NASA Astrophysics Data System (ADS)
Wang, Jun; Niino, Hiroyuki; Yabe, Akira
1999-02-01
We developed a novel method of obtaining an absorption coefficient which depends on the laser intensity, since a single-photon absorption coefficient of a polymer could not be applied to laser ablation. The relationship between the nonlinear absorption coefficient and the laser intensity was derived from experimental data of transmission and incident laser intensities. Using the nonlinear absorption coefficient of poly(methylmethacrylate) doped with benzil and pyrene, we succeeded in fitting the relationship of etch depth and laser intensity, obtained experimentally, and discussed the energy absorbed by the polymer at the threshold fluence.
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns
NASA Technical Reports Server (NTRS)
May, R. D.; Molina, L. T.; Webster, C. R.
1988-01-01
A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.
Wavelength and energy dependent absorption of unconventional fuel mixtures
NASA Astrophysics Data System (ADS)
Khan, N.; Saleem, Z.; Mirza, A. A.
2005-11-01
Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.
Laser ablation of PMMA doped with benzyl
NASA Astrophysics Data System (ADS)
Wang, Jun; Niino, Hiroyuki; Yabe, Akira
1998-08-01
KrF-laser ablation of poly(methylmethacrylate) (PMMA) doped with benzil was studied from the viewpoint of nonlinear absorption of the PMMA film during the laser irradiation. After measuring the relationship between the transmission and incident laser intensity, we developed a novel method to obtain absorption coefficient depending on laser intensity. Using the nonlinear absorption coefficient of PMMA doped with benzil, we succeeded in fitting the relationship of etch depth and laser intensity. The dependence of concentration of benzil in PMMA film and the difference between benzil and pyrene were also discussed.
NASA Astrophysics Data System (ADS)
Shori, Ramesh K.
The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second, the laser was used to measure the optical transmission across water layers of known thicknesses. The data were used to develop a Dynamic Saturable Absorption (DSA) model to predict the dynamic changes in the absorption coefficient of water as a function of incident energy. The DSA model, based in part upon the homogeneous broadening of an atomic transition in a laser gain medium, accurately predicts the absorption coefficient of water over a wide range of incident fluences. One sees saturation of the absorption at both high and low fluence with a monotonic decrease in absorption with increasing fluence. Transmission measurements were also made at 9.6 and 10.6 μm using a TEA CO2 laser. The data show essentially no change in the absorption coefficient as the fluence is varied. The results from the experiments make a significant contribution towards an understanding of the relationship among the dynamic optical properties of water and clinically relevant properties such as ablation rate and residual thermal damage.
Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan
2017-01-01
The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.
Measurement of HCl absorption coefficients with a DF laser
NASA Technical Reports Server (NTRS)
Bair, C. H.; Allario, F.
1977-01-01
Absorption coefficients in the fundamental P-branch of HCl at several DF laser transitions from 2439.02/cm to 2862.87/cm have been measured experimentally. The 2-1 P(3) DF laser transition has been shown to overlap the P(6) HCl-37 absorption line within the halfwidth of an atmospherically broadened line. The absorption coefficient k was measured to be 5.64 plus or minus 0.28/(atm-cm) for a 0.27% mixture of HCl in N2 at a total pressure of 760 torr. A theoretical and experimental comparison of the pressure dependence of k showed that the 2-1 P(3) DF transition lies 1.32 plus or minus 0.15 GHz from the center of the P(6) HCl absorption line. Applications of these results to differential absorption lidar and to heterodyne detection are discussed.
Highlights of laser-tissue interaction mechanism
NASA Astrophysics Data System (ADS)
Gabay, Shimon
2001-10-01
The aim of this paper is to present the fundamentals of good practice when using the laser in medicine and surgery. As a 'good practice' recommendation, the laser beam wavelength and power should be determined to match the desired thermal effect. The energy losses to the surroundings of the initial absorbing volume, caused by the heat diffusion mechanism, are strongly dependent on the exposure time duration. The differences in the absorption and scattering coefficients of some tissue components are used for selectively destroying those components having the higher absorption coefficients. Selective destruction of some tissue components can be achieved even for components having the same absorption coefficient but different dimensions. The laser therapy strategy is discussed: the effective use of lasers in medicine can be achieved only if the physician has an extensive understanding of the laser-tissue interaction mechanisms; continuing education and training is a must for laser surgeons to improve their skill to get clinically optimal results.
Techniques For Measuring Absorption Coefficients In Crystalline Materials
NASA Astrophysics Data System (ADS)
Klein, Philipp H.
1981-10-01
Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu
2012-04-30
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beammore » axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.« less
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
NASA Astrophysics Data System (ADS)
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.
2012-04-01
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.
NASA Astrophysics Data System (ADS)
Al-Hawat, Sharif
2013-02-01
Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.
NASA Astrophysics Data System (ADS)
Bürkle, Sebastian; Walter, Nicole; Wagner, Steven
2018-06-01
A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7-1.5% for broadening coefficients and 0.6-1.6% for pressure shift coefficients.
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
NASA Astrophysics Data System (ADS)
Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.
2017-10-01
Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.
Propagation of intense laser radiation through a diffusion flame of burning oil
NASA Astrophysics Data System (ADS)
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.
2015-06-01
We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 103 to 1.2 × 106 W cm-2) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented.
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2018-01-01
The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.
2015-01-01
analytical Beer - Lambert absorption profile to model laser heating of pure energetic crystals without considering any EM wave propagation effects...temperature. These aggregates were studied using both an analytical distribution for laser heating following Beer - Lambert absorption and the full EM finite...surface (ysurface - y) and material absorption coefficient, α, following a Beer - Lambert absorption relation given by , = !()
NASA Astrophysics Data System (ADS)
Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.
2018-04-01
Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.
Atmospheric transmission of CO2 laser radiation with application to laser Doppler systems
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1975-01-01
The molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated at the P16, P18, P20, P22, and P24 lines of the CO2 laser for temperatures from 200 to 300 K and for pressures from 100 to 1100 mb. The temperature variation of the continuum absorption coefficient of water vapor is taken into account semi-empirically from Burch's data. The total absorption coefficient from the present calculations falls within + or - 20 percent of the results of McClatchey and Selby. The transmission loss which the CO2 pulsed laser Doppler system experiences was calculated for flight test conditions for the five P-lines. The total transmission loss is approximately 7 percent higher at the P16 line and 10 percent lower at the P24 line compared to the P20 line. Comparison of the CO2 laser with HF and DF laser transmission reveals the P2(8) line at 3.8 micrometers of the DF laser is much better from the transmission point of view for altitudes below 10 km.
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Lewis, P. F.
1980-01-01
The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.
NASA Technical Reports Server (NTRS)
Bair, C. H.; Allario, F.
1977-01-01
An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.
Propagation of intense laser radiation through a diffusion flame of burning oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu
2015-06-30
We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10{sup 3} to 1.2 × 10{sup 6} W cm{sup -2})more » entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)« less
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1976-01-01
Techniques for the gas phase absorption of laser radiation for ultimate conversion to gas kinetic energy are discussed. Particular emphasis is placed on absorption by the vibration rotation bands of diatomic molecules at high pressures. This high pressure absorption appears to offer efficient conversion of laser energy to gas translational energy. Bleaching and chemical effects are minimized and the variation of the total absorption coefficient with temperature is minimal.
Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.
Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A
2014-08-01
Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).
NASA Astrophysics Data System (ADS)
Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-10-01
We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.
Laser Atmospheric Absorption Studies.
1977-05-01
A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure
Absorption spectra of deuterated water at DF laser wavelengths.
Bruce, C W; Jelinek, A V
1982-11-15
Absorption coefficients for deuterated water have been measured at twenty-two deuterium fluoride (DF) laser wavelengths and presented for atmospheric conditions classified as midlatitude-summer (14.3 T water vapor, standard temperature, and pressure). The HDO vapor was produced from a liquid mixture of H(2)O and D(2)O. The proportions of the resulting equilibrium mixture involving these constituents and HDO were calculated using previously measured constants and produced strong HDO absorption at the 3.5-4.1-microm DF laser wavelengths relative to those of the H(2)O and D(2)O vapors. Predicted and measured pressure dependencies at constant mixing ratios are compared for several laser wavelengths having strong HDO absorption. Absorption coefficients are in fairly close agreement with those of the current Air Force Geophysical Laboratory line-by-line model for standard temperature and pressure conditions. At lower total pressures, the comparison is less satisfactory and suggests inaccurate line parameters in the predictive data base.
Laser absorption spectroscopy - Method for monitoring complex trace gas mixtures
NASA Technical Reports Server (NTRS)
Green, B. D.; Steinfeld, J. I.
1976-01-01
A frequency stabilized CO2 laser was used for accurate determinations of the absorption coefficients of various gases in the wavelength region from 9 to 11 microns. The gases investigated were representative of the types of contaminants expected to build up in recycled atmospheres. These absorption coefficients were then used in determining the presence and amount of the gases in prepared mixtures. The effect of interferences on the minimum detectable concentration of the gases was measured. The accuracies of various methods of solution were also evaluated.
2009-01-01
BN2 − CN3 + (1− ηe)BN2 (9) Here α(ν,N) is the interband absorption coefficient that in- cludes many-body and blocking factors. The recombination...the reso- nant absorption coefficient and αb is the unwanted parasitic (background) absorption coefficient . As will be derived in sections II and IV... coefficient of αb. It is straightforward to evaluate the steady-state solution to the above rate equations by setting the time derivatives to zero
Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review
NASA Technical Reports Server (NTRS)
Grant, William B.
1990-01-01
Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.
Atmospheric effects on CO2 laser propagation
NASA Technical Reports Server (NTRS)
Murty, S. S. R.; Bilbro, J. W.
1978-01-01
An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system.
Ocular Absorption of Laser Radiation for Calculating Personnel Hazards
1974-11-30
radia- tion incident on the cell in the conventional spectrophotometers. Carbon Dioxide Laser Measurements: We were interested in obtaining some total...Measurements 19Carbon Dioxide Laser Measurements 20T REFERENCES 22 APPENDIX 1: Fluorescence of Ocular Media 43SAPPENDIX I1: Absorption of Water and...result that we can not get mean- ingful data when the absorption coefficient approaches 10 . In order to work in these more abosrbing regions, we must
Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials
1977-12-01
fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried
Absorption Coefficient of Alkaline Earth Halides.
1980-04-01
not observed at low energy level , are developed at high power levels . No matter how low the absorption is. the effect is objectionable at high-energy... levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...Presence of impurities can complicate the exponential tail. particularly at low absorption levels . The impurities may enter 12 the lattice singly or
NASA Astrophysics Data System (ADS)
Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.
2014-03-01
We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.
USSR Report, Electronics and Electrical Engineering, No. 102
1983-04-29
S. IAbstract] The laser probing method is applied to measurement of absorption , transmission, and reflection coefficients, also insertion losses...electronic clock. The method of measurements is based on absorption of monochromatic radiation from the lasers, the latter being tuned to the fine...Acoustic-Wave Transducer by Laser Probing Method (A. B. Voroshnin, G. S. Felinskiy; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA, Dec 82
NASA Astrophysics Data System (ADS)
Luk'yanov, A. Yu; Ral'chenko, Viktor G.; Khomich, A. V.; Serdtsev, E. V.; Volkov, P. V.; Savel'ev, A. V.; Konov, Vitalii I.
2008-12-01
A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 μm is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm-1, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK-1 at room temperature), makes this material attractive for fabricating output windows of high-power CO2 lasers, especially for manufacturing large-size optics.
Absorption of the laser radiation by the laser plasma with gas microjet targets
NASA Astrophysics Data System (ADS)
Borisevichus, D. A.; Zabrodskii, V. V.; Kalmykov, S. G.; Sasin, M. E.; Seisyan, R. P.
2017-01-01
An upper limit of absorption of the laser radiation in the plasma produced in a gas jet Xe target with the average density of (3-6) × 1018 cm-3 and the effective diameter of 0.7 mm is found. It is equal to ≈50% and remains constant under any variation in this range of densities. This result contradicts both theoretical assessments that have predicted virtually complete absorption and results of earlier experiments with the laser spark in an unlimited stationary Xe gas with the same density, where the upper limit of absorption was close to 100%. An analysis shows that nonlinearity of absorption and plasma nonequilibrium lead to the reduction of the absorption coefficient that, along with the limited size of plasma, can explain the experimental results.
During air cool process aerosol absorption detection with photothermal interferometry
NASA Astrophysics Data System (ADS)
Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang
2014-11-01
This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitai, M S; Semchishen, A V; Semchishen, V A
The optical quality of the eye cornea surface after performing the laser vision correction essentially depends on the characteristic roughness scale (CRS) of the ablated surface, which is mainly determined by the absorption coefficient of the cornea at the laser wavelength. Thus, in the case of using an excimer ArF laser (λ = 193 nm) the absorption coefficient is equal to 39000 cm{sup -1}, the darkening by the dissociation products takes place, and the depth of the roughness relief can be as large as 0.23 mm. Under irradiation with the Er : YAG laser (λ = 2940 nm) the clearingmore » is observed due to the rupture of hydrogen bonds in water, and the relief depth exceeds 1 μm. It is shown that the process of reepithelization that occurs after performing the laser vision correction leads to the improvement of the optical quality of the cornea surface. (interaction of laser radiation with matter)« less
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Bhargava, P.; Biswas, A. K.; Sahu, Shasikiran; Mandloi, V.; Ittoop, M. O.; Khattak, B. Q.; Tiwari, M. K.; Kukreja, L. M.
2013-03-01
It is shown that the threshold fluence for laser paint stripping can be accurately estimated from the heat of gasification and the absorption coefficient of the epoxy-paint. The threshold fluence determined experimentally by stripping of the epoxy-paint on a substrate using a TEA CO2 laser matches closely with the calculated value. The calculated threshold fluence and the measured absorption coefficient of the paint allowed us to determine the epoxy paint thickness that would be removed per pulse at a given laser fluence even without experimental trials. This was used to predict the optimum scan speed required to strip the epoxy-paint of a given thickness using a high average power TEA CO2 laser. Energy Dispersive X-Ray Fluorescence (EDXRF) studies were also carried out on laser paint-stripped concrete substrate to show high efficacy of this modality.
NASA Astrophysics Data System (ADS)
Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.
1999-12-01
A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muehlig, Christian; Bublitz, Simon; Kufert, Siegfried
2009-12-10
We report nonlinear absorption data of LaF3 and MgF2 single layers at 193 nm. A highly surface sensitive measurement strategy of the laser induced deflection technique is introduced and applied to measure the absorption of highly transparent thin films independently of the substrate absorption. Linear absorptions k=({alpha}x{lambda})/4{pi} of 2x10{sup -4} and 8.5x10{sup -4} (LaF3) and 1.8x10{sup -4} and 6.9x10{sup -4} (MgF2) are found. Measured two photon absorption (TPA) coefficients are {beta}=1x10{sup -4} cm/W (LaF3), 1.8x10{sup -5}, and 5.8x10{sup -5} cm/W (MgF2). The TPA coefficients are several orders of magnitude higher than typical values for fluoride single crystals, which is likelymore » to result from sequential two step absorption processes.« less
NASA Astrophysics Data System (ADS)
Korolenko, P. V.; Nikolaev, I. V.; Ochkin, V. N.; Tskhai, S. N.
2014-04-01
An integral method is considered for recording absorption using three laser beams transmitted through and reflected from an external cavity with the absorbing medium (R-ICOS). The method is the elaboration of a known single-beam ICOS method and allows suppression of the influence of radiation phase fluctuations in the resonator on recording weak absorption spectra. First of all, this reduces high-frequency instabilities and gives a possibility to record spectra during short time intervals. In this method, mirrors of the resonator may have moderate reflection coefficients. Capabilities of the method have been demonstrated by the examples of weak absorption spectra of atmospheric methane and natural gas in a spectral range around 1650 nm. With the mirrors having the reflection coefficients of 0.8-0.99, a spectrum can be recorded for 320 μs with the accuracy sufficient for detecting a background concentration of methane in atmosphere. For the acquisition time of 20 s, the absorption coefficients of ~2×10-8 cm-1 can be measured, which corresponds to a 40 times less molecule concentration than the background value.
Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber
NASA Technical Reports Server (NTRS)
Brobst, William D.; Allen, John E., Jr.
1987-01-01
An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.
2009-06-06
sample within a small ceramic muffle. The microwave absorption coefficient of most ceramics is low, but increases with temperature. Thus, as the...increased using additives with higher absorption 7 coefficients . Silicon carbide has a higher loss tangent at 2.4 GHz than most ceramics, and thus...electron beam sintering. Microwave heating works well for large volumes, but ceramics normally have a low dielectric absorption constant at room
Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.
2017-01-01
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading. PMID:28690360
Presser, Cary; Nazarian, Ashot; Conny, Joseph M; Chand, Duli; Sedlacek, Arthur; Hubbe, John M
2017-01-01
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading.
NASA Astrophysics Data System (ADS)
Behroozian, B.; Askari, H. R.
2018-07-01
The Kerr nonlinearity and the nonlinear absorption coefficient in a four-level M-model of a GaAs cylindrical quantum dot (QD) with parabolic potential under electromagnetically induced transparency are investigated. By solving the density matrix equations in the steady-state, the third order susceptibility is obtained. Then, by using the real and imaginary parts of third order susceptibility, the Kerr nonlinearity and the nonlinear absorption coefficient, respectively, for this system are computed. The effects of the radius and height of the cylindrical QD are then investigated. In addition, the effects of the control laser fields on the Kerr nonlinearity and the nonlinear absorption coefficient are investigated.
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.
2016-11-01
The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.
Differential-optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S.
1977-01-01
Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.
Optical response in a laser-driven quantum pseudodot system
NASA Astrophysics Data System (ADS)
Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2017-03-01
We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.
High temperature measurement of water vapor absorption
NASA Technical Reports Server (NTRS)
Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard
1985-01-01
An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.
Characterization of absorption and degradation on optical components for high power excimer lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, K.; Eva, E.; Granitza, B.
1996-12-31
At Laser-Laboratorium Goettingen, the performance of UV optical components for high power excimer lasers is characterized, aiming to employ testing procedures that meet industrial conditions, i.e. very high pulse numbers and repetition rates. Measurements include determination of single and multiple pulse damage thresholds, absorption loss and degradation of optical properties under long-term irradiation. Absorption of excimer laser pulses is investigated by a calorimetric technique which provides greatly enhanced sensitivity compared to transmissive measurements. Thus, it allows determining both single and two photon absorption coefficients at intensities of standard excimer lasers. Results of absorption measurements at 248nm are presented for baremore » substrates (CaF{sub 2}, BaF{sub 2}, z-cut quartz and fused silica). UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica. A separation of transient and cumulative effects as a function of intensity is achieved, giving insight into various loss mechanisms.« less
NASA Astrophysics Data System (ADS)
Triebel, W.; Mühlig, C.; Kufert, S.
2005-10-01
Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.
Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata
2017-05-01
In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4 cm2 w-1 and 1.368 cm-1, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B., E-mail: b-shokri@sbu.ac.ir
2015-03-15
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of themore » electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.« less
Line mixing in a N2-broadened CO2 Q branch observed with a tunable diode laser
NASA Technical Reports Server (NTRS)
Gentry, Bruce; Strow, L. Larrabee
1987-01-01
Line-mixing effects have been observed in the infrared Q branch of the (11/1/0,03/1/0)I-00/0/0 band of CO2 at 2076/cm. A tunable diode laser spectrometer was used to record spectra of CO2 broadened by N2 and O2 at total pressures ranging from 100 to 720 torr. The observed absorption coefficients are up to 65 percent lower than those calculated using an isolated Lorentzian line approximation. A simple energy gap scaling law is used to determine the off-diagonal relaxation matrix elements from the known pressure-broadening coefficients. The spectra calculated using these matrix elements reproduces the observed absorption coefficients to within several percent.
NASA Astrophysics Data System (ADS)
Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis
2017-10-01
Many scientific lasers and increasingly industrial laser systems operate in <500W and kW output power regime, require high-performance optical isolators to prevent disruptive light feedback into the laser cavity. The optically active Faraday material is the key optical element inside the isolator. SYNOPTICS has been supplying the laser market with Terbium Gallium Garnet (TGG - Tb3Ga5O12) for many years. It is the most commonly used material for the 650-1100nm range and the key advantages for TGG include its cubic crystal structure for alignment free processing, little to no intrinsic birefringence, and ease of manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M
2013-02-01
3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.
NASA Technical Reports Server (NTRS)
Ponsardin, Patrick L.; Browell, Edward V.
1997-01-01
The linestrengths for 40 absorption lines of H2 16-O water vapor that were located between 813 and 820 nm were measured; most of these lines were selected for their potential usefulness in laser remote measurements of atmospheric humidity using the differential absorption lidar technique. The air-induced pressure-broadening coefficients were also measured for 32 of these lines and the air-induced pressure shift coefficients were measured for 29 lines. These spectroscopic parameters were derived from spectra obtained with an AlGaAs diode laser and two long-path absorption cells. Collisional narrowing effects were observed and were accurately described by a Galatry profile. Comparisons were made with previous experimental work or theoretical calculations as available.
Absorption coefficients of solid NH3 from 50 to 7000 per cm
NASA Technical Reports Server (NTRS)
Sill, G.; Fink, U.; Ferraro, J. R.
1980-01-01
Thin-film spectra of solid NH3 at a resolution of 1 per cm were used to determine its absorption coefficient over the range 50-7000 per cm. The thin films were formed inside a liquid N2 cooled dewar using a variety of substrates and dewar windows. The spectra were recorded with two Fourier spectrometers, one covering the range from 1 to 4 microns and the other from 2.6 to 200 microns. The thickness of the films was measured with a laser interference technique. The absorption coefficients were determined by application of Lambert's law and by a fitting procedure to the observed spectra using thin-film theory. Good agreement was found with the absorption coefficients recently determined by other investigators over a more restricted wavelength range. A metastable phase was observed near a temperature of 90 K and its absorption coefficient is reported. No other major spectral changes with temperature were noted for the range 88-120 K.
Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki
2006-12-20
Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.
Sato, Miki; Maeda, Yuki; Ishioka, Toshio; Harata, Akira
2017-11-20
The detection limits and photoionization thresholds of polycyclic aromatic hydrocarbons and their chlorides and nitrides on the water surface are examined using laser two-photon ionization and single-photon ionization, respectively. The laser two-photon ionization methods are highly surface-selective, with a high sensitivity for aromatic hydrocarbons tending to accumulate on the water surface in the natural environment due to their highly hydrophobic nature. The dependence of the detection limits of target aromatic molecules on their physicochemical properties (photoionization thresholds relating to excess energy, molar absorptivity, and the octanol-water partition coefficient) is discussed. The detection limit clearly depends on the product of the octanol-water partition coefficient and molar absorptivity, and no clear dependence was found on excess energy. The detection limits of laser two-photon ionization for these types of molecules on the water surface are formulated.
Cavity mode-width spectroscopy with widely tunable ultra narrow laser.
Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman
2013-12-02
We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.
EFFECTS OF LASER RADIATION ON MATTER: Photoinduced absorption in chalcogenide glasses
NASA Astrophysics Data System (ADS)
Ponomar', V. V.
1990-08-01
A dependence of the absorption coefficient on the optical radiation intensity in the range 10 - 5 - 1 W/cm2 was observed for chalcogenide glasses at a photon energy less than the band gap of the material. The absorption coefficient depended on the irradiation time. In the case of arsenic sulfide in the range 1.6-1.7 eV an absorption peak was observed at intensities of the order of 10 - 3 W/cm2. In this part of the spectrum the absorption probably involved metastable As-As, S-Se, and Se-Se "defect" bonds and was similar to the photoinduced degradation of hydrogenated amorphous silicon.
NASA Astrophysics Data System (ADS)
Andreev, Sergei N.; Nikolaev, I. V.; Ochkin, Vladimir N.; Savinov, Sergei Yu; Spiridonov, Maksim V.; Tskhai, Sergei N.
2007-04-01
A special type of modulation of the injection current of a diode laser is proposed at which the frequency modulation of radiation is not accompanied by the residual amplitude modulation. This method considerably reduces the influence of the diode laser radiation instability on the recorded absorption spectra. This allows a prolonged monitoring of small amounts of impurities in gas analysis by retaining a high sensitivity. Prolonged measurements of absorption spectra are performed at a relative absorption of 8×10-7. By using a 50-cm multipass cell with the optical length of 90 m, the absorption coefficient of 1.2×10-10 cm-1 was detected. As an example, the day evolution of the background concentrations of NO2 molecules was measured in the atmosphere.
Zheng, Chuantao; Wang, Yiding
2017-01-01
A Pound-Drever-Hall (PDH)-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT) and proportional-integral-derivative (PID) feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line. PMID:29207470
Measurement of the aerosol absorption coefficient with the nonequilibrium process
NASA Astrophysics Data System (ADS)
Li, Liang; Li, Jingxuan; Bai, Hailong; Li, Baosheng; Liu, Shanlin; Zhang, Yang
2018-02-01
On the basis of the conventional Jamin interferometer,the improved measuring method is proposed that using a polarization type reentrant Jamin interferometer measures atmospheric aerosol absorption coefficient under the photothermal effect.The paper studies the relationship between the absorption coefficient of atmospheric aerosol particles and the refractive index change of the atmosphere.In Matlab environment, the variation curves of the output voltage of the interferometer with different concentration aerosol samples under stimulated laser irradiation were plotted.Besides, the paper also studies the relationship between aerosol concentration and the time required for the photothermal effect to reach equilibrium.When using the photothermal interferometry the results show that the time required for the photothermal effect to reach equilibrium is also increasing with the increasing concentration of aerosol particles,the absorption coefficient and time of aerosol in the process of nonequilibrium are exponentially changing.
Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)
2002-01-01
The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.
NASA Astrophysics Data System (ADS)
Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.
2014-11-01
The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.
Two-photon interband absorption coefficients in tungstate and molybdate crystals
NASA Astrophysics Data System (ADS)
Lukanin, V. I.; Karasik, A. Ya.
2015-02-01
Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.
Supporting Structure of the LSD Wave in an Energy Absorption Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora
In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less
NASA Astrophysics Data System (ADS)
Mann, Klaus R.; Eva, Eric
1998-06-01
Absorption loss in DUV optics during 193 nm irradiation is investigated by employing a high-resolution calorimetric technique which allows determining both single and two photon absorption coefficients at energy densities of several 10 mJ/cm2, avoiding a significant thermal load on the samples. UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica or CaF2. A separation of transient and cumulative effects as a function of intensity can be achieved, giving insight into various loss mechanisms. Moreover, the influence of dielectric coatings on the absorption characteristics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presser, Cary; Nazarian, Ashot; Conny, Joseph M.
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).
Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; ...
2016-12-02
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).
Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime
NASA Astrophysics Data System (ADS)
Schneider, M.; Berthe, L.; Fabbro, R.; Muller, M.
2008-08-01
Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm-2 are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm-2. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.
NASA Astrophysics Data System (ADS)
Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki
2016-08-01
The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.
Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond
NASA Astrophysics Data System (ADS)
Liu, Shuang; Wei, Jingsong; Gan, Fuxi
2012-03-01
The current study proposes a model based on the weakening of the resonant bond to explore the giant optical nonlinear saturable absorption of Sb-based phase change materials. In order to analyze the weakening of resonant bond effectively, we take the Sb2Te3 as an example. First-principle calculations show that both the Born effective charge and optical dielectric constant of crystalline Sb2Te3 in the 300 K to 500 K temperature range monotonically decrease with the temperature, indicating a weakening of the resonant bond. This weakening induces a decline in the absorption coefficient at a rate of 103 m-1 K-1, which results in a nonlinear saturable absorption coefficient in the order of 10-2 m/W. The nonlinear absorption characteristics of the crystalline Sb, Sb7Te3, and Sb2Te3 thin films at 405 nm laser wavelength are measured via z-scan technique using nanosecond laser pulses to validate the above-proposed model. The experimental results are in good agreement with theoretical prediction.
NASA Astrophysics Data System (ADS)
Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.
2018-06-01
We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.
Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.
Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu
2017-11-24
The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.
NASA Astrophysics Data System (ADS)
Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.
2014-03-01
A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).
NASA Astrophysics Data System (ADS)
Wang, Lihong; Jacques, Steven L.
1995-05-01
A simple and quick approach is used to measure the reduced scattering coefficient ( mu s `) of a semi-infinite turbid medium having a much smaller absorption coefficient than mu s`. A laser beam with an oblique angle of incidence to the medium causes the center of the diffuse reflectance that is several transport mean-free paths away from the incident point to shift away from the point of incidence by an amount Delta x. This amount is used to compute mu s` by mu s` = sin( alpha i)/(n Delta x), where n is the refractive index of the turbid medium divided by that of the incident medium and alpha i is the angle of incidence measured from the surface normal. For a turbid medium having an absorption coefficient comparable with mu s `, a revision to the above formula is made. This method is tested theoretically by Monte Carlo simulations and experimentally by a video reflectometer.
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1992-01-01
Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.
Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.
1992-01-01
Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.
Nonlinear absorption enhancement of AuNPs based polymer nanocomposites
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.
2018-07-01
Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.
2016-08-01
In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.
NASA Astrophysics Data System (ADS)
Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal
2018-02-01
Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.
Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consolino, L., E-mail: luigi.consolino@ino.it; Campa, A.; Ravaro, M.
2015-01-12
We report on the evidence of saturation effects in a rotational transition of CH{sub 3}OH around 2.5 THz, induced by a free-running continuous-wave quantum cascade laser (QCL). The QCL emission is used for direct-absorption spectroscopy experiments, allowing to study the dependence of the absorption coefficient on gas pressure and laser intensity. A saturation intensity of 25 μW/mm{sup 2}, for a gas pressure of 17 μbar, is measured. This result represents the initial step towards the implementation of a QCL-based high-resolution sub-Doppler THz spectroscopy, which is expected to improve by orders of magnitude the precision of THz spectrometers.
NASA Astrophysics Data System (ADS)
Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong
2016-04-01
Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109
Spirou, Gloria M; Mandelis, Andreas; Vitkin, I Alex; Whelan, William M
2008-05-10
Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.
He-Ne and CW CO2 laser long-path systems for gas detection
NASA Technical Reports Server (NTRS)
Grant, W. B.
1986-01-01
This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.
Temperature and emissivity measurements at the sapphire single crystal fiber growth process
NASA Astrophysics Data System (ADS)
Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.
2017-12-01
We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.
NASA Technical Reports Server (NTRS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-01-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
NASA Astrophysics Data System (ADS)
Krasnovsky, A. A., Jr.; Roumbal, Ya. V.; Ivanov, A. V.; Ambartzumian, R. V.
2006-10-01
The rates of oxygenation of the 1O 2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated organic solvents and heterogeneous D 2O-sodium dodecyl sulfate dispersions upon infrared (1267 ± 4 nm) laser irradiation. The absorbance and molar absorption coefficients of oxygen corresponding to this wavelength were estimated from the observed oxygenation rates. The data suggest that 1O 2 was formed due to direct oxygen excitation without appreciable involvement of vibrationally excited solvent molecules. The minor 'pseudophase' of detergent micelles was shown to strongly enhance overall 1O 2 production in D 2O-detergent dispersions.
Crack-free conditions in welding of glass by ultrashort laser pulse.
Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael
2013-06-17
The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material
NASA Astrophysics Data System (ADS)
Nandur, Abhishek; White, Bruce
2014-03-01
CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.
Rapid assessment of nonlinear optical propagation effects in dielectrics.
del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J
2015-01-07
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Rapid assessment of nonlinear optical propagation effects in dielectrics
NASA Astrophysics Data System (ADS)
Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
A study of the H2O absorption line shifts in the visible spectrum region due to air pressure
NASA Technical Reports Server (NTRS)
Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.
1990-01-01
Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.
Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-05-01
Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.
Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.
1998-01-01
In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.
Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers
NASA Astrophysics Data System (ADS)
Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning
2015-10-01
Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Laser-Generated Ultrasonic Source for a Real-Time Dry-Contact Imaging System
NASA Astrophysics Data System (ADS)
Petculescu, G.; Zhou, Y.; Komsky, I.; Krishnaswamy, S.
2006-03-01
A laser-generated ultrasonic source, to be used with a real-time imaging device, was developed. The ultrasound is generated in the thermoelastic regime, in a composite layer composed of absorbing particles (carbon) and silicone rubber. The composite layer plays three roles: of absorption, constriction and dry-coupling. The central frequency of the generated pulse was controlled by varying the absorption depth of the generation layer. The maximum peak frequency obtained was 4MHz. When additional constriction was provided to the composite layer, the amplitude of the generated signal increased further, due to the large thermal expansion coefficient of the silicone. Images using the laser-generated ultrasonic source were taken.
NASA Astrophysics Data System (ADS)
Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.
2015-03-01
This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.
Comparison of Er:YAG and Er:YSGG laser ablation of dental hard tissues
NASA Astrophysics Data System (ADS)
Stock, Karl; Hibst, Raimund; Keller, Ulrich
1997-12-01
To compare ablation quality of Er:YAG and Er:YSGG laser the surface quality, crater shape, mass loss, and temperature development were determined using the same fiber transmission system and handpiece. Similar crater depths for both lasers but greater diameters for the Er:YAG laser were measured. Also mass loss per pulse of the Er:YAG laser exceeds that of the Er:YSGG laser. Temperature development while ablation of dentin is more pronounced for the Er:YSGG laser. The observed minor ablation quality of the Er:YSGG laser can be explained by the lower absorption coefficient of dental hard substances compared to the Er:YAG laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golyshev, A A; Malikov, A G; Orishich, A M
Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)
Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2
NASA Astrophysics Data System (ADS)
Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng
2012-07-01
A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.
Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manfred, K. M.; Ritchie, G. A. D.; Lang, N.
2015-06-01
The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diodemore » lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.« less
Two-photon absorption measurements of deep UV transmissible materials at 213 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patankar, S.; Yang, S. T.; Moody, J. D.
We report on two photon absorption measurements at 213nm of deep UV transmissible media including LiF, MgF 2, CaF 2, BaF 2, Sapphire (Al 2O 3) and high purity grades of fused-silica (SiO 2). A high stability 24ps Nd:YAG laser operating at the 5th harmonic (213nm) was used to generate a high intensity, long Rayleigh length Gaussian focus inside the samples. The measurements of the Fluoride crystals and Sapphire indicate two photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two photon absorption, however, there are differences in linearmore » losses associated with purity. A low two photon absorption cross section is measured for MgF 2 making it an ideal material for the propagation of high intensity deep UV lasers.« less
Two-photon absorption measurements of deep UV transmissible materials at 213 nm
Patankar, S.; Yang, S. T.; Moody, J. D.; ...
2017-09-19
We report on two photon absorption measurements at 213nm of deep UV transmissible media including LiF, MgF 2, CaF 2, BaF 2, Sapphire (Al 2O 3) and high purity grades of fused-silica (SiO 2). A high stability 24ps Nd:YAG laser operating at the 5th harmonic (213nm) was used to generate a high intensity, long Rayleigh length Gaussian focus inside the samples. The measurements of the Fluoride crystals and Sapphire indicate two photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two photon absorption, however, there are differences in linearmore » losses associated with purity. A low two photon absorption cross section is measured for MgF 2 making it an ideal material for the propagation of high intensity deep UV lasers.« less
Two-photon absorption measurements of deep UV transmissible materials at 213 nm.
Patankar, S; Yang, S T; Moody, J D; Swadling, G F; Erlandson, A C; Bayramian, A J; Barker, D; Datte, P; Acree, R L; Pepmeier, B; Madden, R E; Borden, M R; Ross, J S
2017-10-20
We report on two-photon absorption measurements at 213 nm of deep UV transmissible media, including LiF, MgF 2 , CaF 2 , BaF 2 , sapphire (Al 2 O 3 ), and high-purity grades of fused-silica (SiO 2 ). A high-stability 24 ps Nd:YAG laser operating at the 5th harmonic (213 nm) was used to generate a high-intensity, long-Rayleigh-length Gaussian focus inside the samples. The measurements of the fluoride crystals and sapphire indicate two-photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two-photon absorption; however, there are differences in linear losses associated with purity. A low two-photon absorption cross section is measured for MgF 2 , making it an ideal material for the propagation of high-intensity deep UV lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.
2000-12-01
A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorptionmore » of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049
In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less
Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W
2010-01-20
We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.
Laser absorption spectroscopy applied to monitoring of short-lived climate pollutants (SLCPs)
NASA Astrophysics Data System (ADS)
Wang, Gaoxuan; Shen, Fengjiao; Yi, Hongming; Hubert, Patrice; Deguine, Alexandre; Petitprez, Denis; Maamary, Rabih; Augustin, Patrick; Fourmentin, Marc; Fertein, Eric; Sigrist, Markus W.; Ba, Tong-Nguyen; Chen, Weidong
2018-06-01
Enhanced mitigation of short-lived climate pollutants (SLCPs) has been recently paid more attention in order to provide more sizeable short-term reductions of global warming effects over the next several decades. We overview in this article our recent progress in the development of spectroscopic instruments for optical monitoring of major SLCPs based on laser absorption spectroscopy. Methane (CH4) and black carbon (BC) are the most important SLCPs contributing to the human enhancement of the global greenhouse effect after CO2. We present optical sensing of these two climate-change related atmospheric species to illustrate how "classical" spectroscopy can help to address today's challenging issues: (1) Photoacoustic measurements of BC optical absorption coefficient in order to determine its radiative-forcing related optical parameters (such as mass absorption coefficient, absorption Ångström coefficient) with higher precision (∼7.4% compared to 12-30% for filter-based methods routinely used nowadays). The 1σ (SNR = 1) minimum measurable volumetric mass density of 21 ng/m3 (in 60 s) for black carbon. (2) Direct absorption spectroscopy-based monitoring of methane (CH4) in field campaign to identify pollution source in conjunction with air mass back-trajectory modeling. Using a White-type multipass cell (an effective path-length of 175 m), a 1σ detection limit of 33.3 ppb in 218 s was achieved with a relative measurement precision of 1.1% and an overall measurement uncertainty of about 5.1%. Performance of the custom, lab-based instruments (in terms of detection limits, measurement precision, temporal response, etc.), spectroscopic measurement aspects, experimental details, spectral data processing, analysis and modeling of the observed environmental episode will be presented and discussed.
Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption
NASA Astrophysics Data System (ADS)
Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio
1997-11-01
A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.
Thermal Nonequilibrium in Hypersonic Separated Flow
2014-12-22
flow duration and steadiness. 15. SUBJECT TERMS Hypersonic Flowfield Measurements, Laser Diagnostics of Gas Flow, Laser Induced...extent than the NS computation. While it would be convenient to believe that the more physically realistic flow modeling of the DSMC gas - surface...index and absorption coefficient. Each of the curves was produced assuming a 0.5 % concentration of lithium at the Condition A nozzle exit conditions
NASA Astrophysics Data System (ADS)
Kesarwani, Rahul; Khare, Alika
2018-06-01
In this paper, surface plasmon resonance (SPR) and nonlinear optical properties of semitransparent nanostructured copper thin films fabricated on the glass substrate at 400 °C by pulsed laser deposition technique are reported. The thickness, linear absorption coefficient and linear refractive index of the films were measured by spectroscopic ellipsometer. The average particle size as measured via atomic force microscope was in the range of 12.84-26.02 nm for the deposition time ranging from 5 to 10 min, respectively. X-ray diffraction spectra revealed the formation of Cu (111) and Cu (200) planes. All these thin films exhibited broad SPR peak. The third-order optical nonlinearity of all the samples was investigated via modified z-scan technique using cw laser at a wavelength of 632.8 nm. The open aperture z-scan spectra of Cu thin film deposited for 5 min duration exhibited reverse saturation absorption whereas all the other samples displayed saturation absorption behavior. The nonlinear refractive index coefficient of these films showed a positive sign having the magnitude of the order of 10- 4 cm/W. The real and imaginary parts of susceptibilities were also calculated from the z-scan data and found to be of the order of 10- 6 esu.
Hou, Dianwei; Nissimagoudar, Arun S; Bian, Qiang; Wu, Kui; Pan, Shilie; Li, Wu; Yang, Zhihua
2018-06-15
Infrared nonlinear optical (IR NLO) crystals are the major materials to widen the output range of solid-state lasers to mid- or far-infrared regions. The IR NLO crystals used in the middle IR region are still inadequate for high-power laser applications because of deleterious thermal effects (lensing and expansion), low laser-induced damage threshold, and two-photon absorption. Herein, the unbiased global minimum search method was used for the first time to search for IR NLO optical materials and ultimately found a new IR NLO material NaGaS 2 . It meets the stringent demands for IR NLO materials pumped by high-power laser with the highest thermal conductivity among common IR NLO materials able to avoid two-photon absorption, a classic nonlinear coefficient, and wide infrared transparency.
Far infrared maser communications technology
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Pao, Y. H.
1975-01-01
An optically pumped FIR laser was constructed and tested. Optimum operating conditions were determined with CH3OH as the lasing medium. The laser was found to operate equally well with flowing gas or in a sealed off configuration. The FIR cavity stability and pump laser stability were found to have significant problems. The absorption coefficient per unit pressure of 1-1 difluoroethylene at the P(22) and P(24) lines of the 10.4 micron CO2 band was measured. The FIR line pumped by P(22) occurs at approximately 890 microns, which may be in an atmospheric transmission window. It was found that significant Stark tuning of absorption lines of methanol and 1-1 difluoroethylene can be accomplished, even at the usual 100 to 300 mTorr operating pressures of FIR lasers. This means that the use of Stark tuning may enable more effective use of pump laser output.
Optoelectronic and photoacoustic studies of an organic dye synthesized through green route
NASA Astrophysics Data System (ADS)
Vijayakumar, S.; Sreelatha, S.; Hatamimoslehabadi, M.; Yelleswarappu, C. S.
2017-10-01
An azo dye was prepared through an environmentally benign and economically feasible synthesis route with cardanol as a starting material. Cardanol is a cost-effective and renewable natural source obtained from Cashew Nut Shell Liquid, a by-product of the cashew industry. The dye was spectrally characterized by IR, UV-Vis, NMR and fluorescence studies. UV-Vis absorption showed a bathochromic shift between solvents of lower and higher polarities. Nonlinear optical and photoacoustic properties were studied using a frequency doubled Nd:YAG laser producing 532 nm laser pulses of 3 ns pulse width. Results show that the nonlinear absorption coefficient decreases with the increase of on-axis intensity, suggesting excited state absorption as the principal mechanism. The observed nonlinearity has applications in optoelectronics.
The examination of berberine excited state by laser flash photolysis
NASA Astrophysics Data System (ADS)
Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong
2009-07-01
The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.
Simulation of a pulsed light propagation in the prostate phantom
NASA Astrophysics Data System (ADS)
Guo, Jian; Li, Zhifang; Xie, Wenming; Chen, Haiyu; Weng, Guo-Xing; Li, Hui
2014-09-01
In recent years, more and more Americans are diagnosed with prostate cancer, and the current detection methods still have some disadvantages. Photoacoustic imaging, as a new non-invasive imaging technique, has the capable of imaging complex tissue and owns the ability of early tumor imaging. And the photoacoustic signal of the tumor is bound up with its light energy distribution. In this paper, Monte Carlo method was used to simulate the light propagation in the prostate phantom. The pictures of light energy distribution by the irradiation of a pulsed laser were obtained. With the pulsed laser, according to the absorption coefficient of tumor, the local energy temporal changes in prostate can be illustrated. As we known, the local photoacoustic signal has a relationship with the change of light energy. Then we can see the influence of photoacoustic signal under the changes of the absorption coefficient of tumor.
Water vapor-nitrogen absorption at CO2 laser frequencies
NASA Technical Reports Server (NTRS)
Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.
1979-01-01
The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.
Casting of Halide and Fluoride Alloys for Laser Windows
1976-02-15
exhibit at least microplastic behavior at room temper- ature, it might be expected that their fracture strength will follow a Petch relationship...polishing and testing. Only later was it discovered that this particular annealing procedure degraded the optical properties (i. e., 5. 25 pm Pb- sorption ... sorption coefficient of 4. 8 x 10’ c~ii 1 TABLE 3-5 AP PARENT ABSOi. -)N COEFFICIENTS AN~D SCATTERING CF2CASTING HN 1 5.25 pm Absorption Coefficient
Optical properties of a multibarrier structure under intense laser fields
NASA Astrophysics Data System (ADS)
Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.
2015-11-01
Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Hongming; Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, 350 Shushanhu Road, Hefei, Anhui 230031; Maamary, Rabih
2015-03-09
Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm{sup −1} was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm{sup 3}) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 mmore » multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10{sup −8 }cm{sup −1} W/Hz{sup 1/2}. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10{sup −7 }cm{sup −1} (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10{sup −8 }cm{sup −1} (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.« less
NASA Astrophysics Data System (ADS)
Farooq, Aamir; Jeffries, Jay B.; Hanson, Ronald K.
2008-07-01
In situ combustion measurements of water vapor concentration and gas temperature were carried out with a new tunable diode laser sensor near 2.5 µm. Recent availability of room-temperature semiconductor diode lasers operating at longer wavelengths provides access to fundamental vibrational bands (ν1 and ν3) of H2O. These bands have stronger absorption line strength compared to the overtone (2ν1, 2ν3) and combination (ν1 + ν3) vibrational bands in the near-infrared region probed previously with telecommunication diode lasers. The absorption transitions of H2O vapor in the 2.5-3.0 µm region are systematically analyzed via spectral simulation, and optimal spectral line pairs are selected for combustion measurements in the temperature range of 1000-2500 K. Fundamental spectroscopic parameters (line strength, line position and line-broadening coefficients) of the selected transitions are determined via laboratory measurements in a heated cell. Absorption measurements of H2O concentration and temperature are then made in a laboratory flat-flame burner to illustrate the potential of this sensor for sensitive and accurate measurements in combustion gases with short optical path lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avtonomov, V.P.; Alexandrescu, R.; Dumitras, D.
1979-02-01
Results are presented of measurements of the Stark modulation index and absorption coefficient of CO/sub 2/ laser radiation due to the P (24) line by 1-1 difluorethane (C/sub 2/H/sub 4/F/sub 2/). The possibility of stabilizing the CO/sub 2/ laser frequency using a Stark cell is demonstrated and the laser frequency tuning efficiency within the P (24) line of the 00/sup 0/1--10/sup 0/0 transition is determined.
NASA Astrophysics Data System (ADS)
Banishev, A. A.; Vrzheshch, E. P.; Shirshin, E. A.
2009-03-01
Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima).
NASA Astrophysics Data System (ADS)
Bellecci, Carlo; Gaudio, Pasquale; Gelfusa, Michela; Lo Feudo, Teresa; Murari, Andrea; Richetta, Maria; de Leo, Leonerdo
2010-12-01
In the lidar-dial method, the amount of the water vapor present in the smoke of the vegetable fuel is detected to reduce the number of false alarms. We report the measurements of the smoke backscattering coefficients for the CO2 laser lines 10R20 and 10R18 as determined in an absorption cell for two different vegetable fuels (eucalyptus and conifer). These experimental backscattering coefficients enable us to determine the error to be associated to the water vapor measurements when the traditional first-order approximation is assumed. We find that this first-order approximation is valid for combustion rates as low as 100 g/s.
Equivalent of a cartilage tissue for simulations of laser-induced temperature fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondyurin, A V; Sviridov, A P
2008-07-31
The thermal and optical properties of polyacrylamide hydrogels and cartilages are studied by the method of IR laser radiometry. The thermal diffusivity, heat capacity, and the effective absorption coefficient at a wavelength of 1.56 {mu}m measured for polyacrylamide gel with 70% water content and the degree of cross-linking 1:9 and for the nasal septum cartilage proved to be close. This allows the use of polyacrylamide hydrogels as equivalents of cartilages in simulations of laser-induced temperature fields. (biophotonics)
Sokolov, Denis A; Morozov, Yurii V; McDonald, Matthew P; Vietmeyer, Felix; Hodak, Jose H; Kuno, Masaru
2014-06-11
Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.
NASA Astrophysics Data System (ADS)
Cacciani, Marco; di Sarra, Alcide; Fiocco, Giorgio; Amoruso, Antonella
1989-06-01
Absolute measurements of the ozone absorption coefficient in the Huggins bands at different temperatures have been carried out. Ozone is produced by an electrical discharge and stored cryogenically; differential absorption measurements are subsequently obtained in a slowly evolving mixture of ozone and molecular oxygen. High resolution (to 0.012 nm) measurements cover a spectral range (339-355 nm) where the ozone absorption shows a strong dependence on temperature. Results at 293 and 220 K are reported; they are particularly interesting in view of the utilization of this spectral region as a low-absorption reference channel for the observation of atmospheric ozone profiles by active probing techniques. Coherent radiation at two wavelengths, around 355 and 353 nm, respectively, can be obtained as third harmonic of the fundamental output of an Nd:YAG laser and by H2 Raman shifting of an XeCl excimer laser output.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Joly, Lilian; Marnas, Fabien; Gibert, Fabien; Bruneau, Didier; Grouiez, Bruno; Flamant, Pierre H; Durry, Georges; Dumelie, Nicolas; Parvitte, Bertrand; Zéninari, Virginie
2009-10-10
Space-based active sensing of CO(2) concentration is a very promising technique for the derivation of CO(2) surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO(2) absorption line ((20(0)1)(III)<--(000) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO(2) absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO(2) mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
NASA Astrophysics Data System (ADS)
Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin
2017-03-01
We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.
Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.
Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami
2017-08-20
The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.
Mesure de coefficients d'absorption de plasmas créés par laser nanoseconde
NASA Astrophysics Data System (ADS)
Thais, F.; Chenais-Popovics, C.; Eidmann, K.; Bastiani, S.; Blenski, T.; Gilleron, F.
2005-06-01
La mesure des coefficients d'absorption dans les plasmas chauds est particulièrement utile dans le domaine de la fusion par confinement inertiel ainsi que dans divers contextes en astrophysique. Le développement des calculs de physique atomique qui y sont associés repose sur des hypothèses qu'il est nécessaire de vérifier dans la plus large gamme possible de conditions physiques. Nous présentons ici la méthode de mesure et d'analyse employée en nous appuyant sur l'exemple des cibles multicouches nickel/aluminium.
Nonlinear absorption properties of silicene nanosheets.
Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang
2018-06-01
As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.
Nonlinear absorption properties of silicene nanosheets
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang
2018-06-01
As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.
Kinetics of UV laser radiation defects in high performance glasses
NASA Astrophysics Data System (ADS)
Natura, U.; Feurer, T.; Ehrt, D.
2000-05-01
High purity fluoride phosphate glasses are attractive candidates as UV transmitting materials. The calculated values for the ultraviolet resonance wavelength are comparable with those of pure silica glass or fluoride single crystal CaF2. The formation of radiation-induced defect centers leads to additional absorption bands in the VUV-UV-vis range. The damage and the healing behavior by lamps and lasers are investigated in dependence on phosphate content and the content of impurities, mainly transition metals. Experiments were carried out using pulsed lasers with a duration of femto- and nanoseconds at a wavelength of 248 nm. The initial slope of the induced absorption shows a nonlinear dependence on the pulse energy density. Resonant and non-resonant two-photon mechanisms were observed. Two-photon-absorption coefficients at 248 nm for samples with different phosphate contents were measured. Models of the kinetics of the radiation-induced defects were developed. The inclusion of energy transfer was necessary to explain the difference in the damage behavior for nanosecond (248 nm, 193 nm) and femtosecond (248 nm) laser pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, Aleksei N; Orishich, Anatolii M
Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less
Nie, W J; Zhang, Y X; Yu, H H; Li, R; He, R Y; Dong, N N; Wang, J; Hübner, R; Böttger, R; Zhou, S Q; Amekura, H; Chen, F
2018-03-01
We report on the synthesis of embedded gold (Au) nanoparticles (NPs) in Nd:YAG single crystals using ion implantation and subsequent thermal annealing. Both linear and nonlinear absorption of the Nd:YAG crystals have been enhanced significantly due to the embedded Au NPs, which is induced by the surface plasmon resonance (SPR) effect in the visible light wavelength band. Particularly, through a typical Z-scan system excited by a femtosecond laser at 515 nm within the SPR band, the nonlinear absorption coefficients of crystals with Au NPs have been observed to be nearly 5 orders of magnitude larger than that without Au NPs. This giant enhancement of nonlinear absorption properties is correlated with the saturable absorption (SA) effect, which is the basis of passive Q-switching or mode-locking for pulsed laser generation. In addition, the linear and nonlinear absorption enhancement could be tailored by varying the fluence of implanted Au + ions, corresponding to the NP size and concentration modulation. Finally, the Nd:YAG wafer with embedded Au NPs has been applied as a saturable absorber in a Pr:LuLiF 4 crystal laser cavity, and efficient pulsed laser generation at 639 nm has been realized, which presents superior performance to the MoS 2 saturable absorber based system. This work opens an avenue to enhance and modulate the nonlinearities of dielectrics by embedding plasmonic Au NPs for efficient pulsed laser operation.
Examination of contrast mechanisms in optoacoustic imaging of thermal lesions
NASA Astrophysics Data System (ADS)
Richter, Christian; Spirou, Gloria; Oraevsky, Alexander A.; Whelan, William M.; Kolios, Michael C.
2006-02-01
Optoacoustic Imaging is based on the thermal expansion of tissue caused by a temperature rise due to absorption of short laser pulses. At constant laser fluence, optoacoustic image contrast is proportional to differences in optical absorption and the thermoacoustic efficiency, expressed by the Grueuneisen parameter, Γ. Γ is proportional to the thermal expansion coefficient, the sound velocity squared and the inverse heat capacity at constant pressure. In thermal therapies, these parameters may be modified in the treated area. In this work experiments were performed to examine the influence of these parameters on image contrast. A Laser Optoacoustic Imaging System (LOIS, Fairway Medical Technologies, Houston, Texas) was used to image tissue phantoms comprised of cylindrical Polyvinyl Chloride Plastisol (PVCP) optical absorbing targets imbedded in either gelatin or PVCP as the background medium. Varying concentrations of Black Plastic Color (BPC) and titanium dioxide (TiO II) were added to targets and background to yield desired tissue relevant optical absorption and effective scattering coefficients, respectively. In thermal therapy experiments, ex-vivo bovine liver was heated with laser fibres (805nm laser at 5 W for 600s) to create regions of tissue coagulation. Lesions formed in the liver tissue were visible using the LOIS system with reasonable correspondence to the actual region of tissue coagulation. In the phantom experiments, contrast could be seen with low optical absorbing targets (μ a of 0.50cm -1 down to 0.13cm-1) embedded in a gelatin background (see manuscript for formula). Therefore, the data suggest that small objects (< 5mm) with low absorption coefficients (in the range < 1cm -1) can be imaged using LOIS. PVCP-targets in gelatin were visible, even with the same optical properties as the gelatin, but different Γ. The enhanced contrast may also be caused by differences in the mechanical properties between the target and the surrounding medium. PVCP-targets imbedded in PVCP produced poorer image contrast than PVCP-targets in gelatin with comparable optical properties. The preliminary investigation in tissue equivalent phantoms indicates that in addition to tissue optical properties, differences in mechanical properties between heated and unheated tissues may be responsible for image contrast. Furthermore, thermal lesions in liver tissue, ex-vivo, can be visualized using an optoacoustic system.
Stokowski, S.E.
1987-10-20
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Stokowski, Stanley E.
1989-01-01
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo
2014-01-01
A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496
Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane
NASA Technical Reports Server (NTRS)
Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.
1988-01-01
Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nagasaka, Y.
2018-02-01
We describe an instrument for the measurement of the Soret and thermodiffusion coefficients in ternary systems based on the transient holographic grating technique, which is called Soret forced Rayleigh scattering (SFRS) or thermal diffusion forced Rayleigh scattering (TDFRS). We integrated the SFRS technique and the two-wavelength detection technique, which enabled us to obtain two different signals to determine the two independent Soret coefficients and thermodiffusion coefficients in ternary systems. The instrument has been designed to read the mass transport simultaneously by two-wavelength lasers with wavelengths of λ = 403 nm and λ = 639 nm. The irradiation time of the probing lasers is controlled to reduce the effect of laser absorption to the sample with dye (quinizarin), which is added to convert the interference pattern of the heating laser of λ = 532 nm to the temperature grating. The result of the measurement of binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) shows that the simultaneous two-wavelength observation of the Soret effect and the mass diffusion are adequately performed. To evaluate performance in the measurement of ternary systems, we carried out experiments on the ternary benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the ternary benchmark values within the range of the standard uncertainties (23% for the Soret coefficient of THN and 30% for the thermodiffusion coefficient of THN).
Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter
NASA Astrophysics Data System (ADS)
Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi
2018-03-01
To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.
NASA Astrophysics Data System (ADS)
Wu, Sheldon S. Q.; Baker, Bradford W.; Rotter, Mark D.; Rubenchik, Alexander M.; Wiechec, Maxwell E.; Brown, Zachary M.; Beach, Raymond J.; Matthews, Manyalibo J.
2017-12-01
Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.
NASA Astrophysics Data System (ADS)
El-Daly, S. A.; Gaber, M.; El-Sayed, Y. S.
2009-09-01
The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser ( λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460-590 nm. The laser parameters such as the tuning range, gain coefficient ( α), emission cross section ( σ e) and half-life energy ( E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.
Temperature dependent absorption measurement of various transition metal doped laser materials
NASA Astrophysics Data System (ADS)
Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.
2015-05-01
In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.
Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths
NASA Astrophysics Data System (ADS)
Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.
1990-03-01
This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.
Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.
Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping
2012-06-15
We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.
Optical and Structural Properties of Si Nanocrystals in SiO2 Films.
Nikitin, Timur; Khriachtchev, Leonid
2015-04-22
Optical and structural properties of Si nanocrystals (Si-nc) in silica films are described. For the SiOx (x < 2) films annealed above 1000 °C, the Raman signal of Si-nc and the absorption coefficient are proportional to the amount of elemental Si detected by X-ray photoelectron spectroscopy. A good agreement is found between the measured refractive index and the value estimated by using the effective-medium approximation. The extinction coefficient of elemental Si is found to be between the values of crystalline and amorphous Si. Thermal annealing increases the degree of Si crystallization; however, the crystallization and the Si-SiO2 phase separation are not complete after annealing at 1200 °C. The 1.5-eV PL quantum yield increases as the amount of elemental Si decreases; thus, this PL is probably not directly from Si-nc responsible for absorption and detected by Raman spectroscopy. Continuous-wave laser light can produce very high temperatures in the free-standing films, which changes their structural and optical properties. For relatively large laser spots, the center of the laser-annealed area is very transparent and consists of amorphous SiO2. Large Si-nc (up to ∼300 nm in diameter) are observed in the ring around the central region. These Si-nc lead to high absorption and they are typically under compressive stress, which is connected with their formation from the liquid phase. By using strongly focused laser beams, the structural changes in the free-standing films can be made in submicron areas.
Optical and Structural Properties of Si Nanocrystals in SiO2 Films
Nikitin, Timur; Khriachtchev, Leonid
2015-01-01
Optical and structural properties of Si nanocrystals (Si-nc) in silica films are described. For the SiOx (x < 2) films annealed above 1000 °C, the Raman signal of Si-nc and the absorption coefficient are proportional to the amount of elemental Si detected by X-ray photoelectron spectroscopy. A good agreement is found between the measured refractive index and the value estimated by using the effective-medium approximation. The extinction coefficient of elemental Si is found to be between the values of crystalline and amorphous Si. Thermal annealing increases the degree of Si crystallization; however, the crystallization and the Si–SiO2 phase separation are not complete after annealing at 1200 °C. The 1.5-eV PL quantum yield increases as the amount of elemental Si decreases; thus, this PL is probably not directly from Si-nc responsible for absorption and detected by Raman spectroscopy. Continuous-wave laser light can produce very high temperatures in the free-standing films, which changes their structural and optical properties. For relatively large laser spots, the center of the laser-annealed area is very transparent and consists of amorphous SiO2. Large Si-nc (up to ~300 nm in diameter) are observed in the ring around the central region. These Si-nc lead to high absorption and they are typically under compressive stress, which is connected with their formation from the liquid phase. By using strongly focused laser beams, the structural changes in the free-standing films can be made in submicron areas. PMID:28347028
3D photomechanical model of tooth enamel ablation by Er-laser radiation
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.
2014-02-01
The three-dimensional (3D) photomechanical model of human tooth enamel ablation is described. It takes into account: the structural peculiarities of enamel, Er-laser beam energy spatial distribution and laser radiation attenuation in the tissue. Dynamics change of enamel coefficient of absorption during ablation is also discussed. We consider the 3D photomechanical model of incomplete removal (modification) of the enamel rods by the pressure of water contained in the enamel pores and heated by laser radiation, and complete removal (ablation) of the enamel rods as result of hydroxyapatite heated by laser radiation and evaporation. Modeling results are in close agreement with the experimental results.
Detection of NO sub x,C2H4 concentrations by using CO and CO2 lasers
NASA Technical Reports Server (NTRS)
Gengchen, W.; Qinxin, K.
1986-01-01
A laser, especially the infrared line tunable laser, opens up a new way to monitor the atmospheric environment, and already has gotten effective practical application. One of the most serious problems in open path remote measurement at atmospheric pressure is the broadening effect which leads to increased linewidths, spectral interferences, and, as a result, tends to reduce detection sensitivity, so measuring laser wavelengths should be selected carefully, and interaction between the measuring wavelength and gas to be measured must be known very well. Therefore, N2O, No, NO2, CH4, NH3 and C2H4 absorption properties at some lines of CO and CO2 line tunable lasers were studied. The absorption coefficients of NO, NO2, and C2H4; some results on detection of NO sub x, C2H4 concentrations in both laboratory and field; and selection of measuring wavelengths and error analysis are discussed.
Mechanisms of Pulsed Laser Induced Damage to Optical Coatings
1986-07-01
photoionization of absorption centers . . . . . . . . . . . . . . . . . . . . 82 5 Electron densities achieved at 12.xiO" cm from color center initiation due...lends validity to this =~ del . It also provides an order of magnitide estimate of thýe range of the otherwise unknor optical absorption coefficient and...very high temperaturas can be reacheS in the center of the film while the boundaries remain nearly at their initial temperataure. In this case a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonenko, A A; Dorogush, E S; Malyshev, S A
Using a system of coupled travelling wave equations, in the small-signal regime we analyse frequency and noise characteristics of index- or absorption-coupled distributed feedback laser diodes, as well as of Fabry – Perot (FP) laser diodes. It is shown that the weakest dependence of the direct modulation efficiency on the locking frequency in the regime of strong external optical injection locking is exhibited by a FP laser diode formed by highly reflective and antireflective coatings on the end faces of a laser structure. A reduction in the dependence of output characteristics of the laser diode on the locking frequency canmore » be attained by decreasing the reflection coefficient of the antireflective FP mirror. (control of laser radiation parameters)« less
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.
2016-05-01
We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.
Absorption spectra and light penetration depth of normal and pathologically altered human skin
NASA Astrophysics Data System (ADS)
Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.
2007-05-01
A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.
NASA Astrophysics Data System (ADS)
Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao
2017-04-01
A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.
Measurement and compensation of wavefront deformations and focal shifts in high-power laser optics
NASA Astrophysics Data System (ADS)
Mann, K.; Schäfer, B.; Stubenvoll, M.; Hentschel, K.; Zenz, M.
2015-11-01
We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.
NASA Astrophysics Data System (ADS)
Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam
2018-05-01
The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.
NASA Astrophysics Data System (ADS)
Zidan, M. D.; Al-Ktaifani, M. M.; Allahham, A.
2017-05-01
Z-scan measurements were performed with a CW diode laser at 635 nm to investigate the nonlinear optical properties of Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate in ethanol at two concentrations. Theoretical fit was carried out to evaluate the nonlinear absorption coefficient (β) and the negative nonlinear refractive index (n2) for the studied complex. Furthermore, the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient were also estimated. The investigations show large NLO response, which is predominantly associated with substantial conjugation between the aromatic ring π-electron system and d-electron set metal center. The obtained results give a strong indication that Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate have a potential application in optical domain.
Measurement of the main and critical parameters for optimal laser treatment of heart disease
NASA Astrophysics Data System (ADS)
Kabeya, FB; Abrahamse, H.; Karsten, AE
2017-10-01
Laser light is frequently used in the diagnosis and treatment of patients. As in traditional treatments such as medication, bypass surgery, and minimally invasive ways, laser treatment can also fail and present serious side effects. The true reason for laser treatment failure or the side effects thereof, remains unknown. From the literature review conducted, and experimental results generated we conclude that an optimal laser treatment for coronary artery disease (named heart disease) can be obtained if certain critical parameters are correctly measured and understood. These parameters include the laser power, the laser beam profile, the fluence rate, the treatment time, as well as the absorption and scattering coefficients of the target treatment tissue. Therefore, this paper proposes different, accurate methods for the measurement of these critical parameters to determine the optimal laser treatment of heart disease with a minimal risk of side effects. The results from the measurement of absorption and scattering properties can be used in a computer simulation package to predict the fluence rate. The computing technique is a program based on the random number (Monte Carlo) process and probability statistics to track the propagation of photons through a biological tissue.
Simulation of medical Q-switch flash-pumped Er:YAG laser
NASA Astrophysics Data System (ADS)
-Yan-lin, Wang; Huang-Chuyun; Yao-Yucheng; Xiaolin, Zou
2011-01-01
Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm-1. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.
Comparing irradiation parameters on disinfecting enterrecoccus faecalis in root canal disinfection
NASA Astrophysics Data System (ADS)
Sarp, Ayşe. S.; Gülsoy, Murat
2016-02-01
Although conventional method carries all the debris, studies on persisting infections in root canals show bacteria and their toxins spread from the root canal and contaminate the apical region. Thus developes apical periodontitis or symptoms, and loss of tooth. Even if the treatment has adequate success, anatomy of root canal system can be very complexwith accessory canals. The disinfecting effect of laser radiation has only recently been used in dentistry. Laser irradiation has a bactericidal effect. Each wavelength has its own advantages and limitations according to their different absorption characteristics, depending on their 'absorption coefficient'. The sterilizing efficiency of two types of wavelengths, a new fiber laser 1940- nm Thulium fiber Laser and an 2940 nm Er:YAG Laser were compared in this study. Irradiation with a power of 0.50 W with 1940- nm Thulium fiber Laser disinfected 95,15% of bacteria, however irradiation with same laser power with Er:YAG Laser caused a reduction of 96,48 %. But there was no significant difference in the disinfection effect of two different laser groups ( p < 0.05, Mann- U-Whitney Test). In addition to this, Er :YAG Laser caused three times more reduction from its own positive control group where 1940- nm Thulium fiber Laser caused 2,5 times effective disinfection.
Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames
NASA Technical Reports Server (NTRS)
Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.
1990-01-01
The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a technique employing two fluorescence detection geometries.
NASA Astrophysics Data System (ADS)
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.
2017-12-01
Mobile laser technological complex MLTC-20 with radiation power 20 kW and radiation wavelength 1.07 μm created in SRC RF TRINITI on the base of a three cw fiber Yb lasers is used successfully at remote cutting of the metalworks at carrying out of the emergency-reduction works on the out of control gas wells. In this work the results of the investigation of the possibility and the efficiency of laser radiation application for remote cutting of metals on the emergency oil wells have been presented. Measurements of the mean absorption coefficient of the radiation of a cw fiber Yb laser under its propagation in a flame of burning oil in dependence on radiation intensity have been carried out. It was shown that at the intensity ~104 W/cm2 the absorption coefficient traverses the maximum where its value is equal to ~0.1 cm-1, and at the intensity increasing to the values 105 - 106 W/cm2 it stabilizes on a small level ~5·10-3 - 10-2 cm-1. It is established that the maximal velocity and the efficiency of remote cutting of the steel plates with a thickness up to 10 mm by the radiation with the intensity 106 W/cm2 exceed these factors at the intensity 104 W/cm2. The possibility of the efficient remote cutting of steel plate with a thickness of 60 mm by laser radiation having the power 7.5 kW and the intensity 105 W/cm2 has been demonstrated.
Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberman, V.; Sworin, M.; Kingsborough, R. P.
2013-02-07
Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficientsmore » for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.« less
Basic characteristics of high-frequency Stark-effect modulation of CO2 lasers.
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Pao, Y. H.
1971-01-01
The molecular Stark effect and its application to the modulation of infrared laser radiation have been investigated both theoretically and experimentally. Using a density matrix approach, a quantum mechanical description of the effect of a time-varying electric field on the absorption coefficient and refractive index of a molecular gas near an absorption line has been formulated. For modulation applications a quantity known as the ?modulation depth' is of prime importance. Theoretical expressions for the frequency dependence of the modulation depth show that the response to the frequency of a time-varying Stark field is separated into a nondispersive and a dispersive region, depending on whether the modulating frequency is less than or greater than the homogeneous absorption linewidth. Experimental results showing nondispersive modulation at frequencies to 30 MHz are presented. In addition it is shown that the response of modulation depth to Stark field amplitude is separated into linear and nonlinear regions, the field at which nonlinearities begin being determined by the absorption spectrum of the molecule being used.
Effect of layer thickness on device response of silicon heavily supersaturated with sulfur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, David; Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996; Mathews, Jay
2016-05-15
We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measuredmore » concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.« less
Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6
NASA Astrophysics Data System (ADS)
Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.
2017-04-01
Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.
Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T
2006-01-21
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.
NASA Astrophysics Data System (ADS)
Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro
2017-07-01
The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Krech, R. H.
1980-01-01
The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.
Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions
NASA Astrophysics Data System (ADS)
Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.
2017-04-01
Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.
NASA Astrophysics Data System (ADS)
Sharma, D.; Malik, B. P.; Gaur, A.
2016-11-01
Zinc oxide quantum dots (QDs) with Fe-doping at different concentrations were prepared by chemical co-precipitation method. The prepared QDs were characterized by UV-Vis spectroscopy, X-ray diffraction and Z-scan technique. The sizes of QDs were found to be within 4.6-6.6 nm range. The nonlinear parameters viz. two-photon absorption coefficient (βTPA) and two-photon absorption cross-section (σTPA) were extracted with the help of open aperture Z-scan technique using nanosecond Nd:YAG laser operating at wavelength 532 nm. Higher values of βTPA and σTPA for Fe doped ZnO implied that they were potential materials for development of photonics devices and sensor protection applications. Fe doped sample (3 % by wt) was found to be the best optical limiter with limiting threshold intensity of 0.64 TW/cm2.
NASA Astrophysics Data System (ADS)
Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.
2017-03-01
In the present study, the nonlinear optical properties of sol-gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.
NASA Astrophysics Data System (ADS)
Sharma, Dimple; Malik, B. P.; Gaur, Arun
2015-12-01
The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
Quantum cascade lasers with Y2O3 insulation layer operating at 8.1 µm.
Kang, JoonHyun; Yang, Hyun-Duk; Joo, Beom Soo; Park, Joon-Suh; Lee, Song-Ee; Jeong, Shinyoung; Kyhm, Jihoon; Han, Moonsup; Song, Jin Dong; Han, Il Ki
2017-08-07
SiO 2 is a commonly used insulation layer for QCLs but has high absorption peak around 8 to 10 µm. Instead of SiO 2 , we used Y 2 O 3 as an insulation layer for DC-QCL and successfully demonstrated lasing operation at the wavelength around 8.1 µm. We also showed 2D numerical analysis on the absorption coefficient of our DC-QCL structure with various parameters such as insulating materials, waveguide width, and mesa angle.
Measurement of gas viscosity using photonic crystal fiber
NASA Astrophysics Data System (ADS)
Gao, R.-K.; Sheehe, S. L.; Kurtz, J.; O'Byrne, S.
2016-11-01
A new measurement technique for gas viscosity coefficient is designed and demonstrated using the technique of tunable diode laser absorption spectroscopy (TDLAS). Gas flow is driven by a pressure gradient between two gas cells, through a photonic crystal fiber (PCF) surrounded by a furnace for temperature adjustment. PCF with 20-micron diameter affords physical space for gas-light interaction and provides a basis for gas viscosity measurement by determining the time for flow to exit a capillary tube under the influence of a pressure gradient. Infrared radiation from a diode laser is coupled into the fiber to be guided through the gas, and the light attenuation due to absorption from the molecular absorbing species is measured by a photo detector placed at the exit of the fiber. A numerical model from Sharipov and Graur describing local number density distribution in a unsteady state is applied for the determination of gas viscosity, based on the number density of gas measured by the absorption of the laser light, using the Beer-Lambert law. The measurement system is confirmed by measuring the viscosity of CO2 as a reference gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Ba, T.; Triki, M.; Vicet, A., E-mail: a.vicet@univ-montp2.fr
2015-02-15
An antimonide distributed feedback quantum wells diode laser operating at 3.32 μm at near room temperature in the continuous wave regime has been used to perform ethylene detection based on quartz enhanced photoacoustic spectroscopy. An absorption line centered at 3007.52 cm{sup −1} was investigated and a normalized noise equivalent absorption coefficient (1σ) of 3.09 10{sup −7} cm{sup −1} W Hz{sup −1/2} was obtained. The linearity and the stability of the detection have been evaluated. Biological samples’ respiration has been measured to validate the feasibility of the detection setup in an agronomic environment, especially on ripening apples.
NASA Astrophysics Data System (ADS)
Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae
2016-05-01
We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.
Research on the peculiarity of optical parameters of atmospheric aerosol in Guangzhou coastal areas
NASA Astrophysics Data System (ADS)
Li, Shasha; Li, Xuebin; Zhang, Wenzhong; Bai, Shiwei; Liu, Qing; Zhu, Wenyue; Weng, Ningquan
2018-02-01
The long-term measurement of atmospheric aerosol is constructed via such equipment as visibility meter, optical particle counter, solar radiometer, automatic weather station, aerosol laser radar and aerosol scattering absorption coefficient measurer and so on during the year of 2010 and 2017 in the coastal areas of Guangzhou, China to study the optical parameter characteristics of atmospheric aerosol and establish the aerosol optical parameter mode in such areas. The effects of temperature and humidity on aerosol concentration, extinction and absorption coefficient are analyzed and the statistical characteristics of atmospheric temperature and humidity, visibility, extinction profiles and other parameters in different months are tallied, preliminarily establishing the atmospheric aerosol optical parameter pattern in Guangzhou coastal areas.
Spectrally enhanced image resolution of tooth enamel surfaces
NASA Astrophysics Data System (ADS)
Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.
2012-01-01
Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.
Cavity ring-down spectroscopy in the liquid phase
NASA Astrophysics Data System (ADS)
Xu, Shucheng; Sha, Guohe; Xie, Jinchun
2002-02-01
A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.
H2/O2 three-body rates at high temperatures
NASA Technical Reports Server (NTRS)
Marinelli, William J.; Kessler, William J.; Carleton, Karen L.
1991-01-01
Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.
NASA Astrophysics Data System (ADS)
Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce
2015-03-01
HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.
NASA Astrophysics Data System (ADS)
Suheshkumar Singh, M.; Rajan, K.; Vasu, R. M.
2011-05-01
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6mm in diameter, separated by 8mm between them. Three samples are made. One inclusion has Young's modulus E of 40kPa. The second inclusion has either a Young's modulus E of 20kPa, or scattering coefficient of μs'=3.00mm-1 or absorption coefficient of μa=0.03mm-1. The optical absorption (μa), reduced scattering (μs') coefficient, and the Young's modulus of the background are μa=0.01mm-1, μs'=1.00mm-1 and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of μa=0.03mm-1, E =40kPa and μs'=3.00mm-1. The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of μa, μs', and Young's modulus of the tissue mimicking medium are also carried out.
Water-assisted pulsed Er:YAG laser interaction with silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaehun; Ki, Hyungson, E-mail: hski@unist.ac.kr
2015-07-07
Silicon is virtually transparent to the Er:YAG laser with a wavelength of 2.94 μm. In this study, we report that moderately doped silicon (1–10 Ω cm) can be processed by a pulsed Er:YAG laser with a pulse duration of 350 μs and a peak laser intensity of 1.7 × 10{sup 5} W/cm{sup 2} by applying a thin water layer on top of silicon as a light absorbing medium. In this way, water is heated first by strongly absorbing the laser energy and then heats up the silicon wafer indirectly. As the silicon temperature rises, the free carrier concentration and therefore the absorption coefficient of silicon willmore » increase significantly, which may enable the silicon to get directly processed by the Er:YAG laser when the water is vaporized completely. We also believe that the change in surface morphology after melting could contribute to the increase in the laser beam absorptance. It was observed that 525 nm-thick p-type wafer specimens were fully penetrated after 15 laser pulses were irradiated. Bright yellow flames were observed during the process, which indicates that the silicon surface reached the melting point.« less
Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio
Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuladeep, Rajamudili; Jyothi, L.; Narayana Rao, D.
In this communication, we carried out the systematic investigation of nonlinear absorption and scattering properties of Aluminium nanoparticles (Al NPs) in various polar and non-polar solvents. Al NPs were synthesized with pulsed Nd:YAG laser operated at 1064 nm by ablating Al target in polar and non-polar liquid environment like chloroform, chlorobenzene, toluene, benzene, and carbon tetrachloride. Synthesized Al NPs colloids of various solvents differ in appearance and UV-Vis extinction spectra exhibit absorption in the UV region. The characterization of Al NPs performed by Transmission electron microscopy (TEM) studies reveal that NPs are made up of a well crystallized Al innermore » part (bright zone) embedded with an amorphous metal Al shell (dark region). Growth, aggregation, and precipitation mechanisms which influence the optical properties and stability of NPs are found to be related to the dipole moment of the surrounding liquid environment. The nonlinear absorption and scattering studies are performed by open aperture Z-scan technique with 532 nm under nanosecond pulse excitation. The Z-scan measurements are fitted theoretically to estimate both two-photon absorption (TPA) and nonlinear scattering (NLS) coefficients. In polar solvents like chlorobenzene, chloroform synthesized Al NPs exhibited higher TPA, NLS coefficient values, and lower optical limiting threshold values in comparison with partially polar solvent like toluene and non-polar solvents like benzene and carbontetrachloride. These results indicate the potential use of Al NPs as a versatile optical limiting material.« less
Time-resolved laser-induced incandescence characterization of metal nanoparticles
NASA Astrophysics Data System (ADS)
Sipkens, T. A.; Singh, N. R.; Daun, K. J.
2017-01-01
This paper presents a comparative analysis of time-resolved laser-induced incandescence measurements of iron, silver, and molybdenum aerosols. Both the variation of peak temperature with fluence and the temperature decay curves strongly depend on the melting point and latent heat of vaporization of the nanoparticles. Recovered nanoparticle sizes are consistent with ex situ analysis, while thermal accommodation coefficients follow expected trends with gas molecular mass and structure. Nevertheless, there remain several unanswered questions and unexplained behaviors: the radiative properties of laser-energized iron nanoparticles do not match those of bulk molten iron; the absorption cross sections of molten iron and silver at the excitation laser wavelength exceed theoretical predictions; and there is an unexplained feature in the temperature decay of laser-energized molybdenum nanoparticles immediately following the laser pulse.
Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages
NASA Astrophysics Data System (ADS)
Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei
2018-01-01
Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.
Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2016-01-01
We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.
Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F
2015-10-01
The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.
NASA Astrophysics Data System (ADS)
Ehsani, Hassan; Akhoondi, Somaieh
2016-09-01
In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application
Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).
Rare Earth Doped IR Fiber Lasers For Medical Applications
NASA Astrophysics Data System (ADS)
Esterowitz, Leon; Allen, Roger
1989-06-01
Trivalent rare earth doped lasers in fluorozirconate glasses and fibers that lase between 2 and 3 μm are reviewed. There have been a large number of laser-fiber optic systems below 2pm developed for clinical microsurgery at a variety of sites. The required flexibility of the fiber optic waveguide varies with the clinical use, such as: intraocular (through a small diameter rigid tube), endoscopically accessible pulmonary and gastric mucosa (through a port of a fiber-optic endoscope of intermediate flexibility), and intra-arterial (as an integral part of a flexible catheter, which in the case of the coronaries must be very flexible so as to negotiate abrupt bends and bifurcations without damage to the vessels). Laser energy absorbed by tissue is capable of coagulation of tissue (denaturation of structural proteins), melting of fatty deposits or other structures (solid or gel to liquid phase transitions), as well as direct breakage of chemical bonds by high energy photons. It is of general interest to develop a pulsed laser system transmitted through flexible fiber optics that is capable of precise ablation of targeted tissue with minimal damage to the remaining tissue. Ideally, the device should be able to ablate any tissue because of the general absorptive properties of tissue, and not a specific chromophore such as melanin or hemoglobin, the concentration of which varies widely among tissues. Two obvious ubiquitous chromophores have been widely discussed: 1) proteins and nucleic acids whose high concentration and absorption coefficients lead to strong tissue absorption in the ultraviolet and 2) water whose strong infrared absorption bands have been widely utilized in CO2 laser surgery. Non-linear absorption occurring at very high power densities (~1 GW/cm2) has been shown to be very effective for non-invasive ocular (an optically transparent field) microsurgery at the image plane of a slit lamp, but this approach appears impractical in fiber optic systems because of similar non-linear damage mechanisms within the fiber.
Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar
NASA Astrophysics Data System (ADS)
Razenkov, Ilya I.; Eloranta, Edwin W.
2016-06-01
The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.
Enhanced optical limiting effect in fluorine-functionalized graphene oxide
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang
2017-09-01
Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen
2017-06-01
An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.
Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.
Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A
2015-03-05
Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas
NASA Technical Reports Server (NTRS)
Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)
2001-01-01
Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.
Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers
NASA Astrophysics Data System (ADS)
Chao, X.; Jeffries, J. B.; Hanson, R. K.
2009-11-01
Tunable diode laser absorption spectroscopy of CO was studied in the controlled laboratory environments of a heated cell and a combustion exhaust rig. Two absorption lines, R(10) and R(11) in the first overtone band of CO near 2.3 µm, were selected from a HITRAN simulation to minimize interference from water vapor at a representative combustion exhaust temperature (~1200 K). The linestrengths and collision broadening coefficients for these lines were measured in a heated static cell. This database was then used in a comparative study of direct absorption and wavelength-modulation absorption. CO concentration measurements using scanned-wavelength direct absorption (DA) and wavelength modulation with the second-harmonic signal normalized by the first-harmonic signal (WMS-2f/1f) all agreed with those measured by a conventional gas sampling analyzer over the range from <10 ppm to 2.3%. As expected, water vapor was found to be the dominant source of background interference for CO detection in combustion flows at high temperatures. Water absorption was measured to a high spectral resolution within the wavelength region 4295-4301 cm-1 at 1100 K, and shown to produce <10 ppm level interference for CO detection in combustion exhausts at temperatures up to 1200 K. We found that the WMS-2f/1f strategy avoids the need for WMS calibration measurements but requires characterization of the wavelength and injection-current intensity modulation of the specific diode laser. We conclude that WMS-2f/1f using the selected R(10) or R(11) transitions in the CO overtone band holds good promise for sensitive in situ detection of ppm-level CO in combustion flows, with high resistance to interference absorption from H2O.
NASA Astrophysics Data System (ADS)
Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei
2018-04-01
This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Jeffries, J. B.; Hanson, R. K.
2009-01-01
A tunable diode laser (TDL) is used to measure the absorption spectra of the R46 through R54 transitions of the 20012 ←00001 band of CO2 near 2.0 μm (5000 cm-1) at room temperature and pressures to 10 atm (densities to 9.2 amagat). Spectra are recorded using direct absorption spectroscopy and wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) in a mixture containing 11% CO2 in air. The direct absorption spectra are influenced by non-Lorentzian effects including finite-duration collisions which perturb far-wing absorption, and an empirical χ-function correction to the Voigt line shape is shown to greatly reduce error in the spectral model. WMS-2f spectra are shown to be at least a factor of four less-influenced by non-Lorentzian effects in this region, making this approach more resistant to errors in the far-wing line shape model and allowing a comparison between the spectral parameters of HITRAN and a new database which includes pressure-induced shift coefficients. The implications of these measurements on practical, high-pressure CO2 sensor design are discussed.
Designing and testing a laser-based vibratory sensor
NASA Astrophysics Data System (ADS)
Nath, G.
2018-04-01
Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
NASA Astrophysics Data System (ADS)
Zidan, M. D.; Arfan, A.; Allahham, A.
2017-03-01
Z-scan technique was used to investigate the nonlinear optical properties of Quinine and 1-(carboxymethyl)-6-methoxy-4-(3-(3-vinylpiperidin-4-yl) propanoyl) quinolin-1-ium chloride (Quinotoxine) salts. The two salts were characterized using UV-visible, FTIR and NMR measurements. The characterization spectra confirm the expected molecular structure of the prepared ;Quinotoxine ; salt. The z-scan measurements were performed with a CW Diode laser at 635 nm wavelength and 26 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient of the samples were determined. Our results reveal that the σex is higher than the σg indicating that the reverse saturable absorption (RSA) is the dominating mechanism for the observed absorption nonlinearities. The results suggest that this material should be considered as a promising candidate for future optical devices applications.
NASA Astrophysics Data System (ADS)
Moskalenko, Konstantin L.; Sobolev, Nikolai V.; Adamovskay, Inna A.; Stepanov, Eugene V.; Nadezhdinskii, Alexander I.; McKenna-Lawlor, Susan
1994-01-01
Measurements of carbon monoxide and carbon dioxide concentrations by registration of high resolution absorption spectra are described. A fully automated diode laser system developed to simultaneously measure CO and CO2, with sensitivity for CO up to 50 ppb and CO2 up to 0.1 vol%, is described. Calculation of CO and CO2 concentrations was carried out on the base of a priori date on strength and broadening coefficients of detected absorption lines. Test procedures of such diode laser systems are described. Possible reasons affected on accuracy and reliability of obtained data (e.g., the value of diode lasers spontaneous radiation, the stability of CO content in a cell, etc.) for absolute and relative calibration procedure are discussed. The physiological level of CO concentration in the breath of non smokers and smokers under different ambient conditions of CO concentrations in the atmosphere (in Moscow and in Maynooth) are compared. Recent results on statistical studies of the behavior of CO concentrations as a function of breath holding time are represented.
NASA Astrophysics Data System (ADS)
Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2017-09-01
In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.
Multi-species laser absorption sensors for in situ monitoring of syngas composition
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.
2014-04-01
Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Wang, Xiao-chun; Wang, Yang
2018-03-01
In this paper, a one-dimensional (1D) thermal-wave model coupled diffuse-photon-density-wave for three-layer dental tissues using modulated laser stimulation was employed to illustrate the relationship between dental caries characteristic (i.e. caries layer thickness, optical absorption coefficient and optical scattering coefficient) and photothermal radiometry (PTR) signal. Experimental investigation of artificial caries was carried out using PTR scanning imaging. The PTR amplitude and phase delay were increased with dental demineralized treatment. The local caries characteristic parameters were obtained by the best-fitting method based on the 1D thermal-wave model. The PTR scanning imaging measurements illustrated that the optical absorption coefficient and scattering coefficient of caries region were much higher than those of the healthy enamel area. The demineralization thickness of caries region was measured by PTR scanning imaging and its average value shows in good agreement with the digital microscope. Experimental results show that PTR scanning imaging has the merits of high contrast for local inhomogeneity of dental caries; furthermore, this method is an allowance to provide a flexibility for non-contact quantitative evaluation of dental caries.
Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E
2013-10-01
An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a valuable tool for probing enhanced absorption by soot at atmospherically relevant concentrations.
Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX
NASA Astrophysics Data System (ADS)
Auerhammer, J. M.; Walker, R.; van der Meer, A. F. G.; Jean, B.
The properties of pulsed IR-laser ablation of biological soft tissue (porcine cornea) were studied in vitro systematically and quantitatively with a free-electron laser in the wavelength range 6<=λ<=20 μm at fluences ranging from 3.1 to 9.4 J/cm2. Dynamic parameters such as the extension of the ablation cloud, the initial velocity and momentum of the ablated particles as well as the ablation threshold, the ablated mass, and the particle size were investigated. The ablation plume was made visible with a stroboscopic technique. For a fluence of 3.1 J/cm2 the average initial velocity of the ejected particles was deduced from the extension of the plume to range from 120-400 m/s. Measurements of the recoil momentum using a sensitive pendulum led to values between 0.5 and 2.0 mmg/s. All measured properties were related to the spectroscopically determined absorption coefficient of cornea αcornea. Where absorption due to proteins is high (at λ=6.2 and 6.5 μm), ablated mass, velocity and recoil momentum behave according to αcornea. For the first time, variations of the ablation plume from pulse to pulse were observed. Those, as well as the particle size, not only depend on the absorption coefficient, but also on the predominant absorber.
NASA Astrophysics Data System (ADS)
Abdel Samad, B.; Ashrit, P. V.
2014-09-01
Vanadium pentoxide V2O5 thin films were grown on glass substrates by the LAMBD deposition system with different laser energies. The structure, composition and optical properties of the films have been investigated with atomic force microscopy, x-ray photoemission spectroscopy, ellipsometry and the transmittance analysis. Upon the increase of laser energy, the results showed that the changes in the optical constants are consistent with the thickness changes of the film. The refractive index increases and the absorption coefficient increases when the laser energy increases. The AFM analysis showed a change of the roughness and structure of the deposited films at different laser energies. The prepared films deposited by LAMBD showed interesting properties with correct V2O5 phase without need of annealing after deposition.
NASA Astrophysics Data System (ADS)
Gupta, S. R. D.; Gupta, Santanu D.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, M.; Amendt, P.A.; London, R.A.
1997-03-04
Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1more » {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.« less
Performance Modeling of Experimental Laser Lightcrafts
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)
2001-01-01
A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R
2014-05-05
Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cadatal-Raduban, Marilou; Pham, Minh Hong; Pham, Duong Van; Bui, Duong Thi Thuy; Yamanoi, Kohei; Takeda, Kohei; Empizo, Melvin John F.; Mui, Luong Viet; Shimizu, Toshihiko; Nguyen, Hung Dai; Sarukura, Nobuhiko; Fukuda, Tsuguo
2018-06-01
A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of {φ _1} = 103°, {φ _2} = {φ _4} = 82°, {φ _3} = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of 1.5 cm-1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.
Instrumentation and optimization of intra-cavity fiber laser gas absorption sensing system
NASA Astrophysics Data System (ADS)
Liu, Kun; Liu, Tiegen; Jiang, Junfeng; Liang, Xiao; Zhang, Yimo
2011-11-01
Detection of pollution, inflammable, explosive gases such as methane, acetylene, carbon monoxide and so on is very important for many areas, such as environmental, mining and petrochemical industry. Intra-cavity gas absorption sensing technique (ICGAST) based on Erbium-doped fiber ring laser (EDFRL) is one of novel methods for trace gas with higher precision. It has attracted considerable attention, and many research institutes focus on it. Instrumentation and optimization of ICGAST was reported in this paper. The system consists of five parts, which are variable gain module, intelligent frequency-selection module, gas cell, DAQ module and computer respectively. Variable gain module and intelligent frequency-selection module are combined to establish the intra-cavity of the ring laser. Gas cell is used as gas sensor. DAQ module is used to realize data acquisition synchronously. And gas demodulation is finished in the computer finally. The system was optimized by adjusting the sequence of the components. Take experimental simulation as an example, the absorptance of gas was increased five times after optimization, and the sensitivity enhancement factor can reach more than twenty. By using Fabry-Perot (F-P) etalon, the absorption wavelength of the detected gas can be obtained, with error less than 20 pm. The spectra of the detected gas can be swept continuously to obtain several absorption lines in one loop. The coefficient of variation (CV) was used to show the repeatability of gas concentration detection. And results of CV value can be less than 0.014.
NASA Technical Reports Server (NTRS)
Singh, Kuldip; O'Brien, James J.
1994-01-01
Pressure-broadening coefficients and pressure-induced lineshifts of several rotational-vibrational lines have been measured in the 727 nm absorption band of methane at temperatures of 77 and 296 K, using nitrogen, hydrogen, and helium as the foreign-gas collision partners. A technique involving intracavity laser spectroscopy is used to record the methane spectra. Average values of the broadening coefficients (/cm/atm) at 77 K are: 0.199, 0.139, 0.055, and 0.29 for collision partners N2, H2, He, and CH4, respectively. Typical average values of the pressure-induced lineshifts (/cm/atm) at 77 K and for the range of foreign gas pressures between 10 and 200 torr are -0.052 for N2, -0.063 for H2, and +0.031 for He. All the values obtained at 296 K are considerably different from the corresponding values at 77 K. This represents the first report of pressure-broadening and shifting coefficients for the methane transitions in a region where the delta nu(sub C-H) = 5 band occurs.
Optical properties of β-BBO and potential for THz applications
NASA Astrophysics Data System (ADS)
Nikolaev, N. A.; Andreev, Yu. M.; Antsygin, V. D.; Bekker, T. B.; Ezhov, D. M.; Kokh, A. E.; Kokh, K. A.; Lanskii, G. V.; Mamrashev, A. A.; Svetlichnyi, V. A.
2018-01-01
The anisotropy of optical properties of high quality beta barium borate crystal (β-BaB2O4, β-BBO) was studied in the main transparency window by using classic spectroscopic methods and in the range of 0.2 - 2 THz by using THz time-domain spectroscopy. β-BBO crystals were grown by the top-seeded solution technique in a highly resistive furnace with a heat field of 3-fold axis symmetry. At room temperature (RT), absorption coefficient in the maximal transparency window in grown crystals did not exceed 0.05 cm-1. Strong absorption anisotropy was observed in 3 - 5 μm and the THz range. At 1 THz absorption coefficients for e and o wave were, respectively, 7 cm-1 and 21 cm-1 at RT; 2 cm-1 and 10 cm-1 at 81 K. At the most attractive for out-of-door applications range < 0.4 THz the absorption coefficient is found to be very low: below 0.2 cm-1 at RT and 1 cm-1 at 81 K. Refractive indices dispersions measured by THz-TDS were approximated in the form of Sellmeier equations. Birefringence is found quite large for phase matched difference frequency generation (DFG) or down-conversion into the THz range (THz-DFG) under near IR pump at RT and 81 K. Type II (oe-o and eo-o), and type I (ee-e) three wave interactions can be realized at RT. THz-DFG of Nd:YAG laser and KTP OPO can be realized by type II (oe-o) three-wave interaction. For selected spectral ranges of femtosecond Ti:Sapphire laser efficient phase matched and group velocity matched optical rectification can be realized by another two types of three wave interactions. Accounting other well-known attractive physical properties of β-BBO crystal, wide application in THz technique can be forecasted.
NASA Astrophysics Data System (ADS)
Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.
1996-04-01
Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Jeffries, Jay B.; Hanson, Ronald K.
2013-11-01
Absorption lineshapes for two unresolved H2O doublets near 4029.52 and 4041.92 cm-1 were measured at high-resolution in a heated static cell using two distributed-feedback diode lasers. Measurements were acquired for H2O, CO2, and N2 perturbers over a temperature and pressure range of 650-1325 K and 2-760 Torr, respectively. Strong collisional narrowing effects were observed in CO2 and N2, but not in pure H2O. The Galatry profile was used to infer collisional-broadening and -narrowing coefficients and their respective temperature dependence for CO2 and N2 perturbers. The collisional-broadening and -narrowing coefficients for CO2 perturbers were found to decrease with increasing temperature in a similar manner. For N2 perturbers, the collisional-broadening coefficients increased with temperature while the collisional-narrowing coefficients decreased with increasing temperature. Self-broadening coefficients were inferred from Voigt profile fits and are compared with HITEMP 2010. The linestrengths of 17 H2O transitions are also reported.
Laser Beam Melting of Alumina: Effect of Absorber Additions
NASA Astrophysics Data System (ADS)
Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène
2018-03-01
Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.
Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector
NASA Astrophysics Data System (ADS)
Piccardo, Marco; Rubin, Noah A.; Meadowcroft, Lauren; Chevalier, Paul; Yuan, Henry; Kimchi, Joseph; Capasso, Federico
2018-01-01
We investigate the nonlinear optical response of a commercial extended-wavelength In0.81Ga0.19As uncooled photodetector. Degenerate two-photon absorption in the mid-infrared range is observed using a quantum cascade laser emitting at λ = 4.5 μm as the excitation source. From the measured two-photon photocurrent signal, we extract a two-photon absorption coefficient β(2) = 0.6 ± 0.2 cm/MW, in agreement with the theoretical value obtained from the Eg-3 scaling law. Considering the wide spectral range covered by extended-wavelength InxGa1-xAs alloys, this result holds promise for applications based on two-photon absorption for this family of materials at wavelengths between 1.8 and 5.6 μm.
NASA Astrophysics Data System (ADS)
Nikolaev, N. A.; Andreev, Yu. M.; Kononova, N. G.; Lanskii, G. V.; Mamrashev, A. A.; Antsygin, V. D.; Kokh, K. A.; Kokh, A. E.
2018-01-01
Lithium triborate LiB3O5 (LBO) crystals are widely used for frequency conversion of the near-IR lasers within main transparency windows. Their optical properties at these wavelengths are well studied. However, very little work has been published on the properties in the terahertz (THz) range. There was a lack of data on the refractive indices, the absorption coefficients spectra and their temperature dispersions. There are no reports of THz applications. Present work reveals all these topics including the prospects for use LBO crystals as down-converters of the near-IR lasers radiation. Optically finished samples of flux-grown LBO crystals were studied by THz-TDS. The refractive index dispersions were recorded and then approximated in the form of Sellmeier equations for the temperatures of 300 and 81 K. The phase-matching curves for the IR-THz and THz-THz frequency conversions were calculated. It was found that the absorption coefficients of LBO decrease significantly with cooling to cryogenic temperatures, but the overall character of optical properties changes is intricated. Experimental results are discussed in detail considering potential characteristics of THz down-converters.
NASA Astrophysics Data System (ADS)
Kulatilaka, Waruna D.; Lucht, Robert P.
2017-03-01
We discuss the results of high-resolution, sub-Doppler two-photon-absorption laser-induced fluorescence (TPALIF) spectroscopy of nitric oxide at low pressure and room temperature. The measurements were performed using the single-longitudinal mode output of a diode-laser-seeded optical parametric generator (OPG) system with a measured frequency bandwidth of 220 MHz. The measurements were performed using a counter-propagating pump beam geometry, resulting in sub-Doppler TPALIF spectra of NO for various rotational transitions in the (0,0) vibrational band of the A2Σ+ - X2Π electronic transition. The experimental results are compared with the results of a perturbative treatment of the rotational line strengths for the 20 different rotational branches of the X2Π(v″ = 0) → A2Σ+(v' = 0) two-photon absorption band. In the derivation of the expressions for the two-photon transition absorption strength, the closure relation is used for rotational states in the intermediate levels of the two-photon transition in analogy with the Placzek treatment of Raman transitions. The theoretical treatment of the effect of angular momentum coupling on the two-photon rotational line strengths features the use of irreducible spherical tensors and 3j symbols. The final results are expressed in terms of the Hund's case (a) coupling coefficients aJ and bJ for the X2Π(v″ = 0) rotational level wavefunctions, which are intermediate between Hund's case (a) and case (b). Considerable physical insight is provided by this final form of the equations for the rotational line strengths. Corrections to the two-photon absorption rotational line strength for higher order effects such as centrifugal stretching can be included in a straightforward fashion in the analysis by incorporating higher order terms in these coupling coefficients aJ and bJ, although these corrections are essentially negligible for J < 50. The theoretical calculations of relative line intensities are in good agreement both with our experiment and with published experimental results. In addition, the calculated line shapes and relative intensities for closely spaced main branch and satellite transitions are in excellent agreement with our experimental measurements.
NASA Astrophysics Data System (ADS)
Weniger, Kirsten K.; Muller, Gerhard J.
2005-03-01
In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.
Advancements in quantum cascade laser-based infrared microscopy of aqueous media.
Haase, K; Kröger-Lui, N; Pucci, A; Schönhals, A; Petrich, W
2016-06-23
The large mid-infrared absorption coefficient of water frequently hampers the rapid, label-free infrared microscopy of biological objects in their natural aqueous environment. However, the high spectral power density of quantum cascade lasers is shifting this limitation such that mid-infrared absorbance images can be acquired in situ within signal-to-noise ratios of up to 100. Even at sample thicknesses well above 50 μm, signal-to-noise ratios above 10 are readily achieved. The quantum cascade laser-based microspectroscopy of aqueous media is exemplified by imaging an aqueous yeast solution and quantifying glucose consumption, ethanol generation as well as the production of carbon dioxide gas during fermentation.
Ray tracing method for simulation of laser beam interaction with random packings of powders
NASA Astrophysics Data System (ADS)
Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.
2018-03-01
Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
NASA Astrophysics Data System (ADS)
Das Gupta, Santanu; Das Gupta, S. R.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein'sA, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the ‘rate equations’ to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method
NASA Astrophysics Data System (ADS)
G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.
2014-10-01
ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.
Measuring of nonlinear properties of spatial light modulator with different wavelengths
NASA Astrophysics Data System (ADS)
Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais
2018-05-01
The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod
2011-10-20
Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less
Hinoue, Teruo; Ikeda, Eiji; Watariguchi, Shigeru; Kibune, Yasuyuki
2007-01-01
Thermal modulation voltammetry (TMV) with laser heating was successfully performed at an aqueous|nitrobenzene (NB) solution microinterface, by taking advantage of the fact that laser light with a wavelength of 325.0 nm is optically transparent to the aqueous solution but opaque to the NB solution. When the laser beam impinges upon the interface from the aqueous solution side, a temperature is raised around the interface through the thermal diffusion subsequent to the light-to-heat conversion following the optical absorption by the NB solution near the interface. Based on such a principle, we achieved a fluctuating temperature perturbation around the interface for TMV by periodically irradiating the interface with the laser beam. On the other hand, the fluctuating temperature perturbation has influence on currents for transfer of an ion across the interface to produce fluctuating currents synchronized with the perturbation through temperature coefficients of several variables concerning the transfer, such as the standard transfer potential and the diffusion coefficient of the ion. Consequently, TMV has the possibility of providing information about the standard entropy change of transfer corresponding to a temperature coefficient of the standard transfer potential and a temperature coefficient of the diffusion coefficient. In this work, the aqueous|NB solution interface of 30 microm in diameter was irradiated with the laser beam at 10 Hz, and the currents synchronized with the periodical irradiation were recorded as a function of the potential difference across the interface in order to construct a TM voltammogram. TM voltammograms were measured for transfer of tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetra-n-butylammonium ions from the aqueous solution to the NB solution, and the standard entropy change of transfer was determined for each ion, according to an analytical procedure based on a mathematical expression of the TM voltammogram. Comparison of the values obtained in this work with the literature values has proved that TMV with laser heating is available for the determination of the standard entropy change of transfer for an ion.
First photon detection in time-resolved transillumination imaging: a theoretical evaluation.
Behin-Ain, S; van Doorn, T; Patterson, J R
2004-09-07
First photon detection, as a special case of time-resolved transillumination imaging, is studied through the derivation of the temporal probability density function (pdf) for the first arriving photon. The pdf for different laser intensities, media and second and later arriving photons were generated. The arrival time of the first detected photon reduced as the laser power increased and also when the scattering and absorption coefficients decreased. The pdf for an imbedded totally absorbing 3 mm inhomogeneity may be distinguished from the pdf of a homogeneous turbid medium similar to that of human breast in dimensions and optical properties.
NASA Astrophysics Data System (ADS)
Andreev, Yu M.; Bykanov, A. N.; Gribenyukov, A. I.; Zuev, V. V.; Karyshev, V. D.; Kisletsov, A. V.; Kovalev, I. O.; Konov, Vitalii I.; Kuz'min, G. P.; Nesterenko, A. A.; Osorgin, A. E.; Starodumov, Yu M.; Chapliev, N. I.
1990-04-01
A pulsed TEA CO2 laser was used in an investigation of the influence of the pump radiation parameters (mode composition, wavelength, pulse duration), of the focusing conditions, of the properties of the material (absorption coefficient), and of the operating conditions (temperature) on the efficiency of conversion to the second harmonic and on the angular dependences of phase matching in ZnGeP2 crystals. The calculated results were found to be in good agreement with the experimental data.
Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe
2008-02-07
Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.
Intraband light absorption by holes in InGaAsP/InP quantum wells
NASA Astrophysics Data System (ADS)
Pavlov, N. V.; Zegrya, G. G.
2018-03-01
A microscopic analysis of the mechanism of intraband radiation absorption by holes with their transition to a spin-split band for quantum wells based on InGaAsP/InP solid solutions is performed within the framework of the four-band Kane model. The calculation is made for two polarizations of the incident radiation: along the crystal growth axis and in the plane of the quantum well. It is shown that this process can be the main mechanism of internal radiation losses for quantum well lasers. It is also shown that the dependence of the absorption coefficient on the width of the quantum well has a maximum at a well width from 40 to 60 A.
NASA Astrophysics Data System (ADS)
Genin, Vadim D.; Genina, Elina A.; Bucharskaya, Alla B.; Tuchin, Valery V.; Khlebtsov, Nikolay G.; Terentyuk, Georgy S.; Bashkatov, Alexey N.
2018-04-01
The paper presents the investigation of change of tumor optical properties of the rat tumor doped by gold nanoparticles after laser-induced plasmon-resonant photothermal treatment. To obtain the model tumors the rats have been implanted by suspension of alveolar kidney cancer cells. An hour before the experiment the animals have been injected by the suspension of gold nanorods intratumorally. For irradiation a diode laser with wavelength 808 nm has been used. After the irradiation the tumor has been removed and sliced. Spectra of total and collimated transmission and diffuse reflectance of the samples of different layers of the tumors have been measured in the wavelength range 350-2500 nm. Absorption, scattering, reduced scattering coefficients and scattering anisotropy factor of tumor tissues have been calculated with inverse adding-doubling method. The results of the experiment have shown that after doping the tumor tissue by the plasmon resonant nanoparticles and NIR laser irradiating, there is the decreases of absorption as well as scattering properties of the tumor and surrounding tissues. However, despite the sufficiently high temperature on the surface (about 80°C), the changes in the center of the tumor are insignificant.
Enhanced cooling of Yb:YLF using astigmatic Herriott cell (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Tonelli, Mauro; Sheik-Bahae, Mansoor
2017-02-01
Optical refrigeration of solids requires crystals with exceptional qualities. Crystals with external quantum efficiencies (EQE) larger than 99% and background absorptions of 4×10-4cm-1 have been cooled to cryogenic temperatures using non resonant cavities. Estimating the cooling efficiency requires accurate measurements of the above mentioned quantities. Here we discuss measurements of EQE and background absorption for two high quality Yb:YLF samples. For any given sample, to reach minimum achievable temperatures heat generated by fluorescence must be removed from the surrounding clamshell and more importantly, absorption of the laser light must be maximized. Since the absorption coefficient drops at lower temperatures the only option is to confine laser light in a cavity until almost 100% of the light is absorbed. This can be achieved by placing the crystal between a cylindrical and spherical mirror to form an astigmatic Herriott cell. In this geometry light enters through a hole in the middle of the spherical mirror and if the entrance angle is correct, it can make as many round trips as required to absorb all the light. At 120 K 60 passes and 150 passes at 100K ensures more than 95% absorption of the laser light. 5 and 10% Yb:YLF crystals placed in such a cell cool to sub 90K temperatures. Non-contact temperature measurements are more challenging for such a geometry. Reabsorption of fluorescence for each pass must be taken into account for accurate temperature measurements by differential luminescence thermometry (DLT). Alternatively, we used part of the spectrum that is not affected by reabsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golyshev, A A; Malikov, A G; Orishich, A M
We report a comparative experimental study of laseroxygen cutting of low-carbon steel using a fibre laser with a wavelength of 1.07 μm and a CO{sub 2} laser with a wavelength of 10.6 μm at the sheet thickness of 3 – 16 mm. For the two lasers we have measured the dependence of the cutting speed on the radiation power and determined the cutting speed at which the surface roughness is minimal. The coefficient of laser radiation absorption in the laser cutting process is measured for these lasers at different values of the cutting speed and radiation power. It is foundmore » that the minimal roughness of the cut surface is reached at the absorbed laser energy per unit volume of the removed material, equal to 11 – 13 J mm{sup -3}; this value is the same for the two lasers and does not depend on the sheet thickness. (laser technologies)« less
NASA Astrophysics Data System (ADS)
Wang, Lihong V.
Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2-31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise - determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties - propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.
NASA Astrophysics Data System (ADS)
Sharma, Dimple; Malik, B. P.; Gaur, Arun
2015-04-01
Quantum dots (QDs) of CdS, Cu doped and Cr doped CdS were synthesized through chemical co- precipitation method. The synthesized QDs have been characterized by x-ray diffraction, ultraviolet visible absorption spectroscopy. The diameters of QDs were calculated using Debye-Scherrer’s formula and Brus equation. They are found to be in 3.5-3.8 nm range. The nonlinear properties has been studied by the open and closed aperture Z-scan technique using frequency double Nd:YAG laser. The nonlinear refractive index (n2), nonlinear absorption coefficient (β), third order nonlinear susceptibilities (χ3) of QDs has been calculated. It has been found that the values of nonlinear parameters are higher for doped QDs than undoped CdS QDs. Hence they can be regarded as potential material for the development of optoelectronics and photonics devices.
The THz time domain spectra of SrB4O7 crystal
NASA Astrophysics Data System (ADS)
Wang, Yali; Hou, Bihui; Wang, Haiyan; Zhao, Guozhong; Shi, Yishi
2010-11-01
SrB4O7 (SBO) is a promising nonlinear optical crystal. It has the orthorhombic structure with group classified as Pnm2. The sample for the experiment was cut along the (001) plane and twin polishing with 1.632mm thickness. It exhibits a wider transparency range from UV to far-IR. And its absorption edge lies at 160nm. The forbidden band gap is about 7.76eV. The THz spectra of SBO crystal had been studied from 0.1 to 2.5THz. The THz time domain spectrum of SBO shows the strong resonance characters. In THz experiment, the vertical incident electromagnetic waves radiate the polished side twice along (001) orientation. The crystal turned 90 degrees relative to the first in the vertical direction. There are different optical properties in two directions. We gained the curves of the refractive index and absorption coefficient dependence of frequency in the region of 0.1-2.5THz. The absorption curves shows opposite parabola character. One is upward opening and the largest absorption coefficient is 10cm-1. The other is down opening and the less absorption coefficient is 1cm-1. The refractive index n is stable linear with frequency and it is 3 from 0.4THz to 2.5THz. But the refractive index of two directions shows the opposite tendency from 0.1 to 0.4THz. The reason of the difference is that polarized beam radiates the orthorhombic crystal. The properties of the sample show that it is possible to apply it to laser field.
Enhancement of Fe diffusion in ZnSe/S laser crystals under hot isostatic pressing
NASA Astrophysics Data System (ADS)
Gafarov, Ozarfar; Martinez, Alan; Fedorov, Vladimir; Mirov, Sergey
2017-02-01
Many organic molecules have strong and narrow absorption features in the middle Infrared (mid-IR) spectral range. The ability to directly probe absorption features of molecules enables numerous mid-IR applications in non-invasive medical diagnosis, industrial processing and process control, environmental monitoring, etc. Thus, there is a strong demand for lasers operating in mid-IR spectral range. Transition metal (TM) doped II-VI semiconductors such as Fe/Cr:ZnSe/S are the material of choice for fabrication of mid-IR gain media due to favorable combination of properties: a four level energy structure, absence of excited state absorption , broad mid-IR vibronic absorption and emission bands. Despite the significant progress in post-growth thermal diffusion technology of TM:II-VI fabrication there are still some difficulties associated with diffusion of certain TM's in these materials. In this work we address the issue of poor diffusion of Fe in ZnSe/S polycrystals. It is well known that with the temperature increase the diffusion rate of impurity also increases. However, simple application of high temperatures during the diffusion process is problematic for ZnSe/S crystals due to their strong sublimation. The sublimation processes can be suppressed by application of high pressures. Hot isostatic pressing was utilized as the means for simultaneous application of high temperatures (1300°C) and high pressures (1000atm, 3000atm). It was determined that diffusion coefficient of Fe was improved 13 and 14 fold in ZnSe and ZnS, respectively, as compared to the standard diffusion at 950°C. The difference in diffusion coefficients can be due to strong increase in the grain size of polycrystals.
NASA Astrophysics Data System (ADS)
Gao, J.; Nishida, K.
2010-10-01
This paper describes an Ultraviolet-Visible Laser Absorption-Scattering (UV-Vis LAS) imaging technique applied to asymmetric fuel sprays. Continuing from the previous studies, the detailed measurement principle was derived. It is demonstrated that, by means of this technique, cumulative masses and mass distributions of vapor/liquid phases can be quantitatively measured no matter what shape the spray is. A systematic uncertainty analysis was performed, and the measurement accuracy was also verified through a series of experiments on the completely vaporized fuel spray. The results show that the Molar Absorption Coefficient (MAC) of the test fuel, which is typically pressure and temperature dependent, is the major error source. The measurement error in the vapor determination has been shown to be approximately 18% under the assumption of constant MAC of the test fuel. Two application examples of the extended LAS technique were presented for exploring the dynamics and physical insight of the evaporating fuel sprays: diesel sprays injected by group-hole nozzles and gasoline sprays impinging on an inclined wall.
Li, Liang; Wang, Ping; Hu, Yanlei; Lin, Geng; Wu, Yiqun; Huang, Wenhao; Zhao, Quanzhong
2015-03-15
We designed carbazole unit with an extended π conjugation by employing Vilsmeier formylation reaction and Knoevenagel condensation to facilitate the functional groups of quinoline from 3- or 3,6-position of carbazole. Two compounds doped with poly(methyl methacrylate) (PMMA) films were prepared. To explore the electronic transition properties of these compounds, one-photon absorption properties were experimentally measured and theoretically calculated by using the time-dependent density functional theory. We surveyed these films by using an 800 nm Ti:sapphire 120-fs laser with two-photon absorption (TPA) fluorescence emission properties and TPA coefficients to obtain the TPA cross sections. A three-dimensional optical data storage experiment was conducted by using a TPA photoreaction with an 800 nm-fs laser on the film to obtain a seven-layer optical data storage. The experiment proves that these carbazole derivatives are well suited for two-photon 3D optical storage, thus laying the foundation for the research of multilayer high-density and ultra-high-density optical information storage materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.
Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong
2014-06-02
Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.
NASA Astrophysics Data System (ADS)
Ittyachan, Reena; Arunkumar, A.; Bhagavannarayana, G.
2015-10-01
Single crystals of L-Histidinium dihydrogenphosphate orthophosphoric acid (LHDP) were grown by slow evaporation solution growth technique. The grown crystals were confirmed by single crystal X-ray diffraction techniques. The HRXRD rocking curve measurements revealed the crystalline perfection of grown crystal and the absence of structural grain boundaries. The lower optical cut-off wavelength for this crystal was observed at 240 nm. The third order nonlinear refractive index (n2), nonlinear absorption coefficient (β) and susceptibility (χ(3)) were calculated by Z-scan studies using Nd: YAG laser as a source. The single shot laser damage threshold of grown crystal was measured to be 6.286 GW/cm2 using Nd: YAG laser.
Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H
2018-05-15
We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4 cm -1 is resolvable.
Laser-assisted homogeneous charge ignition in a constant volume combustion chamber
NASA Astrophysics Data System (ADS)
Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst
2009-06-01
Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.
Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar
2012-01-01
This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570
NASA Astrophysics Data System (ADS)
Popa, C.; Bratu, A. M.; Matei, C.; Cernat, R.; Popescu, A.; Dumitras, D. C.
2011-07-01
The hypothesis that blood, urine and other body fluids and tissues can be sampled and analyzed to produce clinical information for disease diagnosis or therapy monitoring is the basis of modern clinical diagnosis and medical practice. The analysis of breath air has major advantages because it is a non-invasive method, represents minimal risk to personnel collecting the samples and can be often sampled. Breath air samples from the human subjects were collected using aluminized bags from QuinTron and analyzed using the laser photoacoustic spectroscopy (LPAS) technique. LPAS is used to detect traces of ethylene in breath air resulting from lipid peroxidation in lung epithelium following the radiotherapy and also traces of ammonia from patients subjected to hemodialysis for treatment of renal failure. In the case of patients affected by cancer and treated by external radiotherapy, all measurements were done at 10P(14) CO2 laser line, where the ethylene absorption coefficient has the largest value (30.4 cm-1 atm-1), whereas for patients affected by renal failure and treated by standard dialysis, all measurements were performed at 9R(30) CO2 laser line, where the ammonia absorption coefficient has the maximum value of 57 cm-1 atm-1. The levels of ethylene and ammonia in exhaled air, from patients with cancer and renal failure, respectively, were measured and compared with breath air contents from healthy humans. Human gas biomarkers were measured at sub-ppb (parts per billion) concentration sensitivities. It has been demonstrated that LPAS technique will play an important role in the future of exhaled breath air analysis. The key attributes of this technique are sensitivity, selectivity, fast and real time response, as well as its simplicity.
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Marinov, Daniil; Guaitella, Olivier; Drag, Cyril; Engeln, Richard; Golda, Judith; Schultz-von der Gathern, Volker
2016-09-01
Two-photon Absorption Laser-Induced Fluorescence (TALIF) is a well-established technique to measure relative (and with appropriate calibration techniques, absolute) densities of atoms in plasmas and flames. The excitation line profiles can provide additional information, but this is usually overlooked due to the mediocre spectral resolution of commercial pulsed dye laser systems. We have investigated O-atom TALIF excitation line profiles using a house-built narrow line-width pulsed UV laser system, based on pulsed Ti:Sa ring laser seeded by a cw infrared diode laser. The observed Doppler profiles allow unambiguous measurement of gas temperature with high precision in O2 and CO2 DC glow discharges. Sub-Doppler measurements, performed by reflecting the laser beam back through excitation zone, allow the pressure-broadened line shapes to be observed, both in a pure O2 DC discharge (up to 10 Torr pressure) and in an atmospheric pressure RF plasma jet in He/O2. Pressure broadening coefficients of the 3p3PJ state of O were determined for O2 and He bath gases, and were found to be an order of magnitude bigger than that predicted from the measured quenching rate. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).
Optical properties of human colon tissues in the 350 – 2500 nm spectral range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkatov, A N; Genina, E A; Kochubey, V I
2014-08-31
We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)
Comparison of the optical parameters of a CaF{sub 2} single crystal and optical ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palashov, O V; Khazanov, E A; Mukhin, I B
Single crystal and optical ceramic CaF{sub 2} samples are studied by the method of thermally induced depolarisation of laser radiation at 1076 nm. The absorption coefficients of the single crystal and ceramics are estimated as {alpha} < 4.5x10{sup -4} cm{sup -1} and {alpha} < 1.33x10{sup -3} cm{sup -1}, respectively. (letters)
NASA Astrophysics Data System (ADS)
Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick
2009-06-01
When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.
Millimeter-wave spectroscopy of the SiCl+ ion
NASA Astrophysics Data System (ADS)
Takeda, Kazuki; Masuda, Satoshi; Harada, Kensuke; Tanaka, Keiichi
2016-05-01
The millimeter-wave spectrum of the SiCl+ ion in the ground and first excited vibrational states was observed for the two isotopic (35Cl and 37Cl) species. The ion was generated in a free-space absorption cell by a hollow cathode discharge of SiCl4 diluted with He and discriminated from neutral species by the magnetic field effect on the absorption lines. The observed millimeter-wave spectrum was combined with a previously reported diode laser spectrum in an analysis to determine mass-independent Dunham coefficients as well as the mass scaling parameters. The equilibrium bond length of SiCl+ determined is re = 1.943 978(2) Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadezhdinskii, A I; Pereslavtseva, A A; Ponurovskii, Ya Ya
2014-10-31
We present the results of investigation of water vapour absorption spectra in the 7184 – 7186 cm{sup -1} range that is of particular interest from the viewpoint of possible application of the data obtained for monitoring water vapour in the Earth's stratosphere. The doublet of H{sub 2}{sup 16}O near ν = 7185.596 cm{sup -1} is analysed. The coefficients of broadening and shift of water vapour lines are found in the selected range in mixtures with buffer gases and compared to those obtained by other authors. (laser spectroscopy)
Infrared spectroscopic measurements relevant to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, Prasad; Gopalan, Arun
1993-01-01
SF6 is a synthetic chemical which is used in many industrial applications and as a meteorological tracer. This paper describes determinations of spectral absorption coefficients k-nu of SF6 measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. Spectral data were also obtained for C2H4 and NH3 fundamental bands. Measurements were made with the Doppler-limited spectral resolution of a tunable diode laser spectrometer with a cryogenically cooled absorption cell, described by Varanasi and Chudamani (1992).
Ablation of dentin by irradiation of violet diode laser
NASA Astrophysics Data System (ADS)
Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.
2006-02-01
Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.
Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models
NASA Astrophysics Data System (ADS)
Petrova, Kremena S.; Stoykova, Elena V.
2006-09-01
Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.
Canestri, Franco
2006-10-01
This paper discusses in detail the mathematical identification of the optical absorption alpha (cm(1)) of Beer's law, a crucial parameter to study the development of laser beam craters into dry poly(methyl methacrylate) (PMMA) samples exposed to steady CO(2) laser beams emitting radiation at lambda = 10.6 microm in continuous- wave (CW) mode. Three additional time-dependent coefficients have been determined as well. In clinical applications, these results are important in order to precisely quantify and forecast the ablation capabilities of the CO(2) laser beam, to optimize its usage in the operating room, and to address the safety issues related to surgical interventions on human tissue. Currently, the data available in the literature do not allow the identification of the numerical value of alpha (cm(1)) for PMMA at lambda = 10.6 microm with enough, and therefore satisfactory, accuracy. Additionally, the correct identification of the optical absorption of PMMA would allow the isolation, with better accuracy, of other key time-dependent coefficients, such as relaxation time, surface threshold time, and heat incubation time, which are all described in the literature in a qualitative rather than quantitative fashion. Correct bone cement preparation depends on the value of alpha (cm(1)) of the PMMA in order to avoid unwanted complications in patients during cement removal via laser techniques. The laser in use was configured in different combinations with the following parameters: transverse electromagnetic modes (TEMnm), output power (I0), exposure times (te), and focal lengths (fk). Several PMMA blocks (1 cm x 4 cm x 4 cm) were exposed to CW radiation of three commercially available CO(2) medical laser devices showing a TEM11 mode. Each block was exposed to the beam on a horizontal and well-polished surface of each sample. Four focal lengths (2.5", 5", 7.5", and 15.75" [400 mm]) were used to focus the beam on the well-polished and dry surface of the PMMA samples. The resulting dimensions of the craters were measured after each exposure, which has been kept at a 10-Watt CW beam. Exposure time ranged from 0.5 to 2 sec. The value of alpha = 502 (cm(1)) for PMMAat 10.6 microm was identified, matching other results reported in the literature for similar compact media in the absence of water content, such as PMMA. The time of thermal relaxation was 9.358 x 10(4) sec, the time of surface threshold was 9.365 x 10(4) sec, and the time of heat incubation was 3.6 x 10(7) sec (all three for PMMAat 10.6 microm for any exposure). Using the calculated value of alpha, one of the practical clinical recommendations would be, for instance, to reduce or to abolish the utilization of colorant dopants in the preparation of the bone cement mixture and therefore reduce the danger of bone damage possible during the removal of bone cement via laser techniques. Other examples refer to other clinical bone and dental treatments.
NASA Astrophysics Data System (ADS)
Marański, Krzysztof; Kucharski, Stanisław; Ortyl, Ewelina; Nunzi, Jean-Michel; Ahmadi-Kandjani, Sohrab; Dabos-Seignon, Sylvie; Chan, Siu-Wai; Barille, Regis
2008-08-01
The chromophoric intermediate: 2,2'-({4-[( E)-(5-methylisoxazol-3-yl)diazenyl]phenyl}-imino)diethanol was used in polyaddition reaction with di-isocyanate to obtain a new polyurethane polymeric material showing nonlinear optical and photochromic properties. The maximum absorption band of the polymer film was at 418 nm. The illumination of the film with crossed beams of the 488 nm Ar + laser yielded surface relief grating of regular structure. Measurement of the frequency doubling signal with 1064 nm laser indicated the polymer as interesting material for photooptical applications. The measured nonlinear optical coefficient, d33, reached 90.2 pm/V.
NASA Astrophysics Data System (ADS)
Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.
2016-12-01
Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming; Liu, Xueqiang; Graduate School of Chinese Academy of Sciences, Beijing 100039
2014-03-01
Graphical abstract: - Highlights: • A Er{sup 3+}/Tm{sup 3+} co-doped silicate glass with good thermal stability (k{sub gl} = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} in STFE glass is 13.39 × 10{sup −40} cm{sup 6}/s. - Abstract: A Er{sup 3+}/Tm{sup 3+} co-doped silicatemore » glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er{sup 3+} and Tm{sup 3+} ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses due to the efficient energy transfer from Er{sup 3+} to Tm{sup 3+} ions. The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} ions can reach as high as 13.39 × 10{sup −40} cm{sup 6}/s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er{sup 3+}/Tm{sup 3+} co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser.« less
NASA Technical Reports Server (NTRS)
Leone, Stephen R.
1993-01-01
The objectives are to measure laboratory rate coefficients for key reactions of hydrocarbon molecules and radicals at low temperatures, which are relevant to the atmospheric photochemistry of Saturn, Jupiter, and Titan. Upcoming NASA planetary missions, such as Cassini, will probe the atmosphere of Titan in more detail, offering an excellent opportunity to test kinetic models and to establish fiducial standards for using kinetic models to interpret various parameters of the outer planets. Accurate low temperature kinetic data, which are presently lacking, may require crucial revisions to the rates of formation and destruction and are of utmost importance to the success of these efforts. In this program, several key reactions of ethynyl radicals (C2H) with acetylene (C2H2), methane (CH4), and oxygen (O2), down to temperatures of 170 K were successfully investigated. The experimental apparatus developed in our laboratory for measuring reaction kinetics at low temperatures consists of a laser photolysis/infrared probe laser setup. The rate measurements are carried out as a function of (low) temperature with a transverse flow cell designed specifically for these studies. A 193 nm argon fluoride pulsed excimer laser is used to photolyze a suitable precursor molecule, such as acetylene to produce C2H, and a high resolution, tunable infrared F-center laser (2.3-3.35 mu m) probes the transient concentrations of the radical species directly in absorption to extract the kinetic rate coefficients.
Effect of reduction time on third order optical nonlinearity of reduced graphene oxide
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-04-01
We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.
Modifications to a Cavity Ringdown Spectrometer to Improve Data Acquisition Rates
NASA Astrophysics Data System (ADS)
Bostrom, Gregory Alan
Cavity ringdown spectroscopy (CRDS) makes use of light retention in an optical cavity to enhance the sensitivity to absorption or extinction of light from a sample inside the cavity. When light entering the cavity is stopped, the output is an exponential decay with a decay constant that can be used to determine the quantity of the analyte if the extinction or absorption coefficient is known. The precision of the CRDS is dependent on the rate at which the system it acquires and processes ringdowns, assuming randomly distributed errors. We have demonstrated a CRDS system with a ringdown acquisition rate of 1.5 kHz, extendable to a maximum of 3.5 kHz, using new techniques that significantly changed the way in which the ringdowns are both initiated and processed. On the initiation side, we combined a custom high-resolution laser controller with a linear optical feedback configuration and a novel optical technique for initiating a ringdown. Our optical injection "unlock" method switches the laser off-resonance, while allowing the laser to immediately return to resonance, after terminating the unlock, to allow for another ringdown (on the same cavity resonance mode). This part of the system had a demonstrated ringdown initiation rate of 3.5 kHz. To take advantage of this rate, we developed an optimized cost-effective FGPA-based data acquisition and processing system for CRDS, capable of determining decay constants at a maximum rate of 4.4 kHz, by modifying a commercial ADC-FPGA evaluation board and programming it to apply a discrete Fourier transform-based algorithm for determining decay constants. The entire system shows promise with a demonstrated ability to determine gas concentrations for H2O with a measured concentration accuracy of +/-3.3%. The system achieved an absorption coefficient precision of 0.1% (95% confidence interval). It also exhibited a linear response for varying H2O concentrations, a 2.2% variation (1sigma) for repeated measurements at the same H2O concentration, and a corresponding precision of 0.6% (standard error of the mean). The absorption coefficient limit of detection was determined to be 1.6 x 10-8 cm -1 (root mean square of the baseline residual). Proposed modifications to our prototype system offer the promise of more substantial gains in both precision and limit of detection. The system components developed here for faster ringdown acquisition and processing have broader applications for CRDS in atmospheric science and other fields that need fast response systems operating at high-precision.
NASA Astrophysics Data System (ADS)
Nandur, Abhishek S.
Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.
Thermonuclear targets for direct-drive ignition by a megajoule laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.
2015-10-15
Central ignition of a thin two-layer-shell fusion target that is directly driven by a 2-MJ profiled pulse of Nd laser second-harmonic radiation has been studied. The parameters of the target were selected so as to provide effective acceleration of the shell toward the center, which was sufficient for the onset of ignition under conditions of increased hydrodynamic stability of the ablator acceleration and compression. The aspect ratio of the inner deuterium-tritium layer of the shell does not exceed 15, provided that a major part (above 75%) of the outer layer (plastic ablator) is evaporated by the instant of maximum compression.more » The investigation is based on two series of numerical calculations that were performed using one-dimensional (1D) hydrodynamic codes. The first 1D code was used to calculate the absorption of the profiled laser-radiation pulse (including calculation of the total absorption coefficient with allowance for the inverse bremsstrahlung and resonance mechanisms) and the spatial distribution of target heating for a real geometry of irradiation using 192 laser beams in a scheme of focusing with a cubo-octahedral symmetry. The second 1D code was used for simulating the total cycle of target evolution under the action of absorbed laser radiation and for determining the thermonuclear gain that was achieved with a given target.« less
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.
1995-01-01
Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.
IR CMOS: near infrared enhanced digital imaging (Presentation Recording)
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani
2015-08-01
SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km
Korpus, Christoph; Pikal, Michael; Friess, Wolfgang
2016-11-01
The aim of this study was to determine the heat transfer characteristics of an optimized flexible holder device, using Tunable Diode Laser Absorption Spectroscopy, the Pressure Rise Test, and the gravimetric procedure. Two different controlled nucleation methods were tested, and an improved sublimation process, "preheated plate," was developed. Tunable Diode Laser Absorption Spectroscopy identified an initial sublimation burst phase. Accordingly, steady-state equations were adapted for the gravimetric procedure, to account for this initial non-steady-state period. The heat transfer coefficient, K DCC , describing the transfer from the holder to the DCC, was the only heat transfer coefficient showing a clear pressure dependence with values ranging from 3.81E-04 cal/(g·cm 2 ·K) at 40 mTorr to 7.38E-04 cal/(g·cm 2 ·K) at 200 mTorr. The heat transfer coefficient, K tot , reflecting the overall energy transfer via the holder, increased by around 24% from 40 to 200 mTorr. This resulted in a pressure-independent sublimation rate of around 42 ± 1.06 mg/h over the whole pressure range. Hence, this pressure-dependent increase in energy transfer completely compensated the decrease in driving force of sublimation. The "flexible holder" shows a substantially reduced impact of atypical radiation, improved drying homogeneity, and ultimately a better transferability of the freeze-drying cycle for process optimization. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
In-depth analysis and discussions of water absorption-typed high power laser calorimeter
NASA Astrophysics Data System (ADS)
Wei, Ji Feng
2017-02-01
In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.
NASA Astrophysics Data System (ADS)
Wu, Shikai; Xiao, Rongshi
2015-04-01
The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.
NASA Astrophysics Data System (ADS)
Yoon, S. J.; Mackenzie, J. I.
2014-05-01
We present our measurements of the key spectroscopic properties over the temperature range of 77 K to 450 K for Nd3+ ions doped in Y3Al5O12 (YAG). From room to liquid nitrogen temperature (LNT), the peak absorption cross section around 808 nm increased by almost 3 times, in conjunction the bandwidth of this absorption line reduced by the same factor. At LNT the peak of the absorption line was blue shifted by 0.25 nm with respect to that at 300 K. The fluorescence spectrum between 850 nm - 1450 nm was measured, from which the emission cross sections for the three main transitions were calculated. One note of particular interest for the dominant emission wavelengths around 1064nm and 1061nm (4F3/2 --> 4I11/2) was the switch in their relative strength below 170K, and at LNT the 1061 nm line has almost twice the cross section as at 1064nm.. The fluorescence and lifetime of the upper laser level (4F3/2) was measured and the effective emission cross section determined by the Fuchtbauer-Ladenburg (F-L) method. The effective emission cross section for 946 nm (R1 --> Z5) increased by more than two times over the 300 K to 77 K range. A numerical fit for the temperature dependent emission cross section at 946 nm and 1064 nm and also calculated absorption coefficient at 808 nm pump diode laser have also obtained from the measured spectroscopic data.
NASA Astrophysics Data System (ADS)
Shimamura, Kohei
2016-09-01
To reduce the computational cost in the particle method for the numerical simulation of the laser plasma, we examined the simplification of the laser absorption process. Because the laser frequency is sufficiently larger than the collision frequency between the electron and heavy particles, we assumed that the electron obtained the constant value from the laser irradiation. First of all, the simplification of the laser absorption process was verified by the comparison of the EEDF and the laser-absorptivity with PIC-FDTD method. Secondary, the laser plasma induced by TEA CO2 laser in Argon atmosphere was modeled using the 1D3V DSMC method with the simplification of the laser-absorption. As a result, the LSDW was observed with the typical electron and neutral density distribution.
Holmium:YAG and erbium:YAG laser interaction with hard and soft tissue
NASA Astrophysics Data System (ADS)
Charlton, Andrew; Dickinson, Mark R.; King, Terence A.; Freemont, Anthony J.
1991-06-01
The holmium YAG and erbium YAG lasers operating at 2.1 micrometers and 2.9 micrometers respectively, are the subject of great interest for various medical applications. The interaction of both these pulsed lasers with biological tissue involves absorption of the radiation by water leading to rapid heating and ablation, however the different absorption coefficients at these two wavelengths give rise to different ablation efficiencies and haemostatic properties for the two lasers. It is this cut/seal ratio that determines for which medical applications each of these lasers is most suited. The lasers were used to produce incisions in various tissues by translating the tissue at fixed speed beneath a focused laser beam. The laser energy density was varied between 100 and 500 J/cm2 and the lasers were operated at 2 Hz. After irradiation the tissues were fixed in formalin, processed routinely into paraffin wax, sectioned at 5 micrometers and stained with haemotoxylin and eosin. This allowed the dimensions of the incisions to be measured, as well as the depth of coagulative denatured tissue surrounding each incision. In this way the cut/seal ratio was determined for both the holmium YAG and erbium YAG laser in a range of hard and soft tissues. Results show that the latent heat of ablation for the holmium YAG laser interacting with soft tissue varies between 20-50 kJ/cm3, almost an order of magnitude larger than with the erbium YAG laser. Furthermore, the depth of coagulative necrosis with holmium YAG extends 100-400 micrometers , compared with 10-30 micrometers for erbium YAG. The two interactions clearly lead to vastly different results suggesting that the holmium YAG laser is suitable for producing lesions in highly vascular tissue where haemostasis is important, whereas the erbium YAG laser is better suited to avascular tissue requiring large depths of incision.
NASA Astrophysics Data System (ADS)
Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.
1995-04-01
Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.
Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm
NASA Astrophysics Data System (ADS)
Nakazato, Tomoharu; Wang, Xiaoyang; Chen, Chuangtian; Watanabe, Shuntaro
2017-12-01
We measured the two-photon absorption coefficients of KBe2BO3F2 (KBBF) and CsLiB6O10 (CLBO) at 193.5 nm using CaF2 as a reference. This is the first report about KBBF measurement at any wavelength. The two-photon absorption coefficients of KBBF, CLBO, and CaF2 were 1.3 × 10-9, 1.0 × 10-9, and 0.8 × 10-9 cm/W, respectively. We also measured the fluorescence spectra of KBBF, CLBO, and CaF2 excited by 193.5 nm light. The observed spectrum of KBBF had a broad peak at 322 nm, similar to that of CaF2. The luminescence intensity showed a quadratic dependence on incident laser intensity for KBBF and CaF2, indicating a two-photon process, but showed a linear dependence for CLBO. Taken together, we conclude that the two-photon fluorescence of KBBF originates, as in the case of CaF2, from the transition of a self-trapped exciton formed by a F2 - ion (self-trapped hole), which captures an electron.
Effect of pulsed Nd:YAG on dentin morphological changes
NASA Astrophysics Data System (ADS)
Moriyama, Eduardo H.; Zangaro, Renato A.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Munin, Egberto; Sasaki, Luis H.; Otsuka, Daniel K.; Lobo, Paulo D. d. C.; Pacheco, Marcos T. T.; Junior, Durval R.
2002-06-01
Infrared lasers have been used for several clinical applications in dentistry, including laser ablation, oral surgeries and dentin hypersensitivity treatment. Despite of dentin low absorption coefficient in the near infrared spectrum, Nd:YAG laser radiation ((lambda) = 1064 nm) is able to melt the human dentin surface resulting in dentin tubules closure that can suppress the symptoms of dentin hypersensitivity pathology. Objectives: This study aims to analyze, through SEM technique, the morphological changes in dentin surface after Nd:YAG laser irradiation using different parameters in energy distribution. Materials and Methods: In this study sixteen human dentin samples were submitted to Nd:YAG laser radiation using a total energy of 900mJ distributed in one, two, three or six laser pulses with energy for each pulse of 900, 450, 300 or 150 mJ respectively. All the samples were irradiated with laser pulse width of 90ms, pulse intervals of 300 ms and spot size area of 0,005 cm2. Results: SEM analysis suggests that differences in energy distribution results in morphological differences even though the same energy is used for all the samples.
Heat transfer modelling of pulsed laser-tissue interaction
NASA Astrophysics Data System (ADS)
Urzova, J.; Jelinek, M.
2018-03-01
Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.
Euser, Tijmen G; Harding, Philip J; Vos, Willem L
2009-07-01
We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.
NASA Astrophysics Data System (ADS)
Ripley, P. M.; Laufer, J. G.; Gordon, A. D.; Connell, R. J.; Bown, S. G.
1999-10-01
The optical properties, absorption (µa) and reduced scattering coefficient (µs´), of ex vivo human myometrium and leiomyoma (fibroid) have been determined by the Monte Carlo inversion technique over the wavelength range 600 - 1000 nm. This region is currently of interest for new, minimal-access, surgical laser procedures such as photodynamic therapy (PDT) for abnormalities of the uterus, and interstitial laser photocoagulation (ILP) for the thermal ablation of fibroids. In the region 630 - 675 nm (corresponding to PDT), the optical coefficients of myometrium are µa = 0.041±0.012 mm-1 and µs´ = 1.37±0.19 mm-1. For the wavelength range 800-1000 nm (associated with infrared lasers for ILP), the optical coefficients of fibroid were found to be µa = 0.020±0.003 mm-1 and µs´ = 0.56±0.03 mm-1. Overall, the optical properties of fibroid were found to be lower than myometrium, and this was attributed to the differences in both anatomy and vascularity. The results show that PDT for ablation of the uterine endometrium is most unlikely to affect any tissues beyond the myometrium, and that the region around 800 nm is the most effective for ablation of fibroids using ILP as the penetration depth of light is greatest at this wavelength.
NASA Astrophysics Data System (ADS)
Do, Mai Trang; Li, Qinggele; Ledoux-Rak, Isabelle; Lai, Ngoc D.
2013-05-01
We demonstrate a novel and very simple method allowing very easy flexible fabrication of 2D and 3D submicrometric structures. By using a photosensitive polymer (SU8) possessing an ultralow one-photon absorption (LOPA) coefficient at the excition laser wavelength (532 nm) and a high numerical aperture (NA = 1.3, oil immersion) objective lens, various submicrometric structures with feature size as small as 150 nm have been successfully fabricated. We have further investigated the energy accumulation effect in LOPA direct laser writing when the structure lattice constant approaches the diffraction limit. In this case, a proximity correction, i.e., a compensation of the doses between different voxels, was applied, allowing to create uniform and submicrometric structures with a lattice constant as small as 400 nm. As compared to commonly used two-photon absorption microscopy, the LOPA method allows to simplify the experimental setup and also to minimize the photo-damaging or bleaching effect. The idea of using LOPA also opens a new and inexpensive way to optically address 3D structures, namely 3D fluorescence imaging and 3D data storage.
Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating
NASA Astrophysics Data System (ADS)
Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.
2011-04-01
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.
Thermally induced changes of optical and vital parameters in human cancer cells
NASA Astrophysics Data System (ADS)
Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.
2010-11-01
Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.
Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei
2018-05-10
A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.
LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis
NASA Astrophysics Data System (ADS)
Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.
2002-11-01
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.
Linear, non-linear and thermal properties of single crystal of LHMHCl
NASA Astrophysics Data System (ADS)
Kulshrestha, Shobha; Shrivastava, A. K.
2018-05-01
The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.
Statistics of biospeckles with application to diagnostics of periodontitis
NASA Astrophysics Data System (ADS)
Starukhin, Pavel Y.; Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.
1999-04-01
Results of Monte-Carlo simulations Doppler shift are presented for the model of random medium that contain moving particles. The single-layered and two-layered configurations of the medium are considered. Doppler shift of the frequency of laser light is investigated as a function of such parameters as absorption coefficient, scattering coefficient, and thickness of the medium. Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the number of speckles, integration by aperture, has been studied in experiments in vivo.
NASA Astrophysics Data System (ADS)
Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.
2016-04-01
We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.
Development of compact excimer lasers for remote sensing
NASA Technical Reports Server (NTRS)
Laudenslager, J. B.; Mcdermid, I. S.; Pacala, T. J.
1983-01-01
The capabilities of excimer lasers for remote sensing applications are illustrated in a discussion of the development of a compact tunable XeCl excimer laser for the detection of atmospheric OH radicals. Following a brief review of the operating principles and advantages of excimer lasers, measurements of the wavelength dependence of the net small signal gain coefficient of a discharge excited XeCl laser are presented which demonstrate the overlap of several absorption lines of the A-X(0,0) transition of OH near 308 nm with the wavelengths of the XeCl laser. A range of continuous narrow bandwidth tunability of from 307.6 to 308.4 nm with only a 30 percent variation in output is reported for an XeCl laser used as a double-pass amplifier for a frequency-doubled dye laser, and measurements demonstrating the detection of laser-induced fluorescence from OH in a methane-oxygen flame are also noted. The design of an oscillator-amplifier excimer system comprising a corona-preionized, transverse-discharge oscillator and amplifier is then presented. Output energies of 12-15 mJ have been achieved in the regions where injection locking was established, with energies of 8-10 mJ elsewhere.
[INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects
NASA Astrophysics Data System (ADS)
Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan
2016-09-01
We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.
Laser beam-plasma plume interaction during laser welding
NASA Astrophysics Data System (ADS)
Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt
2003-10-01
Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.
Baasandorj, Munkhbayar; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Hasson, Alam S; Burkholder, James B
2010-10-14
Rate coefficients, k, for the gas-phase reaction of the OH radical with (CH(3))(3)COOH (tert-butyl hydroperoxide) were measured as a function of temperature (206-375 K) and pressure (25-200 Torr (He, N(2))). Rate coefficients were measured under pseudo-first-order conditions using pulsed laser photolysis to produce OH and laser induced fluorescence (PLP-LIF) to measure the OH temporal profile. Two independent methods were used to determine the gas-phase infrared cross sections of (CH(3))(3)COOH, absolute pressure and chemical titration, that were used to determine the (CH(3))(3)COOH concentration in the LIF reactor. The temperature dependence of the rate coefficients is described, within the measurement precision, by the Arrhenius expression k(1)(T) = (7.0 ± 1.0) × 10(-13) exp[(485 ± 20)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (3.58 ± 0.54) × 10(-12) cm(3) molecule(-1) s(-1). The uncertainties are 2σ (95% confidence level) and include estimated systematic errors. UV absorption cross sections of (CH(3))(3)COOH were determined at 185, 214, 228, and 254 nm and over the wavelength range 210-300 nm. The OH quantum yield following the 248 nm pulsed laser photolysis of (CH(3))(3)COOH was measured relative to the OH quantum yields of H(2)O(2) and HNO(3) using PLP-LIF and found to be near unity.
Third-order nonlinear optical properties of phthalocyanines in solution and in polystyrene films
NASA Astrophysics Data System (ADS)
Reeves, Roger J.; Powell, Richard C.; Chang, Young H.; Ford, Warren T.; Zhu, Weiming
1996-01-01
Degenerate four-wave mixing (DFWM) measurements of third-order nonlinear optical (NLO) coefficients of metal-free, Cu, Pt, Pb and Bi octa(2-ethylhexyloxy) phthalocyanines (MPc's) were done with 20 ps duration laser pulses under resonant conditions at 532 nm in polystyrene films and under nonresonant conditions at 1064 nm in chloroform solutions. The NLO coefficients ξxxxx(3) show saturation with increasing incident intensity and no strong dependence on the central metal atom of the MPc below the saturation intensity. Optical delays of the probe-pulse up to 3 ns show an acoustic phonon response in both the polystyrene films and the chloroform solutions. An intensity-dependent absorption coefficient was measured by a pump/probe experiment and used in a simple model to qualitatively account for the saturation of ξ(3) measured by DFWM.
NASA Astrophysics Data System (ADS)
Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.
2009-08-01
Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.
Thermal model for optimization of vascular laser tissue soldering.
Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin
2010-06-01
Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Beltran, M; Fernandez Gonzalez, F
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K
NASA Astrophysics Data System (ADS)
Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.
2006-12-01
Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.
NASA Astrophysics Data System (ADS)
Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy
2018-05-01
Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.
Studies on absorption coefficient near edge of multi elements
NASA Astrophysics Data System (ADS)
Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.
2005-12-01
X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui
2017-09-01
Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.
Off-line-locked laser diode species monitor system
NASA Technical Reports Server (NTRS)
Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)
1995-01-01
An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.
Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties
Pipino, Andrew Charles Rule
1999-11-16
An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties
Pipino, Andrew C. R.; Hudgens, Jeffrey W.
1999-08-24
An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method.
Nechayev, Sergey; Reusswig, Philip D; Baldo, Marc A; Rotschild, Carmel
2016-12-07
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd 3+ :YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method
Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel
2016-01-01
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers. PMID:27924844
Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com; Philip, Reji
2014-07-01
We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.
Pulse duration dependent nonlinear optical response in black phosphorus dispersions
NASA Astrophysics Data System (ADS)
Tang, Shana; He, Zhiliang; Liang, Guowen; Chen, Si; Ge, Yanqi; Sang, David K.; Lu, Jianxin; Lu, Shunbin; Wen, Qiao; Zhang, Han
2018-01-01
Black phosphorus (BP), is the most thermodynamically stable allotrope of phosphorus, the narrow direct band gap and the strong light-matter interaction make BP a promising nonlinear optical (NLO) nano-material. In this paper, we use the open aperture Z- scan method to measure the NLO property of BP dispersion. Saturable absorption was observed in the BP material through the excitation of Ti: sapphire laser at 800 nm. Three different excitation pulse duration (100 fs, 1 ps and 10 ps) were used in the experiments, and BP exhibited different NLO performance. The results show that nonlinear absorption coefficient and figure of merit of BP nanosheets are proportional to the pulse duration while saturable intensity is opposite to pulse duration.
Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers
NASA Astrophysics Data System (ADS)
Hu, Jun; Xu, Hebing; Li, Chao
2018-03-01
Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.
Thermal lensing in ocular media
NASA Astrophysics Data System (ADS)
Vincelette, Rebecca Lee
2009-12-01
This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e2 laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam-diameters delivered to the corneal plane, a behavior which was opposite of equivalent conditions simulated without thermal lensing.
Effect of interstitial low level laser therapy on tibial defect
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo
2016-03-01
Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.
Xu, Long; Zhang, Jingwen; Zhao, Hua; Sun, Haibin; Xu, Caixia
2017-09-01
Quasi-period cylindrical nanostructures with both diameters and intervals of about 100 nm are manufactured on the surfaces of Nd 3+ -doped lanthanum lead zirconate titanate ceramics by femtosecond laser irradiation under SF 6 atmosphere. A light-emission enhancement of more than 20 times is investigated, accompanied by an extremely long trailing-off time of light emission and lower threshold. A specific polarization state of the light emission is achieved and tuned by changing the incident regions of the pumping source. The increased absorption coefficient of the specimen is discussed based on multiple scattering and weak localization of light. In addition, both the scatterers provided by the laser-machined nanostructure and the recurrent photoinduced trapping and re-excitation process participated in the enhancement of the light emission. This Letter offers new insight to improve the luminescence property of laser materials, as well as to broaden the range of exploring the weak localization of light and random lasers.
A model for the kinetics of a solar-pumped long path laser experiment
NASA Technical Reports Server (NTRS)
Stock, L. V.; Wilson, J. W.; Deyoung, R. J.
1986-01-01
A kinetic model for a solar-simulator pumped iodine laser system is developed and compared to an experiment in which the solar simulator output is dispersed over a large active volume (150 cu cm) with low simulator light intensity (approx. 200 solar constants). A trace foreign gas which quenches the upper level is introduced into the model. Furthermore, a constant representing optical absorption of the stimulated emission is introduced, in addition to a constant representing the scattering at each of the mirrors, via the optical cavity time constant. The non-uniform heating of the gas is treated as well as the pressure change as a function of time within the cavity. With these new phenomena introduced into the kinetic model, a best reasonable fit to the experimental data is found by adjusting the reaction rate coefficients within the range of known uncertainty by numerical methods giving a new bound within this range of uncertainty. The experimental parameters modeled are the lasing time, laser pulse energy, and time to laser threshold.
NASA Astrophysics Data System (ADS)
Brenier, A.; Alombert-Goget, G.; Guyot, Y.; Boulon, G.
2012-10-01
The absorption and fluorescence properties of the Nd-doped YGd2Sc2Al2GaO12 mixed garnet ceramics have been measured at different temperatures. Under laser diode pumping an efficient laser emission has been demonstrated with 45% slope efficiency. The emission is constituted by two lines at 1058.6 and 1061.3 nm, subjected to a red shift and a variable relative intensity versus pump power. The role of the temperature has been investigated playing with the cavity parameters. The thermal conductivity of the 1% Nd-doped material has been determined (3.2 W/m/K) measuring the radial temperature distribution of the exit face of the sample including the axial heat flow in the analysis. The M2 beam quality factor and the dioptric power of the thermal lens have been investigated versus the pump power. The thermo-optic coefficient χ was determined as 44.4×10-6 K-1.
Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm
NASA Astrophysics Data System (ADS)
Gabrysch, M.; Corsi, C.; Pavone, F. S.; Inguscio, M.
1997-07-01
One single semiconductor distributed-feedback (DFB) laser is used to demonstrate the possibility of simultaneous detection of two different molecular species. Direct absorption and low-wavelength modulation (LWM) spectroscopy were employed to investigate weak overtone transitions of CO2 and CO at a wavelength of 5=1578 nm. Sensitivity measurements under different conditions have been performed and the detection limit of the apparatus was measured to be less than 10 mTorr over a 1-m path length. In addition, we measured for the first time environmentally and spectroscopically relevant self-broadening and nitrogen-broadening coefficients for CO2 and CO in this spectral region and we discuss different possibilities for increasing the sensitivity of the apparatus.
Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui
2014-09-20
This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.
Light scattering study of rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beuthan, J; Netz, U; Minet, O
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less
NASA Astrophysics Data System (ADS)
Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.
2017-09-01
We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices
Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments
NASA Astrophysics Data System (ADS)
Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook
2016-05-01
The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.
Laser induced fluorescence technique for detecting organic matter in East China Sea
NASA Astrophysics Data System (ADS)
Chen, Peng; Wang, Tianyu; Pan, Delu; Huang, Haiqing
2017-10-01
A laser induced fluorescence (LIF) technique for fast diagnosing chromophoric dissolved organic matter (CDOM) in water is discussed. We have developed a new field-portable laser fluorometer for rapid fluorescence measurements. In addtion, the fluorescence spectral characteristics of fluorescent constituents (e.g., CDOM, chlorophyll-a) were analyzed with a spectral deconvolution method of bi-Gaussian peak function. In situ measurements by the LIF technique compared well with values measured by conventional spectrophotometer method in laboratory. A significant correlation (R2 = 0.93) was observed between fluorescence by the technique and absorption by laboratory spectrophotometer. Influence of temperature variation on LIF measurement was investigated in lab and a temperature coefficient was deduced for fluorescence correction. Distributions of CDOM fluorescence measured using this technique in the East China Sea coast were presented. The in situ result demonstrated the utility of the LIF technique for rapid detecting dissolved organic matter.
NASA Astrophysics Data System (ADS)
Tian, Ying; Jing, Xufeng; Xu, Shiqing
2013-11-01
Intense 2.0 μm emission has been obtained in Ho3+/Tm3+ codoped ZBLAY glass pumped by common laser diode. Three intensity parameters and radiative properties have been determined from the absorption spectrum based on the Judd-Ofelt theory. The 2 μm emission characteristics and the energy transfer mechanism upon excitation of a conventional 800 nm laser diode are investigated. Efficient Tm3+ to Ho3+ energy transfer processes have been observed in present glass and investigated using steady-state and time-resolved optical spectroscopy measurement. The energy transfer microscopic parameter has been calculated with the Inokuti-Hirayama and Förster-Dexter models. High quantum efficiency of 2 μm emission (80.35%) and large energy transfer coefficient from Tm3+ to Ho3+ indicates this Ho3+/Tm3+ codoped ZBLAY glass is a promising material for 2.0 μm laser.
40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.
Code of Federal Regulations, 2013 CFR
2013-07-01
... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...
40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.
Code of Federal Regulations, 2012 CFR
2012-07-01
... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...
40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.
Code of Federal Regulations, 2014 CFR
2014-07-01
... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...
MacLellan, Christopher J; Fuentes, David; Elliott, Andrew M; Schwartz, Jon; Hazle, John D; Stafford, R Jason
2014-02-01
Optically activated nanoparticle-mediated heating for thermal therapy applications is an area of intense research. The ability to characterise the spatio-temporal heating potential of these particles for use in modelling under various exposure conditions can aid in the exploration of new approaches for therapy as well as more quantitative prospective approaches to treatment planning. The purpose of this research was to investigate an inverse solution to the heat equation using magnetic resonance temperature imaging (MRTI) feedback, for providing optical characterisation of two types of nanoparticles (gold-silica nanoshells and gold nanorods). The optical absorption of homogeneous nanoparticle-agar mixtures was measured during exposure to an 808 nm laser using real-time MRTI. A coupled finite element solution of heat transfer was registered with the data and used to solve the inverse problem. The L2 norm of the difference between the temperature increase in the model and MRTI was minimised using a pattern search algorithm by varying the absorption coefficient of the mixture. Absorption fractions were within 10% of literature values for similar nanoparticles. Comparison of temporal and spatial profiles demonstrated good qualitative agreement between the model and the MRTI. The weighted root mean square error was <1.5 σMRTI and the average Dice similarity coefficient for ΔT = 5 °C isotherms was >0.9 over the measured time interval. This research demonstrates the feasibility of using an indirect method for making minimally invasive estimates of nanoparticle absorption that might be expanded to analyse a variety of geometries and particles of interest.
Prospects of target nanostructuring for laser proton acceleration.
Lübcke, Andrea; Andreev, Alexander A; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-14
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Prospects of target nanostructuring for laser proton acceleration
NASA Astrophysics Data System (ADS)
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Blackbody absorption efficiencies for six lamp pumped Nd laser materials
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.
1990-01-01
Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.
Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju
2015-11-16
Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.
NASA Astrophysics Data System (ADS)
Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju
2015-11-01
Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.
NASA Astrophysics Data System (ADS)
Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf
2018-01-01
In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.
Image processing with the radial Hilbert transform of photo-thermal imaging for carious detection
NASA Astrophysics Data System (ADS)
El-Sharkawy, Yasser H.
2014-03-01
Knowledge of heat transfer in biological bodies has many diagnostic and therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. The present paper therefore aims to design and implementation of laser therapeutic and imaging system used for carious tracking and drilling by develop a mathematical algorithm using Hilbert transform for edge detection of photo-thermal imaging. photothermal imaging has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, Q- switching Nd:YAG laser at wavelength 1064 nm has been extensively used in human teeth to study the sub-surface deposition of laser radiation. The high absorption coefficient of the carious rather than normal region rise its temperature generating IR thermal radiation captured by high resolution thermal camera. Changing the pulse repetition frequency of the laser pulses affects the penetration depth of the laser, which can provide three-dimensional (3D) images in arbitrary planes and allow imaging deep within a solid tissue.
Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreeja, V. G.; Reshmi, R.; Devasia, Sebin
In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and –C-H groups. The synthesized sample has goodmore » crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532 nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.« less
Zaman, Raiyan T; Rajaram, Narasimhan; Nichols, Brandon S; Rylander, Henry G; Wang, Tianyi; Tunnell, James W; Welch, Ashley J
2011-07-01
Light scattering in the normally white sclera prevents diagnostic imaging or delivery of a focused laser beam to a target in the underlying choroid layer. In this study, we examine optical clearing of the sclera and changes in blood flow resulting from the application of glycerol to the sclera of rabbits. Recovery dynamics are monitored after the application of saline. The speed of clearing for injection delivery is compared to the direct application of glycerol through an incision in the conjunctiva. Although, the same volume of glycerol was applied, the sclera cleared much faster (5 to 10 s) with the topical application of glycerol compared to the injection method (3 min). In addition, the direct topical application of glycerol spreads over a larger area in the sclera than the latter method. A diffuse optical spectroscopy system provided spectral analysis of the remitted light every two minutes during clearing and rehydration. Comparison of measurements to those obtained from phantoms with various absorption and scattering properties provided estimates of the absorption coefficient and reduced scattering coefficient of rabbit eye tissue.
Characterization of laser damage performance of fused silica using photothermal absorption technique
NASA Astrophysics Data System (ADS)
Wan, Wen; Shi, Feng; Dai, Yifan; Peng, Xiaoqiang
2017-06-01
The subsurface damage and metal impurities have been the main laser damage precursors of fused silica while subjected to high power laser irradiation. Light field enhancement and thermal absorption were used to explain the appearance of damage pits while the laser energy is far smaller than the energy that can reach the intrinsic threshold of fused silica. For fused silica optics manufactured by magnetorheological finishing or advanced mitigation process, no scratch-related damage site occurs can be found on the surface. In this work, we implemented a photothermal absorption technique based on thermal lens method to characterize the subsurface defects of fused silica optics. The pump beam is CW 532 nm wavelength laser. The probe beam is a He-Ne laser. They are collinear and focused through the same objective. When pump beam pass through the sample, optical absorption induces the local temperature rise. The lowest absorptance that we can detect is about the order of magnitude of 0.01 ppm. When pump beam pass through the sample, optical absorption induces the local temperature rise. The photothermal absorption value of fused silica samples range from 0.5 to 10 ppm. The damage densities of the samples were plotted. The damage threshold of samples at 8J/cm2 were gived to show laser damage performance of fused silica.The results show that there is a strong correlation between the thermal absorption and laser damage density. The photothermal absorption technique can be used to predict and evaluate the laser damage performance of fused silica optics.
NASA Astrophysics Data System (ADS)
Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.
2018-03-01
The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
Elucidation of two photon absorption of ethylenediaminium (2,4-dinitrophenolate) crystals
NASA Astrophysics Data System (ADS)
Indumathi, C.; Sabari Girisun, T. C.; Anitha, K.; Cecil Raj, S. Alfred
2016-10-01
Optical quality single crystals of ethylenediaminium (2,4-dinitrophenolate) [EDA(2,4)DNP] were grown by solvent evaporation method for optical limiting applications against intense ultrashot pulse lasers. Single crystal XRD showed that the material crystallizes in monoclinic system with centric space group P21/C. The crystal packing diagram was elucidated for the first time in literature and it revealed six hydrogen bonds played a very important role in stabilizing the structure. A bifurcated hydrogen bond was also observed between ethylenediamminium and dinitrophenolate ions. The formation of charge transfer complex during the reaction of ethylenediamine and 2,4-dinitrophenol was strongly evident through the vibrational spectroscopic studies. TG-DTA and DSC curves indicate that the material exhibited strong decomposition at 224 °C. Ground state absorption analysis showed that the grown crystals possess absorption maxima in UV region (270 nm, 346 nm) and wide optical transmittance window (480-1200 nm) in the entire visible and NIR region. Measurement of two photon absorption (2PA) and optical limiting response by Z-scan technique under nanosecond pulse excitation was reported. Hence EDA(2,4)DNP with high 2PA coefficient (0.79 ± 0.04 × 10-10 m/W) and low limiting threshold (2.40 ± 0.05 × 1012 W/m2) will be a potential candidate for optical limiting applications like eye and sensor protection against short pulse lasers that are well spread in human interactive sectors.
Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt.
Bae, Sang-Eun; Jung, Tae Sub; Cho, Young-Hwan; Kim, Jong-Yun; Kwak, Kyungwon; Park, Tae-Hong
2018-06-28
The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm 2+ and Sm 3+ were electrochemically measured to be 0.92 × 10 -5 and 1.10 × 10 -5 cm 2 /s, respectively, and the standard apparent potential of the Sm 2+/3+ couple was estimated to be -0.82 V vs Ag|Ag + at 450 °C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation ( E°' = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M -1 cm -1 , respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f 6 to 4f 5 5d 1 transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm 3+ ion in the LiCl-KCl melt at 450 °C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm 2+ ion in the solidified LCl-KCl salt at room temperature.
NASA Astrophysics Data System (ADS)
Dorn, H.-P.; Brauers, T.; Greif, J.; Häseler, R.; Hofzumahaus, A.; Holland, F.; Rupp, L.
2003-04-01
A striking advantage of the SAPHIR chamber is the availability of two spectroscopic detection instruments for OH radicals: Laser-Induced Fluorescence Spectroscopy (LIF) and Long-Path Differential Optical Laser Absorption Spectroscopy (DOAS). Both instruments have already been compared in 1994 during the field measurement campaign POPCORN. They agreed well with a correlation coefficient of r=0.90 and a weighted linear fit with a slope of 1.09 +- 0.12. However, OH measurements in the simulation chamber differ significantly from measurements in ambient air. While DOAS measures OH as an integral value along the central longitudinal axis of SAPHIR, LIF samples the air locally and close (2 cm) to the floor of the chamber. Thus, the LIF measurements might be possibly affected by local concentration gradients caused by insufficient mixing of the chamber air or by deposition to the wall. On the other hand, if turbulent mixing of the chamber air is weak and high concentrations of ozone are used in experiments, the DOAS instrument might be subject to artificial formation of OH radicals in the air volume which is illuminated by the detection laser. This interference results from laser induced photolysis of ozone and the subsequent reaction of water vapor with the excited oxygen atoms formed. Thus it is of decisive importance to compare OH measurements from both instruments in order to investigate potential disturbing effects due to the specific sampling properties of both instruments within SAPHIR. We report on OH measurements accomplished simultaneously with both instruments using different trace gas compositions and experimental conditions.
High-energy laser tactical decision aid (HELTDA) for mission planning and predictive avoidance
NASA Astrophysics Data System (ADS)
Burley, Jarred L.; Fiorino, Steven T.; Randall, Robb M.; Bartell, Richard J.; Cusumano, Salvatore J.
2012-06-01
This study demonstrates the development of a high energy laser tactical decision aid (HELTDA) by the AFIT/CDE for mission planning High Energy Laser (HEL) weapon system engagements as well as centralized, decentralized, or hybrid predictive avoidance (CPA/DPA/HPA) assessments. Analyses of example HEL mission engagements are described as well as how mission planners are expected to employ the software. Example HEL engagement simulations are based on geographic location and recent/current atmospheric weather conditions. The atmospheric effects are defined through the AFIT/CDE Laser Environmental Effects Definition and Reference (LEEDR) model or the High Energy Laser End-to-End Operational Simulation (HELEEOS) model upon which the HELTDA is based. These models enable the creation of vertical profiles of temperature, pressure, water vapor content, optical turbulence, and atmospheric particulates and hydrometeors as they relate to line-by-line layer extinction coefficient magnitude at wavelengths from the UV to the RF. Seasonal and boundary layer variations (summer/winter) and time of day variations for a range of relative humidity percentile conditions are considered to determine optimum efficiency in a specific environment. Each atmospheric particulate/hydrometeor is evaluated based on its wavelength-dependent forward and off-axis scattering characteristics and absorption effects on the propagating environment to and beyond the target. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are included. Numerical weather model forecasts are incorporated in the model to develop comprehensive understanding of HEL weapon system performance.
The research progress of large-aperture fused silica for high power laser
NASA Astrophysics Data System (ADS)
Shao, Zhufeng; Wang, Yufen; Xiang, Zaikui; Rao, Chuandong
2016-03-01
Because of its excellent optical performance, the fused silica is widely used in laser industry. In addition, the fused silica can withstand high power laser, due to its pure component, and the performance is most outstanding within all types of glasses. So fused silica can be used for optical lens in high power laser field. From the manufacturing process stand point, the fused silica can be categorized to four types: type Ⅰ, type Ⅱ, type Ⅲ, and type Ⅳ. The fused silica of type Ⅰand type Ⅱ is made through melting silica sand in graphite furnace or oxyhydrogen flame. There are many defects in these types of fused silica, for example, the air bubbles, inclusions and metallic impurity. The other two types are made by synthetic reaction of SiCl4 with water in oxyhydrogen or plasma flame. Both type Ⅲ and Ⅳ have excellent performance in transmittance and internal quality. However, type Ⅳof fused silica has disadvantage in small aperture and overall high manufacturing cost. Take the transmittance and internal quality into consideration, the type Ⅲ fused silica is the most suitable for large-aperture lens, and can withstand high power laser. The systemic studies of manufacturing process were done to improve the performance of type Ⅲ fused silica in various areas, for instance, the optical homogeneity, the stress birefringence, the absorption coefficient and the damage threshold. There are four steps in manufacturing process of type Ⅲ fused silica, ingot production, reshaping, annealing and cold-working. The critical factors of ingot production, like the flame of burner and the structure of furnace, were deeply studied in this paper to improve the performance of fused silica. On the basis of the above research, the performance and quality of the fused silica measured up to advanced world levels. For instance, the result of optical homogeneity can be controlled to 2-5 ppm, the stress birefringence is better than 4 nm/cm, the absorption coefficient is about 5.971ppm cm-1 (1ω), the damage threshold is greater than 80, 25 and 23 J/cm2 with the wavelength at 1064, 532 and 351nm respectively, the bandwidth used for measuring is 3ns.The fused silica has already been used in the area of high power laser facilities, aerospace industry, primary lens of interferometer based on its excellent performance.
NASA Astrophysics Data System (ADS)
Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui
2013-12-01
A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.
Prospects of target nanostructuring for laser proton acceleration
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-01-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479
Nonlinear optical studies of curcumin metal derivatives with cw laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S.
2015-03-30
We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition modelmore » with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.« less
Spectroscopic properties of a perfluorinated ketone for PLIF applications
NASA Astrophysics Data System (ADS)
Roy, Arnab; Gustavsson, Jonas P. R.; Segal, Corin
2011-11-01
This work identifies the fluorescence characteristics of a perfluorinated ketone, 2-trifluoromethyl-1,1,1,2,4,4,5,5,5-nonafluoro-3-pentanone, further referred to as fluoroketone. This compound is suitable for use with the third harmonic of an Nd:YAG laser for quantitative concentration measurements, as it exhibits strong emission even for relatively low excitation and has a near-linear response of fluorescence intensity with concentration. This makes it suitable for a broad range of fluorescence applications. The absorption cross-section of 3.81 × 10-19 cm2 was found to be constant for a temperature range of 293-441 K and a pressure range of 1-18 atm. A calibration line has been generated that relates the concentration of gaseous and liquid fluoroketone with its absorption coefficient.
Fabrication and characterization of a water-free mid-infrared fluorotellurite glass.
Lin, Aoxiang; Ryasnyanskiy, Aleksandr; Toulouse, Jean
2011-03-01
Using a physical and chemical dehydration technique and a high-pressure, ultradry O2 atmosphere in a semiclosed steel-chamber furnace, we fabricated a group of fluorotellurite glasses with a composition of (90-x)TeO2-xZnF2-10Na2O (mol.%, x=0-30). For x=30, no OH absorption was observed in the range of 0.38-6.1 μm. This is the first report of a water-free mid-IR fluorotellurite glass, to our knowledge, offering the common advantages of a robust oxide glass and an IR-transparent fluoride one. Besides optimized linear transmittance and absorption, the nonlinear refractive indices and Raman gain coefficients are reduced. These results are discussed in the context of mid-IR high-power laser generation and transmission.
NASA Astrophysics Data System (ADS)
Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal
2009-10-01
A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.
Aging effect of AlF3 coatings for 193 nm lithography
NASA Astrophysics Data System (ADS)
Zhao, Jia; Wang, Lin; Zhang, Weili; Yi, Kui; Shao, Jianda
2018-02-01
As important part of components for 193 nm lithography, AlF3 coatings deposited by resistive heating method acquire advantages like lower optical loss and higher laser damage threshold, but they also possess some disadvantages like worse stability, which is what aging effect focuses on. AlF3 single-layer coatings were deposited; optical property, surface morphology and roughness, and composition were characterized in different periods. Owing to aging effect, refractive index and extinction coefficient increased; larger and larger roughness caused more and more scattering loss, which was in the same order with absorption at 193.4 nm and part of optical loss; from composition analysis, proportional substitution of AlF3 by alumina may account for changes in refractive index as well as absorption.
Petawatt laser absorption bounded
Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.
2014-01-01
The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656
Picosecond laser bonding of highly dissimilar materials
NASA Astrophysics Data System (ADS)
Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.
2016-10-01
We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.
Cavitation bubble dynamics during thulium fiber laser lithotripsy
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.
2016-02-01
The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.
Continuous-wave laser-induced glass fiber generation
NASA Astrophysics Data System (ADS)
Nishioka, Nobuyasu; Hidai, Hirofumi; Matsusaka, Souta; Chiba, Akira; Morita, Noboru
2017-09-01
Pulsed-laser-induced glass fiber generation has been reported. We demonstrate a novel glass fiber generation technique by continuous-wave laser illumination and reveal the generation mechanism. In this technique, borosilicate glass, metal foil, and a heat insulator are stacked and clamped by a jig as the sample. Glass fibers are ejected from the side surface of the borosilicate glass by laser illumination of the sample from the borosilicate glass side. SEM observation shows that nanoparticles are attached on the glass fibers. High-speed imaging reveals that small bubbles are formed at the side surface of the borosilicate glass and the bursting of the bubble ejects the fibers. The temperature at the fiber ejection point is estimated to be 1220 K. The mechanism of the fiber ejection includes the following steps: the metal thin foil heated by the laser increases the temperature of the surrounding glass by heat conduction. Since the absorption coefficient of the glass is increased by increasing the temperature, the glass starts to absorb the laser irradiation. The heated glass softens and bubbles form. When the bubble bursts, molten glass and gas inside the bubble scatter into the air to generate the glass fibers.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
NASA Astrophysics Data System (ADS)
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
Investigation into the absorptivity change in metals with increased laser power
NASA Astrophysics Data System (ADS)
Blidegn, M. Sc. K.; Olsen, Flemming O.
1997-04-01
At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.
Point-spread imaging for measurement of skin translucency and scattering.
Jiang, Zhi-xing; Kaplan, Peter D
2008-08-01
The translucency of skin has long been identified as an important cue for healthy and youthful looking skin. There is currently no universal definition for skin translucency let alone a measurement method. We propose that skin translucency is the light scattering beneath skin surface. We demonstrate the use of polarization gated point spreading imaging for non-invasive, in vivo measurement of the translucency and the reduced scattering coefficient m's of skin. We developed a polarization-gated point-spread imaging system to measure the spread of the incident pencil-thin laser beam on the skin. Skin translucency was calculated as the spread of the laser beam. From the measurement of the shift of the light diffuse center from the light injection point, the reduced scattering coefficient m's of the skin was calculated. We validated the measurement technique with milk as an in vitro model for skin. The measured m's of milk solution was found to be linearly proportional to the milk concentration, in agreement with Beer's law. The calculated translucency decreased as the milk concentration increased or as the reduced scattering coefficient m's increased. It was also found that the translucency decreased as the absorption coefficient of the milk solution increased. The measured translucency of a set of custom made clay tiles correlated well with the consumer perception of the incremental ranking of the translucency. In vivo measurement of skin translucency and the reduced scattering coefficient m's were carried out on several volunteers. The measured reduced scattering coefficient m's was in agreement with those in the literature. The measured skin translucency for different skin ethnicities of Caucasian, North Asian, South Asian and African American were in line with the expectation that skin translucency decreases as the skin color gets darker.
Two-Photon Absorption in Organometallic Bromide Perovskites.
Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H
2015-09-22
Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.
NASA Astrophysics Data System (ADS)
Sekhar, H.; Narayana Rao, D.
2012-07-01
Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.
NASA Astrophysics Data System (ADS)
Krasnovsky, A. A.; Rоumbal, Ya. V.; Strizhakov, A. A.
2008-06-01
The oxygenation rates of the 1O2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated H2O-sodium dodecyl sulfate dispersions, ethanol, methanol and benzene upon direct excitation of dissolved oxygen by infrared (1269 ± 1 nm) laser radiation. In aqueous dispersions, variation of the detergent concentration from 0.1 to 1 M resulted in the 2.5-time increase of the photooxygenation rate. The absorbance and molar absorption coefficients of oxygen were estimated in all tested systems, water and the micellar phase of detergent dispersions and compared with the rate constants of 1O2 radiative deactivation obtained from the measurement of the quantum yields of photosensitized 1O2 phosphorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.; Chang, C.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw
We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same ordermore » of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.« less
Determination of optical absorption coefficient with focusing photoacoustic imaging.
Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R
2012-06-01
Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.
NASA Astrophysics Data System (ADS)
Zidan, M. D.; Arfan, A.; Allahham, A.
2016-12-01
Z-scan technique was used to investigate the nonlinear optical properties of 1-(carboxymethyl)-8-hydroxyquinolin-1-ium chloride and 1-(carboxymethyl)quinolin-1-ium chloride salts. The new 1-(carboxymethyl)-8-hydroxyquinolin-1-ium chloride and 1-(carboxymethyl)quinolin-1-ium chloride salts were synthesized and characterized using UV-visible, FTIR and NMR measurements and the characterization spectra confirm the expected molecular structure of the prepared salts. Measurements were performed with a CW Diode laser at 635 nm wavelength and 26 mW power. The nonlinear optical absorption coefficient (β) and nonlinear refractive index (n2) of the 1-(carboxymethyl)-8-hydroxyquinolin-1-ium chloride was affected by OH group. The excited-state absorption cross sections (σex) and the ground -state absorption cross sections (σg) were calculated for the two studied compounds. It was found that the σex is larger than the σg, indicating that the reverse saturable absorption mechanism (RSA) is the dominating mechanism for the observed absorption nonlinearities. Our results suggest that this material should be considered as a promising candidate for future optical devices applications.
Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.
1986-01-01
The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.
NASA Astrophysics Data System (ADS)
Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae
2018-07-01
It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.
Method of and apparatus for measuring temperature and pressure. [atmospheric sounding
NASA Technical Reports Server (NTRS)
Korb, C. L.; Kalshoven, J. E., Jr. (Inventor)
1985-01-01
Laser beams are transmitted through gas to a reflecting target, which may be either a solid surface or particulate matter in gas or the gas molecules. The return beams are measured to determine the amount of energy absorbed by the gas. For temperature measurements, the laser beam has a wavelength at which the gas exhibits a relatively temperature sensitive and pressure insensitive absorption characteristic for pressure measurements, the laser beam has a wavelength at which the gas has a relatively pressure sensitive and temperature insensitive absorption characteristic. To reduce the effects of scattering on the absorption measurements a reference laser beam with a weak absorption characteristic is transmitted colinearly with the data beam having a strong absorption characteristic. The two signals are processed as a ratio to eliminate back scattering. Embodiments of transmitters and receivers described include a sequential laser pulse transmitter and receiver, a simultaneous laser pulse transmitter and receiver.
Effect of morphology and solvent on two-photon absorption of nano zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod
Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less
Active optical CO2 sensing for Ground-based, Airborne, and from Space platform
NASA Astrophysics Data System (ADS)
Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Inoue, M.; Morino, I.; Uchino, O.; Sawa, Y.; Matsueda, H.
2011-12-01
Accurate measurements of lower tropospheric CO2 from space are strongly needed to quantify processes that identify the CO2 flux by the lands and oceans. The Greenhouse gases Observing SATellite (GOSAT) is the first space mission focused on lower tropospheric CO2 measurements by detecting the near-infrared spectral absorption in reflected sunlight. The GOSAT mission is a key first step, and will increase knowledge about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurements approach, 1) the best performance of CO2 total column measurements can only be performed under the clear-sky atmosphere, 2) seasonal dependence reduces its global coverage, such as the case of the northern hemisphere in winter, and 3) unknowns and variations in cloud and aerosol contamination is also sensitive for CO2 measurements. The laser-based CO2 remote sensing is advantage of those un-met needs. We have developed and improved a compact differential laser absorption sensor (LAS) for measuring the weighted column-averaged dry CO2 mixing ratio (Wq) as a candidate for space mission. Our instrument employs two continuous-wave lasers and a fiber amplifier, which are available of simultaneous measurements of CO2 differential absorption optical depth and range to the target. The amplitude-modulated laser outputs are amplified by a fiber-amplifier. The receiver uses a compact telescope and photodiodes, and measures the laser powers reflected from the target. The gas absorption and column-averaged mixing ratio for the CO2 are evaluated from the ratio of the on- and off-line signals. We have performed ground-based and airborne measurement to evaluate uncertainty of Wq measurements. In these measurements R(12) line in the (30012<-00001) absorption bands of 12C16O2 was used. The precision of the ground-based measurements of horizontal Wq was 0.49% for a horizontal range of 2.1 km. The first airborne measurements were also made during August 2009. These measurements were made over grasslands from 0.5-7 km altitude. There results were compared with airborne flask sampling data and confirmed same trends along height. In February 2010 and February 2011 we made a total of 6 flights and also measured the vertical Wq over the urban area. A high correlation coefficient of 0.99 was obtained between Wq observed by LAS and that calculated by airborne in-situ measurement. More details about measurements and analysis will be presented in the meeting.
Third order nonlinear optical properties of bismuth zinc borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugavelu, B.; Ravi Kanth Kumar, V. V., E-mail: ravi.phy@pondiuni.edu.in; Kuladeep, R.
2013-12-28
Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due tomore » dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.« less
NASA Astrophysics Data System (ADS)
Dulitz, Katrin; Amedro, Damien; Dillon, Terry J.; Pozzer, Andrea; Crowley, John N.
2018-02-01
Rate coefficients (k5) for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP-LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3 / NOx ratio of between -6 and +6 %. Effective HNO3 absorption cross sections (184.95 and 213.86 nm, units of cm2 molecule-1) were obtained as part of this work: σ213.86 = 4.52-0.12+0.23 × 10-19 and σ184.95 = 1.61-0.04+0.08 × 10-17.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.
The structural properties and absorption spectra of H2Pc thin films have been studied. The films used in these studies were thermally evaporated on glass/quartz substrates with thickness ranging from 60 to 460 nm. The XRD studies of H2Pc thin films showed that the as-deposited films have a-form with monoclinic system. The mean crystallite size (L), the dislocation density (d) and the strain (x) were evaluated. The molecular structure of H2Pc thin films is confirmed by analysis of (FTIR) spectra. The surface morphology of H2Pc thin films was examined by scanning electron microscope. The absorption spectra of H2Pc recorded in the UV - VIS - IR region for the as-deposited and the annealed thin films of different thickness have been analyzed. The spectra showed two absorption bands namely the Q-band and the Soret (B)-band. The Q-band shows its characteristic splitting (Davydove splitting) with DQ = 0.21 eV. Values of some important optical parameters, namely optical absorption coefficient (a¢), molar extinction coefficient (emolar), half-band-width (Dl), electronic dipole strength (q2) and oscillator strength (f) were calculated. The fundamental and the onset of the indirect energy gaps were also determined as 2.47 and 1.4 eV, respectively.
MEMS cantilever sensor for THz photoacoustic chemical sensing and pectroscopy
NASA Astrophysics Data System (ADS)
Glauvitz, Nathan E.
Sensitive Microelectromechanical System (MEMS) cantilever designs were modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to terahertz (THz) radiation. Surface and bulk micromachining technologies were employed to create the extremely sensitive devices that could detect very small changes in pressure. Fabricated devices were then tested in a custom made THz PA vacuum test chamber where the cantilever deflections caused by the photoacoustic effect were measured with a laser interferometer and iris beam clipped methods. The sensitive cantilever designs achieved a normalized noise equivalent absorption coefficient of 2.83x10-10 cm-1 W Hz-½ using a 25 microW radiation source power and a 1 s sampling time. Traditional gas phase molecular spectroscopy absorption cells are large and bulky. The outcome of this research resulted was a photoacoustic detection method that was virtually independent of the absorption path-length, which allowed the chamber dimensions to be greatly reduced, leading to the possibility of a compact, portable chemical detection and spectroscopy system
Picosecond cubic and quintic nonlinearity of lithium niobate at 532 nm
NASA Astrophysics Data System (ADS)
Wang, Hongzhen; Boudebs, Georges; de Araújo, Cid B.
2017-08-01
The nonlinear (NL) optical response of bulk lithium niobate (LiNbO3) was investigated at 532 nm using the second harmonic of a Nd:YAG laser delivering pulses of 12 ps. The experiments were performed using the D4σ method combined with the conventional Z-scan technique. Two- and three-photon absorption coefficients equal to 0.27 c m /G W and 2.5 ×10-26 m3/W2, respectively, were determined. The NL absorption processes were due to transitions from the valence to the conduction band and to free-carrier absorption. The third- and fifth-order NL refractive indices were n2=(2.5 ±0.6 )×10-19 m2/W and n4<5.5 ×10-36 m4/W2. The present results give the support for previous experiments that indicate possible fifth-order processes in bulk samples and channel waveguides fabricated with LiNbO3.
Diode Laser Sensor for Scramjet Inlet
2010-05-11
This work presents the development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet engine inlet...ADFA Abstract This work presents development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet... sensor needs to use oxygen as the absorbing species, as this is the only option for absorption measurements in inlet air. Oxygen absorption lines
Energy conditions of high quality laser-oxygen cutting of mild steel
NASA Astrophysics Data System (ADS)
Shulyatyev, V. B.; Orishich, A. M.; Malikov, A. G.
2011-02-01
In our previous work we found experimentally the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5 - 25 mm. No dross and minimal roughness of the cut surface were chosen as criteria of quality. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. In the present paper, the energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy and heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50 - 60% in the total contributed energy.
Study of gelatin as an effective energy absorbing layer for laser bioprinting.
Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Chrisey, Douglas B; Huang, Yong
2017-06-09
Laser-induced forward transfer printing, also commonly known as laser printing, has been widely implemented for three-dimensional bioprinting due to its unique orifice-free nature during printing. However, the printing quality has the potential to be further improved for various laser bioprinting applications. The objectives of this study are to investigate the feasibility of using gelatin as an energy absorbing layer (EAL) material for laser bioprinting and its effects on the quality of printed constructs, bioink printability, and post-printing cell viability and process-induced DNA damage. The gelatin EAL is applied between the quartz support and the coating of build material, which is to be printed. Printing quality can be improved by EAL-assisted laser printing when using various alginate solutions (1%, 2%, and 4%) and cell-laden bioinks (2% alginate and 5 × 10 6 cells ml -1 in cell culture medium). The required laser fluence is also reduced due to a higher absorption coefficient of gelatin gel, in particular when to achieve the best printing type/quality. The post-printing cell viability is improved by ∼10% and DNA double-strand breaks are reduced by ∼50%. For all the build materials investigated, the gelatin EAL helps reduce the droplet size and average jet velocity.
Laser absorption phenomena in flowing gas devices
NASA Technical Reports Server (NTRS)
Chapman, P. K.; Otis, J. H.
1976-01-01
A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.
NASA Astrophysics Data System (ADS)
Motiei, H.; Jafari, A.; Naderali, R.
2017-02-01
In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.
NASA Astrophysics Data System (ADS)
Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle
2017-09-01
An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.
NASA Astrophysics Data System (ADS)
Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.
2015-02-01
Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.
Super-contrast photoacoustic resonance imaging
NASA Astrophysics Data System (ADS)
Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin
2018-02-01
In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.
In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm
NASA Astrophysics Data System (ADS)
Beek, J. F.; Blokland, P.; Posthumus, P.; Aalders, M.; Pickering, J. W.; Sterenborg, H. J. C. M.; van Gemert, M. J. C.
1997-11-01
The optical properties (absorption and scattering coefficients and the scattering anisotropy factor) were measured in vitro for cartilage, liver, lung, muscle, myocardium, skin, and tumour (colon adenocarcinoma CC 531) at 630, 632.8, 790, 850 and 1064 nm. Rabbits, rats, piglets, goats, and dogs were used to obtain the tissues. A double-integrating-sphere setup with an intervening sample was used to determine the reflectance, and the diffuse and collimated transmittances of the sample. The inverse adding - doubling algorithm was used to determine the optical properties from the measurements. The overall results were comparable to those available in the literature, although only limited data are available at 790 - 850 nm. The results were reproducible for a specific sample at a specific wavelength. However, when comparing the results of different samples of the same tissue or different lasers with approximately the same wavelength (e.g. argon dye laser at 630 nm and HeNe laser at 632.8 nm) variations are large. We believe these variations in optical properties should be explained by biological variations of the tissues. In conclusion, we report on an extensive set of in vitro absorption and scattering properties of tissues measured with the same equipment and software, and by the same group. Although the accuracy of the method requires further improvement, it is highly likely that the other existing data in the literature have a similar level of accuracy.
Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter
Zhao, Yongming; Sun, Yurun; He, Yang; Yu, Shuzhen; Dong, Jianrong
2016-01-01
A six-volt vertically-stacked, high current GaAs photovoltaic power converter (PPC) has been designed and fabricated to produce output power over 1 W under monochromatic illumination. An N++-GaAs/P++-AlGaAs tunnel junctions (TJs) structure has been used for connecting each sub-cell in this vertically-stacked PPC device. The thickness of the each GaAs sub-cell has been derived based on the calculation of absorption depth of photons with a wavelength of 808 nm using absorption coefficient obtained from ellipsometry measurements. The devices were characterized under non-uniform CW laser illumination at 808 nm with incident power up to 4.1 W. A maximum conversion efficiency of 50.2% was achieved at 0.3 W under non-uniform (coupled in optical fiber) monochromatic illumination, dropping to 42.5% at 4.1 W. The operating voltage at the maximum power point is 5.5–6.0 V, depending on the incident laser power, and an output electrical power output of 1.3 W can be extracted at a laser power of 2.9 W and the maximum electrical power output amounts to 1.72 W. The external quantum efficiency (EQE) measurement indicates that the performance of PPC can be further improved by refining the design of the thickness of sub-cells and improving TJs. PMID:27901079
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian
1998-05-01
We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.
NASA Astrophysics Data System (ADS)
Kim, Kyoung Jin; Jouini, Anis; Yoshikawa, Akira; Simura, Rayko; Boulon, Georges; Fukuda, Tsuguo
2007-02-01
We investigate different ways to realize laser emission from (Pr 3+) 3P J=0,1,2 levels by pump sources other than the common argon and excimer-dye laser. The use of infrared (IR) laser diodes in combination with intra- and inter-ionic energy transfer processes (up-conversion) could be an efficient solution towards laser oscillation. Pr 3+,Yb 3+-codoped KY 3F 10 (Pr, Yb:KYF) single crystals were successfully grown by the micro-pulling-down (μ-PD) method. The crystals were transparent with a slightly greenish color, 2.0-2.5 mm in diameter, 20-30 mm in length and free from visible inclusions and cracks. Effective segregation coefficients of Pr and Yb in KYF were studied by means of absorption and chemical analysis. Strong visible emission via selective IR pumping with λ=975 nm and up-conversion excitation were obtained in Pr, Yb:KYF at room temperature (RT). Luminescence measurements have been carried out and the decay kinetics of the Pr 3+ visible emissions was investigated by room temperature time-resolved spectra.
NASA Astrophysics Data System (ADS)
Polyakov, D. S.; Yakovlev, E. B.
2018-03-01
We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.
Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye
NASA Astrophysics Data System (ADS)
El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.
2011-10-01
The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.
Modeling visibility in the Paso del Norte (PDN) Region
NASA Astrophysics Data System (ADS)
Medina Calderon, Richard
Poor visibility is a subject of growing public concern throughout the U.S, and an active area of research. Its societal impacts on air quality, aviation transport and traffic are significant. Aerosols play a fundamental role in the attenuation of solar radiation, and also affect visibility. The scattering and extinction coefficients of aerosol particles in the Paso del Norte Region have been calculated using the T- matrix model in conjunction with a laser particle counter. Inter-comparison of the model's results of the scattering and absorption coefficients against the corresponding data from a Photoacustic extinctiometer instrument (which measures in-situ absorption and scattering coefficients of aerosol particles) shows excellent agreement. In addition, the volume-weighted method is used to determine the composite index of refraction which is representative of the aerosols for the Paso del Norte Region to obtain information of the type of aerosol particles present in the Region. The Single Scattering Albedo has also been retrieved using this methodology to obtain further insight into the type of aerosols present on a given day. Finally, the Koschmieder equation has been used to calculate the visual range or visibility, and was correlated with the PM2.5 and PM10 particle concentration present in the Region. Our methodology will allow a better understanding of the size and type of aerosol particles that are most detrimental to the visibility for the Paso Del Norte Region.
Advanced industrial fluorescence metrology used for qualification of high quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker
2003-11-01
Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1975-01-01
Techniques for the gas phase absorption of laser radiation for conversion to gas kinetic energy are discussed. Absorption by inverse Bremsstrahlung, in which laser energy is converted at a gas kinetic rate in a spectrally continuous process, is briefly described, and absorption by molecular vibrational rotation bands is discussed at length. High pressure absorption is proposed as a means of minimizing gas bleaching and dissociation, the major disadvantages of the molecular absorption process. A band model is presented for predicting the molecular absorption spectra in the high pressure absorption region and is applied to the CO molecule. Use of a rare gas seeded with Fe(CO)5 for converting vibrational modes to translation modes is described.
Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material
NASA Astrophysics Data System (ADS)
Groenhuis, R. A. J.; ten Bosch, J. J.
1981-05-01
During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.
NASA Astrophysics Data System (ADS)
Naik, Ramakanta; Sahoo, Pragyan Paramita; Sripan, C.; Ganesan, R.
2016-12-01
Amorphous chalcogenide semiconducting materials are playing a pivotal role in modern technology. Such type of materials are very sensitive to electromagnetic radiations which is useful for infrared optics. In the present report, Bi doped in As40S60 thin films (As40S60, Bi06As40S54) of 800 nm thickness were prepared by thermal evaporation method. The Bi06As40S54 thin film is subjected to laser irradiation for photo induced study. The X-ray diffraction study reveals no structural change due to laser irradiation. The optical parameters are affected by both Bi addition and laser irradiation which brings a change in the transmitivity and absorption coefficient. The indirect optical band gap is found to be increased by 0.08 eV with laser irradiation with the decrease in disorderness. The Tauc parameter and Urbach energy which measures the degree of disorderness changes with Bi doping and irradiation. The refractive index is modified by the illumination process which is useful for optical applications. The optical property change is well supported by the X-ray photoelectron core level spectra.
A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films.
Chen, Songtao; Roh, Kwangdong; Lee, Joonhee; Chong, Wee Kiang; Lu, Yao; Mathews, Nripan; Sum, Tze Chien; Nurmikko, Arto
2016-04-26
Perovskite semiconductors are actively investigated for high performance solar cells. Their large optical absorption coefficient and facile solution-based, low-temperature synthesis of thin films make perovskites also a candidate for light-emitting devices across the visible and near-infrared. Specific to their potential as optical gain medium for lasers, early work has demonstrated amplified spontaneous emission and lasing at attractively low thresholds of photoexcitation. Here, we take an important step toward practically usable perovskite lasers where a solution-processed thin film is embedded within a two-dimensional photonic crystal resonator. We demonstrate high degree of temporally and spatially coherent lasing whereby well-defined directional emission is achieved near 788 nm wavelength at optical pumping energy density threshold of 68.5 ± 3.0 μJ/cm(2). The measured power conversion efficiency and differential quantum efficiency of the perovskite photonic crystal laser are 13.8 ± 0.8% and 35.8 ± 5.4%, respectively. Importantly, our approach enables scalability of the thin film lasers to a two-dimensional multielement pixelated array of microlasers which we demonstrate as a proof-of-concept for possible projection display applications.
Optoacoustic effect is responsible for laser-induced cochlear responses
NASA Astrophysics Data System (ADS)
Kallweit, N.; Baumhoff, P.; Krueger, A.; Tinne, N.; Kral, A.; Ripken, T.; Maier, H.
2016-06-01
Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation.
Chromatic effect in a novel THz generation scheme
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Wenyan; Liu, Xiaoqing; Deng, Haixiao; Lan, Taihe; Liu, Bo; Liu, Jia; Wang, Xingtao; Zeng, Zhinan; Zhang, Lijian
2017-11-01
Deriving single or few cycle terahertz (THz) pulse by an intense femtosecond laser through cascaded optical rectification is a crucial technique in cutting-edge time-resolved spectroscopy to characterize micro-scale structures and ultrafast dynamics. Due to the broadband nature of the ultrafast driving laser, the chromatic effect limits the THz conversion efficiency in optical rectification crystals, especially for those implementing the pulse-front tilt scheme, e.g. lithium niobate (LN) crystal, has been prevalently used in the past decade. In this research we developed a brand new type of LN crystal utilizing Brewster coupling, and conducted systematically experimental and simulative investigation for the chromatic effect and multi-dimensionally entangled parameters in THz generation, predicting that an extreme conversion efficiency of ˜10% would be potentially achievable at the THz absorption coefficient of ˜0.5 cm-1. Moreover, we first discovered that the chirp of the driving laser plays a decisive role in the pulse-front tilt scheme, and the THz generation efficiency could be enhanced tremendously by applying an appropriate chirp.
Third-order nonlinear optical properties of ADP crystal
NASA Astrophysics Data System (ADS)
Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang
2018-05-01
By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.
Phantom Preparation and Optical Property Determination
NASA Astrophysics Data System (ADS)
He, Di; He, Jie; Mao, Heng
2018-12-01
Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine optical properties for homogeneous slab for our future work.
NASA Technical Reports Server (NTRS)
Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.
1998-01-01
The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu
2018-06-01
Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu
2018-04-01
Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.
NASA Technical Reports Server (NTRS)
Hoepffner, Nicolas; Sathyendranath, Shubha
1993-01-01
The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.
NASA Astrophysics Data System (ADS)
Moskalenko, Konstantin L.; Nadezhdinskii, Alexander I.
1996-10-01
Trace contents of ammonia in outdoor, indoor and exhaled air were measured on the base of high resolution absorption spectra. Tunable diode laser system developed for this purpose possesses approximately one second time constant, approximately 200 cm3 sample volume, 5 ppb sensitivity. The calibration of unit was based on measurements of relative intensities of sQ(3,1)...sQ(3,3) absorption lines of v2s and following calculation on the base of a priori data on strength and broadening coefficients of detected lines. Measured indoor contents of ammonia was in 5-10 times higher than outdoor contents. Approximately two times drop in NH3 room content after 6 p.m. was detected. Obtained behavior of ammonia content in respiration right after the smoking demonstrates that the removing of ammonia from lungs has the ventilation character. Measured contents of NH3 in human respiration was ranged between 120 and 220 ppb. The absence of ammonia content differences from respiration of smoking and non smoking persons demonstrates that the accumulation of NH3 by human organism seems to be rather negligible for a short time exposure, e.g. like smoking.
ZnO-PVA nanocomposite films for low threshold optical limiting applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanath, Varsha; Beenakumari, C.; Muneera, C. I.
Zinc oxide-PVA nanocomposite films were fabricated adopting a simple method based on solution-casting, incorporating small weight percentages (<1.2 wt%) of ZnO in PVA (∼0.625×10{sup −3}M to 7×10{sup −3}M), and their structure, morphology, linear and low threshold nonlinear optical properties were investigated. The films were characterized as nanostructured ZnO encapsulated between the molecules/chains of the semicrystalline host polymer PVA. The samples exhibited low threshold nonlinear absorption and negative nonlinear refraction, as studied using the Z-scan technique. A switchover from SA to RSA was observed as the concentration of ZnO was increased. The optical limiting of 632.8 nm CW laser light displayedmore » by these nanocomposite films is also demonstrated. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |χ{sup (3)}|, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. The results show that the ZnO-PVA nanocomposite films have great potential applications in future optical and photonic devices.« less
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
NASA Astrophysics Data System (ADS)
Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.
2017-04-01
An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.
Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.
Becker, J S; Tenzler, D
2001-07-01
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.
Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.
Linford, G J
1973-06-01
A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.
Laser Irradiated Foam Targets: Absorption and Radiative Properties
NASA Astrophysics Data System (ADS)
Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.
2018-01-01
An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, A. F. H.
The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadowmore » domains.« less
Diode Lasers and Practical Trace Analysis.
ERIC Educational Resources Information Center
Imasaka, Totaro; Nobuhiko, Ishibashi
1990-01-01
Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)
Nonlinear absorption of short intense laser pulse in multispecies plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargarian, A.; Hajisharifi, K.; Mehdian, H.
In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtainedmore » results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.« less
Evaluation of laser radiation regimes at thermal tissue destruction
NASA Astrophysics Data System (ADS)
Ivanov, Anatoly; Kazaryan, Mishik A.; Molodykh, E. I.; Shchetinkina, T. A.
1996-01-01
The existing methods of laser destruction of biotissues, widely spread in surgery and coagulation action, are based on local heat emission in the tissues after light absorption. Here we present the results of the simulation of tissues heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined and the main parameters are: (1) coefficients of heatconductivity and capacitance of blood and tissue, (2) blood and tissue density, (3) total metabolic energy, (4) volume coefficient accounting for heat-exchange between tissue and blood, and (5) blood circulation velocity. The power of laser radiation was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the process connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on microsamples and on test animals. It was demonstrated, in particular, that liver tissue coagulation regime is achieved at 10 W laser power during 25 s. The coagulation radius of 0.7 cm with the given tumor radius of 0.5 cm corresponds to the real clinical situation in case of metastasis liver affection.
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-07-01
The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.
Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.
Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook
2015-01-01
Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391 mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honea, E.C., LLNL
We derive approximate expressions for transient output power and wavelength chirp of high- peak-power laser-diode bars assuming one-dimensional heat flow and linear temperature dependences for chirp and efficiency. The model is derived for pulse durations, 10 < {tau} < 1000 ps, typically used for diode-pumped solid-state lasers and is in good agreement with experimental data for Si heatsink mounted 940 nm laser-diode bars operating at 100 W/cm. The analytic expressions are more flexible and easily used than the results of operating point dependent numerical modeling. In addition, the analytic expressions used here can be integrated to describe the energy permore » unit wavelength for a given pulse duration, initial emission bandwidth and heatsink material. We find that the figure-of-merit for a heatsink material in this application is ({rho}C{sub p}K) where {rho}C{sub p} is the volumetric heat capacity and K is the thermal conductivity. As an example of the utility of the derived expressions, we determine an effective absorption coefficient as a function of pump pulse duration for a diode-pumped solid-state laser utilizing Yb:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) as the gain medium.« less
Collisionless absorption of intense laser radiation in nanoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V
The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.
2015-12-14
Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less
Measurements of optical properties of some molten oxides
NASA Astrophysics Data System (ADS)
Nason, D. O.; Yen, C. T.; Tiller, W. A.
1990-11-01
A method based on a fine-focussed optical laser has been developed to measure the spectral reflectance and the transmittance of small ( ∽ 1 mm) liquid or single crystal materials. The measured normal spectral emittance for 633 nm light is about 0.9 for several molten refractory oxides, 0.8 for lithium niobate and 0.7 for molten sapphire. Sapphire and YAG experience a several-fold increase in emittance on melting. The absorption coefficient and the thickness for opaqueness are calculated and some consequences of the partial transparency of small hot materials, when their temperatures are measured by optical pyrometry, are discussed.
Advances in atmospheric temperature profile measurements using high spectral resolution lidar
NASA Astrophysics Data System (ADS)
Razenkov, Ilya I.; Eloranta, Edwin W.
2018-04-01
This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.
Bistability By Self-Reflection In A Saturable Absorber
NASA Astrophysics Data System (ADS)
Roso-Franco, Luis
1987-01-01
Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.
Rigrod laser-pumped-laser resonator model: II. Application to thin and optically-dilute laser media
NASA Astrophysics Data System (ADS)
Brown, D. C.
2014-08-01
In part I of this paper, and to set the foundation for this part II, we derived the resonator equations describing the normalized intensities, output power, gain, and extraction efficiency for a standard resonator incorporating two dielectric mirrors and a gain element. We then generalized the results to include an absorbing region representing a second laser crystal characterized by a small-signal transmission T0. Explicit expressions were found for the output power extracted into absorption by the second laser crystal and the extraction efficiency, and the limits to each were discussed. It was shown that efficient absorption by a thin or dilute second laser crystal can be realized in resonators in which the mirror reflectivities were high and in which the single-pass absorption was low, due to the finite photon lifetime and multi-passing of the absorbing laser element. In this paper, we apply the model derived in part I to thin or dilute laser materials, concentrating on a Yb, Er:glass intracavity pumped by a 946 nm Nd:YAG laser, a Yb, Er:glass laser-pumped intracavity by a 977 nm diode laser, and an Er:YAG laser-pumped intracavity to a 1530 nm diode laser. It is shown that efficient absorption can be obtained in all cases examined.
Determination of the optical absorption spectra of thin layers from their photoacoustic spectra
NASA Astrophysics Data System (ADS)
Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery
2018-05-01
This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram
2015-01-01
The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.
Optical studies on electron beam evaporated Lithium Triborate films
NASA Astrophysics Data System (ADS)
Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.
2012-10-01
Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.
Optical studies on electron beam evaporated lithium triborate films.
Mohandoss, R; Dhanuskodi, S; Sanjeeviraja, C
2012-10-01
Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1×10(-5) mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a=8.55 (2); b=5.09 (2); c=7.39 (2)Å) were determined by powder XRD indicating the (111) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (~4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n(2)~10(-16) cm(2)/W) and nonlinear absorption coefficient (β~10(-2) cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of PbO on the spectral and thermo-optical properties of Nd3+-doped phosphate laser glass
NASA Astrophysics Data System (ADS)
Yin, Qianwen; Kang, Shuai; Wang, Xue; Li, Shunguang; He, Dongbing; Hu, Lili
2017-04-01
Nd3+-doped P2O5-K2O-Al2O3-BaO-PbO phosphate glasses with various PbO/BaO ratios were synthesized using the melt quenching technique. Raman, absorption, and emission spectra were measured to investigate the effects of PbO/BaO ratios on the structures and spectroscopic properties of the glasses. The emission cross-sections of the Nd3+-doped phosphate glasses were calculated using the Judd-Ofelt theory, and were found to increase from 4.37 × 10-20 to 4.50 × 10-20 cm2 as the PbO/BaO ratio increased. In addition, thermo-optical properties were measured using an interferometric technique. The thermo-optical coefficients, which were -1.49 × 10-6, -1.65 × 10-6, and -1.64 × 10-6 K-1, respectively, were all largely negative values. The thermal expansion coefficients of the three glass samples varied within a small range. The results showed that increasing the PbO/BaO ratio of phosphate glasses can improve the laser properties while maintaining their good thermo-optical properties.
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E
1997-01-01
Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, D.-Y.; Yang, M.-H.; Zhao Hui
Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less
NASA Astrophysics Data System (ADS)
Sharma, Vandna; Kumar, Pankaj
2017-11-01
Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1982-06-08
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1985-10-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.
NASA Astrophysics Data System (ADS)
Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee
2016-09-01
We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, David A.; Keller, Richard A.
1985-01-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.
Efficient energy absorption of intense ps-laser pulse into nanowire target
NASA Astrophysics Data System (ADS)
Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.
2016-06-01
The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.
NASA Astrophysics Data System (ADS)
Qu, Shiliang; Gao, Yachen; Jiang, Xiongwei; Zeng, Huidan; Song, Yinglin; Qiu, Jianrong; Zhu, Congshan; Hirao, K.
2003-09-01
Nonlinear absorptions of Au nanoparticles precipitated silicate glasses by irradiation of a focused femtosecond pulsed laser were investigated using Z-scan technique with 8 ns pulses at 532 nm. Optical limiting (OL) effects in such glasses have been also measured. It is observed that the behaviors of transition from saturable absorption to reverse saturable absorption and the OL performances for different samples are significantly different, which depend drastically on the irradiation power density of the femtosecond laser used for the Au nanoparticles precipitation in the glass. Strong nonlinear absorptions in these samples are mainly attributed to the surface plasmon resonance (SPR) and free carrier absorptions of the precipitated Au nanoparticles.
Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Anila, E. I.
2018-04-01
We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.
2004-01-01
The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications
NASA Astrophysics Data System (ADS)
Bayramian, Andrew James
2000-11-01
A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.
Holmium:YAG (lambda = 2,120 nm) versus thulium fiber (lambda = 1,908 nm) laser lithotripsy.
Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2010-03-01
The holmium:YAG laser is currently the most common laser lithotripter. However, recent experimental studies have demonstrated that the thulium fiber laser is also capable of vaporizing urinary stones. The high-temperature water absorption coefficient for the thulium wavelength (mu(a) = 160 cm(-1) at lambda = 1,908 nm) is significantly higher than for the holmium wavelength (mu(a) = 28 cm(-1) at lambda = 2,120 nm). We hypothesize that this should translate into more efficient laser lithotripsy using the thulium fiber laser. This study directly compares stone vaporization rates for holmium and thulium fiber lasers. Holmium laser radiation pulsed at 3 Hz with 70 mJ pulse energy and 220 microseconds pulse duration was delivered through a 100-microm-core silica fiber to human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Thulium fiber laser radiation pulsed at 10 Hz with 70 mJ pulse energy and 1-millisecond pulse duration was also delivered through a 100-microm fiber for the same sets of 10 stones each. For the same number of pulses and total energy (126 J) delivered to each stone, the mass loss averaged 2.4+/-0.6 mg (UA) and 0.7+/-0.2 mg (COM) for the holmium laser and 12.6+/-2.5 mg (UA) and 6.8+/-1.7 (COM) for the thulium fiber laser. UA and COM stone vaporization rates for the thulium fiber laser averaged 5-10 times higher than for the holmium laser at 70 mJ pulse energies. With further development, the thulium fiber laser may represent an alternative to the conventional holmium laser for more efficient laser lithotripsy.
Lee, Woan-Ruoh; Shen, Shing-Chuan; Al-Suwayeh, Saleh A; Li, Yi-Ching; Fang, Jia-You
2012-06-01
While laser skin resurfacing is expected to result in reduced barrier function and increased risk of drug absorption, the extent of the increment has not yet been systematically investigated. We aimed to establish the skin permeation profiles of tetracycline and sunscreens after exposure to the erbium:yttrium-aluminum-garnet (Er:YAG) laser during postoperative periods. Physiological and histopathological examinations were carried out for 5 days after laser treatment on nude mice. Percutaneous absorption of the permeants was determined by an in vitro Franz cell. Ablation depths varied in reaching the stratum corneum (10 μm, 2.5 J/cm²) to approach the epidermis (25 μm, 6.25 J/cm²) and upper dermis (40 μm, 10 J/cm²). Reepithelialization evaluated by transepidermal water loss was complete within 2-4 days and depended on the ablation depth. Epidermal hyperplasia was observed in the 40-μm-treated group. The laser was sufficient to disrupt the skin barrier and allow the transport of the permeants into and across the skin. The laser fluence was found to play an important role in modulating skin absorption. A 25-μm ablation depth increased tetracycline flux 84-fold. A much smaller enhancement (3.3-fold) was detected for tetracycline accumulation within the skin. The laser with different fluences produced enhancement of oxybenzone skin deposition of 3.4-6.4-fold relative to the untreated group. No penetration across the skin was shown regardless of whether titanium dioxide was applied to intact or laser-treated skin. However, laser resurfacing increased the skin deposition of titanium dioxide from 46 to 109-188 ng/g. Tetracycline absorption had recovered to the level of intact skin after 5 days, while more time was required for oxybenzone absorption. The in vivo skin accumulation and plasma concentration revealed that the laser could increase tetracycline absorption 2-3-fold. The experimental results indicated that clinicians should be cautious when determining the dose for postoperative treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Study on molecular sieve absorption of ground state HF molecules in a non-chain pulsed HF Laser
NASA Astrophysics Data System (ADS)
Ma, Lianying; Zhou, Songqing; Chao, Huang; Huang, Ke; Zhu, Feng; Luan, Kunpeng; Chen, Hongwei
2017-05-01
This paper describes the principle of non-chain pulsed HF laser, and analyzes the reason why the laser energy dropped severely with the accumulation of shots when the HF laser was in repetitive operation. In order to solve this problem, a molecular sieve absorption device was designed and mounted in the recirculation loop of the HF laser. Measurements of flow velocity indicated that the absorption device would just introduce a small decrease of flow velocity which would not influence the laser operation. Several types of molecular sieve (3A,4A,5A,13X) were used in absorbing experiments and the experiment results inferred that 3A molecular sieve was the most effective sorbent. All the experiments showed that the average drop of the output energy was not more than 5% after 1000 shots at 50Hz/20s. Compared to the energy drop of about 40% without the device, the absorption device could significantly improve the stability of the HF laser output energy and prolong the lifespan of laser medium gases.
NASA Astrophysics Data System (ADS)
Janssen, Christof; Elandaloussi, Hadj; Gröbner, Julian
2018-03-01
The room temperature (294.09 K) absorption cross section of ozone at the 325 nm HeCd wavelength has been determined under careful consideration of possible biases. At the vacuum wavelength of 325.126 nm, thus in a region used by a variety of ozone remote sensing techniques, an absorption cross-section value of σ = 16.470×10-21 cm2 was measured. The measurement provides the currently most accurate direct photometric absorption value of ozone in the UV with an expanded (coverage factor k = 2) standard uncertainty u(σ) = 31×10-24 cm2, corresponding to a relative level of 2 ‰. The measurements are most compatible with a relative temperature coefficient cT = σ-1 ∂ Tσ = 0.0031 K-1 at 294 K. The cross section and its uncertainty value were obtained using generalised linear regression with correlated uncertainties. It will serve as a reference for ozone absorption spectra required for the long-term remote sensing of atmospheric ozone in the Huggins bands. The comparison with commonly used absorption cross-section data sets for remote sensing reveals a possible bias of about 2 %. This could partly explain a 4 % discrepancy between UV and IR remote sensing data and indicates that further studies will be required to reach the accuracy goal of 1 % in atmospheric reference spectra.
NASA Astrophysics Data System (ADS)
Titus, Jitto; Thakur, Mrinal
2006-03-01
As recently reported, the electrical conductivity of the nonconjugated polymer, poly(beta-pinene) increases by more than ten orders of magnitude upon doping with iodine [1]. The FTIR, optical absorption and EPR measurements have shown that radical cations are formed upon doping and charge-transfer involving the isolated double-bond in poly(beta-pinene). In this report, exceptionally large two-photon absorption in iodine-doped poly(beta-pinene) will be discussed. The linear absorption spectrum of medium-doped poly(beta-pinene) have peaks at about 4 eV and 3.1 eV. The first peak is due to the radical cation and the second due to the charge-transfer between the double bond and the dopant. The two-photon absorption of the medium-doped polymer has been measured at 730-860 nm using open-aperture z-scan with 150 femtosecond pulses from a Ti:Sapphire laser. A two-photon peak at about 1.5 eV with a magnitude of more than 1 cm/MW has been observed. The large magnitude of the two-photon absorption coefficient which is proportional to the imaginary part of the third order susceptibility has been attributed to the special structure of the radical cation and the confinement within a sub-nanometer dimension. [1] Vippa, Rajagopalan and Thakur, J. Poly. Sci. Part B: Poly. Phys., 43, 3695 (2005).
Fluorescence molecular imaging based on the adjoint radiative transport equation
NASA Astrophysics Data System (ADS)
Asllanaj, Fatmir; Addoum, Ahmad; Rodolphe Roche, Jean
2018-07-01
A new reconstruction algorithm for fluorescence diffuse optical tomography of biological tissues is proposed. The radiative transport equation in the frequency domain is used to model light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse problem. The methodology is applied to a 2D tissue-like phantom subjected to a collimated laser beam. Indocyanine Green is used as fluorophore. Reconstructed images of the spatial fluorophore absorption distribution is assessed taking into account the residual fluorescence in the medium. We show that illuminating the tissue surface from a collimated centered direction near the inclusion gaves a better reconstruction quality. Two closely positioned inclusions can be accurately localized. Additionally, their fluorophore absorption coefficients can be quantified. However, the algorithm failes to reconstruct smaller or deeper inclusions. This is due to light attenuation in the medium. Reconstructions with noisy data are also achieved with a reasonable accuracy.
Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm
NASA Astrophysics Data System (ADS)
Wang, Hongzhen; Ciret, Charles; Godet, Jean-Luc; Cassagne, Christophe; Boudebs, Georges
2018-06-01
The nonlinear (NL) responses of liquid water, ethanol and tetrahydrofuran (THF) are investigated at 355 nm using a Nd:YAG laser delivering pulses of 10 ps. The experiments are performed using the D4σ method combined with the Z-scan technique. Third-order NL refractive indices are determined, as well as the two-photon absorption coefficient and the critical self-focus power. The NL refractive indices are found to be constant for intensity up to 150 GW/cm2 for the three considered solvents, revealing no higher order nonlinearities. Water appears to be a better solvent than ethanol and THF in the UV domain because of its lower NL index and absence of NL absorption. We expect the present study to be useful for NL index measurements in solutions and for numerous future fundamental interest or potential applications.
New measurements of the 6190-A band of methane
NASA Technical Reports Server (NTRS)
Mickelson, M. E.; Larson, L. E.; Schubert, A.
1991-01-01
The present paper reports new laboratory measurements that were made of the absorption coefficient of the visible methane band at 6190 A. Data were obtained using a tunable dye laser system operating with a line width of 0.067/cm. Spectra were recorded at approximately 1-A intervals with the beam coupled to a 22-m base length White-type absorption cell adjusted for an optical path of 1584 km and filled to a density of 0.884 amagats. Errors in pressure, temperature, and path length amounted to an uncertainty in the abundance of no more than 0.4 percent. Fourteen data sets were recorded and coadded. The final signal-averaged methane data were divided by a similar set of signal-averaged empty cell scans to remove the transmittance of the White cell and system optics. The results are compared with previous low-resolution measurements in the spectral region from 6000 to 6400 A.
Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-05-01
In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.
Ogura, Makoto; Sato, Shunichi; Ishihara, Miya; Kawauchi, Satoko; Arai, Tunenori; Matsui, Takemi; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru
2002-01-01
We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed. Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope. The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold. We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At laser intensities of > 2.4 GW/cm(2), a photodisruption process may also contribute to the tissue removal, in addition to a photothermal process. With regard to the ablation rates, the 1,064-nm laser was more suitable for TMLR than the 532-nm laser. We concluded that the 1,064-nm Q-switched Nd:YAG laser would be a potential candidate for a laser source for TMLR because of possible fiber-based beam delivery, its compact structure, cost effectiveness, and easy maintenance. Animal trials, however, have to be carried out to evaluate the influence of the tissue damage. Copyright 2002 Wiley-Liss, Inc.
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
NASA Astrophysics Data System (ADS)
Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang
2017-07-01
Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).
Database for chemical weapons detection: first results
NASA Astrophysics Data System (ADS)
Bellecci, C.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Ventura, P.; Antonucci, A.; Pasquino, F.; Ricci, V.; Sassolini, A.
2008-10-01
The quick increase of terrorism and asymmetric war is leading towards new needs involving defense and security. Nowadays we have to fight several kind of threats and use of chemical weapons against civil or military objectives is one of the most dangerous. For this reason it is necessary to find equipment, know-how and information that are useful in order to detect and identify dangerous molecules as quickly and far away as possible, so to minimize damage. Lidar/Dial are some of the most powerful optical technologies. Dial technology use two different wavelengths, in order to measure concentration profile of an investigated molecule. For this reason it is needed a "fingerprint" database which consists of an exhaustive collection of absorption coefficients data so to identify each molecule avoiding confusion with interfering ones. Nowadays there is not such a collection of data in scientific and technical literature. We used an FT-IR spectrometer and a CO2 laser source for absorption spectroscopy measurements using cells filled with the investigated molecules. The CO2 source is the transmitter of our DIAL facility. In this way we can make a proper "fingerprint" database necessary to identify dangerous molecules. The CO2 laser has been chosen because it is eye safe and, mainly, because it covers a spectral band where there is good absorption for this kind of molecules. In this paper IR spectra of mustard will be presented and compared to other substances which may interfere producing a false alarm. Methodology, experimental setup and first results are described.
NASA Astrophysics Data System (ADS)
Chattopadhyay, P.; Karim, B.; Guha Roy, S.
2013-12-01
The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.
Method and apparatus for enhancing laser absorption sensitivity
NASA Technical Reports Server (NTRS)
Webster, Christopher R. (Inventor)
1987-01-01
A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.
Efficient energy absorption of intense ps-laser pulse into nanowire target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habara, H.; Honda, S.; Katayama, M.
The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2014-03-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.
High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui
2017-05-01
This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.
NASA Astrophysics Data System (ADS)
Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed
2016-05-01
Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).
Absorption coefficients of silicon: A theoretical treatment
NASA Astrophysics Data System (ADS)
Tsai, Chin-Yi
2018-05-01
A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.
Phase-resolved reflectance spectroscopy on layered turbid media
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.
1995-05-01
In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.
Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.
Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia
2016-08-10
In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.
Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2
Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia
2016-01-01
In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152
Terenji, Albert; Willmann, Stefan; Osterholz, Jens; Hering, Peter; Schwarzmaier, Hans-Joachim
2005-06-01
During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo. Copyright 2005 Wiley-Liss, Inc.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X; Baad, M; Reiser, I
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Absorption and emission spectra of Li atoms trapped in rare gas matrices
NASA Astrophysics Data System (ADS)
Wright, J. J.; Balling, L. C.
1980-10-01
Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.