Science.gov

Sample records for laser applications final

  1. Laser applications. Final report

    SciTech Connect

    Horn, R.T.

    1980-07-01

    Processes were developed that use lasers as manufacturing tools. These processes were stripping of insulation from cables and wires, machining of quartz, microdrilling and welding of reflective metals, and precision alignment of curved surfaces before machining. A technological basis also was formed which resulted in a process for automatic surface inspection of parts and aided development of machining processes for Kevlar parts.

  2. DOE Center of Excellence in Medical Laser Applications. Final report

    SciTech Connect

    Jacques, S.L. )

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland, OR, Houston, TX, and Galveston, TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulation of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  3. DOE Center of Excellence in Medical Laser Applications. Final report, December 1, 1994--November 30, 1997

    SciTech Connect

    Jacques, S.L.

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  4. Compact, lightweight CO/sub 2/ lasers for SDIO applications. Final report, 30 September 1988-31 March 1989

    SciTech Connect

    Jacob, J.

    1989-04-11

    During the past decade, substantial investments have been made in the development of gas-discharge-pumped CO/sub 2/ lasers for military and civilian applications. The DoD community and SDIO in particular is developing compact, lightweight CO/sub 2/ lasers for airborne and spaced-based radar applications directed toward target ranging, imaging, and discrimination. These CO/sub 2/ laser systems are being developed under the SDIO Lowkater Program, in the Airborne Laser Experiment (ALE) Program by the Army/SDC and in Lincoln Laboratory's space based CO/sub 2/ laser radar research and development program. The three major components of a CO/sub 2/ laser radar are the laser head and flow loop, the pulsed-power system and the optics and beam-control system. In this report, SRL presents a novel self-sustained discharge concept that should result in the stable and efficient extraction of large specific energies (50 J/liter atmosphere) for pulse lengths as long as 100 micro s.

  5. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    beam makes the laser superior to all conventional destructive instruments. 4)|The coagulative properties of certain chromophoric lasers has allowed a new attack on certain vascular tumors and malformations of the brain and spinal cord which had been operated only with trepidation or not at all. Early reports are sobering but encouraging. 5)|Finally, the use of the laser with tissue photosensitization, albeit it in its infancy, offers great promise. This is particularly true in the case of primary brain cancer, where the infiltration of tumorous tissue among normal pathways precludes the classical oncologic surgery practice of resection of a "safe margin". The ability to track and destroy these cells, without affecting adjacent cells, may be the greatest single contribution of the laser to neurosurgery in the future. The present applications of the laser are relatively crude by comparison with what is expected. Endoscopic laser surgery, both vascular and subarachnoid, will diminish morbidity and improve results. From the exotic treatment of aneurysms and arteriovenous malformations of the brain to the mundane care of herniated disks of the spine, it is anticipated that the laser will play an important role. The use of a laser, coupled with computerized imagining devices, will allow increasing precision in arrival to and treatment of deep seated lesions of the brain, brainstem, and spinal cord. The use of different wavelengths, perhaps in the X-ray and ultraviolet spectra, will allow increasing precision with decreasing invasion. Manipulation of wavelength, time, and treatment area will allow subcellular surgery, perhaps in the treatment of personality disorders and movement disorders as well as epilepsy. Tissue welding will allow heightened regenerative and recuperative powers to be exploited. The possibility of laser biostimulation must also be considered. In short, it appears that the future of the laser in neurosurgery is limited only by the imagination of the

  6. Dye laser principles, with applications

    SciTech Connect

    Duarte, F.J. . Dept. of Physics); Hillman, L.W. . Dept. of Physics)

    1990-01-01

    This book contains papers which explain dye laser principles. Topics covered include: laser dynamics, femtosecond dye lasers, CW dye lasers, technology of pulsed dye lases, photochemistry of laser dyes, and laser applications.

  7. Laser Applications in Orthodontics

    PubMed Central

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  8. Laser applications in phlebology

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Mancini, S.; Postiglione, Marco; Postiglione, M. G.

    2001-06-01

    PURPOSE: review of laser used in phlebology METHOD: critical analysis of scientific data taken from the literature and based on 25 years personal experience. RESULTS: we have three groups of laser applications in phlebology: for the diagnosis, as physical therapy and as surgical therapy. DISCUSSION AND CONCLUSION: the laser-doppler studies the microcirculations, the no-surgical therapy shown positive results in the treatment of venous ulcers and for the wound healing. It could be indicate also as antiphlogistic and anti-edema therapy, in superficial thrombophlebitis. The surgical laser is useful for the surgical cleaning of ulcers, for haemorroids, angiomas and telangiectases.

  9. New laser materials: Final report

    SciTech Connect

    Not Available

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (greater than or equal to 750..mu..s) in Nd doped Y(PO/sub 3/)/sub 3/ was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO/sub 3/)/sub 3/ where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi/sub 2/O/sub 6/ (diopside), LaBO/sub 3/ and La(BO/sub 2/)/sub 3/. Results on these materials will also be discussed.

  10. Laser applications in surgery.

    PubMed

    Azadgoli, Beina; Baker, Regina Y

    2016-12-01

    In modern medicine, lasers are increasingly utilized for treatment of a variety of pathologies as interest in less invasive treatment modalities intensifies. The physics behind lasers allows the same basic principles to be applied to a multitude of tissue types using slight modifications of the system. Multiple laser systems have been studied within each field of medicine. The term "laser" was combined with "surgery," "ablation," "lithotripsy," "cancer treatment," "tumor ablation," "dermatology," "skin rejuvenation," "lipolysis," "cardiology," "atrial fibrillation (AF)," and "epilepsy" during separate searches in the PubMed database. Original articles that studied the application of laser energy for these conditions were reviewed and included. A review of laser therapy is presented. Laser energy can be safely and effectively used for lithotripsy, for the treatment of various types of cancer, for a multitude of cosmetic and reconstructive procedures, and for the ablation of abnormal conductive pathways. For each of these conditions, management with lasers is comparable to, and potentially superior to, management with more traditional methods.

  11. FY 2005 Laser Development Final Report

    SciTech Connect

    Phillips, Mark C.; Myers, Tanya L.; Taubman, Matthew S.

    2005-12-01

    The Laser Development Task of Pacific Northwest National Laboratory's (PNNL) Remote Spectroscopy project (PL211I) is focused on the development of novel laser technology for a new generation of standoff and in-situ chemical sensors for detecting the proliferation of nuclear weapons. These lasers will improve the sensitivity, flexibility, or range of active standoff sensors, enable ultra-trace in situ sensors with enhanced selectivity, as well as greatly improve calibration of passive standoff sensors. In particular, laser transmitters with minimal size, weight, and power consumption (SWAP) are needed to meet the requirements for a variety of in situ or short-range stand-off sensors and sensors for small UAVs or other platforms. These laser transmitters need to be rugged and free of requirements for consumables such as liquid nitrogen. Many sensing techniques also require lasers that produce a single narrow wavelength (single longitudinal mode). Lasers that provide high continuous-wave (CW) output power on a single line at operating temperatures accessible with thermoelectric (TE) cooling are therefore essential for sensor applications.

  12. Final Report: Cooling Molecules with Laser Light

    SciTech Connect

    Di Rosa, Michael D.

    2012-05-08

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  13. Soft tissue application of lasers.

    PubMed

    Holt, Timothy L; Mann, Fred A

    2002-05-01

    Despite increasing numbers of veterinarians incorporating lasers into their clinical practices, little information has been published about laser clinical applications in soft tissue surgery. This article reviews soft tissue interaction, describes laser equipment and accessories commonly marketed to veterinarians, and discusses clinical applications of the carbon dioxide laser in a systems-based approach. A table of recommended laser tips and settings based on the authors' experiences using a carbon dioxide laser (AccuVet Novapulse LX-20SP, Bothell, WA) is provided.

  14. Laser Ablation for Medical Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  15. Laser applications in surgery

    PubMed Central

    Azadgoli, Beina

    2016-01-01

    In modern medicine, lasers are increasingly utilized for treatment of a variety of pathologies as interest in less invasive treatment modalities intensifies. The physics behind lasers allows the same basic principles to be applied to a multitude of tissue types using slight modifications of the system. Multiple laser systems have been studied within each field of medicine. The term “laser” was combined with “surgery,” “ablation,” “lithotripsy,” “cancer treatment,” “tumor ablation,” “dermatology,” “skin rejuvenation,” “lipolysis,” “cardiology,” “atrial fibrillation (AF),” and “epilepsy” during separate searches in the PubMed database. Original articles that studied the application of laser energy for these conditions were reviewed and included. A review of laser therapy is presented. Laser energy can be safely and effectively used for lithotripsy, for the treatment of various types of cancer, for a multitude of cosmetic and reconstructive procedures, and for the ablation of abnormal conductive pathways. For each of these conditions, management with lasers is comparable to, and potentially superior to, management with more traditional methods. PMID:28090508

  16. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  17. Novel oral laser applications

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-03-01

    In dental hard tissue ablation, ultra-short laser pulses have proven sufficiently their potential for material ablation with negligible collateral damage providing many advantages. The absence of micro-cracks and the possibility to avoid overheating of the pulp during dental cavity preparation may be among the most important issues, the latter opening up an avenue for potential painless treatment. Beside the evident short interaction time of laser radiation with the irradiated tissue, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of required quality and shape. Additionally, long-pulsed laser systems have demonstrated successfully their suitability for decontamination purposes. In this paper, an overview of different indications for laser application in dental therapies in both pulse regimes is presented. A special focus is set on the decontamination of dental implants in periimplantitis therapy. Having employed commercially available long pulse systems for dental applications and ultra-short 330 fs pulses, we present first results for temperature development and corresponding ablation thresholds for dental implants, as in the future more gentle implant cleaning by ultra-short laser pulses could become of interest.

  18. Lasers in ophthalmic clinical applications

    NASA Astrophysics Data System (ADS)

    Carstocea, Benone; Banacu, I.; Stanciu, D.; Filip, M.; Pascu, Mihail L.; Pascu, A.; Dutu, Doru C.; Dabu, Razvan V.; Ionescu, T.

    1989-05-01

    A technical report regarding three types of medical equipments with lasers of particular interest for ophthalmology is introduced, namely: tunable dye laser photocoagulator, CO2 laser scalpel and Nd:YAG surgical instrument. Clinical results obtained using the above mentioned devices and Ar+ laser photocoagulator are reported, including concluding remarks about the application fields specific for each equipment.

  19. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    SciTech Connect

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  20. Medical Applications of Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    1989-01-01

    Lasers are finding many applications in medicine and biology. While most laser use focuses on the heat generation of the laser beam interacting with tissue, spectroscopic aspects play a more dominating part in a number of emerging applications. Tumour-seeking agents, such as hematoporphyrin derivative (HPD), in combination with laser radiation provide new possibilities for cancer tumour detection and treatment. The fluorescence emission from tissue irradiated with UV light can be used for tumour localization. Natural tissue fluorescence as well as fluorescence due to injected HPD can be utilized. Results from studies on animals and from clinical applications are reported. The use of fluorescence for identifying atherosclerotic plaque in human vessels is illustrated. Spectroscopic analysis of the laser-induced plasma obtained when a high-power, pulsed laser beam interacts with tissue is also discussed with applications to plaque removal and laser fragmentation of kidney- and gall-stones.

  1. Surgical applications of femtosecond lasers.

    PubMed

    Chung, Samuel H; Mazur, Eric

    2009-10-01

    Femtosecond laser ablation permits non-invasive surgeries in the bulk of a sample with submicrometer resolution. We briefly review the history of optical surgery techniques and the experimental background of femtosecond laser ablation. Next, we present several clinical applications, including dental surgery and eye surgery. We then summarize research applications, encompassing cell and tissue studies, research on C. elegans, and studies in zebrafish. We conclude by discussing future trends of femtosecond laser systems and some possible application directions.

  2. Review - 40 years of laser-marking - industrial applications

    NASA Astrophysics Data System (ADS)

    Gu, Bo

    2006-02-01

    One of the early applications of lasers was marking electronics components. Today laser marking has found its way into a wide range of applications, from wafer marking at the chip scale package level to beer bottles and food package identifications, and to marking of the cloth buttons. In many cases, laser marking has become a standard manufacturing process. We will review the laser marking technology over the last four decades. This would include the review on evolution of the different laser technologies and beam delivery systems used in various laser-marking systems for the past 40 years. Finally, the latest laser marking technologies will be presented and future directions be discussed.

  3. Laser sources for lidar applications

    NASA Astrophysics Data System (ADS)

    Kilmer, J.; Iadevaia, A.; Yin, Y.

    2012-06-01

    Advanced LIDAR applications such as next gen: Micro Pulse; Time of Flight (e.g., Satellite Laser Ranging); Coherent and Incoherent Doppler (e.g., Wind LIDAR); High Spectral Resolution; Differential Absorption (DIAL); photon counting LIDAR (e.g., 3D LIDAR); are placing more demanding requirements on conventional lasers (e.g., increased rep rates, etc.) and have inspired the development of new types of laser sources. Today, solid state lasers are used for wind sensing, 2D laser Radar, 3D scanning and flash LIDAR. In this paper, we report on the development of compact, highly efficient, high power all-solidstate diode pulsed pumped ns lasers, as well as, high average power/high pulse energy sub nanosecond (<1ns) and picosecond (<100ps) lasers for these next gen LIDAR applications.

  4. Laser scribe optimization study. Final report

    SciTech Connect

    Wannamaker, A.L.

    1996-09-01

    The laser scribe characterization/optimization project was initiated to better understand what factors influence response variables of the laser marking process. The laser marking system is utilized to indelibly identify weapon system components. Many components have limited field life, and traceability to production origin is critical. In many cases, the reliability of the weapon system and the safety of the users can be attributed to individual and subassembly component fabrication processes. Laser beam penetration of the substrate material may affect product function. The design agency for the DOE had requested that Federal Manufacturing and Technologies characterize the laser marking process and implement controls on critical process parameters.

  5. Final Report - DOE Center for Laser Imaging and Cancer Diagnostics

    SciTech Connect

    Alfano, Robert R.; Koutcher, Jason A.

    2002-10-31

    This Final Report summarizes the significant progress made by the researchers, students and staff of the Center for Laser Imaging and Cancer Diagnostics (CLICD) from January 1998 through May 2002. During this period, the Center supported several projects. Most projects were proposed initially, some were added subsequently as their relevance and importance to the DOE mission became evident. DOE support has been leveraged to obtain continuing funding for some projects. Leveraged funds come from various sources, including NIH, Army, NSF and the Air Force. The goal of the Center was to develop laser-based instruments for use in the detection and diagnosis of major diseases, with an emphasis on detection and diagnosis of various cancers. Each of the supported projects is a collaborative effort between physicists and laser scientists and the City College of New York and noted physicians, surgeons, pathologists, and biologists located at medical centers in the Metropolitan area. The participating institutions were: City College of New York Institute for Ultrafast Lasers and Spectroscopy, Hackensack University Medical Center, Lawrence Livermore National Laboratory, Memorial Sloan Kettering Cancer Center, and New York Eye and Ear Institute. Each of the projects funded by the Center is grouped into one of four research categories: a) Disease Detection, b) Non-Disease Applications, c) New Diagnostic Tools, and, d) Education, Training, Outreach and Dissemination. The progress achieved by the multidisciplinary teams was reported in 51 publications and 32 presentations at major national conferences. Also, one U.S. patent was obtained and six U.S. patent applications have been filed for innovations resulting from the projects sponsored by the Center.

  6. Application of lasers in endodontics

    NASA Astrophysics Data System (ADS)

    Ertl, Thomas P.; Benthin, Hartmut; Majaron, Boris; Mueller, Gerhard J.

    1997-12-01

    Root canal treatment is still a problem in dentistry. Very often the conventional treatment fails and several treatment sessions are necessary to save the tooth from root resection or extraction. Application of lasers may help in this situation. Bacteria reduction has been demonstrated both in vitro and clinically and is either based on laser induced thermal effects or by using an ultraviolet light source. Root canal cleansing is possible by Er:YAG/YSGG-Lasers, using the hydrodynamic motion of a fluid filled in the canals. However root canal shaping using lasers is still a problem. Via falsas and fiber breakage are points of research.

  7. Pulsed infrared laser ablation and clinical applications

    NASA Astrophysics Data System (ADS)

    Chan, Kin Foong

    Sufficient light energy deposited in tissue can result in ablation and excessive thermal and mechanical damage to adjacent tissues. The goals of this research are to investigate the mechanisms of pulsed infrared laser ablation of tissue, to optimize laser parameters for minimizing unnecessary damage to healthy tissue, and to explore the potential of using pulsed infrared lasers for clinical applications, especially laser lithotripsy. A dual-channel optical low coherence reflectometer was implemented to measure the expansion and collapse velocities of a Q-switched Ho:YAG (λ = 2.12 μm) laser-induced cavitation in water. Cavitation wall velocities up to 11 m/s were measured with this technique, and the results were in fair agreement with those calculated from fast-flash photographic images. The dependence of ablation threshold fluence on calculus absorption was examined. Preliminary results indicated that the product of optical absorption and ablation threshold fluence, which is the heat of ablation, remained constant for a given urinary calculus type and laser pulse duration. An extended study examined the influence of optical absorption on pulsed infrared laser ablation. An analytical photothermal ablation model was applied and compared to experimental ablation results using an infrared free-electron laser at selected wavelengths between 2.12 μm and 6.45 μm Results were in good agreement with the model, and the ablation depths of urinary calculi were highly dependent upon the calculus optical absorption as well as light attenuation within the intrapulse ablation plume. An efficient wavelength for ablation corresponded to the wavelength of the Er:YAG laser (λ = 2.94 μm) suggested this laser should be examined for laser lithotripsy. Schlieren flash photography, acoustic transient measurements with a piezoelectric polyvinylidene-fluoride needle-hydrophone, mass loss measurements, and chemical analyses were employed to study the ablation mechanisms of the free

  8. Space tug applications. Final report

    SciTech Connect

    1996-01-01

    This article is the final report of the conceptual design efforts for a `space tug`. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems.

  9. Diode-Laser Phase Conjugation 03-FS-030 Final Report

    SciTech Connect

    Page, R H; Beach, R J; Payne, S A; Holzrichter, J F

    2005-02-14

    Arrays of lasers are often considered when a need exists to increase laser optical output power, for a variety of purposes. Similarly, individual semiconductor laser-diodes, generating 0.01-1.0 W each, are commonly placed in arrays in order to increase total optical power onto targeted objects. Examples of such usage are diode-laser pump arrays for solid-slab heat-capacity lasers, laser arrays for heat-treating materials, and arrays for efficient solid state laser systems. The commercial and defense communities also use such arrays for many applications from laser range-finders, laser designators, to laser machining systems, etc. However, the arraying process does not automatically increase ''focusable'' light on target (i.e., intensity/steradian). For those applications requiring the highest focusability, it is necessary that the collective output beam from arrays of individual lasers be phase-coherent. Under this condition, the individual laser-element optical outputs are ''fused together'' into a larger area, phase coherent (i.e., all wavefronts are ''in step''), high-power combined beam. The process of joining multiple laser beams together to produce a single coherent wave, is in general very difficult and seldom accomplished. Thus joining together many hundreds to thousands of beams from individual laser-diodes, in large arrays, is still an unsolved problem. There are 2 major reasons for this. Firstly, the phase of each output laser beam (i.e. the wave-fronts) from each laser diode often fluctuates within nanosecond time periods, making a control loop with sufficient bandwidth difficult to build. In fact, phase fluctuations (related to laser linewidth) limit the size of an extended system of arrayed diodes because of speed-of-light restrictions on information flow. Secondly, the output power per prior laser diode has been low ( < 1W,) so that the size, expense, and complexity of control systems for correcting a multitude of output phases of the individual

  10. Applications of Laser Scattering Probes to Turbulent Diffusion Flames

    DTIC Science & Technology

    1983-11-01

    APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame

  11. Ultrafast fiber lasers: practical applications

    NASA Astrophysics Data System (ADS)

    Pastirk, Igor; Sell, Alexander; Herda, Robert; Brodschelm, Andreas; Zach, Armin

    2015-05-01

    Over past three decades ultrafast lasers have come a long way from the bulky, demanding and very sensitive scientific research projects to widely available commercial products. For the majority of this period the titanium-sapphire-based ultrafast systems were the workhorse for scientific and emerging industrial and biomedical applications. However the complexity and intrinsic bulkiness of solid state lasers have prevented even larger penetration into wider array of practical applications. With emergence of femtosecond fiber lasers, based primarily on Er-doped and Yb-doped fibers that provide compact, inexpensive and dependable fs and ps pulses, new practical applications have become a reality. The overview of current state of the art ultrafast fiber sources, their basic principles and most prominent applications will be presented, including micromachining and biomedical implementations (ophthalmology) on one end of the pulse energy spectrum and 3D lithography and THz applications on the other.

  12. Laser Science and Applications

    NASA Astrophysics Data System (ADS)

    El-Nadi, Lotfia M.; Mansour, Mohy S.

    2010-04-01

    Attosecond high harmonic pulses: generation and characterization / C. H. Nam and K. T. Kim -- High power lasers and interactions / C. Chatwin and R. Young -- Laser accelerators / L. M. El-Nadi ... [et al.] -- Energy levels, oscillator strengths, lifetimes, and gain distributions of S VII, CI VIII, and Ar IX / Wessameldin. S. Abdelaziz and Th. M. El-Sherbini -- The gain distribution according to theoretical level structure and decay dynamics of W[symbol] / H. M. Hamed ... [et al.] -- Raman spectroscopy and low temperature photoluminescence ZnSe[symbol]Te[symbol] ternary alloys / A. Salah ... [et al.] -- Automated polarization-discrimination technique to minimize lidar detected skylight background noise, part I / Y. Y. Hassebo, K. Elsayed and S. Ahmed -- Laser interferometric measurements of the physical properties for He, Ne gases and their mixture / N. M. Abdel-Moniem ... [et al.] -- Analytical studies of laser beam propagation through the atmosphere / M. I. El-Saftawy, A. M. Abd El-Hamed and N. Sh. Kalifa -- Laser techniques in conservation of artworks: problems and breakthroughs / R. Salimbeni and S. Siano -- Technology-aided heritage conservation laser cleaning for buildings / M. S. Nada -- Technology significance in conservation of the built heritage 3D visualization impact / M. S. Nada -- Simulation of optical resonators for Vertical-Cavity Surface-Emitting Lasers (VCSEL) / M. S. Mansour ... [et al.] -- Optical design alternatives: a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Materials for digital optical design; a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Proposed design for optical digital circuits / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Photo-induced effect on bacterial cells / M. H. El Batanouny ... [et al.] -- Laser and non-coherent light effect on peripheral blood normal and acute lymphoblastic leukemic cells by using different types of photosensitizers / M. H. El Batanouny ... [et al

  13. Laser applications in wood processing

    NASA Astrophysics Data System (ADS)

    Broenstad, B. M.; Auman, N.; Toennessen, K.

    1993-08-01

    Lasers have been used for special woodprocessing purposes for more than twenty years. Besides dieboard manufacturing, which was one of the earliest applications, CO2 lasers are also used for different cutting, marking and engraving operations. High quality slots in varying depths are produced in wood and different plywood materials at high cutting speeds and with excellent accuracy. Decorative marking operations are performed by means of masking techniques, or by moving a defocused beam over the workpiece. Formerly collected and stored data is directly used for laser cutting of card-board and 3D map modeling. Examples of products are shown, processing data given and limitations discussed.

  14. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  15. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  16. Laser applications for benign oral lesions.

    PubMed

    Frigerio, Alice; Tan, Oon T

    2015-10-01

    Different subspecialists treat benign intraoral lesions using various approaches including surgical excision, medical therapy, sclerotherapy, and laser photocoagulation. The goal of this study was to establish whether lasers could effectively target and destroy oral lesions containing endogenous chromophores, while minimizing injury to unaffected adjacent tissues and critical structures. This retrospective study involved 26 cases of benign oral lesions, both vascular and pigmented, which were addressed by means of selective laser treatment. Pathologies were port-wine stains, hereditary hemorragic teleangectasia, hemangiomas, venous and arteriovenous malformations, pyogenic granuloma, and hairy reconstructive flaps. Electronic medical records and photographic documentation were reviewed. Three blinded staff personnel not involved with patient care in this study evaluated photographs taken prior to the first and after the final laser treatments. Observers rated the percentage clearance of the lesions or the ablation of bleeding, and the assessed values were averaged for each patient. An average of 30-95% lightening was observed in the intraoral port-wine stains, 90% in the hemangiomas, 70% in arteriovenous malformations, 81% for venous malformations, 86% for venous lakes, and 100% for the pyogenic granuloma. Bleeding was ablated in all hereditary hemorrhagic telangiectasia lesions treated using the pulsed dye laser with or without the Alexandrite laser. Intraoral hair growing on the skin paddle of microvascular flaps was completely removed in one of the three cases treated using the Alexandrite laser. In the two remaining cases, some hair removal was achieved, but because the residual hairs were grey or white (absence of melanocytic chromophore), photocoagulation was less effective. Lasers are a safe and effective means to selectively destroy specific chromphores. Such specific targeting ensures complete destruction of pathological tissue, decreasing the possibility

  17. Argon laser application to endodontics

    NASA Astrophysics Data System (ADS)

    Blankenau, Richard J.; Ludlow, Marvin; Anderson, David

    1993-07-01

    The application of laser technology to endodontics has been studied for some time. At the present time several major problems are being investigated: (1) removal of infected tissues, (2) sterilization of canals, (3) obturation of canals, and (4) preservation of the vitality of supporting tissues. This list is not intended to imply other problems do not exist or have been solved, but it is a starting point. This paper reviews some of the literature that relates to laser applications to endodontics and concludes with some of the findings from our investigation.

  18. Semiconductor laser applications in rheumatology

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Suteanu, S.

    1996-01-01

    Two types of laser diode (LD) based equipment for rheumatology are introduced. The first is a portable device which contains single LD emitting at 890 nm laser pulses (time full width 100 nsec) of reprate tunable within (0.5 - 1.5) kHz; the laser beam average power is 0.7 mW at 1 kHz reprate. The second is computer controlled, contains one HeNe laser and 5 LD allowing 6 modes of patient irradiation (placebo effect evaluation included). HeNe laser works in cw at 632.8 nm; the LD works each as described for the portable equipment. HeNe and LD beams are superposed so that HeNe laser spot in the irradiation plane has a 60 mm diameter and the LD spots covers a 50 mm diameter disc centered on the HeNe laser spot. Clinical applications using the second type of equipment are reported; 1287 patients were treated between October 1991 and October 1994. Female/male ratio was 4:1 and their age distribution was between 18 and 85 years. The average number of exposures was 10 and the mean exposure time was 7 minutes. Studies were made on the treatment of rheumatoid arthritis, seronegative arthritis, degenerative joint diseases, abarticular rheumatism, osteoporosis pain and pains and edema after fractures.

  19. Laser Applications: Implications for Vocational Education.

    ERIC Educational Resources Information Center

    Fraser, Jeannette L.

    Recent and projected advances in and commercial applications of lasers and laser technology were examined in order to assist vocational planners in responding to skill needs that will be created by lasers in the next few years. Until recently, most laser applications were in research and development settings; however, in the last several years…

  20. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  1. Experimental support for KrF laser modeling. Final report

    SciTech Connect

    Not Available

    1989-07-19

    This paper is the final report for a project to do characterization studies on the KrF laser system. The project did experimental work on KrF lasers in support of modeling studies, with the objective being to see if this technology could be competitive for use in the ICF program. This program has provided LANL with data critical for their model development. Section 2 describes the laser extraction experiments together with the calibration of the diagnostics and the re-examination of the analysis procedure. Section 3 discusses the gain and transient absorption measurements, and Section 4 gives the conclusion for this program.

  2. FY 2005 Quantum Cascade Laser Alignment System Final Report

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  3. Laser Weapons for Naval Applications

    DTIC Science & Technology

    2012-03-27

    IPG fiber lasers , 10 kW/ fiber 7 • Output wavelength is tunable (can operate in atmospheric window) Free Electron Lasers ...Multiple kilowatts over multiple kilometers • Laser power converters can be highly efficient, > 60 % • Fiber lasers are highly compact and... lasers - Free electron lasers • Background • Laser candidates • Additional capabilities - Power beaming 3 Laser Lethality -

  4. Expanded mode lasers for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Lealman, Ian F.

    This thesis describes the development of a long wavelength (1.55 μm) expanded mode semiconductor laser. The increased spot size of the laser improves both the coupling efficiency to cleaved fibre and fibre alignment tolerances and reduces packaging cost. In this type of device the strength of the waveguide is gradually reduced towards the front facet allowing the mode to adiabatically expand so that the laser mode is better matched in size to that of a cleaved fibre. This can be achieved by either reducing the refractive index of the guide or reducing the amount of material in the core. The structure chosen was a buried heterostructure laser that utilised a twin guide consisting of an upper higher refractive index guide (the active region of the laser) above a weak passive guide. The width of the active region was reduced along part of the device allowing the mode to expand into the weak underlying guide. The guide structure was optimised using a variable grid finite difference mode solver, and the taper length calculated by an approximation to Love's method. Detailed results are presented for the measured light-current characteristic, farfield and coupling loss to cleaved fibre. These coupling losses were compared to the calculated data thus allowing the waveguide design to be optimised. Several iterations in the design of the device were undertaken, with the aim of reducing the coupling loss to cleaved single mode fibre without significantly compromising the laser performance. The final device design had extremely low coupling losses as low as 1.2 dB to cleaved fibre. Finally, the positive impact this device had on passive alignment using a silicon motherboard is examined, and the application this technology to a range of other optoelectronic components is discussed.

  5. Mechanism and clinical application of laser acupuncture

    NASA Astrophysics Data System (ADS)

    Tian, Zhaobing

    1994-08-01

    Low energy laser irradiation in clinical practice can be divided into two categories: irradiation of located parts of the body and laser acupuncture therapy. If the laser with fixed wavelength and proper power is input into certain particular points of the body, it may produce good systemic physiologic effects. This has been proved by many tests on animals and in clinical practice. Some clinical applications are discussed as representative of the therapy. According to the TCM theory on `Ching-lo' (channels), we used the 2 mW - 5 mW laser to treat experimentally more than 30 patients for leuckocytopenia, decreasing of platelets and a lot of inflammatory masses. The effects are dramatic. About the mechanism, we realize that first, the human body is irradiated by the laser, the photon is absorbed by cells, and the cells are polarized and activated. In the next step, the activated energy is transported along the resonance dipoles of the human body. Various physiological functions of the organism and the clinical effects are shown as the final results.

  6. High Power CO Lasers And Their Application Potential

    NASA Astrophysics Data System (ADS)

    Maisenhalder, F.

    Comparing the state of development of high power gas lasers for civil applications, it can be seen that the CO2 laser is a well established tool; the CO laser, however, essentially remained a laboratory device. Hence, the question arises whether there will be an advantage to develop high power CO lasers for industrial applications, too. After a brief recapitulation of the typical CO-related properties, to help answering this question, the application potential of the CO laser, will be discussed. There are several wavelength-related advantages of the CO laser like increased absorption depth in glasses and crystals increased focal power density, and reduced plasma shielding. Furthermore, transmissive optical materials have considerably improved values for absorption and damage threshold, and finally power transmission through optical fibers is much more realistic in the near future for the 5 μm spectral range. In contrast to the variety of promising applications is the number of experimentally verified ones. This is due to the fact that only a few lasers are existing in the power range and in the developmental stage to be used for applications. In experiments CO lasers demonstrated advantages in the field of cutting and drilling metals and uranium isotope separation. Lasers in the high power range are developed in Japan, in the Soviet Union and in Germany. The types of lasers investigated in these countries differ from each other by the methods of gas cooling and excitation. Comparisons between Co- and CO2 lasers show that the system efficiencies of CO lasers are slightly higher by a factor of 1.3; the operation costs of CO lasers are reduced by the same factor. Investment and operation costs can be reduced considerably if for the planned application a high focal power density is used. Furthermore, the volumes of CO and CO2 lasers are comparable at present and in the future.

  7. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  8. [The application of laser in endodontics].

    PubMed

    He, W X; Liu, N N; Wang, X L; He, X Y

    2016-08-01

    Since laser was introduced in the field of medicine in 1970's, its application range has continuously expanded. The application of laser in endodontics also increased due to its safety and effectiveness in dental treatments. The majority of the laser application researches in dentistry focused on dentin hypersensitivity, removal of carious tissues, tooth preparations, pulp capping or pulpotomy, and root canal treatment. In this article, we reviewed literature on the effects of laser in the treatments of dental and pulp diseases.

  9. Tailored Ceramics for Laser Applications

    SciTech Connect

    Hollingsworth, Joel

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  10. Medical laser application: translation into the clinics

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Stepp, Herbert; Hennig, Georg; Brittenham, Gary M.; Rühm, Adrian; Lilge, Lothar

    2015-06-01

    Medical laser applications based on widespread research and development is a very dynamic and increasingly popular field from an ecological as well as an economic point of view. Conferences and personal communication are necessary to identify specific requests and potential unmet needs in this multi- and interdisciplinary discipline. Precise gathering of all information on innovative, new, or renewed techniques is necessary to design medical devices for introduction into clinical applications and finally to become established for routine treatment or diagnosis. Five examples of successfully addressed clinical requests are described to show the long-term endurance in developing light-based innovative clinical concepts and devices. Starting from laboratory medicine, a noninvasive approach to detect signals related to iron deficiency is shown. Based upon photosensitization, fluorescence-guided resection had been discovered, opening the door for photodynamic approaches for the treatment of brain cancer. Thermal laser application in the nasal cavity obtained clinical acceptance by the introduction of new laser wavelengths in clinical consciousness. Varicose veins can be treated by innovative endoluminal treatment methods, thus reducing side effects and saving time. Techniques and developments are presented with potential for diagnosis and treatment to improve the clinical situation for the benefit of the patient.

  11. Development and Application of XUV Lasers

    DTIC Science & Technology

    1993-01-01

    The focus of this program is the development of extreme ultraviolet (XUV) lasers and their application to scientific problems. Laser development concentrates...techniques. Such techniques should have a number of applications and be particularly useful in the life sciences. This report presents recent progress on XUV laser development

  12. Les Applications Therapeutiques Des Lasers

    NASA Astrophysics Data System (ADS)

    Brunetaud, J. M.; Mordon, S.; Bourez, J.; Mosquet, L.; Moschetto, Y.

    1984-03-01

    C'est de tres loin le mecanisme predominant dans les applications therapeutiques du laser. En concentrant le flux lumineux sur une surface redui-te, le laser chauffe localement les tissus qui se retractent (coagulation) pour etre elimines ensuite (detersion) ; si on chauffe plus intensement, les tissus peuvent etre volatilises. La coagulation est utilisee soit pour detruire de petits phenomenes tumoraux qui seront elimines lors du processus de detersion, soit pour arreter une hemorragie (hemo-stase) ; dans ce cas la retraction thermique des tissus va provoquer la fermeture de la lumiere des vaisseaux qui seront secondairement obliteres par des caillots formes sur place (thrombose). Par volatilisation it est possible de detruire des phenomenes tumoraux plus importants que ceux at-teints lors d'une simple coagulation. Si la zone volatilisee est tres etroite (de 0,1 a 1 mm) on obtient un effet de coupe avec une excellente hemostase au niveau des berges. Certes ces deux processus - coagulation et volatilisation - peuvent etre obtenus par d'autres procedes : echauffement par contact (sonde thermique) ou effet Joule (courant electrique haute frequence). Le laser a l'avantage de ne necessiter aucun contact mecanique entre le vecteur d'energie et les tissus ; on peut alors predire correctement la repartition d'energie au niveau des tissus et les effets sont tres repro-ductibles. Par ailleurs, l'absorption tissulaire variant considerablement avec la longueur d'onde on peut choisir la source laser en fonction des effets desires.

  13. Laser applications in endodontics: an update review.

    PubMed

    Mohammadi, Zahed

    2009-02-01

    The search for new devices and technologies for endodontic procedures always has been challenging. Since the development of the ruby laser by Maiman in 1960 and the application of the laser for endodontics by Weichman in 1971, a variety of potential applications for lasers in endodontics have been proposed. With the development of thinner, more flexible and durable laser fibres, laser applications in endodontics have increased. Since laser devices are still relatively costly, access to them is limited. The purpose of this paper is to summarise laser applications in endodontics, including their use in pulp diagnosis, dentinal hypersensitivity, pulp capping and pulpotomy, sterilisation of root canals, root canal shaping and obturation and apicectomy. The effects of lasers on root canal walls and periodontal tissues are also reviewed.

  14. The clinical application of laser in otorhinolaryngology

    NASA Astrophysics Data System (ADS)

    Meng, Guo Zhen; Meng, Zhao-He; Zhang, Zhi Hua

    2005-07-01

    Objective: The paper presented the current application of laser in Otolaryngology in our hospital. Methods: We have applied the carbon dioxide, the YAG, the He-Ne and the Ho:YAG lasers to coagulate or vaporize treated Otolaryngology disease. Results: After treatment, we have a satisfying result. Conclusion: The paper presented the current application of laser respectively in otology, rhinology and pharynolaryngology and some representative of the treated diseases. It also demonstrated that long-term effectiveness of some diseases, such as allergic rhinitis and laryngeal stenosis treated by laser was not satisfying and further studies were expected, laser excision of tonsile was only used in the cases which traditional tonsillectomy was not available. Therefore, to improve clinical laser application greatly, further more research works and cooprations between investors of laser instrument and surgeons of oto-laryngology were necessary. Theory and Clinics of laser application should be improved also.

  15. Catadioptric Optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    In the design of a laser velocimeter system, attention must be given to the performance of the optical elements in their two principal tasks: focusing laser radiation into the probe volume, and collecting the scattered light. For large aperture applications, custom lens design and fabrication costs, long optical path requirements, and chromatic aberration (for two color operation) can be problematic. The adaptation of low cost Schmidt-Cassegrain astronomical telescopes to perform these laser beam manipulation and scattered light collection tasks is examined. A generic telescope design is analyzed using ray tracing and Gaussian beam propagation theory, and a simple modification procedure for converting from infinite to near unity conjugate ratio operation with image quality near the diffraction limit was identified. Modification requirements and performance are predicted for a range of geometries. Finally, a 200-mm-aperture telescope was modified for f/10 operation; performance data for this modified optic for both laser beam focusing and scattered light collection tasks agree well with predictions.

  16. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  17. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  18. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  19. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  20. Application of lasers in laparoscopy

    NASA Astrophysics Data System (ADS)

    Stanowski, Edward; Domaniecki, Janusz

    1995-03-01

    The application of laser light and laparoscopy attenuates operative trauma owing to the use of small incisions for introducing the trochars necessary for conveying the surgical instruments and fiber optics which allow for precise cutting and coagulation of small vessels under control of the image on a TV monitor. The present, most remarkable development of laparoscopic surgery is due to the fascination of physicians and patients by this procedure. The method enables the physician to operate with great precision and to take advantage of the most recent attainments of electronics and laser technique, as well as of his own ability. The patients profit by attenuation of postoperative pain, limitation of the probability of infection, reduced blood loss, decreased number of postoperative complications, shortening of the hospitalization period, and rapid return to physical fitness and work.

  1. Applications analysis of high energy lasers

    NASA Technical Reports Server (NTRS)

    Arno, R. D.; Mackay, J. S.; Nishioka, K.

    1972-01-01

    An analysis and comparison of laser technology with competing technologies were made to determine possible laser applications. The analysis was undertaken as follows: (1) possible applications were listed and categorized; (2) required components were enumerated and the characteristics of these components were extrapolated; (3) complete system characteristics were calculated parametrically for selected applications using the postulated component characteristics; and (4) where possible and appropriate, comparisons were made with competing systems. It was found that any large scale replacement of existing systems and methods by lasers requires many technological advances in laser and associated systems. However, several applications appear feasible, such as low orbit drag make-up, orbit changing, communications, and illumination applications.

  2. Liquid crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Jacobs, S. D.; Marshall, K. L.; Schmid, A.

    1992-10-01

    This article highlights some of the advances made in the use of liquid crystals for laser applications from 1982 through 1992. New materials and new effects were discovered, many new devices were developed, and novel applications for well-understood phenomena were conceived. This was quite an eventful time period. Several new books were published on the broad subject of LC's, and the international scientific community organized a society devoted to encouraging further scientific and educational advancement in the field. Attention was focused on LC's in October of 1991 when the Nobel Prize in Physics was awarded to Pierre-Gilles de Gennes for his pioneering work toward understanding order phenomena in LC's and polymers. This article is divided into four sections. The first section discusses new materials, specifically ferroelectric LC's and LC polymers. The former have opened up the realm of submicrosecond response for LC devices, and the latter have significantly reduced the sensitivity of LC optics to temperature. Some new insights into the optical properties of materials are also mentioned. The second section reviews new developments in passive applications for cholesterics and nematics. Included here are the fabrication of cholesteric laser mirrors and apodizers, the use of LC polymers for notch filters and as optical storage media, and some novel nematic retarder concepts such as the distributed polarization rotator.

  3. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  4. Application of laser in obstetrics and gynecology

    NASA Astrophysics Data System (ADS)

    Ding, Ai-Hua

    1998-11-01

    Mainman developed the first ruby laser in 1960 and after 13 Kaplan successfully reported the use of CO2 laser in the treatment of cervicitis. Soon after, Chinese gynecologists started to use the laser for diagnosis and therapy. It had been proved that more than 30 kinds of gynecological diseases could be treated effectively by laser. The remarkable laser treatment technique partially replaced with conventional methods used in that century. However, the application of laser had shown a broad prospect along with its further investigation.

  5. A review of laser applications in orthodontics.

    PubMed

    Kang, Yunlong; Rabie, A B M; Wong, R W K

    2014-01-01

    Laser technique now is widely applied in orthodontic treatment and proved to have many benefits. Soft tissue lasers can be used to perform gingivectomy, frenectomy and surgical exposure of tooth with less bleeding and swelling, improved precision, reduced pain and less wound contraction. Other laser applications include enamel etching and bonding and bracket debonding. Lower level lasers have the potential effects of pain control and accelerating tooth movement. Clinicians must be aware of the safety issues and risks associated with laser and receive proper training before the laser treatment is started.

  6. Laser technology and applications in gynaecology.

    PubMed

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  7. Laser Development for Laser Fusion Applications

    DTIC Science & Technology

    1978-09-01

    the Z-80 microprocessor to process the fringe pattern, incorporating items 2 and 3 above. Currently, the Reticon data can be read and processed...COLLIMATING TELESCOPE RETICON PHOTODIODE ARRAY ADC ^PROCESSOR SUBSYSTEM FIZEAU COMPENSATING WEDGE PLATE TO WAVELENGTH CONTROLLER Fig. 59...incidence was ~4 degrees, with the Reticon array 30 cm from the wedge. The light source was a single wavelength, from a cw HeNe laser, so no

  8. Microwave modeling of laser plasma interactions. Final report

    SciTech Connect

    Not Available

    1983-08-01

    For a large laser fusion targets and nanosecond pulse lengths, stimulated Brillouin scattering (SBS) and self-focusing are expected to be significant problems. The goal of the contractual effort was to examine certain aspects of these physical phenomena in a wavelength regime (lambda approx.5 cm) more amenable to detailed diagnostics than that characteristic of laser fusion (lambda approx.1 micron). The effort was to include the design, fabrication and operation of a suitable experimental apparatus. In addition, collaboration with Dr. Neville Luhmann and his associates at UCLA and with Dr. Curt Randall of LLNL, on analysis and modelling of the UCLA experiments was continued. Design and fabrication of the TRW experiment is described under ''Experiment Design'' and ''Experimental Apparatus''. The design goals for the key elements of the experimental apparatus were met, but final integration and operation of the experiment was not accomplished. Some theoretical considerations on the interaction between Stimulated Brillouin Scattering and Self-Focusing are also presented.

  9. Free-electron lasers. Status and applications.

    PubMed

    O'Shea, P G; Freund, H P

    2001-06-08

    A free-electron laser consists of an electron beam propagating through a periodic magnetic field. Today such lasers are used for research in materials science, chemical technology, biophysical science, medical applications, surface studies, and solid-state physics. Free-electron lasers with higher average power and shorter wavelengths are under development. Future applications range from industrial processing of materials to light sources for soft and hard x-rays.

  10. Science and Math Applications. Final Report.

    ERIC Educational Resources Information Center

    Lauver, Lori A.

    This document includes a final report and curriculum guide from a project to develop a Science and Math Applications curriculum that related science and math to everyday life and promoted confidence in adult basic education students in their science and math skills. The report describes how the curriculum used traditional teaching methods to teach…

  11. The SMAT fiber laser for industrial applications

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinghui; Wei, Xi; Xu, Jun

    2017-02-01

    With the increased adoption of high power fiber laser for various industrial applications, the downtime and the reliability of fiber lasers become more and more important. Here we present our approach toward a more reliable and more intelligent laser source for industrial applications: the SMAT fiber laser with the extensive sensor network and multi-level protection mechanism, the mobile connection and the mobile App, and the Smart Cloud. The proposed framework is the first IoT (Internet of Things) approach integrated in an industrial laser not only prolongs the reliability of an industrial laser but open up enormous potential for value-adding services by gathering and analyzing the Big data from the connected SMAT lasers.

  12. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  13. Laser-induced periodic surface structures, modeling, experiments, and applications

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Skolski, J. Z. P.; Oboňa, J. Vincenc; Ocelík, V.; de Hosson, J. T. M.; Huis in't Veld, A. J.

    2014-03-01

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures, or ripples, with amplitudes and periodicity in the sub-micrometer range. A summary of experimentally observed LIPSSs is presented, as well as our model explaining their possible origin. Linearly polarized continuous wave (cw) or pulsed laser light, at normal incidence, can produce LIPSSs with a periodicity close to the laser wavelength, and direction orthogonal to the polarization on the surface of the material. Ripples with a periodicity (much) smaller than the laser wavelength develop when applying laser pulses with ultra-short durations in the femtosecond and picosecond regime. The direction of these ripples is either parallel or orthogonal to the polarization direction. Finally, when applying numerous pulses, structures with periodicity larger than the laser wavelength can form, which are referred to as "grooves". The physical origin of LIPSSs is still under debate. The strong correlation of the ripple periodicity to the laser wavelength, suggests that their formation can be explained by an electromagnetic approach. Recent results from a numerical electromagnetic model, predicting the spatially modulated absorbed laser energy, are discussed. This model can explain the origin of several characteristics of LIPSSs. Finally, applications of LIPSSs will be discussed.

  14. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  15. Applications of excimer laser in nanofabrication

    NASA Astrophysics Data System (ADS)

    Xia, Qiangfei; Chou, Stephen Y.

    2010-01-01

    This paper addresses novel applications of an excimer laser (308 nm wavelength, 20 ns pulse duration) in nanofabrication. Specifically, laser assisted nanoimprint lithography (LAN), self-perfection by liquefaction (SPEL), fabrication of metal nanoparticle arrays, and the fabrication of sub-10-nm nanofluidic channels are covered. In LAN, a polymeric resist is melted by the laser pulse, and then imprinted with a fused silica mold within 200 ns. LAN has been demonstrated in patterning various polymer nanostructures on different substrates with high fidelity and uniformity, and negligible heat effect on both the mold and the substrate. SPEL is a novel technology that uses selective melting to remove fabrication defects in nanostructures post fabrication. Depending on the boundary conditions, SPEL is categorized into three basic types: Open-SPEL that takes place with surface open, Capped-SPEL where a cap plate holds the top surface of the nanostructures and Guided-SPEL where a plate held a distance above the structure guides the molten materials to rise and form a new structure with better profile. Using SPEL (in less than 200 ns), we have achieved a reduction of line edge roughness (LER) of Cr lines to 1.5 nm (3 σ) (560% improvement from the original), which is well below what the previous technologies permit, and a dramatic increase of the aspect ratio of a nanostructure. We have used SPEL to make sub-25-nm smooth cylindrical NIL pillar molds and smoothing Si waveguides. Excimer laser is also used to make metal nanoparticles. Monolayers of particles are fabricated on various substrates (silicon, fused silica and plastics) by exposing thin metal films to a single laser pulse. Periodic nanoparticle arrays have been fabricated by fragmentation of metal grating lines. The periodicity of these nanoparticles can be regulated by surface topography such as shallow trenches. Finally, an excimer laser pulse has been used to melt the top portion of 1D and 2D Si gratings to seal

  16. Safe laser application requires more than laser safety

    NASA Astrophysics Data System (ADS)

    Frevel, A.; Steffensen, B.; Vassie, L.

    1995-02-01

    An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.

  17. Chirped Laser Dispersion Spectroscopy: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Plant, Genevieve B.

    The subject of this thesis is the fundamentals, implementation, and applications of Chirped Laser Dispersion Spectroscopy (CLaDS), an alternative dispersion spectroscopy technique that aims to overcome some limitations of absorption-based sensing. CLaDS preserves many of the benefits of dispersion sensing, namely baseline-free operation, immunity to received intensity, and linearity with sample concentration, and is fairly easy to implement without the need for stabilized interferometers, mode-locked lasers, and complex optical configurations required by many other dispersion-based sensors. First an introduction to CLaDS and a derivation of the spectroscopic signals are provided, highlighting fundamental similarities and differences to absorption-based sensing. Next the fundamental limit of CLaDS is investigated through analysis of the shot-noise limited performance under ideal operating conditions. This in turn allows for a theoretical and direct comparison to the shot-noise-limited performance of direct laser absorption spectroscopy (DLAS). This investigation shows that when full spectral scan fitting of realistic unknown parameters for each technique is used, both techniques demonstrate the same efficiency of parameter extraction. Following this theoretical investigation of ideal CLaDS performance, the technical details, methods of implementation, and component-introduced limitations of real-world CLaDS systems are discussed. Also included is a discussion of the first demonstration of an optical heterodyne enhanced CLaDS technique (HE-CLaDS). To overcome some of the technical limitations imposed by system instability, a modulation based technique (CM-CLaDS) was developed; the theory, optimization and noise characteristics of which are detailed. Finally, several applications of CLaDS are provided. These include atmospheric sensing, distributed sensor networks, and fiber dispersion characterization, all of which aim at demonstrating the technical advantages of the

  18. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  19. Surgical application of lasers. 2nd edition

    SciTech Connect

    Dixon, J.A.

    1987-01-01

    Lasers have been successfully used in several new clinical areas such as cardiovascular, orthopedic, and pulmonary surgery as well as in specialties covered in the first edition including otorhinolaryngology, dermatology and plastic surgery, gastroenterology, and urology. These advances are all discussed in this text. Introductory chapters cover the background of laser surgery, techniques and instrumentation and safety procedures. The remaining chapters cover lasers in specific fields such as endoscopic surgery, gynecology, neurosurgery and many more. The final chapters provide an overview of photodynamic therapy and the future of laser surgery.

  20. Laser safety aspects for medical applications

    NASA Astrophysics Data System (ADS)

    Gabay, Shimon

    2003-12-01

    Most applications of lasers in medicine are based on the producing of a controlled thermal damage into a preferably tissue location. Laser safety deals with non controlled damage (thermal or other) that could be randomly produced into a non preferable tissue locations. This kind of damage is not allowed and the laser safety material is designed to provide the user with a knowledge and with sufficient safety instructions and means to prevent such damage. Following the laser safety instructions is especially important for the medical applications because in these applications the laser beam is brought in a close proximity to the patient's body and non-desired damage can be easily produced. Most medical lasers are classified as Class 4 laser products, the highest hazard class. Direct laser beam of class 4 is capable to produce skin burns and to ignite flammable materials, and even its scattered beam may produce severe eye damage. The paper presents the nature of the skin and eye damage for different spectral range, and the state of the art rules in preventing such damage. The safety means that should be implemented in, and around, the laser clinique and in the laser surgery room will also be highlighted.

  1. Current status of laser applications in urology

    NASA Astrophysics Data System (ADS)

    Knipper, Ansgar; Thomas, Stephen; Durek, C.; Jocham, Dieter

    1993-05-01

    The overall development of laser use in urology is recessing. The reasons are the refinement of methods of radical surgery and the continuing development of alternative technologies involving electric current. Taking the cost factor into account, are lasers still opportune in medicine? The answer is definitely yes. Cost reduction in medical practice without quality loss is only possible with effective methods of minimally invasive surgery. Continuing investigation of cutting, welding, coagulating and ablating instruments is justified. Competition of lasers to other technologies can only be beneficial to the cause. But where are the highlights of laser applications? The unsurpassed utilization of optical properties of lasers lie in the concept of photodynamic therapies and in optical feedback mechanisms for laser applications. The combination of lasers with three dimensional visualization of the treatment area by ultrasound (TULIP-procedure for benign prostatic hyperplasia) is a novel approach in laser application. The further development of these treatment modalities will reveal the true benefit of laser technology in urological applications.

  2. Short Pulse Laser Applications Design

    SciTech Connect

    Town, R J; Clark, D S; Kemp, A J; Lasinski, B F; Tabak, M

    2008-02-11

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI

  3. Laser applications in ophthalmology: overview

    NASA Astrophysics Data System (ADS)

    Soederberg, Per G.

    1992-03-01

    In 1961, one year after its invention, the laser was used for experimental photocoagulation in animals. In 1963 it was tried for treatment of human eyes. Due to the fact that the optical media in the eye are transmissible to light, the laser offers the unique possibility of measuring and manipulating within a very strict localization without opening the eye. The properties of laser light are increasingly exploited for diagnostics in ophthalmic disease. The introduction of the laser as a tool in ophthalmology has revolutionized ophthalmic treatment. Unfortunately, it has been pointed out in international peace meetings that the biological effect evoked by lasers can also be used for intentional destruction of the vision of enemy soldiers. To prevent such an abuse of lasers against eyes, a strong formal international anti-laser weapon movement has been initiated.

  4. Pathophysiological aspects of laser application

    NASA Astrophysics Data System (ADS)

    Egorova, Alla B.; Stavitskaya, Ekaterina Y.; Salmin, Vladimir V.; Fedyukovich, Lyudmila V.; Mikhutkina, S. V.; Shapran, M. V.; Ivanov, V. V.; Provorov, Alexander S.

    1996-04-01

    The rapid growth of electrooptics and laser technology has increased the possibility of human exposure to optical radiation and concern about health effects. The much attention has to be focused on the creation of the safety program that assures the safe use of lasers taking into account the possible side effects of laser therapy. In order to investigate the imunotropic effect of lasers the experimental model which was close to the therapeutic modes has been used for IR laser (the wavelength 890 nm) and He-Ne laser (the wavelength 633 nm). The immune system underwent changes testifying about the breaches in the processes of maturation and migration of the lymphoid cells, also the alteration of receptors as a sign of the membrane damaging effect of lasers was seen.

  5. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  6. Advantages of laser application in endoscopic surgery.

    PubMed

    Hunter, J G

    1993-08-01

    This article discusses the various kinds of laser therapy used in endoscopic surgery and their respective indications. Following a brief introduction into the basics of laser-tissue-interaction it is shown how less expensive treatment modalities have narrowed the range of laser applications to very specific purposes. In upper gastrointestinal bleeding argon and KTP lasers are mainly used for treatment of pigmented gut lesions. In malignant disease the combined use of balloon dilatation and laser irradiation has proved efficient in restoring patency to the gastrointestinal tract. Argon and CO2 lasers are used by gynaecologists for ablation of endometrioma. In an assessment of future prospects it is concluded that the lasting value of the laser lies in its ability to selectively destroy pigmented pathologic tissues.

  7. Laser light and tissue: biophysical aspects of medical laser application

    NASA Astrophysics Data System (ADS)

    Frank, Klaus H.

    1990-09-01

    In order to determine the interaction between laser light and biological tissues quantitatively the physical parameters of the biological objects have to be related to the parameters of the laser light. The degree and extent of the effect depend on the one hand on the properties of the tissue which are determined by the structure water content and blood circulation and on the other hand on the geometry of the laser beam and the wavelength. Depending on the duration of the laser irradiation on tissue and on the laser irradiance in surface or volume interaction three types of tissue interactions can be distinguished: photochemical effects photothermal effects and photoionizing effects. With extremely long interaction times and low power densities photo chemical transformation occurs by absorption of light with no primary heating of the tissue. With decreasing interaction time and higher power density the transition to photothermally induced effects begins. The early and main surgical applications for lasers are based on the conversion of laser light into heat. This thermal effect is broadly applied in surgery for tissue removal and tissue coagulation with the sealing of vessels and lymphatics as well as for tissue7weldig. When exceeding a power density of 10 W/cm nonlinear effects result. The high irradiance generates strong electric fields which lead to a dissociation or ionization of the material involved. Thus laser light is converted into kinetic energy. From

  8. Laser applications in advanced chip packaging

    NASA Astrophysics Data System (ADS)

    Müller, Dirk; Held, Andrew; Pätzel, Rainer; Clark, Dave; van Nunen, Joris

    2016-03-01

    While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry's push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.

  9. Advanced photoinjector laser and microwave technologies. Final report

    SciTech Connect

    Hartemann, F.V.; Luhmann, N.C. Jr.; Talley, W.K.

    1997-01-01

    An overview of the design parameters of the compact, high gradient, high luminosity X-band (8.568 GHz) photoinjector facility currently being developed as a collaborative effort between LLNL and UC Davis, is followed by a more detailed description of each of its major subsystems : X-band rf gun, GHz repetition rate synchronously modelocked AlGaAs quantum well laser oscillator, and 8-pass Ti: Al{sub 2}O{sub 3} chirped pulse laser amplifier. The photoinjector uses a high quantum efficiency ({approx}5%) Cs{sub 2}Te photocathode, and will be capable of producing high charge (> 1 nC), relativistic (5 MeV), ultrashort (< 1 ps) electron bunches at 2.142 GHz repetition rate in burst mode (100 photoelectron bunches). Design studies indicate that a normalized rms transverse emittance {epsilon}{sub n} = 0.75 {pi} mm-mrad is possible at 0.1 nC charge, while 2.5 {pi} mm-mrad can be obtained at 1 nC. A complete status report of our progress in the development and implementation of the design discussed herein is then given, together with initial experimental data concerning the performance of the 15 MW SLAC X-band klystron amplifier. Finally, the phase noise and jitter characteristics of the laser and rf systems of the high gradient X-band photoinjector have been measured experimentally. In this case, the laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT. A comparison between the TWT phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q cavity resonant structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a magnetron or a cross-field amplifier.

  10. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  11. Final report for miniature laser ignited bellows motor

    SciTech Connect

    Renfro, S.L.

    1994-02-18

    A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.

  12. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  13. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  14. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  15. GAS LASERS FOR STRONG-FIELD APPLICATIONS.

    SciTech Connect

    POGORELSKY,I.V.

    2004-09-15

    Atomic-, molecular- and excimer-gas lasers employ variety of pumping schemes including electric discharge, optical, or chemical reactions and cover a broad spectral range from UV to far-IR. Several types of gas lasers can produce multi-kilojoule pulses and kilowatts of average power. Among them, excimer- and high-pressure molecular lasers have sufficient bandwidth for generating pico- and femtosecond pulses. Projects are underway and prospects are opening up to bring ultrafast gas laser technology to the front lines of advanced accelerator applications.

  16. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  17. Gas Lasers for Strong Field Applications

    SciTech Connect

    Pogorelsky, I.V.

    2004-12-07

    Atomic, molecular and excimer gas lasers employ variety of pumping schemes including electric discharge, optical, or chemical reactions and cover a broad spectral range from UV to far-IR. Several types of gas lasers are capable to produce multi-kilojoule pulses and kilowatts of average power. Among them, excimer and high-pressure molecular lasers have sufficient bandwidth for producing pico- and femtosecond pulses. Projects are under way and prospects are open to bring ultra-fast gas laser technology to the front lines of the advanced accelerator applications.

  18. Laser Application In Photobiology And Photomedicine

    NASA Astrophysics Data System (ADS)

    Anders, Angelika

    1981-05-01

    Applications of lasers in photobiology and photomedicine will be reviewed; for example, genetic processes, photosynthesis, vision, spectroscopy of skin, phototherapy and photochemotherapy of dermatosis and tumors are considered. New results and future possibilities are discussed.

  19. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  20. Application of Laser Irradiation for Restorative Treatments

    PubMed Central

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes. PMID:27990188

  1. Laser power beaming for satellite applications

    SciTech Connect

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  2. Laser-based nanoengineering of surface topographies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Schlie, Sabrina; Fadeeva, Elena; Koroleva, Anastasia; Ovsianikov, Aleksandr; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris. N.

    2011-04-01

    In this study femtosecond laser systems were used for nanoengineering of special surface topographies in silicon and titanium. Besides the control of feature sizes, we demonstrated that laser structuring caused changes in material wettability due to a reduced surface contact area. These laser-engineered topographies were tested for their capability to control cellular behavior of human fibroblasts, SH-SY5Y neuroblastoma cells, and MG-63 osteoblasts. We found that fibroblasts reduced cell growth on the structures, while the other cell types proliferated at the same rate. These findings make laser-surface structuring very attractive for biomedical applications. Finally, to explain the results the correlation between topography and the biophysics of cellular adhesion, which is the key step of selective cell control, is discussed.

  3. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  4. Lasers and their therapeutic application in chiropractic

    PubMed Central

    Fitz-Ritson, Don

    2001-01-01

    The purpose of this paper is to review some of the applications of laser therapy and its reported effects on tissue healing, pain relief and other effects. Several musculoskeletal and low back pain studies are highlighted to show the efficacy of laser therapy and its' applicability as an adjunct to chiropractic treatment. Information is also presented which highlights the necessary information the clinician should be aware of in order to develop specific protocols for musculoskeletal pathologies. The parameters, which are now available on lasers, include power, frequency, duty cycle and cadence. When these are manipulated, different effects are achieved on tissues, which may enhance chiropractic treatment. Imagesp34-a

  5. Applications of spaceborne laser ranger on EOS

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Cohen, Steven C.

    1988-01-01

    An account is given of the design concept and potential applications in science and engineering of the spaceborne laser ranging and altimeter apparatus employed by the Geodynamics Laser Ranging System; this is scheduled for 1997 launch as part of the multiple-satellite Earth Observing System. In the retrograding mode for geodynamics, the system will use a Nd:YAG laser's green and UV output for distance determination to ground retroreflectors. Engineering applications encompass land management and long-term ground stability studies relevant to nuclear power plant, pipeline, and aqueduct locations.

  6. Polymers in lens design for laser applications

    NASA Astrophysics Data System (ADS)

    Kasarova, Stefka N.; Sultanova, Nina G.; Nikolov, Ivan D.

    2015-01-01

    Successful application of optical materials in lens design is based on the knowledge of their refractive and dispersive properties in the considered spectral region. We have obtained precise refractometric data of various optical polymers in the visible and near-infrared area. Different refractive index measuring techniques have been used. On base of the detailed study of refractive, dispersive, thermal and other important material characteristics of polymers, optical design of all-plastic systems for laser applications is proposed: a laser expander for 532 nm emission wavelength and a focusing microlens intended for reading/recording laser heads of DVD discs at 650 nm. Geometric and wave aberrations are computed and minimised.

  7. Applications of spaceborne laser ranger on EOS

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Cohen, Steven C.

    1988-01-01

    An account is given of the design concept and potential applications in science and engineering of the spaceborne laser ranging and altimeter apparatus employed by the Geodynamics Laser Ranging System; this is scheduled for 1997 launch as part of the multiple-satellite Earth Observing System. In the retrograding mode for geodynamics, the system will use a Nd:YAG laser's green and UV output for distance determination to ground retroreflectors. Engineering applications encompass land management and long-term ground stability studies relevant to nuclear power plant, pipeline, and aqueduct locations.

  8. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  9. Applications of the Excimer Laser: A Review.

    PubMed

    Beggs, Sarah; Short, Jack; Rengifo-Pardo, Monica; Ehrlich, Alison

    2015-11-01

    The 308-nm excimer laser has been approved by the Food and Drug Administration for the treatment of psoriasis and vitiligo. Its ability to treat localized areas has led to many studies determining its potential in the treatment of focal diseases with inflammation or hypopigmentation. To review the different applications of the 308-nm excimer laser for treating dermatologic conditions. An extensive literature review was conducted by searching PubMed, MEDLINE, and ClinicalKey to find articles pertaining to dermatologic conditions treated with the 308-nm excimer laser. Articles published that contributed to new applications of the excimer laser were included, as well as initial studies utilizing the excimer laser. The outcomes and results were compiled for different dermatologic conditions treated with the excimer laser. The 308-nm excimer laser has a wide range of uses for focal inflammatory and hypopigmented conditions. Treatment is generally well tolerated, with few adverse reactions. Larger studies and studies evaluating the long-term effects of the 308-nm excimer laser are needed.

  10. Laser application for hypertrophic rhinitis

    NASA Astrophysics Data System (ADS)

    Inouye, Tetsuzo; Tanabe, Tetsuya; Nakanoboh, Manabu; Ogura, Masami

    1995-05-01

    The CO2 and KTP/532 lasers have been used in the treatment of an allergic and hypertrophic rhinitis for the past several years. As we know, the laser enables a surgeon to perform the operation with minimum hemorrhage and minimized pain, during and after the procedure. Additionally many of these operations can be performed under local anesthesia instead of general anesthesia, on an outpatient basis. The laser is used to irradiate the mucous membranes of the inferior turbinates. Vaporization and cutting is easily done. Post operative management of the local operated area is easy. The advantages of laser surgery over regular surgical techniques are supreme for intranasal operations when performed under local anesthesia.

  11. Laser-light delivery microtools based on laser technology: design, fabrication, and applications

    NASA Astrophysics Data System (ADS)

    Veiko, Vadim P.; Voznesensky, Nikolay B.

    2001-06-01

    A set of new laser-light delivery microtools (LDM) based on laser technology is investigated and discussed. Wide application of LDM in different fields of science, medicine, biology, industry and information processing is considered. Fiber optical networks in medical diagnostics and technical, civil engineering and other technological areas are discussed. The general approach based on electromagnetic field equations-transformation for all range of dimensions (mini-, micro and nanodomain) is given. Laser-assisted technology for drawing-out and for microstructuring optical tools is investigated, high-speed movie has been applied to study the process and compared with theoretical description. Finally a number of fibers and micropipettes-based medical tools and SNOM-tips has been fabricated and tested. Applications of some tools for medical operations (thermocoagulation), protein rasters preparing, SNOM-microscopy investigation have been demonstrated.

  12. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    SciTech Connect

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-29

    effective means of achieving adequate resolution in the crossing region while avoiding the expense of using the same fine grid everywhere, including the region between the beams where no LPI occurs. We applied ALPS to a suite of problems modeling crossed beam experiments performed on the Omega laser at the University of Rochester. Our simulations contributed to the theoretical interpretation of these experiments, which was recently published in Physical Review Letters [4]. This project has advanced the Laboratory's computational capabilities in the area of AMR algorithms and their application to LPI problems. The knowledge gained and software developed will contribute to the computational tools available for use in the design and interpretation of experiments to be performed at the National Ignition Facility (NIF) in support of Laboratory missions in stockpile stewardship, energy research and high energy density science.

  13. Laser scatter in clinical applications

    NASA Astrophysics Data System (ADS)

    Luther, Ed; Geddie, William

    2008-02-01

    Brightfield Laser Scanning Imaging (BLSI) is available on Laser Scanning Cytometers (LSCs) from CompuCyte Corporation. Briefly, digitation of photodetector outputs is coordinated with the combined motions of a small diameter (typically 2 to 10 microns) laser beam scanning a specimen in the Y direction (directed by a galvanometer-driven scanning mirror) and the microscope stage motion in the X direction. The output measurements are assembled into a two-dimensional array to provide a "non-real" digital image, where each pixel value reports the amount of laser-scattered light that is obtained when the laser beam is centered on that location. Depending on the detector positions, these images are analogous to Differential Interference Contrast or Phase Contrast microscopy. We report the incorporation of the new laser scattering capabilities into the workflow of a high-volume clinical cytology laboratory at University Health Network, Toronto, Canada. The laboratory has been employing LSC technology since 2003 for immunophenotypic fluorescence analysis of approximately 1200 cytological specimens per year, using the Clatch methodology. The new BLSI component allows visualization of cellular morphology at higher resolution levels than is possible with standard brightfield microscopic evaluation of unstained cells. BLSI is incorporated into the triage phase, where evaluation of unstained samples is combined with fluorescence evaluation to obtain specimen background levels. Technical details of the imaging methodology will be presented, as well as illustrative examples from current studies and comparisons to detailed, but obscure, historical studies of cytology specimens based on phase contrast microscopy.

  14. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  15. Fiber laser performance in industrial applications

    NASA Astrophysics Data System (ADS)

    McCulloch, S.; Hassey, A.; Harrison, P.

    2013-02-01

    Fiber lasers are competing with the traditional CO2 Laser, Plasma, Water Jet and Press Punch technology. This paper concentrates on the drivers behind the progress that <=500W CW fiber lasers have made in the thin metal cutting and welding market. Thin metal cutting in this case is defined as below 4mm and the dominant technology has been the Press Punch for higher quality, large volume components and Plasma for lower quality, small quantities. Up until the fiber lasers were commercially available many machine manufacturers were deterred from incorporating lasers due to the technical barriers posed by the lasers available at that time. In particular fiber laser requires no maintenance does not necessitate a beam path to be aligned and kept free of contaminant so have encouraged many traditionally non-laser machine builders to integrate fiber sources into a variety of applications and push the performance envelope. All of the components to build a fibre laser cutting or welding system are now available "off-the shelf" which is even allowing end users to design and build their own systems directly in production environments.

  16. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  17. Laser applications in pediatric airway surgery

    NASA Astrophysics Data System (ADS)

    Karamzadeh, Amir M.; Ahuja, Gurpreet S.; Nguyen, John D.; Crumley, Roger

    2003-06-01

    The smaller anatomy and limited access to instrumentation pose a challenge to the pediatric airway surgeon. The enhanced precision and ability to photocoagulate tissue while operating with the laser enhances the surgeon"s ability to successfully treat unique pediatric conditions such subglottic hemangiomas, congenital cysts, respiratory papillomatosis, and laryngeal or tracheal stenosis. Due to its shallow tissue penetration and thermal effect, the carbon dioxide (CO2) laser is generally considered the laser of choice for pediatric airway applications. The potential for increased scarring and damage to underlying tissue caused by the greater penetration depth and thermal effect of the Nd:YAG and KTP lasers preclude their use in this population. In this review, we will describe the specific advantages of using lasers in airway surgery, the current technology and where the current technology is deficient.

  18. 15 CFR 301.7 - Final disposition of an application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.7 Final disposition of an application. (a) Disposition of an application shall be final when 20 days have elapsed after publication of the...

  19. Metal Vapour Lasers: Physics, Engineering and Applications

    NASA Astrophysics Data System (ADS)

    Little, Christopher E.

    1999-03-01

    Metal Vapour Lasers Christopher E. Little University of St Andrews, St Andrews, Scotland Since the first successful demonstration of a metal vapour laser (MVL) in 1962, this class of laser has become widely used in a broad range of fields including precision materials processing, isotope separation and medicine. The MVLs that are used today have a range of impressive characteristics that are not readily available using other technologies. In particular, the combination of high average output powers, pulse recurrence frequencies and beam quality available from green/yellow Cu vapour lasers (CVLs) and Cu bromide lasers, coupled with the high-quality, multiwatt ultraviolet (265-289 nm) radiation that can be produced using simple nonlinear optical techniques, means that Cu lasers will continue to be important for many years. Metal Vapour Lasers covers all the most commercially important and scientifically interesting pulsed and continuous wave (CW) gas-discharge MVLs, and includes device histories, operating characteristics, engineering, kinetics, commercial exploitation and applications. Short descriptions of gas discharges and excitation techniques make this volume self-consistent. A comprehensive bibliography is also provided. The greater part of this book is devoted to CVLs and their variants, including new sealed-off, high-power 'kinetically enhanced' CVLs and Cu bromide lasers. However, many other self-terminating MVLs are also discussed, including the red AuVL, green/infrared MnVL and infrared BaVL. Pulsed, high-gain, high average power lasers in the UV/violet (373.7, 430.5 nm) spectral regions are represented by Sr¯+ and Ca¯+ discharge-afterglow recombination lasers. The most commercially successful of the MVLs - the CW, UV/blue cataphoretic He-Cd¯+ ion laser - is described. Hollow cathode lasers are represented in two guises: 'white light' (blue/green/red) He-Cd¯+ ion lasers and UV/infrared Ne/He-Cu¯+ ion lasers. This unique volume is an

  20. Solar driven lasers for power satellite applications

    NASA Technical Reports Server (NTRS)

    Taussio, R.; Cassady, P.; Klosterman, E.

    1980-01-01

    The technological feasibility of using multimagawatt lasers for space power transmission is discussed. Candidate lasers include electric discharge lasers, direct optically pumped lasers, and free electron lasers.

  1. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  2. Forensic Applications Of Copper Laser Technology

    NASA Astrophysics Data System (ADS)

    German, Edward R.

    1987-04-01

    Copper vapor lasers are being used in forensic applications at more than thirty regional, state and national level forensic science laboratories (crime labs) in the United States, Israel and Japan. These high gain lasing medium systems provide desirable operational and maintenance features. The green line produced by copper vapor lasers allows use of latent fingerprint inherent and chemically induced luminescence techniques developed for argon ion lasers. The yellow line has developed latent fingerprints which would not luminesce at blue-green wavelengths, and is better suited for some forensic examinations such as ink differentiation involving forgeries and document alterations.

  3. Supercontinuum fiber lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Devine, Adam; Hooper, Lucy; Clowes, John

    2016-05-01

    In this talk we give an overview of recent advances in the development of high power supercontinuum fiber lasers with powers exceeding 50W and spectral brightness of tens of mW/nm. We also discuss the fundamental limitations of power scaling and spectral broadening and review the existing and emerging applications of this unique light source which combines the broadband properties of a light bulb with the spatial properties of a laser.

  4. Space Applications Industrial Laser System (SAILS)

    NASA Astrophysics Data System (ADS)

    McCay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-10-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  5. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  6. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  7. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  8. Solar pumped lasers and their applications

    NASA Astrophysics Data System (ADS)

    Lee, Ja H.

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  9. Biomedical applications of laser photoionization

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.

    1991-07-01

    Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

  10. 2μm fiber laser sources and their applications

    NASA Astrophysics Data System (ADS)

    Geng, Jihong; Wang, Qing; Jiang, Shibin

    2011-09-01

    Mid-infrared fiber laser sources have attracted a lot of interest in space and defense applications. We review our latest developments of various fiber laser sources operating near 2μm based on Tm3+ and Ho3+ ions, which include singlefrequency CW laser sources, Q-switched laser sources, mode-locked laser sources. Potential applications of these fiber laser sources are also briefly discussed.

  11. Atmospheric applications of high-energy lasers

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2005-03-01

    It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, many still remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionarey history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.

  12. CO2 laser technology for space applications

    NASA Astrophysics Data System (ADS)

    Reiland, W.; Wittig, M.

    1987-01-01

    The paper summarizes the current status of CO2 laser technology development and emphasizes the potential of emerging CO2 hardware components and subsystems for future optical space mission scenarios. Free space optical communications, navigation, lidar applications, and scientific missions are among the space application scenarios considered. It is noted that ESA, NASA, and Intelsat have selected the direct detection GaAlAs system for near-term preoperational applications of medium link distances and data rates.

  13. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  14. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.

  15. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  16. Laser applications in cosmetic surgery.

    PubMed

    Toregard, B M

    1990-01-01

    The CO2-laser has proved to be an effective tool in the exciting field of cosmetic surgery. The ability to use the CO2-laserbeam either for vapourization or incision and its haemostatic effect makes it outstanding in many conditions in comparison with conventional methods. Teleangiectasias, portwine stains, decorative tattoos, scars, ageing skin and blepharoplasties are discussed. To obtain good results, experience, theoretical and practical understanding of the technique is a must, otherwise results will reflect poorly on the method.

  17. High energy laser demonstrators for defense applications

    NASA Astrophysics Data System (ADS)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  18. Ophthalmic applications of femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Kurtz, Ron M.; Spooner, Greg J. R.; Sletten, Karin R.; Yen, Kimberly G.; Sayegh, Samir I.; Loesel, Frieder H.; Horvath, Christopher; Liu, HsiaoHua; Elner, Victor; Cabrera, Delia; Muenier, Marie-Helene; Sacks, Zachary S.; Juhasz, Tibor; Miller, Doug L.; Williams, A. R.

    1999-06-01

    We investigated three potential femtosecond laser ophthalmic procedures: intrastromal refractive surgery, transcleral photodisruptive glaucoma surgery and photodisruptive ultrasonic lens surgery. A highly reliable, all-solid-state system was used to investigate tissue effects and demonstrate clinical practicality. Compared with longer duration pulses, femtosecond laser-tissue interactions are characterized by smaller and more deterministic photodisruptive energy thresholds, smaller shock wave and cavitation bubble sizes. Scanning a 5 (mu) spot below the target tissue surface produced contiguous tissue effects. Various scanning patterns were used to evaluate the efficacy, safety, and stability of three intrastromal refractive procedures in animal eyes: corneal flap cutting, keratomileusis, and intrastromal vision correction (IVC). Superior dissection and surface quality results were obtained for the lamellar procedures. IVC in rabbits revealed consistent, stable pachymetric changes, without significant inflammation or corneal transparency degradation. Transcleral photodisruption was evaluated as a noninvasive method for creating partial thickness scleral channels to reduce elevated intraocular pressure associated with glaucoma. Photodisruption at the internal scleral surface was demonstrated by focusing through tissue in vitro without collateral damage. Femtosecond photodisruptions nucleated ultrasonically driven cavitation to demonstrate non-invasive destruction of in vitro lens tissue. We conclude that femtosecond lasers may enable practical novel ophthalmic procedures, offering advantages over current techniques.

  19. Laser application in tracheobronchial tumors

    NASA Astrophysics Data System (ADS)

    Rau, B. Krishna; Krishna, Sharon

    2004-09-01

    Ninety three patients with obstructing tracheobronchial tumors were treated with Neodymium: Yttrium - Aluminum - Garnet (Nd:YAG) laser photocoagulation over a period of six years. There were sixty seven Males and 26 Females with a mean age of 44.3 years (range 6- 79 years). 21 benign and 72 malignant lesions were treated with a total 212 sessions of laser photocoagulation (mean 2.4 sessions). The anatomical distribution of lesions were as follows; larynx 9 (three benign and 6 malignant) trachea 39 (27 benign and 12 malignant) left main bronchus 27 (14 malignant) right main bronchus 24 (14 malignant) and vocal cords - 9 (three malignant). There were 21 patients with squamous cell carcinoma, two adenocarcinomas, one adenoid cystic carcinoma, 7 cases of locally infiltrating tumors from thyroid and esophagus, 6 cases of carcinoid tumor and 16 benign lesions. Twenty one patients had a tracheostomy tube in place when treatment was started. Eighteen of the 21 patients with tracheostomy were weaned off the tube in a mean of 5.5 days from the start of treatment. Lumen was restored in 31 (79.4%) patients. In the other eight (20.6%), lumen was achieved, but not sustained. Complications included bleeding in three cases which were managed conservatively, two cases of pneumothorax, and four cases of bronchospasm. There were six deaths during the follow up but none attributable to the procedure. Laser photocoagulation offered effective treatment in the majority of patients with obstructing tracheobronchial tumors, with acceptable morbidity.

  20. Laser pulse peak holding circuit for low cost laser tracking applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, He; Zhang, Xiangjin; Chen, Yong

    2016-10-01

    In the low cost laser tracking applications, the width of the laser echo pulses received by four-quadrant photodetector from an illuminated target are narrow, and are only a few hundred or dozens of nanoseconds. In order to obtain the peak of these narrow laser pulses of nS level, by using peak holding technique, a simplified transconductance peak holding circuit model is constructed, taking into account of low cost applications with large number of requirements. The key parameters of the transconductance peak holding circuit such as response time, droop rate and bandwidth are analyzed for narrow laser pulse signals. The transconductance peak holding circuit is designed using a low-cost integrated chip OPA615, then is simulated by the software PSpice tools. Finally, a circuit board is manufactured for further tests. The results show that: the bandwidth of the circuit is about 76.4 MHz, response time is about 7 ns, and droop rate is about 5.7 mV/μs. The peaks of narrow laser pulses are effectively acquired, meeting the needs for the subsequent low speed and low cost A/D converter.

  1. Current interventional coronary applications of excimer laser.

    PubMed

    Fracassi, Francesco; Roberto, Marco; Niccoli, Giampaolo

    2013-07-01

    Excimer laser utilization as an adjunctive device for percutaneous coronary intervention has increased in the last few years. Many technical advancements have led to better results in terms of efficacy and safety with a low complication rate. In particular, excimer laser for thrombus-containing lesions is able to achieve rapid thrombus removal and plaque debulking along with subsequent facilitation of stent angioplasty and a low rate of microvascular obstruction. Other indications for laser angioplasty embrace in-stent restenosis, chronic total occlusions, saphenous vein graft lesions and new potential applications, such as stent expansion optimization and bifurcation lesions. As for other medical devices, however, excimer laser should be tested in future randomized studies against current standard of therapy in order to better define its role for each of the indications summarized above.

  2. Ultraintense lasers: relativistic nonlinear optics and applications

    NASA Astrophysics Data System (ADS)

    Mourou, Gérard A.

    Traditional optics and nonlinear optics are related to laser-matter interaction with eV characteristic energy. Recent progresses in ultrahigh intensity makes it possible to drive electrons with relativistic energy opening up the field of relativistic nonlinear optics. In the last decade, lasers have undergone orders-of-magnitude jumps in peak power, with the invention of the technique of chirped pulse amplification (CPA) and the refinements of femtosecond techniques. Modern CPA lasers can produce intensities greater than 10 21 W/cm 2, one million times greater than previously possible. These ultraintense lasers give researchers a tool to produce unprecedented pressures (terabars), magnetic fields (gigagauss), temperatures (10 10 K), and accelerations (10 25 g) with applications in fusion energy, nuclear physics (fast ignition), high-energy physics, astrophysics, and cosmology. They promote the optics field from the eV to the GeV.

  3. Modeling Laser Effects on the Final Optics in Simulated IFE Environments

    SciTech Connect

    Nasr Ghoniem

    2004-08-14

    When laser light interacts with a material's surface, photons rapidly heat the electronic system, resulting in very fast energy transfer to the underlying atomic crystal structure. The intense rate of energy deposition in the shallow sub-surface layer creates atomic defects, which alter the optical characteristics of the surface itself. In addition, the small fraction of energy absorbed in the mirror leads to its global deformation by thermal and gravity loads (especially for large surface area mirrors). The aim of this research was to model the deformation of mirror surfaces at multiple length and time scales for applications in advanced Inertial Fusion Energy (IFE) systems. The goal is to control micro- and macro-deformations by material system and structural design. A parallel experimental program at UCSD has been set up to validate the modeling efforts. The main objective of the research program was to develop computer models and simulations for Laser-Induced Damage (LID) in reflective and transmissive final optical elements in IFE laser-based systems. A range of materials and material concepts were investigated and verified by experiments at UCSD. Four different classes of materials were considered: (1) High-reflectivity FCC metals (e.g. Cu, Au, Ag, and Al), (2) BCC metals (e.g. Mo, Ta and W), (3) Advanced material concepts (e.g. functionally graded material systems, amorphous coatings, and layered structures), and (4) Transmissive dielectrics (e.g. fused SiO2). In this report, we give a summary of the three-year project, followed by details in three areas: (1) Characterization of laser-induced damage; (2) Theory development for LIDT; and (3) Design of IFE reflective laser mirrors.

  4. Tailored ceramics for laser applications

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Joel Philip

    Transparent ceramics have many features that recommend them over single crystals for use as laser amplifiers. Some features, such as greater mechanical toughness and an absence of extended crystalline defects, are intrinsic to polycrystalline materials. Other advantages accrue from ceramic processing: ceramics sinter more rapidly than crystals grow from a melt, at lower temperatures. Ceramic processes are more readily scaled than Czochralski growth, facilitating larger apertures. Unlike a uniform melt, a ceramic green structure can have controlled concentration gradients, resulting in a multifunctional device upon sintering. Identifying diffusion mechanisms in a suitable host material and quantifying diffusion for a dopant with appropriate energy levels are key steps toward tailoring laser ceramics to the specifications of device designers. Toward that end, this study was the first to identify the mechanism and rate of Nd diffusion in YAG. Grain boundary diffusion was shown to dominate Nd transport under conditions relevant to laser ceramics fabrication. Based on a definition of grain boundary width as 1 A, this process occurs at a rate of DGB = 6.4 x 105 +/- 2.0 x 105 exp(-491 +/- 64 kJ/(mol K))m 2/s. Mechanism identification and the first published kinetics measurement were made possible by the introduction of a heat treatment method that isolates microstructural change from dopant diffusion: the concentration of grain boundaries was kept great enough to allow rapid diffusion, but low enough to limit the driving force for coarsening. Sintering of fine-grained and phase-pure precursor powder for 4 min at 1700 °C produced 0.8 mum grains; subsequent diffusion heat treatments at up to 1650 °C for up to 64 h caused negligible coarsening, while achieving diffusion distances of up to 23 mum.

  5. Heterodyne applications of tunable semiconductor diode lasers

    NASA Technical Reports Server (NTRS)

    Sidney, B. D.

    1983-01-01

    Infrared tunable diode lasers were developed in the 1960s and have been a valuable radiation source for high resolution laboratory and in situ spectroscopy. Use of Pb-salt Tunable Diode Lasers (TDL) in heterodyne applications impose stringent requirements on the TDL not normally required for laboratory spectroscopy. A review will be made of progress associated with TDLs in such heterodyne applications. Areas addressed will include such items as lifetime, operating temperature, and factors affecting excess noise. The review will emphasize the experience at Langley Research Center, but will include material from other users. The Langley information will include a description and current status of the Laser Heterodyne Spectrometer experiment and atmospheric solar absorption data obtained from a groundbased heterodyne system.

  6. Secure key distribution applications of chaotic lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Ning; Xue, Chenpeng; Lv, Yunxin; Qiu, Kun

    2016-11-01

    Chaotic semiconductor laser is a good candidate for secure communication and high-speed true random bit generator, for its characteristics of broad bandwidth and prominent unpredictability. Based on the synchronization property and true random bit generation characteristic of chaotic semiconductor lasers, physical secure key distribution is available. In this work, we majorly show three key distribution schemes stemming from synchronized chaotic semiconductor lasers or chaos-based key exchange protocol. The numerical results demonstrate that the security of the chaos-synchronization-based key distribution scheme can be physically enhanced by adopting dynamic synchronization scheme or encrypted key generation, and that of key distribution with chaos-based key exchange protocol is dependent on the security of the exchange protocol and finally determined by the difficulty of regeneration the chaos system accurately.

  7. Development of components for the high brightness laser. Final report May 77-Jun 80

    SciTech Connect

    Garmire, E.

    1980-10-01

    In 1979 DBR lasers were fabricated and their properties studied. Further investigations were undertaken of the beam expander, to determine its potential for the high brightness laser. From this data it was determined that a design change for the high brightness laser is required. This design change is described. In addition, measurements were made on laser amplification to compare this method of achieving higher power compared to the coupled diode arrays. Finally, as a spin-off of this research, a new design for a single mode laser was discovered, using the active/passive laser, a configuration which was fabricated as a first step toward fabrication of DBR lasers. Each of these research efforts are described in this report. Monolithic integration of the necessary components on one substrate for the high brightness laser has been hindered by problems in material and fabrication uniformity. This will be described, and projections for future development will be outlined.

  8. Laser processing for bio-microfluidics applications (part II).

    PubMed

    Khan Malek, Chantal G

    2006-08-01

    This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips, in particular for applications in which silicon is not the preferred material base. This review addresses applications and devices based on ablation using femtosecond lasers, infrared lasers as well as laser-induced micro-joining, and the laser-assisted generation of micro-replication tools, for subsequent replication of polymeric chips with a technique like laser LIGA.

  9. Advances in laser diodes for pyrotechnic applications

    NASA Technical Reports Server (NTRS)

    Craig, Richard R.

    1993-01-01

    Background information concerning the use of laser diodes in pyrotechnic applications is provided in viewgraph form. The following topics are discussed: damage limits, temperature stability, fiber coupling issues, and small (100 micron) and large (400 micron) fiber results. The discussions concerning fiber results concentrate on the areas of package geometry and electro-optical properties.

  10. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  11. Laser Applications on Orthopaedic Bone Repair

    DTIC Science & Technology

    2012-03-01

    Award Number: W81XWH-10-1-0627 TITLE:“Laser Applications on Orthopaedic Bone Repair” PRINCIPAL INVESTIGATOR: Kotaro Sena , D.D.S., Ph.D...6. AUTHOR(S) 5d. PROJECT NUMBER Kotaro Sena , D.D.S., Ph.D.; Amarjit S. Virdi, Ph.D. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION

  12. New Medical Applications Of Metal Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Anderson, Robert S.; McIntosh, Alexander I.

    1989-06-01

    The first medical application for metal vapor lasers has been granted marketing approval by the FDA. This represents a major milestone for this technology. Metalaser Technologies recently received this approval for its Vasculase unit in the treatment of vascular lesions such as port wine stains, facial telangiectasia and strawberry hemangiomas.

  13. Industrial applications of laser methods profilometry

    SciTech Connect

    Doyle, J.L.

    1995-12-31

    Laser-based profilometry has evolved rapidly over the past ten years. During that period, QUEST Integrated Inc. has been actively involved in the development of systems for a wide variety of NDE applications. The measurement method is based on the principle of optical triangulation. The sensor includes a diode laser which generates the collimated laser beam that is projected orthogonally onto a target surface. Receiving optics, positioned at an oblique angle to the beam, image the reflected light onto a lateral-effect photodetector. Depending on the packaging constraints and resolution requirements, probes use either a single or dual-axis lateral-effect photodetector. As the target surface moves toward or away from the laser source, the imaged light moves across the photodetector in a predictable and repeatable manner. Since the laser beam can be focused to a ``footprint`` as small as a few microns in diameter, this method provides unparalleled spatial resolution. In addition, lateral effect photodetectors are composed or a single silicon element that provides almost infinite lateral resolution. This method was applied to two applications in this paper. The first was to locate and identify flows caused by pitting corrosion in steam generator tubes at nuclear power plants. The second was for inspection of gun tubes by the US army.

  14. Urological applications of the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Poon, Michael W.; Ruckle, Herbert C.; Stewart, Steven C.; Weil, Dane

    1998-07-01

    While the role of endoscopy was initially diagnostic, the advent of improved endoscopes and working instruments have increased its therapeutic applications. One of the most recent advances is the holmium laser. It has a broad range of urological applications due to its ability to fragment all urinary calculi and its soft tissue effects. This laser is based on laser energy delivered in a pulsatile fashion at 2100 nm. The purpose of this study is to report our experience with the holmium laser. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. One hundred and forty patients underwent 157 procedures. The holmium laser was used for the treatment of urinary calculi in 122 patients. Stone location included 61 renal, 64 ureteral, and 17 bladder stones. Renal stone burden was 17 mm (range 3-50), ureteral stone size averaged 10 mm (range 3 - 35), and mean bladder stone size was 31 mm (range 10 - 60). Other uses included treatment of transitional cell carcinoma of the renal pelvis, ureter, and bladder, incision of ureteral strictures, ureterocele, and prostate, and ablation of renal hemangiomas. Intraoperative and post operative complications were noted. Follow-up for calculi consisted of a plain film of the abdomen at one week and an ultrasound or intravenous pyelogram at six to eight weeks post procedure. No ureteral perforations or strictures occurred. The Holmium laser was capable of fragmenting all urinary calculi in this study. No complications were directly attributable to the Holmium laser. In our initial experience, the Holmium laser is safe and effective in the treatment of urinary pathology. It is the most effective lithotrite available and is able to incise and coagulate soft tissue as well. This combination allows the urologist to treat a variety of urinary pathology using a single modality. Its main limitation is the ability to access lower pole lesions in the upper urinary tract due to the fiber

  15. Laser weld jig. [Patent application

    DOEpatents

    Van Blarigan, P.; Haupt, D.L.

    1980-12-05

    A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  16. A study to survey NASA laser applications and identify suitable lasers for specific NASA needs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    All potential applications of high power lasers which might, in particular, use the JPL copper-halide laser under development were considered for study. A wide range of applications were identified with strong emphasis on remote sensing applications. Power beaming and laser propulsion were also identified as major areas of interest to NASA.

  17. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  18. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  19. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  20. Optical Detection Theory for Laser Applications

    NASA Astrophysics Data System (ADS)

    Osche, Gregory R.

    2002-07-01

    A comprehensive treatment of the fundamentals of optical detection theory Laser system applications are becoming more numerous, particularly in the fields of communications and remote sensing. Filling a significant gap in the literature, Optical Detection Theory for Laser Applications addresses the theoretical aspects of optical detection and associated phenomenologies, describing the fundamental optical, statistical, and mathematical principles of the modern laser system. The book is especially valuable for its extensive treatment of direct detection statistics, which has no analog in radar detection theory and which has never before been compiled in a cohesive manner in a single book. Coverage includes: * A review of mathematical statistics and statistical decision theory * Performance of truncated and untruncated coherent and direct detection systems using Huygens-Fresnel and Gaussian beam theories * Rough surface scatter and atmospheric propagation effects * Single-pulse detection statistics for direct and coherent detection systems * Multi-pulse detection statistics for direct and coherent detection systems Supported by additional comments providing further insights into the physics or mathematics discussed and an extensive list of classic references, Optical Detection Theory for Laser Applications comprises a much-needed reference for the professional scientist or engineer, as well as a solid textbook for advanced students.

  1. Studies of a laser/nuclear thermal-hardened body armor. Final report, 31 Jan 91-30 Sep 91

    SciTech Connect

    Misconi, N.Y.; Caldarella, G.J.; Roach, J.F.

    1992-08-01

    The problem of laser/nuclear hardening of body armors and other applications, such as rigid wall, etc, has been investigated in this study. Earlier results from studies of hardening against space systems, which were supported by the Air Force Office of Scientific Research (AFOSR) and carried out by the Principal Investigator during 1984 to 1989 are summarized. The concepts of particle layer and photon multiple scattering inside the layers were utilized in developing a laser shield to protect against laser weapons in the 0.22 to 2.4 micrometer region of the spectrum. Protection against the threats from C02 laser weapons are addressed, and the development of a protective shield is detailed. It is now possible to apply a coating that will protect against laser/nuclear threats and reduction of solar loads for 0.22 to 16 micrometers of the spectrum. Applications are expected for rigid walls (Army containers), human body armor, thermal jackets for military hardware, etc. Finally, a mathematical model was created to help predict how the laser hardening material will behave under specific constraints that have not yet been tested in the laboratory. Also, this model can be used to extrapolate the performance of similar materials/coatings in the mid- to far-infrared wavelengths and also predict the broadband performance.

  2. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  3. Ultrafast laser pulses for medical applications

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Serbin, Jesper; Bauer, Thorsten; Fallnich, Carsten; Welling, Herbert; Mueller, Wiebke; Schwab, Burkard; Singh, Ajoy I.; Ertmer, Wolfgang

    2002-04-01

    Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the bu micrometers range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: in ophthalmology intrastromal cutting and preparing of cornael flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs- laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosklerosis as well as in dentistry to remove caries from dental hard tissue.

  4. Lasers '86; Proceedings of the Ninth International Conference on Lasers and Applications, Orlando, FL, Nov. 3-7, 1986

    SciTech Connect

    Mcmillan, R.W.

    1987-01-01

    Laser physics, technology, and applications are examined in reviews and reports. Topics addressed include VUV and X-ray lasers, vibrational energy transfer and kinetics, medical applications, ultrashort lasers and spectroscopy, surface and material interactions, lasers in atmospheric physics, and fiber-optic systems. Consideration is given to alexandrite lasers, four-wave mixing and nonlinear optics, chemical lasers, semiconductor lasers, photothermal and photoacoustic spectroscopy, dye lasers, optical phase conjugation and SBS, excimer lasers, SDI laser applications, remote-sensing with lasers, FELs, and applications in chemistry. Diagrams, drawings, graphs, and photographs are provided.

  5. Laser applications to atmospheric sciences: A bibliography

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1975-01-01

    A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.

  6. Laser Applications in Flow Diagnostics

    DTIC Science & Technology

    1988-10-01

    Albert , C., "Application of Automated Holographic Interferometry," ICIASF 1975 Record, IEEE, New York, New York, p. 237-246, September 1975. 3.64 Bryanston...Presented at the IUTAM Unsteady Aerodynamics Conference, Jesus College, Cambridge, September 1984. 3.70 Bryanston-Cross, P. J., Camus , J. J., and

  7. Manufacturing Methods and Technology Application of High Energy Laser Welding Process.

    DTIC Science & Technology

    1980-08-01

    bead shape and appearance to welds made by the automatic GTAW process. 4. Lens-to-Work Distance The effect of lens to workpiece distance is...REPORT RL-82-2 0 MANUFACTURING METHODS AND TECHNOLOGY APPLICATION _OF HIGH ENERGY LASER WELDING PROCESS 0John V. Melonas Structures Directorate, U S...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Manufacturing Methods and Technology Application Final Technical Report of High Energy Laser Welding

  8. X-Ray Laser Program Final Report for FY92

    DTIC Science & Technology

    1993-07-01

    mang by ANSI Std 230-10 298-102 CONTENTS EXECUTIVE PROGRAM SUMMARY ..................................... iv 1. Enhancement of Ionization in Neon X-ray...volt pulse to provide a single 10 nsec resolved time frame . Typically the gate is centered on the peak of the z pinch x-ray emission. On the short 6 mm...v0respectively. RESULTS The rate at which a Gaussian profile laser pulse of FWHM 650 fsec 248 nm KrF laser pulse of 1016 watts/cm2 is deposited into a 2p

  9. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  10. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  11. Development of a Curriculum in Laser Technology. Final Report.

    ERIC Educational Resources Information Center

    Wasserman, William J.

    A Seattle Central Community College project visited existing programs, surveyed need, and developed a curriculum for a future program in Laser-Electro-Optics (LEO) Technology. To establish contacts and view successful programs, project staff made visits to LEO technology programs at San Jose City College and Texas State Technical Institute, Center…

  12. Development of a Curriculum in Laser Technology. Final Report.

    ERIC Educational Resources Information Center

    Wasserman, William J.

    A Seattle Central Community College project visited existing programs, surveyed need, and developed a curriculum for a future program in Laser-Electro-Optics (LEO) Technology. To establish contacts and view successful programs, project staff made visits to LEO technology programs at San Jose City College and Texas State Technical Institute, Center…

  13. Optical polymers for laser medical applications

    NASA Astrophysics Data System (ADS)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  14. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  15. Diode-pumped micro-laser arrays. Final report, 30 September 1993-18 February 1994

    SciTech Connect

    Waarts, R.

    1994-06-01

    In this work, SDL investigated the operation of 2-D high power micro-laser arrays based on novel monolithic surface-emitting laser diode arrays coupled to Yb:YAG and Er:YSGG micro-laser crystals. The experimental demonstrations include: (1) 200 mW, q-cw single Yb:YAG microlaser; (2) 930 mW cw linear, 12-element Er:YSGG micro-laser; (3) 130 Watt q-cw 2-D surface-emitting laser diode array at 970 nm; and (4) 600 mW, q-cw from an 18-element 3-D Er:YSGG microlaser array. The experiments performed at SDL under this contract demonstrate the suitability of monolithic 2-D laser diode arrays for pumping solids state lasers. In addition, the experiments show the flexibility of the micro-laser concept. Using different pump wavelengths in combination with different micro-lasers a wide output wavelength range from 1 micron to 3 micron is demonstrated. Finally, the micro-laser array is shown to be scalable by exploiting one- and two-dimensional laser diode pump arrays.

  16. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  17. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    PubMed

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  18. Laser beamed power: Satellite demonstration applications

    SciTech Connect

    Landis, G.A.; Westerlund, L.H.

    1992-08-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  19. Resonant laser ablation: mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1996-10-01

    We report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation is presented.

  20. Applications for reactor-pumped lasers

    NASA Astrophysics Data System (ADS)

    Lipinski, R. J.; McArthur, D. A.

    Nuclear reactor-pumped lasers (RPL's) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  1. Applications for reactor-pumped lasers

    SciTech Connect

    Lipinski, R.J.; McArthur, D.A.

    1994-10-01

    Nuclear reactor-pumped lasers (RPLs) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  2. Current applications of lasers in heart disease

    NASA Astrophysics Data System (ADS)

    Lee, Garrett; Chan, Ming C.; Mason, Dean T.

    1993-03-01

    Although the laser has been in existence for abut 30 years, its application in heart disease has only been examined in the past decade. Much attention has been given its exciting potential in treating coronary artery disease. Transmitted through a catheter comprised of one or more thin optical fibers which can be threaded nonsurgically into the coronary artery, the laser can ablate atherosclerotic plaque that obstructs the artery and diminishes blood flow to the myocardium. In clinical studies, the laser can treat some obstructive lesions that are not suitable for balloon angioplasty (i.e., long and diffuse lesions, very tight stenoses, ostial lesions, calcified lesions). In patients who failed balloon angioplasty due to severe dissection or abrupt closure, the laser may seal up the dissections and restore antegrade blood flow. In addition, the laser may have other applications and treatment modalities that are still under investigation. It may ablate ectopic ventricular foci, or terminate supraventricular tachyrhythmia by destroying the heart's abnormal conduction pathways. It can cut the hypertrophied septum that is associated with left ventricular outflow tract obstruction, or create a channel in the atrial septum as a palliative procedure in newborns with transposition of the great vessels. It may provide a wider orifice for blood flow within the heart in infants with pulmonary outflow obstruction and in adults with aortic valvular stenosis. It is also capable of fusing small thin-walled blood vessels together. Further, a more intriguing possibility is its use to bore several tiny channels in the myocardium to allow oxygenated blood from within the ventricular chamber to perfuse the ischemic heart tissue.

  3. Application of Low level Lasers in Dentistry (Endodontic)

    PubMed Central

    Asnaashari, Mohammad; Safavi, Nassimeh

    2013-01-01

    Low level lasers, cold or soft lasers: These lasers do not produce thermal effects on tissues and induce photoreactions in cells through light stimulation which is called photobiostimulation. Power of these lasers is usually under 250mW. The main point differentiating low level lasers and high power ones is the activation of photochemical reactions without heat formation. The most important factor to achieve this light characteristic in lasers is not their power, but their power density for each surfa ceunit (i.e cm2). Density lower than 670mW/cm2, can induce the stimulatory effects of low level lasers without thermal effects. Low level lasers (therapeutic) used today as treatment adjunctive devices in medicine and dentistry. Numerous studies have been performed on the applications of low level lasers in patient pain reduction. Mechanisms of pain reduction with therapeutic lasers and their application are expressed, and the studies realized in this field are presented. PMID:25606308

  4. Wide spectrum antireflective coating for laser fusion systems. Final report

    SciTech Connect

    Yoldas, B.E; Partlow, D.P.; Smith, H.D.; Mattox, D.M.

    1984-01-13

    A method of depositing a laser damage resistant, wide-spectrum antireflective coating on fused silica has been developed. This work was sponsored under a subcontract with the University of California, with technical direction from the Lawrence Livermore National Laboratory. The coating is applied from a specific silanol polymer solution and converted to a porous SiO/sub 2/ film. The pore size of the film is first reduced by a heat treatment to prevent uv scattering. Then gradation of the pore volume is achieved by a mild etching to a sufficient depth to prevent a smoother index transition from air to the substrate glass. The resulting antireflectivity covers the entire transmission range of silica and may be extended to a wavelength as short as 250 nm. Laser damage thresholds as high as 9 j/cm/sup 2/ have been demonstrated on processed samples.

  5. Monitoring interfacial dynamics by pulsed laser techniques. Final report

    SciTech Connect

    Richmond, G.

    1995-12-31

    The research is aimed at understanding the structural, electronic, and reactive properties of semiconductors in solutions. Focus is on Si and GaAs surfaces because they are used in photovoltaic devices, etc. The pulsed laser techniques used included surface second harmonic generation in Si and laser induced photoluminescence in GaAs. SHG can measure space charge effects in the semiconductor under various conditions, ie, immersed in electrolyte, in presence of oxide overlayers, and under UHV conditions. The Si studies demonstrated the sensitivity of the phase of the SH response to space charge effects. With GaAs, time-correlated single photon counting methods were used in the picosecond time regime to examine the recombination luminescence following above band gap excitation (surface trapping velocities).

  6. Future applications of lasers in surgery and medicine: a review.

    PubMed Central

    Sliney, D H; Wolbarsht, M L

    1989-01-01

    The experimental use of lasers in surgery and medicine began only shortly after the development of the first working laser system. However, the development of practical, effective, and safe surgical lasers has been lengthy with many obstacles and delays. Today the laser is used for a wide variety of surgical operations. The fundamental limits and potential for future applications of lasers in surgery and medicine are discussed. PMID:2666663

  7. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  8. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2011-11-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  9. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  10. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  11. XeF pump laser. Final technical report

    SciTech Connect

    Not Available

    1980-03-01

    The goal of this program was to demonstrate operation of an XeF laser of adequate energy, efficiency and beam quality at high repetition rates. The specific design goals were: PRF greater than or equal to 10 kHz, energy output greater than or equal to 50 mJ/pulse, efficiency greater than or equal to 0.3%, and beam divergence angle less than or equal to 20x diffraction limited. In the following sections of this report we will discuss how these goals have been met.

  12. X-Ray Laser Program Final Report for FY91

    DTIC Science & Technology

    1992-09-16

    Form 298 (ftv. 2-8S9 Preeci2 od by ANSI Std1 23- 11 290-102 CONTENTS EXECUTIVE PROGRAM SUMMARY ........................................... iv 1...radiative transfer model which can be employed in analysis of laser plasmas. Since the velocity of light is 0.3 Um / fsec , in many of the ultrashort pulse...diodes.13 A 12- frame , time-resolving, x-ray pinhole camera is used to monitor the implosion quality of the Na pinches. The K-shell emission between 9

  13. Alabama Consolidated State Application Accountability Workbook. Final

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    This workbook, submitted by the State of Alabama to the U.S. Department of Education, is for State Grants under Title IX, Part C, Section 9302 of the Elementary and Secondary Education Act (Public Law 107-110). By January 31, 2003, States must complete and submit to the Department this Consolidated State Application Accountability Workbook. The…

  14. Hybrid laser beam steerer for laser communications applications

    NASA Astrophysics Data System (ADS)

    Sofka, Jozef; Nikulin, Vladimir V.; Skormin, Victor A.; Nicholson, Donald J.

    2004-01-01

    Omniwrist is a new sensor mount developed under the Air Force funding that emulates the kinematics of a human wrist. Driven by two linear motors and equipped with a dedicated computer implementing advanced control laws, it is capable of a full 180° hemisphere of pitch/yaw motion and demonstrates performance characteristics comparable with an electro-mechanical beam steering system. While exceeding the bandwidth requirements for the coarse beam steering task, Omniwrist"s dynamic response is much slower than the one of the acousto-optic device (Bragg cell) that is virtually inertia-free. At the same time, the steering range of a Bragg cell, +/- .5°, is too small for many applications. The authors have been successful in the enhancement of the design and development of control laws improving its dynamic characteristics of a Bragg cell. This paper presents the research aimed at the development of a hybrid laser beam steering system comprising Bragg cells installed on the Omniwrist platform. An optimal control strategy facilitating such applications as scanning, search, rapid repositioning, tracking, feedback and feedforward compensation of environmental vibration of the optical platform (satellite-based and airborne) has been developed, implemented and tested. This includes the solution of such underlying problems as mathematical description of the hybrid system, optimal task distribution between the "coarse" and the "fine" positioning tasks, coordination of the operation of the "coarse" and "fine" system controllers. The efficiency of the developed system in various applications will be investigated further and compared against known designs.

  15. Laser velocimeter application to oscillatory liquid flows

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  16. Active filter application guide. Final report

    SciTech Connect

    Not Available

    1998-01-01

    Nonlinear loads interacting with a utility can cause harmonic currents and voltages. Nonlinear loads include arcing loads, power converters that use switching devices, and saturable transformers and reactors. When reactive loads interact with harmonic sources, the results can be harmonic distortion, malfunction of harmonic sensitive equipment, and capacitor overload. To solve these harmonic disturbances, most passive harmonic filters must be custom designed to operate with site-specific conditions. Active filters, on the other hand, offer the potential of a single black-box solution that is relatively independent of system parameters. Power quality problems attributable to harmonic voltages and currents are increasing. Traditionally, passive harmonic filters have been used to solve these problems. A more recent approach for harmonic compensation uses active filters. The Active Filter Application Guide covers fundamentals of harmonics, discusses harmonic producing loads, presents harmonic filtering principles (both active and passive), and provides a step-by-step application guide for analyzing and specifying an active filter. Also included in the Guide are two active-filter case studies. Each demonstrates how the application guide can be used to select and specify solutions for both single harmonic load and multiple harmonic producing loads at a clustered site.

  17. [Basic principles and clinical application of retinal laser therapy].

    PubMed

    Framme, C; Roider, J; Brinkmann, R; Birngruber, R; Gabel, V-P

    2008-04-01

    The scientific background of laser photocoagulation of the ocular fundus was studied extensively by several investigators in the 1970 s and 1980 s. The basic principles were successfully resolved during that time and clinical consequences for proper application of the laser photocoagulation for various diseases were deduced. The present paper gives an overview about the physical basics of laser-tissue interactions during and after retinal laser treatment and the particular laser strategies in the treatment of different retinal diseases. Thus, it addresses the issue of the impact on tissue of laser parameters as wavelength, spot size, pulse duration and laser power. Additionally, the different biological tissue reactions after laser treatment are presented, such as, e. g., for retinopexia or macular treatments as well as for diabetic retinopathies. Specific laser strategies such as the selective laser treatment of the RPE (SRT) or the transpupillary thermotherapy (TTT) are presented and discussed.

  18. Laser scattering from long scalelength plasmas on Omega. Final report

    SciTech Connect

    Drake, R.P.; Seka, W.; Craxton, R.S.; Bauer, B.S.

    1998-12-31

    In this project, the authors accomplished the tasks called for in the revised statement of work associated with this grant. Specifically, they accomplished: (1) active participation in the design of long-scalelength plasmas for Omega and in experiments to characterize these plasmas; (2) development of software that permits the rapid evaluation of laser-scattering diagnostic possibilities involving the standard parametric instabilities. It must be able to account for all 60 beams in Omega in addition to a probe beam and variable detector locations; and (3) design, purchase of components for, and assembly of instrumentation to make such measurements, providing for long-term versatility in the type of measurement. The project background and these accomplishments are discussed.

  19. Imploding plasma x-ray laser research. Draft final report

    SciTech Connect

    Wong, S.; Koppel, L.; Burr, L.; Rodenburg, R.; Fortner, R.; Stewart, R.; Dietrich, D.; Egan, P.; Young, B.; Dukart, R.

    1984-09-01

    The population inversion mechanisms and gain estimates for the Ne-like Kr x-ray laser scheme are discussed. An experimental configuration has been developed which produces stable plasmas with conditions close to the optimum for lasing. By imploding a coaxial argon plasma on an inner krypton plasma (the puff-on-puff configuration), a quiescent krypton center plasma was produced with an electron temperature of about 600 eV and an electron density of about 10/sup 21/ cm/sup -3/. The center plasma was stable and linear, with little evidence of kink instabilities. Nozzle development work was also performed. X-ray measurements of electron temperature and density as well as XUV linewidths are presented. (LEW)

  20. Laser fusion driven breeder design study. Final report

    SciTech Connect

    Berwald, D.H.; Massey, J.V.

    1980-12-01

    The results of the Laser Fusion Breeder Design Study are given. This information primarily relates to the conceptual design of an inertial confinement fusion (ICF) breeder reactor (or fusion-fission hybrid) based upon the HYLIFE liquid metal wall protection concept developed at Lawrence Livermore National Laboratory. The blanket design for this breeder is optimized to both reduce fissions and maximize the production of fissile fuel for subsequent use in conventional light water reactors (LWRs). When the suppressed fission blanket is compared with its fast fission counterparts, a minimal fission rate in the blanket results in a unique reactor safety advantage for this concept with respect to reduced radioactive inventory and reduced fission product decay afterheat in the event of a loss-of-coolant-accident.

  1. Shifted laser surface texturing for bearings applications

    NASA Astrophysics Data System (ADS)

    Houdková, Š.; Šperka, P.; Repka, M.; Martan, J.; Moskal, D.

    2017-05-01

    The laser surface texturing (LST) technologies, based on creation of micro-pattern with pre-defined geometry can positively influence both the friction and wear of tribo-elements. In practice, the integration of LST technology is often limited due to its slowness. The new method, so called shifted laser surface texturing (sLST) with increased process speed was developed to make the technology more attractive for the industrial application. In the paper, the texture created by sLST technology was applied onto the steel samples and Al-Sn-Si surface of sliding bearings. Both block-on-ring (ASTM G-77) laboratory tests of steel samples and high-loaded working application tests on Al-Sn-Si bearings surface were carried out to evaluate the influence of texture on tribological behaviour. The ASTM G-77 laboratory tests showed a positive effect of the texture on friction behaviour. Under the high-loaded testing conditions, the positive effect was observed in initial stages of the tests, decreasing the torque of textured bearings compared to the untreated one. Lately, the texture was worn out and have no influence on the overall wear of the bearings. Based on the above mentioned observations, the use of alternative bearing material with higher hardness or application of protective layer over the created texture was suggested to exploit the texture benefits.

  2. Applications of laser printing for organic electronics

    NASA Astrophysics Data System (ADS)

    Delaporte, Ph.; Ainsebaa, A.; Alloncle, A.-P.; Benetti, M.; Boutopoulos, C.; Cannata, D.; Di Pietrantonio, F.; Dinca, V.; Dinescu, M.; Dutroncy, J.; Eason, R.; Feinaugle, M.; Fernández-Pradas, J.-M.; Grisel, A.; Kaur, K.; Lehmann, U.; Lippert, T.; Loussert, C.; Makrygianni, M.; Manfredonia, I.; Mattle, T.; Morenza, J.-L.; Nagel, M.; Nüesch, F.; Palla-Papavlu, A.; Rapp, L.; Rizvi, N.; Rodio, G.; Sanaur, S.; Serra, P.; Shaw-Stewart, J.; Sones, C. L.; Verona, E.; Zergioti, I.

    2013-03-01

    The development of organic electronic requires a non contact digital printing process. The European funded e-LIFT project investigated the possibility of using the Laser Induced Forward Transfer (LIFT) technique to address this field of applications. This process has been optimized for the deposition of functional organic and inorganic materials in liquid and solid phase, and a set of polymer dynamic release layer (DRL) has been developed to allow a safe transfer of a large range of thin films. Then, some specific applications related to the development of heterogeneous integration in organic electronics have been addressed. We demonstrated the ability of LIFT process to print thin film of organic semiconductor and to realize Organic Thin Film Transistors (OTFT) with mobilities as high as 4 10-2 cm2.V-1.s-1 and Ion/Ioff ratio of 2.8 105. Polymer Light Emitting Diodes (PLED) have been laser printed by transferring in a single step process a stack of thin films, leading to the fabrication of red, blue green PLEDs with luminance ranging from 145 cd.m-2 to 540 cd.m-2. Then, chemical sensors and biosensors have been fabricated by printing polymers and proteins on Surface Acoustic Wave (SAW) devices. The ability of LIFT to transfer several sensing elements on a same device with high resolution allows improving the selectivity of these sensors and biosensors. Gas sensors based on the deposition of semiconducting oxide (SnO2) and biosensors for the detection of herbicides relying on the printing of proteins have also been realized and their performances overcome those of commercial devices. At last, we successfully laser-printed thermoelectric materials and realized microgenerators for energy harvesting applications.

  3. Development of cryotribological theories & application to cryogenic devices. Final report

    SciTech Connect

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  4. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    SciTech Connect

    Kimura, Wayne D

    2008-06-27

    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  5. Future scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  6. Laser applications in the electronics and optoelectronics industry in Japan

    NASA Astrophysics Data System (ADS)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  7. Application of high power lasers to space power and propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1976-01-01

    The transmission of laser power over long distances for applications such as direct conversion to propulsive thrust or electrical power is considered. Factors discussed include: problems inherent in transmitting, propagating, and receiving the laser beam over long ranges; high efficiency, closed-cycle, continuous wave operation; advancement of CO2 laser technology; and compatibility with photovoltaic power conversion devices.

  8. Imaging systems for biomedical applications. Final report

    SciTech Connect

    Radparvar, M.

    1995-06-06

    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  9. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  10. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  11. Low-power photolytically pumped lasers: Final technical report

    SciTech Connect

    Messing, I.; Lorents, D.C.; Eckstrom, D.J.

    1987-08-01

    We have carried out an extensive series of measurements of the time-resolved Xe/sub 2/* emission spectra following optical pumping by a short-pulse F/sub 2/ laser at 157.6 nm. Most measurements were performed using a gated Optical Multichannel Analyzer detector; we also made measurements using a scanning monochromator fitted with a photomultiplier and using a boxcar integrator for time resolution. The two sets of results agree well and show that both the singlet and triplet emission bands are broader than expected and have center wavelengths closer together than expected. Measurements were performed both at room temperature and at elevated (140/sup 0/C) and reduced (-27/sup 0/C) temperatures. The broad bandwidth of the individual spectral bands was unexpected and conflicted with a previous spectral measurement using optical pumping by the Xe* resonance line from a microwave discharge lamp. Therefore, we also performed a series of spectral measurements using this type of optical pumping. We achieved good agreement with some previous results in the literature, but not with the result in question. We conclude that the present results are reliable. The results presented in this report provide the first definitive measurement of the individual excimer emissions from each of the Xe/sub 2/(0/sub u//sup +/) and Xe/sub 2/(1/sub u/) states. From these measurements and the known ground state potential, we derived a 1/sub u/ potential that reproduces the emission band very well. However, the 1/sub u/ potential is in substantial disagreement with the recent 1/sub u/ potential derived by the Toronto group. 13 refs., 32 figs., 3 tabs.

  12. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  13. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  14. High-power YAG laser and its applications

    NASA Astrophysics Data System (ADS)

    Sato, S.; Tsuchiya, Kazuyuki; Owaki, Katsura; Morita, Ichiro

    2000-02-01

    Laser beams have been noticed as new heat resources with high energy concentration, which are different from plasma and arc. Conventionally, the only kW class industrial laser has been a carbon dioxide (CO2) laser. However, recently, several new high power lasers other than CO2 laser have been developed so that new methods of laser material processing have come out. As for YAG lasers, formerly, cw or pulse YAG lasers of several hundreds W class were used for welding or cutting of electrical appliants or cutting of thin metal plates. Now, the power has been raised to 5 - 6 kW, which enables YAG lasers to apply wider applications of material processing in many industrial fields, such as automobile industries, heavy industries and so on. It is a flexible fiber delivery that is the most remarkable advantage of YAG laser, which can be applied to ordinary machinery tools and robotic systems and makes it possible to deliver laser power to remote locations. Moreover, a shorter wavelength (1.06 micrometer) of YAG lasers than that of CO2 lasers is appropriate to metal processing. Figure 1 shows an example of YAG laser processing system utilizing those advantages. Also in IHI, the processing with YAG lasers has been studied for their practical application which has already succeeded in some sections such as cladding, repair welding and subdividing of nuclear power plants making use of YAG lasers' properties of fiber delivery of beam. Moreover, underwater processing technique is studied for practical use. In this paper, the examples of YAG laser application technology were described.

  15. Microgravity Spray Cooling Research for High Powered Laser Applications

    NASA Technical Reports Server (NTRS)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  16. Microgravity Spray Cooling Research for High Powered Laser Applications

    NASA Technical Reports Server (NTRS)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  17. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry.

    PubMed

    Wang, Jing; Liu, Qian; Liang, Yong; Jiang, Guibin

    2016-04-01

    Carbon nanomaterials have attracted great interest over past decades owing to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this article, we review recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry (LDI MS). Various types of carbon nanomaterials, including fullerenes, carbon nanotubes, graphene, carbon nanodots, nanodiamond, nanofibers, nanohorns, and their derivative forms, are involved. The applications of these materials as new matrices or probes in matrix-assisted or surface-enhanced laser desorption/ionization mass spectrometry (MALDI or SELDI MS) are discussed. Finally, we summarize current challenges and give our perspectives on the future of applications of carbon nanomaterials in LDI MS.

  18. Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, R P; Latkowski, J F

    2006-11-17

    Left unprotected, both transmissive and reflective final optics in a laser inertial fusion power plant would quickly fail from melting, pulsed thermal stresses, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed into a robust energy dump. In this paper we detail integrated studies that have been carried out to asses the viability of this approach for protecting final optics.

  19. Ion Deflection for Final Optics in Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, Ryan P.

    2005-12-01

    Left unprotected, both transmissive and reflective final optics in a laser-driven inertial fusion power plant would quickly fail from melting, pulsed thermal stress, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed to a robust energy dump. In this paper we detail integrated studies that have been carried out to assess the viability of this approach for protecting final optics.

  20. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  1. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  2. Workshop on scientific and industrial applications of free electron lasers

    SciTech Connect

    Difilippo, F.C. ); Perez, R.B. Tennessee Univ., Knoxville, TN )

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics.

  3. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  4. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    SciTech Connect

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; Porter, John L.

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  5. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  6. Novel applications of lasers in biology, chemistry, and paleontology

    NASA Astrophysics Data System (ADS)

    Johnston, Roger G.

    1994-06-01

    Los Alamos National Laboratory has a long history of exploring unconventional applications for lasers. Three novel applications currently under investigation include using lasers for the analysis of dinosaur gastroliths, for detecting Salmonella contamination in chicken eggs, and for ultra- sensitive, ultra-stable interferometry.

  7. Application of high-performance OEM fibre lasers in manufacturing

    NASA Astrophysics Data System (ADS)

    Norman, S.; Appleyard, A.; Harrison, P.; Hassey, A.

    2012-02-01

    Medium and high-power fiber lasers operating in the 1um region have proven their capabilities for cutting and welding in industrial manufacturing applications. This paper reviews the process performance capabilities of medium power (up to 500W) fiber lasers in a range of precision cutting, fusion-welding and additive manufacturing applications.

  8. Manufacturing applications of lasers; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Cheo, Peter K.

    1986-01-01

    The present conference encompasses topics in laser material processing for industrial applications, laser applications in microelectronics, laser inspection and quality control, and laser diagnostics and measurements. Attention is given to the laser welding of cylinders, production laser hardfacing of jet engine turbine blades, production laser welding of gears, electric arc augmentation for laser cutting of mild steel, laser-assisted etching for microelectronics, and laser fabrication of interconnect structures on CMOS gate arrays. Also discussed are angle-scanning laser interferometry for film thickness measurements, the application of heterodyne interferometry to disk drive technology, and CARS applications to combustion diagnostics.

  9. Tunable lasers and their application in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.

  10. Diode Laser Application in Soft Tissue Oral Surgery

    PubMed Central

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  11. Reliability of Semiconductor Laser Packaging in Space Applications

    NASA Technical Reports Server (NTRS)

    Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.

    2008-01-01

    A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.

  12. Reliability of Semiconductor Laser Packaging in Space Applications

    NASA Technical Reports Server (NTRS)

    Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.

    2008-01-01

    A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.

  13. Novel Applications of Laser-Induced Breakdown Spectroscopy.

    PubMed

    Bauer, Amy J Ray; Buckley, Steven G

    2017-04-01

    The goal of this review article is to provide a description of recent and novel laser-induced breakdown spectroscopy (LIBS) applications and developments, especially those discussed during the NASLIBS Conference, held during SciX in Providence, RI, in September 2015. This topic was selected in view of the numerous recent overall review papers that have successfully given a broad view of the current understanding of laser-material interactions and plasma development and have also discussed the wide landscape of analytical applications of LIBS. This paper is divided into sections that focus on a few of the many applications under development in the LIBS community. We provide a summary of updates to calibration-free LIBS (CF-LIBS) and associated developments using plasma characteristics to improve quantification in LIBS output, both in a dedicated section and as applications are discussed. We have also described the most recent publications studying the sources, generation, and use of molecular features in LIBS, including those naturally present in the spectra of organic materials, and those induced with the addition of salts to enable the measurement of halogens, not typically present in LIBS signals. In terms of development of applications of LIBS, we focused on the use of LIBS for indirect measurements such as pH and degree of humification in soil and heating value in coal. We also reviewed the extant literature on LIBS analysis of agricultural materials, coal, minerals, and metals. Finally, we discuss the nascent developments of spatially heterodyne spectroscopy, a method that seeks to circumnavigate a serious drawback of most spectrometers - very small optical throughput - through the use of interferometers.

  14. CO2 laser oscillators for laser radar applications

    NASA Technical Reports Server (NTRS)

    Freed, C.

    1990-01-01

    This paper reviews the spectral purity, frequency stability, and long-term stabilization of newly developed CO2 isotope lasers. Extremely high spectral purity, and short-term stability of less than 1.5 x 10 to the -13th have been achieved. A brief description on using CO2 isotope lasers as secondary frequency standards and in optical radar is given. The design and output characteristics of a single frequency, TEM00q mode, variable pulse width, hybrid TE CO2 laser system is also described. The frequency chirp in the output has been measured and almost completely eliminated by means of a novel technique.

  15. Laser Doppler vibrometry: new ENT applications

    NASA Astrophysics Data System (ADS)

    Stasche, Norbert; Baermann, M.; Kempe, C.; Hoermann, Karl; Foth, Hans-Jochen

    1996-12-01

    Common audiometry often does not really allow a reliable and objective differential diagnosis of hearing disorders such as otosclerosis, adhesive otitis, ossicular interruption or tinnitus, even though several methods might be used complementarily. In recent years, some experimental studies on middle ear mechanics established laser Doppler vibrometry (LDV) as a useful method allowing objective measurement of human tympanic membrane displacement. The present study on LDV investigated the clinical use of this new method under physiological conditions. LDV proved to be a fast, reproducible, non-invasive and very sensitive instrument to characterize ear-drum vibrations in various middle ear dysfunctions, except in tinnitus patients. For future applications, improved optical characteristics of the vibrometer might result in a better differential diagnosis of subjective and objective tinnitus, otoacoustic emissions or Morbus Meniere.

  16. Plasma physics applications to intense radiation sources, pulsed power and space physics. Short pulse ultra intense laser-plasma interaction experiment. Final report, 1 January 1990-31 May 1993

    SciTech Connect

    Sudan, R.N.

    1993-05-31

    Intense bright x-ray sources from dense z-pinch and x-pinch plasmas are being investigated for photo-pumping x-ray laser media. Crossed Aluminum wire X-pinches with mass line density up to hundreds of micrograms per centimeter have been imploded by up to 600 kA current for 40 ns using a 0.5 TW pulsed power generator. High density bright spots are observed. Soft x-ray spectroscopy was used to infer plasma density of up to approx. 10 to the 20th power per cubic cm and temperature of 100 -300 eV. The optimum mass loading for different ionization stages of Aluminum ions was examined. Parallel wire z-pinches yielded both lower density up to approx. 10(19)cm-3, and lower temperatures (70 - 200 eV), than the X-pinch plasmas.

  17. Process and quality control for automotive laser welding applications

    SciTech Connect

    Toenshoff, H.K.; Overmeyer, L.; Schumacher, J.

    1996-12-31

    Laser welding applications using CO{sub 2} and Nd:YAG-Lasers are of growing importance for the production of car bodies. Especially for parts influencing the safety of the product, it would be advantageous to control the welding result which is, in practical applications, influenced by many process parameters. In this paper, an innovative process monitoring and quality control system with a closed loop control of the laser output power will be described, which is based on monitoring and evaluating the light emission from the welding process. In contrast to systems which have been developed in the past, the sensors which detect the light emission were integrated into the beam guidance system for CO{sub 2} lasers, and into the laser source for Nd:YAG lasers. The optical set-up of this system, together with the automatic detection of welding failures, will be described, and the results of the system for industrial applications will be evaluated.

  18. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  19. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  20. Biophysics applications of free-electron lasers

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    1993-07-01

    There has been a significant financial effort poured into the technology of the Free Electron Laser (FEL) over the last 15 years or so. Much of that money was spent in the hopes that the FEL would be a key element in the Strategic Defense Initiative, but a small fraction of money was allocated for the Medical FEL program. The Medical FELs program was aimed at exploring how the unique capabilities of the FEL could be utilized in medical applications. Part of the Medical FEl effort has been in clinical applications, but some of the effort has also been put into exploring applications of the FEL for fundamental biological physics. It is the purpose of this brief text to outline some of the fundamental biophysics I have done, and some plans we have for the future. Since the FEL is (still) considered to be an avant garde device, the reader should not be surprised to find that much of the work proposed here is also rather radical and avant garde.

  1. The development, performance, and potential application of the copper halide laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.; Nerheim, N. M.

    1983-01-01

    The copper halide laser (CHL) is an efficient gas discharge laser that emits short pulses at two discrete wavelengths in the yellow and green spectral region. The laser pulse results from transitions in excited copper atoms. The CHL has produced pulses of up to 10 mJ in a double-pulsed mode at low repetition rates and has been operated at very high repetition rates (8 to over 35 kHz) in a continuously pulsed mode with a maximum average-power of 15 watts. In this paper, the development of the copper halide laser is reviewed along with a brief description of the copper laser operating principles. In the final section, a number of applications of the CHL are identified.

  2. Numerical conformal mapping: Methods, applications, and theory. Final report

    SciTech Connect

    DeLillo, T.K.

    1995-11-01

    Section 1 of this report, briefly summarizes research performed under this grant during the first two years 1992 to 1994 and makes some overall remarks. Section 2, summarizes research performed during the final year from September, 1994 through May 31, 1995, more fully. The main achievement of the last period has been the application of numerical conformed mapping to the solution of the biharmonic equation. Section 3, summarizes travel, meetings, and other expenses supported by this grant during the final year.

  3. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  4. Smart laser scanning sampling head design for image acquisition applications.

    PubMed

    Amin, M Junaid; Riza, Nabeel A

    2013-07-10

    A smart laser scanning sampling head design is presented using an electronically controlled variable focal length lens to achieve the smallest sampling laser spot possible at target plane distances reaching 8 m. A proof-of-concept experiment is conducted using a 10 mW red 633 nm laser coupled with beam conditioning optics that includes an electromagnetically actuated deformable membrane liquid lens to demonstrate sampling laser spot radii under 1 mm over a target range of 20-800 cm. Applications for the proposed sampling head are diverse and include laser machining and component inspection.

  5. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  6. Application of airborne laser scanner - aerial navigation

    NASA Astrophysics Data System (ADS)

    Campbell, Jacob L.

    This dissertation explores the use of an Airborne Laser Scanner (ALS) for use in aircraft Terrain-Referenced Navigation (TRN). Position estimation techniques developed in this dissertation enable the use of large sets of high accuracy ALS measurements to solve for position in real-time. The explored techniques were then used to design, implement, and---for the first time ever---fly a real-time ALS-based TERRain Aided Inertial Navigator (TERRAIN) precision approach system. During the flight tests, the system provided meter-level horizontal and vertical positioning accuracies in real-time. The ALS-based TRN techniques discussed in the dissertation are constrained to the information found in the terrain shape domain. The data acquisition, pre-processing, and position estimation techniques of ALS TRN vary significantly from traditional radar altimeter-based TRN primarily due to differences in the measurement mechanism used in both TRN systems. First, traditional radar altimeter-based TRN senses the terrain contours traversed in the along-track direction, whereas ALS-based TRN makes measurements in the along-track and in the cross-track directions. The second difference is that the ALS laser's milli-radian beamwidth has sufficient resolution to identify not only the ground, but also objects on the ground such as buildings. A radar altimeter with a beamwidth of several degrees can not observe the same level of detail. These differences increase the spectral content of the ground measurement data in the ALS-based system thus permitting high-accuracy position estimates. The described ALS TRN navigation techniques include methods to estimate the position based on the best match between ALS data and a high resolution/accuracy terrain database. Finally, the dissertation explores the certification path for an ALS-based landing system.

  7. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    SciTech Connect

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger

    2011-12-01

    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  8. Femtosecond laser nano-fabrication and its biomedical applications

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein

    This dissertation aims to develop a new technique for fabrication of three-dimensional (3-D) interwoven nanofibrous platforms using femtosecond laser ablation of solids in ambient conditions. In the first part, the mechanism of ablation of solids by multiple femtosecond laser pulses in ambient air is described in an explicit analytical form. The formulas for evaporation rates and the number of ablated particles for laser ablation by multiple pulses as a function of laser parameters, background gas, and material properties are predicted and compared to experimental results. Later, the formation mechanism of the nanofibrous structures during laser ablation of targets in the presence of air is discussed. The results indicate that femtosecond laser ablation of solids at air background yields crystalline nanostructures. It's also shown that this technique allows synthesis of 3-D nanostructures on a wide range of materials including synthetic and natural materials. Later, potential practice of the proposed technique for integration of nanostructures on transparent platforms as well as inside microstructures toward device fabrication is investigated. Presented studies show that integrated nanostructure inside microchannels can be fabricated in one single step using this technique. Finally, to address the potential use of the nanostructures for biomedical application, several studies are performed to evaluate the bioactivity and biocompatibility of the nanostructures. The fabricated nanostructures incorporate the functions of 3-D nano-scaled topography and modified chemical properties to improve osseointegration, while at the same time leaving space for delivering other functional agents. In vitro experiments reveal that the titania nanofibrous platforms possess an excellent bioactivity and can induce rapid, uniform, and controllable bone-like apatite precipitation once immersed in simulated body fluid (SBF). Furthermore, the influence of synthesized titanium platforms on

  9. Investigation of gigawatt millimeter wave source applications. Final technical report

    SciTech Connect

    Bruder, J.A.; Belcher, M.L.

    1991-09-01

    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  10. Ultra-intense Laser Applications to the Industries at GPI

    SciTech Connect

    Kitagawa, Yoneyoshi; Mori, Yoshitaka; Ootsuka, Shuji; Makino, Takahiro; Ohta, Mari; Suzuki, Tetsuya; Kuwabara, Hajime

    2009-01-22

    The laser accelerator provides us not only ultra high field, but also extremely short pulse radiation sources, the laser-produced X-rays. Using a 1.2 TW table-top Ti:sap laser, we are pursuing the activities for the industrial application. First we proposed a new injection acceleration scheme using the ultra short beat-wave accelerator for the economical radiation source. Then we proposed two applications both on the backward see-through vision of distant objects using the laser X-rays, and on the X-ray illumination on Aspergillus awamori spores, which is 100 times effective of the current X-ray tube cases.

  11. Commercial applications of high-powered laser diodes

    NASA Astrophysics Data System (ADS)

    Cunningham, David L.; Jacobs, Richard D.

    1995-04-01

    The development of high power laser diodes using surface emitting distributed feedback (SEDFB) techniques has matured to the point where serious marketing analyses have been conducted. While development of the base technology continues, the initiation of systems applications and manufacturing engineering has begun. This effort, in direct response to growing market demand, is the critical bridge between research and the development of viable products for commercial applications. This paper addresses the history of laser technology development, the current status of high powered laser diode development, the forces defining current and future markets and the role of `conventional wisdom' in laser technology and market development.

  12. Laser application in otology for hearing restoration

    NASA Astrophysics Data System (ADS)

    Lombardo, Igino

    1994-09-01

    Prior to the development of the stapes replacement prosthesis in the early 1950s, loss of hearing due to otosclerosis remained an untreatable disease. Today, loss of hearing due to otosclerosis can be restored in the majority of cases to near normal levels. Since 1980 the laser has played a major and important role in otosclerosis surgery. This paper explores the use of lasers for hearing restoration and compares the results of laser surgery to non-laser surgery.

  13. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  14. The current status of laser applications in dentistry.

    PubMed

    Walsh, L J

    2003-09-01

    A range of lasers is now available for use in dentistry. This paper summarizes key current and emerging applications for lasers in clinical practice. A major diagnostic application of low power lasers is the detection of caries, using fluorescence elicited from hydroxyapatite or from bacterial by-products. Laser fluorescence is an effective method for detecting and quantifying incipient occlusal and cervical carious lesions, and with further refinement could be used in the same manner for proximal lesions. Photoactivated dye techniques have been developed which use low power lasers to elicit a photochemical reaction. Photoactivated dye techniques can be used to disinfect root canals, periodontal pockets, cavity preparations and sites of peri-implantitis. Using similar principles, more powerful lasers can be used for photodynamic therapy in the treatment of malignancies of the oral mucosa. Laser-driven photochemical reactions can also be used for tooth whitening. In combination with fluoride, laser irradiation can improve the resistance of tooth structure to demineralization, and this application is of particular benefit for susceptible sites in high caries risk patients. Laser technology for caries removal, cavity preparation and soft tissue surgery is at a high state of refinement, having had several decades of development up to the present time. Used in conjunction with or as a replacement for traditional methods, it is expected that specific laser technologies will become an essential component of contemporary dental practice over the next decade.

  15. Laser enhanced microwave plasma isotope separation. Final report, September 30, 1992--September 29, 1995

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1996-06-01

    The experimental research was to focus on laser excitation of a low abundance isotope and then ionize and separate the isotope of low abundance using a microwave/ECR discharge at 2.45 GHz. A small compact electron cyclotron resonance ion source, which uses permanent magnets, was constructed during this project. The dye laser was purchased and later an excimer laser had to also be purchased because it turned out that the dye laser could not be pumped by our copper laser. It was intended that the dye laser be tuned to a wavelength of 670.8 nm, which would excite {sup 6}Li which would then be preferentially ionized by the ECR source and collected with a charged grid. The degree of enrichment was to be determined using thermal ionization mass spectrometry. The final objective of this project was to assess the feasibility of this system to large-scale production of stable isotopes. However the funding of this project was interrupted and we were not able to achieve all of our goals.

  16. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    PubMed

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology.

  17. Laser polishing of niobium for SRF applications

    SciTech Connect

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael

    2013-09-01

    Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.

  18. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  19. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  20. Gas lasers and applications. [shock tube technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1973-01-01

    A brief review of laser elements is given. Flowing gas lasers are represented to have the best potential for high average power. The background of shock-tube researchers and the shock tube itself are alleged to be ideally suited for the development of such lasers. Three types - the electric discharge, the gasdynamic, and the chemical laser - are discussed briefly. A legion number of possible gas lasers is enumerated. With the development of their potential for higher power and efficiency, many additional and important uses of lasers are predicted, even beaming power through space for long distances, up to 1 AU. A few details of some current high-power gasdynamic laser devices are given.

  1. Laser anemometry techniques for turbine applications

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Oberle, Lawrence G.

    1987-01-01

    Laser anemometry offers a nonintrusive means for obtaining flow field information. Current research at NASA Lewis Research Center is focused on instrumenting a warm turbine facility with a laser anemometer system. In an effort to determine the laser anemometer system best qualified for the warm turbine environment, the performance of a conventional laser fringe anemometer and a two spot time of flight system were compared with a new, modified time of flight system, called a Four Spot laser anemometer. The comparison measurements were made in highly turbulent flows near walls. The Four Spot anemometer uses elliptical spots to increase the flow acceptance angle to be comparable to that of a Laser Fringe Anemometer. Also, the Four Spot uses an optical code that vastly simplifies the pulse detection processor. The results of the comparison measurements will exemplify which laser anemometer system is best suited to the hostile environment typically encountered in warm rotating turbomachinery.

  2. Laser applications in machining slab materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping

    1990-10-01

    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  3. Laser anemometry techniques for turbine applications

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Oberle, Lawrence G.

    1987-01-01

    Laser anemometry offers a nonintrusive means for obtaining flow field information. Current research at NASA Lewis Research Center is focused on instrumenting a warm turbine facility with a laser anemometer system. In an effort to determine the laser anemometer system best qualified for the warm turbine environment, the performance of a conventional laser fringe anemometer and a two spot time of flight system were compared with a new, modified time of flight system, called a Four Spot laser anemometer. The comparison measurements were made in highly turbulent flows near walls. The Four Spot anemometer uses elliptical spots to increase the flow acceptance angle to be comparable to that of a Laser Fringe Anemometer. Also, the Four Spot uses an optical code that vastly simplifies the pulse detection processor. The results of the comparison measurements will exemplify which laser anemometer system is best suited to the hostile environment typically encountered in warm rotating turbomachinery.

  4. Properties and Applications of Laser Generated X-Ray Sources

    SciTech Connect

    Smith, R F; Key, M H

    2002-02-25

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and x-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarizes, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Conclusions are drawn on areas where the development of laser based sources is most promising and competitive in terms of applications potential.

  5. Injection seeded single mode alexandrite ring laser for lidar applications

    NASA Technical Reports Server (NTRS)

    Lee, H. Sang; Notari, Anthony

    1992-01-01

    Along with many spectroscopic applications, atmospheric lidar measurements require a tunable, narrow band laser with a very high degree of spectral purity. A standing wave pulsed alexandrite laser tuned by injection seeding with an AlGaAs laser diode has demonstrated high stability. The standing wave cavity, however, poses several difficulties in light of the single mode operation and efficient seeding beam into the cavity. In order to overcome these problems and to operate the high power alexandrite laser in a single axial mode with a high spectral purity, a new ring laser system is being developed. The design features of the ring laser and some measurements of the laser characteristics are presented.

  6. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  7. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  8. Clinical application of erbium:YAG laser in periodontology.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2008-01-01

    Various lasers have been introduced for the treatment of oral diseases and their applications in dental clinics have become a topic of much interest among practitioners. Technological advances and improvements have increased the choices of the available laser systems for oral use. Among them, a recently developed erbium-doped:yttrium aluminum garnet (Er:YAG) laser system possesses suitable characteristics for oral soft and hard tissue ablation. Due to its high absorption in water, an effective ablation with a very thin surface interaction occurs on the irradiated tissues without any major thermal damage to the irradiated and surrounding tissues. In the field of periodontics, the application of Er:YAG laser for periodontal hard tissue has begun with studies from Japanese and German researchers. Several in vitro and clinical studies have already demonstrated an effective application of the Er:YAG laser for calculus removal and decontamination of the diseased root surface in periodontal non-surgical and surgical procedures. However, further studies are required to better understand the various effects of Er:YAG laser irradiation on biological tissues for its safe and effective application during periodontal and implant therapy. Randomized controlled clinical trials and more basic studies have to be encouraged and performed to confirm the status of Er:YAG laser treatment as an adjunct or alternative to conventional mechanical periodontal therapy. In this paper, the advantages and current clinical applications of this laser in periodontics and implant dentistry are summarized based on current scientific evidence.

  9. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  10. 15 CFR 301.7 - Final disposition of an application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Final disposition of an application. 301.7 Section 301.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS...

  11. Final report: Compiled MPI. Cost-Effective Exascale Application Development

    SciTech Connect

    Gropp, William Douglas

    2015-12-21

    This is the final report on Compiled MPI: Cost-Effective Exascale Application Development, and summarizes the results under this project. The project investigated runtime enviroments that improve the performance of MPI (Message-Passing Interface) programs; work at Illinois in the last period of this project looked at optimizing data access optimizations expressed with MPI datatypes.

  12. Biomedical applications on laser technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Bigio, Irving J.; Loree, Thomas R.

    Los Alamos has a long history of research in laser technology, and over the past few years a program was begun directing some of that technology to a variety of applications in biology and medicine. As examples, two of these activities are described: the use of a laser interferometer to measure the microwave absorption spectrum of DNA, and spectral measurements of the secondary light produced during laser corneal ablation.

  13. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    SciTech Connect

    Jacques, S.L. . Cancer Center); Welch, A.J. ); Motamedi, M. . Medical Branch); Rastegar, S. ); Tittel, F. ); Esterowitz, L. )

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  14. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    SciTech Connect

    Jacques, S.L.; Welch, A.J.; Motamedi, M.; Rastegar, S.; Tittel, F.; Esterowitz, L.

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  15. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    SciTech Connect

    Jacques, S.L.; Welch, A.J.; Motamedi, M.; Rastegar, S.; Tittel, F.; Esterowitz, L.

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  16. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    NASA Astrophysics Data System (ADS)

    Jacques, S. L.; Welch, A. J.; Motamedi, M.; Rastegar, S.

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  17. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  18. Excimer lasers: Applications, beam delivery systems, and laser design; Proceedings of the Meeting, Boston, MA, Nov. 18, 19, 1992

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    1993-04-01

    The papers presented in this volume provide an overview of recent advances in excimer laser design and performance and several related technologies, as well as new excimer applications. Topics discussed include laser ablation as a new tool for material science, excimer laser damage testing of optical materials, improvements in crystal optics for excimer lasers, and excimer laser processing of aerospace alloys. Attention is also given to novel applications of excimer lasers for fabricating biomedical and sensor products, progress in discharge-pumped excimer lasers, and micromachining with waveguide excimer lasers.

  19. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  20. Scientific applications of frequency-stabilized laser technology in space

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  1. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    NASA Astrophysics Data System (ADS)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  2. Applications of high power lasers in the battlefield

    NASA Astrophysics Data System (ADS)

    Kalisky, Yehoshua

    2009-09-01

    Laser weapon is currently considered as tactical as well as strategic beam weapons, and is considered as a part of a general layered defense system against ballistic missiles and short-range rockets. This kind of weapon can disable or destroy military targets or incoming objects used by small groups of terrorists or countries, at the speed of light. Laser weapon is effective at long or short distances, owing to beam's unique characteristics such as narrow bandwidth, high brightness, coherent both in time and space, and it travels at the speed of light. Unlike kinetic weapon, laser weapon converts the energy stored in an electromagnetic laser beam into a large amount of heat aimed on a small area spot at the skin of the missile, usually close to the liquid fuel storage tank, warhead case or engine area, following by a temperature increase and finally-catastrophic failure by material ablation or melt. The usefulness of laser light as a weapon has been studied for decades but only in recent years became feasible. There are two types of lasers being used: gas lasers and solid state lasers, including fiber lasers. All these types of lasers will be discussed below.

  3. [Use of the thermal laser effect of laser irradiation for cardiovascular applications exemplified by the Nd:YAG laser].

    PubMed

    Ischinger, T; Coppenrath, K; Weber, H; Enders, S; Unsöld, E; Hessel, S

    1989-11-01

    Techniques of percutaneous transluminal application of laser energy for vessel recanalization have been used clinically since 1983. The commonly used Nd:YAG and argon lasers achieve ablation of atherosclerotic plaques by thermal action (vaporization). In order to reduce undesirable thermal damage in the neighborhood of the target tissue and to avoid vessel perforation, optimal irradiation parameters, modified (atraumatic) fiber tips (hot tips, sapphires), and steerable catheter systems needed to be implemented. Favorable results from peripheral application have encouraged use in the coronary circulation. More recently, coagulative tissue effects of circumferential irradiation of the vessel wall during balloon dilatation have been used for stabilization of acute and late results after mechanical balloon angioplasty. Enhancement of the differential light absorption of atherosclerotic plaque by use of biological dyes may further improve selective intravascular laser application. Intraoperative ECG-guided laser coagulation of arrhythmogenic areas of myocardium is a method for treatment of malignant arrhythmias. Transluminal non-operative application of myocardial laser photocoagulation has now been tested experimentally and shown to be safe and effective. There was no arrhythmogenicity or thermal damage of coronary arteries associated with this method. Innovative techniques such as nanosecond pulsed excimer lasers (athermal action) and development of "intelligent" lasers--which are equipped with spectroscopy-guided feedback systems for plaque recognition--have opened new perspectives and will further improve safety and efficacy of clinical laser application. However, according to current experience, the thermally acting Nd:YAG laser is an effective and versatile mode of laser therapy for selected cardiovascular indications.

  4. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  5. Laser Printing for a Variety of Library Applications.

    ERIC Educational Resources Information Center

    Kelly, Glen J.

    1988-01-01

    Summarizes the current status of laser printers in terms of cost, hardware and software requirements, measurement and operational considerations, ease of use, and maintenance. The cost effectiveness of laser printing in libraries for applications such as spine labels, purchase orders, and reports, is explored. (9 notes with references) (CLB)

  6. Industrial applications of high-power copper vapor lasers

    SciTech Connect

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  7. Laser Printing for a Variety of Library Applications.

    ERIC Educational Resources Information Center

    Kelly, Glen J.

    1988-01-01

    Summarizes the current status of laser printers in terms of cost, hardware and software requirements, measurement and operational considerations, ease of use, and maintenance. The cost effectiveness of laser printing in libraries for applications such as spine labels, purchase orders, and reports, is explored. (9 notes with references) (CLB)

  8. Solid state dye laser for medical applications

    NASA Astrophysics Data System (ADS)

    Aldag, Henry R.

    1994-06-01

    The development of solid state dye lasers could lead to a major breakthrough in the cost and compactness of a medical device. Advantages include: elimination of the flow system for the gain medium; ease with which to implement wavelength agility or the replacement of a degraded rod or sheet; and toxicity and flammability become a non-issue. Dye lasers have played a role in cardiology, dermatology, and urology. Of these cardiology is of interest to Palomar. The Palomar Model 3010 flashlamp-pumped dye laser medical device was used during phase 1 FDA clinical trials to break-up blood clots that cause heart attacks, a process known as coronary laser thrombolysis. It is the objective of this research and development effort to produce solid matrix lasers that will replace liquid dye lasers in these medical specialties.

  9. Innovative lasers for uranium isotope separation. Final report, September 1, 1989--April 1, 1993

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed.

  10. Holmium laser applications of the prostate.

    PubMed

    Lerner, Lori B; Tyson, Mark D

    2009-11-01

    The high-powered holmium laser is an excellent tool for the surgical treatment of benign prostatic hyperplasia. This article discusses the background of holmium use in the prostate and describes the surgical techniques of holmium laser ablation of the prostate and holmium laser enucleation of the prostate. Operative challenges are reviewed with suggestions as to how to avoid these problems or deal with them when they arise. Surgical outcomes and a thorough literature review are both presented.

  11. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  12. Basics of laser application to dermatology.

    PubMed

    Watanabe, Shinichi

    2008-04-01

    Q-switched lasers, with a pulse of light sufficiently short (nanosecond-domain) is demonstrated to be useful for treatment of dermal melanocytosis, blue-black tattoos, melanocytic nevi, and solar lentigines, although transient postinflammatory hyperpigmentation usually developed in the irradiated area during the following 3-4 months. If the postinflammatory pigmentation does not disappear after 1 year, incontinentia pigmenti histologica is a possibility. However, the pigment in café-au-lait macules responds variably to treatment. Melasma shows no response to laser. Therefore, accurate diagnosis is the key to success in the laser treatment. Laser treatment of vascular lesions is based on selective absorption by blood with thermal injury to the vessel wall. Therefore, the pulse-width of the vascular-specific lasers must be longer (microsecond-domain) than that of pigment-specific lasers. Because the wavelength of the lasers for vascular lesions, however, cannot penetrate into the deep areas of the skin, not all vascular lesions can be treated. Laser or light-assisted hair removal offers an efficient way to permanently reduce excessive hair growth. Skin rejuvenation is possible by laser or pulsed light with millisecond-domain pulse-width. Because these light sources, however, cause severe damage to the skin surface, the exposure energy must be reduced and the treatment must be combined with cooling devices. Therefore, the clinical results of light-assisted skin rejuvenation are not prominent. In conclusion, the pulse-width and wavelength of the laser light are critical parameters for laser treatments. If we obtain information about these parameters for specific lasers, we can expect the results of the treatment to be positive.

  13. Nuclear-driven flashlamp pumping of the atomic iodine laser. Final report

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  14. Laser reduced graphene for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Bock, Christina

    2017-01-01

    Graphene was prepared by excimer laser irradiation reduction of graphite oxide dissolved in an aqueous solution at different laser energies and irradiation time. The morphologies and structure of the laser reduced graphene were characterized using scanning electron microscopy, low angle X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The XRD results confirm that the deoxygenation of the graphite oxide sheets occurred almost completely for all laser irradiation conditions used. The graphene fabricated by laser irradiation reduction appears to be randomly aggregated, crumpled, disordered and small sheet solid material. The total amount of oxygen functional groups reduced significantly and the CC/CO intensity ratio increased, however, the atomic percentages of the Cdbnd O double bond were increased after laser reduction. The laser reduced graphene was used as the electrode active material for supercapacitors and its specific capacitance was evaluated in a two electrode cell in either a 0.5 M Na2SO4 aqueous or a 1 M Tetraethylammoniumtetrafluoroborate acetonitrile based electrolyte. The specific capacitance of the laser fabricated graphene was found to depend on the energy and irradiation time of the laser. The highest specific capacitance was determined to be 141 F/g at 1.04 A/g and 84 F/g at 1.46 A/g in the aqueous and ACN electrolytes, respectively.

  15. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  16. Laser radar technology and applications; Proceedings of the Meeting, Quebec, Canada, June 3-5, 1986

    NASA Astrophysics Data System (ADS)

    Cruickshank, James M.; Harney, Robert C.

    1986-01-01

    Various papers on laser radar technology and applications are presented. The topics considered include: eye-safe solid lasers for lidar applications, practical DF laser for ranging applications, ultrafast surface barrier photodetectors, performance analyses for peak-detecting laser radars, multiple scattering for laser beams propagating in a layered atmosphere, laser radar cross section of objects immersed in the earth's atmosphere, measurements of pulse coherence in mode-locked TEA-CO2 lasers, and single longitudinal mode operation of a continuously tunable high pressure TE-CO2. Also discussed are: amplitude-modulated laser system for distance and displacement measurement, minilaser rangefinder, laser docking system radar flight experiment, improved optical resonator for laser radars, design of frequency-stable TEA-CO2 lasers, HgCdTe photodiodes for heterodyne applications, acoustooptic spectrum analyzer for laser radar applications, laser cloud mapper and its applications, scanning lidar bathymeter for water depth measurement, and fluorescence lidar for land and sea remote sensing.

  17. Laser Science and its Applications in Prosthetic Rehabilitation

    PubMed Central

    Gounder, Revathy; Gounder, Srinivasan

    2016-01-01

    The minimal invasive nature of lasers, with quick tissue response and healing has made them a very attractive technology in various fields of dentistry which serves as a tool to create a better result than ever before. The rapid development of lasers and their wavelengths with variety of applications on soft and hard tissues may continue to have major impact on the scope and practice in prosthetic dentistry. The purpose of this article is to make every clinician familiar with the fundamentals of lasers and different laser systems to incorporate into their clinical practices. PMID:28491254

  18. Biomedical applications of laser technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Bigio, Irving J.; Loree, Thomas R.

    1991-05-01

    Los Alamos has a long history of research in laser technology and over the past few years we have begun to build a program directing some of that technology to a variety of applications in biology and medicine. As examples two of these activities will be described in this manuscript: 1) the use of a laser interferometer to measure the microwave absorption spectrum of DNA and 2) spectral measurements of the secondary light produced during laser corneal ablation with an ArF laser.

  19. Laser Science and its Applications in Prosthetic Rehabilitation.

    PubMed

    Gounder, Revathy; Gounder, Srinivasan

    2016-01-01

    The minimal invasive nature of lasers, with quick tissue response and healing has made them a very attractive technology in various fields of dentistry which serves as a tool to create a better result than ever before. The rapid development of lasers and their wavelengths with variety of applications on soft and hard tissues may continue to have major impact on the scope and practice in prosthetic dentistry. The purpose of this article is to make every clinician familiar with the fundamentals of lasers and different laser systems to incorporate into their clinical practices.

  20. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  1. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  2. Laser vibration sensing at Fraunhofer IOSB: review and applications

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Göhler, Benjamin; Hill, Chris A.; van Putten, Frank

    2017-03-01

    Laser vibrometry based on coherent detection allows noncontact measurements of small-amplitude vibration characteristics of objects. This technique, commonly using the Doppler effect, offers high potential for short-range civil applications and for medium- or long-range applications in defense and security. Most commercially available laser Doppler vibrometers are for short ranges (up to a few tens of meters) and use a single beam from a low-power HeNe laser source (λ=633 nm). Medium- or long-range applications need higher laser output power, and thus, appropriate vibrometers typically operate at 1.5, 2, or 10.6 μm to meet the laser safety regulations. Spatially resolved vibrational information can be obtained from an object by using scanning laser vibrometers. To reduce measuring time and to measure transient object movements and vibrational mode structures of objects, several approaches to multibeam laser Doppler vibrometry have been developed, and some of them are already commercially available for short ranges. We focus on applications in the field of defense and security, such as target classification and identification, including camouflaged or partly concealed targets, and the detection of buried land mines. Examples of civil medium-range applications are also given.

  3. Microhardness of enamel adjacent to orthodontic brackets after CO2 laser irradiation and fluoride application.

    PubMed

    Stangler, Leonardo Pucci; Romano, Fábio Lourenço; Shirozaki, Mariana Umekita; Galo, Rodrigo; Afonso, Alessandra Marques Correa; Borsatto, Maria Cristina; Matsumoto, Mírian Aiko Nakane

    2013-01-01

    This study evaluated the effectiveness of carbon dioxide (CO2) laser combined or not with fluoride application on the surface microhardness of enamel adjacent to orthodontic brackets. Fifteen human molars were selected from which 30 enamel fragments measuring 4 mm2 were obtained. The fragments were embedded in PCV tubes with acrylic resin and prepared using water abrasive paper, felt disks and alumina. Orthodontic brackets cut in half were bonded to enamel and 3 microhardness readings were performed on the adjacent surface, as follows: initial, after cariogenic challenge and final. The specimens were divided into the following 3 groups (n=10): Group C: control, Group L: irradiated with CO2 laser, and Group FL: topical fluoride application and CO2 laser irradiation. After initial reading, the specimens were placed in a demineralizing solution for 32 h and the second reading was to verify if demineralization was uniform in all groups. After the treatments, the specimens were submitted to DES-RE cycling for 8 days followed by final surface microhardness reading. The data were analyzed statistically using ANOVA and Duncan test (α=0.05). At the final measurement Group FL obtained higher microhardness value than Groups C and L (p<0.05). Groups L and FL were statistically superior to Group C (p<0.05). Irradiation with CO2 laser around orthodontic brackets combined or not with topical fluoride application was effective to increase the surface microhardness of enamel.

  4. Laser-induced plasma spectroscopy: principles, methods and applications

    SciTech Connect

    Lazic, Violeta; Colao, Francesco; Fantoni, Roberta; Spizzichino, Valeria; Jovicevic, Sonja

    2006-12-01

    Principles of the Laser Induced Plasma Spectroscopy and its advances are reported. Methods for obtaining quantitative analyses are described, together with discussion of some applications and the specific problems.

  5. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  6. Laser power transmission concepts for Martian applications

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Conway, E. J.; Meador, W. E.; Humes, D. H.

    1989-01-01

    Long-term, highly reliable, flexible power will be required to support many diverse activities on Mars and for rapid development of the Mars environment. The potential of laser power transmission for supporting science, materials processing, transportation, and human habitats is discussed. Some advantageous locations for laser power stations in Mars orbit are developed.

  7. Laser radar for spacecraft guidance applications

    NASA Technical Reports Server (NTRS)

    Liebe, C. C.; Abramovici, A.; Bartman, R. K.; Bunker, R. L.; Chapsky, J.; Chu, C. C.; Clouse, D.; Dillon, J. W.; Hausmann, B.; Hemmati, H.; hide

    2003-01-01

    A flight qualified laser radar called LAMP (LAser MaPper) is under development at JPL. LAMP is a guidance and control sensor that can form 3 dimensional images of its field of regard. This paper describes the detailed design of the LAMP sensor.

  8. Solid state lasers for field application

    NASA Astrophysics Data System (ADS)

    Motenko, Boris N.; Ermakov, Boris A.; Berezin, Boris

    1991-03-01

    Lazer heads without forced cooling and of simple design used phosphate neodymium glass of laser rods for pulse rangfinders have been investigated.The headsensure laser performance for 20 years under adverse climatic conditions (t+50 C, relative humiditi of 98%) with an operating time of 4.10

  9. Application of Laser in Oral Surgery

    PubMed Central

    Asnaashari, Mohammad; Zadsirjan, Saeede

    2014-01-01

    In this review collected from the literature on usage of laser in oral minor surgery based on a Medline search in the time period between the years: 2008 and 2013, the most current evidence on laser-assisted oral minor surgery is going to be surveyed. PMID:25653807

  10. Micropulsed diode laser therapy: evolution and clinical applications.

    PubMed

    Sivaprasad, Sobha; Elagouz, Mohammed; McHugh, Dominic; Shona, Olajumoke; Dorin, Giorgio

    2010-01-01

    Many clinical trials have demonstrated the clinical efficacy of laser photocoagulation in the treatment of retinal vascular diseases, including diabetic retinopathy. There is, however, collateral iatrogenic retinal damage and functional loss after conventional laser treatment. Such side effects may occur even when the treatment is appropriately performed because of morphological damage caused by the visible endpoint, typically a whitening burn. The development of the diode laser with micropulsed emission has allowed subthreshold therapy without a visible burn endpoint. This greatly reduces the risk of structural and functional retinal damage, while retaining the therapeutic efficacy of conventional laser treatment. Studies using subthreshold micropulse laser protocols have reported successful outcomes for diabetic macular edema, central serous chorioretinopathy, macular edema secondary to retinal vein occlusion, and primary open angle glaucoma. The report includes the rationale and basic principles underlying micropulse diode laser therapy, together with a review of its current clinical applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  12. Advanced laser diodes for sensing applications

    SciTech Connect

    VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W.; ALLERMAN,ANDREW A.

    2000-01-01

    The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

  13. Scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-03-01

    The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

  14. A Multi-Wavelength IR Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  15. Polymer pixel enhancement by laser-induced forward transfer for sensor applications

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Palla-Papavlu, A.; Dinescu, M.; Shaw Stewart, J.; Lippert, T. K.; di Pietrantonio, F.; Cannata, D.; Benetti, M.; Verona, E.

    2010-11-01

    This paper presents polymer pixel printing for applications in chemoselective sensors where nanosecond laser direct transfer methods, with a triazene polymer (TP) acting as a Dynamic Release Layer (DRL), are used. A systematic study of laser fluence, donor film morphology and both single- and multiple-pixel deposition were optimized with the final goal to obtain continuous pixels of sensitive polymers, polyethylenimine (PEI) and polyisobutylene (PIB), on SAW surfaces. Morphology characterization after the laser transfer has been performed by Optical Microscopy and Scanning Electron Microscopy (SEM). The responses of the coated transducers were measured after deposition with different laser fluences and it was found that a fluence under 625 mJ/cm2 was required in order to prevent damage of the interdigital transducers (IDT) of the sensor devices. The sensitivity of the polymer coated devices to acetone concentrations gives an indication that LIFT can be used for printing sensitive polymer pixels onto transducer devices.

  16. Optimized high-power diode laser, laser arrays, and bars for pump applications

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Wolf, J.; Hennig, P.

    2009-02-01

    Broad area diode laser and diode laser bars are the most efficient light sources. In comparison to solid state laser or gas laser systems the over all beam quality of the diode laser is poor. Thus most application of diode laser bars is high efficient pumping of solid state lasers converting the beam quality and scaling the power of laser systems within the kW range. The pump efficiency and the beam coupling efficiency of the diode laser pumped systems has to be increased to meet the increasing laser market demands for reduced costs. JENOPTIK Diode Lab GmbH (JDL) has optimized their high power brilliance bars to enable reliable high power operation especially, for the 9xx nm wavelength range and low far field divergences. Superior reliability with long operation time of 13,000 hours and high power operation of 200 W are demonstrated for high power bars high filling factor mounted on passively cooled heat sinks. Smaller far field divergence at high power levels requires longer cavity length and higher efficiencies in the beam coupling needs requires lower filling factors. The new high brilliance bars and arrays with 20% filling factor are showing high power operation up to 95 W and a slow axis beam divergence of less than 8° (95% power content).

  17. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  18. LDRD Final Report for''Tactical Laser Weapons for Defense'' SI (Tracking Code 01-SI-011)

    SciTech Connect

    Beach, R; Zapata, L

    2002-01-30

    The focus of this project was a convincing demonstration of two new technological approaches to high beam quality; high average power solid-state laser systems that would be of interest for tactical laser weapon applications. Two pathways had been identified to such systems that built on existing thin disk and fiber laser technologies. This SI was used as seed funding to further develop and vet these ideas. Significantly, the LLNL specific enhancements to these proposed technology paths were specifically addressed for devising systems scaleable to the 100 kW average power level. In the course of performing this work we have established an intellectual property base that protects and distinguishes us from other competitive approaches to the same end.

  19. Laser trimming of graphene oxide for functional photonic applications

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaorui; Lin, Han; Yang, Tieshan; Jia, Baohua

    2017-02-01

    This article reviews the recent photonic applications on graphene oxide and reduced graphene oxide films via the direct laser printing method. Attention has been paid to the unique optical property modulations of graphene oxide films during the laser reduction process, which enable a wide range of functional photonic and optoelectronic devices. The exotic properties of graphene oxide during the laser reduction process, including the tunable dispersion relation, flexible patterning capability, surface functionalization possibility, wavefront shaping ability, and the mechanical robustness and strength, make it a promising integratable platform for the next-generation ultrathin, light-weight and flexible photonic and optoelectronic applications.

  20. Clinical dental application of Er:YAG laser for Class V cavity preparation.

    PubMed

    Matsumoto, K; Nakamura, Y; Mazeki, K; Kimura, Y

    1996-06-01

    Following the development of the ruby laser by Maiman in 1960, the Nd:YAG laser, the CO2 laser, the semiconductor laser, the He-Ne laser, excimer lasers, the argon laser, and finally the Er:YAG laser capable of cutting hard tissue easily were developed and have come to be applied clinically. In the present study, the Er:YAG laser emitting at a wavelength of 2.94 microns developed by Luxar was used for the clinical preparation of class V cavities. Parameters of 8 Hz and approx. 250 mJ/pulse maximum output were used for irradiation. Sixty teeth of 40 patients were used in this clinical study. The Er:YAG laser used in this study was found to be a system suitable for clinical application. No adverse reaction was observed in any of the cases. Class V cavity preparation was performed without inducing any pain in 48/60 cases (80%). All of the 12 cases that complained of mild or severe intraoperative pain had previously complained of cervical dentin hypersensibility during the preoperative examination. Cavity preparation was completed with this laser system in 58/60 cases (91.7%). No treatment-related clinical problems were observed during the follow-up period of approx. 30 days after cavity preparation and resin filling. Cavity preparation took between approx. 10 sec and 3 min and was related more or less to cavity size and depth. Overall clinical evaluation showed no safety problem with very good rating in 49 cases (81.7%).

  1. Photodetachment neutralizer development: Laser window design study: Volume 1, Summary: Final report

    SciTech Connect

    Not Available

    1984-09-30

    Photodetachment neutralization (PDN) has been proposed as a major improvement to the gas cell neutralization utilized on current neutral beam heating systems for magnetic containment fusion devices. This PDN system will use a Chemical Oxygen Iodine Laser (COIL) to produce a light beam with photons of a near optimal wavelength which can be reflected back and forth across the path of the ion beam to create the necessary high density light ''cloud'' required for the photodetachment process. In a fusion device the neutral beam goes directly into the process vacuum chamber and therefore the oxygen iodine gas mixture in the laser must be isolated by a window from the neutral beam channel without loss of too much light or leakage of miniscule quantities of laser gas. The aerodynamic windows that have traditionally been used with chemical lasers are viewed as undesirable for the fusion application where any contamination of the fusion vacuum chamber by laser gas would be a big problem. It was concluded that the technological issues were uncertain enough that a verification by designing, fabricating, and testing of a demonstration window would be required before feasibility of such a window could be considered certain. The statement of work defined for this study consisted of two tasks: determination of the absorption characteristics of the proposed sapphire window material and the fluorocarbon coolant, and design and analysis of the proposed double disk heat exchanger window and demonstration test hardware.

  2. Final Report: Laser-Based Optical Trap for Remote Sampling of Interplanetary and Atmospheric Particulate Matter

    NASA Technical Reports Server (NTRS)

    Stysley, Paul

    2016-01-01

    Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.

  3. Enabling laser applications in microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  4. Laser applications to fluid materials: laser-induced cavitation in cryogenic liquid and gas decomposition by laser

    NASA Astrophysics Data System (ADS)

    Maeno, Kazuo; Sato, Hitoshi; Endo, Seiichi

    1999-05-01

    In this paper laser applications to fluid dynamical problems are presented. Firstly as for the recent research on cavitations, pulsed-laser-induced cavitation bubble in liquid nitrogen is studied. The bubble is produced by focused and pulsed irradiation of second harmonics of YAG laser in the cryostat. The dynamics of laser-induced bubble is visualized by high-speed shadowgraphs and schlieren photographs by an image-converter camera (Imacon-790). Bubble and solid wall interactions are also investigated. Based on the results obtained, a novel laser surface processing technology using the pulse-laser-induced cavitation bubbles is secondly proposed. The possibility of cold material surface processing by produced cavitation bubble is discussed including the cryogenic range. Furthermore, discussing by the fundamental results of the experiment of laser-gas molecular absorption, the possibility of decomposition of environmental gases by strong CW CO2 laser irradiation is also studied. Freon 12, 113, and other environmental gases including SF6 are very tough to be decomposed, and they break effectively the ozone molecules at high altitude above the Earth, or they heat up the earth. The wavelength range of the infrared laser is suitable for the molecular absorption to increase their temperature to be ionized. The possibility and trial experiments are discussed.

  5. Final optics protection in laser inertial fusion with cryogenic liquid droplets

    SciTech Connect

    Moir, R W

    2000-08-31

    A burst of x rays and vaporized debris from high yield targets can damage the final optics in laser inertial fusion energy (IFE) power plants and in laboratory experimental facilities such as the National Ignition Facility (NIF) or Laser MegaJoule (LMJ). Noble gases such as Xe or Kr have been proposed to protect final optics from target-produced x rays and debris. Some problems with the use of such ambient gas fills are the large amount of gas involved, heat transfer to a cryogenic target, potential resonant reradiation of x rays absorbed, and a nonuniform index of refraction due to turbulence interfering with the focusing of laser light. Also the fast igniter laser intensity may be too great for propagation through an ambient gas. We propose to provide the gas in the form of many small closely spaced liquid droplets injected in front of the optics. In the case of NIF, the droplets would be injected only when needed just before a high yield shot. The laser light that is absorbed will cause evaporation of the liquid and spreading of this gas. The liquid droplets intercept only {approx}5% of the laser light allowing {approx}95% to pass through to the target. The light absorbed in the NIF example (assumed to be 50% of the intercepted light, whose intensity is 3.6 x 10{sup 9} W/cm{sup 2}) would cause the xenon droplets to evaporate and spread uniformly such that the x rays from 10 eV to 2 keV are appreciably attenuated when they arrive 40 to 70 ns later at the optical surface. X rays above 3 keV and below 10 eV are not attenuated very much but their intensities are rapidly falling off in this range anyway. Typical droplet sizes are {approx}10 {micro}m radius with a spacing of {approx}0.4 mm. The gas would also protect vaporized target debris from condensing on the optics due to the 0.2 mg/cm{sup 2} of xenon (5 x 10{sup 17} cm{sup -2} or 8 Torr-cm for l-e-folding of 1 keV x-rays). These droplets might be produced with technology similar to ink jet technology and photo

  6. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  7. Silicon PV module customization using laser technology for new BIPV applications

    NASA Astrophysics Data System (ADS)

    García-Ballesteros, Juan José; Lauzurica, Sara; Morales, Miguel; del Caño, Teodosio; Valencia, Daniel; Casado, Leonardo; Balenzategui, José Lorenzo; Molpeceres, Carlos

    2014-10-01

    It is well known that lasers have helped to increase efficiency and to reduce production costs in the photovoltaic (PV) sector in the last two decades, appearing in most cases as the ideal tool to solve some of the critical bottlenecks of production both in thin film (TF) and crystalline silicon (c-Si) technologies. The accumulated experience in these fields has brought as a consequence the possibility of using laser technology to produce new Building Integrated Photovoltaics (BIPV) products with a high degree of customization. However, to produce efficiently these personalized products it is necessary the development of optimized laser processes able to transform standard products in customized items oriented to the BIPV market. In particular, the production of semitransparencies and/or freeform geometries in TF a-Si modules and standard c-Si modules is an application of great interest in this market. In this work we present results of customization of both TF a-Si modules and standard monocrystalline (m-Si) and policrystalline silicon (pc-Si) modules using laser ablation and laser cutting processes. A discussion about the laser processes parameterization to guarantee the functionality of the device is included. Finally some examples of final devices are presented with a full discussion of the process approach used in their fabrication.

  8. Clinical application of laser treatment for cardiovascular surgery.

    PubMed

    Okada, Masayoshi; Yoshida, Masato; Tsuji, Yoshihiko; Horii, Hiroyuki

    2011-01-01

    Recently, several kinds of lasers have been widely employed in the field of medicine and surgery. However, laser applications are very rare in the field of cardiovascular surgery throughout the world. So, we have experimentally tried to use lasers in the field of cardiovascular surgery. There were three categories: 1) Transmyocardial laser revascularization (TMLR), 2) Laser vascular anastomosis, and 3) Laser angioplasty in the peripheral arterial diseases. By the way, surgery for ischemic heart disease has been widely performed in Japan. Especially coronary artery bypass grafting (CABG) for these patients has been done as a popular surgical method. Among these patients there are a few cases for whom CABG and percutaneous coronary intervention (PCI) could not be carried out, because of diffuse stenosis and small caliber of coronary arteries. Materials and methods of TMLR: A new method of tranasmyocardial revascularization by CO2 laser (output 100 W, irradiation time 0.2 sec) was experimentally performed to save severely ill patients. In this study, a feasibility of transmyocardial laser revascularization from left ventricular cavity through artificially created channels by laser was precisely evaluated. In trials on dogs laser holes 0.2mm in diameter have been shown microscopically to be patent even 3 years after their creation, thus this procedure could be used as a new method of transmyocardial laser revascularization. Clinical application of TMLR: Subsequently, transmyocardial laser revascularization was employed in a 55-year-old male patient with severe angina pectoris who had undergone pericardiectomy 7 years before. He was completely recovered from severe chest pain. Conclusions of TMLR: This patient was the first successful case in the world with TMLR alone. This method might be done for the patients who percutaneous coronary intervention and coronary artery bypass grafting could be carried out. Laser vascular anastomosis: At present time, in vascular surgery

  9. Clinical application of laser treatment for cardiovascular surgery

    PubMed Central

    Okada, Masayoshi; Yoshida, Masato; Tsuji, Yoshihiko; Horii, Hiroyuki

    2011-01-01

    Background: Recently, several kinds of lasers have been widely employed in the field of medicine and surgery. However, laser applications are very rare in the field of cardiovascular surgery throughout the world. So, we have experimentally tried to use lasers in the field of cardiovascular surgery. There were three categories: 1) Transmyocardial laser revascularization (TMLR), 2) Laser vascular anastomosis, and 3) Laser angioplasty in the peripheral arterial diseases. By the way, surgery for ischemic heart disease has been widely performed in Japan. Especially coronary artery bypass grafting (CABG) for these patients has been done as a popular surgical method. Among these patients there are a few cases for whom CABG and percutaneous coronary intervention (PCI) could not be carried out, because of diffuse stenosis and small caliber of coronary arteries. Materials and methods of TMLR: A new method of tranasmyocardial revascularization by CO2 laser (output 100 W, irradiation time 0.2 sec) was experimentally performed to save severely ill patients. In this study, a feasibility of transmyocardial laser revascularization from left ventricular cavity through artificially created channels by laser was precisely evaluated. Results: In trials on dogs laser holes 0.2mm in diameter have been shown microscopically to be patent even 3 years after their creation, thus this procedure could be used as a new method of transmyocardial laser revascularization. Clinical application of TMLR: Subsequently, transmyocardial laser revascularization was employed in a 55-year-old male patient with severe angina pectoris who had undergone pericardiectomy 7 years before. He was completely recovered from severe chest pain. Conclusions of TMLR: This patient was the first successful case in the world with TMLR alone. This method might be done for the patients who percutaneous coronary intervention and coronary artery bypass grafting could be carried out. Laser vascular anastomosis: At present time

  10. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect

    Downer, Michael C.

    2014-04-30

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10

  11. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    SciTech Connect

    Byer, Robert L.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  12. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  13. Feature regulation and applications of M-FBG by laser ablation

    NASA Astrophysics Data System (ADS)

    Zhou, Xian; Dai, Yutang; Liu, Bin; Karanja, Joseph M.; Wen, Xiaoyan; Huang, Jun

    2015-07-01

    Fabricating microstructures into the cladding of fiber Bragg grating, the FBG sensors will have wider applications in magnetic field measurement or gas sensing. In present paper, we regulate the physical feature of FBG by ablating single or cross spiral micro-trench with femtosecond laser. The influences of different processing parameters on M-FBG (microstructured FBG) have been investigated. The waveform variations and its controlling method have been discussed. It is shown that, the central wavelength shift enlarged with increasing of the laser energy, or decreasing of scanning speed. Finally, a cross spiral type M-FBG magnetic field probe and a temperature probe are also demonstrated.

  14. Applications of microlens-conditioned laser diode arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  15. A High Energy 2-microns Laser for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Barnes, James C.; Barnes, Norman P.; Petros, Mulugeta

    2000-01-01

    Solid-state 2-microns laser has been receiving considerable interest because of its eye-safe property and efficient diode pump operation, It has potential for multiple lidar applications to detect water vapor. carbon dioxide and winds. In this paper, we describe a 2-microns double pulsed Ho:Tm:YLF laser and end-pumped amplifier system. A comprehensive theoretical model has been developed to aid the design and optimization of the laser performance. In a single Q-switched pulse operation the residual energy stored in the Tm atoms will be wasted. However, in a double pulses operation mode, the residual energy stored in the Tm atoms will repopulate the Ho atoms that were depleted by the extraction of the first Q-switched pulse. Thus. the Tin sensitized Ho:YLF laser provides a unique advantage in applications that require double pulse operation, such as Differential Absorption Lidar (DIAL). A total output energy of 146 mJ per pulse pair under Q-switch operation is achieved with as high as 4.8% optical to optical efficiency. Compared to a single pulse laser, 70% higher laser efficiency is realized. To obtain high energy while maintaining the high beam quality, a master-oscillator-power-amplifier 2-microns system is designed. We developed an end-pumped Ho:Tm:YLF disk amplifier. This amplifier uses two diode arrays as pump source. A non-imaging lens duct is used to couple the radiation from the laser diode arrays to the laser disk. Preliminary result shows that the efficiency of this laser can be as high as 3%, a factor of three increases over side-pump configuration. This high energy, highly efficient and high beam quality laser is a promising candidate for use in an efficient, multiple lidar applications.

  16. A High Energy 2-microns Laser for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Barnes, James C.; Barnes, Norman P.; Petros, Mulugeta

    2000-01-01

    Solid-state 2-microns laser has been receiving considerable interest because of its eye-safe property and efficient diode pump operation, It has potential for multiple lidar applications to detect water vapor. carbon dioxide and winds. In this paper, we describe a 2-microns double pulsed Ho:Tm:YLF laser and end-pumped amplifier system. A comprehensive theoretical model has been developed to aid the design and optimization of the laser performance. In a single Q-switched pulse operation the residual energy stored in the Tm atoms will be wasted. However, in a double pulses operation mode, the residual energy stored in the Tm atoms will repopulate the Ho atoms that were depleted by the extraction of the first Q-switched pulse. Thus. the Tin sensitized Ho:YLF laser provides a unique advantage in applications that require double pulse operation, such as Differential Absorption Lidar (DIAL). A total output energy of 146 mJ per pulse pair under Q-switch operation is achieved with as high as 4.8% optical to optical efficiency. Compared to a single pulse laser, 70% higher laser efficiency is realized. To obtain high energy while maintaining the high beam quality, a master-oscillator-power-amplifier 2-microns system is designed. We developed an end-pumped Ho:Tm:YLF disk amplifier. This amplifier uses two diode arrays as pump source. A non-imaging lens duct is used to couple the radiation from the laser diode arrays to the laser disk. Preliminary result shows that the efficiency of this laser can be as high as 3%, a factor of three increases over side-pump configuration. This high energy, highly efficient and high beam quality laser is a promising candidate for use in an efficient, multiple lidar applications.

  17. Shallow Water Laser Bathymetry: Accomplishments and Applications

    DTIC Science & Technology

    2016-05-12

    laser sources and computer available COTS (commercial, off-t positive implications for future A reduced cost . Figure 1 Fort Pierce Inlet...production and bathymetric mapping capability in relatively shallow coastal waters. The potential of water- penetrating airborne laser radar to provide cost ...and development efforts worldwide over the past three decades. Currently ongoing and aimed at providing operational ALB tools, are the Optech

  18. Laser anemometry for hot section applications

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.; Oberle, L. G.; Weikle, D. H.

    1983-01-01

    Laser anemometers (LA's) for use in the study of the hot section components of turbomachinery are being developed. Specifically, laser anemometers are being developed for use in the 50.8-cm (20-in.) diameter warm turbine and high-pressure turbine (HPT) facilities at Lewis. A brief review of the status of the program along with some preliminary data taken in an open-jet burner are presented.

  19. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  20. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  1. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  2. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  3. Random lasers for lab-on-chip applications

    NASA Astrophysics Data System (ADS)

    Giehl, J. M.; Butzbach, F.; Jorge, K. C.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.; Wetter, N. U.

    2016-04-01

    Random lasers are laser sources in which the feedback is provided by scattering instead of reflection and which, for this reason, do not require surfaces with optical finish such as mirrors. The investigation of such lasing action in a large variety of disordered materials is a subject of high interest with very important applications such as threedimensional and speckle-free imaging, detection of cancer tissue and photonic coding and encryption. However, potential applications require optimization of random laser performance especially with respect to optical efficiency and directionality or brightness. This work demonstrates such an optimization procedure with the goal of achieving a random laser with sufficient efficiency and brightness in order to be used in practical applications. Two random lasers are demonstrated, one solid and on liquid, that fulfil directionality and efficiency requirements. The first one consists of a neodymium doped powder laser with a record slope efficiency of 1.6%. The second one is a liquid random laser injected into a HC-ARROW waveguide which uses a microchannel connected to a much larger reservoir in order to achieve the necessary directionality. Both devices can be produced by low cost fabricating technologies and easily integrated into next-generation, lab-on-chip devices used for in-situ determination of infectious tropical diseases, which is the main goal of this project.

  4. The NASA high-power carbon dioxide laser - A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1977-01-01

    The NASA Lewis Research Center has designed and fabricated a closed-cycle, continuous wave (CW), carbon dioxide (CO2) high-power laser to support research for the identification and evaluation of possible high-power laser applications. The device is designed to generate up to 70 kW of laser power in annular-shape beams from 1 to 9 cm in diameter. Electric discharge, either self-sustained or electron-beam-sustained, is used for excitation. This laser facility can be used in two ways. First, it provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high-power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams, all of which are important whether the laser application is government or industry oriented. Second, the facility provides a well-defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  5. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    SciTech Connect

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  6. Progress of laser fusion in the last 40 years and expected prosperous applications

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    2008-05-01

    Inertial confinement fusion has remarkably developed in the last 40 years. In the 21st century, we can expect fusion energy for civilian use. We had performed two types of fusion experiments: High Temperature Demonstration and High Density Demonstration. The former experiment attained a neutron yield 1013 using the LHART target driven by the GEKKO XII laser. The latter achieved the 1000 times normal density using the random phased laser beams which realized the Edward Teller proposal of IQEC 1972. Now, the FIREX project to explore fast ignition is going on. The heating process of energetic electrons as well as ions is a key issue of the fast ignition. Investigation on the extreme condition of plasma in high density and high temperature which are introduced by the PW laser give us a new field of nuclear science. On the way to the final fusion goal, we can expect various fruits in the field of high power laser applications, such as laser-induced nuclear reaction, EUV light source for lithography, nuclear transmutation, laser astrophysics, medical application of particle beam and so on.

  7. Laser micro-structuring of surfaces for applications in materials and biomedical science

    NASA Astrophysics Data System (ADS)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta

    2016-12-01

    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  8. The development of novel Ytterbium fiber lasers and their applications

    NASA Astrophysics Data System (ADS)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  9. Application of femtosecond lasers for subcellular nanosurgery

    NASA Astrophysics Data System (ADS)

    Maxwell, Iva

    This dissertation offers a study of femtosecond laser disruption in single cells. Cells and tissues do not ordinarily absorb light in the near-IR wavelength range of femtosecond lasers. However, the peak intensity of a femtosecond laser pulse is very high and material disruption is possible through nonlinear absorption and plasma generation. Because the pulse duration is very short, it is possible to reach the intensity of optical breakdown at only nanojoules of energy per pulse. The low energy deposition and the high spatial localization of the nonlinear absorption, make femtosecond laser pulses an ideal tool for minimally disruptive subcellular nanosurgery. We show definitively that there can be bulk ablation within a single cell by studying the disrupted region under a transmission electron microscope. The width of the ablated area can be as small as 250 nm in diameter at energies near the ablation threshold. We also studied the effect of the laser repetition rate on the subcellular disruption threshold. We compared the pulse energies for kHz and MHz pulse trains, and found that in the MHz regime heat accumulation in the focal volume needs to be accounted for. For this repetition rate the minimum pulse energy necessary for disruption depends on the laser irradiation time. We used femtosecond laser nanosurgery to probe tension in actin stress fibers in living endothelial cells. By severing an individual stress fiber and visualizing its retraction, we showed that actin carries prestress in adherent, non-contractile cells. By plating the cells on softer, more compliant substrates, we measured the deflection of the substrate and extrapolated the force contribution of a stress filament on total amount of force exerted by the cell.

  10. Near resonant absorption by atoms in intense fluctuating laser fields. Final report

    SciTech Connect

    Smith, S.J.

    1994-01-01

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized ({approx_lt}200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to {approximately}20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S{sub 1/2} (F = 2, M{sub F} = 2) {yields} 3P{sub 3/2} (F = 3, M{sub F} = 3) two- level Na resonance, using a weak probe to the 4D{sub 5/2} level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the {sup 1}S{sub 0} {minus} {sup 3}P{sub 1}, transition at {lambda} = 555.6 nm in {sup 174} Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods.

  11. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  12. The coherent combination of fibre lasers - Towards realistic applications

    NASA Astrophysics Data System (ADS)

    Tudor, Peter; Corner, Laura; Walczak, Roman

    2017-03-01

    To drive a laser-plasma wakefield, high peak-power laser pulses are required. For useful accelerator applications, it is also necessary to have driving lasers with high efficiency, repetition rates, and average power. The coherent combination of Ytterbium-doped fibre laser amplifiers is a promising potential solution, and previous work has demonstrated the successful combination of near-identical ultrafast fibre lasers. We report here the combination of significantly mismatched Ytterbium-doped photonic crystal fibre amplifiers with a combined efficiency of 96%, while the locked power output remained stable for 6 hours. The combined output of the system had a total gain of 12 dB, with no detrimental effect on the compressed pulse width observed.

  13. Application of Laser-Induced Bone Therapy by Carbon Dioxide Laser Irradiation in Implant Therapy

    PubMed Central

    Naka, Takahiro; Yokose, Satoshi

    2012-01-01

    This study evaluated the application of laser-induced bone therapy (LIBT) to reduce implant healing time in rat tibia. Twenty 10-week-old female Sprague-Dawlay rats were used. The rats received laser irradiation (laser group) or sham operation (control group) on either side of the tibia. Five days after invasion, titanium implants were inserted in proximal tibia. Five, 10, and 20 days after implant placement, tibiae were collected. After taking micro-CT and performing a torque test, the tibiae were decalcified and 8-μm-thick sections were prepared. Specimens were stained with hematoxylin and eosin. Results. Micro-CT images, removal torque values, and histomorphometric analysis data demonstrated a significantly accelerated bone formation in the laser group earlier in the healing process. Conclusion. The use of laser irradiation was effective in promoting bone formation and acquiring osseointegration of titanium implants inserted in rat tibia. LIBT may be suitable for use in implant therapy. PMID:22505900

  14. Holmium-doped laser materials for eye-safe solid state laser application

    NASA Astrophysics Data System (ADS)

    Kim, Woohong; Bowman, Steven R.; Baker, Colin; Villalobos, Guillermo; Shaw, Brandon; Sadowski, Bryan; Hunt, Michael; Aggarwal, Ishwar; Sanghera, Jasbinder

    2014-06-01

    Trivalent holmium has 14 laser channels from 0.55 to 3.9 μm. The laser emission of most interest is the transition 5I7→5I8 near 2 μm because of its potential for use in eye-safe systems and medical applications. In this paper, we present our recent results in the development of Ho3+ doped laser materials for eye-safe solid state lasers. We report a calorimetric study of non-radiative losses in two micron pumped holmium doped laser host materials such as silica glass, yttrium aluminum garnet (YAG) crystal and Lu2O3 ceramics. Optical, spectral and morphological properties as well as the lasing performance from highly transparent ceramics are presented.

  15. Ionization rates relevant to laser cooling of hydrogen. Final report, 1 August 1987-31 January 1988

    SciTech Connect

    Turley, R.S.

    1988-06-01

    Laser cooling of atomic hydrogen has practical importance is a wide variety of applications ranging from relativistic neutral-particle beam weapons to atomic clocks and exotic fuels. A laser beam suitable for atomic hydrogen cooling needs to be high-intensity, narrow-band, coherent, and broadly tunable in the region around Lyman-alpha (1216 A). The author produced a source meeting these criteria. He studied, characterized, and optimized this source for conditions important to laser cooling. In an introductory section, he discusses the physics and potential practical applications of laser cooling and tunable VUV sources. Specific results obtained during the six months of this contract.

  16. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  17. Conductively cooled lasers for space-based applications

    NASA Astrophysics Data System (ADS)

    Hovis, Floyd E.; Martin, Nigel; Burnham, Ralph

    2005-05-01

    The design of the diode-pumped gain medium is critical to the successful deployment of lasers in space-based missions. We have developed a number of diode-pumped, conductively cooled zigzag slab designs for this application. These designs include both one-sided and two-side pumped and cooled designs. In one of the one-sided pumped and cooled amplifier designs we optimized the efficiency by maximizing the overlap between the extracting beam and the diode pumps at the total internal reflection (TIR) surface, a so-called "pump on bounce" approach. With this approach we achieved an electrical to optical efficiency from the amplifier of over 11% with an output beam M2 of approximately 3. By reducing the size of the extracting beam to reduce diffraction effects in the slab the beam quality could be improved to an M2 of 1.5 but the amplifier electrical to optical efficiency dropped to 6.7%. The other one-sided approach we have investigated is a near Brewster angle slab that incorporates beam propagation parallel to the slab axis and achieves good efficiency by a high overall volume fill factor. In a high beam quality oscillator (M2 = 1.2) we achieved over 6% electrical to optical efficiency with a Brewster angle head design. Modeling of the thermal effects in both approaches has been performed and will be reported on. The final design approach we have investigated is based on two-sided pumping and cooling. Both modeling and preliminary experimental results indicate that this approach will allow scaling to higher average powers while still maintaining beam qualities and extraction efficiencies at least as good as those obtained with the one-sided pumped and cooled approaches. From the results of these tests and analyses, we have developed a design for a space-qualifiable 1 J, 100 Hz laser operating at 1064 nm.

  18. Ultra-narrow gap laser welding of BeAl alloys. Final report

    SciTech Connect

    Milewski, J.O.; Sklar, E.

    1998-11-01

    The original scope of the project was to develop a method to enhance the laser welding of BeAl alloys by the use of weld joint designs based on the principals of non-imaging optics. The projected three year program focused on the development of geometric optical models which predict the trapping of laser energy within the weld joint and experimental validation of these models. The first year was fully funded, meeting all expectations and deliverables for the demonstration of the method for aluminum only. The second year funding levels did not allow any work to be done at Los Alamos. OptiCAD continued with model development with a change in scope to model the laser welding requirements of ongoing weapons related programs which could provide data for model validation. The project ended at the end of FY97 without funding a third year and never reaching the goal of welding beryllium, as a result. Despite the poor funding situation, original quality process research was accomplished and reported as described in the three technical reports of Appendix A. Solid technical contribution, directly applicable to weapons programs is evidenced by the inclusion of an optically designed laser weld joint being specified on a LANL drawing of an aluminum subassembly.

  19. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  20. Laser Diode Cooling For High Average Power Applications

    NASA Astrophysics Data System (ADS)

    Mundinger, David C.; Beach, Raymond J.; Benett, William J.; Solarz, Richard W.; Sperry, Verry

    1989-06-01

    Many applications for semiconductor lasers that require high average power are limited by the inability to remove the waste heat generated by the diode lasers. In order to reduce the cost and complexity of these applications a heat sink package has been developed which is based on water cooled silicon microstructures. Thermal resistivities of less than 0.025°C/01/cm2) have been measured which should be adequate for up to CW operation of diode laser arrays. This concept can easily be scaled to large areas and is ideal for high average power solid state laser pumping. Several packages which illustrate the essential features of this design have been fabricated and tested. The theory of operation will be briefly covered, and several conceptual designs will be described. Also the fabrication and assembly procedures and measured levels of performance will be discussed.

  1. Laser-generated shock waves and applications to advanced materials

    SciTech Connect

    Holmes, N.C.

    1996-01-19

    The use of lasers for the generation and application of high-pressure shock waves offers unique advantages and challenges. In contrast to impact systems, the range of pressures and strain rates is substantially greater using laser drive. The ability to change the temporal shape of the drive pulse allows a variety of strain-rate conditions to be obtained. In addition, high time-resolution in situ diagnostic methods are relatively simple to implement. Lasers can be at a disadvantage compared to impact methods in terms of shock generation, simplicity of the states achieved, the difficulty of characterizing bulk properties, and sample size. I will review the physics of laser-driven shock physics, diagnostic methods, and applications, with an emphasis on material physics. I will also present some views on important new directions for this area of research.

  2. Laser beacon adaptive optics for power beaming applications

    NASA Astrophysics Data System (ADS)

    Fugate, Robert Q.

    1994-05-01

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory's Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 micrometers , we have achieved Strehl ratios of approximately 0.50 using laser beacons and approximately 0.65 using natural stars for exposures longer than one minute on objects of approximately 8th magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  3. Laser dentistry: A new application of excimer laser in root canal therapy

    SciTech Connect

    Pini, R.; Salimbeni, R.; Vannini, M.; Barone, R.; Clauser, C.

    1989-01-01

    We report the first study of the application of excimer lasers in dentistry for the treatment of dental root canals. High-energy ultraviolet (UV) radiation emitted by an XeCl excimer laser (308 nm) and delivered through suitable optical fibers can be used to remove residual organic tissue from the canals. To this aim, UV ablation thresholds of dental tissues have been measured, showing a preferential etching of infiltrated dentin in respect to healthy dentin, at laser fluences of 0.5-1.5 J/cm{sup 2}. This technique has been tested on extracted tooth samples, simulating a clinical procedure. Fibers of decreasing core diameters have been used to treat different sections of the root canal down to its apical portion, resulting in an effective, easy, and fast cleaning action. Possible advantages of excimer laser clinical applications in respect to usual procedures are also discussed.

  4. Optofluidic Bio-Lasers: Concept and Applications

    PubMed Central

    Fan, Xudong; Yun, Seok-Hyun

    2014-01-01

    An optofluidic bio-laser integrates biological materials into the gain medium while forming an optical cavity in the fluidic environment, either on a microfluidic chip or within a biological system. The laser emission has characteristics fundamentally different from conventional fluorescence emission. It can be highly sensitive to a specific molecular change in the gain medium as the light-matter interaction is amplified by the resonance in the cavity. The enhanced sensitivity can be used to probe and quantify the underlying biochemical and biological processes in vitro in a microfluidic device, in situ in a cell (cytosol), or in vivo in a live organism. Here we describe the principle of the optofluidic bio-laser, review its recent progress and provide an outlook of this emerging technology. PMID:24481219

  5. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  6. Laser heating of dielectric particles for medical and biological applications.

    PubMed

    Tribelsky, Michael I; Fukumoto, Yasuhide

    2016-07-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the characteristic depth of light absorption in the material of the particle and the two heat diffusion lengths: in the particle and in the embedding liquid. A new quantitative characteristic of the laser action, that is the cooling time, describing the temporal scale of the cooling down of the particle after the laser pulse is over, is introduced and discussed. Simple analytical formulas for the temperature rise in the center of the particle and at its surface as well as for the cooling time are obtained. We show that at the appropriate choice of the problem parameters the cooling time may be by many orders of magnitude larger the laser pulse duration. It makes possible to minimize the undesirable damage of healthy tissues owing to the finite size of the laser beam and scattering of the laser radiation, simultaneously keeping the total hyperthermia period large enough to kill the pathogenic cells. An example of application of the developed approach to optimization of the therapeutic effect at the laser heating of particles for cancer therapy is presented.

  7. Laser induced breakdown spectroscopy application in joint European torus

    NASA Astrophysics Data System (ADS)

    Semerok, A.; L'Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C.

    2016-09-01

    The results on the first successful application of Laser Induced Breakdown Spectroscopy (LIBS) for remote in situ diagnostics of plasma facing components (a deposited layer on a divertor tile) in Joint European Torus (JET) are presented. The studies were performed with an available JET EDGE LIDAR laser system. For in-depth analysis of deposited layers on JET divertor tiles, a number of laser shots were applied onto the same divertor place without laser beam displacement. The spectral lines of D, CII and impurity elements (CrI, BeII, …) were identified in a wide spectral range (400-670 nm). With the increase in a number of laser shots applied onto the same divertor place, we observed consecutive changes in spectral line intensities of deuterium, carbon, and impurities with the appearance of spectral lines of tungsten substrate (WI). In-depth analysis of deposited layers on JET divertor tiles was made on the basis of the spectral line behaviour in reference to the applied laser shots. The possibility of surface cartography with laser beam displacement on the tile surface was demonstrated as well. Based on the results obtained, we may conclude that LIBS method is applicable for in situ remote analysis of deposited layers of JET plasma facing components.

  8. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  9. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  10. Temporal Characterization of a Picosecond Laser-Pumped X-ray Laser (for Applications)

    SciTech Connect

    Dunn, J; Nilsen, J; Shepherd, R; Shlyaptsev, V; Booth, R; Smith, R; Hunter, J

    2003-11-25

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6-13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5-27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  11. Facet joint laser radiation: tissue effects of a new clinical laser application

    NASA Astrophysics Data System (ADS)

    Werkmann, Klaus; Thal, Dietmar R.

    1996-01-01

    Chronic unilateral and bilateral back pain with pseudoradicular symptoms, is a common clinical syndrome, which in many cases can be related to the facet joint syndrome. The pain is caused by mechanical affection of synovial and capsular nerve terminals. Therefore, current therapeutical attempts including physical therapy, intra-articular injection of local anesthetics and steroids and thermocoagulation of the facet joint with a thermocoagulator, are performed. We confirmed laser coagulation of the facet joint. Porcine cadaveric spines were treated immediately after death by intra-articular facet joint laser radiation. With the pulsed Nd:YAG laser (1064 nm) altogether 600 J were applied in three different places 4 mm apart at the top of the facet joint. The results showed that facet joint laser radiation leads to a small (about 1 - 2 mm diameter) lesion restricted to the facet joint cavity and its synovia. Histologically, we found a central carbonization zone and necrosis, including almost the whole cartilage and approximately 0.2 mm of the adjacent bone. These changes are similar to Nd:Yag-laser applications in other skeletal regions. It is suggested that these changes may lead to facet joint denervation by coagulation of the synovial nerve terminals. Cicatration of the laser lesion might cause ankylosis of this joint. In sum, facet joint laser radiation could be an alternative therapeutical tool for lower back pain of the facet joint syndrome type. Therefore, future clinical application of this technique seems to be very promising.

  12. Temporal characterization of a picosecond-laser-pumped x-ray laser for applications

    NASA Astrophysics Data System (ADS)

    Dunn, James; Smith, Raymond F.; Shepherd, Ronnie; Booth, Rex; Nilsen, Joseph; Hunter, James R.; Shlyaptsev, Vyacheslav N.

    2003-12-01

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6 13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5 27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  13. Clinical application of the erbium:YAG laser for apicoectomy.

    PubMed

    Komori, T; Yokoyama, K; Takato, T; Matsumoto, K

    1997-12-01

    Recently, an Er:YAG laser has attracted attention because of the possibility of cutting hard tissues with extremely small thermal effects. In this article, we report 8 cases (13 teeth) of apicoectomy using Er:YAG laser. All procedures were performed without using an air turbine or an electric drill. Although the cutting speed of this laser was slightly slower than ordinary methods, its clinical application for apicoectomy has many advantages including absence of discomfort and vibration, less chance for contamination of the surgical site, and reduced risk of trauma to adjacent tissue.

  14. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  15. Biological applications of ultraviolet free-electron lasers

    SciTech Connect

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  16. Shaping laser accelerated ions for future applications - The LIGHT collaboration

    NASA Astrophysics Data System (ADS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.; Brabetz, C.; Burris-Mog, T.; Cowan, T. E.; Deppert, O.; Droba, M.; Eickhoff, H.; Eisenbarth, U.; Harres, K.; Hoffmeister, G.; Hofmann, I.; Jaeckel, O.; Jaeger, R.; Joost, M.; Kraft, S.; Kroll, F.; Kaluza, M.; Kester, O.; Lecz, Z.; Merz, T.; Nürnberg, F.; Al-Omari, H.; Orzhekhovskaya, A.; Paulus, G.; Polz, J.; Ratzinger, U.; Roth, M.; Schaumann, G.; Schmidt, P.; Schramm, U.; Schreiber, G.; Schumacher, D.; Stoehlker, T.; Tauschwitz, A.; Vinzenz, W.; Wagner, F.; Yaramyshev, S.; Zielbauer, B.

    2014-03-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  17. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  18. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  19. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  20. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  1. Laser microdissection microscopy: application to cell culture.

    PubMed

    Mustafa, Ahlam; Cenayko, Cathy; Mitry, Ragai R; Quaglia, Alberto

    2012-01-01

    Laser microdissection (LMD) microscopy allows isolation of specific cell populations to target their -molecular profile. There are several different types of LMD microscopes, but they are all based on the same principle. A laser beam is used to cut out cells or tissues of interest from a histological section, cytology preparations, or live cells from tissue cultures. Live cells can be isolated using LMD and processed for downstream molecular work. RNA, DNA, and protein isolation is possible from a small number of cells and the material is suitable for further real-time PCR, ELISA, Western Blotting, and protein microarray analysis.

  2. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  3. Investigation of ferrofluid nanostructure by laser light scattering: medical applications

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E. K.; Velichko, E. N.; Pleshakov, I. V.; Aksenov, E. T.; Savchenko, E. A.

    2017-05-01

    Investigation of ferrofluids nanostructure by the laser light scattering technique is presented. Experimental studies involved measurements of the intensity of the laser radiation scattered by ferrofluid particles in interaction with albumin and under the influence of magnetic field. The effects of the magnitude and duration of the applied magnetic field on the formation of aggregates of magnetic nanoparticles and also the influence of magnetic fluids of different concentrations on blood proteins are considered. The findings may be useful for medical applications.

  4. Athermal diode-pumped laser designator modules for targeting application

    NASA Astrophysics Data System (ADS)

    Crepy, B.; Closse, G.; Da Cruz, J.; Sabourdy, D.; Montagne, J.; Nguyen, L.

    2012-10-01

    We report on the development and characteristics of athermal diode-pumped designator modules as Original Equipment Manufacturer (OEM) for targeting application. These modules are designed with the latest diode-pumped technology minimizing volume and power consumption. The core technology allows to address multi-platforms requirements such as land or airborne. Products are composed of a Laser Transmitter Unit (LTU) and Laser Electronic Unit (LEU) for modular approach.

  5. Comparison Of Laser And Waterjet Systems For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Mosavi, Reza K.

    1986-07-01

    High power laser systems and high pressure waterjet systems are both emerging as non-conventional cutting tools, capable of increasing productivity and quality in the manufacture of a great number of products employing diverse material. It is often a confusing issue for the manufacturing engineer or production manager to decide which system would be most suited for his applications. This paper is intended to provide some insights into the engineering and economic aspects of laser systems versus waterjet systems.

  6. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  7. Tailoring Laser Propulsion for Future Applications in Space

    SciTech Connect

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-08

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  8. Tailoring Laser Propulsion for Future Applications in Space

    NASA Astrophysics Data System (ADS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites. First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  9. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  10. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    SciTech Connect

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  11. Antiresonant ring interferometer for laser cavity dumping, mode locking, and other applications

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.

    1975-01-01

    Applications in lasers for antiresonant ring interferometer include coupled laser cavities, variable laser-output coupling, intercavity harmonic-output coupling, mode locking, cavity dumping, and pulse code modulation.

  12. Diode Laser Diagnostics for Gas Species and Soot in Large Fires: LDRD Project Final Report

    SciTech Connect

    Christopher R. Shaddix; Sarah W. Allendorf; Gary L. Hubbard; David K. Ottesen; Louis A. Gritzo

    2001-06-01

    The thermal hazard posed by a fire to a weapon or other engineered system is a consequence of combined radiation and convection from high-temperature soot and gases. The development of advanced, predictive models of this hazard requires detailed knowledge of the transient chemical structure and soot distributions within real-scale fires. At present, there are no measurements, and hence limited understanding, of transient gaseous species generation and transport in large, fully turbulent fires. As part of a Laboratory Directed Research and Development (LDRD) project to develop such an experimental capability, near-infrared tunable diode laser absorption spectroscopy (TDLAS) has been identified as the most promising diagnostic technique for making these measurements. In order to develop this capability, significant efforts were applied to choosing optimal species and transitions for detection, to developing an effective multiplexing strategy for several lasers undergoing wavelength modulation spectroscopy with fast laser ramp scans, to developing a methodology for multipassing the TDL beams across a small probe volume, and finally, to designing a water-cooled, fiber-coupled probe for performing these measurements locally within large pool fires. All of these challenges were surmounted during the course of this project, and in the end a preliminary, unique dataset of combined water vapor, acetylene, and soot concentrations was obtained from a 1-m diameter JP-8 pool fire.

  13. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  14. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  15. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  16. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  17. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  18. Laser Applications on Orthopaedic Bone Repair

    DTIC Science & Technology

    2013-03-01

    Post-operative observations and body weight gain indicated there were no complications such as allergic reactions, abscesses or infections. Body...were no complications such as allergic reactions, abscesses or 6 infections. Body weight (BW) in the laser-treated animals was similar to that in

  19. Laser diode technology and applications V; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1993

    NASA Astrophysics Data System (ADS)

    Renner, Daniel

    Various papers on laser diode technology and its applications are presented. The general topics addressed include: high-power coherent large-aperture sources, vertical-cavity lasers, quantum-well lasers, semiconductor laser reliability, high-power semiconductor lasers, surface-emitting lasers, laser dynamics, and visible and midinfrared semiconductor lasers.

  20. Frequency stabilized lasers for space applications

    NASA Astrophysics Data System (ADS)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  1. Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions.

    PubMed

    Ryan, Robert W; Wolf, Tamir; Spetzler, Robert F; Coons, Stephen W; Fink, Yoel; Preul, Mark C

    2010-02-01

    The CO(2) laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO(2) laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO(2) laser fiber to conventional methods for incising neural tissue. Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO(2) energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made. Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage. The photonic bandgap fiber CO(2) laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery.

  2. Laser mass spectrometry for DNA fingerprinting for forensic applications

    SciTech Connect

    Chen, C.H.; Tang, K.; Taranenko, N.I.; Allman, S.L.; Chang, L.Y.

    1994-12-31

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.

  3. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1992-01-01

    Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.

  4. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    SciTech Connect

    Barry, Matthew

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  5. Infrared laser-based sensing in medical applications

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.; Bartlome, Richard; Gianella, Michele

    2010-01-01

    Laser-spectroscopic applications in medicine increase in importance. We present two medical applications of laser-based analyses of trace gases. The analysis of exhaled breath concerns the determination of the D/H isotope ratio after intake of a small amount of heavy water. The D/H isotope ratio can be used to deduce the total body water weight and lays the foundation for many other laser-based clinical applications. An elevated D/H ratio could be monitored in breath samples up to 30 days after ingestion of only 5 ml of D2O. A second example concerns the analysis of surgical smoke produced in minimally invasive laparoscopic surgery with electroknives. The quantitative determination of harmless and hazardous compounds down to the ppm level is demonstrated. A specific example is the presence of sevoflurane at concentrations of 80 to 300 ppm, an anesthetic, which to our knowledge is measured for the first time in an abdominal cavity.

  6. High-power diode lasers and their direct industrial applications

    NASA Astrophysics Data System (ADS)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  7. Atmospheric Propagation of High Energy Lasers and Applications

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2005-04-01

    It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, still many remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionary history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.

  8. Application of Advanced Laser Diagnostics to High-Impact Technologies: Science and Applications of Ultrafast, Ultraintense Lasers

    DTIC Science & Technology

    2013-11-01

    establishing these sources for future Air Force applications. Most of the effort was directed toward the development of hard X-ray sources using both metal and...12 3.3 X-ray Generation from Laser/ Metal -Target Interactions ........................................ 17 3.4 X-ray Generation...from Laser/Dielectric-Target Interactions .................................. 22 3.5 The Impact of Chirp on X-ray Generation for Metals and Dielectrics

  9. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  10. Applications of laser wakefield accelerator-based light sources

    SciTech Connect

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  11. Applications of laser wakefield accelerator-based light sources

    NASA Astrophysics Data System (ADS)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  12. Applications of laser wakefield accelerator-based light sources

    SciTech Connect

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  13. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  14. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1993-01-01

    Work on the development of an interferometric system for the purpose of absolute length determination commenced in January of this year. Our goal is to develop a system capable of measurements on the order of one meter with an accuracy of 1 part in 10 or greater. A modified Michelson bread board with stabilized laser diode source was assembled. Some preliminary measurements began using the tunable Santek laser in an FM modulation scheme. During this same period a literature search yielded a paper by Suematsu and Takeda which discusses a promising fourier transform technique for real time data analysis. We are in the process of evaluating this technique while we continue to change and upgrade the system configuration.

  15. A laser application to nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Bang, W.; Bonasera, A.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M.; Kimura, S.; Mazzocco, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Ditmire, T.

    2014-05-01

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions 3He(d,p)4He and d(d,n)3He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with 3He atoms. The yield of 14.7 MeV protons from the 3He(d,p)4He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  16. [Laser capture microdissection and its practical applications].

    PubMed

    Lužná, Pavla; Ehrmann, Jiří

    2013-10-01

    Laser capture microdissection is a relatively young method used both in biomedical sciences as in other studies of animal and vegetable tissues and cells. Current human medicine and its methods of investigation are based on both current established processes, and simultaneously there are new experimental approaches from molecular biology tested. In this context it is highly desirable that the studied tissue is homogenous and representative population of cells. For this purposes at the late 80s the method of laser capture microdissection (LCM) has been developed, the first publication dealing with this method was released even in 1996. In current databases of literature we are able to find hundreds of papers focused on LCM such a method or as a part of methodic approach of experiments whose results led to the improved knowledge of genetic and proteomic nature of various diseases. This knowledge is of great promise for successful targeted therapy in the future.

  17. Laser power beaming applications and technology

    NASA Astrophysics Data System (ADS)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  18. A laser application to nuclear astrophysics

    SciTech Connect

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B.; Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M.; Bonasera, A.; Kimura, S.; Mazzocco, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Ditmire, T.

    2014-05-09

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  19. Laser Application in Prevention of Demineralization in Orthodontic Treatment

    PubMed Central

    Sadr Haghighi, Hooman; Skandarinejad, Mahsa; Abdollahi, Amir Ardalan

    2013-01-01

    One common negative side effect of orthodontic treatment with fixed appliances is the development of incipient caries lesions around brackets, particularly in patients with poor oral hygiene. Different methods have been used to prevent demineralization such as fluoride therapy and application of sealant to prevent caries. The recent effort to improve the resistance against the demineralization is by the application of different types of lasers. The purpose of this review article is discussing the effects of laser in prevention of demineralization in orthodontic patients. PMID:25606317

  20. Laser Application on Orthopaedic Bone Repair

    DTIC Science & Technology

    2011-09-01

    However, post-operative observations and body weight gain indicated there were no complications such as allergic reactions, abscesses or infections...and body weight gain indicated there were no complications such as allergic reactions, abscesses or infections. Body weight gain in the laser...analysis. However, post-operative observations and body weight gain indicated there were no complications such as allergic reactions, abscesses or

  1. Application of laser in conservation and restoration of historical building

    NASA Astrophysics Data System (ADS)

    Detalle, Vincent; Duchêne, Stephanie; Verges Belmin, Veronique; Vallet, Jean Marc; Bodnar, Jean Luc

    2010-07-01

    Cultural Heritage has many analytical and treatment needs both in the field of conservation than in restoration. The laser therefore found a ready-made place in this area. We find first the different application of laser cleaning. The LRMH was the initiative of creating the first field prototype used in the field for cleaning stone in particular. A tour of the Cathedral of France to test this method had been achieved in the early 90s. Then, many have phenomenological and physical studies were conducted to understand the mechanisms involved during the cleaning action. In analytical technology, LIBS (Laser Induced Breakdown Spectroscopy) is used for in situ identification of pigments, salts, metals or other materials. This laser technique present a lot of advantages: portability, analysis of light elements, stratigraphic analysis capability ...The LRMH was the first laboratory depending from a ministry of culture to get the technology and to apply it systematically in situ (Saint-Savin sur Gartemps abbey...). In addition, more recently, a methodology for converting pigments by continuous laser was developed in the laboratory, thus extending the scope of the use of laser. We review these techniques and their application based on studies that occur in our laboratory.

  2. Clinical application of CO2 laser in periodontal treatment

    NASA Astrophysics Data System (ADS)

    Hayase, Yasuhiro

    1994-09-01

    CO2 lasers in particular are expected to have many dental applications because the CO2 laser beam exhibits strong tissue transpirative actions, such as instant coagulation, carbonization, and vaporization, and because its wavelength at 10.6 micrometers is fully absorbed by water so that the ability to make precise incisions with a high degree of safety is excellent, without damaging the deep tissues. However, clinical application of the CO2 laser has been slowed since a fiber which can conduct the laser beam to the oral cavity has only recently developed. This new fiber is an extremely flexible fiber with a minimum bending radius of 20 mm and utilizes pulse wave modes that have improved the handling characteristics in the mouth, and this has enabled us to apply the CO2 laser to a variety of periodontal conditions. The aim of this study was to evaluate the effectiveness of CO2 lasers for the early treatment of inflammation and pain relief of acute periodontitis, curettage of periodontal pockets, healing after excision of gingiva, and early improvement of gingivitis.

  3. Beam shaping applications in laser micromachining for the microelectronics industry

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey M.

    2001-10-01

    Laser micromachining has been a part of the manufacturing process for semiconductors and microelectronics devices for several decades. More recent applications such as the drilling of microvia holes in high-density electronic packages have recently entered broad industrial use for high-volume production. In such applications, process stability and throughput are key drivers of commercial success. Particularly in the UV, where solid-state laser power is growing rapidly but is still limited to less than 10 watts, innovations that permit the available laser power to be applied at the work surface more efficiently are of interest. Within the last two years, the use of beam shapers to create round laser spots with near-uniform irradiance at the work surface has been demonstrated. Shaping the irradiance profile has been shown to both increase process speed and improve the quality of the drilled holes, which range in diameter between 20 and 150 micrometers . This paper gives an historical overview of laser via drilling, presents the Gaussian-to-flattop beam shaping optics used in the microvia laser drills, and discusses the process results obtained.

  4. Application of laser in conservation and restoration of historical building

    NASA Astrophysics Data System (ADS)

    Detalle, Vincent; Duch"ne, Stephanie; Verges Belmin, Veronique; Vallet, Jean Marc; Bodnar, Jean Luc

    2011-02-01

    Cultural Heritage has many analytical and treatment needs both in the field of conservation than in restoration. The laser therefore found a ready-made place in this area. We find first the different application of laser cleaning. The LRMH was the initiative of creating the first field prototype used in the field for cleaning stone in particular. A tour of the Cathedral of France to test this method had been achieved in the early 90s. Then, many have phenomenological and physical studies were conducted to understand the mechanisms involved during the cleaning action. In analytical technology, LIBS (Laser Induced Breakdown Spectroscopy) is used for in situ identification of pigments, salts, metals or other materials. This laser technique present a lot of advantages: portability, analysis of light elements, stratigraphic analysis capability ...The LRMH was the first laboratory depending from a ministry of culture to get the technology and to apply it systematically in situ (Saint-Savin sur Gartemps abbey...). In addition, more recently, a methodology for converting pigments by continuous laser was developed in the laboratory, thus extending the scope of the use of laser. We review these techniques and their application based on studies that occur in our laboratory.

  5. Femtosecond Laser Processing of Wide Bandgap Semiconductors and Their Applications

    NASA Astrophysics Data System (ADS)

    Phillips, Katherine Collett Furr

    This thesis explores the production, characterization, and water oxidation efficiency of wide bandgap semiconductors made through femtosecond-laser irradiation of various materials. Our investigation focuses on three main aspects: 1) producing titanium dioxide (TiO2) from titanium metal, 2) using our laser-made materials in a photoelectrochemical cell for water oxidation, and 3) utilizing the femtosecond laser to create a variety of other mixed metal oxides for further water oxidation studies and biological applications. We first discuss producing TiO2 and titanium nitride. We report that there is chemical selectivity at play in the femtosecond laser doping process so not all dopants in the surrounding atmosphere will necessarily be incorporated. We then show that the material made from laser-irradiation of titanium metal, when annealed, has a three-fold enhancement in overall water oxidation when irradiated with UV light. We attribute this enhancement through various material characterization methods to the creation of a more pure form of rutile TiO2 with less defects. We then present a variety of studies done with doping both TiO2 and other oxides with broadband photoelectrochemistry and offer that the dopant incorporation hurts the overall water oxidation rate. Lastly, we use the laser-treated titanium to test cell adhesion and viability. Our results demonstrate an ability to femtosecond-laser process semiconductors to produce materials that no one has made previously and study their properties using collaborations across chemistry and biology, yielding true interdisciplinary research.

  6. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  7. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  8. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications

    NASA Astrophysics Data System (ADS)

    Grivas, Christos

    2016-01-01

    The field of optically pumped planar waveguide lasers has seen a rapid development over the last two decades driven by the requirements of a range of applications. This sustained research effort has led to the demonstration of a large variety of miniature highly efficient laser sources by combining different gain media and resonator geometries. One of the most attractive features of waveguide lasers is the broad range of regimes that they can operate, spanning from continuous wave and single frequency through to the generation of femtosecond pulses. Furthermore, their technology has experienced considerable advances to provide increased output power levels, deriving benefits from the relative immunity from the heat generated in the gain medium during laser operation and the use of cladding-pumped architectures. This second part of the review on optically pumped planar waveguide lasers provides a snapshot of the state-of-the-art research in this field in terms of gain materials, laser system designs, and as well as a perspective on the status of their application as real devices in various research areas.

  9. Laser micromachining of semiconductors for photonics applications

    NASA Astrophysics Data System (ADS)

    Nantel, Marc; Yashkir, Yuri; Lee, Seong K.; Mugford, Chas; Hockley, Bernard S.

    2001-10-01

    For decades, precisely machining silicon has been critical for the success of the semiconductor industry. This has traditionally been done through wet chemical etching, but in the pursuit of integrating photonics devices on a single chip, other techniques are worth exploring. This quest opens up interest in finding a non-wet, non-contact, arbitrary-shape milling technique for silicon. In this paper, we present our latest work in the laser micromachining of silicon. A kilohertz-repetition-rate diode-pumped Nd:YLF laser (in infrared, green or ultraviolet modes) is focused on the surface of silicon wafers in a chlorine atmosphere for an enhanced magnitude and control of the etching rate. In the chlorine atmosphere, much less debris is deposited on the surface around the cut, sub-damage threshold machining is achieved for a better control of the etching depth, and etching rates ranging from 20-300,000 micron-cube/s have been measured. In particular, the use of an infrared laser beam is singled out, along with the advantages that it holds. Results of simulations highlight the particular characteristics of the various wavelength chosen for the machining.

  10. Highly reliable, high-brightness 915nm laser diodes for fiber laser applications

    NASA Astrophysics Data System (ADS)

    Xu, Zuntu; Gao, Wei; Cheng, Lisen; Luo, Kejian; Shen, Kun; Mastrovito, Andre

    2008-02-01

    High brightness, high power, and highly reliable 915nm InAlGaAs laser diodes with optimized design are reported in this paper. The laser diodes exhibit excellent performance, such as, high slope efficiency, low threshold current, low voltage, etc., which make them suitable for high brightness operation. The aging test data shows no failures during aging test and more than 220,000 hours estimated lifetime for 90um emitter laser diodes at 8W CW operation. The aging test with the same emitter size at higher stress conditions showed sudden failure that corresponds to catastrophic optical damage (COD) on the facet. A novel large optical cavity (LOC) epi-structure with flat-top near field intensity distribution was developed. The maximum output power is up to 23W under CW testing condition at 25 °C, which is highest level achieved so far. The output power is limited by thermal roll over and there is no COD occurring. This data shows Axcel's technologies can further increase the brightness to over 110mW per micron for 915nm laser diodes. This type of laser diodes is essential for pumping fiber lasers to replace CO2 lasers for industry applications.

  11. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2016-12-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  12. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2017-01-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  13. Application and Network-Cognizant Proxies - Final Report

    SciTech Connect

    Antonio Ortega; Daniel C. Lee

    2003-03-24

    OAK B264 Application and Network-Cognizant Proxies - Final Report. Current networks show increasing heterogeneity both in terms of their bandwidths/delays and the applications they are required to support. This is a trend that is likely to intensify in the future, as real-time services, such as video, become more widely available and networking access over wireless links becomes more widespread. For this reason they propose that application-specific proxies, intermediate network nodes that broker the interactions between server and client, will become an increasingly important network element. These proxies will allow adaptation to changes in network characteristics without requiring a direct intervention of either server or client. Moreover, it will be possible to locate these proxies strategically at those points where a mismatch occurs between subdomains (for example, a proxy could be placed so as to act as a bridge between a reliable network domain and an unreliable one). This design philosophy favors scalability in the sense that the basic network infrastructure can remain unchanged while new functionality can be added to proxies, as required by the applications. While proxies can perform numerous generic functions, such as caching or security, they concentrate here on media-specific, and in particular video-specific, tasks. The goal of this project was to demonstrate that application- and network-specific knowledge at a proxy can improve overall performance especially under changing network conditions. They summarize below the work performed to address these issues. Particular effort was spent in studying caching techniques and on video classification to enable DiffServ delivery. other work included analysis of traffic characteristics, optimized media scheduling, coding techniques based on multiple description coding, and use of proxies to reduce computation costs. This work covered much of what was originally proposed but with a necessarily reduced scope.

  14. Laser vibrometry vibration measurements on vehicle cabins in running conditions: helicopter mock-up application

    NASA Astrophysics Data System (ADS)

    Revel, Gian Marco; Castellini, Paolo; Chiariotti, Paolo; Tomasini, Enrico Primo; Cenedese, Fausto; Perazzolo, Alessandro

    2011-10-01

    The present work deals with the analysis of problems and potentials of laser vibrometer measurements inside vehicle cabins in running conditions, with particular reference to helicopters where interior vibro-acoustic issues are very important. This paper describes the results of a systematic measurement campaign performed on an Agusta A109MKII mock-up. The aim is to evaluate the applicability of scanning laser Doppler vibrometer (SLDV) for tests in simulated flying conditions and to understand how performances of the technique are affected when the laser head is placed inside the cabin, thus being subjected to interfering inputs. First a brief description of the performed test cases and the used measuring set-ups are given. Comparative tests between the SLDV and accelerometers are presented, analyzing the achievable performances for the specific application. Results obtained measuring with the SLDV placed inside the helicopter cabin during operative excitation conditions are compared with those performed with the laser lying outside the mock-up, these last being considered as ``reference measurements.'' Finally, in order to give an estimate of the uncertainty level on measured signals, a study linking the admitted percentage of noise content on vibrometer signals due to laser head vibration levels will be introduced.

  15. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  16. Enhanced operation of femtosecond lasers and applications in cell transfection.

    PubMed

    Brown, Christian T A; Stevenson, David J; Tsampoula, Xanthi; McDougall, Craig; Lagatsky, Alexander A; Sibbett, Wilson; Gunn-Moore, Frank J; Dholakia, Kishan

    2008-08-01

    In this work we present a review and discussion on the enhancement of femtosecond (fs) lasers for use within biophotonics with a particular focus on their use in optical transfection techniques. We describe the broad range of source options now available for the generation of femtosecond pulses before briefly reviewing the application of fs laser in optical transfection studies. We show that major performance enhancements may be obtained by optimising the spatial and temporal performance of the laser source before considering possible future directions in this field. In relation to optical transfection we describe how such laser sources initiate a multiphoton process to permeate the cell membrane in a transient fashion. We look at aspects of this technique including the ability to combine transfection with optical trapping. For future implementation of such transfection we explore the role of new sources and "nondiffracting" light fields.

  17. Tunable solid state laser system for dermatology applications

    NASA Astrophysics Data System (ADS)

    Azar, Zion; Bank, Alexander; Donskoy, Dmitri M.; Nechitailo, Vladimir S.

    1994-12-01

    The Q-switched Nd:YAG laser is the most recent in a series of pulsed laser systems for plastic surgery. The 532 nm wavelength has been shown to be absorbed by a variety of chromophores. These include tattoo pigments, oxygenated hemoglobin and melanin-containing epidermal cells. A simple multi-line solid state laser module pumped by double-frequency Q- switched YAG laser is presented. This solid state multi-line module enables tuning of the wavelength in the yellow spectral range to 560 nm or to 580 nm for dermatology applications. Conversion efficiency in excess of 70% was achieved at 10 Hz pulse repetition frequency and output energy per pulse of approximately 200 mJ.

  18. Air-coupled laser vibrometry: analysis and applications.

    PubMed

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2009-03-01

    Acousto-optic interaction between a narrow laser beam and acoustic waves in air is analyzed theoretically. The photoelastic relation in air is used to derive the phase modulation of laser light in air-coupled reflection vibrometry induced by angular spatial spectral components comprising the acoustic beam. Maximum interaction was found for the zero spatial acoustic component propagating normal to the laser beam. The angular dependence of the imaging efficiency is determined for the axial and nonaxial acoustic components with the regard for the laser beam steering in the scanning mode. The sensitivity of air-coupled vibrometry is compared with conventional "Doppler" reflection vibrometry. Applications of the methodology for visualization of linear and nonlinear air-coupled fields are demonstrated.

  19. Laser heating of metallic nanoparticles for photothermal ablation applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Shan, Guangshuai; Yu, Junsheng; Yang, Wei; Ren, Zhaodi; Wang, Xiaohui; Xie, Xi; Chen, Hui-jiuan; Chen, Xiaodong

    2017-02-01

    In order to search for a suitable frequency and material with higher photothermal efficacy for hyperthermia application in cancer treatment, a comparative study on laser heating of Au/Ag nanoparticles and Ag nanowires has been conducted. It is found that gold nanoparticles are more photothermal efficient in comparison with silver nanoparticles and silver nanowires at 450nm and 532 nm. Gold nanoparticles are more heated by 532 nm laser than 450 nm laser. In contrast, silver nanoparticles show slightly less temperature rise at 532 nm than 450 nm laser. For silver nanowires, no significant photothermal effect has been observed. Size-dependent effect study indicates that the absorption efficiency of single gold nanoparticles of larger diameter is higher than that of smaller diameter, in the diameter range of 0-50nm. A mathematical model for describing the heating profile in the heating sample has been built. The mathematical model can be utilized to predict the optimal treatment size of tumor.

  20. Pulse laser assisted optical tweezers for biomedical applications.

    PubMed

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate.

  1. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  2. Abbreviated New Drug Applications and 505(b)(2) Applications. Final rule.

    PubMed

    2016-10-06

    The Food and Drug Administration (FDA, the Agency, or we) is issuing a final rule to implement Title XI of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA), which amended provisions of the Federal Food, Drug, and Cosmetic Act (the FD&C Act) that govern the approval of 505(b)(2) applications and abbreviated new drug applications (ANDAs). This final rule implements portions of Title XI of the MMA that pertain to provision of notice to each patent owner and the new drug application (NDA) holder of certain patent certifications made by applicants submitting 505(b)(2) applications or ANDAs; the availability of 30-month stays of approval on 505(b)(2) applications and ANDAs that are otherwise ready to be approved; submission of amendments and supplements to 505(b)(2) applications and ANDAs; and the types of bioavailability and bioequivalence data that can be used to support these applications. This final rule also amends certain regulations regarding 505(b)(2) applications and ANDAs to facilitate compliance with and efficient enforcement of the FD&C Act.

  3. Geoscience Laser Altimeter System (GLAS): Final Test Report of DM LHP TV Testing. Revised

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    The Demonstration Model (DM) Loop Heat Pipe (LHP) was tested at Goddard Space Flight Center (GSFC) during September and October, 1999. The LHP system was placed in the Dynavac 36 in. chamber in Building 4. The test lasted for about 6 weeks. The LHP was built, designed, and manufactured at Dynatherm Corporation, Inc. In Hunt Valley, MD according to GSFC specifications. The purpose of the test was to evaluate the performance of a propylene LHP for the Geoscience Laser Altimetry System (GLAS) instrument application.

  4. Laser based machine for die and prototype manufacturing: Final report, February 10, 1987--August 9, 1988

    SciTech Connect

    Feygin, M.

    1989-02-05

    In his application to the Bureau of Energy Related Inventions Michael Feygin proposed a feasibility study for a new process aiming at completely automated manufacturing of complex and hard to manufacture parts. The technique invented by Michael Feygin is called Laminated Object Manufacturing. It utilizes thin cross-sections of a part, cut by a laser based contouring machine. The part is created by successive deposition and bonding of layers of material. Part geometry is specified by successive cross-sectioning of 3-dimensional images created with a CAD program on a graphic workstation. The Laminated Object Manufacturing system can be thought of as a ''three-dimensional-printer'' which incrementally stacks two-dimensional images. The ultimate hard copy is produced, the object itself. The laser system is basically an assembly of known technologies: laser cutting, CAD and CAM, brazing or adhesion bonding, and computer controlled mechanical handling of components. It offers a revolutionary new way to produce 3-dimensional objects such as molds, dies, prototypes, models and other items produced in small batches. The research performed on the grant created a foundation for building a successful prototype of a LOM system. The prototype has been built in 1988 using funds of the Illinois Innovation Fund, a state agency independent from DOE. 8 figs., 1 tab.

  5. Laser sclerostomy ab externo with the Erbium:YAG laser using a new flexible application system

    NASA Astrophysics Data System (ADS)

    Wetzel, Wolfgang; Scheu, M.; Brinkmann, Ralf; Birngruber, Reginald

    1992-08-01

    A fistula from the anterior chamber of the eye into the subconjunctival space can be created by laser application ab externo (laser sclerostomy). The success of the procedure mainly depends on the special application system. The pulsed Erbium-YAG laser (2940 nm) was used as the energy source. The laser energy was guided to the application system via a ZrFl fiber with low attenuation at this wavelength. Because this fiber cannot be used in direct contact to the sclera, an optical coupling unit transmitted the energy to a short quartz fiber. This fiber was inserted in a specially sharpened retractable cannula to guide it into the subconjunctival space. Then the laser energy could be applied directly to the sclera to form the fistula. The procedure was demonstrated in vivo using rabbit eyes. A working fistula with formation of a filtering bleb could be achieved. The trauma to the conjunctiva was as minimal as in a subconjunctival injection. The minor alteration of the conjunctiva in this procedure compared to traditional surgical methods like goniotrepanation or trabeculectomy may cause less scarification and therefore less failure.

  6. Laser applications of self-organized organic photonic crystals

    NASA Astrophysics Data System (ADS)

    Furumi, Seiichi

    2008-08-01

    In this presentation, I report on the self-organized photonic crystals (PCs) of organic and polymer materials for laser applications. Here the self-organized PCs correspond to chiral liquid crystals (CLCs) and colloidal crystals (CCs). First, CLC molecules self-organize the supramolecular helical arrangement by the helical twisting power like as 1-D PC structure. When the fluorescent dye-doped CLC is optically excited with a linearly polarized beam, the laser emission appears at the photonic band gap (PBG) edge(s) of CLC hosts. The optically excited laser emission shows circularly polarized characteristic, even though the excitation beam is linearly polarized. Applying voltages to the optically excited CLC cells enables reversible switching of the laser action as a result of changes in the supramolecular helical structure of CLC host. Moreover, we succeed in the phototunable laser emission by using photoreactive CLCs. Second research topic is establishment of new potential utilities of CC structures of polymer micro-particles. Monodispersed micro-particles have an intrinsic capability to self-assemble the face-centered cubic lattice structures like as 3-D PCs on substrates from the suspension solutions. The highly ordered architectures of colloidal particles are called as the CCs. The laser cavity structure consists of an intermediate light-emitting layer of a fluorescent dye sandwiched between a pair of polymeric CC films. Optical excitation of the device gives rise to the laser oscillation within the photonic band-gap of the CC films. Interestingly, the laser action can be generated by optical excitation even though the CC laser device of all-polymer materials becomes bent shape by mechanical stress.

  7. The Application of Ultrafast Laser Pulses to Laser Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cui, Yang

    Ultrashort femtosecond laser pulses display exceptional performance for the selective ablation of materials, includes metals, semiconductors, and biological tissues. They do not damage the remaining unablated portion of a sample, which permits the possibility of depth profiling by repeat sampling at the same location. With sufficiently micro-focused fs laser pulse length beam, high lateral resolution mass spectrometry imaging is possible, while sample damage may degrade ultimate lateral resolution in some other methods. Combining imaging and depth profiling could ultimately leads to tomographical mass spectrometry or 3D imaging MS. Laser postionization, a "soft" ionization method, was combined with ultrafast laser desorption for enhanced molecular analysis. A customized femtosecond laser desorption/ablation postionization time-of-flight mass spectrometer was designed and built. The construction and performance of both phases including the VUV source are detailed. Instrument control software was written to operate this instrument, and many automated experiments were successfully demonstrated by this software. Elemental and molecular analysis was carried out on the instrument and demonstrated exceptional performance for fs laser pulse sampling of small areas. Studies demonstrated the imaging and depth profiling capability of fs-LDPI on metals, semiconductors and intact biofilm tissues. Attempts were made to reach the limit of lateral resolution of imaging by fs-LDPI-MS. The results showed similar lateral resolution of <2 mum for both fs 800 nm and 400 nm desorption beams. To improve the repetition rate for high speed imaging application, an alternative LDPI scheme was designed and constructed. The fs 800 beam was tripled to 267 nm and delivered into the ion source as an ionization laser, while a ns 349 nm pulse laser was used for desorption. Preliminary data showed certain intact molecular ions can be detected. Fragmentation tendency was measured against various

  8. Final Report. Center for Scalable Application Development Software

    SciTech Connect

    Mellor-Crummey, John

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codes for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.

  9. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  10. Laser data transmission with the application of reflectance modulator

    NASA Astrophysics Data System (ADS)

    Knysak, Piotr; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek; Traczyk, Maciej

    2016-12-01

    The article presents the main aspects related to the development of nonconventional asymmetric laser data transmission system. It describes the principle of data transmission in both the direction away from the laser transmitter, wherein a pulse position modulation is used, and in the opposite direction, where the modulation of the reflected radiation is performed. The results presented in the article confirm the possibility of using the described technology in the civilian area for monitoring and telemetry, where devices without radiation sources are taken into account. In military applications, the system can be used to identify own objects and forces on the battlefield by the application of pulsed laser rangefinders which are currently a standard battle equipment.

  11. Laser beamed power - Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    Feasibility of using a ground-based laser to beam light to the solar arrays of orbiting satellites to a level sufficient to provide the operating power required is discussed. An example case of a GEO communications satellite near the end of life due to radiation damage of the solar arrays or battery failure is considered. It is concluded that the commercial satellite industry should be able to reap significant economic benefits through the use of power beaming which is capable of providing supplemental power for satellites with failing arrays, or primary power for failed batteries.

  12. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... having filed application for final settlement. 11.128 Section 11.128 Pensions, Bonuses, and Veterans... Amended (pub. L. 120, 68th Cong.) § 11.128 Veteran dies without having filed application for final settlement. If the veteran dies without having filed application for final settlement under the...

  13. LASER PLASMA AND LASER APPLICATIONS: Soft apertures for lasers emitting visible radiation

    NASA Astrophysics Data System (ADS)

    Kolerov, A. N.; Arzumanyan, Sh O.; Chirkina, K. P.; Gritsaĭ, I. I.

    1988-12-01

    It was found that an Al2O3:Ti3+ crystal grown by the Verneuil method can be used in the fabrication of "soft" apertures for lasers emitting in the blue-green range. The experimental results indicated equalization of the intensity of the radiation across the laser beam and also "polychromatic" lasing when apertures made of Al2O3:Ti3+ were placed inside the resonator cavity.

  14. Mid - infrared solid state lasers for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Terekhov, Yuri

    This work is devoted to study of novel high power middle-infrared (Mid-IR) laser sources enabling development of portable platform for sensing of organic molecules with the use of recently discovered Quartz Enhanced Photo Acoustic Spectroscopy (QEPAS). The ability to detect small concentrations is beneficial to monitor atmosphere pollution as well for biomedical applications such as analysis of human breath to detect earlier stages of cancer or virus activities. A QEPAS technique using a quartz tuning fork (QTF) as a detector enables a strong enhancement of measured signal when pump laser is modulated with a frequency coinciding with a natural frequency of a QTF. It is known that the detectability of acousto-optics based sensors is proportional to the square root of the laser intensity used for detection of analyte. That is the reason why commercially available semiconductor Mid-IR lasers having small output power limit sensitivity of modern QEPAS based sensors. The lack of high power broadly tunable lasers operating with a modulation frequency of quartz forks (~ 32.768 kHz) is the major motivation of this study. Commercially available Mid-IR (2-3.3 microm), single frequency, continuous wave (CW) fiber pumped lasers based on transition metal doped chalcogenides (e.g. Cr:ZnSe) prove to be efficient laser sources for organic molecules detection. However, their direct modulation is limited to several kHz, and cannot be directly used in combination with QEPAS. Hence, one objective of this work is to study and develop fiber laser pumped Ho:YAG (Er:YAG)/Cr:ZnSe tandem laser system/s. Ho (Holmium) and/or Er (Erbium) ions having long radiation lifetime (~ 10 ms) can effectively accumulate population inversion under CW fiber laser excitation. Utilization of acousto-optic (AO) modulators in the cavity of Ho:YAG (Er:YAG) laser will enable effective Q-Switching with repetition rate easily reaching the resonance frequency of a QTF. It is expected that utilization of Ho:YAG (Er

  15. Coolants with selective optical filtering characteristics for ruby laser applications

    NASA Technical Reports Server (NTRS)

    Mc Devitt, F. R.; Rasquin, J. R.

    1968-01-01

    Coolant-filtering medium developed consists of a solution of copper sulfate in a 4-1 volumetric mixture of ethanol and methanol. This solution should be a useful addition to ruby laser systems, particularily in large pulse or Q switching applications.

  16. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  17. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  18. Laser-guided, intersecting discharge channels for the final beam transport in heavy-ion fusion

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Neff, S.; Tauschwitz, A.; Penache, D.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Rosmej, F. B.; Hoffmann, D. H. H.; Yu, S. S.

    2003-06-01

    Ion-beam transport in space charge neutralizing discharge channels has been proposed for the final focus and chamber transport in a heavy-ion fusion reactor. A driver scenario with two-sided target illumination requires a system of two intersecting discharges to transport beams of the same charge from opposite sides towards the fusion target. In this article we report on experiments on the creation of free-standing, intersecting high-current discharge channels. The discharges are initiated in ammonia gas (NH3) in a metallic chamber by two perpendicular CO2-laser beams, which resonantly heat and subsequently rarefy the gas along the laser paths before the breakdown. These low density channels guide the discharges along the predefined paths and also around the 90° angles without any mechanical guiding structures. In this way stable X-, T-, and L-shaped discharges with currents in excess of 40 kA, at pressures of a few mbar were created with a total length of 110 cm. An 11.4 A MeV 58Ni+12 beam from the UNILAC (Universal Linear Accelerator) linear accelerator was used to probe the line-integrated ion-optical properties of the central channel in a T-shaped discharge.

  19. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  20. Review of selective laser melting: Materials and applications

    SciTech Connect

    Yap, C. Y.; Chua, C. K. Liu, Z. H. Zhang, D. Q. Loh, L. E. Sing, S. L.; Dong, Z. L.

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  1. Confocal scanning beam laser microscope/macroscope: applications in fluorescence

    NASA Astrophysics Data System (ADS)

    Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso

    1996-03-01

    A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.

  2. Review of selective laser melting: Materials and applications

    NASA Astrophysics Data System (ADS)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  3. Applications of laser direct-write for embedding microelectronics

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Charipar, Nicholas A.; Kim, Heungsoo; Auyeung, Ray C. Y.; Mathews, Scott A.

    2007-03-01

    The use of direct-write techniques might revolutionize the way microelectronic devices such as interconnects, passives, IC's, antennas, sensors and power sources are designed and fabricated. The Naval Research Laboratory has developed a laser-based microfabrication process for direct-writing the materials and components required for the assembly and interconnection of the above devices. This laser direct-write (LDW) technique is capable of operating in subtractive, additive, and transfer mode. In subtractive mode, the system operates as a laser micromachining workstation capable of achieving precise depth and surface roughness control. In additive mode, the system utilizes a laser-forward transfer process for the deposition of metals, oxides, polymers and composites under ambient conditions onto virtually any type of surface, thus functioning as a laser printer for patterns of electronic materials. Furthermore, in transfer mode, the system is capable of transferring individual devices, such as semiconductor bare die or surface mount devices, inside a trench or recess in a substrate, thus performing the same function of the pick-and-place machines used in circuit board manufacture. The use of this technique is ideally suited for the rapid prototyping of embedded microelectronic components and systems while allowing the overall circuit design and layout to be easily modified or adapted to any specific application or form factor. This paper describes the laser direct-write process as applied to the forward transfer of microelectronic devices.

  4. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  5. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  6. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Nonspatial filter for laser beams

    NASA Astrophysics Data System (ADS)

    Ludman, J. E.; Riccobono, J.; Reinhand, N.; Korzinin, Yu; Semenova, I.; Shahriar, S. M.

    1996-12-01

    A nonspatial filter was developed to perform the same task as a traditional pinhole or fibre spatial filter: the filtering of spatial frequencies in laser beams. However, the new filter operates directly in a laser beam without focusing it. This makes it possible to eliminate many of the alignment instabilities and laser power limitations of spatial filters. The new filter is based on the Bragg selectivity of thick holograms. Two-dimensional filtering requires insertion of two different holograms in the light path. The requirements which holograms must satisfy, as well as those imposed on a holographic material to reach a bandwidth of about 10-3—10-4 rad for the angular selectivity contour amounting, are considered. Standard holographic materials are unsuitable for this application because of differential shrinkage during processing, which limits the maximum attainable Bragg angular selectivity. A new 'porous' holographic material is developed which is heterogeneous: it consists of a porous silicate matrix impregnated with a photosensitive medium. Calculations and experiments show that it is an ideal material for our task and it satisfies the necessary requirements: its thickness is several millimetres or more, it does not shrink, it makes it possible to attain the necessary refractive index modulation, etc. Potential applications of such highly selective filters are wide: they can be used to 'clean up' conventional laboratory and industrial laser beams, they can be mounted inside laser cavities for filtering of spatial frequencies and mode selection, they are promising for spectroscopy and correction of corrupted wavefronts, etc.

  7. Laser heating of dielectric particles for medical and biological applications

    PubMed Central

    Tribelsky, Michael I.

    2016-01-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the characteristic depth of light absorption in the material of the particle and the two heat diffusion lengths: in the particle and in the embedding liquid. A new quantitative characteristic of the laser action, that is the cooling time, describing the temporal scale of the cooling down of the particle after the laser pulse is over, is introduced and discussed. Simple analytical formulas for the temperature rise in the center of the particle and at its surface as well as for the cooling time are obtained. We show that at the appropriate choice of the problem parameters the cooling time may be by many orders of magnitude larger the laser pulse duration. It makes possible to minimize the undesirable damage of healthy tissues owing to the finite size of the laser beam and scattering of the laser radiation, simultaneously keeping the total hyperthermia period large enough to kill the pathogenic cells. An example of application of the developed approach to optimization of the therapeutic effect at the laser heating of particles for cancer therapy is presented. PMID:27446706

  8. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants

    SciTech Connect

    Moir, R W

    1999-06-30

    A thin film of liquid metal is suggested as a grazing incident liquid metal mirror (GILMM) for robust final optics of a laser inertial fusion energy (IFE) power plant. The amount of laser light the mirror can withstand, called the damage limit, of a sodium film 85{sup o} from normal is calculated to be 57 J/cm{sup 2} normal to the beam for a 20 ns pulse and 1.3 J/cm{sup 2} for a 10 ps pulse of 0.35 {micro}m light (2 m{sup 2} and 90 m{sup 2} of mirror area per 100 kJ of laser energy at 20 ns and 10 ps, respectively). Feasibility relies on keep the liquid surface flat to the required accuracy by a combination of polished substrate, adaptive (deformable) optics, surface tension and low Reynolds number, laminar flow in the film. The film's substrate must be polished to {+-} 0.015 pm. Then surface tension keeps the surface smooth over short distances (<10 mm) and low Reynolds number laminar flow keeps the surface smooth by keeping the film thickness constant to less than + 0.01 w over long distance >10 mm. Adaptive optics techniques keep. the substrate flat to within {+-} 0.06 pm over 100 mm distance and {+-}0.6 {micro}m over 1000 mm distances. The mirror can stand the x-ray pulse when located 30 m away from the microexplosions of nominal yield of 400 MJ (50 MJ of X rays) when Li is used but for higher atomic number liquids like Na there may be too high a temperature rise forcing use of other x-ray attenuation methods such as attenuation by xenon gas. The cumulative damage from neutrons causing warpage of the liquid film's substrate can be compensated by adaptive optics techniques giving the mirrors long life, perhaps 30 years. The GILMM should be applicable to both direct and indirect drive and pulse lengths appropriate to slow compression ({approx}20 ns) or fast ignition ({approx}10 ps). For direct drive laser beams near the poles (70{sup o}, where 90{sup o} is vertical), stable thin films become more challenging. Proof of concept experiments are needed to verify the

  9. Solid state laser applications in photovoltaics manufacturing

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  10. Chemical stabilization of laser dyes. Final report, 1 July 1981-1 October 1984

    SciTech Connect

    Koch, T.H.

    1984-11-01

    Coumarin laser dyes upon excitation degrade to produce products which absorb at the lasing wavelength. This results in attenuation of dye laser output. Modes of degradation of coumarin dye lasers under both anaerobic and aerobic conditions were determined and methods of stabilization of dye lasers were established.

  11. High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling.

    PubMed

    de Freitas, Carlos Eduardo Assumpção; Bertaglia, Raquel Santilone; Vechetti Júnior, Ivan José; Mareco, Edson Assunção; Salomão, Rondinelle Artur Simões; de Paula, Tassiana Gutierrez; Nai, Gisele Alborghetti; Carvalho, Robson Francisco; Pacagnelli, Francis Lopes; Dal-Pai-Silva, Maeli

    2015-01-01

    The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix. © 2015 The American Society of Photobiology.

  12. 50 years LASERS: in vitro diagnostics, clinical applications and perspectives.

    PubMed

    Spyropoulos, Basile

    2011-01-01

    1960 Theodore Maiman built the first Ruby-LASER, starting-point for half a century of R&D on Biomedical LASER continuous improvement. The purpose of this paper is to contribute a review of the often disregarded, however, extremely important Industrial Property documents of LASER-based in vitro Diagnostics devices. It is an attempt to sketch-out the patent-trail leading towards the modern Biomedical Laboratory and to offer an introduction to the employment of "exotic" systems, such as the Free Electron LASER (FEL), that are expected to focus on the fundamental processes of life, following chemical reactions and biological processes as they happen, on unprecedented time and size scales. There are various in vitro LASER applications, however, the most important ones include: Hybrid Coulter Principle-LASER Hematology Analyzers. Flow Cytometry systems. Fluorescent in situ Hybridization (FISH Techniques). Confocal LASER Scanning Microscopy and Cytometry. From the first fluorescence-based flow Cytometry device developed in 1968 by Wolfgang Göhde until nowadays, numerous improvements and new features related to these devices appeared. The relevant industrial property milestone-documents and their overall numeral trends are presented. In 1971, J. Madey invented and developed the Free Electron LASER (FEL), a vacuum-tube that uses a beam of relativistic electrons passing through a periodic, transverse magnetic field (wiggler) to produce coherent radiation, contained in an optical cavity defined by mirrors. A resonance condition that involves the energy of the electron beam, the strength of the magnetic field, and the periodicity of the magnet determines the wavelength of the radiation. The FEL Coherent Light Sources like the Linac Coherent Light Source (LCLS) at Stanford, CA, USA or the Xray Free Electron LASER (XFEL) at Hamburg, Germany, will work much like a high-speed (< 100 femtoseconds) camera, enabling scientists to take stop-motion pictures, on the nanoscale, of atoms

  13. Application of in vivo laser scanning microscope in dermatology

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Richter, H.; Otberg, N.; Lawrenz, F.; Blume-Peytavi, U.; Sterry, W.

    2003-10-01

    The state of the art of in-vivo and in-vitro penetration measurements of topically applied substances is described. Only optical techniques represent online measuring methods based on the absorption or scattering properties of the topically applied substances. Laser scanning microscopy (LSM) has become a promising method for investigations in dermatology and skin physiology, after it was possible to analyze the skin surface on any body side in-vivo. In the present paper the application of a dermatological laser scanning microscope for penetration and distribution measurements of topically applied substances is described. The intercellular and follicular penetration pathways were studied.

  14. Recommendations and guidelines for safe medical laser application

    NASA Astrophysics Data System (ADS)

    Meier, Thomas H.

    1996-12-01

    The better understanding of generation of by-products during laser application allows a rough risk assessment, which in turn results in a number of recommendations and guidelines. The main attention is directed to smoke evacuation systems in connection with sufficient room ventilation, both being obligatory for any invasive laser therapy. Minimal requirements and optimal use of such units are discussed and practical examples are presented. The important role of personal protection measures is pointed out. These measures are not new and more or less practiced in the past. However, they have been justified now in detail by the comprehensive investigations during the STILMED project.

  15. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  16. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  17. Development Of CO2 Laser Amplifiers For Radar Applications

    NASA Astrophysics Data System (ADS)

    Yoder, M. J.; Youmans, D. G.; Reilly, J. P.

    1987-01-01

    Laser radar oscillators are necessarily low output power devices since (1) short optical cavities and low pressure operating conditions are required for minimum fluctuations, (2) short laser cavities and low pressures are required for single frequency, single longitudinal mode operation, and (3) small optical beam cross-sections are required for single transverse mode operation. All of these combined restrictions severely limit the attainable output power and stability of oscillators. Amplifiers, on the other hand, have no such restrictions in discharge length, gas pressure or optical cross-section. With regard to frequency stability, amplifiers are more forgiving than oscillators since only the time variation of the electron and gas density gradients affects the frequency stability. TETIi oscillator-amplifier configurations are used whenever moderate to high power (greater than about 50 watts) applications are desired. In this paper the design of amplifiers for CO, laser radar applications will be presented. This discussion will examine the issues of discharge technique selection, gain requirements, frequency stability requirements/achievability, optical folding schemes to obtain high gain-length products, backward wave feed-back minimization/suppression, and flow requirements/achievability for high average power operation. These are some of the issues that must be considered in the design of moderate power CW and pulsed laser radar amplifiers for short and long range applications.

  18. Application of Laser Imaging for Bio/geophysical Studies

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-01-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  19. Application of Laser Imaging for Bio/geophysical Studies

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-01-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  20. Laser diagnostics and modeling of plasma assisted CVD. Final technical report

    SciTech Connect

    1996-02-01

    Plasma assisted chemical vapor deposition (PACVD) represents a novel approach for utilizing the nonequilibrium effects of reactive plasmas for depositing a wide range of protective hardface coatings that have both wear and erosion application. The nonequilibrium plasma is the heart of this complex system and has the function of generating the reactive molecular fragments (radicals) and atomic species at concentration levels unattainable by other competing processes. It is now widely accepted that such advanced protective hardface coatings materials will play a vital role in the energy technologies of the coming decades, with major applications in diverse areas ranging from aerospace and commercial propulsion systems (jet engines) to automotive components and internal combustion engines, (ceramic heat engines), cutting and machining tools, electronic packaging, thermal management, and possibly room-temperature superconductors. Wear and associated erosion aspects are responsible for an enormous expenditure of energy and fiscal resources in almost all DOE applications. Many of the results from this investigation arc also applicable to other materials processing reactors such as electron beam, PVD, CVD, laser ablation, microwave, high energy cathodic arc, thermal plasma (rf or dc) and combustion spray. These also include the various hybrid systems such as the rf/dc arc as used in Japan for diamond deposition and e-beam PVD deposition of advanced titanium alloy coatings as used at the Paton Institute in Kiev, Ukraine.

  1. In vitro and in vivo studies on laser-activated gold nanorods for applications in photothermal therapies

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Ratto, Fulvio; Matteini, Paolo; Centi, Sonia; Rossi, Francesca

    2010-04-01

    We review our experimental studies on near infrared laser-activated gold nanoparticles in the direct welding of connective tissues. In particular, we discuss the use of gold nanorods excited by diode laser radiation at 810 nm to mediate functional photothermal effects and weld eye's lens capsules and arteries. The preparation of biopolymeric matrices including gold nanorods is described as well, together with preliminary tests for their application in the closure of wounds in vessels and tendons. Finally we mention future perspectives on the use of these nanoparticles for applications in the therapy of cancer.

  2. Excimer lasers and applications; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 21-23, 1988

    SciTech Connect

    Basting, D.

    1989-01-01

    Various papers on excimer lasers and applications are presented. Individual topics addressed include: trends in materials processing with laser radiation, high repetition at high power excimer lasers, excimer lasers with large discharge cross section, first results on high power excimer lasers, excimer lasers with capacitatively excited tubular discharges, 1 kW e-beam pumped excimer laser, femtosecond excimer lasers, stretching of excimer laser pulses, advanced control system for excimer lasers, optical control of high-power excimer lasers, excimer laser and geometric optics, UV-laser photoablation of polymers, accelerated laser aging of plastics, excimer laser surface treatment of nonferrous alloys, excimer lasers for materials processing, excimer laser-based machining of amorphous metals, surface treatments of metals with excimer lasers, optical fiber transmission of excimer laser pulses, European joint effort on kilowatt excimer lasers.

  3. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  4. Ultra high brightness laser diode arrays for pumping of compact solid state lasers and direct applications

    NASA Astrophysics Data System (ADS)

    Kohl, Andreas; Fillardet, Thierry; Laugustin, Arnaud; Rabot, Olivier

    2012-10-01

    High Power Laser Diodes (HPLD) are increasingly used in different fields of applications such as Industry, Medicine and Defense. Our significant improvements of performances (especially in power and efficiency) and a reproducible manufacturing process have led to reliable, highly robust components. For defense and security applications these devices are used predominantly for pumping of solid state lasers (ranging, designation, countermeasures, and sensors). Due to the drastically falling price per watt they are more and more replacing flash lamps as pump sources. By collimating the laser beam even with a bar to bar pitch of only 400μm. cutting edge brightness of our stacks.is achieved Due the extremely high brightness and high power density these stacks are an enabling technology for the development of compact highly efficient portable solid state lasers for applications as telemeters and designators on small platforms such as small UAVs and handheld devices. In combination with beam homogenizing optics their compact size and high efficiency makes these devices perfectly suited as illuminators for portable active imaging systems. For gated active imaging systems a very short pulse at high PRF operation is required. For this application we have developed a diode driver board with an efficiency several times higher than that of a standard driver. As a consequence this laser source has very low power consumption and low waste heat dissipation. In combination with its compact size and the integrated beam homogenizing optics it is therefore ideally suited for use in portable gated active imaging systems. The kWatt peak power enables a range of several hundred meters. The devices described in this paper mostly operate at wavelength between 800 nm and 980nm. Results from diodes operating between 1300 nm and 1550 nm are presented as well.

  5. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  6. Compact laser diode drivers for military rangefinder applications

    NASA Astrophysics Data System (ADS)

    Giorgi, D.; Philippbar, J.

    2010-04-01

    Compact and high current laser diode drivers for pumping solid-state lasers have been developed and tested. Designed to operate from a single DL123 battery or equivalent, the OptiSwitch PLDD-150-1-1 delivers 150 A of peak current for 300 μs to a laser diode bar at a 1 Hz repetition rate. Measuring only 2.1 × 0.75 × 0.78 inches and weighing 15.2 g, the unit is suited for man-portable target designation, rangefinding, illumination, and remote sensing applications. This paper will discuss the design philosophy behind this class of drivers which offer peak currents up to 200 A plus lifetime testing of eight drivers all operating at elevated input voltage and temperature at 4.5 Hz for 10M shots without a single failure or degradation in performance. Lastly, temperature testing down to -40 degC will be discussed.

  7. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

    1994-01-01

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  8. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.; Albrecht, G.; Beach, R.

    1994-12-31

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  9. Medical and biological applications for ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Singh, Ajoy I.; Serbin, Jesper; Ostendorf, Andreas; Kermani, Omid; Heermann, R.; Welling, Herbert; Ertmer, Wolfgang

    2003-02-01

    Due to the low energy threshold of photodisruption with fs laser pulses, thermal and mechanical side effects are limited to the sub μm range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: In ophthalmology intrastromal cutting and preparing of corneal flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs-laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosclerosis as well as in dentistry to remove caries from dental hard tissue.

  10. Laser-induced stress transients: applications for molecular delivery

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J.; Douki, Tina; Doukas, Apostolos G.

    1995-05-01

    Lasers can be used to enhance the delivery of a number of molecules. Other investigators have demonstrated local release of molecules from liposomes following laser irradiation, microbeam disruption of the cell membrane to increase cell transport, microbeam ablation of the zona pellucida surrounding the ovum to increase the chances of fertilization, and increased transcutaneous transport following ablation of the stratum corneum. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  11. CHRONICLE: Fourth International Conference on Lasers and Their Applications (Leipzig, East Germany, October 19-23, 1981)

    NASA Astrophysics Data System (ADS)

    Bukhenskiĭ, M. F.; Polkovnikov, Boris F.

    1983-06-01

    A brief review is given of the more important papers presented at the Fourth International Conference on Lasers and Their Applications. The Conference topics were as follows: lasers (development of new and improvement of old types); laser thermonuclear fusion; nonlinear optics; laser spectroscopy; optoelectronics; applications of lasers in chemistry, biology, and medicine; fundamental investigations; other applications.

  12. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  13. Laser flare-cell photometry: methodology and clinical applications.

    PubMed

    Ladas, John G; Wheeler, Noel C; Morhun, Patrick J; Rimmer, Steven O; Holland, Gary N

    2005-01-01

    Diagnosis and management of intraocular inflammation involves the assessment of cells and protein levels ("flare") in the aqueous humor. These factors are difficult to quantify precisely on clinical examination alone. Laser flare-cell photometry provides an automated technique to quantify these factors objectively, and it has been used in a variety of research and clinical situations to assess anterior segment inflammation. Any new technique requires evaluation to determine accuracy and reproducibility of measured values, and initial applications require critical appraisal to assess the value of the technique. Both in vitro and in vivo studies of laser flare-cell photometry have been performed to determine its validity and utility as a research and clinical tool. This article reviews published studies that describe the technique of laser flare-cell photometry; it provides new in vitro data that supplements information on the capabilities of this technique and factors that influence photometry results, and it reviews representative publications that have used laser flare-cell photometry for study of specific disease entities. This information can help clinicians and researchers to become familiar with the strengths and limitations of laser flare-cell photometry, to identify appropriate future uses for this technique, and to use it and interpret its results appropriately. Laser flare-cell photometry offers an opportunity to improve upon current techniques of inflammation assessment and should not be considered simply an objective surrogate for clinical grading of cells and flare at the slit-lamp biomicroscope. Its research applications and utility for monitoring patients with uveitis have not yet been fully explored.

  14. Application of Diode Laser in the Treatment of Dentine Hypersensitivity

    PubMed Central

    Gojkov-Vukelic, Mirjana; Hadzic, Sanja; Zukanovic, Amila; Pasic, Enes; Pavlic, Veriva

    2016-01-01

    Introduction: Dentine hypersensitivity is characterized by acute, sharp pain arising from the exposed dentine, most commonly in response to thermal, tactile, or chemical stimuli, and which cannot be linked to any other pathological changes in the tooth or the environment. Therapy uses various impregnating agents in the form of solutions or gels and, in more recent times, laser. Aim: The aim of this research was to examine the effects of treatment of hypersensitive dental cervix with diode laser. Materials and Methods: The study included 18 patients with 82 sensitive teeth. The degree of dentine hypersensitivity was evaluated by visual analogue scale (VAS), and the treatment was carried out by application of low-power diode laser over the span of three visits, which depended on the initial sensitivity. Results: There is a significant difference in VAS values measured at the onset of treatment (baseline) and immediately after the first laser treatment (t=9.275; p=0.000), after 7 days, after the second laser treatment (14 days) (t=7.085, p=0.000), as well as after 14 days and the third laser treatment (t=5.517, p=0.000), which confirms the effectiveness of this therapeutic procedure. The results showed a reduction of hypersensitivity in response to tactile stimulus with a probe after the third treatment, even with teeth whose value on the VAS was very high at the beginning of treatment (baseline). Conclusion: Within the scope of the conducted study, laser therapy has provided extremely safe and effective results in the treatment of cervical dentine hypersensitivity. PMID:28210023

  15. Tunable Single-Frequency Near IR Lasers for DIAL Applications

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.

    2000-01-01

    Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.

  16. Tunable Single-Frequency Near IR Lasers for DIAL Applications

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.

    2000-01-01

    Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.

  17. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    PubMed

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  18. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a

  19. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  20. Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.

    1997-01-01

    As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed