalline structure of the nanoparticles produced. The particles have bimodal size distribution with 6 nm and 25 nm maximums. The average crystallite size is 17-19 nm. The crystalline structure of nanoparticles, namely cubic cerium oxide (fluorite structure), space group Fm-3m, is confirmed by the X-ray diffraction data, as well as optical absorption spectra and Raman spectroscopy.

  3. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  4. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  5. Near-IR imaging of Erbium Laser Ablation with a Water Spray.

    PubMed

    Darling, Cynthia L; Maffei, Marie E; Fried, William A; Fried, Daniel

    2008-01-20

    Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm(1). Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO(2) and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water. PMID:21892255

  6. A study of laser ablation propulsion using polyoxymethelyne and a high power diode laser

    NASA Astrophysics Data System (ADS)

    Kolesar, Michael D.

    With an increased interest by universities, government and commercial groups in using constellations of pico and nano satellites, the need for micro-thrusters to aid in the station-keeping capabilities has become strong. This report examines using polymers and a laser to ablate material as a potential propulsion option for station-keeping. Homopolymer polyoxymethelyne (POM), commonly known as Delrin(TM), was tested as a fuel for a high powered (20 Watt 980 nm) solid state diode laser ablation thruster to be used for station-keeping on pico and nano sized satellites. The experiments required a partial vacuum to reduce the effects of air decomposition and remove water vapor during the ablation event. The vacuum chamber, shadowgraph, and an impulse measurement system were all designed and built around the 20-Watt laser. Three different sample thicknesses were tested (.005", .010", and .020") to determine the behavior of the polymer. The laser was focused onto the POM sample, which was mounted to a load cell and calibrated to measure the impulse of the system imparted by the laser pulse. The calculated thrust values ranged from 600 microN to 1300 microN with a high uncertainty due to the small sample size. The exhaust plume from the ablation event was captured using a shadowgraph. A low velocity was recorded because the chamber was not a complete vacuum, causing the exhaust plume to collide with the air molecules in the test chamber. However the load cell results suggested that 1.30 mN per burst can be produced with an uncertainty of 30%. With the work outlined in this paper, POM shows the promise and challenge of being a good candidate as a fuel material. POM warrants further development and investment as a fuel to be used with a laser ablation micro-thruster.

  7. Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser

    SciTech Connect

    Schoenly, J.; Seka, W.; Rechmann, P.

    2009-10-19

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences ≤3 J/cm^2.

  8. Photoluminescence from gas-suspended nanoparticles synthesized by laser ablation: A pathway to optimized nanomaterials

    SciTech Connect

    Geohegan, D.B.; Puretzky, A.A.; Duscher, G.; Pennycook, S.J.

    1998-02-01

    Laser ablation of solids into background gases is a proven cluster-assembly method. It was used to synthesize the first carbon fullerenes in 1985.(1) In this technique, a solid material is vaporized by a high-powered laser pulse to form a partially-ionized plasma containing atoms and small molecules. The hot plasma plume quickly expands to collisionless conditions unless confined by a background gas. In this case, the plume atoms become trapped together and can form clusters as small as a few atoms, or larger clusters of 1--10 nm diameter (25--26,000 atoms for silicon). However, until now very little was known of the temporal and spatial scales for nanoparticle formation in background gases, or how the nanoparticles are transported and deposited after their formation. It is often unclear whether nanoparticles found on substrates were grown in the gas phase or from nuclei formed on the substrate surface. Here, the formation and transport of silicon nanoparticles in laser ablation plumes is revealed by a comparison of Rayleigh-scattering and the first photoluminescence measurements of nanoparticles suspended in background gases. Combined with Z-contrast transmission electron microscopy (TEM) and high resolution electron energy loss spectroscopy (HREELS) analysis of individual nanoparticles, the authors investigate their fundamental light absorption and emission properties without the influence of neighboring nanoparticles or surrounding solid or liquid hosts. Such understanding is critical for the deposition of optimized films.

  9. Hard tissue ablation with a spray-assisted mid-IR laser.

    PubMed

    Kang, H W; Rizoiu, I; Welch, A J

    2007-12-21

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment. PMID:18065837

  10. Laser Direct Ablation of Indium Tin Oxide Films on Both Sides of Various Substrates.

    PubMed

    Oh, Gi Taek; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2015-03-01

    We demonstrate ablation of indium tin oxide (ITO) films onto both glass and polyethylene terephthalate (PET) substrates, using a Q-switched diode-pumped neodymium-doped yttrium vanadate laser (Nd:YVO4, λ = 1064 nm) incident on both the front and back sides of the substrate. From scanning electron microscope (SEM) images and depth profile data, ITO patterns that were laser-ablated onto glass from the back side showed a larger abrupt change in the ablated line width than those ablated from the front. However, there were only slight differences in ablated line widths due to the direction of the incident laser beam. We provide a possible explanation in terms of several factors: dispersion of laser beam energy through the substrate, overlapping of each laser beam spot due to scanning speed, and the thickness of glass and PET substrates. PMID:26413678

  11. Positioning for Endovenous Laser Ablation: Comparative Study with Thigh Stripping

    PubMed Central

    Masaki, Hisao; Yunoki, Yasuhiro; Watanabe, Yoshiko; Furukawa, Hiroshi; Yamasawa, Takahiko; Takiuchi, Hiroki; Honda, Takeshi; Kuwada, Noriaki; Kojima, Kenji; Tanemoto, Kazuo

    2016-01-01

    We performed a comparative study of surgical outcomes and venous functions between endovenous laser ablation with a 980-nm diode laser (EV group) and thigh stripping (ST group). There were no severe complications and initial success rates were 100% in both groups. In the EV group, preoperative symptoms improved in 94.3% of cases, the venous occlusion rate was 98%, and endovenous heat induced thrombosis had occurred in 11.9% (Class 3: 0.7%) at 12 months after the operation. Although comparative study of postoperative venous function by air plethysmography showed significant improvement in both groups, there was less recovery of postoperative venous function in the EV than in the ST group. (This article is a translation of J Jpn Coll Angiol 2015; 55: 13–20.) PMID:27738455

  12. Nitrogen doping and structural properties of amorphous carbon films deposited by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Rusop, M.; Mominuzzaman, S. M.; Tian, X. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2002-09-01

    Nitrogen (N) was successfully introduced into amorphous carbon (a-C) films by ablating carbon (C) from a camphoric carbon (CC) target with varying ambient N partial pressure (NPP) using pulsed laser ablation (PLA). We found that the N content in the film changed on varying the NPP. The room temperature conductivity ( σRT) decreases initially at 0.1 mTorr and then increases at higher NPP up to 30 mTorr and decreases thereafter. We can relate this variation to doping of N in the films for low N content as the optical gap ( Eg) remains unchanged till the film is deposited at 1 mTorr. Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy studies also suggest that no graphitization whatsoever occurs in the film after N addition up to 1 mTorr. Although no structural change in the films was found with N addition up to 1 mTorr, the σRT depends on the N content. With higher NPP up to 30 mTorr, since Eg decreases with increasing σRT, we related this phenomenon to the graphitization. However, above 30 mTorr, since Eg increases with the decrease of σRT, we related this phenomenon to the structural change in the film.

  13. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  14. Endometrial ablation using SideFire laser fiber

    NASA Astrophysics Data System (ADS)

    Everett, Royice B.

    1996-05-01

    The first successful report using the neodymium:yttrium-aluminum-garnet (Nd:YAG) Laser to control hypermenorrhea was reported in 1981. Variations on the treatment technique have been attempted to improve the amenorrhea rate. Reports using the Nd:YAG laser with the blanching or non-touch technique seem to result in a better outcome and higher rate of total amenorrhea than using the dragging technique. Due to the report of improved rates of amenorrhea when using the blanching technique and the Nd:YAG laser, a fiber was developed to direct the laser energy at right angles to the axis of the fiber, therefore allowing a total treatment of the entire uterus in a perpendicular fashion. The theoretic benefit of this would be a more complete and predictable destruction of the endometrial lining, avoiding fluid overload by coagulating and sealing of the vessels and lymphatic. After a follow-up of 12 to 36 months, 56 of the 60 patients (93%) who underwent complete endometrial ablation with the SideFireTM technique had excellent results. Total absolute amenorrhea resulted in 50 patients (83%). Contrary to earlier reports, using the rollerball electrode, this procedure technique resulted in no decrease in results in younger patients. In conclusion, this seems to be a reasonable alternative which offers improved results when compared to previously available methods using electrosurgery or the Nd:YAG laser without the use of the SideFireTM device.

  15. Laser ablation of basal cell carcinomas guided by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  16. Below band-gap laser ablation of diamond for transmission electron microscopy

    NASA Technical Reports Server (NTRS)

    George, T.; Foote, M. C.; Vasquez, R. P.; Fortier, E. P.; Posthill, J. B.

    1993-01-01

    A 248 nm excimer laser was used to thin naturally occurring type 1a diamond substrates at normal and glancing (22 deg) incidence. Perforation of a 250-micron-thick substrate was achieved in about 15 min at normal incidence. While the substrate thinned at glancing incidence was found to have large electron-transparent areas, that thinned at normal incidence required additional argon-ion milling to achieve electron transparency. X-ray photoelectron spectroscopy of the back surface of the diamond failed to detect any graphite or glassy carbon, confirming that damage due to laser ablation occurs only at the incident surface. Samples prepared using this technique imaged in the transmission electron microscope were observed to have retained the nitrogen platelets characteristic of such type 1a diamonds.

  17. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    PubMed

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  18. Neutral atomic jet generation by laser ablation of copper targets

    SciTech Connect

    Matos, J. B. de; Rodrigues, N. A. S.

    2014-08-15

    This work aimed the obtainment of a neutral atomic jet departing from a plume generated by laser ablation of copper targets. A pair of electrodes together with a transducer pressure sensor was used to study the ablated plume charge composition and also to measure the ion extraction from the plasma plume. The neutral beam was produced with this setup and the relative abundance of neutrals in the plasma was measured, it decreases from 30% to 8% when the laser fluence is varied from 20 J/cm{sup 2} to 32 J/cm{sup 2}. The necessary voltage to completely remove the ions from the plume varied from 10 V to 230 V in the same fluence range. TOF analysis resulted in center of mass velocities between 3.4 and 4.6 km/s, longitudinal temperature in the range from 1 × 10{sup 4} K to 2.4 × 10{sup 4} K and a Mach number of M = 2.36, calculated using purely hydrodynamic expansion approximation.

  19. Direct Drive Beryllium Ablator Capsules for the Omega Laser

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Wilson, D. C.; Cobble, J. A.; Murphy, T. J.; Cooley, J. C.; Salazar, M. A.; Rivera Nobile, G., Jr.

    2001-10-01

    We are designing direct drive beryllium ablator capsules for the Omega laser as part of our effort to develop beryllium ablator ignition capsules for the National Ignition Facility (NIF). The main goals for this experimental campaign is to develop the fabrication expertise for roughly NIF size capsules and obtain experimental data on how the copper- brazed joint between the beryllium hemispheres affects the implosion. Our proposed design calls for an 1180 micron outisde diameter capsule with 40 micron thick beryllium walls containing 50 atm of deuterium gas. Some of the capsules will also have 0.05 atm of argon. We plan to image the joints with argon fluorescence from inside the capsule. Our plan is to use a 1 ns square pulse with 30 kJ of laser energy. With this drive, we expect the convergence ratio to be about 6.5 to 7. Depending on the capsule design details, we expect that the peak temperature will be 490 ± 40 eV, and the neutron yield will be anywhere from 1× 10^8 to 8× 10^8 neutrons. Some of the uncertainty comes from whether or not we use argon and questions about how much mix the copper-brazed joint will cause. The yield also depends strongly on which beryllium alloy we use. We calculate better implosions in direct drive with pure beryllium, but requirements on allowable grain size may force us to use copper-doped beryllium, which would reduce the yield by about 50%.

  20. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  1. Absence of amorphous phase in high power femtosecond laser-ablated silicon

    SciTech Connect

    Rogers, Matthew S.; Grigoropoulos, Costas P.; Minor, Andrew M.; Mao, Samuel S.

    2009-01-05

    As femtosecond lasers emerge as viable tools for advanced microscale materials processing, it becomes increasingly important to understand the characteristics of materials resulting from femtosecond laser microablation or micromachining. We conducted transmission electron microscopy experiments to investigate crater structures in silicon produced by repetitive high power femtosecond laser ablation. Comparable experiments of nanosecond laser ablation of silicon were also performed. We found that an amorphous silicon layer that is typically produced in nanosecond laser ablation is absent when the material is irradiated by high power femtosecond laser pulses. Instead, only a defective single crystalline layer was observed in the high power femtosecond laser-ablated silicon crater. Possible mechanisms underlying the formation of the defective single crystalline phase are discussed.

  2. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Lim, Yong C.; Altman, Katrina J.; Farson, Dave F.; Flores, Katharine M.

    2009-11-01

    We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient.

  3. Laser ablation and high precision patterning of biomaterials and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Spyratou, E.; Makropoulou, M.

    2010-10-01

    The use of intraocular lenses (IOL) is the most promising method for restoring excellent vision in cataract surgery. In addition, multifocal intraocular lenses for good distant and near vision are investigated. Several new materials, techniques and patterns are studied for the formation and etching of intraocular lenses in order to improve their optical properties and reduce the diffractive aberrations. As pulsed laser ablation is well established as a universal tool for surface processing of organic polymer materials, this study was focused in using laser ablation with short and ultra short laser pulses for surface modification of PMMA and intraocular lenses, instead of using other conventional techniques. The main advantage of using very short laser pulses, e.g. of ns, ps or fs duration, is that heat diffusion into the polymer material is negligible. As a result high precision patterning of the sample, without thermal damage of the surroundings, becomes possible. In this study, laser ablation was performed using commercially available hydrophobic acrylic IOLs, hydrophilic acrylic IOLs, and PMMA IOLs, with various diopters. We investigated the ablation efficiency and the phenomenology of the etched patterns by testing the ablation rate, versus laser energy fluence, at several wavelengths and the surface modification with atomic force microscopy (AFM), or scanning electron microscopy (SEM). The irradiated polymers have different optical properties, at the applied wavelengths, and therefore, present different ablation behaviour and morphology of the laser ablated crater walls and surrounding surfaces. The experimental results, some theoretical assumptions for mathematical modeling of the relevant ablation mechanisms are discussed.

  4. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Liao, Wei; Yuan, Xiao-dong; Wang, Tao; Zu, Xiao-tao

    2016-10-01

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7-41 J/cm2) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm2) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  5. Ablation studies of Y-Ba-Cu-oxide in oxygen using a pulsed CO 2 laser

    NASA Astrophysics Data System (ADS)

    Dyer, P. E.; Key, P. H.; Monk, P.

    1992-01-01

    The depth of ablation of Y-Ba-Cu-oxide pellets as a function of pulsed CO 2 laser fluence has been measured. Up to fluences of ˜ 5 J cm -2 the data can be well fitted to a Beer's law dependence with absorption coefficient ∝ = 10 4 cm -1 and threshold fluence for ablation of 0.85 J cm -2. At higher fluences a self-regulating ablation rate regime, due to plasma formation, is encountered. Particulate deposits from 10.6 μm laser ablation are found to be much greater than with shorter wavelenghts and evidence of large particle formation by accretion of smaller ablation products is observed. The range of the ablation plume in low pressure oxygen has been studied as a function of laser fluence, irradiation spot size and ambient gas pressure and is compared with modelling.

  6. Particle Generation by Pulsed Excimer Laser Ablation in Liquid: Hollow Structures and Laser-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Yan, Zijie

    2011-12-01

    Pulsed laser ablation of solid targets in liquid media is a powerful method to fabricate micro-/nanoparticles, which has attracted much interest in the past decade. It represents a combinatorial library of constituents and interactions, and one can explore disparate regions of parameter space with outcomes that are impossible to envision a priori. In this work, a pulsed excimer laser (wavelength 248 nm, pulse width 30 ns) has been used to ablate targets in liquid media with varying laser fluences, frequencies, ablation times and surfactants. It is observed that hollow particles could be fabricated by excimer laser ablation of Al, Pt, Zn, Mg, Ag, Si, TiO2, and Nb2O5 in water or aqueous solutions. The hollow particles, with sizes from tens of nanometers to micrometers, may have smooth and continuous shells or have morphologies demonstrating that they were assembled from nanoparticles. A new mechanism has been proposed to explain the formation of these novel particle geometries. They were formed on laser-produced bubbles through bubble interface pinning by laser-produced solid species. Considering the bubble dynamics, thermodynamic and kinetic requirements have been discussed in the mechanism that can explain some phenomena associated with the formation of hollow particles, especially (1) larger particles are more likely to be hollow particles; (2) Mg and Al targets have stronger tendency to generate hollow particles; and (3) the 248 nm excimer laser is more beneficial to fabricate hollow particles in water than other lasers with longer wavelengths. The work has also demonstrated the possiblities to fabricate novel nanostructures through laser-induced reactions. Zn(OH)2/dodecyl sulfate flower-like nanostructures, AgCl cubes, and Ag2O cubes, pyramids, triangular plates, pentagonal rods and bars have been obtained via reactions between laser-produced species with water, electrolyes, or surfactant molecules. The underlying mechanisms of forming these structures have been

  7. Synthesis of oxidation resistant lead nanoparticle films by modified pulsed laser ablation

    SciTech Connect

    Shin, Eunsung; Murray, P. Terrence; Subramanyam, Guru; Malik, Hans K.; Schwartz, Kenneth L.

    2012-07-30

    Thin layers of lead nanoparticles have been produced by a modified pulsed laser ablation (PLA) process in which smaller nanoparticles were swept out of the ablation chamber by a stream of flowing Ar. Large ({mu}m-sized) particles, which are usually deposited during the standard PLA process, were successfully eliminated from the deposit. The nanoparticles deposited on room temperature substrates were well distributed, and the most probable particle diameter was in the order of 30 nm. Since lead is highly reactive, the nanoparticles formed in Ar were quickly oxidized upon exposure to air. A small partial pressure of H{sub 2}S gas was subsequently added to the effluent, downstream from the ablation chamber, and this resulted in the formation of nanoparticle deposits that were surprisingly oxidation resistant. The properties of the nanoparticle films (as determined by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and conductivity measurements) are reported, and the mechanism of the oxidation retardation process is discussed.

  8. Identification of ultra-fast electronic and thermal processes during femtosecond laser ablation of Si

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Shahid Rafique, M.; Husinsky, Wolfgang

    2012-11-01

    Ultra-fast electronic and thermal processes for the energy deposition mechanism during femtosecond laser ablation of Si have been identified by means of atomic force microscopy and Raman scattering techniques. For this purpose, Si targets were exposed with 800-nm, 25-fs Ti:sapphire laser pulses for different laser fluencies in air and under UHV (ultra high vacuum) conditions. Various nano- and microstructures on the surface of the irradiated samples are revealed by a detailed surface topography analysis. Ultra-fast electronic processes are dominant in the lower-fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower-fluence regime (0.06-0.5 J cm-2 single-shot irradiation under UHV condition and 0.25-2.5 J cm-2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25-1.5 J cm-2 multiple-shot irradiation), and a higher-fluence regime (2.5-3.5 J cm-2 multiple-shot irradiation). Around the ablation threshold fluence, most significant features identified at the Si surface are nanohillock-like structures. The appearance of these nanohillocks is regarded as typical features for fast electronic processes (correlated with existence of hot electrons) and is explained on the basis of Coulomb explosion. The growth of these typical features (nanohillocks) by femtosecond laser irradiation is an element of novelty. At moderate irradiation fluence, a ring-shaped ablation with larger bumps and periodic surface structures is observed and is considered as a footprint of ultra-fast melting. Further increase in the laser fluence, i.e. a higher-fluence regime, resulted in strong enhancement of the thermal process with the appearance of larger islands. The change in surface topography provides an innovative clue to differentiate between ultra-fast electronic processes, i.e. Coulomb explosion (sub-100 fs) at a lower-fluence regime and ultra-fast melting (hundreds of fs) at a moderate-fluence regime

  9. Dynamics of laser ablation of microparticles prior to nanoparticle generation

    SciTech Connect

    Lee, Jaemyoung; Becker, Michael F.; Keto, John W.

    2001-06-15

    To better understand the process of nanoparticle formation when microspheres are ablated by a high-energy laser pulse, we investigated the Nd:YAG laser-induced breakdown of 20 {mu}m glass microspheres using time-resolved optical shadow images and Schlieren images. Time-resolved imaging showed the location of the initial breakdown and the shockwave motion over its first 300 {mu}m of expansion. From these measurements, we determined the shockwave velocity dependence on laser fluence. Measured shockwave velocities were in the range of 1{endash}10 km/s. We also developed a numerical model that simulated breakdown in the glass microsphere and the propagation of this disturbance through the edge of the sphere where it could launch an air shock. Our objective was to simulate the shockwave velocity dependence on laser fluence and to generate glass density, temperature, and mass velocity profiles after breakdown. The simulation and experimental data compared favorably. {copyright} 2001 American Institute of Physics.

  10. Shock pressures induced in condensed matter by laser ablation

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Tierney, Thomas E.; Kopp, Roger A.; Gammel, J. Tinka

    2004-03-01

    The Trident laser was used to induce shock waves in samples of solid elements, with atomic numbers ranging from Be to Au, using pulses of 527 nm light around 1 ns long with irradiances of the order of 0.1 to 10 PW/m2. States induced by the resulting ablation process were investigated using laser Doppler velocimetry to measure the velocity history of the opposite surface. By varying the energy in the laser pulse, relations were inferred between the irradiance and the induced pressure. For samples in vacuo, an irradiance constant in time does not produce a constant pressure. Radiation hydrodynamics simulations were used to investigate the relationship between the precise pulse shape and the pressure history. In this regime of time and irradiance, it was possible to reproduce the experimental data to within their uncertainty by including conductivity-dependent deposition of laser energy, heat conduction, gray radiation diffusion, and three temperature hydrodynamics in the treatment of the plasma, with ionizations calculated using the Thomas-Fermi equation. States induced in the solid sample were fairly insensitive to the details of modeling in the plasma, so Hugoniot points may be estimated from experiments of this type given a reasonable model of the plasma. More useful applications include the generation of dynamic loading to investigate compressive strength and phase transitions, and for sample recovery.

  11. Solids sampling using double-pulse laser ablation inductivelycoupled plasma mass spectrometry

    SciTech Connect

    Gonzalez, Jhanis; Liu, Chunyi; Yoo, Jong; Mao, Xianglei; Russo,RickRick

    2003-07-01

    This paper describes the use of double-pulse laser ablation to improve ICP-MS internal precision (temporal relative standard deviation, %TRSD). Double pulse laser ablation offers reduced fractionation, increased sensitivity, and improved signal to noise ratios. The first pulse is used to ablate a large quantity of mass from the sample surface. The second pulse is applied with a variable time delay after the first pulse to break the ablated mass into a finer aerosol, which is more readily transported to and digested in the ICP-MS.

  12. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  13. Fabrication of silver nanoparticles dispersed in palm oil using laser ablation.

    PubMed

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Sadrolhosseini, Amir Reza; Mahdi, Mohd Adzir

    2010-01-01

    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time. PMID:21151470

  14. Corneal morphology after ex-vivo UV and mid-infrared laser ablation

    NASA Astrophysics Data System (ADS)

    Spyratou, E.; Voloudakis, G. E.; Moutsouris, K.; Asproudis, I.; Baltatzis, S.; Makropoulou, M.; Bacharis, C.; Serafetinides, A. A.

    2008-12-01

    In this work, ablation experiments of ex vivo porcine cornea tissue were conducted with two solid state lasers (an Er:YAG laser and the 4th harmonic of an Nd:YAG laser, both in the ns pulse width range) emitting in mid infrared and ultraviolet part of the spectrum respectively, at moderate laser fluences. The cornea epithelium of each porcine eye was manually removed before the ablation. Histology analysis of the specimens was performed, in order to examine the microscopic appearance of the ablated craters and the existence of any thermal or mechanical damage caused by the midinfrared and the UV laser irradiation. For a detailed and complete examination of the morphology of the laser ablated corneal tissue, the surface roughness was investigated by scanning electron microscopy.

  15. Atomistic investigation of ablation of amorphous polystyrene under femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Huang, YanHua; Song, ChengWei; Zhang, JunJie; Sun, Tao

    2015-03-01

    In the present work we elucidate the thermodynamic mechanisms of femtosecond (fs) laser ablation of amorphous polystyrene by means of molecular dynamics (MD) simulations. The effects of extrinsic parameter of laser pulse intensity and intrinsic parameter of molecular architecture on the laser ablation are further studied. Simulation results show that the laser ablation-induced polymeric material removal is achieved by evaporation from the surface and expansion within the bulk. Furthermore, inter-chain sliding and intra-chain change also play important roles in the microscopic deformation of the material. It is found that both the laser pulse intensity and the arrangement of phenyl groups have significant influence on the fs laser ablation of polystyrene.

  16. Low-order harmonic generation in metal ablation plasmas in nanosecond and picosecond laser regimes

    SciTech Connect

    Lopez-Arias, M.; Oujja, M.; Sanz, M.; Castillejo, M.; Ganeev, R. A.; Boltaev, G. S.; Satlikov, N. Kh.; Tugushev, R. I.; Usmanov, T.

    2012-02-15

    Low-order harmonics, third and fifth, of IR (1064 nm) laser emission have been produced in laser ablation plasmas of the metals manganese, copper and silver. The harmonics were generated in a process triggered by laser ablation followed by frequency up-conversion of a fundamental laser beam that propagates parallel to the target surface. These studies were carried out in two temporal regimes by creating the ablation plasma using either nanosecond or picosecond pulses and then probing the plasma plume with pulses of the same duration. The spatiotemporal behavior of the generated harmonics was characterized and reveals the distinct composition and dynamics of the plasma species that act as nonlinear media, allowing the comparison of different processes that control the generation efficiency. These results serve to guide the choice of laser ablation plasmas to be used for efficient high harmonic generation of laser radiation.

  17. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  18. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  19. Ablation of carbon-doped liquid propellant in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Liang, T.; Zhang, S. Q.; Gao, L.; Gao, H.; Zhang, Z. L.

    2016-04-01

    Carbon-doped liquid glycerol ablated by nanosecond pulse laser is investigated in laser plasma propulsion. It is found that the propulsion is much more correlated with the carbon content. The doped carbon can change the laser intensity and laser focal position so as to reduce the splashing quantity of the glycerol. Less consumption of the liquid volume results in a high specific impulse.

  20. Time-resolved measurements of sodium emission in the plume generated by laser ablation of myocardium tissue

    NASA Astrophysics Data System (ADS)

    de Souza, Hanriete P.; Munin, Egberto; de Vilhena Paiva, Carlos Eduardo; Alves, Leandro P.; Redigolo, Marcela L.; Pacheco, Marcos Tadeu T.

    2004-07-01

    Optical spectroscopy stands as a powerful tool to gather information on the physical phenomena involved in the laser ablation process. This work reports on the time-resolved measurement of the ablation plume generated by a Q-switched Nd:YAG laser. Chicken heart tissue was used as sample. A helium-neon laser, aligned perpendicularly to the Nd:YAG laser beam and parallel to the ablated surface, was used as a probe beam. The probe light is collected by an optical fiber and sent to a spectrophotometer for analysis. A CCD detector was connected to the spectrometer. The technique reveals the differences in the plume behavior. Our results show that the plume is formed with some delay time with respect to the high energy laser pulse. The data show the constitution of the plume for different moments in time allowing the identification of the sodium emission lines in the chicken myocardium. For times lower than 40 μs just light components are ejected from the tissue while the heavier components of the plume takes much more time to be ejected and later to dissipate from the path of the probe beam.

  1. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.

    PubMed

    Fornarini, Lucilla; Fantoni, Roberta; Colao, Francesco; Santagata, Antonio; Teghil, Roberto; Elhassan, Asmaa; Harith, Mohamed A

    2009-12-31

    A model, formerly proposed and utilized to understand the formation of laser induced breakdown spectroscopy (LIBS) plasma upon irradiation with nanosecond laser pulses at different fluences and wavelengths, has been extended to the irradiation with femtosecond laser pulses in order to control the fractionation mechanisms which heavily affect the application of laser-ablation-based microanalytical techniques. The model takes into account the different chemico-physical processes occurring during the interaction of an ultrashort laser pulse with a metallic surface. In particular, a two-temperature description, relevant to the electrons and lattice of the substrate, respectively, has been introduced and applied to different ternary and quaternary copper-based alloys subjected to fs and ns ablation both in the visible (527 nm) and in the UV (248 nm). The model has been found able to reproduce the shorter plasma duration experimentally found upon fs laser ablation. Kinetic decay times of several copper (major element) emission lines have been examined together with those relevant to the main plasma parameters. The plasma experimental temperature, derived assuming a Boltzmann distribution, and the electron density following the Saha equation have been compared with the corresponding theoretical data. A satisfactory description of plasma parameters and main matrix constituent composition has been obtained in the time window where local thermal equilibrium was assumed for LIBS data analysis. Improved analytical capabilities are predicted upon delayed detection of plasma emission in femtosecond LIBS, in relation to the better LOD achieved and to the improved data reproducibility expected. Results support the utilization of ultrafast laser sources for trace detection, despite the residual fractionation occurring in the examined range of fluences which affects the linearity of experimental calibration curves built for tin and lead after internal standardization on copper. The

  2. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  3. Vacancies ordered in screw form (VOSF) and layered indium selenide thin film deposition by laser back ablation

    NASA Astrophysics Data System (ADS)

    Beck, Kenneth M.; Wiley, William R.; Venkatasubramanian, Eswaranand; Ohuchi, Fumio

    2009-09-01

    Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In 2Se 3. Invacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate.

  4. Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide Thin Film Deposition by Laser Back Ablation

    SciTech Connect

    Beck, Kenneth M.; Wiley, William R.; Venkatasubramanian, Eswaranand; Ohuchi, Fumio S.

    2009-09-30

    Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In2Se3. In-vacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate.

  5. Acoustic signal characteristics during IR laser ablation and their consequences for acoustic tissue discrimination

    NASA Astrophysics Data System (ADS)

    Nahen, Kester; Vogel, Alfred

    2000-06-01

    IR laser ablation of skin is accompanied by acoustic signals the characteristics of which are closely linked to the ablation dynamics. A discrimination between different tissue layers, for example necrotic and vital tissue during laser burn debridement, is therefore possible by an analysis of the acoustic signal. We were able to discriminate tissue layers by evaluating the acoustic energy. To get a better understanding of the tissue specificity of the ablation noise, we investigated the correlation between sample water content, ablation dynamics, and characteristics of the acoustic signal. A free running Er:YAG laser with a maximum pulse energy of 2 J and a spot diameter of 5 mm was used to ablate gelatin samples with different water content. The ablation noise in air was detected using a piezoelectric transducer with a bandwidth of 1 MHz, and the acoustic signal generated inside the ablated sample was measured simultaneously ba a piezoelectric transducer in contact with the sample. Laser flash Schlieren photography was used to investigate the expansion velocity of the vapor plume and the velocity of the ejected material. We observed large differences between the ablation dynamics and material ejection velocity for gelatin samples with 70% and 90% water content. These differences cannot be explained by the small change of the gelatin absorption coefficient, but are largely related to differences of the mechanical properties of the sample. The different ablation dynamics are responsible for an increase of the acoustic energy by a factor of 10 for the sample with the higher water content.

  6. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    PubMed

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed.

  7. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    PubMed

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed. PMID:24105399

  8. Research and application of surface heat treatment for multipulse laser ablation of materials

    NASA Astrophysics Data System (ADS)

    Cai, Song; Chen, Genyu; Zhou, Cong

    2015-11-01

    This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.

  9. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-01

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  10. Ablation laser femtoseconde pour le dépôt de DLC

    NASA Astrophysics Data System (ADS)

    Loir, A.-S.; Garrelie, F.; Donnet, C.; Goutaland, F.; Belin, M.; Subtil, J.-L.; Le Harzic, R.; Rogemond, F.; Ouerdane, Y.; Laporte, P.

    2003-06-01

    Des films de Diamond-Like Carbon (DLC) ont été déposés, sous vide poussé, par ablation d'une cible de graphite avec un laser Ti : saphir (durée d'impulsion 150 fs, fréquence de répétition 1 kHz, énergie par impulsion 1,5 mJ, longueur d'onde 800 nm) sur substrat standard. Les propriétés de ces couches (structure, adhérence, propriétés nanomécaniques) ont été caractérisées, en fonction des conditions d'élaboration. La caractérisation par spectroscopie Raman de la structure des dépôts obtenus a révélé la présence de diamant nanocristallin au sein d'une matrice amorphe. Le taux d'hybridation sp^3 des couches, déterminé à partir des spectres obtenus par XANES (X-ray Absorption Near Edge Speciroscopy), est voisin de 70 %. Ces différents résultats sont corrélés avec la caractérisation par imagerie résolue en temps du panache plasma créé par ablation laser femtoseconde.

  11. Laser ablation and deposition of Bioglass ® 45S5 thin films

    NASA Astrophysics Data System (ADS)

    D'Alessio, L.; Ferro, D.; Marotta, V.; Santagata, A.; Teghil, R.; Zaccagnino, M.

    2001-11-01

    A study of the laser ablation and deposition, on Ti6Al4V substrates, of a biological active glass (Bioglass ® 45S5) is reported. The gaseous phase composition has been determined by laser ablation inductively coupled plasma mass spectrometry, optical imaging and emission spectroscopy. The deposited films were studied by scanning electron microscopy coupled with energy and wavelength dispersive X-ray analysis and X-ray diffraction. The adhesion of films to the substrates has been studied by scratch tests. Moreover, after exposing the coatings to a simulating body fluid solution, their bioactivity has been monitored by X-ray diffraction analysis of the hydroxylapatite growth. This procedure has been followed for different time scales up to a maximum of 24 days. The deposition mechanism seems to be related mainly to the mechanical transport of the target material in form of droplets, while the gaseous phase, having a very different composition, plays a marginal role. The overall film retains the target stoichiometry and bioactivity in a large range of experimental conditions.

  12. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  13. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    SciTech Connect

    Rapp, S.; Heinrich, G.; Wollgarten, M.; Huber, H. P.; Schmidt, M.

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deeper understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.

  14. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W. J.; Hasenberg, Tom; Kang, Hyun Wook

    2015-12-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391 mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  15. Optical trapping and laser ablation of microtubules in fission yeast.

    PubMed

    Maghelli, Nicola; Tolić-Nørrelykke, Iva M

    2010-01-01

    Manipulation has been used as a powerful investigation technique since the early history of biology. Every technical advance resulted in more refined instruments that led to the discovery of new phenomena and to the solution of old problems. The invention of laser in 1960 gave birth to what is now called optical manipulation: the use of light to interact with matter. Since then, the tremendous progress of laser technology made optical manipulation not only an affordable, reliable alternative to traditional manipulation techniques but disclosed also new, intriguing applications that were previously impossible, such as contact-free manipulation. Currently, optical manipulation is used in many fields, yet has the potential of becoming an everyday technique in a broader variety of contexts. Here, we focus on two main optical manipulation techniques: optical trapping and laser ablation. We illustrate with selected applications in fission yeast how in vivo optical manipulation can be used to study organelle positioning and the force balance in the microtubule cytoskeleton. PMID:20719271

  16. Laser ablation and selective excitation directed to trace element analysis

    NASA Astrophysics Data System (ADS)

    Kwong, V. H. S.

    1980-08-01

    A trace (element) analyser based on laser ablation and selectively excited radiation is proposed as an ultramicro-ultratrace technique for quantitative element analysis. Measurements of trace quantities of chromium in samples of NBS standard reference material (steel), doped skim milk powder and doped flour were undertaken. There is a linear 45 deg slope for Log/Log plot dependence of signal versus concentration that extends at least up to 1.3% (concentration by weight) in the case of chromium. The detection limit for the current unoptimized system is in the ppm range which corresponds to the absolute detection limit of 10 to the 13th power g. Although no chemical interference effects were observed, two physical interference effects were evident: differential mass vaporization and inhomogeneous spatial and temporal distribution of fast expanding analyte. The differential Doppler shift between the atoms along the line of observation reduces self-absorption even at high analyte concentrations.

  17. Optical ablation by high-power short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D.

    1996-02-01

    Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations {tau} ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}{sup 1/2} scaling that indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional heating and melting for {tau}{approx_gt}50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results. {copyright} {ital 1996 Optical Society of America.}

  18. Laser Ablation of Gallium Arsenide in Different Solutions

    SciTech Connect

    Ganeev, R.A.; Kuroda, H.; Ryasnyanskii, A.I.

    2005-12-15

    The optical, structural, and nonlinear optical characteristics of GaAs nanoparticles obtained by laser ablation in different liquids were investigated. Thermally induced self-defocusing in GaAs solutions was observed using both a high pulse repetition rate and nanosecond pulses. In studying the nonlinear optical characteristics of GaAs solutions using picosecond and femtosecond pulses, two-photon absorption was observed. The nonlinear absorption coefficient of an aqueous GaAs solution measured by the Z-scan technique and the nonlinear susceptibility of GaAs nanoparticles were, respectively, 0.7 x 10{sup -9} cm W{sup -1} and 2 x 10{sup -9} esu at a wavelength of 795 nm.

  19. Fabrication of x-ray spiral masks by laser ablation

    NASA Astrophysics Data System (ADS)

    Peele, Andrew G.; Nugent, Keith A.; McMahon, Phillip J.; Paterson, David; Tran, Chanh Q.; Mancuso, Adrian; Mackin, Tracy R.; Hayes, Jason P.; Harvey, Erol C.; McNulty, Ian

    2002-11-01

    The manipulation of x-rays by phase structures is becoming more common through devices such as compound refractive lenses, blazed zone-plates and other structures. A spiral phase modulation structure can be used to condition an x-ray beam to produce an x-ray vortex. An x-ray beam in this form can be used as the first step towards a self-collimating beam. Also it can be used as a controllable pathological feature in studies of x-ray phase retrieval. We describe the microfabrication of a spiral phase modulation structure by excimer laser ablation. A multi-step fabrication using 15 separate chrome-on-quartz mask patterns is used to create a 16 step spiral staircase structure approximating the desired spiral ramp. The results of simulations and initial experimental results are presented.

  20. Laser-solid interaction and dynamics of the laser-ablated materials

    SciTech Connect

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-07-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors` thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c{sub s}{alpha}, where 1 {minus} {alpha} is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, {alpha} is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible.

  1. Development of a Laser Ablation ICPMS Rutile Standard

    NASA Astrophysics Data System (ADS)

    Lytle, M. L.; Kohn, M. J.

    2015-12-01

    Rutile is a common accessory mineral in igneous and high-grade metamorphic rocks and igneous, with many applications in geosciences. Rutile geochemistry, especially the high field strength elements (i.e., Nb and Ta), monitors many geological processes including subduction-zone metamorphism, while Zr provides temperature information in buffering assemblages. Rutile can also be used for U-Pb geochronology, but typically low U concentrations can make age dating difficult. Many applications of rutile now rely on laser ablation ICPMS (LA-ICPMS) analysis, a major disadvantage of this technique is the lack of reliable rutile standards. Here, we present laser ablation data of several rutile megacrysts from around the world, illustrating typical geochemical characteristics of potential standards. Whole-grain transects and depth profiles were collected on several rutiles, including Graves Mountain, Kragerø, Madagascar, Mozambique, Quebec, and Diamantina. Most transects, particularly across Graves Mountain and Diamantina, show dramatic zoning in Zr (up to 100 ppm), U (up to 10 ppm), and Nb (up to 1000 ppm). Rutile grains from Mozambique and Kragerø show little variation in concentration in Zr, U, and Nb. However, U concentrations generally range from 1ppm (Graves Mountain) to 45ppm (Kragero). Depth profiles (30-80s analysis; 15-40 μm) showed a combination of slight surface contamination plus minor to significant near-rim zoning. Some samples, such as Mozambique, show minor concentration changes in Zr, Nb, and Ta over the outer 10 μm but are otherwise unzoned, whereas U concentrations decrease for 25 μm then are constant. Kragero shows depth zoning throughout for Zr, Ta, and U but Nb is unzoned. Some rutile megacrysts show promise as standards (e.g. Mozambique and Kragero), but must be prepared to eliminate crystal surfaces. Other megacrysts would have to be subsampled within specific crystals to isolate chemical homogeneous domains.

  2. Laser Spectroscopy for Atmospheric and Environmental Sensing

    PubMed Central

    Fiddler, Marc N.; Begashaw, Israel; Mickens, Matthew A.; Collingwood, Michael S.; Assefa, Zerihun; Bililign, Solomon

    2009-01-01

    Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs). PMID:22303184

  3. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    SciTech Connect

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas; Döbeli, Max

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  4. Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuki; Sakata, Ryoichi; Konishi, Kazuki; Ono, Koki; Matsuoka, Shusaku; Watanabe, Kota; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2016-06-01

    By pairing femtosecond laser pulses (duration ˜40 fs and central wavelength ˜810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm2 and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm2, while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse.

  5. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP. PMID

  6. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  7. Plasma ablation of hard tissue by the free-electron laser

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou; Ossoff, Robert H.

    1993-07-01

    The Vanderbilt Free Electron Laser operating at wavelengths from 2.8 to 5.0 micrometers was focused and used to ablate samples of human temporal bone from cadavers, swatches of leather, and Plexiglas. The ablation efficiency, energy density necessary for ablation, and thermal damage to the surrounding tissue was investigated in all three samples. Comparisons are made between the different wavelength and the light interaction with tissue. At the highest intensities, a plasma is formed at the air tissue interface. The ablation process at these intensities is strongly influenced by the plasma, and the rate of ablation appears to become nearly independent of the laser wavelength. At lower intensities, the laser light interacts with the tissue in a more traditional fashion.

  8. Solid state ultraviolet laser (213 nm) ablation of the cornea and synthetic collagen lenticules.

    PubMed

    Gailitis, R P; Ren, Q S; Thompson, K P; Lin, J T; Waring, G O

    1991-01-01

    We used a Q-switched Nd:YAG laser with non-linear optical crystals to produce the 5th (213 nm) and the 4th (266 nm) harmonic frequencies. Using these two wavelengths, we ablated fresh porcine corneas and type I collagen synthetic epikeratoplasty lenticules. For the 213-nm ablation, radiant exposure was 1.3 J/cm2. The ablation rate was 0.23 micron per pulse for the epikeratoplasty lenticules. We examined all tissues with light microscopy, transmission electron microscopy, and scanning electron microscopy. Histology for the 213-nm ablation showed a clean ablation crater with minimal collagen lamellae disruption and a damage zone less than 1 micron. In comparison, the 266 nm radiation showed more charring at the edges with a damage zone approximately 25 microns deep with disruption of the stromal lamella. Our results show that this solid state UV laser is a potential alternative to the excimer laser for cornea surgery.

  9. Silver jewelry microanalysis with dual-pulse laser-induced breakdown spectroscopy: 266 + 1064 nm wavelength combination.

    PubMed

    Mo, Junyu; Chen, Yuqi; Li, Runhua

    2014-11-01

    Orthogonal dual-wavelength dual-pulse laser-induced breakdown spectroscopy (ODWDP-LIBS) with 266+1064  nm wavelength combination was applied to realize silver jewelry microanalysis with enhanced sensitivity and minimal sample ablation. In this technique, the 266 nm laser with low pulse energy was selected as ablation laser and the time-delayed 1064 nm laser with moderate pulse energy was selected as reheating laser to enhance plasma emission. Significant signal enhancement was achieved under the excitation of the reheating laser without increasing mass ablation which was only determined by the ablation laser. Internal standard method was applied to realize quantitative analysis of copper impurity in silver jewelry samples. The calibration curve was built, and the limit of detection of copper in silver matrix was determined to be 37.4 ppm when the crater diameter was controlled at 6.5 μm. This technique is especially useful for microanalysis of precious samples due to the property of less sample ablation in comparison with single-pulse laser-induced breakdown spectroscopy (SP-LIBS) under the same analytical sensitivity.

  10. Particle generation by laser ablation in support of chemical analysis of high level mixed waste from plutonium production operations. 1998 annual progress report

    SciTech Connect

    Dickinson, J.T.; Alexander, M.L.

    1998-06-01

    'The authors goal is to provide fundamental mechanistic studies of laser produced particulate formation in support of the use of Laser Assisted-Inductively Coupled Plasma-Mass Spectroscopy (LA-ICP-MS) to be used for analysis of radioactive/toxic materials. The work reported here represents the first nine months of this 3-year project. The major focus of these studies is determining the detailed mechanisms and character of the particulates generated by laser ablation of solid targets relevant to sampling materials for chemical analysis using inductively coupled mass spectroscopy, ICP-MS. In this application, particles generated by laser ablation must be transported to the plasma torch of the ICP-MS, often through a hollow tube with an interior diameter of a few mm. Proper digestion and ionization of particles in the plasma limits particle sizes to under a micron. Thus the production of submicron particles which truly represent the stoichiometry of the specimen is of critical importance.'

  11. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  12. Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masato; Sasaki, Koichi

    2016-04-01

    The spectrum of the laser light scattered by nanoparticles in a cavitation bubble, which was induced by laser ablation of a titanium target in water, was measured using a triple-grating spectrograph. The scattered laser light observed at 100 \\upmu s after laser ablation had no wavelength-shifted component, suggesting that nanoparticles at this delay time were metallic. The wavelength-shifted component was observed in the spectrum at a delay time of 200 \\upmu s, suggesting the formation of oxidized nanoparticles. However, we observed no peaks in the spectrum of the scattered laser light in the present in situ laser-light scattering experiment. On the other hand, we observed clear peaks in the Raman spectrum of synthesized nanoparticles. The experimental results suggest slow crystallization of nanoparticles in liquid in liquid-phase laser ablation.

  13. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    PubMed

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material.

  14. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    PubMed

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material. PMID:27157748

  15. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  16. Manufacturing of Medical Implants by Combination of Selective Laser Melting and Laser Ablation

    NASA Astrophysics Data System (ADS)

    Hallmann, S.; Glockner, P.; Daniel, C.; Seyda, V.; Emmelmann, C.

    2015-09-01

    The perfect fit of hip stem prostheses is supposed to have positive effects on their lifetime performance. Moreover, the ingrowth of tissue into the surface of the implant has to be assured to create a firm and load bearing contact. For the manufacturing of customized hip stem prostheses, the technology of Selective Laser Melting has shown promising results. Poor surface quality, however, makes it necessary to finish up the part by e.g., sand blasting or polishing. With the use of laser ablation for post-processing, reproducible and functionalized surface morphologies might be achievable. Hence, with the motive to produce customized hip stem prostheses, a combined process chain for both mentioned laser technologies is developed. It is examined what type of surface should be produced at which part of the process chain. The produced implants should contain the demanded final surface characteristics without any conventional post-processing. Slight advantages for the Selective Laser Melting regarding the accuracy for different geometrical structures of 400 μm depth were observed. However, an overall improvement of surface quality after the laser ablation process in terms of osseointegration could be achieved. A complete laser based production of customized hip stem implants is found to be with good prospects.

  17. Formation of periodic structures upon laser ablation of metal targets in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A

    2005-09-30

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

  18. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    SciTech Connect

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency.

  19. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  20. Production of TiO2 crystalline nanoparticles by laser ablation in ethanol

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Rodriguez-Gonzalez, B.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2012-09-01

    TiO2 nanoparticles have received a special attention due to their applications in many different fields, such as catalysis, biomedical engineering, and energy conversion in solar cells. In this paper we report on the production of TiO2 nanoparticles by means of a pulsed laser to ablate titanium metallic target submerged in ethanol. The results show that titanium crystalline dioxide nanoparticles can be obtained in a narrow size distribution. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The produced particles consisted mainly of titanium oxide crystalline nanoparticles showing spherical shape with most diameters ranging from 5 to 50 nm. Nanoparticles are polycrystalline exhibiting the coexistence of the three main phases with the predominance of brookite.

  1. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature

    NASA Astrophysics Data System (ADS)

    Yu, D. P.; Lee, C. S.; Bello, I.; Sun, X. S.; Tang, Y. H.; Zhou, G. W.; Bai, Z. G.; Zhang, Z.; Feng, S. Q.

    1998-02-01

    We report below synthesis of nano-scale silicon wires by using laser ablation at high temperature. By this approach we have been able to produce silicon nano wires (SiNW's) with a very high yield, a uniform diameter distribution and a high purity. The structure, morphology and chemical composition of the SiNWs have been characterized by using high resolution X-ray diffraction (XRD), high resolution electron microscopy (HREM), as well as spectroscopy of energy dispersive X-ray fluorescence (EDAX). Our results should be of great interest to researchers working on mesoscopic physical phenomena, such as quantum confinement effects related to materials of reduced dimensions and should lead to the development of new applications for nano-scale devices, together with providing a powerful method for synthesis of similar one-dimensional conducting and semi-conducting wire.

  2. Studies of aluminum oxide thin films deposited by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Płóciennik, P.; Guichaoua, D.; Korcala, A.; Zawadzka, A.

    2016-06-01

    This paper presents the structural and optical investigations of the aluminum oxide nanocrystalline thin films. Investigated films were fabricated by laser ablation technique in high vacuum onto quartz substrates. The films were deposited at two different temperatures of the substrates equal to room temperature and 900 K. X-ray Diffraction spectra proved nanocrystalline character and the corundum phase of the film regardless on the substrate temperature during the deposition process. Values of the refractive indices, extinction and absorption coefficients were calculated by using Transmission and Reflection Spectroscopy in the UV-VIS-NIR range of the wavelength. Coupling Prism Method was used for films thickness estimations. Experimental measurements and theoretical calculations of the Third Harmonic Generation were also reported. Obtained results show that the lattice strain may affect obtained values of the third order nonlinear optical susceptibility.

  3. Excimer laser ablation for spatially controlled protein patterns

    NASA Astrophysics Data System (ADS)

    Thissen, Helmut; Hayes, Jason P.; Kingshott, Peter; Johnson, Graham; Harvey, Erol C.; Griesser, Hans J.

    2001-11-01

    Two-dimensional control over the location of proteins on surfaces is desired for a number of applications including diagnostic tests and tissue engineered medical devices. Many of these applications require patterns of specific proteins that allow subsequent two-dimensionally controlled cell attachment. The ideal technique would allow the deposition of specific protein patterns in areas where cell attachment is required, with complete prevention of unspecific protein adsorption in areas where cells are not supposed to attach. In our study, collagen I was used as an example for an extracellular matrix protein known to support the attachment of bovine corneal epithelial cells. An allylamine plasma polymer was deposited on a silicon wafer substrate, followed by grafting of poly(ethylene oxide). Two-dimensional control over the surface chemistry was achieved using a 248 nm excimer laser. Results obtained by XPS and AFM show that the combination of extremely low-fouling surfaces with excimer laser ablation can be used effectively for the production of spatially controlled protein patterns with a resolution of less than 1 micrometers . Furthermore, it was shown that bovine corneal epithelial cell attachment followed exactly the created protein patterns. The presented method is an effective tool for a number of in vitro and in vivo applications.

  4. A novel laser ablation plasma thruster with electromagnetic acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Daixian; Wu, Jianjun; He, Zhen; Zhang, Hua

    2016-10-01

    A novel laser ablation plasma thruster accelerated by electromagnetic means was proposed and investigated. The discharge characteristics and thrust performance were tested with different charged energy, structural parameters and propellants. The thrust performance was proven to be improved by electromagnetic acceleration. In contrast with the pure laser propulsion mode, the thrust performance in electromagnetic acceleration modes was much better. The effects of electrodes distance and the off-axis distance between ceramic tube and cathode were tested, and it's found that there were optimal structural parameters for achieving optimal thrust performance. It's indicated that the impulse bit and specific impulse increased with increasing charged energy. In our experiments, the thrust performance of the thruster was optimal in large charged energy modes. With the charged energy 25 J and the use of metal aluminum, a maximal impulse bit of 600 μNs, a specific impulse of approximate 8000 s and thrust efficiency of about 90% were obtained. For the PTFE propellant, a maximal impulse bit of about 350 μNs, a specific impulse of about 2400 s, and thrust efficiency of about 16% were obtained. Besides, the metal aluminum was proven to be the better propellant than PTFE for the thruster.

  5. Gas Effect On Plasma Dynamics Of Laser Ablation Zinc Oxide

    SciTech Connect

    Abdelli-Messaci, S.; Kerdja, T.; Lafane, S.; Malek, S.

    2008-09-23

    In order to synthesis zinc oxide thin films and nanostructures, laser ablation of ZnO target into both vacuum and oxygen atmosphere was performed. The gas effect on the plume dynamics was studied for O{sub 2} pressures varied between 10{sup -2} to 70 mbar. Plasma plume evolution was investigated by ICCD camera fast imaging. The plasma was created by a KrF excimer laser ({lambda} = 248 nm, {tau} = 25 ns) at a fluence of 2 J/cm{sup 2}. The light emitted by the plume was observed along the perpendicular to the ejection direction through a fast intensified charge-coupled device (ICCD). We have found that the plasma dynamics is very affected by the gas pressures. The photographs reveal the stratification of plasma into slow and fast components for 0.5 mbar O{sub 2} pressures and beyond. The photographs also show the apparition of hydrodynamic instabilities which are related to chemical reactions between the plasma and the surrounding gas for a certain range of pressures.

  6. KrF laser-induced ablation and patterning of Y--Ba--Cu--O films

    SciTech Connect

    Heitz, J.; Wang, X.Z.; Schwab, P.; Baeuerle, D. ); Schultz, L. )

    1990-09-01

    The ablation and patterning of Y--Ba--Cu--O films on (100) SrTiO{sub 3} and (100) MgO substrates by KrF excimer-laser light projection was investigated. Three different regimes of laser-material interactions were observed. Transition temperatures and critical current densities in laser-fabricated strip lines were investigated.

  7. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  8. Preliminary results of human scleral ablation in vitro with Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Pergadia, Vani R.; Vari, Sandor G.; Fishbein, Michael C.; Shi, Wei-Qiang; Grundfest, Warren S.

    1994-02-01

    This study evaluated the effect of the Ho:YAG laser operating at a wavelength of 2.1 micrometers and a repetition rate of 2 Hz on a human scleral tissue. The effects were assessed in terms of the ablation rate (micrometers /pulse) and the thermal damage (micrometers ) induced. The results were compared to those found from porcine scleral ablation. Data indicate that for the pulsed Ho:YAG laser, the ablation rate of scleral tissue increases linearly with laser fluence. The ablation rates are about 40% lower for the human scleral tissue than for the porcine scleral tissue at the same fluences. Data indicate that the mean Ho:YAG laser induced thermal damage is not significantly affected by varying the fluence.

  9. Bioavailable nanoparticles obtained in laser ablation of a selenium target in water

    SciTech Connect

    Kuzmin, P G; Shafeev, Georgii A; Voronov, Valerii V; Raspopov, R V; Arianova, E A; Trushina, E N; Gmoshinskii, I V; Khotimchenko, S A

    2012-11-30

    The process of producing colloidal solutions of selenium nanoparticles in water using the laser ablation method is described. The prospects of using nanoparticles of elementary selenium as a nutrition source of this microelement are discussed. (nanoparticles)

  10. Construction of a Laser Induced Breakdown Spectroscopy Setup

    NASA Astrophysics Data System (ADS)

    Mays, Joseph; Palmer, Andria; Amos, James; Dynka, Tom; Ujj, Lazlo

    Laser Induced Breakdown Spectroscopy (LIBS) is a practical spectroscopy to determine the chemical and atomic composition of materials. The third harmonic output of a Nd:YAG Q-switched laser generating 5ns pulses with 10Hz repetition rate was used to ablate the sample and create a micro-plasma. The emission of the radiating plasma was focused into an optical fiber with 0.22 numerical aperture. The spectra was measured with an Ocean Optics micro spectrometer. A synchronized shutter was used to select single laser pulses. In order to reach the breakdown threshold of the sample using the available energy of the laser pulses (<5 mJ) a beam expander and a parabolic mirror was used for tight focusing. The optical and technical details including the characterization of the system will be presented. LIBS spectra taken from a variety of metal and organic samples show appropriate selectivity for quantitative and qualitative analysis for materials. UWF NIH MARC U-STAR 1T34GM110517-01, UWF Office of Undergraduate Research.

  11. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  12. Ablation dynamics and shock wave expansion during laser processing of CFRP with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Wiedenmann, Margit; Haist, Christoph; Freitag, Christian; Onuseit, Volkher; Weber, Rudolf; Graf, Thomas

    2014-03-01

    Carbon fibre reinforced plastics (CFRP) have a large potential in the automotive lightweight construction due to their low density and high mechanical stability. Compared with today's laser processing methods of metals the main issues in laser processing of CFRP are the very differing thermal, optical and mechanical properties of the components. To understand the process in detail, the ablation process of CFRP with ultrashort laser pulses was investigated. The shock wave and the vapor resulting from processing with single laser pulses were recorded. Shadow photography and luminescence photography with an ultra-high-speed camera was used to show the ablation process with a temporary resolution of up to 3 ns. The field of view was 250 μm × 250 μm. An ultrashort laser pulse with pulse duration of 4 ps and a wavelength of 800 nm was focused onto the workpiece. The energy content of the shock wave was calculated from the resulting images. The energy content of the shock wave was about 20 % of the incident energy and the speed of propagation of the shock wave was more than 2000 m/s. The high intensities in the range of 1013 W/cm2 lead to formation of a plasma plume which was clearly seen in the shadow photography images.

  13. Local wettability tuning with laser ablation redeposits on PDMS

    NASA Astrophysics Data System (ADS)

    van Pelt, Stijn; Frijns, Arjan; Mandamparambil, Rajesh; den Toonder, Jaap

    2014-06-01

    In this paper, we present a method to locally control the wettability behavior of PDMS surfaces by excimer laser ablation. In the ablation process, a micrometer scale roughness is formed in the irradiated regions while a nanometer scale roughness is formed by the redeposits surrounding the irradiated regions. The increase in surface roughness results in a change of the wettability behavior of the PDMS surface. By using a hexagonal pattern and tuning the patterning pitch, two different wetting behaviors were realized. A pitch smaller than 300 μm resulted in a superhydrophobic surface with an advancing contact angle of θadv = 165° and a receding contact angle of θrec = 160°. A pitch between 300 and 500 μm resulted in a sticky superhydrophobic surface with θadv = 120-150° and θrec = 80°. The contact angle hysteresis for the latter was larger than for untreated PDMS resulting in very sticky surfaces with high sliding angles. This gives the method great versatility since the two wetting behaviors are very different. By combining both behaviors, local surface features like pinning sites, non-wetting sites, barriers and guides can all be fabricated by a single method. As an application demonstrator of the method, we show that drops can be caught and released depending on size and tilting angle by creating slippery surfaces with sticky barriers. Additionally, the method is ideal for rapid prototyping as it consist of only a single step. It is a direct write method requiring no lithographic mask. Also the process works in ambient atmosphere, so it can be used for temperature or pressure sensitive applications.

  14. The TriBeam system: Femtosecond laser ablation in situ SEM

    SciTech Connect

    Echlin, McLean P.; Straw, Marcus; Randolph, Steven; Filevich, Jorge; Pollock, Tresa M.

    2015-02-15

    Femtosecond laser ablation offers the unique ability to remove material at rates that are orders of magnitude faster than existing ion beam technologies with little or no associated damage. By combining ultrafast lasers with state-of-the-art electron microscopy equipment, we have developed a TriBeam system capable of targeted, in-situ tomography providing chemical, structural, and topographical information in three dimensions of near mm{sup 3} sized volumes. The origins, development, physics, current uses, and future potential for the TriBeam system are described in this tutorial review. - Graphical abstract: Display Omitted - Highlights: • An emerging tool, the TriBeam, for in situ femtosecond (fs) laser ablation is presented. • Fs laser ablation aided tomography at the mm{sup 3}-scale is demonstrated. • Fs laser induced deposition of Pt is demonstrated at sub-diffraction limit resolution. • Fs laser surface structuring is reviewed as well as micromachining applications.

  15. Early plume and shock wave dynamics in atmospheric-pressure ultraviolet-laser ablation of different matrix-assisted laser ablation matrices

    SciTech Connect

    Schmitz, Thomas A.; Koch, Joachim; Guenther, Detlef; Zenobi, Renato

    2011-06-15

    Pulsed laser ablation of molecular solids is important for identification and quantification in (bio-)organic mass spectrometry, for example using matrix-assisted laser desorption/ionization (MALDI). Recently, there has been a major shift to using MALDI and related laser ablation/post-ionization methods at atmospheric pressure. However, the underlying laser ablation processes, in particular early plume formation and expansion, are still poorly understood. Here, we present a study of the early ablation processes on the ns-time scale in atmospheric pressure UV-laser ablation of anthracene as well as of different common MALDI matrices such as 2,5-dihydroxybenzoic acid (2,5-DHB), {alpha}-cyano-4-hydroxycinnamic acid and sinapinic acid. Material release as well as the formation and expansion of hemi-spherical shock waves were studied by shadowgraphy with high temporal resolution ({approx}5 ns). The applicability of the classical Taylor-Sedov model for expansion of strong shock waves ('point-blast model'), as well as the drag force model, were evaluated to mathematically describe the observed shock wave propagation. The time- and energy-dependent expansion of the shock waves could be described using a Taylor-Sedov scaling law of the form R {proportional_to} t{sup q}, when a q-exponent of {approx}0.5 instead of the theoretical value of q 0.4 was found, indicating a faster expansion than expected. The deviations from the ideal value of q were attributed to the non-negligible influence of ambient pressure, a weak versus strong shock regime, and additional acceleration processes present in laser ablation that surpass the limit of the point-blast model. The onset of shock wave formation at a fluence of {approx}15-30 mJ/cm{sup 2} for the compounds investigated coincides with the onset of bulk material release, whereas, pure desorption below this fluence threshold did not lead to features visible in shadowgraphy.

  16. Comparison of High Rate Laser Ablation and Resulting Structures Using Continuous and Pulsed Single Mode Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Knebel, T.; Streek, A.; Exner, H.

    This paper compares high rate laser ablation and resulting structures of aluminum by using both a continuous wave and a ns-pulsed single mode fiber laser of high average laser power. Two different scan technologies were applied for fast deflection of the laser beams. In this work, 2.5D laser processing was studied by using a high aperture galvanometer scanner with a maximum scan speed of 18 m/s. By contrast, considerably higher scan speeds up to 1,000 m/s were achieved by using the in-house developed polygon scanner system. The ablation rates and the processing rates per unit area were analyzed by means of the depths of line-scan ablation tracks and laser processed cavities. In addition, SEM photograph of the machining samples will be presented in order to evaluate the machining quality. Finally the feasibility of this high rate technology for industrial application is demonstrated by machining examples.

  17. Evaluation of laser-induced thin-layer removal by using shadowgraphy and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rabasović, M. S.; Šević, D.; Lukač, N.; Jezeršek, M.; Možina, J.; Gregorčič, P.

    2016-03-01

    Shadow photography and laser-induced breakdown spectroscopy (LIBS) are studied as methods for monitoring the selective removal of thin (i.e., under 100 μm) layers by laser ablation. We used a laser pulse of 5 ns and 16 mJ at 1064 nm to ablate an 18-μm-thin copper layer from the fiberglass substrate. On the basis of shadowgraphs of the laser-induced shock waves, we measured the optodynamic energy-conversion efficiency, defined as the ratio between the mechanical energy of the shock wave and the excitation-pulse energy. Our results show that this efficiency is significantly higher for the laser pulse-copper interaction than for the interaction between the excitation pulse and the substrate. LIBS was simultaneously employed in our experimental setup. The optical emission from the plasma plume was collected by using a spectrograph and recorded with a streak camera. We show that advancing of laser ablation through the copper layer and reaching of the substrate can be estimated by tracking the spectral region between 370 and 500 nm. Therefore, the presented results confirm that LIBS method enables an on-line monitoring needed for selective removal of thin layers by laser.

  18. Human cornea wound healing in organ culture after Er:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Shen, Jin-Hui; Joos, Karen M.; Robinson, Richard D.; Shetlar, Debra J.; O'Day, Denis M.

    1998-06-01

    Purpose: To study the healing process in cultured human corneas after Er:YAG laser ablation. Methods: Human cadaver corneas within 24 hours post mortem were ablated with a Q- switched Er:YAG laser at 2.94 micrometer wavelength. The radiant exposure was 500 mJ/cm2. The cornea was cultured on a tissue supporting frame immediately after the ablation. Culture media consisted of 92% minimum essential media, 8% fetal bovine serum, 0.125% HEPES buffer solution, 0.125% gentamicin, and 0.05% fungizone. The entire tissue frame and media container were kept in an incubator at 37 degrees Celsius and 5% CO2. Serial macroscopic photographs of the cultured corneas were taken during the healing process. Histology was performed after 30 days of culture. Results: A clear ablated crater into the stroma was observed immediately after the ablation. The thickness of thermal damage ranges between 1 and 25 micrometer. Haze development within the crater varies from the third day to the fourteenth day according to the depth and the roughness of the crater. Histologic sections of the cultured cornea showed complete re- epithelization of the lased area. Loose fibrous tissue is observed filling the ablated space beneath the epithelium. The endothelium appeared unaffected. Conclusions: The intensity and time of haze development appears dependent upon the depth of the ablation. Cultured human corneas may provide useful information regarding the healing process following laser ablation.

  19. Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue.

    PubMed

    Donnarumma, Fabrizio; Cao, Fan; Murray, Kermit K

    2016-01-01

    We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue.

  20. Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue

    NASA Astrophysics Data System (ADS)

    Donnarumma, Fabrizio; Cao, Fan; Murray, Kermit K.

    2016-01-01

    We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue.