Science.gov

Sample records for laser applications milan

  1. [Public food service in Milan city and Hinterland: GMP application (Part 1)].

    PubMed

    Pontello, M; Dal Vecchio, A; Bertini, I; Valerio, E

    2005-01-01

    Food service establishments are recognized as a critical sector concerning foodborne diseases occurrence, that is associated to contributing factors such as the anticipated preparation of meals that are often highly handled, and long-time distributed. A survey has been planned to evaluate the application of HACCP plan, in order to select a statistically representative sample of food services (restaurant, pizza-shop, bar, ..) in two Milan area' Public Health Units (PHU). During the inspections a proper check-list has been filled up in order to give a conformity evaluation about the global situation and about three specific sections: hygiene of food-handlers, procedures control, temperatures management. The food services have been found satisfactory in 9/106 and 5/54 cases in Milan City and in hinterland, respectively; among the two areas, highly significant differences have been revealed about temperatures management (68% and 28% unsatisfactory, respectively). In Milan City restaurants provided with HACCP plan scores are significantly different from unprovided restaurants scores (global and the three sections' evaluation); in Milan hinterland differences between provided and unprovided HACCP plan restaurants regard temperature management scores only. Useful suggestions to improve the quality of surveillance activity come from complex and heterogeneous findings shown in this study. PMID:16041926

  2. Mobile Applications as Tool for Exploiting Cultural Heritage in the Region of Turin and Milan

    NASA Astrophysics Data System (ADS)

    Rolando, A.; Scandiffio, A.

    2013-07-01

    visualization of data flows. In the current research, the field of investigation refers both to the territorial scale of Turin - Milan axis, and to the local scale of small cities localized in the territories in between. The research has been applied to Turin - Milan infrastructural axis, with the aim to represent the relationships that can be established between mobility infrastructure and cultural heritage. Such relationships should be intended in terms of accessibility from mobility infrastructure (motorway exit, service areas, railways stations) to cultural heritage localized in the surrounding landscape. The richness of cultural heritage and landscape along the chosen infrastructural bundle represent a great opportunity for territorial development in terms of attractiveness, both for local inhabitants and for tourists. Nowadays, the use of tracking technologies can be applied to investigate tourist flows, behaviors of local inhabitants in the historic city centre, number of visitors in the city and so on. In this sense it is possible to apply these technologies, which are particularly relevant in urban studies, extending them to the territorial scale of the Turin - Milan region. The large amount of available geo-referenced data can be used in different ways and it is very potential for different kind of analysis: it is possible to show tourist flows in the territory, receive information about more visited places, obtain interaction from users and cultural heritage in terms of visitors opinion about the places, give information to tourists about cultural places, monitor the accessibility to the places, understand the use of means of transport and keep under control the impacts of tourism (social, cultural, environmental) on territory. Applications based on smartphones can be considered a powerful device for visitors but also for institutions that are involved in tourism and cultural heritage management. In fact, the use of mobile applications it can produce a real time data

  3. Laser applications in phlebology

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Mancini, S.; Postiglione, Marco; Postiglione, M. G.

    2001-06-01

    PURPOSE: review of laser used in phlebology METHOD: critical analysis of scientific data taken from the literature and based on 25 years personal experience. RESULTS: we have three groups of laser applications in phlebology: for the diagnosis, as physical therapy and as surgical therapy. DISCUSSION AND CONCLUSION: the laser-doppler studies the microcirculations, the no-surgical therapy shown positive results in the treatment of venous ulcers and for the wound healing. It could be indicate also as antiphlogistic and anti-edema therapy, in superficial thrombophlebitis. The surgical laser is useful for the surgical cleaning of ulcers, for haemorroids, angiomas and telangiectases.

  4. Contrasting strategic and Milan therapies.

    PubMed

    MacKinnon, L

    1983-12-01

    Three related models of therapy are often grouped together as the strategic therapies. These are brief therapy model associated with the Mental Research Institute, approaches developed by Jay Haley and Cloë Madanes, and the model developed by the Milan associates. Controversy exists, however, as to whether the Milan model should be included as a strategic therapy. It appears that the similarities among the three models can mask deeper differences, thus confounding the confusion. This paper contrast the models in their development, theory, and practice.

  5. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  6. ): laser processing and applications

    NASA Astrophysics Data System (ADS)

    Fricke-Begemann, T.; Meinertz, J.; Weichenhain-Schriever, R.; Ihlemann, J.

    2014-10-01

    Substoichiometric silicon oxide SiOx with x < 2 in form of evaporated or sputtered thin films offers a versatile material basis for laser ablation techniques such as film patterning, laser-induced forward transfer, or laser-induced backside dry etching. Applications in the field of (micro-) optics are favoured strongly by the fact that SiOx can be oxidised to UV-transparent SiO2 by thermal treatment (furnace or laser annealing). On the other hand, with x ≈ 1, SiOx exhibits an absorption coefficient of >105 cm-1 in the deep UV below 250 nm, comparable to strongly absorbing polymers such as polyimide. This enables precise ablation with, e.g., excimer lasers at moderate fluences. For example, UV-transparent diffractive elements or phase masks are made by laser patterning of an appropriate SiOx film and subsequent oxidation to SiO2. Modifications of the basic film ablation process lead to novel surface topographies such as blister or cup arrays with potential non-optical applications, e.g., in micro-/nanofluidics.

  7. Applications of Ion Laser Systems

    NASA Astrophysics Data System (ADS)

    Fletcher, Peter W.

    1987-04-01

    This paper provides an introduction to the more common applications of ion laser systems. Applications discussed include photocoagulation, flow cytometry, laser disk mastering, laser doppler velocimetry, Raman spectroscopy, holography, laser light shows, large screen projection, fingerprint detection, and applications in printing such as color separation and scanning. All these applications are currently in widespread use. At the end of the paper a short review is provided of developing applications such as cardiovascular surgery and semiconductor processing.

  8. Medical applications of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Mancha, Sylvia D.; Keipert, Andreas; Prairie, Michael W.

    1994-06-01

    The High Power Semiconductor Laser Technology (HPSLT) program is currently developing, in-house, a belt pack medical laser. This compact semiconductor laser device provides the field paramedic or physician a unique portable laser capability. The pack consists of a completely self-contained laser system that fits inside a belt pack. Several other medical applications being investigated by the HPSLT program include urological applications, photodynamic therapy, and ophthalmic applications.

  9. Novel oral laser applications

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-03-01

    In dental hard tissue ablation, ultra-short laser pulses have proven sufficiently their potential for material ablation with negligible collateral damage providing many advantages. The absence of micro-cracks and the possibility to avoid overheating of the pulp during dental cavity preparation may be among the most important issues, the latter opening up an avenue for potential painless treatment. Beside the evident short interaction time of laser radiation with the irradiated tissue, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of required quality and shape. Additionally, long-pulsed laser systems have demonstrated successfully their suitability for decontamination purposes. In this paper, an overview of different indications for laser application in dental therapies in both pulse regimes is presented. A special focus is set on the decontamination of dental implants in periimplantitis therapy. Having employed commercially available long pulse systems for dental applications and ultra-short 330 fs pulses, we present first results for temperature development and corresponding ablation thresholds for dental implants, as in the future more gentle implant cleaning by ultra-short laser pulses could become of interest.

  10. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications

    NASA Astrophysics Data System (ADS)

    D'Angelo, Luca; Rovelli, Grazia; Casati, Marco; Sangiorgi, Giorgia; Perrone, Maria Grazia; Bolzacchini, Ezio; Ferrero, Luca

    2016-07-01

    Atmospheric aerosols deliquescence and crystallization relative humidity (DRH and CRH) are rarely measured compared to the worldwide number of hygroscopicity measurements; this feature comes from the lack of an efficient method able to capture the whole complexity of chemical composition of aerosols. Despite this, the knowledge of both DRH and CRH are crucial for a correct parameterization of the aerosol hygroscopic growth used in different applications, among which the remote sensing is very important. In this paper, a newly developed technique (direct current conductance method) was applied in an aerosol chamber to Milan PM2.5 samples, to identify aerosol DRH and CRH both during winter and summer. These results were compared with those independently obtained by gravimetric measurements conducted in the chamber using a microbalance. Microbalance data allowed also the determination of the mass hygroscopic growth factor on the collected PM2.5 samples. Results evidenced first a good agreement between the two methods (RMSE = 2.7% and 2.3% for DRH and CRH, respectively). Collected data evidenced the hysteresis behavior of ambient particles and variability in both DRH and CRH between the two seasons. Summer samples showed higher DRH and CRH (on average 71.4 ± 1.0% RH and 62.6 ± 1.2% RH, respectively) than the winter ones (on average 55.2 ± 0.7% RH and 46.9 ± 0.6% RH). This behavior was related to the higher content of sulfates during the summer season. Conversely, the mass hygroscopic growth factor at 90% RH was higher for winter samples (2.76 ± 0.06) with respect to the summer ones (1.91 ± 0.11). Since hysteresis behavior affects optical properties of aerosols, when RH conditions are within the loop, the hygroscopic growth factor could be assigned in a wrong way. Thus, the growth factor was calculated within the hysteresis loop for both upper and lower branches: results showed that difference in hygroscopic growth factor could reach up the 24%.

  11. The water footprint of Milan.

    PubMed

    Vanham, D; Bidoglio, G

    2014-01-01

    This study quantifies the water footprint of consumption (WFcons) and production (WFprod) of Milan. The current WFcons amounts to 6,139 l/cap/d (a volume of 2.93 km(3) annually), of which 52 l/cap/d (1%) is attributed to domestic water, 448 l/cap/d (7%) to the consumption of industrial products and 5,639 l/cap/d (92%) to the consumption of agricultural products. The WFprod is 52 l/cap/d. Milan is thus a net virtual water importer, predominantly through the import of agricultural products. These are produced outside city borders, both in Italy and abroad. This shows the dependency of city dwellers on water resources from other river basins. In addition, the WFcons for a healthy diet (based on Mediterranean Food-Based Dietary Guidelines) and a vegetarian diet are analysed. The current Milanese diet consists of too much sugar, crop oils, meat, animal fats, milk and milk products and not enough cereals, rice, potatoes, vegetables and fruit. The latter two diets result in substantial WFcons reductions: -29% (to 4,339 l/cap/d) for a healthy diet and -41% (to 3,631 l/cap/d) for a vegetarian diet. Indeed, a lot of water could be saved by Milan citizens through a change in their diet. A sustainable city should account for its impacts beyond its borders. PMID:24569278

  12. Laser applications in criminalistics

    NASA Astrophysics Data System (ADS)

    Menzel, E. R.

    1990-10-01

    Lasers find application in numerous areas of criminalistics such as fiber analysis document examination and serology. Their widest use however is in detection of latent finger prints. Several routine procedures for obtaining laserexcited fingerprint fluorescence on a range of surfaces have been devel oped. However many surfaces fluoresce so strongly themselves that they are not amenable to these procedures. Timeresolved luminescence imaging is being investigated to permit detection of fingerprints on such surfaces.

  13. Soft tissue application of lasers.

    PubMed

    Holt, Timothy L; Mann, Fred A

    2002-05-01

    Despite increasing numbers of veterinarians incorporating lasers into their clinical practices, little information has been published about laser clinical applications in soft tissue surgery. This article reviews soft tissue interaction, describes laser equipment and accessories commonly marketed to veterinarians, and discusses clinical applications of the carbon dioxide laser in a systems-based approach. A table of recommended laser tips and settings based on the authors' experiences using a carbon dioxide laser (AccuVet Novapulse LX-20SP, Bothell, WA) is provided. PMID:12064042

  14. Diode laser applications in urology

    NASA Astrophysics Data System (ADS)

    Sam, Richard C.; Esch, Victor C.

    1995-05-01

    Diode lasers are air-cooled, efficient, compact devices which have the potential of very low cost when produced in quantity. The characteristics of diode lasers are discussed. Their applications in interstitial thermal treatment of the prostate, and laser ablation of prostate tissues, will be presented.

  15. The lasers for TMLR application

    NASA Astrophysics Data System (ADS)

    Panchenko, Vladislav Y.; Berishvili, I. I.; Vasiltsov, Victor V.; Ulyanov, Valerii A.; Egorov, E. N.; Solovjev, Andrey V.; Semenov, A. N.; Tarasov, M. N.; Roshin, M. A.

    2004-06-01

    The paper presents the analysis of the requirements to the laser systems used to cure the ischemic disease of the heart by the method of transmyocardial laser revascularization (TMLR). Among the medical laser systems under discussion (solid-state Nd:YAG, Er:YAG, Ho:YAG, excimer lasers, etc.) the high-power CO2 laser with pulse energy to 40 J is most suited to produce channels in the heart muscle. The paper provides the description and the technical characteristics of medical laser systems of "Perfocor" series, based on high-power waveguide CO2 lasers with pulse energy to 60 J, developed at ILIT RAS. The methods to determine the time of laser radiation penetration through the myocardium/blood boundary have been briefly discussed. The application of the "Perfocor" system in other laser operations on blood-filled organs has also been discussed.

  16. Novel fiber lasers and applications

    NASA Astrophysics Data System (ADS)

    Zenteno, Luis A.; Walton, Donnell T.

    2003-07-01

    Glass fiber lasers were invented in the 60's by Elias Snitzer at Americal Optical, soon after the invention of the first solid-state glass laser. However, it was not until the 80's when these waveguide devices were deployed in industrial applications, driven largely by the technological success of the semiconductor laser diode, which provided practical and efficient pumps, and by the advent of low loss rare-earth-doped optical fiber.

  17. Application of lasers in endodontics

    NASA Astrophysics Data System (ADS)

    Ertl, Thomas P.; Benthin, Hartmut; Majaron, Boris; Mueller, Gerhard J.

    1997-12-01

    Root canal treatment is still a problem in dentistry. Very often the conventional treatment fails and several treatment sessions are necessary to save the tooth from root resection or extraction. Application of lasers may help in this situation. Bacteria reduction has been demonstrated both in vitro and clinically and is either based on laser induced thermal effects or by using an ultraviolet light source. Root canal cleansing is possible by Er:YAG/YSGG-Lasers, using the hydrodynamic motion of a fluid filled in the canals. However root canal shaping using lasers is still a problem. Via falsas and fiber breakage are points of research.

  18. Laser Science and Applications

    NASA Astrophysics Data System (ADS)

    El-Nadi, Lotfia M.; Mansour, Mohy S.

    2010-04-01

    Attosecond high harmonic pulses: generation and characterization / C. H. Nam and K. T. Kim -- High power lasers and interactions / C. Chatwin and R. Young -- Laser accelerators / L. M. El-Nadi ... [et al.] -- Energy levels, oscillator strengths, lifetimes, and gain distributions of S VII, CI VIII, and Ar IX / Wessameldin. S. Abdelaziz and Th. M. El-Sherbini -- The gain distribution according to theoretical level structure and decay dynamics of W[symbol] / H. M. Hamed ... [et al.] -- Raman spectroscopy and low temperature photoluminescence ZnSe[symbol]Te[symbol] ternary alloys / A. Salah ... [et al.] -- Automated polarization-discrimination technique to minimize lidar detected skylight background noise, part I / Y. Y. Hassebo, K. Elsayed and S. Ahmed -- Laser interferometric measurements of the physical properties for He, Ne gases and their mixture / N. M. Abdel-Moniem ... [et al.] -- Analytical studies of laser beam propagation through the atmosphere / M. I. El-Saftawy, A. M. Abd El-Hamed and N. Sh. Kalifa -- Laser techniques in conservation of artworks: problems and breakthroughs / R. Salimbeni and S. Siano -- Technology-aided heritage conservation laser cleaning for buildings / M. S. Nada -- Technology significance in conservation of the built heritage 3D visualization impact / M. S. Nada -- Simulation of optical resonators for Vertical-Cavity Surface-Emitting Lasers (VCSEL) / M. S. Mansour ... [et al.] -- Optical design alternatives: a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Materials for digital optical design; a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Proposed design for optical digital circuits / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Photo-induced effect on bacterial cells / M. H. El Batanouny ... [et al.] -- Laser and non-coherent light effect on peripheral blood normal and acute lymphoblastic leukemic cells by using different types of photosensitizers / M. H. El Batanouny ... [et al

  19. Argon laser application to endodontics

    NASA Astrophysics Data System (ADS)

    Blankenau, Richard J.; Ludlow, Marvin; Anderson, David

    1993-07-01

    The application of laser technology to endodontics has been studied for some time. At the present time several major problems are being investigated: (1) removal of infected tissues, (2) sterilization of canals, (3) obturation of canals, and (4) preservation of the vitality of supporting tissues. This list is not intended to imply other problems do not exist or have been solved, but it is a starting point. This paper reviews some of the literature that relates to laser applications to endodontics and concludes with some of the findings from our investigation.

  20. Semiconductor laser applications in rheumatology

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Suteanu, S.

    1996-01-01

    Two types of laser diode (LD) based equipment for rheumatology are introduced. The first is a portable device which contains single LD emitting at 890 nm laser pulses (time full width 100 nsec) of reprate tunable within (0.5 - 1.5) kHz; the laser beam average power is 0.7 mW at 1 kHz reprate. The second is computer controlled, contains one HeNe laser and 5 LD allowing 6 modes of patient irradiation (placebo effect evaluation included). HeNe laser works in cw at 632.8 nm; the LD works each as described for the portable equipment. HeNe and LD beams are superposed so that HeNe laser spot in the irradiation plane has a 60 mm diameter and the LD spots covers a 50 mm diameter disc centered on the HeNe laser spot. Clinical applications using the second type of equipment are reported; 1287 patients were treated between October 1991 and October 1994. Female/male ratio was 4:1 and their age distribution was between 18 and 85 years. The average number of exposures was 10 and the mean exposure time was 7 minutes. Studies were made on the treatment of rheumatoid arthritis, seronegative arthritis, degenerative joint diseases, abarticular rheumatism, osteoporosis pain and pains and edema after fractures.

  1. Laser spectroscopy and its applications

    SciTech Connect

    Radziemski, L.J.; Solarz, R.W.; Paisner, J.A.

    1987-01-01

    Laser spectroscopy has applications in diverse fields ranging from combustion studies and trace-sample detection to biological research. At the same time, it has also contributed greatly to the discovery of hundreds of new lasers. This symbiotic relationship has promoted an especially rapid expansion of the field. This book provides a review of the subject. It includes, for example, chapters on laser isotope separation techniques, enabling scientists to compare their relative advantages and drawbacks. This volume also gives numerous tables that summarize important features of lasers, experiments, and parameters for quick reference. In addition, it presents diagrams for visualizing rotational molecular energy levels of high J in order to enhance our understanding of molecular motions and their relationship to molecular energy levels. Offering insights into how experts think this technology will improve, it considers research and development in each topic discussed.

  2. Laser Applications: Implications for Vocational Education.

    ERIC Educational Resources Information Center

    Fraser, Jeannette L.

    Recent and projected advances in and commercial applications of lasers and laser technology were examined in order to assist vocational planners in responding to skill needs that will be created by lasers in the next few years. Until recently, most laser applications were in research and development settings; however, in the last several years…

  3. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  4. Quality in Public Spaces: Monitoring Green Areas in Milan

    NASA Astrophysics Data System (ADS)

    Guzzetti, F.; Pasquinelli, A.; Privitera, A.

    2013-05-01

    The city of Milan gained a lot of experience in management and conservation of urban green spaces: the set goal is to come to a high quality standard of the green areas, to be realized not only downtown, but all over the city. All the activities related to this issue has been outsourced to a specific Consortium through three-yearly contracts based on a Global Service model and the management structure implemented since 2004 has been set up on GIS technologies and open source applications: this structure has evolved over the years following an increasingly integration of the different operative phases and paying close attention to the update of the geographical data. With the contribution of the academic world and the support of technical experts in webGIS applications field, Milan today can count on a management system in which cartographical aspects are perfectly integrated with maintenance activities executed by operators on site and check inspections carried out by municipal controllers, ensuring a high level of the geo-database updating. The focus now is on the arrangement of a performance monitoring system, aimed to control the achievement of the quality standard fixed by contract with the Consortium. In the research here introduced we want to describe how the unification of the workflows - related to the upkeep schedules on the one hand and to the control activities on the other hand- together with the use of GPS technologies contributed in improving efficiency in practical intervention in case of warnings sent by controllers, in daily works and data update, producing as a consequence an enhancement of the maintenance service provided. In this way the "Green GIS" can now be used for further qualitative upgrade in management of green areas in Milan, with new challenges related to the concept of "smart city".

  5. [Applications of lasers in dental implantology].

    PubMed

    Mu, Yue; Li, Qian; Zhao, Ji-zhi

    2014-10-01

    With the constant progress of laser physics, medical laser technology has been widely applied in clinical practices and basic researches. In this article, we reviewed the relevant articles on the laser applications in dental implantology and concluded that lasers provides promising solutions in the treatment technology of dental implants and in the treatment of soft and hard tissue conditions.

  6. [The application of laser in endodontics].

    PubMed

    He, W X; Liu, N N; Wang, X L; He, X Y

    2016-08-01

    Since laser was introduced in the field of medicine in 1970's, its application range has continuously expanded. The application of laser in endodontics also increased due to its safety and effectiveness in dental treatments. The majority of the laser application researches in dentistry focused on dentin hypersensitivity, removal of carious tissues, tooth preparations, pulp capping or pulpotomy, and root canal treatment. In this article, we reviewed literature on the effects of laser in the treatments of dental and pulp diseases. PMID:27511037

  7. Tailored Ceramics for Laser Applications

    SciTech Connect

    Hollingsworth, Joel

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  8. The New Epistemology and the Milan Approach: Feminist and Sociopolitical Considerations.

    ERIC Educational Resources Information Center

    MacKinnon, Laurie Katherine; Miller, Dusty

    1987-01-01

    Explores the sociopolitical implications of the new epistemology and the Milan approach, concluding that, while second order cybernetics has greater potential to incorporate a radical social analysis, it has, nevertheless, failed to do so. The application of second order cybernetics in family therapy appears to be constrained by the sociopolitical…

  9. Laser applications in endodontics: an update review.

    PubMed

    Mohammadi, Zahed

    2009-02-01

    The search for new devices and technologies for endodontic procedures always has been challenging. Since the development of the ruby laser by Maiman in 1960 and the application of the laser for endodontics by Weichman in 1971, a variety of potential applications for lasers in endodontics have been proposed. With the development of thinner, more flexible and durable laser fibres, laser applications in endodontics have increased. Since laser devices are still relatively costly, access to them is limited. The purpose of this paper is to summarise laser applications in endodontics, including their use in pulp diagnosis, dentinal hypersensitivity, pulp capping and pulpotomy, sterilisation of root canals, root canal shaping and obturation and apicectomy. The effects of lasers on root canal walls and periodontal tissues are also reviewed. PMID:19323310

  10. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  11. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  12. Applications analysis of high energy lasers

    NASA Technical Reports Server (NTRS)

    Arno, R. D.; Mackay, J. S.; Nishioka, K.

    1972-01-01

    An analysis and comparison of laser technology with competing technologies were made to determine possible laser applications. The analysis was undertaken as follows: (1) possible applications were listed and categorized; (2) required components were enumerated and the characteristics of these components were extrapolated; (3) complete system characteristics were calculated parametrically for selected applications using the postulated component characteristics; and (4) where possible and appropriate, comparisons were made with competing systems. It was found that any large scale replacement of existing systems and methods by lasers requires many technological advances in laser and associated systems. However, several applications appear feasible, such as low orbit drag make-up, orbit changing, communications, and illumination applications.

  13. Industrial application of high power disk lasers

    NASA Astrophysics Data System (ADS)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  14. Liquid crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Jacobs, S. D.; Marshall, K. L.; Schmid, A.

    1992-10-01

    This article highlights some of the advances made in the use of liquid crystals for laser applications from 1982 through 1992. New materials and new effects were discovered, many new devices were developed, and novel applications for well-understood phenomena were conceived. This was quite an eventful time period. Several new books were published on the broad subject of LC's, and the international scientific community organized a society devoted to encouraging further scientific and educational advancement in the field. Attention was focused on LC's in October of 1991 when the Nobel Prize in Physics was awarded to Pierre-Gilles de Gennes for his pioneering work toward understanding order phenomena in LC's and polymers. This article is divided into four sections. The first section discusses new materials, specifically ferroelectric LC's and LC polymers. The former have opened up the realm of submicrosecond response for LC devices, and the latter have significantly reduced the sensitivity of LC optics to temperature. Some new insights into the optical properties of materials are also mentioned. The second section reviews new developments in passive applications for cholesterics and nematics. Included here are the fabrication of cholesteric laser mirrors and apodizers, the use of LC polymers for notch filters and as optical storage media, and some novel nematic retarder concepts such as the distributed polarization rotator.

  15. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  16. Application of laser in obstetrics and gynecology

    NASA Astrophysics Data System (ADS)

    Ding, Ai-Hua

    1998-11-01

    Mainman developed the first ruby laser in 1960 and after 13 Kaplan successfully reported the use of CO2 laser in the treatment of cervicitis. Soon after, Chinese gynecologists started to use the laser for diagnosis and therapy. It had been proved that more than 30 kinds of gynecological diseases could be treated effectively by laser. The remarkable laser treatment technique partially replaced with conventional methods used in that century. However, the application of laser had shown a broad prospect along with its further investigation.

  17. Laser technology and applications in gynaecology.

    PubMed

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  18. Laser micromachining: new developments and applications

    NASA Astrophysics Data System (ADS)

    Rizvi, Nadeem H.; Milne, David K.; Rumsby, Phil T.; Gower, Malcolm C.

    2000-06-01

    Excimer laser micromachining has developed into a mature production method and many industrial applications such as the drilling of ink-jet printer nozzles, production environments. The important concepts of excimer laser micromachining systems are described and the novel methods which have been developed in this area are presented. In particular, techniques for the production of complex, multi- level 3D microstructures are described and examples of such features are used to illustrate the relevant applications. Furthermore, some initial micromachining result from a sub- nanosecond, solid-state fiber laser are presented to highlight the rapidly-growing area of laser micro processing using ultra-short pulse lasers.

  19. Selection of patients of hepatocellular carcinoma beyond the Milan criteria for liver transplantation.

    PubMed

    Chan, See Ching; Fan, Sheung Tat

    2013-04-01

    The Milan criteria have been proven to be reliable and easily applicable in selection of patients with small unresectable hepatocellular carcinomas for liver transplantation. It has been repeatedly shown that patients who met these criteria had a 5-year survival of over 70% after transplantation. Such a result is remarkably good for an otherwise incurable malignancy. The main disadvantage of this set of criteria is that it is rather restrictive. Following it religiously denies transplantation to many patients who have tumor stage slightly more advanced. There have been many attempts to extend the criteria to include tumors with larger sizes (as in the UCSF criteria) or with a larger number (as in the Kyoto criteria). Alpha-fetoprotein and PIVKA-II, two biological markers in more aggressive tumors, have also been employed in the selection of patients, and biopsies have been used by the University of Toronto to determine tumor aggressiveness before deciding on transplantation. Patients with tumors beyond the Milan criteria yet not of a high grade have been accepted for transplantation and their survival is comparable to that of transplant recipients who were within the Milan criteria. Preoperative dual-tracer ((11)C-acetate and FDG) positron emission tomography has been used to determine tumor grade, and transarterial chemoembolization has been used to downstage tumors, rendering them meeting the Milan criteria. Patients with downstaged tumors have excellent survival after transplantation. Partial response to chemical treatment is a reflection of less aggressive tumor behavior. Careful selection of patients beyond the Milan criteria with the aid of serum tumor marker assay, positron emission tomography or tumor biopsy allows transplanting more patients without compromising survival. The use of liver grafts either from the deceased or from living donors could thus be justified. PMID:24570921

  20. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  1. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  2. Development of portable laser machining system for laser writing applications

    NASA Astrophysics Data System (ADS)

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Chung, Chien-Kai; Chen, Pin-Hung; Chen, Ming-Fei

    2013-03-01

    This study presents a portable laser machining system that consists of a fiber-optic diode laser source with a wavelength of 808 nm, optic/opto-mechanical components, a laser scanning module, and a laser energy control module. The laser beam quality was measured at different operation frequencies during system evaluation. The experimental results of beam profile evaluation indicate that the enlarged collimated beam was the TEM00 mode with a roundness of approximately of 96%. The output laser power level increased as the pulse frequency increased during laser power evaluation. To control the rotating angle of the galvanometric scanning system, the deflective angle was adjusted using a 0.192 voltage to obtain a deflective value of 1mm and the maximum scan field of 100 × 100mm2. The laser source operated at different frequencies, with pulse widths ranging from 530 to 48 μs. Finally, the proposed machine can also be used for black thick paper laser writing applications.

  3. Safe laser application requires more than laser safety

    NASA Astrophysics Data System (ADS)

    Frevel, A.; Steffensen, B.; Vassie, L.

    1995-02-01

    An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.

  4. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  5. Laser Scanning Applications in Fluvial Geomorphology

    NASA Astrophysics Data System (ADS)

    Alho, P.

    2014-12-01

    During recent decades, the use of high-resolution laser scanning data in fluvial studies has rapidly increased. Airborne laser scanning (ALS) can be used to extensively map riverine topography. Laser scanning data have great potential to improve the effectiveness of topographical data acquisition and the accuracy and resolution of DTMs (Digital Terrain Models) needed in fluvial geomorphology. Airborne Laser Scanning (ALS) is applicable for mapping areas varying from reach to catchment scale and these data are, therefore, particularly suitable, especially for hydraulic modelling, mapping of flood inundation, and the detection of macro-scale fluvial geomorphology. With Terrestrial Laser Scanning (TLS) a spatial resolution of less than 1 mm and a range accuracy of few millimetres can be achieved. Mobile Laser Scanning (MLS) enables a remarkably faster survey approach compared to the conventional TLS method. One of the newest applications of MLS approaches involves a boat/cart/backpack -based mobile mapping system. This set-up includes laser scanning and imaging from a platform moving along a river course or floodplain and may be used to expand the spatial extent of terrestrial scanning. Detailed DTMs derived from laser scanning data can be used to improve the recognition of fluvial landforms, the geometric data of hydraulic modelling, and the estimation of flood inundation extents and the associated fluvial processes. Fluvial environments also offer challenges for the application of laser scanning techniques. Factors such as vegetation cover, terrain undulation, coarse surface materials and water surfaces may distort a laser scanning survey.

  6. Laser safety aspects for medical applications

    NASA Astrophysics Data System (ADS)

    Gabay, Shimon

    2003-12-01

    Most applications of lasers in medicine are based on the producing of a controlled thermal damage into a preferably tissue location. Laser safety deals with non controlled damage (thermal or other) that could be randomly produced into a non preferable tissue locations. This kind of damage is not allowed and the laser safety material is designed to provide the user with a knowledge and with sufficient safety instructions and means to prevent such damage. Following the laser safety instructions is especially important for the medical applications because in these applications the laser beam is brought in a close proximity to the patient's body and non-desired damage can be easily produced. Most medical lasers are classified as Class 4 laser products, the highest hazard class. Direct laser beam of class 4 is capable to produce skin burns and to ignite flammable materials, and even its scattered beam may produce severe eye damage. The paper presents the nature of the skin and eye damage for different spectral range, and the state of the art rules in preventing such damage. The safety means that should be implemented in, and around, the laser clinique and in the laser surgery room will also be highlighted.

  7. Current status of laser applications in urology

    NASA Astrophysics Data System (ADS)

    Knipper, Ansgar; Thomas, Stephen; Durek, C.; Jocham, Dieter

    1993-05-01

    The overall development of laser use in urology is recessing. The reasons are the refinement of methods of radical surgery and the continuing development of alternative technologies involving electric current. Taking the cost factor into account, are lasers still opportune in medicine? The answer is definitely yes. Cost reduction in medical practice without quality loss is only possible with effective methods of minimally invasive surgery. Continuing investigation of cutting, welding, coagulating and ablating instruments is justified. Competition of lasers to other technologies can only be beneficial to the cause. But where are the highlights of laser applications? The unsurpassed utilization of optical properties of lasers lie in the concept of photodynamic therapies and in optical feedback mechanisms for laser applications. The combination of lasers with three dimensional visualization of the treatment area by ultrasound (TULIP-procedure for benign prostatic hyperplasia) is a novel approach in laser application. The further development of these treatment modalities will reveal the true benefit of laser technology in urological applications.

  8. Pathophysiological aspects of laser application

    NASA Astrophysics Data System (ADS)

    Egorova, Alla B.; Stavitskaya, Ekaterina Y.; Salmin, Vladimir V.; Fedyukovich, Lyudmila V.; Mikhutkina, S. V.; Shapran, M. V.; Ivanov, V. V.; Provorov, Alexander S.

    1996-04-01

    The rapid growth of electrooptics and laser technology has increased the possibility of human exposure to optical radiation and concern about health effects. The much attention has to be focused on the creation of the safety program that assures the safe use of lasers taking into account the possible side effects of laser therapy. In order to investigate the imunotropic effect of lasers the experimental model which was close to the therapeutic modes has been used for IR laser (the wavelength 890 nm) and He-Ne laser (the wavelength 633 nm). The immune system underwent changes testifying about the breaches in the processes of maturation and migration of the lymphoid cells, also the alteration of receptors as a sign of the membrane damaging effect of lasers was seen.

  9. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  10. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  11. Physics and applications of laser diode chaos

    NASA Astrophysics Data System (ADS)

    Sciamanna, M.; Shore, K. A.

    2015-03-01

    This Review Article provides an overview of chaos in laser diodes by surveying experimental achievements in the area and explaining the theory behind the phenomenon. The fundamental physics underpinning laser diode chaos and also the opportunities for harnessing it for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient testbed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.

  12. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  13. Industrial applications of laser neutron source

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Mima, K.; Kato, Y.; Tanaka, K.; Ikeda, Y.; Azechi, H.; Miyanaga, K.; Nakai, M.; Perlado, M.; Gonzalez Arrabal, R.

    2010-08-01

    The industrial applications of the intense neutron source have been widely explored because of the unique features of the neutron-matter interaction. Usually, intense neutron sources are assembled with fission reactors or high energy ion accelerators. The big size and high cost of these systems are the bottle neck to promote the industrial applications of intense neutrons. In this paper, we propose the compact laser driven neutron source for the industrial application. As the first step of our project for the versatile applications of laser driven neutron source, Li-neutron and/or Li-proton interactions have been investigated for the application to the development of Li battery.

  14. Laser power beaming for satellite applications

    SciTech Connect

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  15. Lasers and their therapeutic application in chiropractic

    PubMed Central

    Fitz-Ritson, Don

    2001-01-01

    The purpose of this paper is to review some of the applications of laser therapy and its reported effects on tissue healing, pain relief and other effects. Several musculoskeletal and low back pain studies are highlighted to show the efficacy of laser therapy and its' applicability as an adjunct to chiropractic treatment. Information is also presented which highlights the necessary information the clinician should be aware of in order to develop specific protocols for musculoskeletal pathologies. The parameters, which are now available on lasers, include power, frequency, duty cycle and cadence. When these are manipulated, different effects are achieved on tissues, which may enhance chiropractic treatment. Imagesp34-a

  16. Laser application for hypertrophic rhinitis

    NASA Astrophysics Data System (ADS)

    Inouye, Tetsuzo; Tanabe, Tetsuya; Nakanoboh, Manabu; Ogura, Masami

    1995-05-01

    The CO2 and KTP/532 lasers have been used in the treatment of an allergic and hypertrophic rhinitis for the past several years. As we know, the laser enables a surgeon to perform the operation with minimum hemorrhage and minimized pain, during and after the procedure. Additionally many of these operations can be performed under local anesthesia instead of general anesthesia, on an outpatient basis. The laser is used to irradiate the mucous membranes of the inferior turbinates. Vaporization and cutting is easily done. Post operative management of the local operated area is easy. The advantages of laser surgery over regular surgical techniques are supreme for intranasal operations when performed under local anesthesia.

  17. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  18. Laser applications in pediatric airway surgery

    NASA Astrophysics Data System (ADS)

    Karamzadeh, Amir M.; Ahuja, Gurpreet S.; Nguyen, John D.; Crumley, Roger

    2003-06-01

    The smaller anatomy and limited access to instrumentation pose a challenge to the pediatric airway surgeon. The enhanced precision and ability to photocoagulate tissue while operating with the laser enhances the surgeon"s ability to successfully treat unique pediatric conditions such subglottic hemangiomas, congenital cysts, respiratory papillomatosis, and laryngeal or tracheal stenosis. Due to its shallow tissue penetration and thermal effect, the carbon dioxide (CO2) laser is generally considered the laser of choice for pediatric airway applications. The potential for increased scarring and damage to underlying tissue caused by the greater penetration depth and thermal effect of the Nd:YAG and KTP lasers preclude their use in this population. In this review, we will describe the specific advantages of using lasers in airway surgery, the current technology and where the current technology is deficient.

  19. Metal Vapour Lasers: Physics, Engineering and Applications

    NASA Astrophysics Data System (ADS)

    Little, Christopher E.

    1999-03-01

    Metal Vapour Lasers Christopher E. Little University of St Andrews, St Andrews, Scotland Since the first successful demonstration of a metal vapour laser (MVL) in 1962, this class of laser has become widely used in a broad range of fields including precision materials processing, isotope separation and medicine. The MVLs that are used today have a range of impressive characteristics that are not readily available using other technologies. In particular, the combination of high average output powers, pulse recurrence frequencies and beam quality available from green/yellow Cu vapour lasers (CVLs) and Cu bromide lasers, coupled with the high-quality, multiwatt ultraviolet (265-289 nm) radiation that can be produced using simple nonlinear optical techniques, means that Cu lasers will continue to be important for many years. Metal Vapour Lasers covers all the most commercially important and scientifically interesting pulsed and continuous wave (CW) gas-discharge MVLs, and includes device histories, operating characteristics, engineering, kinetics, commercial exploitation and applications. Short descriptions of gas discharges and excitation techniques make this volume self-consistent. A comprehensive bibliography is also provided. The greater part of this book is devoted to CVLs and their variants, including new sealed-off, high-power 'kinetically enhanced' CVLs and Cu bromide lasers. However, many other self-terminating MVLs are also discussed, including the red AuVL, green/infrared MnVL and infrared BaVL. Pulsed, high-gain, high average power lasers in the UV/violet (373.7, 430.5 nm) spectral regions are represented by Sr¯+ and Ca¯+ discharge-afterglow recombination lasers. The most commercially successful of the MVLs - the CW, UV/blue cataphoretic He-Cd¯+ ion laser - is described. Hollow cathode lasers are represented in two guises: 'white light' (blue/green/red) He-Cd¯+ ion lasers and UV/infrared Ne/He-Cu¯+ ion lasers. This unique volume is an

  20. ESO Council Visits First VLT Unit Telescope Structure in Milan

    NASA Astrophysics Data System (ADS)

    1995-12-01

    As the ESO Very Large Telescope (VLT) rapidly takes on shape, Europe has just come one step closer to the realisation of its 556 million DEM astronomical showcase project. Last week, the ESO Council held its semi-annual meeting in Milan (Italy) [1]. During a break in the long agenda list, Council members had the opportunity to visit the Ansaldo factory in the outskirts of this city and to see for the first time the assembled mechanical structure of one of the four 8.2-metre VLT Unit telescopes. This Press Release is accompanied by a photo that shows the ESO Council delegates in front of the giant telescope. After a long climb up the steep staircase to the large Nasmyth platform at the side of the telescope where the astronomical instruments will later be placed, Dr. Peter Creola (Switzerland) , President of the ESO Council and a mechanics expert, grabbed the handrail and surveyed the structure with a professional eye: `I knew it was going to be big, but not that enormous!', he said. Other delegates experienced similar feelings, especially when they watched the 430 tonnes of steel in the 24-metre tall and squat structure turn smoothly and silently around the vertical axis. The Chairman of the ESO Scientific Technical Committee (STC), Dr. Johannes Andersen (Denmark) , summarized his first, close encounter with the VLT by `This is great fun!' and several of his colleague astronomers were soon seen in various corners of the vast structure, engaged in elated discussions about the first scientific investigations to be done with the VLT in two years' time. The VLT Main Structures The visit by Council took place at the invitation of Ansaldo Energia S.p.A. (Genova), EIE-European Industrial Engineering S.r.I. (Venice) and SOIMI-Societa Impianti Industriale S.p.A. (Milan), the three Italian enterprises responsible for the construction of the main structures of the VLT 8.2-metre Unit telescopes. Short speeches were given on this occasion by Drs. Ferruccio Bressani (Ansaldo

  1. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  2. Supercontinuum fiber lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Devine, Adam; Hooper, Lucy; Clowes, John

    2016-05-01

    In this talk we give an overview of recent advances in the development of high power supercontinuum fiber lasers with powers exceeding 50W and spectral brightness of tens of mW/nm. We also discuss the fundamental limitations of power scaling and spectral broadening and review the existing and emerging applications of this unique light source which combines the broadband properties of a light bulb with the spatial properties of a laser.

  3. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  4. Solar pumped lasers and their applications

    NASA Astrophysics Data System (ADS)

    Lee, Ja H.

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  5. Biomedical applications of laser photoionization

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.

    1991-07-01

    Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

  6. Laser displacement meter application for milling diagnostics

    NASA Astrophysics Data System (ADS)

    Ryabov, Oleg; Mori, Kazuo; Kasashima, Nagayoshi

    1998-09-01

    This paper presents the application of a laser displacement meter for direct multi-purpose sensing of milling tool conditions. Using a laser displacement meter, a laser beam is projected onto the cutting tool and subsequently reflected. The intensity as well as the angle of the reflected beam are measured. The signals are interpreted for identification of tool geometry, tool whirling, or vibration. Signal processing and analysis depend on the application. A prototype system has been developed to demonstrate the feasibility of various applications, namely (1) tool setting evaluation, (2) in-process measurement of milling cutter geometry and detection of tool failure, (3) continuous monitoring of milling cutter deterioration, (4) detection and measurement of chatter in milling, (5) measurement of milling tool bending and (6) thermal expansion.

  7. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  8. Laser application in tracheobronchial tumors

    NASA Astrophysics Data System (ADS)

    Rau, B. Krishna; Krishna, Sharon

    2004-09-01

    Ninety three patients with obstructing tracheobronchial tumors were treated with Neodymium: Yttrium - Aluminum - Garnet (Nd:YAG) laser photocoagulation over a period of six years. There were sixty seven Males and 26 Females with a mean age of 44.3 years (range 6- 79 years). 21 benign and 72 malignant lesions were treated with a total 212 sessions of laser photocoagulation (mean 2.4 sessions). The anatomical distribution of lesions were as follows; larynx 9 (three benign and 6 malignant) trachea 39 (27 benign and 12 malignant) left main bronchus 27 (14 malignant) right main bronchus 24 (14 malignant) and vocal cords - 9 (three malignant). There were 21 patients with squamous cell carcinoma, two adenocarcinomas, one adenoid cystic carcinoma, 7 cases of locally infiltrating tumors from thyroid and esophagus, 6 cases of carcinoid tumor and 16 benign lesions. Twenty one patients had a tracheostomy tube in place when treatment was started. Eighteen of the 21 patients with tracheostomy were weaned off the tube in a mean of 5.5 days from the start of treatment. Lumen was restored in 31 (79.4%) patients. In the other eight (20.6%), lumen was achieved, but not sustained. Complications included bleeding in three cases which were managed conservatively, two cases of pneumothorax, and four cases of bronchospasm. There were six deaths during the follow up but none attributable to the procedure. Laser photocoagulation offered effective treatment in the majority of patients with obstructing tracheobronchial tumors, with acceptable morbidity.

  9. Scanning laser ophthalmoscopy. Clinical applications.

    PubMed

    Mainster, M A; Timberlake, G T; Webb, R H; Hughes, G W

    1982-07-01

    The scanning laser ophthalmoscope (SLO) provides a high-quality television image of the retina using less than 1/1000 of the light required for conventional indirect ophthalmoscopy. The SLO employs a new ophthalmoscopic principle in which a dim laser beam scans across the fundus, and light is collected only from one retinal point at a time. Since the instrument is highly light efficient, illumination levels are comfortable for the patient, and fluorescein angiography can be performed with one tenth of the usual fluorescein dose. Since a continuous, large depth of field view is displayed on the SLO screen and stored on video tape, repeated dynamic inspection of the vitreous, retina and vitreoretinal interface is afforded. In addition, any graphical material that can be displayed on a microcomputer monitor (such as text of video games) can also be impressed on the retinal pattern formed by the sweeping laser beam. The graphical material is thus observed directly by the patient and on the patient's retina by the clinician. Since the exact retinal locus of each point in the graphical material is viewed directly, it is possible to perform perimetry directly on the retina, to measure acuity at arbitrary retinal loci, to study how patients with macular disease use residual functional retina for reading, and to perform distortometry with a retinal (Amsler-type) grid.

  10. Eco-efficiency of laser welding applications

    NASA Astrophysics Data System (ADS)

    Kaierle, Stefan; Dahmen, Martin; Güdükkurt, Okan

    2011-05-01

    As widely known laser materials processing has some advantages regarding local heat input and controllability. In many fields applications were developed which are not accessible for conventional thermal processing. In other fields laser-supported manufacturing techniques are a valuable alternative. On the one hand laser techniques enable increased processing speed and less post-processing, leading to an increased productivity. On the other hand low efficiencies in the energy conversion seem to be a major drawback and apparently limit the range of applications. In the frame of conventional processing schemes laser beam welding requires a high utilization in order to run economically. Main advantages lie in the reduced consumption of material and the reduced efforts in post processing. Because of the locally concentrated heat input process emissions are lower which reduces energy and material consumption in the auxiliary chain. To make full use of the often-conjured flexibility a multitude of manufacturing schemes had been developed and adapted. In order to appraise the versatility of laser driven processing techniques a cost and benefit analysis based on a life-cycle approach is conducted including both, economics and ecology. Eco-efficiency is rated by a variation of the BASF method. Taking into account the reduced consumption of consumables, reduced effort for preparation and post-processing, and focusing on specific application ranges a positive environmental impact can be proven.

  11. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  12. New Medical Applications Of Metal Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Anderson, Robert S.; McIntosh, Alexander I.

    1989-06-01

    The first medical application for metal vapor lasers has been granted marketing approval by the FDA. This represents a major milestone for this technology. Metalaser Technologies recently received this approval for its Vasculase unit in the treatment of vascular lesions such as port wine stains, facial telangiectasia and strawberry hemangiomas.

  13. Advances in laser diodes for pyrotechnic applications

    NASA Technical Reports Server (NTRS)

    Craig, Richard R.

    1993-01-01

    Background information concerning the use of laser diodes in pyrotechnic applications is provided in viewgraph form. The following topics are discussed: damage limits, temperature stability, fiber coupling issues, and small (100 micron) and large (400 micron) fiber results. The discussions concerning fiber results concentrate on the areas of package geometry and electro-optical properties.

  14. Laser weld jig. [Patent application

    DOEpatents

    Van Blarigan, P.; Haupt, D.L.

    1980-12-05

    A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  15. Urological applications of the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Poon, Michael W.; Ruckle, Herbert C.; Stewart, Steven C.; Weil, Dane

    1998-07-01

    While the role of endoscopy was initially diagnostic, the advent of improved endoscopes and working instruments have increased its therapeutic applications. One of the most recent advances is the holmium laser. It has a broad range of urological applications due to its ability to fragment all urinary calculi and its soft tissue effects. This laser is based on laser energy delivered in a pulsatile fashion at 2100 nm. The purpose of this study is to report our experience with the holmium laser. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. One hundred and forty patients underwent 157 procedures. The holmium laser was used for the treatment of urinary calculi in 122 patients. Stone location included 61 renal, 64 ureteral, and 17 bladder stones. Renal stone burden was 17 mm (range 3-50), ureteral stone size averaged 10 mm (range 3 - 35), and mean bladder stone size was 31 mm (range 10 - 60). Other uses included treatment of transitional cell carcinoma of the renal pelvis, ureter, and bladder, incision of ureteral strictures, ureterocele, and prostate, and ablation of renal hemangiomas. Intraoperative and post operative complications were noted. Follow-up for calculi consisted of a plain film of the abdomen at one week and an ultrasound or intravenous pyelogram at six to eight weeks post procedure. No ureteral perforations or strictures occurred. The Holmium laser was capable of fragmenting all urinary calculi in this study. No complications were directly attributable to the Holmium laser. In our initial experience, the Holmium laser is safe and effective in the treatment of urinary pathology. It is the most effective lithotrite available and is able to incise and coagulate soft tissue as well. This combination allows the urologist to treat a variety of urinary pathology using a single modality. Its main limitation is the ability to access lower pole lesions in the upper urinary tract due to the fiber

  16. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  17. High power CO lasers and their application potential

    NASA Astrophysics Data System (ADS)

    Maisenhaelder, F.

    1989-06-01

    Industrial applications of high-power CO lasers are examined. The characteristics specific to CO lasers are briefly reviewed, and applications where the CO laser seems to promise wavelength-related advantages over other lasers are examined. Experimentally demonstrated applications in the drilling and cutting of metals, isotope separation and photochemistry, and laser medicine are addressed, Developments in the high power range in Japan, Soviet Union, and Germany are described, and a comparison is made between high power CO and CO2 gas lasers for civil applications.

  18. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  19. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  20. Ultrafast laser pulses for medical applications

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Serbin, Jesper; Bauer, Thorsten; Fallnich, Carsten; Welling, Herbert; Mueller, Wiebke; Schwab, Burkard; Singh, Ajoy I.; Ertmer, Wolfgang

    2002-04-01

    Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the bu micrometers range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: in ophthalmology intrastromal cutting and preparing of cornael flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs- laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosklerosis as well as in dentistry to remove caries from dental hard tissue.

  1. Lasers '86; Proceedings of the Ninth International Conference on Lasers and Applications, Orlando, FL, Nov. 3-7, 1986

    SciTech Connect

    Mcmillan, R.W.

    1987-01-01

    Laser physics, technology, and applications are examined in reviews and reports. Topics addressed include VUV and X-ray lasers, vibrational energy transfer and kinetics, medical applications, ultrashort lasers and spectroscopy, surface and material interactions, lasers in atmospheric physics, and fiber-optic systems. Consideration is given to alexandrite lasers, four-wave mixing and nonlinear optics, chemical lasers, semiconductor lasers, photothermal and photoacoustic spectroscopy, dye lasers, optical phase conjugation and SBS, excimer lasers, SDI laser applications, remote-sensing with lasers, FELs, and applications in chemistry. Diagrams, drawings, graphs, and photographs are provided.

  2. Laser applications to atmospheric sciences: A bibliography

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1975-01-01

    A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.

  3. The Italian Linguistic Landscape: The Cases of Milan and Udine

    ERIC Educational Resources Information Center

    Coluzzi, Paolo

    2009-01-01

    This article looks at the linguistic landscape in two Northern Italian cities: Milan and Udine. Signs in two streets of a similar length were recorded and classified according to the language or languages they were written in. The aim of this study was to investigate the presence in the linguistic landscape of the different languages making up the…

  4. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  5. Laser scanners: from industrial to biomedical applications

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin

    2013-11-01

    We present a brief overview of our contributions in the field of laser scanning technologies, applied for a variety of applications, from industrial, dimensional measurements to high-end biomedical imaging, such as Optical Coherence Tomography (OCT). Polygon Mirror (PM) scanners are presented, as applied from optical micrometers to laser sources scanned in frequency for Swept Sources (SSs) OCT. Galvanometer-based scanners (GSs) are approached to determine the optimal scanning function in order to obtain the highest possible duty cycle. We demonstrated that this optimal scanning function is linear plus parabolic, and not linear plus sinusoidal, as it has been previously considered in the literature. Risley prisms (rotational double wedges) scanners are pointed out, with our exact approach to determine and simulate their scan patterns in order to optimize their use in several types of applications, including OCT. A discussion on the perspectives of scanning in biomedical imaging, with a focus on OCT concludes the study.

  6. LaserHybrid welding for industrial applications

    NASA Astrophysics Data System (ADS)

    Staufer, H.

    2007-05-01

    In view of the demands made by the end users in the field of application of vehicle construction for an ever-higher product quality and improved performance, continuous innovations are considered to be absolutely decisive for being successful. This especially applies to the welding technology, and therefore the goal is to develop new, better and more powerful welding processes. In joining technology the high welding speed on the one and the good gap bridging ability on the other hand play a significant part. However, both features cannot be achieved by conventional laser welding processes. Therefore, a hybrid process is being. It is no doubt that the laser beam welding and the MIG welding have been established in the welding technology for very long, and that both processes allow a wide field of application in the joining technology. New possibilities and synergetic effects, however, are based on the combination of both processes.

  7. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  8. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  9. Resonant laser ablation: mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1996-10-01

    We report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation is presented.

  10. Expanded mode lasers for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Lealman, Ian F.

    This thesis describes the development of a long wavelength (1.55 μm) expanded mode semiconductor laser. The increased spot size of the laser improves both the coupling efficiency to cleaved fibre and fibre alignment tolerances and reduces packaging cost. In this type of device the strength of the waveguide is gradually reduced towards the front facet allowing the mode to adiabatically expand so that the laser mode is better matched in size to that of a cleaved fibre. This can be achieved by either reducing the refractive index of the guide or reducing the amount of material in the core. The structure chosen was a buried heterostructure laser that utilised a twin guide consisting of an upper higher refractive index guide (the active region of the laser) above a weak passive guide. The width of the active region was reduced along part of the device allowing the mode to expand into the weak underlying guide. The guide structure was optimised using a variable grid finite difference mode solver, and the taper length calculated by an approximation to Love's method. Detailed results are presented for the measured light-current characteristic, farfield and coupling loss to cleaved fibre. These coupling losses were compared to the calculated data thus allowing the waveguide design to be optimised. Several iterations in the design of the device were undertaken, with the aim of reducing the coupling loss to cleaved single mode fibre without significantly compromising the laser performance. The final device design had extremely low coupling losses as low as 1.2 dB to cleaved fibre. Finally, the positive impact this device had on passive alignment using a silicon motherboard is examined, and the application this technology to a range of other optoelectronic components is discussed.

  11. Medical laser application: translation into the clinics

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Stepp, Herbert; Hennig, Georg; Brittenham, Gary M.; Rühm, Adrian; Lilge, Lothar

    2015-06-01

    Medical laser applications based on widespread research and development is a very dynamic and increasingly popular field from an ecological as well as an economic point of view. Conferences and personal communication are necessary to identify specific requests and potential unmet needs in this multi- and interdisciplinary discipline. Precise gathering of all information on innovative, new, or renewed techniques is necessary to design medical devices for introduction into clinical applications and finally to become established for routine treatment or diagnosis. Five examples of successfully addressed clinical requests are described to show the long-term endurance in developing light-based innovative clinical concepts and devices. Starting from laboratory medicine, a noninvasive approach to detect signals related to iron deficiency is shown. Based upon photosensitization, fluorescence-guided resection had been discovered, opening the door for photodynamic approaches for the treatment of brain cancer. Thermal laser application in the nasal cavity obtained clinical acceptance by the introduction of new laser wavelengths in clinical consciousness. Varicose veins can be treated by innovative endoluminal treatment methods, thus reducing side effects and saving time. Techniques and developments are presented with potential for diagnosis and treatment to improve the clinical situation for the benefit of the patient.

  12. Applications for reactor-pumped lasers

    NASA Astrophysics Data System (ADS)

    Lipinski, R. J.; McArthur, D. A.

    Nuclear reactor-pumped lasers (RPL's) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  13. High-power copper vapour lasers and applications

    SciTech Connect

    Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

    1995-08-01

    Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

  14. Current applications of lasers in heart disease

    NASA Astrophysics Data System (ADS)

    Lee, Garrett; Chan, Ming C.; Mason, Dean T.

    1993-03-01

    Although the laser has been in existence for abut 30 years, its application in heart disease has only been examined in the past decade. Much attention has been given its exciting potential in treating coronary artery disease. Transmitted through a catheter comprised of one or more thin optical fibers which can be threaded nonsurgically into the coronary artery, the laser can ablate atherosclerotic plaque that obstructs the artery and diminishes blood flow to the myocardium. In clinical studies, the laser can treat some obstructive lesions that are not suitable for balloon angioplasty (i.e., long and diffuse lesions, very tight stenoses, ostial lesions, calcified lesions). In patients who failed balloon angioplasty due to severe dissection or abrupt closure, the laser may seal up the dissections and restore antegrade blood flow. In addition, the laser may have other applications and treatment modalities that are still under investigation. It may ablate ectopic ventricular foci, or terminate supraventricular tachyrhythmia by destroying the heart's abnormal conduction pathways. It can cut the hypertrophied septum that is associated with left ventricular outflow tract obstruction, or create a channel in the atrial septum as a palliative procedure in newborns with transposition of the great vessels. It may provide a wider orifice for blood flow within the heart in infants with pulmonary outflow obstruction and in adults with aortic valvular stenosis. It is also capable of fusing small thin-walled blood vessels together. Further, a more intriguing possibility is its use to bore several tiny channels in the myocardium to allow oxygenated blood from within the ventricular chamber to perfuse the ischemic heart tissue.

  15. Application of Low level Lasers in Dentistry (Endodontic)

    PubMed Central

    Asnaashari, Mohammad; Safavi, Nassimeh

    2013-01-01

    Low level lasers, cold or soft lasers: These lasers do not produce thermal effects on tissues and induce photoreactions in cells through light stimulation which is called photobiostimulation. Power of these lasers is usually under 250mW. The main point differentiating low level lasers and high power ones is the activation of photochemical reactions without heat formation. The most important factor to achieve this light characteristic in lasers is not their power, but their power density for each surfa ceunit (i.e cm2). Density lower than 670mW/cm2, can induce the stimulatory effects of low level lasers without thermal effects. Low level lasers (therapeutic) used today as treatment adjunctive devices in medicine and dentistry. Numerous studies have been performed on the applications of low level lasers in patient pain reduction. Mechanisms of pain reduction with therapeutic lasers and their application are expressed, and the studies realized in this field are presented. PMID:25606308

  16. Laser applications in science education (LASE) games

    NASA Astrophysics Data System (ADS)

    Zafran, Robert

    1995-10-01

    Students love games using games? While racing the clock and other team, two to five member student teams are learning about laser applications, fiber optic principles, basic optics principles, interference filters, and other electro-optics phenomena. Three laser light, 'game oriented' activities, Mirrors, The Right Image, and Light Links, have proven to be a subtle and common-sense way to teaching students electro-optics technology principles by the direct experience of controlling a laser light beam, connecting fiber optics bundles, and manipulating combinations of convex and concave lenses. In the LASE Game Mirrors, student teams learn about reflection and the angles and locations involved in precisely directing a laser light to a targeted area. In Light Links, students experience the difficulty and the necessity of an 'absolute' match in the precise coupling necessary in the connection of multiple fiber optics bundles. Using the lens set from the Optical Society or America's Optics Discovery Kit, students are individually challenged to use various combinations of lenses to 'produce' The Right Image. Using these student centered activities, LASE Games has proven itself as an effective vehicle to teach students optically associated phenomena and simultaneously assist them to learn that team work is an essential ingredient in the completion of almost any multifaceted task.

  17. Catadioptric Optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    In the design of a laser velocimeter system, attention must be given to the performance of the optical elements in their two principal tasks: focusing laser radiation into the probe volume, and collecting the scattered light. For large aperture applications, custom lens design and fabrication costs, long optical path requirements, and chromatic aberration (for two color operation) can be problematic. The adaptation of low cost Schmidt-Cassegrain astronomical telescopes to perform these laser beam manipulation and scattered light collection tasks is examined. A generic telescope design is analyzed using ray tracing and Gaussian beam propagation theory, and a simple modification procedure for converting from infinite to near unity conjugate ratio operation with image quality near the diffraction limit was identified. Modification requirements and performance are predicted for a range of geometries. Finally, a 200-mm-aperture telescope was modified for f/10 operation; performance data for this modified optic for both laser beam focusing and scattered light collection tasks agree well with predictions.

  18. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2011-11-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  19. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  20. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  1. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  2. Spaceborne laser development for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Stephen, Mark A.; Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Harding, David J.; Riris, Haris; Li, Steven X.; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Camp, Jordan

    2011-09-01

    At NASA's Goddard Space Flight Center, we are developing the next generation laser transmitters for future remote sensing applications including a micropulse altimeter for ice-sheet monitoring, laser spectroscopic measurements and high resolution mapping of the Earth's surface as well as potential missions to other planets for trace gas measurement and mapping. In this paper we will present an overview of the spaceborne laser programs and offer insights into future spaceborne lasers for remote sensing applications.

  3. Tunable infrared laser sources and applications

    NASA Astrophysics Data System (ADS)

    Libatique, Nathaniel Joseph C.

    Fiber lasers are emerging as attractive alternative technologies for wavelength-selectable WDM sources because of a number of reasons which include: (1) their direct compatibility with the fiber-optic transmission medium, (2) the excellent amplifying properties of rare-earth doped fibers and the rapidly continuing progress in novel fiber gain media (i.e. L-Band, S-band, and Raman fiber amplifiers), (3) the potential for order-of-magnitude power scalability via the use of double-clad geometries, (4) the maturity and robustness of the laser diode pumps used, and (5) the ready availability of fiber-based components and fiber-pigtailed devices (i.e. fused couplers, Bragg gratings, polarization controllers, etalons). The tunable laser applications of interest to this work have two distinct performance requirements, the need for either continuous tunability (the ability to tune the lasing emission through a continuous range of wavelengths) or discrete tunability (the ability to switch the lasing emission to an arbitrarily-fixed set of wavelengths). The latter class of "push-button" switchability to pre-set wavelength channels is especially critical for WDM optical communications. In this Thesis, I will discuss experimental achievements and key issues related to the design and demonstration of these two classes of tunable lasers, with a special emphasis on channel-selectable sources for optical communications. In particular I will discuss: (1) Novel FBG-based rapidly wavelength-selectable WDM sources, the scaling of such FBG-string-based tunable sources to intermediate channel counts, and the demonstration of single frequency tunable WDM sources based on line-narrowed tunable FBGs. (2) The first demonstration of a potentially all-fiber wavelength-selectable WDM laser source based on a fiber Sagnac loop filter. (3) Wavelength-selectable WDM laser sources based on the novel use of a current-tunable (semiconductor Fabry-Perot) grid filter. (4) The first demonstration of a

  4. Sound quality indicators for urban places in Paris cross-validated by Milan data.

    PubMed

    Ricciardi, Paola; Delaitre, Pauline; Lavandier, Catherine; Torchia, Francesca; Aumond, Pierre

    2015-10-01

    A specific smartphone application was developed to collect perceptive and acoustic data in Paris. About 3400 questionnaires were analyzed, regarding the global sound environment characterization, the perceived loudness of some emergent sources and the presence time ratio of sources that do not emerge from the background. Sound pressure level was recorded each second from the mobile phone's microphone during a 10-min period. The aim of this study is to propose indicators of urban sound quality based on linear regressions with perceptive variables. A cross validation of the quality models extracted from Paris data was carried out by conducting the same survey in Milan. The proposed sound quality general model is correlated with the real perceived sound quality (72%). Another model without visual amenity and familiarity is 58% correlated with perceived sound quality. In order to improve the sound quality indicator, a site classification was performed by Kohonen's Artificial Neural Network algorithm, and seven specific class models were developed. These specific models attribute more importance on source events and are slightly closer to the individual data than the global model. In general, the Parisian models underestimate the sound quality of Milan environments assessed by Italian people.

  5. Future scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  6. Application of high power lasers to space power and propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1976-01-01

    The transmission of laser power over long distances for applications such as direct conversion to propulsive thrust or electrical power is considered. Factors discussed include: problems inherent in transmitting, propagating, and receiving the laser beam over long ranges; high efficiency, closed-cycle, continuous wave operation; advancement of CO2 laser technology; and compatibility with photovoltaic power conversion devices.

  7. High-power laser diodes, laser diode modules, and their applications

    NASA Astrophysics Data System (ADS)

    Daiminger, Franz X.; Dorsch, Friedhelm; Lorenzen, Dirk

    1998-12-01

    High power laser diodes and especially high power laser diode modules made enormous progress in the last few years. Different aspects of high power laser diodes are treated starting from general description of high power laser diodes and their mounting techniques, characterizing the electro- optical behavior of single laser bars and finally presenting beamshaping optics for the collimation of large modules. The later technique allows for symmetrical focal spots in the kilowatt range with a beam quality of about 170 mm*mrad. Different aspects of current applications of high power laser diodes are presented.

  8. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  9. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  10. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  11. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  12. Potential applications of the erbium:YAG laser in endourology.

    PubMed

    Fried, N M

    2001-11-01

    The holmium:YAG laser has become the laser of choice in endourology because of its multiple applications in the fragmentation of kidney stones, incision of strictures, and coagulation of tumors. This paper describes the potential use of a new laser, the erbium:YAG laser, for applications in endourology. Recent studies suggest that the Er:YAG laser may be superior to the Ho:YAG laser for precise ablation of strictures with minimal peripheral thermal damage and for more efficient laser lithotripsy. The Er:YAG laser cuts urethral and ureteral tissues more precisely than does the Ho:YAG laser, leaving a residual peripheral thermal damage zone of 30 +/- 10 microm compared with 290 +/- 30 microm for the Ho:YAG laser. This result may be important in the treatment of strictures, where residual thermal damage may induce scarring and result in stricture recurrence. The Er:YAG laser may represent an alternative to the cold knife and Ho:YAG laser in applications where minimal mechanical and thermal insult to tissue is required.

  13. Optronic systems design and performance of the new MILAN ADT firing post

    NASA Astrophysics Data System (ADS)

    Barth, Jochen; Fendt, Alfred; Kuffner, Herbert; Pröls, Rudolf; Rüger, Roderich; Schmid, Christian

    2005-10-01

    A new firing post MILAN ADT ("Advanced Technology") is developed by EADS-Lenkflugkoerpersysteme GmbH with the aim to improve the performance of the MILAN weapon system substantially while maintaining all operational features to which MILAN operators are accustomed. The missile tracking sensor of MILAN ADT is now equipped with a single, wide field-of-view optics and a large CMOS detector covering both gathering and guidance phase. Using adaptive windowing and sub-sampling functions of the detector combined with differential imaging modes, all types of MILAN missile are localized with optimum precision over the entire flight path. Another novel feature is the integration of a thermal imager into the optical scheme of the MILAN ADT guidance unit. This replaces the earlier ancillary TIs MIRA and MILIS thus saving the weight of the additional housing and reducing logistic effort. The TI image is displayed on an internal micro-monitor and projected into the eyepiece of the daysight. Optimum boresight harmonization between both missile tracking and sighting channels is ensured by projection of reference marks into each optical sensor path from a common multispectral projector. MILAN ADT is compatible with all existing MILAN missile versions and with MIRA and MILIS TIs; the integrated TI is offered as an option. A planned future range increase of the MILAN weapon system will also be discussed in brief.

  14. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  15. Workshop on scientific and industrial applications of free electron lasers

    SciTech Connect

    Difilippo, F.C. ); Perez, R.B. Tennessee Univ., Knoxville, TN )

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics.

  16. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  17. Latest developments of ultrafast fiber laser and its material applications

    NASA Astrophysics Data System (ADS)

    Cho, G. C.; Liu, B.; Shah, L.; Liu, Z.; Che, Y.; Xu, J.

    2009-02-01

    We address recent fiber-based femtosecond laser technology. Specifically, fiber-chirped pulse amplifier is discussed for the enabling the concept of real-world applications. We review recent selected material applications demonstrating advantages of ultrafast dynamics of highly repetitive pulse train in nanoparticle generation in pulsed-laser deposition and reliable Si wafer singulation.

  18. Application of repumping laser in optical switching

    NASA Astrophysics Data System (ADS)

    Ray, Ayan; Ali, Md. Sabir; Chakrabarti, Alok

    2014-08-01

    The application of electromagnetically induced transparency (EIT) in high speed optical switching has remained as a key topic in research related to all optical switching. Demonstration of optical switching through EIT realized under ladder (Ξ) level coupling has been reported earlier. Due to narrow linewidth (ГEIT) and low coherent dephasing rate (γ) the EIT needs to be prepared only once to demonstrate such switching action. However, in a Ξ system the EIT is accompanied with double resonance optical pumping (DROP) signal, which is limited by spontaneous decay (Г) rates. It has been shown by our group that the simultaneous presence of DROP-EIT combination paves the way for executing a kind of slow-fast switching action. However the focus always remain on improving the modulation depth in such type of coherence assisted switch. Here we report a possible way to improve modulation depth by using an additional (named 'repumping' after convention used in laser cooling experiments) laser in the Ξ system. The 5S1/2→5P3/2→5D5/2 level coupling scheme of 87Rb atom is used in the current experiment.

  19. Reliability of Semiconductor Laser Packaging in Space Applications

    NASA Technical Reports Server (NTRS)

    Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.

    2008-01-01

    A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.

  20. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  1. Biophysics applications of free-electron lasers

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    1993-07-01

    There has been a significant financial effort poured into the technology of the Free Electron Laser (FEL) over the last 15 years or so. Much of that money was spent in the hopes that the FEL would be a key element in the Strategic Defense Initiative, but a small fraction of money was allocated for the Medical FEL program. The Medical FELs program was aimed at exploring how the unique capabilities of the FEL could be utilized in medical applications. Part of the Medical FEl effort has been in clinical applications, but some of the effort has also been put into exploring applications of the FEL for fundamental biological physics. It is the purpose of this brief text to outline some of the fundamental biophysics I have done, and some plans we have for the future. Since the FEL is (still) considered to be an avant garde device, the reader should not be surprised to find that much of the work proposed here is also rather radical and avant garde.

  2. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  3. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  4. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  5. Applications of Absorption Spectroscopy Using Quantum Cascade Lasers.

    PubMed

    2014-10-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  6. Laser application in otology for hearing restoration

    NASA Astrophysics Data System (ADS)

    Lombardo, Igino

    1994-09-01

    Prior to the development of the stapes replacement prosthesis in the early 1950s, loss of hearing due to otosclerosis remained an untreatable disease. Today, loss of hearing due to otosclerosis can be restored in the majority of cases to near normal levels. Since 1980 the laser has played a major and important role in otosclerosis surgery. This paper explores the use of lasers for hearing restoration and compares the results of laser surgery to non-laser surgery.

  7. Ultra-intense Laser Applications to the Industries at GPI

    SciTech Connect

    Kitagawa, Yoneyoshi; Mori, Yoshitaka; Ootsuka, Shuji; Makino, Takahiro; Ohta, Mari; Suzuki, Tetsuya; Kuwabara, Hajime

    2009-01-22

    The laser accelerator provides us not only ultra high field, but also extremely short pulse radiation sources, the laser-produced X-rays. Using a 1.2 TW table-top Ti:sap laser, we are pursuing the activities for the industrial application. First we proposed a new injection acceleration scheme using the ultra short beat-wave accelerator for the economical radiation source. Then we proposed two applications both on the backward see-through vision of distant objects using the laser X-rays, and on the X-ray illumination on Aspergillus awamori spores, which is 100 times effective of the current X-ray tube cases.

  8. Development and clinical application of excimer laser corneal shaping

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Biowski, R.; Husinsky, Wolfgang; Blaas, C.; Simader, Ch.; Baumgartner, I. Gosch; Kaminski, Stefan; Grabner, G.

    1998-06-01

    Excimer Laser Corneal Shaping using an 193 nm Excimer Laser (ArF) provides a possibility for the fabrication of corneal transplants of various forms for various clinical applications such as (epi-)keratoplasty. Another area of application envisioned is the production of 'living contact lenses' for epikeratophakia. A device for lathing and perforating corneal donor tissue with a scanning laser beam is presented. A new ablation algorithm (Optimized Scanning Laser Ablation) was recently developed and increased the quality of lenticules and donor buttons considerably.

  9. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers. PMID:26560609

  10. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  11. CO2 laser devices and applications; Proceedings of the Seminar, Washington, DC, April 10, 11, 1980

    NASA Astrophysics Data System (ADS)

    Hartwick, T. S.

    1980-01-01

    Studies contained in this volume provide an overview of the recent advances in CO2 lasers and CO2 laser systems and their commercial and military applications. Papers are presented on the development of a flyable CO2 laser beacon, a frequency-stabilized hybrid CO2 lasers, compact CO2 lasers, and pulsed CO2 lasers. Other papers include: carbon dioxide lasers in rangefinding, scanning laser Doppler anemometry system, wide-bandwidth CO2 laser photomixers, infrared fiber optics for CO2 laser applications, and industrial applications of far-infrared lasers.

  12. Laser polishing of niobium for SRF applications

    SciTech Connect

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael

    2013-09-01

    Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.

  13. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  14. Application of laser microbeam in biopharmacy

    NASA Astrophysics Data System (ADS)

    Zhao, Yansheng; Wang, Ming; Wang, Luyan; Li, Taiming; Wu, Junmin; Xu, Lei; Zhu, Xi

    1999-09-01

    Laser microbeam system consists of a third harmonic generation Nd:YAG laser and an inverted biological microscope. It is the first time that laser microbeam is applied in immobilized cell to produce midecamycin (MDM). After laser irradiation, the penetrance of immobilized granule greatly increased, probably through the microchannel made by laser. The results showed that the MDM productivity was increased greatly and the half-life of immobilized mycelia prolonged over three times as long as that of the control. In another experiment, plasmid pS65T (including green fluorescent protein genes) and plasmid pUH-10 (including Amp resistant gene) were successfully introduced into E. coli by laser microbeam. The results show that laser microbeam has a bright perspective on biopharmacy.

  15. Laser anemometry techniques for turbine applications

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Oberle, Lawrence G.

    1987-01-01

    Laser anemometry offers a nonintrusive means for obtaining flow field information. Current research at NASA Lewis Research Center is focused on instrumenting a warm turbine facility with a laser anemometer system. In an effort to determine the laser anemometer system best qualified for the warm turbine environment, the performance of a conventional laser fringe anemometer and a two spot time of flight system were compared with a new, modified time of flight system, called a Four Spot laser anemometer. The comparison measurements were made in highly turbulent flows near walls. The Four Spot anemometer uses elliptical spots to increase the flow acceptance angle to be comparable to that of a Laser Fringe Anemometer. Also, the Four Spot uses an optical code that vastly simplifies the pulse detection processor. The results of the comparison measurements will exemplify which laser anemometer system is best suited to the hostile environment typically encountered in warm rotating turbomachinery.

  16. Laser applications in machining slab materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping

    1990-10-01

    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  17. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  18. MARE-l in Milan: Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Gatti, C.; Giachero, A.; Gotti, C.; Kilbourne, C.; Kraft-Bermuth, S.; Nucciotti, A.; Pessini, G.; Schaeffer, D.; Sisti, M.

    2012-01-01

    The international project MARE (Microcalorimeter Array for a Rhenium Experiment) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. The different option is Ho-163. The potential of using Re-187 for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of Ho-163 has been so far measured with the precision required to set a useful limit on the neutrino mass. The first phase of the project (MARE-1) is a collection of activities with the aim of sorting out both the best isotope and the most suited detector technology to be used for the final experiment. One of the MARE-1 activities is carried out in Milan by the group of Milano-Bicocca in collaboration with NASA/GSFC and Wisconsin groups. The Milan MARE-l arrays are based on semiconductor thermistors, provided by the NASA/GSFC group, with dielectric silver perrhenate absorbers, AgReO4. The experiment, which is presently being assembled, is designed to host up to 8 arrays.

  19. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  20. Properties and Applications of Laser Generated X-Ray Sources

    SciTech Connect

    Smith, R F; Key, M H

    2002-02-25

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and x-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarizes, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Conclusions are drawn on areas where the development of laser based sources is most promising and competitive in terms of applications potential.

  1. Injection seeded single mode alexandrite ring laser for lidar applications

    NASA Technical Reports Server (NTRS)

    Lee, H. Sang; Notari, Anthony

    1992-01-01

    Along with many spectroscopic applications, atmospheric lidar measurements require a tunable, narrow band laser with a very high degree of spectral purity. A standing wave pulsed alexandrite laser tuned by injection seeding with an AlGaAs laser diode has demonstrated high stability. The standing wave cavity, however, poses several difficulties in light of the single mode operation and efficient seeding beam into the cavity. In order to overcome these problems and to operate the high power alexandrite laser in a single axial mode with a high spectral purity, a new ring laser system is being developed. The design features of the ring laser and some measurements of the laser characteristics are presented.

  2. Clinical application of erbium:YAG laser in periodontology.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2008-01-01

    Various lasers have been introduced for the treatment of oral diseases and their applications in dental clinics have become a topic of much interest among practitioners. Technological advances and improvements have increased the choices of the available laser systems for oral use. Among them, a recently developed erbium-doped:yttrium aluminum garnet (Er:YAG) laser system possesses suitable characteristics for oral soft and hard tissue ablation. Due to its high absorption in water, an effective ablation with a very thin surface interaction occurs on the irradiated tissues without any major thermal damage to the irradiated and surrounding tissues. In the field of periodontics, the application of Er:YAG laser for periodontal hard tissue has begun with studies from Japanese and German researchers. Several in vitro and clinical studies have already demonstrated an effective application of the Er:YAG laser for calculus removal and decontamination of the diseased root surface in periodontal non-surgical and surgical procedures. However, further studies are required to better understand the various effects of Er:YAG laser irradiation on biological tissues for its safe and effective application during periodontal and implant therapy. Randomized controlled clinical trials and more basic studies have to be encouraged and performed to confirm the status of Er:YAG laser treatment as an adjunct or alternative to conventional mechanical periodontal therapy. In this paper, the advantages and current clinical applications of this laser in periodontics and implant dentistry are summarized based on current scientific evidence.

  3. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    SciTech Connect

    Jacques, S.L.; Welch, A.J.; Motamedi, M.; Rastegar, S.; Tittel, F.; Esterowitz, L.

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  4. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    NASA Astrophysics Data System (ADS)

    Jacques, S. L.; Welch, A. J.; Motamedi, M.; Rastegar, S.

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  5. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    SciTech Connect

    Jacques, S.L. . Cancer Center); Welch, A.J. ); Motamedi, M. . Medical Branch); Rastegar, S. ); Tittel, F. ); Esterowitz, L. )

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  6. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    SciTech Connect

    Jacques, S.L.; Welch, A.J.; Motamedi, M.; Rastegar, S.; Tittel, F.; Esterowitz, L.

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  7. Current status of clinical laser applications in periodontal therapy.

    PubMed

    Aoki, Akira; Mizutani, Koji; Takasaki, Aristeo Atsushi; Sasaki, Katia Miyuki; Nagai, Shigeyuki; Schwarz, Frank; Yoshida, Itaru; Eguro, Toru; Zeredo, Jorge Luis; Izumi, Yuichi

    2008-01-01

    Periodontal disease is a chronic inflammatory disorder caused by bacterial infection. Laser treatment demonstrates specific characteristics that may be valuable in managing periodontal disease. In addition, lasers reduce stress and uncomfortable conditions for patients during and after treatment compared to other conventional tools. This article reviews the literature to describe the current clinical applications of lasers for gingival tissue management-including esthetic treatment, non-surgical and surgical periodontal pocket therapy, osseous surgery, and implant therapy.

  8. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    NASA Astrophysics Data System (ADS)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  9. Industrial Applications of High Power CO2 Lasers - System Descriptions

    NASA Astrophysics Data System (ADS)

    Gukelberger, Armin

    1986-10-01

    The laser as a cutting tool for sheet metal cutting has beenl well accepted in industry for many years. Several hundreds of units are used for contour cutting of small and medium-sized series on plane metal sheets up to 6 mm thick. Within the last three years, cutting systems have been expanded in three ways: thicker material up to 12 mm can now be cut by using higher powered lasers (1500 W); with the introduction of flying optic systems which cover sheet dimensions up to 4 m x 3 m, the cutting of larger sized metal sheets is possible. In addition, the use of five or six axis systems allows cutting of three-dimensional plastic and metal material. Besides laser cutting, the acceptance of systems for laser welding applications is increa sing. Several systems have been running in production for a couple of years and laser wel ding will probably become the fastest growing market in laser material processing within the next five years. The laser technology is regarded as a beneficial tool for welding, whenever low heat input and, consequently, low heat distortion is requested. To day's main welding application areas are: components of car engines and transmissions, window spacer and stainless steel tube welding, and also car body welding with laser robots or five axis gantry type systems. The output power of CO2-lasers for welding applications is between 1 and 5 kw in most cases.

  10. Scientific applications of frequency-stabilized laser technology in space

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  11. [Laser applications in medicine and surgery (author's transl)].

    PubMed

    Miro, L

    After an analysis of the complex interweaving reactions of laser on biological materials, the laser applications in medicine and surgery are reviewed by the author. In ophthalmology its use is regular but not yet optimal. In otological applications the first results are good. In dermatology favorable results are obtained but the absence of special device had stopped his development. In surgery and endoscopy the best wave length must be chosen in reference to their hemostatic action and cutting, nevertheless in gastroscopy and bronchoscopy the laser seems to bring new therapeutic solutions. In odontology the pulsed lasers are dangerous for therapy but the holographic technique is a fertile research area. The author conclude to the necessary development of researches on the fundamental problems set by the biomedical applications of lasers.

  12. [Use of the thermal laser effect of laser irradiation for cardiovascular applications exemplified by the Nd:YAG laser].

    PubMed

    Ischinger, T; Coppenrath, K; Weber, H; Enders, S; Unsöld, E; Hessel, S

    1989-11-01

    Techniques of percutaneous transluminal application of laser energy for vessel recanalization have been used clinically since 1983. The commonly used Nd:YAG and argon lasers achieve ablation of atherosclerotic plaques by thermal action (vaporization). In order to reduce undesirable thermal damage in the neighborhood of the target tissue and to avoid vessel perforation, optimal irradiation parameters, modified (atraumatic) fiber tips (hot tips, sapphires), and steerable catheter systems needed to be implemented. Favorable results from peripheral application have encouraged use in the coronary circulation. More recently, coagulative tissue effects of circumferential irradiation of the vessel wall during balloon dilatation have been used for stabilization of acute and late results after mechanical balloon angioplasty. Enhancement of the differential light absorption of atherosclerotic plaque by use of biological dyes may further improve selective intravascular laser application. Intraoperative ECG-guided laser coagulation of arrhythmogenic areas of myocardium is a method for treatment of malignant arrhythmias. Transluminal non-operative application of myocardial laser photocoagulation has now been tested experimentally and shown to be safe and effective. There was no arrhythmogenicity or thermal damage of coronary arteries associated with this method. Innovative techniques such as nanosecond pulsed excimer lasers (athermal action) and development of "intelligent" lasers--which are equipped with spectroscopy-guided feedback systems for plaque recognition--have opened new perspectives and will further improve safety and efficacy of clinical laser application. However, according to current experience, the thermally acting Nd:YAG laser is an effective and versatile mode of laser therapy for selected cardiovascular indications. PMID:2532812

  13. [Use of the thermal laser effect of laser irradiation for cardiovascular applications exemplified by the Nd:YAG laser].

    PubMed

    Ischinger, T; Coppenrath, K; Weber, H; Enders, S; Unsöld, E; Hessel, S

    1989-11-01

    Techniques of percutaneous transluminal application of laser energy for vessel recanalization have been used clinically since 1983. The commonly used Nd:YAG and argon lasers achieve ablation of atherosclerotic plaques by thermal action (vaporization). In order to reduce undesirable thermal damage in the neighborhood of the target tissue and to avoid vessel perforation, optimal irradiation parameters, modified (atraumatic) fiber tips (hot tips, sapphires), and steerable catheter systems needed to be implemented. Favorable results from peripheral application have encouraged use in the coronary circulation. More recently, coagulative tissue effects of circumferential irradiation of the vessel wall during balloon dilatation have been used for stabilization of acute and late results after mechanical balloon angioplasty. Enhancement of the differential light absorption of atherosclerotic plaque by use of biological dyes may further improve selective intravascular laser application. Intraoperative ECG-guided laser coagulation of arrhythmogenic areas of myocardium is a method for treatment of malignant arrhythmias. Transluminal non-operative application of myocardial laser photocoagulation has now been tested experimentally and shown to be safe and effective. There was no arrhythmogenicity or thermal damage of coronary arteries associated with this method. Innovative techniques such as nanosecond pulsed excimer lasers (athermal action) and development of "intelligent" lasers--which are equipped with spectroscopy-guided feedback systems for plaque recognition--have opened new perspectives and will further improve safety and efficacy of clinical laser application. However, according to current experience, the thermally acting Nd:YAG laser is an effective and versatile mode of laser therapy for selected cardiovascular indications.

  14. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  15. Solid state dye laser for medical applications

    NASA Astrophysics Data System (ADS)

    Aldag, Henry R.

    1994-06-01

    The development of solid state dye lasers could lead to a major breakthrough in the cost and compactness of a medical device. Advantages include: elimination of the flow system for the gain medium; ease with which to implement wavelength agility or the replacement of a degraded rod or sheet; and toxicity and flammability become a non-issue. Dye lasers have played a role in cardiology, dermatology, and urology. Of these cardiology is of interest to Palomar. The Palomar Model 3010 flashlamp-pumped dye laser medical device was used during phase 1 FDA clinical trials to break-up blood clots that cause heart attacks, a process known as coronary laser thrombolysis. It is the objective of this research and development effort to produce solid matrix lasers that will replace liquid dye lasers in these medical specialties.

  16. Holmium laser applications of the prostate.

    PubMed

    Lerner, Lori B; Tyson, Mark D

    2009-11-01

    The high-powered holmium laser is an excellent tool for the surgical treatment of benign prostatic hyperplasia. This article discusses the background of holmium use in the prostate and describes the surgical techniques of holmium laser ablation of the prostate and holmium laser enucleation of the prostate. Operative challenges are reviewed with suggestions as to how to avoid these problems or deal with them when they arise. Surgical outcomes and a thorough literature review are both presented.

  17. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  18. Laser Printing for a Variety of Library Applications.

    ERIC Educational Resources Information Center

    Kelly, Glen J.

    1988-01-01

    Summarizes the current status of laser printers in terms of cost, hardware and software requirements, measurement and operational considerations, ease of use, and maintenance. The cost effectiveness of laser printing in libraries for applications such as spine labels, purchase orders, and reports, is explored. (9 notes with references) (CLB)

  19. Surgical application of lasers. 2nd edition

    SciTech Connect

    Dixon, J.A.

    1987-01-01

    Lasers have been successfully used in several new clinical areas such as cardiovascular, orthopedic, and pulmonary surgery as well as in specialties covered in the first edition including otorhinolaryngology, dermatology and plastic surgery, gastroenterology, and urology. These advances are all discussed in this text. Introductory chapters cover the background of laser surgery, techniques and instrumentation and safety procedures. The remaining chapters cover lasers in specific fields such as endoscopic surgery, gynecology, neurosurgery and many more. The final chapters provide an overview of photodynamic therapy and the future of laser surgery.

  20. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  1. Do Open Geodata Actually have the Quality they Declare? the Case Study of Milan, Italy

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Minghini, M.; Molinari, M. E.; Molteni, M.

    2016-06-01

    In the past number of years there has been an amazing flourishing of spatial data products released with open licenses. Researchers and professionals are extensively exploiting open geodata for many applications, which, in turn, include decision-making results and other (derived) geospatial datasets among their outputs. Despite the traditional availability of metadata, a question arises about the actual quality of open geodata, as their declared quality is typically given for granted without any systematic assessment. The present work investigates the case study of Milan Municipality (Northern Italy). A wide set of open geodata are available for this area which are released by national, regional and local authoritative entities. A comprehensive cataloguing operation is first performed, with 1061 geospatial open datasets from Italian providers found which highly differ in terms of license, format, scale, content, and release date. Among the many quality parameters for geospatial data, the work focuses on positional accuracy. An example of positional accuracy assessment is described for an openly-licensed orthophoto through comparison with the official, up-to-date, and large-scale vector cartography of Milan. The comparison is run according to the guidelines provided by ISO and shows that the positional accuracy declared by the orthophoto provider does not correspond to the reality. Similar results are found from analyses on other datasets (not presented here). Implications are twofold: raising the awareness on the risks of using open geodata by taking their quality for granted; and highlighting the need for open geodata providers to introduce or refine mechanisms for data quality control.

  2. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  3. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  4. Application of Laser in Oral Surgery

    PubMed Central

    Asnaashari, Mohammad; Zadsirjan, Saeede

    2014-01-01

    In this review collected from the literature on usage of laser in oral minor surgery based on a Medline search in the time period between the years: 2008 and 2013, the most current evidence on laser-assisted oral minor surgery is going to be surveyed. PMID:25653807

  5. Laser radar for spacecraft guidance applications

    NASA Technical Reports Server (NTRS)

    Liebe, C. C.; Abramovici, A.; Bartman, R. K.; Bunker, R. L.; Chapsky, J.; Chu, C. C.; Clouse, D.; Dillon, J. W.; Hausmann, B.; Hemmati, H.; Kornfeld, R. P.; Kwa, C.; Mobasser, S.; Newell, M.; Padgett, C.; Roberts, W. T.; Spiers, G.; Warfield, Z.; Wright, M.

    2003-01-01

    A flight qualified laser radar called LAMP (LAser MaPper) is under development at JPL. LAMP is a guidance and control sensor that can form 3 dimensional images of its field of regard. This paper describes the detailed design of the LAMP sensor.

  6. Theoretical investigations of the processes of laser interaction with ocular tissues for laser applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Pustovalov, V. K.; Jean, B.

    2006-08-01

    Theoretical investigations and the results of computer modeling of the optical, thermophysical, and thermochemical processes during laser interaction with ocular tissues are reviewed in this paper. Physical-mathematical models and results of numerical simulation of the processes are presented. The computer modeling was applied for investigations of laser heating and coagulation of ocular tissues for treatment of retina diseases and intraocular tumors, cyclophotocoagulation of the ciliary body for treatment of glaucoma, and laser thermal keratoplasty of the cornea. The influence of radiation parameters on the selectivity of laser coagulation of laminated ocular tissues is considered. The results obtained are of essential interest for laser applications in ophthalmology and can be used for investigation of heating and coagulation of tissues in different fields of laser medicine.

  7. Scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-03-01

    The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

  8. Advanced laser diodes for sensing applications

    SciTech Connect

    VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W.; ALLERMAN,ANDREW A.

    2000-01-01

    The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

  9. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  10. [Application of laser rays in surgery (author's transl)].

    PubMed

    Günter, H; Härb, H; Korab, W; Kyrle, P

    1979-01-01

    Some years will have to pass, until there will be evidence, if the application of laser beam in surgery of breastcancer, melanomas or basaliomas will be justified and whether it will be possible or not to interrupt or reduce intraoperative tumor cellspread. As an increasing number of surgeons have started to use laser rays in these cases of illness, results of laser surgery and those of tradional methods could be compared in a couple of years. Possibly other indications for the use of laser than those we have worked out will be outlined in general surgery. Surgeons working with laser beam may discredit the method by putting the indication not rigorusly enough. Greatest care should be taken by everybody who starts working with laser rays. Collaboration with a technician is recommended.

  11. DOE Center of Excellence in Medical Laser Applications. Final report

    SciTech Connect

    Jacques, S.L. )

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland, OR, Houston, TX, and Galveston, TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulation of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  12. Spaceflight laser development for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Abshire, James B.; Harding, David J.; Riris, Haris; Li, Steven X.; Chen, Jeffrey R.; Allan, Graham R.; Numata, Kenji; Wu, Stewart T.; Camp, Jordan B.

    2011-11-01

    At NASA's Goddard Space Flight Center we are developing next generation laser transmitters for future spaceflight, remote instruments including a micropulse altimeter for ice-sheet and sea ice monitoring, laser spectroscopic measurements of atmospheric CO2 and an imaging lidar for high resolution mapping of the Earth's surface. These laser transmitters also have applicability to potential missions to other solar-system bodies for trace gas measurements and surface mapping. In this paper we review NASA spaceflight laser transmitters used to acquire measurements in orbit around Mars, Mercury, Earth and the Moon. We then present an overview of our current spaceflight laser programs and describe their intended uses for remote sensing science and exploration applications.

  13. The first century of the "clinica del lavoro" in Milan.

    PubMed

    Bertazzi, Pier Alberto; Foà, Vito

    2005-01-01

    The Clinica del Lavoro was created in Milan at the beginning of the 20th century by Luigi Devotto, who deemed it essential for physicians and health researchers to get involved in the life and health problems of working populations. The main roles of the Clinica del Lavoro were to educate medical students and train physicians; study actual workplaces, examine health and safety hazards and their noxious effects; and create initiatives and services to protect and promote workers' health. Important scientific contributions were made in several fields, including chemical carcinogenesis, effects of mineral and biologicalfibers, mechanism of action of silica dust, methods for the detection and measurements of toxic substances in both the work environment and workers' biological media.

  14. Laser-Induced Underwater Plasma And Its Spectroscopic Applications

    SciTech Connect

    Lazic, Violeta

    2008-09-23

    Applications of Laser Induced Breakdown Spectroscopy (LIBS) for analysis of immersed solid and soft materials, and for liquid impurities are described. A method for improving the LIBS signal underwater and for obtaining quantitative analyses in presence of strong shot-to-shot variations of the plasma properties is proposed. Dynamic of the gas bubble formed by the laser pulse is also discussed, together with its importance in Double-Pulse (DP) laser excitation. Results of the studies relative to an application of multi-pulse sequence and its effects on the plasma and gas bubble formation are also presented.

  15. Enabling laser applications in microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  16. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  17. Analytical methods of laser spectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Martyshkin, Dmitri V.

    Different aspects of the application of laser spectroscopy in biomedical research have been considered. A growing demand for molecular sensing techniques in biomedical and environmental research has led the introduction of existing spectroscopic techniques, as well as development of new methods. The applications of laser-induced fluorescence, Raman scattering, cavity ring-down spectroscopy, and laser-induced breakdown spectroscopy for the monitoring of superoxide dismutase (SOD) and hemoglobin levels, the study of the characteristics of light-curing dental restorative materials, and the environmental monitoring of levels of toxic metal ion is presented. The development of new solid-state tunable laser sources based on color center crystals for these applications is presented as well.

  18. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  19. [The application of laser rays in gastroenterology].

    PubMed

    Platteborse, R

    1990-01-01

    After reminding the difference between the surface electro-coagulation-section and the photo-coagulation "at distance" by Laser-ray, the author underlines that the most interesting indications of the Laser-ray introduced into the digestive endoscopes are the destruction of esophageal and colonic tumors for inoperable patients or patients with operative risks. The palliative destructions avoid mutilating operations which won't increase the survival time of the patients. PMID:1701104

  20. Applications of microlens-conditioned laser diode arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  1. A High Energy 2-microns Laser for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Barnes, James C.; Barnes, Norman P.; Petros, Mulugeta

    2000-01-01

    Solid-state 2-microns laser has been receiving considerable interest because of its eye-safe property and efficient diode pump operation, It has potential for multiple lidar applications to detect water vapor. carbon dioxide and winds. In this paper, we describe a 2-microns double pulsed Ho:Tm:YLF laser and end-pumped amplifier system. A comprehensive theoretical model has been developed to aid the design and optimization of the laser performance. In a single Q-switched pulse operation the residual energy stored in the Tm atoms will be wasted. However, in a double pulses operation mode, the residual energy stored in the Tm atoms will repopulate the Ho atoms that were depleted by the extraction of the first Q-switched pulse. Thus. the Tin sensitized Ho:YLF laser provides a unique advantage in applications that require double pulse operation, such as Differential Absorption Lidar (DIAL). A total output energy of 146 mJ per pulse pair under Q-switch operation is achieved with as high as 4.8% optical to optical efficiency. Compared to a single pulse laser, 70% higher laser efficiency is realized. To obtain high energy while maintaining the high beam quality, a master-oscillator-power-amplifier 2-microns system is designed. We developed an end-pumped Ho:Tm:YLF disk amplifier. This amplifier uses two diode arrays as pump source. A non-imaging lens duct is used to couple the radiation from the laser diode arrays to the laser disk. Preliminary result shows that the efficiency of this laser can be as high as 3%, a factor of three increases over side-pump configuration. This high energy, highly efficient and high beam quality laser is a promising candidate for use in an efficient, multiple lidar applications.

  2. Applications and mechanisms of laser tissue welding in 1995: review

    NASA Astrophysics Data System (ADS)

    Godlewski, Guilhem; Prudhomme, Michel; Tang, Jing

    1996-01-01

    For several years laser tissue welding has appeared as a new alternative technique for tissue repair instead of manual sutures. It has been evaluated in different experimental models including blood vessels, skin, nerve, intestine, bile ducts, vas and fallopian tube. Different types of lasers with different sets of parameters have been used: carbon dioxide laser, Nd:YAG laser, argon and KTP laser and diode laser. Recent trends in tissue fusion promote near infrared lasers at low irradiance with intraoperative enhancement of light absorption by specific chromophores. As far as microvascular reconstruction is concerned, successful clinical applications are currently published. Although the molecular mechanism involved in welding is not completely understood, the tissular fusion is considered as a thermal phenomena. In laser assisted microvascular anastomosis, the best experimental model, the ultrastructural examination of arteries anastomosed with Nd:YAG, argon or diode laser revealed interdigitation of collagen fibers which appeared swollen, with modified striation and organized in irregular network. The mechanism of welding involving the formation of non covalent bands between collagen strands, is generally induced by a temperature of 60 - 63 degrees Celsius well adapted to collagen denaturation.

  3. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  4. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  5. The NASA high-power carbon dioxide laser - A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1977-01-01

    The NASA Lewis Research Center has designed and fabricated a closed-cycle, continuous wave (CW), carbon dioxide (CO2) high-power laser to support research for the identification and evaluation of possible high-power laser applications. The device is designed to generate up to 70 kW of laser power in annular-shape beams from 1 to 9 cm in diameter. Electric discharge, either self-sustained or electron-beam-sustained, is used for excitation. This laser facility can be used in two ways. First, it provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high-power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams, all of which are important whether the laser application is government or industry oriented. Second, the facility provides a well-defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  6. Random lasers for lab-on-chip applications

    NASA Astrophysics Data System (ADS)

    Giehl, J. M.; Butzbach, F.; Jorge, K. C.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.; Wetter, N. U.

    2016-04-01

    Random lasers are laser sources in which the feedback is provided by scattering instead of reflection and which, for this reason, do not require surfaces with optical finish such as mirrors. The investigation of such lasing action in a large variety of disordered materials is a subject of high interest with very important applications such as threedimensional and speckle-free imaging, detection of cancer tissue and photonic coding and encryption. However, potential applications require optimization of random laser performance especially with respect to optical efficiency and directionality or brightness. This work demonstrates such an optimization procedure with the goal of achieving a random laser with sufficient efficiency and brightness in order to be used in practical applications. Two random lasers are demonstrated, one solid and on liquid, that fulfil directionality and efficiency requirements. The first one consists of a neodymium doped powder laser with a record slope efficiency of 1.6%. The second one is a liquid random laser injected into a HC-ARROW waveguide which uses a microchannel connected to a much larger reservoir in order to achieve the necessary directionality. Both devices can be produced by low cost fabricating technologies and easily integrated into next-generation, lab-on-chip devices used for in-situ determination of infectious tropical diseases, which is the main goal of this project.

  7. Laser materials processing applications at Lawrence Livermore National Laboratory

    SciTech Connect

    Hargrove, R.S.; Dragon, E.P.; Hackel, R.P.; Kautz, D.D.; Warner, B.E.

    1993-02-25

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60:1) and features with micron scale (5-50 {mu}m) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail.

  8. The development of novel Ytterbium fiber lasers and their applications

    NASA Astrophysics Data System (ADS)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  9. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  10. Optimized laser application in dermatology using infrared thermography

    NASA Astrophysics Data System (ADS)

    Thomas, Roderick A.; Donne, Kelvin E.; Clement, Marc; Kiernan, Michael N.

    2002-03-01

    Infrared thermography can be used to optimize the application of lasers in dermatology with particular reference to the treatment of certain skin disorders such as vascular lesions and depilation. The efficacy of treatment is dependent upon a number of factors including: Optimization and correct selection of laser parameters such as wavelength and spot size. Human factors, such as laser operator skill, patient's skin type and anatomical location. By observing the thermal effects of laser irradiation on the skins surface during treatment results in improved efficacy and minimizes the possible threshold to skin damage, reducing the possibility of burning and scarring. This is of particular significance for example, in the control of purpura for the treatment of vascular lesions. The optimization is validated with reference to a computer model that predicts various skin temperatures based on two different laser spot sizes.

  11. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis. PMID:25239063

  12. [Application of laser rays in surgery (author's transl)].

    PubMed

    Günter, H; Korab, W; Kyrle, P

    1978-09-01

    Some years will have to pass, until there will be evidence, if application of leaser beam in surgery of Breastcancer, Melanomas or Basaliomas was justified and whether it is possible or not to interrupt or reduce intraoperative tumor cellspread. As an increasing number of surgeons have started to use laser rays in these illnesses, result of laser surgery and those of traditional methods could be compared in a couple of years. Possibly other indications will be outlined in general surgery for the use of laser beside those we have been working out. It may happen that surgeons working with laser beam might bring the method into discredit putting indication not rigorous enough. I should like to remind everybody who starts working with laser rays, to do so with greatest possible care. Collaboration with a technician is recommended. Periodic he should control the machine and handle arising technical problems.

  13. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  14. Optofluidic Bio-Lasers: Concept and Applications

    PubMed Central

    Fan, Xudong; Yun, Seok-Hyun

    2014-01-01

    An optofluidic bio-laser integrates biological materials into the gain medium while forming an optical cavity in the fluidic environment, either on a microfluidic chip or within a biological system. The laser emission has characteristics fundamentally different from conventional fluorescence emission. It can be highly sensitive to a specific molecular change in the gain medium as the light-matter interaction is amplified by the resonance in the cavity. The enhanced sensitivity can be used to probe and quantify the underlying biochemical and biological processes in vitro in a microfluidic device, in situ in a cell (cytosol), or in vivo in a live organism. Here we describe the principle of the optofluidic bio-laser, review its recent progress and provide an outlook of this emerging technology. PMID:24481219

  15. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  16. Facet joint laser radiation: tissue effects of a new clinical laser application

    NASA Astrophysics Data System (ADS)

    Werkmann, Klaus; Thal, Dietmar R.

    1996-01-01

    Chronic unilateral and bilateral back pain with pseudoradicular symptoms, is a common clinical syndrome, which in many cases can be related to the facet joint syndrome. The pain is caused by mechanical affection of synovial and capsular nerve terminals. Therefore, current therapeutical attempts including physical therapy, intra-articular injection of local anesthetics and steroids and thermocoagulation of the facet joint with a thermocoagulator, are performed. We confirmed laser coagulation of the facet joint. Porcine cadaveric spines were treated immediately after death by intra-articular facet joint laser radiation. With the pulsed Nd:YAG laser (1064 nm) altogether 600 J were applied in three different places 4 mm apart at the top of the facet joint. The results showed that facet joint laser radiation leads to a small (about 1 - 2 mm diameter) lesion restricted to the facet joint cavity and its synovia. Histologically, we found a central carbonization zone and necrosis, including almost the whole cartilage and approximately 0.2 mm of the adjacent bone. These changes are similar to Nd:Yag-laser applications in other skeletal regions. It is suggested that these changes may lead to facet joint denervation by coagulation of the synovial nerve terminals. Cicatration of the laser lesion might cause ankylosis of this joint. In sum, facet joint laser radiation could be an alternative therapeutical tool for lower back pain of the facet joint syndrome type. Therefore, future clinical application of this technique seems to be very promising.

  17. Temporal Characterization of a Picosecond Laser-Pumped X-ray Laser (for Applications)

    SciTech Connect

    Dunn, J; Nilsen, J; Shepherd, R; Shlyaptsev, V; Booth, R; Smith, R; Hunter, J

    2003-11-25

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6-13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5-27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  18. Industrial multibeam lasers and their technological applications

    NASA Astrophysics Data System (ADS)

    Bukhanova, I. F.; Zhuravel, V. M.; Divinsky, V. V.

    1994-04-01

    A variety of industrial technological laser systems with 1.5, 2.5 - 3.5, 8 - 10 kW power have been developed around the multibeam diffusion-cooled CO2 lasers. A number of technological processes of parts hardening and reconditioning (sleeves made in cast iron, cylinder of diesel locomotive engines, crankshafts and camshafts of tractor engines, parts of car and tractor running gears, rings of drilling bearings, lead screws, machine guides), that employ the LTS have been developed and introduced at various industries.

  19. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  20. Laser induced breakdown spectroscopy application in joint European torus

    NASA Astrophysics Data System (ADS)

    Semerok, A.; L'Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C.

    2016-09-01

    The results on the first successful application of Laser Induced Breakdown Spectroscopy (LIBS) for remote in situ diagnostics of plasma facing components (a deposited layer on a divertor tile) in Joint European Torus (JET) are presented. The studies were performed with an available JET EDGE LIDAR laser system. For in-depth analysis of deposited layers on JET divertor tiles, a number of laser shots were applied onto the same divertor place without laser beam displacement. The spectral lines of D, CII and impurity elements (CrI, BeII, …) were identified in a wide spectral range (400-670 nm). With the increase in a number of laser shots applied onto the same divertor place, we observed consecutive changes in spectral line intensities of deuterium, carbon, and impurities with the appearance of spectral lines of tungsten substrate (WI). In-depth analysis of deposited layers on JET divertor tiles was made on the basis of the spectral line behaviour in reference to the applied laser shots. The possibility of surface cartography with laser beam displacement on the tile surface was demonstrated as well. Based on the results obtained, we may conclude that LIBS method is applicable for in situ remote analysis of deposited layers of JET plasma facing components.

  1. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  2. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  3. Application of G criterion in metal vapor ion laser

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bailiang, Pan; Yi, Jin; Kun, Chen; Zhixin, Yao

    2003-09-01

    Application of G criterion to efficient operation of pulsed discharge-excited R-M transition metal vapor laser was successfully extended to univalent ionic lasing medium from neutral atomic lasing medium on the basis of analyzing the simulation results of 1.09 μm Sr + lasing process. All of the known 17 R-M transition laser lines of univalent ions follow the G criterion except one, to which an interpretation is given. Furthermore, we suggest that only 69 lines among 212 possible R-M transition laser lines predicted by S.V. Markova, which satisfy the G criterion, should be explored first.

  4. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  5. Biological applications of ultraviolet free-electron lasers

    SciTech Connect

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  6. Managing the maintainance and conservation of the built heritage: a web-gis approach for the Richini courtyard in Milan

    NASA Astrophysics Data System (ADS)

    Toniolo, L.; Gulotta, D.; Bertoldi, M.; Bortolotto, S.

    2012-04-01

    The Richini courtyard is a masterpiece of northern Italy baroque and it is part of the complex that currently hosts the "Università degli Studi" of Milan. Its four internal façades are based on a double arcade structure with granitic columns along a rectangular plan. The architectural elements are enriched by an outstanding sculpted decoration made of Angera stone (a typical Lombard dolostone) with bas-relief panels, high-relief figures, mouldings and voussoirs. The courtyard suffers the consequences of a troubled conservation history: the Second World War bombardment caused devastating damages to both the structure and the sculpted surfaces, so that an extensive restoration was carried out during the early fifties. Moreover, a further and massive conservative intervention was required during the nineties due to the increasing degradation rate of the Angera stone subjected to severely polluted environmental conditions. The overall durability of this last intervention, as well as the long-term compatibility of the restoration materials, has been evaluated almost twenty years later, in 2011. A thorough study of representative areas of the courtyard has been conducted by a multi-disciplinary research group. The aim of the study was the evaluation of the state of conservation of the ancient and restoration materials, as well as the identification of the decay phenomena. A high-accurate 3D laser scanner survey of the courtyard has been performed as well. The results of the diagnostic activity has been summarised in the present work. The wide range of different type of data (analytical and geometrical data, historical records, photographic documentation) have been managed by the latest release of a web-GIS software specifically designed for the application in the built heritage conservation. A new data structure has been purposely designed in order to maximize the efficiency for what concerning data entry, data query and data updating. The enhanced web-GIS software has

  7. Tailoring Laser Propulsion for Future Applications in Space

    SciTech Connect

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-08

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  8. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  9. Laser cleaning of metal surfaces: physical processes and applications

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Mutin, T. J.; Smirnov, V. N.; Shakhno, E. A.; Batishche, S. A.

    2008-01-01

    Physical processes occurring by laser cleaning of metal surfaces from soiling particles, coatings and near-surface oxide or corroded layer are considered. Unconventional methods of laser cleaning which promote increasing the quality and effectiveness of cleaning and solving of the problem of soiling substance gathering are proposed. Applications of these methods in a number of novel fields, such as pinholes cleaning, coatings removal, radioactive contaminated layers removal, cleaning of objects of historic and cultural heritage are considered.

  10. Laser Induced Breakdown Spectroscopy:. AN Application on Multilayered Archeological Ceramics

    NASA Astrophysics Data System (ADS)

    Ponterio, R.; Trusso, S.; Vasi, C.; Aragona, S.; Mavilia, L.

    2004-10-01

    In this work we show an example of application of Laser Induced Breakdown Spectroscopy (LIBS) in combination with another laser-based technique: Raman micro-spectroscopy for the identification of pigments and glaze on pottery found archaeological excavations in Amendolea castle site (south of Italy in Calabrian peninsula); the objects belong to medieval period. The spectral data indicates the qualitative elemental composition of the examined materials and, in addition, give us useful information on the stratigraphy of the paint layers.

  11. Nonlinear wideband optical filters for laser protection applications

    NASA Astrophysics Data System (ADS)

    Donval, Ariela; Golding, Karin; Nevo, Doron; Fisher, Tali; Lipman, Ofir; Oron, Moshe

    2012-02-01

    With the development of more powerful lasers for applications, optical limiters and blockers are required for providing human eye and optical sensors protection. We report on passive optical power control devices based on a range of photonic nanostructures, including mainly nanostructures for spatial field localization to enhance optical nonlinearities. We present the two main optical power control mechanisms: blocking and limiting, as well as their corresponding nanoscale phenomena. We propose a dynamic protection to cameras, sensors and the human eye from laser threats.

  12. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  13. Screening submersed plant species for phytoremediation of explosives-contaminated groundwater from the Milan Army Ammunition Plant, Milan, Tennessee. Final report

    SciTech Connect

    Best, E.P.; Sprecher, S.L.; Fredrickson, H.L.; Zappi, M.E.; Larson, S.L.

    1997-11-01

    As an alternative to other groundwater extraction and surface treatment techniques, phytoremediation systems are currently being evaluated by civilian and military administrators for their ability to enhance removal of potentially toxic or mutagenic munitions materiel such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX), and their degradation products. To guide selection of aquatic plants for use in demonstration phytoremediation lagoons at the Milan Army Ammunition Plant (MAAP), Milan, TN, this study evaluated the relative ability of ten species to decrease levels of TNT and RDX explosives and related nitrobodies in contaminated MAAP groundwater.

  14. Preliminary experience of shared clinical management between Milan and Pointe Noire using the INteractive TeleConsultation Network for Worldwide HealthcAre Services (INCAS): telemedicine between Milan and Africa.

    PubMed

    Malacarne, Mara; Lesma, Alessandro; Madera, Angelo; Malfatti, Eugenio; Castelli, Alberto; Lucini, Daniela; Pizzinelli, Paolo; Pagani, Massimo

    2004-01-01

    This paper describes preliminary experience in shared clinical management of patients located in Pointe Noire, Africa, and a referral center, Sacco University Hospital, located in Milan, Italy. The employed infrastructure INteractive TeleConsultation Network for Worldwide HealthcAre Services (INCAS) jointly developed by CEFRIEL (Center of Excellence For Research, Innovation, Education & Industrial Labs partnership) and ENI (Ente Nazionale Idrocarburi) is based on commercial off-the-shelf technology. This minimizes maintenance problems, while permitting a simple and friendly sharing of data using the telephone and e-mail for store-and-forward applications. The critical aspect of the flow of events comprising the exchange of information is discussed. In 60% of cases, only one telemedicine consultation was required. In the remainder 40%, a number of telemedicine consultations were required for appropriate management of clinical cases. The project demonstrated flexibility as documented by the wide range of pathologies that can be dealt with it. Finally the possibility of using shared clinical management as a learning tool is highlighted by the steep and rising learning curve. We conclude, however, that the patient, although handled in a "virtual" manner, should be viewed as very "real," as some of them elected to close the gap physically between Pointe Noire and Milan, and chose to be treated at the referral site. PMID:15689647

  15. Preliminary experience of shared clinical management between Milan and Pointe Noire using the INteractive TeleConsultation Network for Worldwide HealthcAre Services (INCAS): telemedicine between Milan and Africa.

    PubMed

    Malacarne, Mara; Lesma, Alessandro; Madera, Angelo; Malfatti, Eugenio; Castelli, Alberto; Lucini, Daniela; Pizzinelli, Paolo; Pagani, Massimo

    2004-01-01

    This paper describes preliminary experience in shared clinical management of patients located in Pointe Noire, Africa, and a referral center, Sacco University Hospital, located in Milan, Italy. The employed infrastructure INteractive TeleConsultation Network for Worldwide HealthcAre Services (INCAS) jointly developed by CEFRIEL (Center of Excellence For Research, Innovation, Education & Industrial Labs partnership) and ENI (Ente Nazionale Idrocarburi) is based on commercial off-the-shelf technology. This minimizes maintenance problems, while permitting a simple and friendly sharing of data using the telephone and e-mail for store-and-forward applications. The critical aspect of the flow of events comprising the exchange of information is discussed. In 60% of cases, only one telemedicine consultation was required. In the remainder 40%, a number of telemedicine consultations were required for appropriate management of clinical cases. The project demonstrated flexibility as documented by the wide range of pathologies that can be dealt with it. Finally the possibility of using shared clinical management as a learning tool is highlighted by the steep and rising learning curve. We conclude, however, that the patient, although handled in a "virtual" manner, should be viewed as very "real," as some of them elected to close the gap physically between Pointe Noire and Milan, and chose to be treated at the referral site.

  16. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  17. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  18. Dye system for dye laser applications

    SciTech Connect

    Hammond, P.R.

    1991-05-21

    This patent describes a dye of the DCM family, (2-methyl-6-(2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl)-4H-pyran-4-ylidene)-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  19. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  20. Applications of laser annealing and laser-induced diffusion to photovoltaic conversion

    SciTech Connect

    Lowndes, D.H.; Young, R.T.; Wood, R.F.

    1981-01-01

    Over the past several years it has been demonstrated that a variety of techniques involving pulsed laser irradiation of both single crystal and polycrystalline silicon by pulsed lasers can result in the reproducible achievement of high efficiency silicon solar cells. Pulsed laser annealing (PLA) after an ion implantation (II) step results in melting (for a time of order 100 nsec) and essentially defect-free liquid phase epitaxial regrowth within approx. 0.5 ..mu..m of the surface. Complete electrical activation of a number of dopant ions, at concentrations exceeding ordinary solubility limits, has been demonstrated and crystalline (polycrystalline) silicon solar cell efficiencies of 16.6% (12.5%) have been obtained. Other p-n junction and solar cell fabrication techniques have been demonstrated. Pulsed laser processing has also been demonstrated to have several other unique and beneficial advantages in polycrystalline silicon substrates. For example, grain boundaries do not exist during laser melting, while dopant diffusion is taking place; the short melt durations involved further limit dopant diffusion; precipitates present after conventional high temperature dopant diffusion can be removed; and, certain types of electrically active grain boundaries can be made inactive by pulsed laser irradiation. Finally, grain growth in fine-grained polycrystalline silicon films, via pulsed laser melting and recrystallization, has been demonstrated. Because little is known about the application of similar pulsed laser processing techniques to compound semiconductors, particularly in connection with the formation of shallow p-n junctions, research has been devoted to studies of pulsed laser processing of GaAs and compound semiconductor solar cell fabrication techniques that are compatible with the use of pulsed lasers. Progress is reported. (WHK)

  1. High-power diode lasers and their direct industrial applications

    NASA Astrophysics Data System (ADS)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  2. Applications of laser wakefield accelerator-based light sources

    NASA Astrophysics Data System (ADS)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  3. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  4. Hepatocellular carcinoma beyond Milan criteria: Management and transplant selection criteria.

    PubMed

    Elshamy, Mohammed; Aucejo, Federico; Menon, K V Narayanan; Eghtesad, Bijan

    2016-07-28

    Liver transplantation (LT) for hepatocellular carcinoma (HCC) has been established as a standard treatment in selected patients for the last two and a half decades. After initially dismal outcomes, the Milan criteria (MC) (single HCC ≤ 5 cm or up to 3 HCCs ≤ 3 cm) have been adopted worldwide to select HCC patients for LT, however cumulative experience has shown that MC can be too strict. This has led to the development of numerous expanded criteria worldwide. Morphometric expansions on MC as well as various criteria which incorporate biomarkers as surrogates of tumor biology have been described. HCC that presents beyond MC initially can be downstaged with locoregional therapy (LRT). Post-LRT monitoring aims to identify candidates with favorable tumor behavior. Similarly, tumor marker levels as response to LRT has been utilized as surrogate of tumor biology. Molecular signatures of HCC have also been correlated to outcomes; these have yet to be incorporated into HCC-LT selection criteria formally. The ongoing discrepancy between organ demand and supply makes patient selection the most challenging element of organ allocation. Further validation of extended HCC-LT criteria models and pre-LT treatment strategies are required. PMID:27478537

  5. Hepatocellular carcinoma beyond Milan criteria: Management and transplant selection criteria

    PubMed Central

    Elshamy, Mohammed; Aucejo, Federico; Menon, K V Narayanan; Eghtesad, Bijan

    2016-01-01

    Liver transplantation (LT) for hepatocellular carcinoma (HCC) has been established as a standard treatment in selected patients for the last two and a half decades. After initially dismal outcomes, the Milan criteria (MC) (single HCC ≤ 5 cm or up to 3 HCCs ≤ 3 cm) have been adopted worldwide to select HCC patients for LT, however cumulative experience has shown that MC can be too strict. This has led to the development of numerous expanded criteria worldwide. Morphometric expansions on MC as well as various criteria which incorporate biomarkers as surrogates of tumor biology have been described. HCC that presents beyond MC initially can be downstaged with locoregional therapy (LRT). Post-LRT monitoring aims to identify candidates with favorable tumor behavior. Similarly, tumor marker levels as response to LRT has been utilized as surrogate of tumor biology. Molecular signatures of HCC have also been correlated to outcomes; these have yet to be incorporated into HCC-LT selection criteria formally. The ongoing discrepancy between organ demand and supply makes patient selection the most challenging element of organ allocation. Further validation of extended HCC-LT criteria models and pre-LT treatment strategies are required. PMID:27478537

  6. The Soundscape Quality in Some Urban Parks in Milan, Italy

    PubMed Central

    Brambilla, Giovanni; Gallo, Veronica; Zambon, Giovanni

    2013-01-01

    Urban parks play an important role in preserving and promoting the health of citizens who are often exposed to noise pollution and the stress of daily life. The present study describes the main results obtained from a survey performed in five urban parks in Milan. Measurements of the acoustic environment were carried out in 29 sites together with interviews with 231 users on certain aspects of the parks not limited to merely sound. Acoustic data show that the surveyed parks mostly do not comply with the noise limit issued by the Italian legislation on protected areas. The unweighted 1/3-octave spectrum centre of gravity G and LA50 perform satisfactorily in discriminating among the acoustic environments. Such clear distinction was not observed in the subjective ratings on the perceived quality of the soundscape, likely due to the influence by non-acoustic factors that act as mediators in the assessment. This hypothesis is supported by the collected data on the perceived quality of quietness, which was rated worse than that of the soundscape. Comparing acoustic data with ratings, the perceived quality of the total environment was found to be less dependent on LAeq than soundscape and quietness. PMID:23743795

  7. A laser application to nuclear astrophysics

    SciTech Connect

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B.; Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M.; Bonasera, A.; Kimura, S.; Mazzocco, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Ditmire, T.

    2014-05-09

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  8. Laser Application in Prevention of Demineralization in Orthodontic Treatment

    PubMed Central

    Sadr Haghighi, Hooman; Skandarinejad, Mahsa; Abdollahi, Amir Ardalan

    2013-01-01

    One common negative side effect of orthodontic treatment with fixed appliances is the development of incipient caries lesions around brackets, particularly in patients with poor oral hygiene. Different methods have been used to prevent demineralization such as fluoride therapy and application of sealant to prevent caries. The recent effort to improve the resistance against the demineralization is by the application of different types of lasers. The purpose of this review article is discussing the effects of laser in prevention of demineralization in orthodontic patients. PMID:25606317

  9. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  10. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  11. Clinical application of CO2 laser in periodontal treatment

    NASA Astrophysics Data System (ADS)

    Hayase, Yasuhiro

    1994-09-01

    CO2 lasers in particular are expected to have many dental applications because the CO2 laser beam exhibits strong tissue transpirative actions, such as instant coagulation, carbonization, and vaporization, and because its wavelength at 10.6 micrometers is fully absorbed by water so that the ability to make precise incisions with a high degree of safety is excellent, without damaging the deep tissues. However, clinical application of the CO2 laser has been slowed since a fiber which can conduct the laser beam to the oral cavity has only recently developed. This new fiber is an extremely flexible fiber with a minimum bending radius of 20 mm and utilizes pulse wave modes that have improved the handling characteristics in the mouth, and this has enabled us to apply the CO2 laser to a variety of periodontal conditions. The aim of this study was to evaluate the effectiveness of CO2 lasers for the early treatment of inflammation and pain relief of acute periodontitis, curettage of periodontal pockets, healing after excision of gingiva, and early improvement of gingivitis.

  12. Application of laser in conservation and restoration of historical building

    NASA Astrophysics Data System (ADS)

    Detalle, Vincent; Duch"ne, Stephanie; Verges Belmin, Veronique; Vallet, Jean Marc; Bodnar, Jean Luc

    2011-02-01

    Cultural Heritage has many analytical and treatment needs both in the field of conservation than in restoration. The laser therefore found a ready-made place in this area. We find first the different application of laser cleaning. The LRMH was the initiative of creating the first field prototype used in the field for cleaning stone in particular. A tour of the Cathedral of France to test this method had been achieved in the early 90s. Then, many have phenomenological and physical studies were conducted to understand the mechanisms involved during the cleaning action. In analytical technology, LIBS (Laser Induced Breakdown Spectroscopy) is used for in situ identification of pigments, salts, metals or other materials. This laser technique present a lot of advantages: portability, analysis of light elements, stratigraphic analysis capability ...The LRMH was the first laboratory depending from a ministry of culture to get the technology and to apply it systematically in situ (Saint-Savin sur Gartemps abbey...). In addition, more recently, a methodology for converting pigments by continuous laser was developed in the laboratory, thus extending the scope of the use of laser. We review these techniques and their application based on studies that occur in our laboratory.

  13. Application of laser in conservation and restoration of historical building

    NASA Astrophysics Data System (ADS)

    Detalle, Vincent; Duchêne, Stephanie; Verges Belmin, Veronique; Vallet, Jean Marc; Bodnar, Jean Luc

    2010-07-01

    Cultural Heritage has many analytical and treatment needs both in the field of conservation than in restoration. The laser therefore found a ready-made place in this area. We find first the different application of laser cleaning. The LRMH was the initiative of creating the first field prototype used in the field for cleaning stone in particular. A tour of the Cathedral of France to test this method had been achieved in the early 90s. Then, many have phenomenological and physical studies were conducted to understand the mechanisms involved during the cleaning action. In analytical technology, LIBS (Laser Induced Breakdown Spectroscopy) is used for in situ identification of pigments, salts, metals or other materials. This laser technique present a lot of advantages: portability, analysis of light elements, stratigraphic analysis capability ...The LRMH was the first laboratory depending from a ministry of culture to get the technology and to apply it systematically in situ (Saint-Savin sur Gartemps abbey...). In addition, more recently, a methodology for converting pigments by continuous laser was developed in the laboratory, thus extending the scope of the use of laser. We review these techniques and their application based on studies that occur in our laboratory.

  14. Status and future prospects of laser fusion and high power laser applications

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2010-08-01

    In Asia, there are many institutes for the R&D of high power laser science and applications. They are 5 major institutes in Japan, 4 major institutes in China, 2 institutes in Korea, and 3 institutes in India. The recent achievements and future prospects of those institutes will be over viewed. In the laser fusion research, the FIREX-I project in Japan has been progressing. The 10kJ short pulse LFEX laser has completed and started the experiments with a single beam. About 1kJ pulse energy will be injected into a cone target. The experimental results of the FIREX experiments will be presented. As the target design for the experiments, a new target, namely, a double cone target was proposed, in which the high energy electrons are well confined and the heating efficiency is significantly improved. Together with the fusion experiments, Osaka University has carried out laboratory astrophysics experiments on photo ionizing plasmas to observe a unique X-ray spectrum from non-LTE plasmas. In 2008, Osaka university has started a new Photon research center in relation with the new program: Consortium for Photon Science and Technology: C-PhoST, in which ultra intense laser plasmas research and related education will be carried out for 10 years. At APRI, JAEA, the fundamental science on the relativistic laser plasmas and the applications of laser particle acceleration has been developed. The application of laser ion acceleration has been investigated on the beam cancer therapy since 2007. In China, The high power glass laser: Shenguan-II and a peta watt beam have been operated to work on radiation hydro dynamics at SIOFM Shanghai. The laser material and optics are developed at SIOFM and LFRC. The IAPCM and the IOP continued the studies on radiation hydrodynamics and on relativistic laser plasmas interactions. At LFRC in China, the construction of Shenguan III glass laser of 200kJ in blue has progressed and will be completed in 2012. Together with the Korean program, I will

  15. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  16. Design Of High Power CO2 TEA Lasers And Applications

    NASA Astrophysics Data System (ADS)

    Von Bergmann, H. M.

    2008-09-01

    There are a number of key technologies involved in the successful design and construction of high power, Carbon Dioxide TEA lasers (Transverse Excitation Atmospheric). These include uniform field electrodes, excitation circuit design including high voltage switching, discharge preionisation and for high repetition, high power applications fast transverse gas flow and the management of acoustic waves. This paper provides a summary of the design aspects of high repetition rate, high average power CO2 TEA lasers. Experimental data measured on high power CO2 TEA laser systems delivering average outputs of several kW and kHz repetition rates will be reported showing the detrimental effect of acoustic waves on laser performance and the improvement that can be achieved through effective acoustic damping measures.

  17. Tunable solid state laser system for dermatology applications

    NASA Astrophysics Data System (ADS)

    Azar, Zion; Bank, Alexander; Donskoy, Dmitri M.; Nechitailo, Vladimir S.

    1994-12-01

    The Q-switched Nd:YAG laser is the most recent in a series of pulsed laser systems for plastic surgery. The 532 nm wavelength has been shown to be absorbed by a variety of chromophores. These include tattoo pigments, oxygenated hemoglobin and melanin-containing epidermal cells. A simple multi-line solid state laser module pumped by double-frequency Q- switched YAG laser is presented. This solid state multi-line module enables tuning of the wavelength in the yellow spectral range to 560 nm or to 580 nm for dermatology applications. Conversion efficiency in excess of 70% was achieved at 10 Hz pulse repetition frequency and output energy per pulse of approximately 200 mJ.

  18. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  19. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  20. Laser-based nanoengineering of surface topographies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Schlie, Sabrina; Fadeeva, Elena; Koroleva, Anastasia; Ovsianikov, Aleksandr; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris. N.

    2011-04-01

    In this study femtosecond laser systems were used for nanoengineering of special surface topographies in silicon and titanium. Besides the control of feature sizes, we demonstrated that laser structuring caused changes in material wettability due to a reduced surface contact area. These laser-engineered topographies were tested for their capability to control cellular behavior of human fibroblasts, SH-SY5Y neuroblastoma cells, and MG-63 osteoblasts. We found that fibroblasts reduced cell growth on the structures, while the other cell types proliferated at the same rate. These findings make laser-surface structuring very attractive for biomedical applications. Finally, to explain the results the correlation between topography and the biophysics of cellular adhesion, which is the key step of selective cell control, is discussed.

  1. Atypical Applications for Gas-coupled Laser Acoustic Detection

    NASA Astrophysics Data System (ADS)

    Caron, J. N.; Kunapareddy, P.

    2014-06-01

    Gas-coupled laser acoustic detection (GCLAD) was primarily developed to sense laser-generated ultrasound in composite materials. In a typical setup, a laser beam is directed parallel to the material surface. Radiated ultrasound waves deflect or displace the probe beam resulting from changes in the air's index of refraction. A position-sensitive photodetector senses the beam movement, and produces a signal proportional to the ultrasound wave. In this paper, we discuss three applications of GCLAD that take advantage of the unique detection characteristics. Directivity patterns of ultrasound amplitude in water demonstrate the use of GCLAD as a directional hydrophone. We also demonstrate the sensing of waveforms from a gelatin. The gelatin mimics ultrasound propagation through skin tissues. Lastly, we show how GCLAD can be used as a line receiver for continuous laser generation of ultrasound. CLGU may enable ultrasound scanning at rates that are orders of magnitude faster than current methods.

  2. Demonstration plan for phytoremediation of explosive-contaminated groundwater in constructed wetlands at Milan Army Ammunition Plant Milan Tennessee. Volume 2. Final report

    SciTech Connect

    Behrends, L.; Sikora, F.; Kelly, D.; Coonrod, S.; Rogers, B.

    1996-01-01

    To demonstrate at Milan AAP in April 1996 through July 1997, the technical and economic feasibility of using phytoremediation in an artificial constructed wetlands for treatment of explosives-contaminated groundwater. Validated data on cost and effectiveness of this demonstration will be used to transfer this technology to the user community.

  3. Demonstration plan for phytoremediation of explosive-contaminated groundwater in constructed wetlands at Milan Army Ammunition Plant Milan Tennessee. Volume 1. Final report

    SciTech Connect

    Behrends, L.; Sikora, F.; Kelly, D.; Coonrod, S.; Rogers, B.

    1996-01-01

    To demonstrate at Milan AAP in April 1996 through July 1997, the technical and economic feasibility of using phytoremediation in an artificial, constructed wetlands for treatment of explosives-contaminated groundwater. Validated data on cost and effectiveness of this demonstration will be used to transfer this technology to the user community.

  4. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  5. Military applications of the laser weapons in the future battlefield

    NASA Astrophysics Data System (ADS)

    Celik, Hasan; Adana, Saban; Yahsi, Erhan

    2013-05-01

    Contemporary operating environment requires a wide range of tools to respond to a myriad of regular and irregular threats. Accordingly, conventional weapons do not suffice in some cases. As technology improves exponentially, the dominance of conventional weapons is slowly fading away by the advances in laser technology. This study first outlines the characteristics of laser weapons, then provides the military applications of them in land, maritime, air and space domains and finally exhibits implications for battlefield functions. This study concludes that any country that is seeking primacy in military terms must allocate extra time and resources to obtain this emerging technology. Since it seems that there are not adequate studies about the military applications and operational concepts of the laser weapons, this study tries to increase awareness about their potential advantages.

  6. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  7. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  8. Abstracts of the 5th International Conference on Lasers and their Applications

    NASA Astrophysics Data System (ADS)

    Results were presented in the fields of laser physics and laser applications including the development of laser light sources, laser frequencies in the UV and VUV spectral regions using anti-Stokes Raman scattering, nonlinear optical effects for the formation of ultrashort optical pulses, laser spectroscopy, collisionless multiphoton excitation processes using molecular beams, selective generation of free radicals by laser, laser applications in medicine, plasma diagnostics analyzing X-ray spectra for studying laser fusion problems, coherence properties in phase-sampling interferometric techniques, and fundamental problems in quantum physics and nonlinear processes.

  9. The Application of Specific Point Energy Analysis to Laser Cutting with 1 μm Laser Radiation

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.; Suder, W.; Williams, S.; Powell, J.; Kaplan, A. F. H.; Voisey, K. T.

    Specific point energy (SPE) is a concept that has been successfully used in laser welding where SPE and power density determine penetration depth. This type of analysis allows the welding characteristics of different laser systems to be directly compared. This paper investigates if the SPE concept can usefully be applied to laser cutting. In order to provide data for the analysis laser cutting of various thicknesses of mild steel with a 2 kW fibre laser was carried out over a wide range of parameter combinations. It was found that the SPE concept is applicable to laser cutting within the range of parameters investigated here.

  10. Mid - infrared solid state lasers for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Terekhov, Yuri

    This work is devoted to study of novel high power middle-infrared (Mid-IR) laser sources enabling development of portable platform for sensing of organic molecules with the use of recently discovered Quartz Enhanced Photo Acoustic Spectroscopy (QEPAS). The ability to detect small concentrations is beneficial to monitor atmosphere pollution as well for biomedical applications such as analysis of human breath to detect earlier stages of cancer or virus activities. A QEPAS technique using a quartz tuning fork (QTF) as a detector enables a strong enhancement of measured signal when pump laser is modulated with a frequency coinciding with a natural frequency of a QTF. It is known that the detectability of acousto-optics based sensors is proportional to the square root of the laser intensity used for detection of analyte. That is the reason why commercially available semiconductor Mid-IR lasers having small output power limit sensitivity of modern QEPAS based sensors. The lack of high power broadly tunable lasers operating with a modulation frequency of quartz forks (~ 32.768 kHz) is the major motivation of this study. Commercially available Mid-IR (2-3.3 microm), single frequency, continuous wave (CW) fiber pumped lasers based on transition metal doped chalcogenides (e.g. Cr:ZnSe) prove to be efficient laser sources for organic molecules detection. However, their direct modulation is limited to several kHz, and cannot be directly used in combination with QEPAS. Hence, one objective of this work is to study and develop fiber laser pumped Ho:YAG (Er:YAG)/Cr:ZnSe tandem laser system/s. Ho (Holmium) and/or Er (Erbium) ions having long radiation lifetime (~ 10 ms) can effectively accumulate population inversion under CW fiber laser excitation. Utilization of acousto-optic (AO) modulators in the cavity of Ho:YAG (Er:YAG) laser will enable effective Q-Switching with repetition rate easily reaching the resonance frequency of a QTF. It is expected that utilization of Ho:YAG (Er

  11. New developments in ophthalmic applications of ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Spooner, Greg J. R.; Juhasz, Tibor; Ratkay-Traub, Imola; Djotyan, Gagik P.; Horvath, Christopher; Sacks, Zachary S.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.; Kurtz, Ron M.

    2000-05-01

    The eye is potentially an ideal target for high precision surgical procedures utilizing ultrafast lasers. We present progress on corneal applications now being tested in humans and proof of concept ex vivo demonstrations of new applications in the sclera and lens. Two corneal refractive procedures were tested in partially sighted human eyes: creation of corneal flaps prior to excimer ablation (Femto- LASIK) and creation of corneal channels and entry cuts for placement of intracorneal ring segments (Femto-ICRS). For both procedures, results were comparable to standard treatments, with the potential for improved safety, accuracy and reproducibility. For scleral applications, we evaluated the potential of femtosecond laser glaucoma surgery by demonstrating resections in ex vivo human sclera using dehydrating agents to induce tissue transparency. For lens applications, we demonstrate in an ex vivo model the use of photodisruptively-nucleated ultrasonic cavitation for local and non-invasive tissue interaction.

  12. Application of laser radar to autonomous spacecraft landing

    NASA Technical Reports Server (NTRS)

    Gleichman, Kurt; Tchoryk, Peter, Jr.; Sampson, Robert E.

    1991-01-01

    This paper discusses the scenario of an autonomous landing like that required for the Mars Rover Sample Return Mission. An application of laser radar for conducting autonomous hazard detection and avoidance is discussed. A trade-study is performed to identify operational and implementation constraints as well as the state of the art in component technology.

  13. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  14. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  15. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  16. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  17. Review of selective laser melting: Materials and applications

    NASA Astrophysics Data System (ADS)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  18. Review of selective laser melting: Materials and applications

    SciTech Connect

    Yap, C. Y.; Chua, C. K. Liu, Z. H. Zhang, D. Q. Loh, L. E. Sing, S. L.; Dong, Z. L.

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  19. Applications of laser direct-write for embedding microelectronics

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Charipar, Nicholas A.; Kim, Heungsoo; Auyeung, Ray C. Y.; Mathews, Scott A.

    2007-03-01

    The use of direct-write techniques might revolutionize the way microelectronic devices such as interconnects, passives, IC's, antennas, sensors and power sources are designed and fabricated. The Naval Research Laboratory has developed a laser-based microfabrication process for direct-writing the materials and components required for the assembly and interconnection of the above devices. This laser direct-write (LDW) technique is capable of operating in subtractive, additive, and transfer mode. In subtractive mode, the system operates as a laser micromachining workstation capable of achieving precise depth and surface roughness control. In additive mode, the system utilizes a laser-forward transfer process for the deposition of metals, oxides, polymers and composites under ambient conditions onto virtually any type of surface, thus functioning as a laser printer for patterns of electronic materials. Furthermore, in transfer mode, the system is capable of transferring individual devices, such as semiconductor bare die or surface mount devices, inside a trench or recess in a substrate, thus performing the same function of the pick-and-place machines used in circuit board manufacture. The use of this technique is ideally suited for the rapid prototyping of embedded microelectronic components and systems while allowing the overall circuit design and layout to be easily modified or adapted to any specific application or form factor. This paper describes the laser direct-write process as applied to the forward transfer of microelectronic devices.

  20. Laser ablative cutting of ceramics for electronics applications

    SciTech Connect

    Warner, B. E., LLNL

    1996-03-01

    Pulsed, high-beam quality lasers offer unique materials processing characteristics. In processing metals, copper vapor and pulsed Nd:YAG lasers have produced micron-scale cuts and holes with submicron heat-affected zones. Since the cost of laser photons is high and average material removal rates can be slow with ablation, high value-added applications are necessary to justify processing costs. Ceramics present a special challenge for manufacturing because of their high hardness, relatively low thermal conductivity, and brittle nature. Surface damage typically limits the strength of a ceramic part to a small fraction of its bulk strength. This work investigates the use of copper vapor and pulsed diode-pumped Nd:YAG lasers to cut precision features in ceramic substrates. Variations in laser wavelength and power, processing speed, ceramic type, and assist gas were investigated with the goal of producing <100-{mu}m wide by 600-{mu}m deep cuts through silicon-carbide and alumina/titanium-carbide substrates for potential use in electronics. Silicon-carbide bars 250-{mu}m wide by 600-{mu}m high by 2.5-cm long were laser cut from substrates without fracture.

  1. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  2. Laser heating of dielectric particles for medical and biological applications

    PubMed Central

    Tribelsky, Michael I.

    2016-01-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the characteristic depth of light absorption in the material of the particle and the two heat diffusion lengths: in the particle and in the embedding liquid. A new quantitative characteristic of the laser action, that is the cooling time, describing the temporal scale of the cooling down of the particle after the laser pulse is over, is introduced and discussed. Simple analytical formulas for the temperature rise in the center of the particle and at its surface as well as for the cooling time are obtained. We show that at the appropriate choice of the problem parameters the cooling time may be by many orders of magnitude larger the laser pulse duration. It makes possible to minimize the undesirable damage of healthy tissues owing to the finite size of the laser beam and scattering of the laser radiation, simultaneously keeping the total hyperthermia period large enough to kill the pathogenic cells. An example of application of the developed approach to optimization of the therapeutic effect at the laser heating of particles for cancer therapy is presented. PMID:27446706

  3. Laser heating of dielectric particles for medical and biological applications.

    PubMed

    Tribelsky, Michael I; Fukumoto, Yasuhide

    2016-07-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the characteristic depth of light absorption in the material of the particle and the two heat diffusion lengths: in the particle and in the embedding liquid. A new quantitative characteristic of the laser action, that is the cooling time, describing the temporal scale of the cooling down of the particle after the laser pulse is over, is introduced and discussed. Simple analytical formulas for the temperature rise in the center of the particle and at its surface as well as for the cooling time are obtained. We show that at the appropriate choice of the problem parameters the cooling time may be by many orders of magnitude larger the laser pulse duration. It makes possible to minimize the undesirable damage of healthy tissues owing to the finite size of the laser beam and scattering of the laser radiation, simultaneously keeping the total hyperthermia period large enough to kill the pathogenic cells. An example of application of the developed approach to optimization of the therapeutic effect at the laser heating of particles for cancer therapy is presented. PMID:27446706

  4. [Public food service in Milan city and Hinterland: food-handlers training level (Part 2)].

    PubMed

    Pontello, M; Dal Vecchio, A; Doria, M G; Bertini, I

    2005-01-01

    The prevention and control of foodborne diseases play an important role in public health and the responsibility of food-handlers is of great concern: their training on food safety is particularly required in the critical sector of public food service establishments. The food-handlers knowledge has been evaluated by a questionnaire filled up in two Public Health Units (PHU) in Milan City and Milan hinterland. Only 11.5% of food-handlers turned at to be good trained; the wrong answers are concentrated on the section titled "temperatures management" (68 and 59% in Milan City and in Milan hinterland, respectively). Only for 31.4% of food-handlers the attendance to training courses is well documented, although the knowledge level seems to be partially influenced by training activity: exclusively in Milan City food-handlers an highly significant difference has been found among "trained" and "no-trained" workers in correct answers about temperatures management (p= 0.0046). The frequency of exact answers isn't associated to the satisfaction level revealed during inspection of restaurants. Focusing the attention on the insufficient efficacy of training courses and the lacking connection between knowledge and behaviour, a critical revision of training activity quality seems to be necessary. In future some professional training activities in the field should be promoted. PMID:16041927

  5. Satellite laser ranging and its applications

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Eanes, R. J.

    1985-01-01

    Satellite laser ranging (SLR) provides an important capability for precise orbit determination and for geophysical parameter estimation to support a number of contemporary geodynamic and oceanographic investigations. The precision of the SLR measurement has improved from the early meter-level systems to the current capabilities of a few centimeters for the best systems. The accuracy of the orbits and geophysical parameter recovery have shown an associated improvement. Polar motion with accuracies of 2 mas, station coordinates better than 10 cm, and interstation baseline rates indicative of tectonic motion are determined routinely with the current set of global SLR data. This discussion reviews the SLR measurement, analysis approach, and some of the recent results derived from the current SLR data set.

  6. Solid state laser applications in photovoltaics manufacturing

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  7. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  8. Advanced tunable laser source for DoD applications

    SciTech Connect

    Cockroft, N.; Early, J.; Johnson, C.; Lester, C.; Quick, C.; Shimada, T.; Tiee, J.

    1996-06-01

    This is a final report of a two year project at the Los Alamos National Laboratory (LANL). The project sought to develop a new solid- state laser transmitter that can be tuned over an exceptionally broad spectral range and integrated with LIDAR remote sensing systems for applications in species specific chemical sensing. Activities have included non-linear frequency conversion of tunable chromium doped LiSAF laser radiation to the ultraviolet and infrared spectral regions. This system is capable of the detection of chemical species previously unapproachable, as well as an improvement in detection sensitivity of 1-2 orders of magnitude for species currently studied.

  9. Application of in vivo laser scanning microscope in dermatology

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Richter, H.; Otberg, N.; Lawrenz, F.; Blume-Peytavi, U.; Sterry, W.

    2003-10-01

    The state of the art of in-vivo and in-vitro penetration measurements of topically applied substances is described. Only optical techniques represent online measuring methods based on the absorption or scattering properties of the topically applied substances. Laser scanning microscopy (LSM) has become a promising method for investigations in dermatology and skin physiology, after it was possible to analyze the skin surface on any body side in-vivo. In the present paper the application of a dermatological laser scanning microscope for penetration and distribution measurements of topically applied substances is described. The intercellular and follicular penetration pathways were studied.

  10. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  11. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  12. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  13. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

    1994-01-01

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  14. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.; Albrecht, G.; Beach, R.

    1994-12-31

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  15. Novel applications of femtosecond laser in missile countermeasures

    NASA Astrophysics Data System (ADS)

    Marquis, E.; Pocholle, J. P.

    2005-11-01

    Femtosecond lasers have been widely used in laboratories for years and are now suitable for industrial applications and new military ones. Due to their very short pulse duration, they have the capability to generate intense electric fields and plasmas in targeted materials. We present here a novel scheme of missile counter-measure that is using such an intense laser source to disrupt the operation of IR guidance systems. Classical lasers for missile defense are based on thermal effects on the target whereas photons are used as the kill vehicle [1,2]. In femtosecond countermeasure, the average power is quite low, but the very intense field creates ionization effects than can damage sensitive optics and also plasma that can be used as active decoys against IR homing electronics. As the recent systems are compact and portable, an airport protection scheme is proposed to eliminate manpads threats in the vicinity of a civilian airport.

  16. Laser-induced stress transients: applications for molecular delivery

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J.; Douki, Tina; Doukas, Apostolos G.

    1995-05-01

    Lasers can be used to enhance the delivery of a number of molecules. Other investigators have demonstrated local release of molecules from liposomes following laser irradiation, microbeam disruption of the cell membrane to increase cell transport, microbeam ablation of the zona pellucida surrounding the ovum to increase the chances of fertilization, and increased transcutaneous transport following ablation of the stratum corneum. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  17. Medical and biological applications for ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Singh, Ajoy I.; Serbin, Jesper; Ostendorf, Andreas; Kermani, Omid; Heermann, R.; Welling, Herbert; Ertmer, Wolfgang

    2003-02-01

    Due to the low energy threshold of photodisruption with fs laser pulses, thermal and mechanical side effects are limited to the sub μm range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: In ophthalmology intrastromal cutting and preparing of corneal flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs-laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosclerosis as well as in dentistry to remove caries from dental hard tissue.

  18. Laser flare-cell photometry: methodology and clinical applications.

    PubMed

    Ladas, John G; Wheeler, Noel C; Morhun, Patrick J; Rimmer, Steven O; Holland, Gary N

    2005-01-01

    Diagnosis and management of intraocular inflammation involves the assessment of cells and protein levels ("flare") in the aqueous humor. These factors are difficult to quantify precisely on clinical examination alone. Laser flare-cell photometry provides an automated technique to quantify these factors objectively, and it has been used in a variety of research and clinical situations to assess anterior segment inflammation. Any new technique requires evaluation to determine accuracy and reproducibility of measured values, and initial applications require critical appraisal to assess the value of the technique. Both in vitro and in vivo studies of laser flare-cell photometry have been performed to determine its validity and utility as a research and clinical tool. This article reviews published studies that describe the technique of laser flare-cell photometry; it provides new in vitro data that supplements information on the capabilities of this technique and factors that influence photometry results, and it reviews representative publications that have used laser flare-cell photometry for study of specific disease entities. This information can help clinicians and researchers to become familiar with the strengths and limitations of laser flare-cell photometry, to identify appropriate future uses for this technique, and to use it and interpret its results appropriately. Laser flare-cell photometry offers an opportunity to improve upon current techniques of inflammation assessment and should not be considered simply an objective surrogate for clinical grading of cells and flare at the slit-lamp biomicroscope. Its research applications and utility for monitoring patients with uveitis have not yet been fully explored.

  19. New Applications of Lasers in Photobiology and Photochemistry

    NASA Astrophysics Data System (ADS)

    Badr, Y.; Kareim, M. A.

    2005-03-01

    Photonics spectra and optical medical diagnostic field for examination of biological tissues generally and human body specially cover many spectroscopic and laser technologies based on NIR spectroscopy, fluorescence and Raman spectroscopy, Optical coherent tomography (OCT), Confocal microscopy, Opto-acoustic tomography, photon correlation spectroscopy and imaging, and Speckle monitoring of biological flows. The recent achievements in light scattering and coherent light effects in tissues, and in the design of novel lasers and fiber optic techniques for examination of biological tissues are the real motive and the attracting factor for many labs to consider the mentioned above techniques. Our lab, as it contains most of these facilities, started to use these technologies since 1997 in several applications: 1. Applying a suitable setup for introducing exogenous DNA of pAB (with bar/ Gus gene) into cells of embryonic collie of Egyptian wheat based on 193 and 608 nm, 6 ns Excimer laser pulses introducing a modified procedure of Laser-Mediated gene transfer in Egyptian wheat Tridum Aestivum. 2. Applying laser technologies in early identification of abnormal tissues spectroscopically 3. We considered several types of tissues starting with breast cancer, which was subjected to intensive spectroscopic studies using NIR, MIR, FIR, Raman spectroscopy as well as photo-acoustic spectroscopy and imaging studies. Cell carcinoma was considered using Raman spectroscopy and a clear distinction between normal tissue before and after introduction of cell cancer as well as after treating of the tissues using PDT. 4. The application of 193 nm Excimer laser pulse to study photolysis of Acetone using time resolved spectroscopy. A locally designed setup was used to study the effect of delay time (1μs, 2μs, …., 10μs,….,50μs) on the CO and CH3 radicals resulting from the photolysis.

  20. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  1. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  2. Ho-doped fiber for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Friebele, E. Joseph; Askins, Charles G.; Peele, John R.; Wright, Barbara Marcheschi; Condon, Nicholas J.; O'Connor, Shawn; Brown, Christopher G.; Bowman, Steven R.

    2014-03-01

    Ho-doped fiber lasers are of interest for high energy laser applications because they operate in the eye safer wavelength range and in a window of high atmospheric transmission. Because they can be resonantly pumped for low quantum defect operation, thermal management issues are anticipated to be tractable. A key issue that must be addressed in order to achieve high efficiency and minimize thermal issues is parasitic absorption in the fiber itself. Hydroxyl contamination arising from the process for making the Ho-doped fiber core is the principal offender due to a combination band of Si-O and O-H vibrations that absorbs at 2.2 μm in the Ho3+ emission wavelength region. We report significant progress in lowering the OH content to 0.16 ppm, which we believe is a record level. Fiber experiments using a 1.94 μm thulium fiber laser to resonantly clad pump a triple clad Ho-doped core fiber have shown a slope efficiency of 62%, which we also believe is a record for a cladding-pumped laser. Although pump-power limited, the results of these studies demonstrate the feasibility of power scaling Ho-doped fiber lasers well above the currently-reported 400-W level.1

  3. Types of Lasers and Their Applications in Pediatric Dentistry

    PubMed Central

    Nazemisalman, Bahareh; Farsadeghi, Mahya; Sokhansanj, Mehdi

    2015-01-01

    Laser technology has been recently introduced into the dental field with the idea to replace drilling. Having a less painful first dental experience by the use of modern instruments like laser can be an efficient preventive and therapeutic strategy in pediatric dentistry. Pedodontists need to learn the new less invasive technologies and adopt them in their routine practice. This study aimed to review the available types of lasers and their applications in pediatric dentistry. An electronic search was carried out in IranMedex, InterScience, Scopus, Science Direct, PubMed, ProQuest, Medline and Google Scholar databases to find relevant articles published from 2000 to 2014. Relevant textbooks were reviewed as well. Laser can be used as a suitable alternative to many conventional diagnostic and therapeutic dental procedures. It is especially efficient for caries detection and removal, pulp therapy, lowering the risk of infection, inflammation and swelling and reducing bleeding. On the other hand, due to minimal invasion, laser treatment is well tolerated by children. Improved patient cooperation leads to higher satisfaction of the parents, dentists and the children themselves. PMID:26464775

  4. Metal Photocathodes for Free Electron Laser Applications

    NASA Astrophysics Data System (ADS)

    Greaves, Corin Michael Ricardo

    Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high

  5. Laser acceleration of low emittance, high energy ions and applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Audebert, Patrick; Borghesi, Marco; Pépin, Henri; Willi, Oswald

    2009-03-01

    Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection. To cite this article: J. Fuchs et al., C. R. Physique 10 (2009).

  6. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  7. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry.

    PubMed

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Ajlal, Syed

    2016-01-01

    Light amplification by stimulated emission of radiation (laser) has been used widely in a range of biomedical and dental applications in recent years. In the field of restorative dentistry, various kinds of lasers have been developed for diagnostic (e.g. caries detection) and operative applications (e.g. tooth ablation, cavity preparation, restorations, bleaching). The main benefits for laser applications are patient comfort, pain relief and better results for specific applications. Major concerns for using dental lasers frequently are high cost, need for specialized training and sensitivity of the technique, thereby compromising its usefulness particularly in developing countries. The main aim of this paper is to evaluate and summarize the applications of lasers in restorative dentistry, including a comparison of the applications of lasers for major restorative dental procedures and conventional clinical approaches. A remarkable increase in the use of lasers for dental application is expected in the near future. PMID:26642047

  8. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  9. Applications of laser-induced gratings to spectroscopy and dynamics

    SciTech Connect

    Rohlfing, E.A.

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  10. Application of a laser trap as a viscometer

    NASA Astrophysics Data System (ADS)

    Cooper, James; Solomon, Rance; Elrod, Samuel; Barnes, Taylor; Crawford, Cameron; Farone, Anthony; Farone, Mary; Erenso, Daniel

    2013-06-01

    A laser tweezer (LT) along with advanced imaging techniques has been widely applied to manipulate and study living as well as nonliving microscopic objects. In this study we present yet another novel application of LTs for a precise measurement of the viscosities of fluids in a micro-volume flow. We have demonstrated this novel application by measuring the viscosity of a fetal bovine serum (FBS) using a LT constructed from a single intensity gradient laser trap. By calibrating the LT using dielectric silica micro-beads in a fluid with a known viscosity, specifically water, and by suspending same size of silica beads in the FBS and trapping with the same trap, we have determined the viscosity of the FBS at different temperatures. We have used the relationship between the trapping and Stoke's drag force for a constant drag speed to determine the viscosity. We have also analyzed the viscosities determined in comparison with corresponding viscosities measured using an Ostwald viscometer.

  11. Study of pseudo noise CW diode laser for ranging applications

    NASA Technical Reports Server (NTRS)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  12. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  13. Novel oral applications of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wieger, V.; Wernisch, J.; Wintner, E.

    2007-02-01

    In the past decades, many efforts have been made to replace mechanical tools in oral applications by various laser systems. The reasons therefore are manifold: i) Friction causes high temperatures damaging adjacent tissue. ii) Smear layers and rough surfaces are produced. iii) Size and shape of traditional tools are often unsuitable for geometrically complicated incisions and for minimum invasive treatment. iv) Mechanical damage of the remaining tissue occurs. v) Online diagnosis for feedback is not available. Different laser systems in the µs and sub-&mrgs-pulse regime, among them Erbium lasers, have been tested in the hope to overcome the mentioned drawbacks and, to some extent, they represent the current state of the art with respect to commercial and hence practical application. In the present work the applicability of scanned ultrashort pulse lasers (USPLs) for biological hard tissue as well as dental restoration material removal was tested. It is shown that cavities with features superior to mechanically treated or Erbium laser ablated cavities can be generated if appropriate scan algorithms and optimum laser parameters are matched. Smooth cavity rims, no microcracks, melting or carbonisation and precise geometry are the advantages of scanned USLP ablation. For bone treatment better healing conditions are expected as the natural structure remains unaffected by the preparation procedure. The novelty of this work is represented by a comprehensive compilation of various experimental results intended to assess the performance of USPLs. In this context, various pulse durations in the picosecond and femtosecond regime were applied to dental and bone tissue as well as dental restoration materials which is considered to be indispensable for a complete assessment. Parameters like ablation rates describing the efficiency of the ablation process, and ablation thresholds were determined - some of them for the first time - and compared to the corresponding Erbium

  14. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  15. High power fiber delivery for laser ignition applications.

    PubMed

    Yalin, Azer P

    2013-11-01

    The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

  16. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  17. Ultra-stable clock laser system development towards space applications

    NASA Astrophysics Data System (ADS)

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10‑16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3 and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10‑10/g, 5.8 × 10‑10/g and 3.1 × 10‑10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration.

  18. Proposal of a defense application for a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-05-01

    Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.

  19. Ultra-stable clock laser system development towards space applications

    PubMed Central

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-01-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10−16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10−10/g, 5.8 × 10−10/g and 3.1 × 10−10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration. PMID:27667640

  20. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  1. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  2. Application of ring lasers to determine the directions to the poles of Earth's rotation

    SciTech Connect

    Golyaev, Yu D; Kolbas, Yu Yu

    2012-10-31

    Application of a ring laser to determine the directions to the poles of Earth's rotation is considered. The maximum accuracy of determining the directions is calculated, physical and technical mechanisms that limit the accuracy are analysed, and the instrumental errors are estimated by the example of ring He - Ne lasers with Zeeman biasing. (laser applications and other topics in quantum electronics)

  3. Applications of laser diagnostics in energy conservation research

    SciTech Connect

    Hutchinson, R.A.

    1985-02-01

    During the past decade, intensive research and development has demonstrated the feasibility, checked the accuracy, and extended the sensitivity of laser diagnostics for combustion systems. Combinations of diagnostics can now provide in-situ, time-, and space-resolved measurements of temperature, velocity, and species concentration. Although these tools are powerful, they also can be exceedingly difficult to use, and their application remains largely in the hands of specialized instrument developers rather than problem-oriented researchers. This report outlines a variety of applications for existing diagnostics that may interest both instrument developers and researchers in particular fields.

  4. Experimental grounds for YAG:Er laser application to dentistry

    NASA Astrophysics Data System (ADS)

    Bol'shakov, E. N.; Dolgikh, Robert A.; Zazulevskaya, Lidiya Y.; Zubov, Boris V.; Lobachyov, V. A.; Murina, T. M.; Prokhorov, Alexander M.

    1990-09-01

    Stornatologic service is most popular of all kinds of medical aid, since up to 90% of people suffer from caries, parodontosis holds the second place after such a widespread disease as cardiovascular pathology. The treatment of the tooth hard tissue, intervention into pulp and parodontium using conventional methods are accompanied with painfulness and unpleasant sensation. A lack of efficient methods of anesthesia and pulp devitalization, a high percentage of complica tions after pulpitis treatment made it necessary to search for new methods of treatment which exclude these negative aspects. Application of laser radiation may be one of the ways in resolving this problem. Such attempts have been made repeatedly with the development of laser technology.'3 However, not all of them turned out to be successful. The greatest difficulties occurred on surgical intervention into hard tooth tissue. The best results have been so far attained when using pulsed CO2 laser operated at the wavelength A =1O.61um. For instance, at pulse width 1O1us and frequency 10-20 Hz, the tooth channel drilling was efficient at energy density in pulse P . 10 JIcm2. 4'5 The electron-microscopic investigations have proved the tooth microstructure to be preserved for this laser operation mode. The traces of graphitization were observed only in the vicinity of the lateral walls of the channel.

  5. Application of lasers and pulsed power to coating removal

    NASA Astrophysics Data System (ADS)

    Young, Chris M.; Moeny, William M.; Curry, Randy D.; McDonald, Ken; Bosma, John T.

    1995-03-01

    Lasers and other pulsed power systems are uniquely suited for removal of coatings from a wide variety of substrates. Coatings which can be removed by these systems include paint, adhesives, epoxies, dips, rust, scale, and bird droppings. Suitable substrates include wood, metal, cloth, stone, ceramic, plastics, and even skin. These systems have the advantage over chemical stripping or mechanical abrasion in that the substrate is left virtually unharmed and in many cases the residue is reduced to a form that is more easily disposed of without toxic byproducts or expensive refurbishment. Furthermore, laser and other pulsed power based systems can be operated using only local containment without the need for special operator protective gear or complete enclosure of the substrate structure. Additional advantages are gained in these systems because they typically combine multiple removal mechanisms for greater effectiveness. For example, pulsed lasers create rapid heating of the coating. This rapid heating can result in chemical breakdown of the coating, thermomechanical stress induced dislocation, shock wave agitation, and physical ablation. This paper presents some of the latest research findings on coating removal using these systems. A comparative survey of the system technology, effectiveness, cost, and application is presented. Also presented is a survey of the commercial potential for the systems. Systems which are presented include lasers (CW, pulsed, Infrared, UV, etc.), flashlamps, electro-cathodic debonders, electron beams, and glow discharges.

  6. A new compact laser source for portable LIBS applications

    NASA Astrophysics Data System (ADS)

    Goujon, J.; Musset, O.; Giakoumaki, A.; Pinon, V.; Anglos, D.; Georgiou, E.

    2008-02-01

    We present LIBS experimental results that demonstrate the use of a newly compact, versatile pulsed laser source in material analysis in view of research aiming at the development of portable LIBS instrumentation. LIBS qualitative analyses were performed on various samples and objects, and spectra were recorded in gated and non-gated modes. The latter is important because of advantages arising from size and cost reduction when using simple, compact spectrograph-CCD detection systems over the standard ICCD-based configurations. The new Nd 3+:YAG laser source exhibited very reliable performance in terms of laser pulse repeatability, autonomy and interface. Indeed, it can deliver a 45 mJ for 4.5 ns pulse and work at 1 Hz. Having the ability to work in double-pulse mode, it provided versatility in the measurements leading to increased LIBS signal intensities, improved the signal noise ratio and stabilized spectra. The first test results are encouraging and demonstrate that this new laser is suitable for integration in compact, portable and low cost LIBS sensors with a wide spectrum of materials analysis applications.

  7. Three-dimensional laser window formation for industrial application

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Kowalski, David

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.

  8. Diffusing fiber tips for high-power medical laser applications

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph H.; Spaniol, Stefan B.; Abraham, Volkhard; Ashraf, Naim; Neuberger, Wolfgang; Ertmer, Wolfgang

    1995-01-01

    For most applications in laser medicine suitable delivery systems are required. We developed fiber optic based diffusing tips especially for photodynamic therapy (PDT) and laser induced thermotherapy (LITT). To realize an adequate emitting cylindrical diffuser the fiber core was abraded by a precision cutter. Hence, the use of scattering media such as TiO2-doped polymers is avoided. Because the diffuser size is mainly determined by the manipulated fiber and a surrounding glass capillary, one can realize small diameters ((phi) approximately equals 3 mm). The laser light is distributed mainly by surface scattering and total reflection at the fiber air boundary. Because the use of absorbing media is avoided, it is possible to apply high laser power as necessary in LITT and pulsed PDT. We produced diffusing tips with lengths of several centimeters and typical diameters of 3 mm. By controlling the fiber-shaping process, a homogeneous intensity profile or even special designs can be achieved. The control is done by either on-line camera surveillance or calculated predictions. A delivery system especially for the photodynamical treatment of female cervix dysplasia has been designed.

  9. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    NASA Astrophysics Data System (ADS)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  10. Microgravity Spray Cooling Research for High Powered Laser Applications

    NASA Technical Reports Server (NTRS)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  11. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  12. Follow-up of 53 Alzheimer patients with the MODA (Milan Overall Dementia Assessment).

    PubMed

    Capitani, E; Manzoni, L; Spinnler, H

    1997-01-01

    Fifty-three patients affected by Alzheimer's disease entered a longitudinal survey aimed at studying which factors influence the rate of progression, assessed by means of the Milan Overall Dementia Assessment (MODA). The second examination was carried out, on average, after 16 months from the first assessment. Only age proved to influence the decline rate, which was faster in elders.

  13. Communication and Problematic Integration: Milan Kundera's "Lost Letters" in "The Book of Laughter and Forgetting."

    ERIC Educational Resources Information Center

    Babrow, Austin S.

    1995-01-01

    Reviews problematic integration theory (concerned with the role of communication when communicators face ambiguity, ambivalence, or impossibility). Presents a case study of Milan Kundera's writing illuminating both the theory and this significant novel. Discusses the relevance of problematic integration theory to other approaches to the study of…

  14. Direct Laser Cladding , Current Status and Future Scope of Application

    NASA Astrophysics Data System (ADS)

    Weisheit, A.; Gasser, A.; Backes, G.; Jambor, T.; Pirch, N.; Wissenbach, K.

    During the last decades Direct Laser Cladding has become an established technique in many industrial fields for applying wear and corrosion protection layers on metallic surfaces as well as for the repair of high value-added components. The most important application fields are die and tool making, turbine components for aero engines and power generation, machine components such as axes and gears, and oil drilling components. Continuous wave (CW) lasers with a power up to 18 kW are used on automated machines with three or more axes, enabling 3D cladding . The outstanding feature of DLC is the high precision which leads to a minimum heat input into the work piece and a very low distortion. Due to the high cooling rates a fine grained microstructure is achieved during solidification. A new development in laser cladding is micro cladding in a size range below 50 \\upmum especially for electronic and medical applications. Furthermore, additive manufacturing is coming again into focus as a clean and resource-efficient method to manufacture and modify functional prototypes as well as unique and small lot parts.

  15. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.

    PubMed

    Dai, D P; Xia, Y; Yin, Y N; Yang, X X; Fang, Y F; Li, X J; Yin, J P

    2014-11-17

    We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam.

  16. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.

    PubMed

    Dai, D P; Xia, Y; Yin, Y N; Yang, X X; Fang, Y F; Li, X J; Yin, J P

    2014-11-17

    We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam. PMID:25402105

  17. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. PMID:26838391

  18. Application of Doppler and transit laser anemometry in small turbomachines

    NASA Astrophysics Data System (ADS)

    Elder, R. L.; Forster, C. P.; Gill, M. E.

    1986-11-01

    The selection laser anemometry systems and their application to the particularly hostile environment found in small high speed rotating turbomachines are discussed. There are several different laser anemometry systems which are used in turbomachinery studies and when selecting a system to carry out specific duties it is necessary to have some prior knowledge of the flows to be measured, the spacial resolution required and any limitations on optical access. The optical access will often determine the spatial resolution possible and the quality of the scattered signal will generally determine the type of signal processor which can be used. The criteria used for the selection of systems at Cranfield are discussed. The arrangements in use include both the Doppler and transit systems each of which are found to have unique and very distinct advantages.

  19. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  20. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate. PMID:26978895

  1. Case studies of industrial applications of high-power diode laser in Finland

    NASA Astrophysics Data System (ADS)

    Hovikorpi, Jari; Jansson, Anssi; Salminen, Antti

    2003-06-01

    The high power diode laser is a new industrial tool. It has several advantages and disadvantages compared to the conventional industrially used CO2 and Nd:YAG laser. The most promising areas of application of diode laser have been considered to be thin sheet welding and hardening. Quite a few feasibility studies of the use of diode laser have been carried out in Finland. So far there has been some application in which diode laser is the most suitable laser. Typically, the HPDL is integrated to an industrial robot. The welding of stainless steel housing, car door lock and catalytic converters are typical examples of applications in which diode laser has technological as well as economical advantages over the conventional laser and welding techniques. The welding of these products requires good control over the heat input, short through put time and low investment. The weld cross-section of a diode laser weld is, because of conduction limited welding process, more suitable for these applications than the keyhole welding. Hardening of a large gear wheel presents also a good example of an application in which the diode laser makes it possible to economically produce structures that have not earlier been possible. Hardening requires a special form of heat delivery in order to ensure evenly hardened zone and acceptable quality. The application was performed with two high power diode lasers. The case studies of these four applications are presented and discussed in details in this paper.

  2. Novel MRI Applications of Laser-Polarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Mair, R. W.; Walsworth, R. L.

    2002-04-01

    Gas-phase NMR has great potential as a probe for a variety of interesting physical and biomedical problems that are not amenable to study by water or similar liquid. However, NMR of gases was largely neglected due to the low signal obtained from the thermally-polarized gases with very low sample density. The advent of optical pumping techniques for enhancing the polarization of the noble gases 3He and 129Xe has bought new life to this field, especially in medical imaging where 3He lung inhalation imaging is approaching a clinical application. However, there are numerous applications in materials science that also benefit from the use of these gases. We review primarily non-medical applications of laser-polarized noble gases for both NMR imaging and spectroscopy, and highlight progress with examples from our laboratory including high-resolution imaging at mT applied field strength and velocity imaging of convective flow. Porous media microstucture has been probed with both thermal and laser-polarized xenon, as xenon is an ideal probe due to low surface interaction with the grains of the porous media.

  3. Simple laser vision sensor calibration for surface profiling applications

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  4. Materials Development and Evaluation of Selective Laser Sintering Manufacturing Applications

    SciTech Connect

    Smith, Peter F.; Mitchell, Russell R.

    1997-01-15

    This report summarizes the FY96 accomplishments for CRADA No. LA95C10254, "Materials Development and Evaluation of Laser Sintering Manufacturing Applications". To research the potential for processing additional materials using DTM Corporations Selective Laser Sintering rapid prototyping technology and evaluate the capability for rapid manufacturing applications, the following materials were processed experimentally using the Sinterstation 2000 platform; Linear Low Density Polyethylene thermoplastic; Polypropylene thermoplastic; Polysulfone thermoplastic; Polymethylpentene (TPX) thermoplastic; Carbon microsphere filled nylon 11; "APO-BMI" Apocure bismaleimide thermoset polyimide glass m.icrosphere filled and carbon microsphere filled formulations; and 900-24 physical properties mock for plastic bonded TATB high explosive These materials have been successfully processed to a "proof of concept" level or better (with the exception of No. 7). While none of these materials have been introduced as a standard product as of this date, the potential to do so is viable. Present status of materials processing efforts is presented in Section A 2.0. Some recent efforts in manufacturing applications is discussed in Section A 4.0.

  5. Application of laser velocimetry to aircraft wake-vortex measurements

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Orloff, K. L.

    1977-01-01

    The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

  6. News applications in authentication and traceability using ultrafast laser marking

    NASA Astrophysics Data System (ADS)

    Dusser, B.; Sagan, Z.; Foucou, A.; Jourlin, M.; Audouard, E.

    2009-02-01

    This work presents a new method for ultra-fast laser marking using nano-structures as well as a suitable method of reading. These nano-structures, called ripples, are an irregular grating with a controllable orientation. It is possible to observe these ripples and theirs orientations with differents acquisitions systems. The one we chose to use is a scanner. It is possible to have an ripples' orientation matching one of the colors in the image acquisition. This feature allows us to consider new applications for marking and new types of identifying code.

  7. Center of Excellence for Laser Applications in Medicine, Microlaser Microscope

    SciTech Connect

    Webb, R. H.

    2003-01-17

    The Center of Excellence for Laser Applications in Medicine at the Schepens Eye Research Institute (SERI) is a Center for: A core group of researchers who support each other and their various projects for real-time medical imaging and diagnostics in contiguous space at SERI. Clinical collaborators who participate in the core research at SERI, MEEI, and local ophthalmology practices, and at associated sites around the world. Industrial partners who transfer our technology to commercial products that will reach clinical usage everywhere. Students, post-doctoral associates and medical fellows who work with us and learn how to practice real-time medical imaging and diagnostics.

  8. External cavity quantum cascade lasers for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Tsai, Tracy

    Mid-infrared spectroscopy is a powerful tool in monitoring trace gases for applications in atmospheric science, industrial processes, and homeland security. However, although current mid-infrared spectrometers (i.e. Fourier Transform Spectrometers or FTS) have a wide spectral range for multi-species and/or broadband molecular detection, they are too large with slow scan rates for practical use in high resolution spectroscopic applications. Quantum cascade lasers (QCLs) are compact, powerful, and efficient mid-infrared sources that can be quantum engineered with broadband gain profiles. Placed inside a diffraction grating based external cavity arrangement, they can easily provide >100 cm -1 frequency range with a spectral resolution limited by the laser linewidth (˜10-3 cm-1). Therefore, the external cavity quantum cascade laser (EC-QCL) provides both high spectral resolution and a wide frequency range. This thesis describes the study and development of EC-QCLs for spectroscopic applications. A new active wavelength method is presented to simplify the spectrometer system by allowing for reliable operation of the EC-QCL without additional wavelength diagnostic equipment. Typically, such equipment must be added to the spectrometer, because the grating equation is inaccurate in describing the EC-QCL output wavelength due to spectral misalignment of other wavelength-selective resonances in the EC-QCL. The active wavelength locking method automatically controls the EC-QCL wavelength, which improves the accuracy of the grating equation to 0.06 cm-1 and offers an ultimate 3σ precision of 0.042 cm-1. For industrial spectroscopic sensing applications in which scan rates must be on the order of kilohertz so that the turbulent gas system can be approximated as a quasi-stable one, a fast-wavelength-scanning folded EC-QCL design capable of 1 kHz scan rate is presented. Two modes of operation have been studied: 1) low resolution pulsed mode and 2) high resolution continuous

  9. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  10. Laser applications present and future: Prospects for significant occupational safety and health impact

    NASA Astrophysics Data System (ADS)

    Smith, J. P.

    1982-06-01

    Applications of lasers are growing in a number of areas; some applications are relatively widespread with developed industrial laser processes while others are considered purely research and development applications with little industrial use at the present time. In this brief writeup an attempt will be made to examine present and future areas of laser use and assess how they may impact on occupational safety and health in either a positive or negative way.

  11. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Novotný, J.; Brada, M.; Petrilak, M.; Prochazka, D.; Novotný, K.; Hrdička, A.; Kaiser, J.

    2014-11-01

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described.

  12. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    NASA Astrophysics Data System (ADS)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  13. Laser ultrasonic probe for industrial or high-temperature applications

    NASA Astrophysics Data System (ADS)

    Hopko, Sandra Nowland

    1998-12-01

    Ultrasonic nondestructive testing is typically used for location and sizing of internal and surface defects or for measuring material properties. Traditional techniques use contacting transducers, which are difficult to implement for on-line quality control or high temperature applications. Because laser ultrasonic (LU) systems are non-contacting, they can be used for testing moving specimens or for operation in hazardous environments. One of the most promising applications for LU inspection systems is high temperature testing. Fundamental LU research was performed to investigate the effects of specimen temperature on the generation and propagation of ultrasound. Results include ambient and elevated temperature measurements of on-epicenter sound pressures and directivity patterns. Numerical modeling for refraction through a temperature gradient is also included. In order to enhance bulk wave generation, a phased array was designed and constructed using optical fiber bundles. Because the fibers are fragile, a fiber containment ring was developed. The phased array can be used with a focusing objective to obtain a variety of beam steering angles. Depending on the application, the system can be calibrated to use either thermoelastic or ablative sources. This work includes the first implementation of an ablative phased array. Results include theoretical analysis of ablative phased arrays and experimentally obtained directivity patterns for thermoelastic, transition and ablation sources. LU inspection systems using optical fiber delivery are highly versatile. Introduction of a distal-end, focusing objective into the optical fiber delivery system increases the allowable working distance between the optical fiber(s) and test specimen. The focusing objective permits strong generation, using material ablation as the generating mechanism. This work includes the design and testing of two focusing objectives. Results include experimentally obtained directivity patterns

  14. Combinations of biomarkers and Milan criteria for predicting hepatocellular carcinoma recurrence after liver transplantation.

    PubMed

    Chaiteerakij, Roongruedee; Zhang, Xiaodan; Addissie, Benyam D; Mohamed, Essa A; Harmsen, William S; Theobald, Paul J; Peters, Brian E; Balsanek, Joseph G; Ward, Melissa M; Giama, Nasra H; Moser, Catherine D; Oseini, Abdul M; Umeda, Naoki; Venkatesh, Sudhakar; Harnois, Denise M; Charlton, Michael R; Yamada, Hiroyuki; Satomura, Shinji; Algeciras-Schimnich, Alicia; Snyder, Melissa R; Therneau, Terry M; Roberts, Lewis R

    2015-05-01

    Growing evidence suggests that pretransplant alpha-fetoprotein (AFP) predicts outcomes of hepatocellular carcinoma (HCC) patients treated with liver transplantation. We aimed to determine whether pretransplant AFP, Lens culinaris agglutinin-reactive alpha-fetoprotein (AFP-L3), and des-gamma-carboxyprothrombin (DCP) predicted HCC recurrence after transplantation. A retrospective cohort study of 313 HCC patients undergoing transplantation between 2000 and 2008 was conducted, and 48 (15.3%) developed recurrence during a median follow-up of 90.8 months. The 127 patients with available serum drawn before transplantation were included; they included 86 without recurrence and 41 with recurrence. Serum was tested for AFP, AFP-L3%, and DCP in a blinded fashion with the μTASWako i30 immunoanalyzer. All biomarkers were significantly associated with HCC recurrence. The hazard ratios (HRs) were 3.5 [95% confidence interval (CI), 1.9-6.7; P < 0.0001] for DCP ≥ 7.5 ng/mL and 2.8 (95% CI, 1.4-5.4; P = 0.002) for AFP ≥ 250 ng/mL. The HR increased to 5.2 (95% CI, 2.3-12.0; P < 0.0001) when AFP ≥ 250 ng/mL and DCP ≥7.5 ng/mL were considered together. When they were combined with the Milan criteria, the HR increased from 2.6 (95% CI, 1.4-4.7; P = 0.003) for outside the Milan criteria to 8.6 (95% CI, 3.0-24.6; P < 0.0001) for outside the Milan criteria and AFP ≥ 250 ng/mL and to 7.2 (95% CI, 2.8-18.1; P < 0.0001) for outside the Milan criteria and DCP ≥7.5 ng/mL. Our findings suggest that biomarkers are useful for predicting the risk of HCC recurrence after transplantation. Using both biomarkers and the Milan criteria may be better than using the Milan criteria alone in optimizing the decision of liver transplantation eligibility. PMID:25789635

  15. Qualification and Selection of Flight Diode Lasers for Space Applications

    NASA Technical Reports Server (NTRS)

    Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

    2010-01-01

    The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode

  16. Single frequency and wavelength stabilized near infrared laser source for water vapor DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Walters, Brooke; Shuman, Tim; Losee, Andrew; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2015-02-01

    Fibertek has demonstrated a single frequency, wavelength stabilized near infrared laser transmitter for NASA airborne water vapor DIAL application. The application required a single-frequency laser transmitter operating at 935 nm near infrared (NIR) region of the water vapor absorption spectrum, capable of being wavelength seeded and locked to a reference laser source and being tuned at least 100 pm across the water absorption spectrum for DIAL on/off measurements. Fibertek is building a laser transmitter system based on the demonstrated results. The laser system will be deployed in a high altitude aircraft (ER-2 or UAV) to autonomously perform remote, long duration and high altitude water vapor measurements.

  17. Applications of laser lithography on oxide film to titanium micromachining

    NASA Astrophysics Data System (ADS)

    Chauvy, P.-F.; Hoffmann, P.; Landolt, D.

    2003-03-01

    Due to its good biocompatibility titanium is widely used for dental and orthopaedics implants and for biomedical microsystems. For these applications one needs specific micromachining methods. A new four-step method for electrochemical micromachining of titanium is presented here, which implies anodic oxidation, Excimer laser sensitising irradiation, anodic dissolution, and ultrasonic cleaning. The method is applied to the fabrication of two 3D model structures, surface structuring of a cylinder and machining of a complex two-level architecture. The absence of debris and of a heat affected zone as well as the resulting surface smoothness are the main advantages of the process. Ways to improve the still limited processing speed are discussed with regards to potential applications.

  18. Compact laser vibrometer for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Lewin, Andrew C.

    1998-06-01

    Laser interferometric vibrometers are now well known and accepted as sensitive, accurate, high bandwidth and linear measurement system. For many applications the internal complexity and resultant size of the interferometric sensor head limits the widespread use. This paper describes the performance and principle of operation of a new miniaturized interferometric sensor head which retains the important characteristics of the previously mentioned systems, but embodied in a robust compact housing no larger thana typical torchlight. Velocity resolution in the acoustic range has been found to be up to 50 nanometers/sec in a 10 Hz RBW. The size of this new sensor head allows it to be mounted on balanced microscope assemblies or within machinery, and the waterproof design allows disinfectant cleaning in clinical applications or operation in industrial environments.

  19. Laser reconditioning of crankshafts: From lab to application

    NASA Astrophysics Data System (ADS)

    Koehler, H.; Partes, K.; Seefeld, T.; Vollertsen, F.

    In marine diesel engines, damaged crankshafts are common and expensive defects. Worn surfaces of main bearings and crankpin journals often require a complete replacement of these components. This paper presents the development of a repair procedure on its way to application. As an alternative to the method of grinding the accordant surfaces and using matched bearing shells, a rebuild to the original diameter is the goal of this investigation. This paper describes the development of a controlled diode laser cladding process in the lab and the characterization of flat specimens particularly by metallographic analysis and hardness testing. In preparation of the industrial application, previously ground crankpin journals of crankshafts could successfully be cladded with identical parameters as found on flat specimens in the lab. The claddings show a high quality in terms of connection to the base material and dilution. In hardness tests steep gradients from heat affected zone to unaffected base material could be measured.

  20. Applications of a single-longitudinal-mode alexandrite laser for diagnostics of parameters of combustion interest

    NASA Astrophysics Data System (ADS)

    Li, Z. S.; Afzelius, M.; Zetterberg, J.; Aldén, M.

    2004-10-01

    We report on the applications of a single-longitudinal-mode (SLM) pulsed alexandrite laser system for diagnostics of parameters of flow/combustion interest. The laser system is characterized by its narrow linewidth, high peak power, and broad tunablity. The absolute frequency of the laser output was monitored by a wavelength diagnostic system, which included a high-resolution confocal etalon and a molecular iodine laser-induced fluorescence (LIF) detection system. Different nonlinear frequency conversion schemes were used to cover a large frequency range from the infrared to the deep UV. The versatility of the laser system for flow/combustion diagnostics is demonstrated in three applications, namely filtered Rayleigh scattering, high-resolution Doppler-free two-photon LIF of CO, and infrared LIF and polarization spectroscopy of CO2. The potential impacts of using this SLM laser system in laser flow/combustion diagnostic applications are discussed.

  1. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint

  2. Murder-suicide in the province of Milan, Italy: criminological analysis of cases 1990-2009.

    PubMed

    Merzagora, Isabella; Travaini, Guido; Battistini, Alessio; Pleuteri, Lorenza

    2011-04-01

    Murder-suicide is a relatively rare event, and familicide is rarer still. However, it is certainly not unknown, and has been described in the scientific literature from both a socio-criminological and pathological-forensic perspective since the last century. In a civilized urban area such as Milan and province, where there is a general reduction in the homicide rate, homicide-suicide occurs almost exclusively within the family, and has specific features that differentiate it from other types of homicide, whether connected with general criminality or organized crime. This article analyses the quantitative and qualitative features of cases of homicide-suicide occurring in Milan and province between 1990 and 2009 (20 years), considering temporal aspects and the development of the events, the weapons used, and the epidemiological and psychopathological features of the perpetrators and their victims.

  3. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  4. Nanotube Films and Their Application For Mode-Locked Lasers

    NASA Astrophysics Data System (ADS)

    Rozhin, Alex G.; Ferrar, A. C.

    2009-03-01

    Carbon nanotubes (CNTs) exhibit strong saturable absorption, i.e. they become transparent under sufficiently intense light. This has great potential for applications in photonics. By tuning the nanotube diameter it is easy to tune the saturable absorption in a broad optical range of interest for telecommunications, medicine and military applications. The performance of CNTs based saturable absorbers depends on concentration, bundle size, and transparency of the matrix where CNTs are dispersed. CNT saturable absorbers can be produced by cheap wet chemistry and can be easily integrated into polymer photonic systems. Here, we review the fabrication and characterization of saturable absorber based on CNT-polymer optical composites [1,2,3]. We use strong ultrasonication to obtain CNT solutions. Such solutions with different nanotube bundle sizes are then studied by photoluminescence excitation spectroscopy [4]. We find that exciton energy transfer between semiconducting CNTs is an efficient carrier relaxation channel in the bundles [4]. This fingerprints and quantifies the presence of small bundles and allows us to optimize the solutions used for composites preparation. We demonstrate picosecond pulse generation in a nanotube mode-locked waveguide laser [5], as well as 125 fs generation in an erbium doped fiber laser. We also report a novel SWNT- polycarbonate polymer composite, with a absorption maximum at 1550 nm and a bandwidth of about 300 nm [6]. This has strong saturable absorption with saturation intensity of 7 MW/cm^2. We demonstrate the first SWNT-mode-locked widely tunable fibre ring laser [7]. This is achieved through the control of amplification at the specific transitions of the Er^3+ gain medium by placing a band-pass filter in a laser cavity [7]. [1] A. G. Rozhin et al. Phys. Stat. Sol. (b) 243, 3551 (2006). [2] V. Scardaci et al. Physica E 37, 115 (2007) [3] T. Hasan et al. J. Phys. Chem C 111, 12549 (2007) [4] P. H. Tan et al. Phys. Rev. Lett. 99

  5. Red vertical cavity surface emitting lasers (VCSELs) for consumer applications

    NASA Astrophysics Data System (ADS)

    Duggan, Geoffrey; Barrow, David A.; Calvert, Tim; Maute, Markus; Hung, Vincent; McGarvey, Brian; Lambkin, John D.; Wipiejewski, Torsten

    2008-02-01

    There are many potential applications of visible, red (650nm - 690nm) vertical cavity surface emitting lasers (VCSELs) including high speed (Gb) communications using plastic optical fiber (POF), laser mouse sensors, metrology, position sensing. Uncertainty regarding the reliability of red VCSELs has long been perceived as the most significant roadblock to their commercialization. In this paper we will present data on red VCSELs optimized for performance and reliability that will allow exploitation of this class of VCSEL in a wide range of high volume consumer, communication and medical applications. VCSELs operating at ~665nm have been fabricated on 4" GaAs substrates using MOCVD as the growth process and using standard VCSEL processing technology. The active region is AlGaInP-based and the DBR mirrors are made from AlGaAs. Threshold currents are typically less than 2mA, the devices operate up to >60C and the light output is polarized in a stable, linear characteristic over all normal operating conditions. The 3dB modulation bandwidth of the devices is in excess of 3GHz and we have demonstrated the operation of a transceiver module operating at 1.25Gb/s over both SI-POF and GI-POF. Ageing experiments carried out using a matrix of current and temperature stress conditions allows us to estimate that the time to failure of 1% of devices (TT1%F) is over 200,000h for reasonable use conditions - making these red VCSELs ready for commercial exploitation in a variety of consumer-type applications. Experiments using appropriate pulsed driving conditions have resulted in operation of 665nm VCSELs at a temperature of 85°C whilst still offering powers useable for eye-safe free space and POF communications.

  6. Evaluation of various organic fertilizer substrates and hydraulic retention times for enhancing anaerobic degradation of explosives-contaminated groundwater while using constructed wetlands at the Milan Army Ammunition Plant, Milan, Tennessee. Final report

    SciTech Connect

    Behrends, L.L.; Almond, R.A.; Kelly, D.A.; Phillips, W.D.; Rogers, W.J.

    1998-05-01

    This document describes studies conducted at the Milan Army Ammunition Plant (MAAP) to improve the design, operation, and cost of gravel-based anaerobic cells when phytoremediating explosives-contaminated groundwater. To conduct this study, small-scale anaerobic test cells were used to determine: (1) If the hydraulic retention time of a large demonstration-scale anaerobic cell at MAAP could be reduced, and (2) if other carbon sources could be used as an anaerobic feedstock. The study results indicated that: (1) The existing anaerobic cell`s 7.5-day retention time should not be reduced since residual explosive by-products were present in the effluent of treatments with a 3.5-day retention time. (2) Daily application of a relatively soluble substrate, such as molasses syrup, will provide better explosives removal than periodic application of less soluble substrates like milk replacement starter and sewage sludge. (3) Molasses syrup could be, and should be, used as a substitute for milk replacement power. The recommendation to use molasses syrup was based on: (1) The lower cost of molasses syrup as compared to milk replacement starter, (2) molasses syrup`s higher solubility (which makes it easier to apply), and (3) molasses syrup`s ability to provide enhanced explosives removal.

  7. Research of loss detection of optic path for laser ignition application

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Haina; Jin, Jinjun; He, Zhexi; Wang, Xuefeng; Wang, Junlong

    2016-01-01

    We present some different kinds of the loss detection technologies of optic path for laser ignition application according to the recommend of reliability and security of the laser ignition system, such as single wavelength and dual wavelength. The factors of loss detection technology are discussed. The difficulty and uptrend of the laser ignition system are pointed out in this paper. The correlation research will be focused on the reliability of optic parts, applicability of environment and special fiber in the future.

  8. Mid-wave/long-wave infrared lasers and their sensing applications

    NASA Astrophysics Data System (ADS)

    Law, K. K.; Shori, R.; Miller, J. K.; Sharma, S.

    2011-06-01

    Many advances have been made recently in both solid-state and semiconductor based mid-wave infrared (MWIR) and long-wave infrared (LWIR) laser technologies, and there is an ever growing demand for these laser sources for Naval, DOD and homeland security applications. We will present various current and future programs and efforts at Naval Air Warfare Center Weapons Division (NAWCWD) on the development of high-power, broadly tunable MWIR/LWIR lasers for sensing applications.

  9. Laser diagnostic experiments on KrF laser ablation plasma-plume dynamics relevant to manufacturing applications*

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Ching, C. H.; Lash, J. S.; Lindley, R. A.

    1994-05-01

    A brief review is given of the potential applications of laser ablation in the automotive and electronics manufacturing industries. Experiments are presented on KrF laser ablation of three materials relevant to manufacturing applications: aluminum metal vs aluminum-nitride (AlN) and alumina (Al2O3) ceramics. Plasma and neutral-atom diagnostic data are presented from resonant-holographic-interferometry, dye-laser-resonance-absorption photography, and HeNe laser deflection. Data show that plasma electron densities in excess of 1018 cm-3 exist in the ablation of AlN, with lower densities in Al and Al2O3. Aluminum neutral and ion expansion velocities are in the range of cm/μs. Ambipolar electric fields are estimated to be 5-50 V/cm.

  10. LASER BIOLOGY AND MEDICINE: Application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.; Milyaev, Varerii A.

    2002-11-01

    The application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air in biomedical diagnostics is discussed. The principle of operation and the design of a laser analyser for studying the composition of exhaled air are described. The results of detection of gaseous biomarkers in exhaled air, including clinical studies, which demonstrate the diagnostic possibilities of the method, are presented.

  11. Laser surgery in dermatology with application of superthin optical fiber by contact and noncontact method

    NASA Astrophysics Data System (ADS)

    Garipova, A.; Denissov, I. A.; Solodovnikov, Vladimir; Digilova, I.

    1999-06-01

    At present nobody doubts the advantages of minor laser surgery over the conventional one.Bloodless manipulations, ablation, minor injury to the tissues while using laser equipment ensures its wide application in such fields as dermatology and cosmetology, especially since the semiconductor lasers because available at the technological market. No doubt CO2 and solid laser are still playing an important role, however, their imperfect fiber optic qualities limit their use in these field,s where advantages of diode lasers with flexible and fine quartz-polymeric optical fiber are obvious. The elaboration of new diode surgical lasers made it possible to invent new surgical equipment for solving many medical problems in the optimal way. Application of contact and noncontact laser methods in dermatology, gynecological plastic surgery and otolaryngology is discussed. A combined use of these methods demonstrates a positive effect on therapy results and healing time.

  12. Development and applications of laser-induced incandescence

    NASA Technical Reports Server (NTRS)

    Vanderwal, Randy L.; Dietrich, Daniel L.; Zhou, Zhiquang; Choi, Mun Y.

    1995-01-01

    Several NASA-funded investigations focus on soot processes and radiative influences of soot in diffusion flames given their simplicity, practical significance, and potential for theoretical modeling. Among the physical parameters characterizing soot, soot volume fraction, f(sub v), a function of particle size and number density, is often of chief practical interest in these investigations, as this is the geometrical property that directly impacts radiative characteristics and the temperature field of the flame and is basic to understanding soot growth and oxidation processes. Diffusion flames, however, present a number of challenges to the determination of f(sub v) via traditional extinction measurements. Laser-induced incandescence (LII) possesses several advantages compared to line-of-sight extinction techniques for determination of f(sub v). Since LII is not a line-of-sight technique, similar to fluorescence, it possesses geometric versatility allowing spatially resolved measurements of f(sub v) in real time in nonaxisymmetric systems without using deconvolution techniques. The spatial resolution of LII is determined by the detector and imaging magnification used. Neither absorption by polycyclic aromatic hydrocarbons (PAH's) nor scattering contributes to the signal. Temporal capabilities are limited only by the laser pulse and camera gate duration, with measurements having been demonstrated with 10 ns resolution. Because of these advantages, LII should be applicable to a variety of combustion processes involving both homogeneous and heterogeneous phases. Our work has focussed on characterization of the technique as well as exploration of its capabilities and is briefly described.

  13. Polymer based whispering gallery mode laser for biosensing applications

    NASA Astrophysics Data System (ADS)

    François, Alexandre; Riesen, Nicolas; Ji, Hong; Afshar V., Shahraam; Monro, Tanya M.

    2015-01-01

    Whispering gallery mode lasers are of interest for a wide range of applications and especially biological sensing, exploiting the dependence of the resonance wavelengths on the surrounding refractive index. Upon lasing, the Q factors of the resonances are greatly improved, enabling measurements of wavelength shifts with increased accuracy. A way forward to improve the performance of the refractive index sensing mechanism is to reduce the size of the optical resonator, as the refractive index sensitivity is inversely proportional to the resonator dimensions. However, as the lasing threshold is believed to depend on the Q factor among other parameters, and the reduction of the microresonator size results in lower Q, this poses additional challenges for reaching the lasing threshold. In this letter, we demonstrate lasing in 10 μm diameter dye doped polystyrene microspheres in aqueous solution, the smallest polystyrene microsphere lasers ever reported in these conditions. We also investigate the dependence of the lasing threshold on the Q factor by changing the refractive index surrounding the sphere, highlighting a much stronger dependency than initially reported.

  14. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  15. Applications of laser in ischemic heart disease in China

    NASA Astrophysics Data System (ADS)

    Chen, Mingzhe; Zhang, Yongzhen

    1999-09-01

    Current data demonstrate that laser coronary angioplasty is most useful in complex lesions not well suited for percutaneous transluminal coronary angioplasty (PTCA). It is not `stand-alone' procedure, and should be considered an adjunct to PTCA or stenting. To date, there are not data supporting reduction of restenosis. Direct myocardial revascularization (DMR), either transmyocardial revascularization (TMR) or percutaneous (catheter-based) myocardial revascularization (PMR), uses laser to create channels between ischemic myocardium and left ventricular cavity. Candidates include patients with chronic, severe, refractory angina and those unable to undergo angioplasty or bypass surgery because conduits or acceptable target vessels are lacking. Although the mechanisms of action of DMR have not yet been clearly elucidated, but several theories have been proposed, including channel patency, angiogenesis, and denervation. TMR, typically requiring open thoracotomy, is effective for improving myocardial perfusion and reducing angina. Pilot studies demonstrate that clinical application of PMR is feasible and safe and effective for decreasing angina. Late sequelae also remain to be determined. An ongoing randomized clinical trial is comparing PMR with conventional medical therapy in patients with severe, refractory angina and disease unamenable to angioplasty or bypass surgery.

  16. a Light-Weight Laser Scanner for Uav Applications

    NASA Astrophysics Data System (ADS)

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  17. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  18. Laser-induced thermal bubbles for microfluidic applications.

    PubMed

    Zhang, Kai; Jian, Aoqun; Zhang, Xuming; Wang, Yu; Li, Zhaohui; Tam, Hwa-Yaw

    2011-04-01

    We present a unique bubble generation technique in microfluidic chips using continuous-wave laser-induced heat and demonstrate its application by creating micro-valves and micro-pumps. In this work, efficient generation of thermal bubbles of controllable sizes has been achieved using different geometries of chromium pads immersed in various types of fluid. Effective blocking of microfluidic channels (cross-section 500 × 40 μm(2)) and direct pumping of fluid at a flow rate of 7.2-28.8 μl h(-1) with selectable direction have also been demonstrated. A particular advantage of this technique is that it allows the generation of bubbles at almost any location in the microchannel and thus enables microfluidic control at any point of interest. It can be readily integrated into lab-on-a-chip systems to improve functionality.

  19. [Objective evaluation the application of femtosecond laser in cataract surgery].

    PubMed

    Liu, Y Z

    2016-02-01

    Femtosecond laser-assisted cataract surgery (FLACS) is a novel technology and the biggest revolution in the field of cataract in the latest several years. However, increasing large-scale population randomized controlled trials (RCT) have demonstrated that FLACS does not provide significant advantages over conventional phacoemulsification cataract surgery (CPCS) for common cataract patients. Furthermore, the cost and space requirement of the femtosecond equipment are another two limitations for the universal application of FSL in cataract surgery. However, FLACS may be beneficial for complex cataract situations, such as lens dislocation, zonular laxity, traumatic cataract, low preoperative endothelial cell values, and significant corneal astigmatism. With the progress of science and technology, FLACS can be expected to achieve integration with phacoemulsification systems, and equipment costs can be reduced, making it more widely used in clinical practice in the future. PMID:26906700

  20. Design investigation of solar powered lasers for space applications

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Bruzzone, C.; Quimby, D.; Nelson, L.; Christiansen, W.; Neice, S.; Cassady, P.; Pindroh, A.

    1979-01-01

    The feasibility of solar powered lasers for continuous operation in space power transmission was investigated. Laser power transmission in space over distances of 10 to 100 thousand kilometers appears possible. A variety of lasers was considered, including solar-powered GDLs and EDLs, and solar-pumped lasers. An indirect solar-pumped laser was investigated which uses a solar-heated black body cavity to pump the lasant. Efficiencies in the range of 10 to 20 percent are projected for these indirect optically pumped lasers.

  1. Lasers, their development, and applications at M. I. T. Lincoln Laboratory

    SciTech Connect

    Rediker, R.H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 ..mu..m wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO/sub 2/ lasers for coherent infrared radar.

  2. Lasers, their development, and applications at M.I.T. Lincoln Laboratory

    NASA Technical Reports Server (NTRS)

    Rediker, R. H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.

  3. Polygon Scanner System for Ultra Short Pulsed Laser Micro-Machining Applications

    NASA Astrophysics Data System (ADS)

    De Loor, R.

    Ultra short pulsed lasers have gained acceptance in micro-machining applications and many processes have been developed in the lab. Transferring the technology to the manufacturing floor started few years ago as soon as relatively high average power (> 5W) lasers became available. Now that high repetition rates and average powers of 50 Watt and more are reaching the market, the commercially available galvo based laser scanners systems limit the efficient use of this expensive laser power. We present a novel polygon based scanner system incorporating laser and scanner synchronization enabling writing speeds of 50 m/sec and higher.

  4. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOEpatents

    Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric

    1999-01-01

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.

  5. Applications of lasers to the solution of environmental problems

    SciTech Connect

    Allen, L.; Pang, H.-M.; Edelson, M.C.

    1995-12-31

    This presentation will focus on current work in the Ames Laboratory where laser ablation is being used for both analytical sampling and metal surface cleaning. Examples will be presented demonstrating the utility of optical spectroscopy for monitoring laser ablation processes.

  6. Application of copper vapour lasers for controlling activity of uranium isotopes

    SciTech Connect

    Barmina, E V; Sukhov, I A; Lepekhin, N M; Priseko, Yu S; Filippov, V G; Simakin, Aleksandr V; Shafeev, Georgii A

    2013-06-30

    Beryllium nanoparticles are generated upon ablation of a beryllium target in water by a copper vapour laser. The average size of single crystalline nanoparticles is 12 nm. Ablation of a beryllium target in aqueous solutions of uranyl chloride leads to a significant (up to 50 %) decrease in the gamma activity of radionuclides of the uranium-238 and uranium-235 series. Data on the recovery of the gamma activity of these nuclides to new steady-state values after laser irradiation are obtained. The possibility of application of copper vapour lasers for radioactive waste deactivation is discussed. (laser applications and other topics in quantum electronics)

  7. Application systems for intracorporeal laser-induced shockwave lithotripsy using the Nd:YAG Q-switched laser.

    PubMed

    Frank, F; Eichenlaub, M; Hessel, S; Wondrazek, F

    1990-10-01

    For laser-induced shockwave lithotripsy, the electromagnetic energy of a laser light pulse is converted intracorporeally into the acoustic energy of a shockwave. The lithotriptor is based on a specially developed, Q-switched Nd:YAG laser whose high power light pulses (70 mJ, 25 nsec) are coupled into a flexible quartz fiber with a core diameter of 600 mum. Using focusing elements, energy densities higher than 6 x 10 5 J m -2 can be achieved, resulting in an optical breakdown in water followed by a shockwave. As a result of different absorption mechanisms, the breakdown threshold can be decreased by placing a metallic target into the laser beam. The different shockwave formations of such optomechanical transducers have been measured. First clinical applications have been performed.

  8. A scalable high-energy diode-pumped solid state laser for laser-plasma interaction science and applications

    NASA Astrophysics Data System (ADS)

    De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Butcher, T. J.; Smith, J. M.; Shaikh, W.; Hernandez-Gomes, C.; Greenhalgh, R. J. S.; Collier, J. L.

    2016-05-01

    Laser systems efficiently generating nanosecond pules at kJ energy levels and at multi-Hz repetition rates are required in order to translate laser-plasma interactions into practical applications. We have developed a scalable, actively-cooled diode-pumped solid state laser amplifier design based on a multi-slab ceramic Yb:YAG architecture called DiPOLE (Diode-Pumped Optical Laser for Experiments) capable of meeting such requirements. We demonstrated 10.8 J, 10 Hz operation at 1030 nm using a scaled-down prototype, reaching an optical-to-optical efficiency of 22.5%. Preliminary results from a larger scale version, delivering 100 J pulse energy at 10 Hz, are also presented.

  9. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  10. An application of laser-plasma acceleration: towards a free-electron laser amplification

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Labat, M.; Evain, C.; Marteau, F.; Briquez, F.; Khojoyan, M.; Benabderrahmane, C.; Chapuis, L.; Hubert, N.; Bourassin-Bouchet, C.; El Ajjouri, M.; Bouvet, F.; Dietrich, Y.; Valléau, M.; Sharma, G.; Yang, W.; Marcouillé, O.; Vétéran, J.; Berteaud, P.; El Ajjouri, T.; Cassinari, L.; Thaury, C.; Lambert, G.; Andriyash, I.; Malka, V.; Davoine, X.; Tordeux, M. A.; Miron, C.; Zerbib, D.; Tavakoli, K.; Marlats, J. L.; Tilmont, M.; Rommeluère, P.; Duval, J. P.; N'Guyen, M. H.; Rouqier, A.; Vanderbergue, M.; Herbeaux, C.; Sebdouai, M.; Lestrade, A.; Leclercq, N.; Dennetière, D.; Thomasset, M.; Polack, F.; Bielawski, S.; Szwaj, C.; Loulergue, A.

    2016-03-01

    The laser-plasma accelerator (LPA) presently provides electron beams with a typical current of a few kA, a bunch length of a few fs, energy in the few hundred MeV to several GeV range, a divergence of typically 1 mrad, an energy spread of the order of 1%, and a normalized emittance of the order of π.mm.mrad. One of the first applications could be to use these beams for the production of radiation: undulator emission has been observed but the rather large energy spread (1%) and divergence (1 mrad) prevent straightforward free-electron laser (FEL) amplification. An adequate beam manipulation through the transport to the undulator is then required. The key concept proposed here relies on an innovative electron beam longitudinal and transverse manipulation in the transport towards an undulator: a ‘demixing’ chicane sorts the electrons according to their energy and reduces the spread from 1% to one slice of a few ‰ and the effective transverse size is maintained constant along the undulator (supermatching) by a proper synchronization of the electron beam focusing with the progress of the optical wave. A test experiment for the demonstration of FEL amplification with an LPA is under preparation. Electron beam transport follows different steps with strong focusing with permanent magnet quadrupoles of variable strength, a demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. The FEL simulations and the progress of the preparation of the experiment are presented.

  11. Studies on laser peening of spring steel for automotive applications

    NASA Astrophysics Data System (ADS)

    Ganesh, P.; Sundar, R.; Kumar, H.; Kaul, R.; Ranganathan, K.; Hedaoo, P.; Tiwari, Pragya; Kukreja, L. M.; Oak, S. M.; Dasari, S.; Raghavendra, G.

    2012-05-01

    Present experimental laser shock peening study on SAE 9260 spring steel, performed with an in-house developed 2.5 J/7 ns pulsed Nd:YAG laser, aimed to evaluate laser shock peening process as a possible alternative to existing shot peening practice for enhancing fatigue life of leaf springs. In the investigated range of process parameters, laser shock peening yielded largely comparable magnitude of surface compressive stress and shallower compressed surface layer than those achieved with existing shot peening practice. In contrast to considerably rougher shot peened surface with numerous defects, laser shock peening produced largely unaltered surface finish without peening-induced defects. With respect to shot peening, laser shock peening brought about significant increase in fatigue life. Improved fatigue performance of laser shock peened specimens is attributed to their better surface finish without peening-induced surface defects, which were potential fatigue crack nucleation sites in shot peened specimens.

  12. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  13. Application of laser radiation in decoration and marking of ceramic products

    NASA Astrophysics Data System (ADS)

    Chmielewska, D.; Gebel, R.; Szamałek, K.; Olszyna, A.; Marczak, J.; Sarzyński, A.; Strzelec, M.

    2013-01-01

    In cooperation with the Institute of Optoelectronics MUT, the Institute of Ceramics and Building Materials conducts work on laser decoration of ceramic products. Two methods are under development: laser activation and laser sintering. The activation method is based on change of color of specially prepared ceramic material due only to illumination by laser beam. Laser sintering is a deposition welding process in which a layer of ceramic powder is deposited on the substrate material, and the two ceramic materials are fused through the application of laser beam, in turn creating any desired color pattern. The paper describes the influence of some physical phenomena on the progress of the laser process as well as sample experimental results.

  14. CO2 lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Astrophysics Data System (ADS)

    Evans, James D.; Locke, Edward V.

    Recent advances in CO2 laser technology are discussed in reviews and reports. Topics examined include gain and power predictions, the discharge and output characteristics of a CW CO2 laser with auxiliary glow-dc discharge, wave-optics codes for the design and diagnostics of CO2 optical systems, military applications of CO2 waveguide lasers, and chirp measurements on a 10-J pulsed CO2 oscillator. Consideration is given to CO2 laser gain and energy extraction using C-12 and C-13 isotopes, laser-beam command guidance, gas-jet effects on laser cutting, and a galvanometric scanner for rapid tuning of CO2 lasers. Diagrams, drawings, graphs, and photographs are provided.

  15. Watt-level red-emitting diode lasers and modules for display applications

    NASA Astrophysics Data System (ADS)

    Paschke, Katrin; Blume, Gunnar; Feise, David; Pohl, Johannes; Sumpf, Bernd

    2016-02-01

    Red-emitting lasers for display applications require high output powers and a high visibility. We demonstrate diode lasers and modules in the red spectral range based on AlGaInP with optical output powers up to 1 W and a nearly diffraction limited beam. These high-luminance light sources based on tapered lasers are well suited for laser TVs and projectors for virtual reality simulators based on the flying spot technology. Additionally, we developed diode lasers with internal distributed Bragg reflector (DBR) surface gratings. These DBR tapered lasers and master-oscillator power-amplifiers based on DBR ridge-waveguide lasers and tapered amplifiers feature high power, single mode emission with coherence lengths up to several meters, which are suitable for the next-generation 3D displays based on holography.

  16. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  17. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  18. 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, volume 1

    NASA Astrophysics Data System (ADS)

    1994-07-01

    The proceedings volumes 1 and 2 comprise the papers that were accepted for presentation at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14, 1994. The prime objective of this Seventh Symposium is to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and reveal significant results to fluid mechanics. The applications of laser techniques to scientific and engineering fluid flow research is emphasized, but contributions to the theory and practice of laser methods are also considered where they facilitate new improved fluid mechanics research. Attention is focused on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars such as particle image velocimetry and laser induced fluorescence.

  19. 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, volume 2

    NASA Astrophysics Data System (ADS)

    1994-07-01

    The proceedings volumes 1 and 2 comprise the papers that were accepted for presentation at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14, 1994. The prime objective of this Seventh Symposium is to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and reveal significant results to fluid mechanics. The applications of laser techniques to scientific and engineering fluid flow research is emphasized, but contributions to the theory and practice of laser methods are also considered where they facilitate new improved fluid mechanic research. Attention is focused on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars such as particle image velocimetry and laser induced fluorescence.

  20. Overview of laser applications: the state of the art and the future trend

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2003-02-01

    The range and maturity of commercially useful laser applications are illustrated by selected examples. Macroscopic applications (commercialized or potentially so in the near future) include cutting, machining and welding metals, cutting fabrics, shock hardening of steels, nitrogenization of iron, and laser drilling through rock. Microscopic applications include drilling micro-holes for cooling of jet engine turbine blades, thin film growth, precision machining of structures inside transparent materials and inertially-confined deuterium-tritium fusion. To be commercially useful, these applications take advantage of the special properties of laser light, such as monochromaticity, high brightness, high pulse energy or intensity, wavelength range from soft xray to far infrared and pulse duration from femtoseconds to CW. This talk will be divided into three sections: (a) summary of the theory of laser-materials interactions with examples from published laser impulse production studies, (b) macroscopic applications, (c) microscopic applications and (d) exotic and futuristic applications, including a diode-laser-driven μN thruster for micro- and nano-satellites, and proposals to use lasers to clean hundreds of thousands of small but hazardous space debris from near-Earth space and to launch 5kg payloads into near-Earth orbit.

  1. Application of Novel CO2 Laser-Suction Device.

    PubMed

    Straus, David; Moftakhar, Roham; Fink, Yoel; Patel, Deval; Byrne, Richard W

    2013-12-01

    Background Development of the flexible CO2 fiber has presented new opportunities for the use of precision laser cutting in cranial procedures. The efficacy of the CO2 scalpel is further enhanced by combining it with a fluid removal suction capability. Objectives We report our experience with a novel CO2 laser-suction device. Methods The novel laser-suction device was designed in conjunction with OmniGuide Inc. (Cambridge, Massachusetts, USA). We performed a case review of its use in firm tumors that were resistant to resection by bipolar, suction, and ultrasonic aspirator. Results The laser-suction device was applied in three tumors where resection with ultrasonic aspiration failed. Tumor resection using the laser-suction device was successful in all three cases. There were no complications related to the laser-suction device. There were no instances of intraoperative device malfunction. Discussion The CO2 laser combined with suction is a useful instrument for resection of firm tumors that prove to be resistant to ultrasonic aspiration. We also find it to be useful in settings where precise tissue incisions are desired with minimal manipulation. In our experience, the surgical efficiency of the CO2 laser is improved by the laser-suction device. This device allows the surgeon to utilize a suction device and laser in a single hand and enables concurrent use of bipolar electrocautery without repeated instrument changes.

  2. Laser applications to chemical analysis: an introduction by the feature editors

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Ramsey, J. Michael; Lucht, Robert P.

    1995-06-01

    This issue of Applied Optics features papers on the application of laser technology to chemical analysis. Many of the contributions, although not all, result from papers presented at the Fourth OSA Topical Meeting on Laser Applications to Chemical Analysis, which was held at Jackson Hole, Wyoming, March, 1994. This successful meeting, with nearly one hundred participants, continued the tradition of earlier LACA meetings to focus on the optical science of laser-based measurements of temperature and trace chemical assays in a wide variety of practical applications.

  3. Industrial fiber beam delivery system for ultrafast lasers: applications and recent advances

    NASA Astrophysics Data System (ADS)

    Eilzer, Sebastian; Funck, Max C.; Wedel, Björn

    2016-03-01

    Fiber based laser beam delivery is the method of choice for high power laser applications whenever great flexibility is required. For cw-lasers fiber beam delivery has long been established but has recently also become available for ultrafast lasers. Using micro-structured hollow core fibers that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion. In addition, the technology opens new possibilities for beam delivery systems as the pulse propagation inside the fiber can be altered on purpose. For example to shorten the pulse duration of picosecond lasers down into the femtosecond regime. We present a modular fiber beam delivery system for micromachining applications with industrial pico- and femtosecond lasers that is flexibly integrated into existing applications. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. Robust and stable beam transport during dynamic operation as in robot or gantry systems will be discussed together with optional pulse compression.

  4. Asymmetric dee-voltage compensation of beam off-centering in the milan superconducting cyclotron

    SciTech Connect

    Milinkovic, Lj.; Fabrici, E.; Ostojic, R.

    1985-10-01

    An analysis of the effects of orbit off-centering on the beam extraction in the Milan superconducting cyclotron is made, and the sensitivity of axial beam loss and radial phase space distortions to beam off-centering determined for various acceleration conditions. We conclude that the first field harmonic compensation of beam off-centering is ineffective in the region of the operating diagram where the Walkinshaw resonance precedes the ..nu.. /SUB r/ =1 resonance. Asymmetric dee-voltage compensation is considered in these cases, and the domain of validity of the method determined. A semi-empirical relation for dee-voltage distribution is deduced, and the extraction efficiency discussed.

  5. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    NASA Astrophysics Data System (ADS)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  6. Laser lithotripsy: a review of 20 years of research and clinical applications.

    PubMed

    Dretler, S P

    1988-01-01

    Four new technologies have transformed the treatment of urinary calculi: electrohydraulic lithotripsy, ultrasonic lithotripsy, extracorporeal shock wave lithotripsy, and laser lithotripsy. Initial attempts to ablate urinary calculi by continuous wave CO2, ruby, and Nd-YAG lasers failed because of excess thermal injury and inability to pass the laser energy via a flexible fiber. Basic laboratory studies then demonstrated that short pulsed laser energy absorbed by the calculus resulted in fragmentation. The parameters that produced optimal urinary calculus fragmentation were found using the flashlamp pumped tunable dye laser, with the following parameters: wavelength: 504 nm; pulse duration: 1 microsec; fiber: 250 micro silica-coated quartz; repetition: 5-20 Hz. Use of pulsed dye laser caused no tissue damage. The mechanism of fragmentation is light absorption, plasma development, and repetitive acoustic shock wave action with resultant fragmentation. The techniques for application of laser to calculi have been successful, and new, miniature instruments have been developed. Laser lithotripsy is a successful method for fragmenting ureteral calculi. The small caliber of the laser fiber makes this method useful for treating calculi in narrow, tortuous ureters; impacted calculi; distal calculi in ureters that cannot be dilated, via the percutaneous route for stones in calyces or impacted in the upper ureter. Investigations are continuing to optimize fragmentation of harder calculi and to use laser fragmentation within the kidney. Laser lithotripsy may also be used to fragment biliary calculi.

  7. Topical laser application enhances enamel fluoride uptake and tribological properties.

    PubMed

    Jeng, Y-R; Lin, T-T; Huang, J-S; Peng, S-R; Shieh, D-B

    2013-07-01

    Topical fluoride treatment prevents dental caries. However, the resulting calcium-fluoride-like deposits are soft and have poor wear resistance; therefore, frequent treatment is required. Lasers quickly heat surfaces and can be made portable and suitable for oral remedies. We examined the morphology, nanohardness, elastic modulus, nanowear, and fluoride uptake of fluoride-treated enamel followed by CO2 laser irradiation for 5 and 10 sec, respectively. We found that laser treatments significantly increased the mechanical properties of the calcium-fluoride-like deposits. The wear resistance of the calcium-fluoride-like deposits improved about 34% after laser irradiation for 5 sec and about 40% following irradiation for 10 sec. We also found that laser treatments increased fluoride uptake by at least 23%. Overall, laser treatment significantly improved fluoride incorporation into dental tissue and the wear resistance of the protective calcium-fluoride layer.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Optical velocimeter based on a semiconductor laser

    NASA Astrophysics Data System (ADS)

    Belousov, P. Ya; Dubnishchev, Yu N.; Meledin, V. G.

    1988-03-01

    It is shown that optical velocimeters using diffraction beam splitters are not critically sensitive to the stability of the emission wavelength of a semiconductor laser. A functional scheme of a semiconductor laser source with systems for stabilization of the temperature and pump current is described. The technical characteristics are given of a semiconductor-laser velocimeter for the determination of the velocity and length of rolling stock.

  9. Understanding lasers

    SciTech Connect

    Gibilisco, S.

    1989-01-01

    Covering all different types of laser applications-Gibilisco offers an overview of this fascinating phenomenon of light. Here he describes what lasers are and how they work and examines in detail the different kinds of lasers in use today. Topics of particular interest include: the way lasers work; the different kinds of lasers; infrared, ultraviolet and x-ray lasers; use of lasers in industry and manufacturing; use of lasers for long-distance communications; fiberoptic communications; the way laser shows work; the reality of Star Wars; lasers in surgical and medical applications; and holography and the future of laser technology.

  10. Application of unstable resonators for copper-vapor lasers

    SciTech Connect

    Liang Baogen; Yin Xianhua

    1987-07-01

    An analysis is made of the possibility of using unstable resonators in reducing the divergence of radiation from a high-gain, short inversion lifetime copper vapor laser. The output laser beam characteristics of telescopic resonators are compared with those of plane-concave resonators. It is shown that to obtain an output beam with low divergence in such a laser, unstable resonators must be used.

  11. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  12. Potential biomedical application of the Los Alamos infrared free-electron laser: DNA spectroscopy

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Trewhella, J.; Garcia, A. E.

    Recently, the Los Alamos Free-Electron Laser has demonstrated optical output at wavelengths from 9 to 45 microns. Potential application of such a laser are proposed for the study of vibrational modes predicted in different conformations of DNA and in DNA complexed with drugs and/or proteins that regulate replication and/or transcription.

  13. Applications using a Picosecond 14.7 nm X-Ray Laser

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C

    2001-09-21

    We report recent application experiments on the LLNL COMET tabletop facility using the picosecond, 14.7 nm Ni-like Pd x-ray laser. This work includes measurements of a laser-produced plasma density profile with a diffraction grating interferometer.

  14. Application of laser velocimetry to unsteady flows in large scale high speed tunnels

    NASA Technical Reports Server (NTRS)

    Owen, F. K.

    1983-01-01

    Flowfield measurements obtained in several large scale, high speed facilities are presented. Sampling bias and seeding problems are addressed and solutions are outlined. The laser velocimeter systems and data reduction procedures which were used in the experiments are also described. The work demonstrated the potential of the laser velocimeter for applications in other than closely controlled, smallscale laboratory situations.

  15. Birefringence of solid-state laser media: broadband tuning discontinuities and application to laser line narrowing

    SciTech Connect

    Krasinski, J.S.; Band, Y.B.; Chin, T.; Heller, D.F.; Morris, R.C.; Papanestor, P.

    1989-04-15

    Spectral consequences that result from using birefringent media with broadband gain inside of laser cavities containing polarizing elements are described. We show that the laser intensity is modulated as a function of the output frequency unless the cavity elements are carefully aligned so that their polarization axis coincides with a principal optical axis of the gain medium. Analysis of the tuning characteristics of a birefringent polarization-dependent gain medium is exploited to provide a simple method for line narrowing the laser output. By introduction of an intracavity birefringent compensator the narrow-band output can be continuously tuned. Experimental results for alexandrite lasers are presented.

  16. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    SciTech Connect

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik

    2011-03-30

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO{sub 2} laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  17. Laser-based ion sources for medical applications

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu.; Brantov, A. V.

    2015-10-01

    Interaction of relativistic short laser pulses with thin foils is studied by using 3D PIC simulations in the context of ICAN's "dream laser". It is shown that such a laser will make it possible to accelerate protons and deuterons to multi-MeV energies with a current density of 100 A/cm2. The laser-triggered hadron beams may trigger nuclear reactions of interest for nuclear medicine and pharmacy. As an example, the yields C-11 for PET, of Tc-99m for SPECT, and neutrons for therapy have been analyzed.

  18. Laser photovoltaic power system synergy for SEI applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  19. Basics of Lasers: History, Physics, and Clinical Applications.

    PubMed

    Franck, Philipp; Henderson, Peter W; Rothaus, Kenneth O

    2016-07-01

    Lasers are increasingly used by plastic surgeons to address issues such as wrinkles and textural changes, skin laxity, hyperpigmentation, vascularity, and excess fat accumulation. A fundamental understanding of the underlying science and physics of laser technology is important for the safe and efficacious use of laser in medical settings. The purpose of this article was to give clinicians with limited exposure to lasers a basic understanding of the underlying science. In that manner, they can confidently make appropriate decisions as to the best device to use on a patient (or the best device to purchase for a practice).

  20. Applications of laser precisely processing technology in solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Jie; Cheng, Hua; Xie, Kang-Wen; Lu, Fu-Yun; Du, Yong-Chao

    2007-09-01

    According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our laser cutter, then which was applied to precisely cutting the conductive film of CuInSe2 solar cells, the buried contact silicon solar cells’ electrode groove, and perforating in wafer which is used to the emitter wrap through silicon solar cells. Laser processing precision was less than 40 μ m, the results have met solar cell’s fabrication technology, and made finally the buried cells’ conversion efficiency be improved from 18% to 21%.

  1. Direct laser deposition of nanostructured tungsten oxide for sensing applications

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, Alexandra; Filipescu, Mihaela; Schneider, Christof W.; Antohe, Stefan; Ossi, Paolo M.; Radnóczi, György; Dinescu, Maria; Wokaun, Alexander; Lippert, Thomas

    2016-05-01

    Nanostructured tungsten trioxide (WO3) thin films are deposited by pulsed laser deposition (PLD) and radio-frequency (RF) assisted PLD onto interdigitated sensor structures. Structural characterization by x-ray diffraction and Raman spectroscopy shows the WO3 films are polycrystalline, with a pure monoclinic phase for the PLD grown films. The as-fabricated WO3 sensors are tested for ammonia (NH3) detection, by measuring the electrical response to NH3 at different temperatures. Sensors based on WO3 deposited by RF-PLD do not show any response to NH3. In contrast, sensors fabricated by PLD operating at 100 °C and 200 °C show a slow recovery time whilst at 300 °C, these sensors are highly sensitive in the low ppm range with a recovery time in the range of a few seconds. The microstructure of the films is suggested to explain their excellent electrical response. Columnar WO3 thin films are obtained by both deposition methods. However, the WO3 films grown by PLD are porous, (which may allow NH3 molecules to diffuse through the film) whereas RF-PLD films are dense. Our results highlight that WO3 thin films deposited by PLD can be applied for the fabrication of gas sensors with a performance level required for industrial applications.

  2. Laser mass spectrometry for DNA fingerprinting for forensic applications

    SciTech Connect

    Chen, C.H.; Tang, K.; Taranenko, N.I.; Allman, S.L.; Chang, L.Y.

    1994-12-31

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.

  3. Application of the laser Doppler velocimeter in aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Yanta, W. J.; Ausherman, D. W.

    1982-01-01

    Applications of the laser doppler velocimeter (LDV) are discussed. Measurements were made of the flowfield around a tangent-ogive model in a low turbulent, incompressible flow at an incidence of 45 deg. The free-stream velocity was 80 ft per second. The flowfield velocities in several cross-flow planes were measured with a 2-D, two-color LDC operated in a backscatter mode. Measurements were concentrated in the secondary separation region. A typical survey is given. The survey was taken at a model location where the maximum side force occurs. The overall character of the leeward flowfield with the influence of the two body vorticles are shown. Measurements of the velocity and density flowfields in the shock-layer region of a reentry-vehicle indented nose configuration were carried out at Mach 5. The velocity flowfield was measured with a 2-color, 2-D, forward-scatter LDV system. Because of the need to minimize particle lag in the shock-layer region, polystyrene particles with a mean diameter of 0.312 microns were used for the scattering particles. The model diameter was 6 inches.

  4. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  5. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  6. Use of the 810 nm diode laser: soft tissue management and orthodontic applications of innovative technology.

    PubMed

    Sarver, David M

    2006-10-01

    Innovative technologies such as the diode laser have provided considerable benefit to dental patients and professionals. Facilitating efficient cutting of tissue and subsequent coagulation, the soft tissue laser enhances tissue healing and can reduce postsurgical complications. Due to the conservative nature of treatment accomplished with the laser this technology is very useful in orthodontic procedures. The diode laser is utilized in both esthetic enhancement of the smile, and treatment management of soft tissue issues that impede efficient orthodontic treatment. Its clinical application will be illustrated in a series of orthodontic cases.

  7. Laser-driven particle and photon beams and some applications

    NASA Astrophysics Data System (ADS)

    Ledingham, K. W. D.; Galster, W.

    2010-04-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 1012 V m-1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  8. The Efficiency of Laser Application on the Enamel Surface: A Systematic Review

    PubMed Central

    Karandish, Maryam

    2014-01-01

    Used in conjunction with or as a replacement for traditional methods, it is expected that specific laser technologies will become an essential component of contemporary dental practice over the next decade. The current review is designed to focus on the acid resistance of laser application and tries to introduce laser settings capable to achieve this feature for clinical application. Application of laser for its acid resistance might be a valuable adjunct to conventional acid etching for susceptible sites in high caries risk patients such as patients with rampant caries, who cannot follow oral hygiene instructions due to their systematic disabilities, or those under orthodontic treatment with plaque retentive attachment on their teeth. The key words “enamel acid resistance” and “laser” were searched in PubMed. In brief, the current paper involves the results on 5 items: A summary on laser application; Suggested mechanisms of acid resistance; Different types of laser beams used in acid resistance; Comparison of application of different laser types; and Conclusion. PMID:25653808

  9. Compact optical system for pulse-to-pulse laser beam quality measurement and applications in laser machining.

    PubMed

    Lambert, Robert W; Cortés-Martínez, Rodolpho; Waddle, Andrew J; Shephard, Jonathan D; Taghizadeh, Mohammad R; Greenaway, Alan H; Hand, Duncan P

    2004-09-10

    Fluctuations in beam quality (M2) have been observed on a pulse-to-pulse basis from an industrial Nd:YAG laser. This was achieved with a compact multiplane imaging method incorporating quadratically distorted diffraction gratings, which enabled simultaneous imaging of nine planes on a single CCD array. With this system, we measured across a range of beam qualities with an associated error (in M2 variation) of the order of 0.7%. Application of the system to fiber-optic beam delivery and laser drilling is demonstrated.

  10. Compact Optical System for Pulse-to-Pulse Laser Beam Quality Measurement and Applications in Laser Machining

    NASA Astrophysics Data System (ADS)

    Lambert, Robert W.; Cortés-Martínez, Rodolpho; Waddie, Andrew J.; Shephard, Jonathan D.; Taghizadeh, Mohammad R.; Greenaway, Alan H.; Hand, Duncan P.

    2004-09-01

    Fluctuations in beam quality (M^2) have been observed on a pulse-to-pulse basis from an industrial Nd:YAG laser. This was achieved with a compact multiplane imaging method incorporating quadratically distorted diffraction gratings, which enabled simultaneous imaging of nine planes on a single CCD array. With this system, we measured across a range of beam qualities with an associated error (in M^2 variation) of the order of 0.7%. Application of the system to fiber-optic beam delivery and laser drilling is demonstrated.

  11. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    SciTech Connect

    Dreizler, Andreas; Fried, Alan; Gord, James R

    2007-07-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica.

  12. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOEpatents

    Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.

    1999-08-10

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.

  13. Application of wound dressings in dermatology laser procedures

    NASA Astrophysics Data System (ADS)

    Hetzel, Fred W.; Chen, Qun; Hoskins, Greg

    1995-05-01

    High powered lasers have been used in dermatological procedures such as tattoo removal. This use is associated with a potential, biological hazard of high speed tissue particles from the laser field. It has been proposed that by applying a clear dermatological would dressing directly over the laser treatment site, it may be possible to completely trap the potentially airborne tissue particles from the procedure. Some important questions must be addressed prior to the implementation of such a technique. While the use of a wound dressing may significantly reduce the airborne materials during the laser procedures, new problems may arise: 1 . The wound dressing or some of its components may absorb excessive amount of light energy. This would result in a very localized temperature rise which may be harmful to the patient; 2. The smooth surface of the wound dressing material could induce specular reflection of the incident laser beam, thus introducing a laser hazard to the staff and patient. To address these possible problems, we studied a series of ClearSite Wound Dressings which have been reportedly tested for such laser procedures. The objective of the studies were, to determine if the use of ClearSite in conjunction with laser procedures poses a possible hazard to either the patient or to the Operating Room personnel, and to determine the effect of the ClearSite dressing on the optical characteristics of the light beam. The latter includes light absorption and transmittance for various wavelengths.

  14. Laser materials processing applications at Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Hargrove, R. S.; Dragon, Ernest P.; Hackel, Richard P.; Kautz, Douglas D.; Warner, Bruce E.

    1993-05-01

    Copper and dye laser systems are currently being developed at LLNL for uranium enrichment production facilities. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. We have accomplished very high aspect ratio holes in drilling tests (> 60:1) and features with micron scale (5 - 50 micrometers ) sizes.

  15. 980-nm diode laser application in electroneurophysiology: a LEP study

    NASA Astrophysics Data System (ADS)

    Guelsoy, Murat; Durak, Kadir; Kurt, Adnan; Karamursel, Sacit; Cilesiz, Inci F.

    2001-01-01

    The aim of the present study was to test the feasibility of the 980 nm diode laser for LEP (Laser Evoked Potentials) studies. Human subjects were exposed to laser stimulation. After the pain thresholds of the subjects were determined with respect to laser power level, 1.5 times the threshold value was applied and laser evoked potentials were recorded using standard EEG techniques. LEPs were obtained due to right hand stimulation. Latency and amplitude values of LEPs were found in accordance with those reported in the literature. Statistical evaluation showed differences in the LEPs at C3 and C4 locations as a function of the sex of the subjects. The power levels used in the present study was three times less than the levels applied for Nd: YAG laser in the literature. The evoked potential parameters measured were in consistence with the data reported by earlier researchers. Moreover, it was found that, LEPs due to 980 nm wavelength irradiation can be recorded by applying less energy when compared to Nd:YAG laser. This result indicated the potential of diode laser for LEP studies.

  16. New trends in urological laser research and applications

    NASA Astrophysics Data System (ADS)

    Hofstetter, Alfons G.

    1993-03-01

    It is no exaggeration to state, no single specialty of medicine has so thoroughly investigated the different possibilities of laser systems as urology. Twenty years of experimental and clinical use of laser technology has led to a number of standard procedures.

  17. Laser-beam power for lunar and space applications

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1992-01-01

    GaAlAs/GaAs heteroface converters were experimentally tested using DIRECT laser irradiation of photovoltaic devices. It is concluded that the two types of converters are promising for converting diode-laser radiation to electricity. Conversion efficiency as high as 45 and 34.2 percent was obtained using GaAS and Si converters of the SSF type, respectively.

  18. Clinical applications of laser therapy on the dental practice

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.

    2004-09-01

    Dental practice consists of a series of laboring procedures which demands the use of several types of equipment and materials. Usually patient"s fears brings additional burden to the Dentists. The use of Lasers for treating and diagnosis in Dentistry is quite new comparing to other medical areas. Initially Laser technology was used as an alternative method for treating dental caries in order to substitute the use of the drill. Lately surgical Lasers have shown themselves very useful for treating several pathologies and began to be used as a powerful tool on the treatment of several conditions affecting the maxillofacial complex and later on, the era of the use of Laser therapy began. The advent of the diode Lasers made possible the introduction of small units at the dental office and Laser therapy was used to improve healing and later included also caries diagnosis. This paper discuss the use of Laser therapy on Restorative Dentistry, Periodondology, Oral and Maxillofacial Surgery, Oral implantology and other. Clinical and laboratorial experience has demonstrated that Laser therapy does improve the healing of both mineralized and soft tissues, reduces pain and inflammation, and also reduces both cost and length of the dental treatment.

  19. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  20. APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES Low power cw-laser signatures on human skin

    NASA Astrophysics Data System (ADS)

    Lihachev, A.; Lesinsh, J.; Jakovels, D.; Spigulis, J.

    2011-01-01

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of ~12 mm2, and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of ~4 cm2. The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes — 'signatures' of low power laser treatment are acquired.

  1. Terawatt Picosecond CO(sub 2) Laser Technology for High Energy Physics Applications

    SciTech Connect

    Pogorelsky, I. V.

    1998-07-05

    Demonstration of ultra-high acceleration gradients in the SM LWFA experiments put a next objective for the laser accelerator development to achieve a low-emittance monochromatic acceleration over extended interaction distances. The emerging picosecond terawatt (ps-TW) CO{sub 2} laser technology helps to meet this strategic goal. Among the considered examples are: the staged electron laser accelerator (STELLA) experiment, which is being conducted at the Brookhaven ATF, and the plasma-channeled LWFA. The long-wavelength and high average power capabilities of CO{sub 2} lasers maybe utilized also for generation of intense x-ray and gamma radiation through Compton back-scattering of the laser beams off relativistic electrons. We discuss applications of ps-TW CO{sub 2} lasers for a tentative {gamma}-{gamma} (or {gamma}-lepton) collider and generation of polarized positron beams.

  2. Event-Based Surveillance During EXPO Milan 2015: Rationale, Tools, Procedures, and Initial Results

    PubMed Central

    Manso, Martina Del; Caporali, Maria Grazia; Napoli, Christian; Linge, Jens P.; Mantica, Eleonora; Verile, Marco; Piatti, Alessandra; Pompa, Maria Grazia; Vellucci, Loredana; Costanzo, Virgilio; Bastiampillai, Anan Judina; Gabrielli, Eugenia; Gramegna, Maria; Declich, Silvia

    2016-01-01

    More than 21 million participants attended EXPO Milan from May to October 2015, making it one of the largest protracted mass gathering events in Europe. Given the expected national and international population movement and health security issues associated with this event, Italy fully implemented, for the first time, an event-based surveillance (EBS) system focusing on naturally occurring infectious diseases and the monitoring of biological agents with potential for intentional release. The system started its pilot phase in March 2015 and was fully operational between April and November 2015. In order to set the specific objectives of the EBS system, and its complementary role to indicator-based surveillance, we defined a list of priority diseases and conditions. This list was designed on the basis of the probability and possible public health impact of infectious disease transmission, existing statutory surveillance systems in place, and any surveillance enhancements during the mass gathering event. This article reports the methodology used to design the EBS system for EXPO Milan and the results of 8 months of surveillance. PMID:27314656

  3. Preliminary Statistics from the NASA Alphasat Beacon Receiver in Milan, Italy

    NASA Technical Reports Server (NTRS)

    Nessel, James; Zemba, Michael; Morse, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni TDP no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we provide an overview of the design and data calibration procedure, and present 6 months of preliminary statistics of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The Q-band receiver has demonstrated a dynamic range of 40 decibels at an 8-hertz sampling rate. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  4. Preliminary Statistics from the NASA Alphasat Beacon Receiver in Milan, Italy

    NASA Technical Reports Server (NTRS)

    Zemba, Michael J.; Nessel, James A.; Morse, Jacquelynne R.

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a KQ-band (20-40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20-40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we provide an overview of the design and data calibration procedure, and present 6 months of preliminary statistics of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The Q-band receiver has demonstrated a dynamic range of 40 dB at an 8-Hz sampling rate. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models

  5. Animal poisoning in Italy: 10 years of epidemiological data from the Poison Control Centre of Milan.

    PubMed

    Caloni, F; Cortinovis, C; Rivolta, M; Davanzo, F

    2012-04-21

    From 2000 to 2010, the Poison Control Centre of Milan (CAV), in collaboration with the University of Milan, Faculty of Veterinary Medicine, Department of Veterinary Sciences and Technologies for Food Safety, Toxicology Section, collected epidemiological information related to animal poisoning and classified it in an organised and computerised data bank. Data recorded were predominantly related to small animals and to some extent to horses, ruminants and other food-production animals. Few calls were registered involving exotics and no information was recorded on wildlife. The dog was reported to be the most common species involved in animal poisoning, and pesticides constituted the primary group of toxicants. In the case of pets, 'drugs' including veterinary parasiticide and drugs for human use constituted the second class of toxicants responsible for poisoning followed by household products, plants, zootoxins and metals. With regard to horses and farm animals, the second group consisted of phytotoxins, even if only episodically. In Italy, published data on this subject are scarce but this information is crucial for better management of the poisoning of domestic animals in an effort to reduce mortality.

  6. Demonstration of surgical telerobotics and virtual telepresence by Internet + ISDN from Monterey (USA) to Milan (Italy).

    PubMed

    Rovetta, A; Sala, R; Bressanelli, M; Garavaldi, M E; Lorini, F; Pegoraro, R; Canina, M

    1998-01-01

    This paper deals with the connection which has been held on 8th July 1997 in collaboration with the JPL of the NASA, Pasadena, California, between the Eighth International Conference on the Advanced Robotics (ICAR '97) in course at Monterey, California and the Telerobotics Laboratory of Politecnico di Milano connected in a multipoint teleconference through the MCU of Rome with the Aula Magna of the same Politecnico and the Palace Business of the Giureconsulti of the Chamber of Commerce of Milan. The demonstration has allowed to telecontrol a scara robot of the Sankyo and an ABB robot, which have affected simulations of operations of biopsy to the prostate, to the liver and to the breast, a mechanical hand and a model of a car, disposed in a space destined to reproduce the Martian ground, from Monterey to Milan by means of the INTERNET+ISDN connection from. In fact the event has taken place four days after the landing on Mars happily successful of the spatial probe Pathfinder from which it has gone out the "Sojourner" robot, telecontrolled from the JPL of the NASA, which has begun to take photos of the Martian ground and also some of these images have been transmitted in the course of the connection.

  7. Contingency plan to provide safe drinking water for the city of Milan, Tennessee

    SciTech Connect

    Talbot, J.J.; Brew, P.

    1994-12-31

    The city of Milan, in western Tennessee, supplies drinking water to approximately 4,000 customers. Environmental investigations conducted by the US Army have detected low concentrations of RDX, a compound used in the manufacture of explosives, in two of the three city water supply wells. The RDX is traceable to the Milan Army Ammunition Plant nearby. The levels of RDX are being monitored and current trends indicate that levels in the wells will exceed the EPA Health Advisory Limits in the near term. In order to ensure an uninterrupted supply of acceptable quality drinking water for the city residents, the Army prepared and is implementing a Contingency Plan. The plan evaluated remedial alternatives to be implemented once a trigger level of RDX is reached, including institutional controls, installation of an RDX treatment system for the water supply system, and construction of a new well field. Institutional controls include: shutting down existing wells; continued monitoring; and promulgation of ground water ordinances. Treatment technologies evaluated include: ultraviolet light and hydrogen peroxide; or removal using granular activated carbon.

  8. Laser propulsion for space applications: Is it another myth or a real potential?

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2007-05-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  9. Exploring the Potential of Table-Top X-Ray Lasers and Capillary Discharge for Applications

    SciTech Connect

    Shlyaptev, V N; Dunn, J; Smith, R F; Moon, S J; Fournier, K B; Nilsen, J; Osterheld, A L; Kuba, J; Wootton, A J; Lee, R W; Rocca, J J; Rahman, A; Hammarsten, E; Filevich, J; Jankovska, E; Marconi, M C; Fornaciari, N; Buchenauer, D; Hender, H A; Kari,M S; Kanouff, M; Dimkoff, J; Kubiak, G; Shimkaveg, G; Silfvast, W T

    2003-05-08

    The advantages of using of table top x-ray lasers (XRLs) for different applications have been described. Examples of the first successful use of XRLs, the current efforts in applying them and the potential applications where an XRL can be used in future have been discussed. Modeling results showing the possibility of 3-4 times shorter wavelength capillary discharge x-ray lasers and calculated spectrum of Xe capillary EUV source are presented.

  10. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  11. DOE Center of Excellence in Medical Laser Applications. Final report, December 1, 1994--November 30, 1997

    SciTech Connect

    Jacques, S.L.

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  12. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  13. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  14. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  15. Advances in AlGaInN laser diode technology for defence and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.

    2016-05-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence and security applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications including displays and imaging systems, atomic clock and quantum information, free-space and underwater telecom and lidar.

  16. New developments and applications in the production of 3D microstructures by laser micromachining

    NASA Astrophysics Data System (ADS)

    Rizvi, Nadeem H.; Rumsby, Phil T.; Gower, Malcolm C.

    1999-11-01

    Micro-machining techniques using pulsed lasers are currently being applied world-wise in many diverse industrial application areas including biomedical devices, printers, flat-panel displays, semiconductors devices and telecommunication systems. In particular, the use of excimer lasers has been at the forefront of the new developments in the manufacture of complex micro-structures for the production of micro-optical-electro-mechanical-systems units such as nozzles, optical devices and sensors. This paper reviews the fundamentals of excimer laser micromachining techniques and details recent developments which have enhanced the capabilities of these approaches. Application areas where these techniques are of interest are highlighted.

  17. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  18. Application of terahertz quantum-cascade lasers to semiconductor cyclotron resonance.

    PubMed

    Larrabee, Diane C; Khodaparast, Giti A; Tittel, Frank K; Kono, Jun; Scalari, Giacomo; Ajili, Lassaad; Faist, Jerome; Beere, Harvey; Davies, Giles; Linfield, Edmund; Ritchie, David; Nakajima, Yoji; Nakai, Masato; Sasa, Shigehiko; Inoue, Masataka; Chung, Seokjae; Santos, Michael B

    2004-01-01

    Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.

  19. Application of terahertz quantum-cascade lasers to semiconductor cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Larrabee, Diane C.; Khodaparast, Giti A.; Tittel, Frank K.; Kono, Jun; Scalari, Giacomo; Ajili, Lassaad; Faist, Jerome; Beere, Harvey; Davies, Giles; Linfield, Edmund; Ritchie, David; Nakajima, Yoji; Nakai, Masato; Sasa, Shigehiko; Inoue, Masataka; Chung, Seokjae; Santos, Michael B.

    2004-01-01

    Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.

  20. One Visit Providing Desirable Smile by Laser Application

    PubMed Central

    Fekrazad, Reza

    2014-01-01

    Introduction: Providing desirable smile is one of the main concerns in cosmetic dentistry. Hyperpigmentation is one of the esthetic concerns especially in gummy smile patients. Lasers with different wavelength are used for oral surgery including Carbon Dioxide Laser (CO2), Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG), Erbium family and diode laser. In this case, all esthetic procedures including gingival depigmentation, caries detection and removal were done by laser technology in one session. Case study: A 40- year-old male with a chief complaint of black gingiva in upper jaw was referred. The right side of maxillary was anesthetized and depigmentation was done by Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er-Cr: YSGG) laser. Due to scores obtained from Diagnodent which indicated caries in dentin, the cavities were prepared by Er-Cr:YSGG laser. The cavities were restored by composite resin. The patient was advised to keep oral hygiene instructions and use mouthwash. Results: The patient reported no pain after surgery and did not use any systemic antibiotic. After 4 weeks, complete healing was observed. Conclusion: Considering acceptable clinical outcome, Er-Cr: YSGG laser can be considered as an effective method for combination of soft and hard tissue treatment. PMID:25606339

  1. Fetal laser therapy: applications in the management of fetal pathologies.

    PubMed

    Mathis, Jérôme; Raio, Luigi; Baud, David

    2015-07-01

    Fetoscopic coagulation of placental anastomoses is the treatment of choice for severe twin-to-twin transfusion syndrome. In the present day, fetal laser therapy is also used to treat amniotic bands, chorioangiomas, sacrococcygeal teratomas, lower urinary tract obstructions and chest masses, all of which will be reviewed in this article. Amniotic band syndrome can cause limb amputation by impairing downstream blood flow. Large chorioangiomas (>4 cm), sacrococcygeal teratomas or fetal hyperechoic lung lesions can lead to fetal compromise and hydrops by vascular steal phenomenon or compression. Renal damage, bladder dysfunction and lastly death because of pulmonary hypolasia may be the result of megacystis caused by a posterior urethral valve. The prognosis of these pathologies can be dismal, and therapy options are limited, which has brought fetal laser therapy to the forefront. Management options discussed here are laser release of amniotic bands, laser coagulation of the placental or fetal tumor feeding vessels and laser therapy by fetal cystoscopy. This review, largely based on case reports, does not intend to provide a level of evidence supporting laser therapy over other treatment options. Centralized evaluation by specialists using strict selection criteria and long-term follow-up of these rare cases are now needed to prove the value of endoscopic or ultrasound-guided laser therapy.

  2. Laser annealing of silicon surface defects for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sun, Zeming; Gupta, Mool C.

    2016-10-01

    High power lasers are increasingly used for low cost fabrication of solar cell devices. High power laser processes generate crystal defects, which lower the cell efficiency. This study examines the effect of low power laser annealing for the removal of high power laser induced surface defects. The laser annealing behavior is demonstrated by the significant decrease of photoluminescence generated from dislocation-induced defects and the increase of band-to-band emission. This annealing effect is further confirmed by the X-ray diffraction peak reversal. The dislocation density is quantified by observing etch pits under the scanning electron microscope (SEM). For as-melted samples, the dislocation density is decreased to as low as 1.01 × 106 cm- 2 after laser annealing, resulting in an excellent surface carrier lifetime of 920 μs that is comparable to the value of 1240 μs for the silicon starting wafer. For severely defective samples, the dislocation density is decreased by 4 times and the surface carrier lifetime is increased by 5 times after laser annealing.

  3. Medium Repetition Rate TEA Laser For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Walter, Bruno

    1987-09-01

    The design and performance of an inexpensive compact repetitively pulsed TEA CO2 laser is described. The device uses a modified corona preionization technique and a fast transverse gas flow to achieve high repetition rates. An output energy of 500 mJ per pulse and an out-put power of 6.2W at 40Hz have been obtained. Due to the small energy needed for preionization, the efficiency of the device is high, whereas the gas dissociation is low when compared with commercial laser systems. This results in the relatively small fresh laser gas exchange of 20 ltr h-1 for long term operation.

  4. Superpulsed carbon dioxide laser: an update on cutaneous surgical applications

    NASA Astrophysics Data System (ADS)

    Wheeland, Ronald G.

    1990-06-01

    Superpulsing the carbon dioxide laser allows delivery of high energy pulses separated by short pauses during which tissue cooling can occur.1 This new technology can provide several important advantages in cutaneous surgery over similar procedures performed with conventional continuous discharge carbon dioxide laser systems. In the excisional mode, there is a two-thirds reduction in thermal necrosis of the wound edge.2 This should translate into more rapid healing3 and increased rate of gain in tensile strength. In the vaporizational mode, precise, superficial and bloodless ablation of multiple benign appendigeal tumors is possible with less thermal damage yielding excellent cosmetic results. The establishment through additional research of accurate laser parameters, pulse duration, peak energy levels, and frequency of pulses, will help improve the specificity of the laser-tissue interaction to provide even better surgical results.

  5. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  6. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  7. Application research of CO2 laser cutting natural stone plates

    NASA Astrophysics Data System (ADS)

    Ma, Lixiu; Song, Jijiang

    2009-08-01

    Now, the processing of natural stone plates is the high performance sawing machine primarily,many researchers deeply studied the processing characters in the sawing process and the strength characters during the processing. In order to realize the profiled-processing and pattern- carving of the natural stone, It lays a solid foundation for the laser cutting and the pattern-carving technology of natural stone plate. The working principle, type and characteristics of laser cutting are briefly described. The paper selects 6 kinds stone plates of natural taken as experimental sample,the experimental sample was China Shanxi Black, Old Spain Golden Yellow, New Spain Golden Yellow, Jazz White, Maple Leaf Red, Cream White respectively. Use high power CO2 laser cutting system,the stone plates cutting experiment of 6 kinds different hardness, the best working speed are obtained,The experimental results indicate that: The laser cutting speed has no correlation with the ingredient content of stone plate.

  8. Application of fiber laser for a Higgs factory

    SciTech Connect

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  9. Multifunction laser source for ground and airborne applications

    NASA Astrophysics Data System (ADS)

    Crépy, Bruno

    2011-06-01

    Multiple ground and airborne vehicles could share common and multifunctional laser modules. The host system constraints and requirements have similarities making a laser modular concept interesting. Among the desired functions, the core ones are the designation and the rangefinding capabilities. A diode pumped laser source at 1μm with a switchable OPO stage for wavelength conversion fully satisfies the designation and rangefinding tasks. Over the last years, CILAS has developed the key technologies for the improvement of the main system parameters with the imperative constraints to be International Traffic in Arm Regulations Free (ITAR Free). Particularly, this novel architecture avoids thermo electric cooler (TEC) generally used to stabilise the wavelength of the laser diode pump source within the entire operational thermal range.

  10. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Astrophysics Data System (ADS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  11. Future Applications Using Return-Pulse Correlation from Imaging Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Rabine, David L.

    2000-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, wide-swath, digitization-only laser altimeter capable of collecting full return waveforms (i.e. echoes) from laser footprints ranging in diameter from 1 to 80 m across up to a 1 km wide data swath. The return waveform can be used to enhance the accuracy of laser ranging and to provide information about the vertical structure of vegetation and topography within each laser footprint. Although extremely small laser footprints (< 1 0 cm diameter) generally return simple, impulse responses to their target surface, larger footprints typically exhibit complex returns representing the diverse vertical distributions of surfaces contained in each footprint. Only a handful of airborne and spaceborne laser altimeters record the return echo or return pulse that is reflected from the Earth's surface (i.e. NASA's LVIS, SLA, VCL, and GLAS laser altimeters). Waveforms are currently interpreted to extract a timing or ranging point or points to represent the mean ground elevation or the vertical height of vegetation. But, recent progress using pulse shape correlation techniques shows promise for a variety of science applications involving change detection of surface topography and vegetation as well as potential for improving data processing by correlating images or crossovers to solve systematic biases. We show example correlation images from LVIS and discuss instrument design implications and potential science applications.

  12. In-situ laser power/energy monitoring in biomedical applications

    NASA Astrophysics Data System (ADS)

    Giroux, Michel; Marchand, Loic; Carmichael, Luc; Vander Haeghe, Ronald E.

    1998-09-01

    The medical laser market is with no doubt one of the most active with a very fast growth. The increase was led by a surge in both ophthalmic excimer systems and CO2 lasers for dermatology treatment and skin resurfacing. Specialty niches in dermatology (wrinkle removal, hair removal), urology (treatment of BPH), and ophthalmology (laser vision correction) continued to boost sales in 1997 and are likely to do so in 1998 (20% expected growth). The laser technologies that will benefit the most from these medical applications are ruby (hair removal), excimer (ophthalmology) and CO2 lasers (skin resurfacing). The control and the monitoring of the energy delivered by these lasers are critical for the success and the repeatability of the treatments. According to the application, lasers are used in Q-switched mode or long-pulse mode, we will present the both the suitable way to make in-situ measurement of the energy delivered by the laser. The second part of the presentation will focus on the on-line monitoring solution and its great advantages for the operator and the patient.

  13. Parameter Optimization for Laser Polishing of Niobium for SRF Applications

    SciTech Connect

    Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.

    2013-06-01

    Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.

  14. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  15. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  16. Applications of Laser and Synchrotron Based ARPES to Photocathode Research

    SciTech Connect

    Rameau J.; Smedley J.; Muller, E.; Kidd, T.; Johnson, P.; Allen, P.; Carr, L.; Valla, T.

    2010-10-12

    Laser angle resolved photoelectron spectroscopy (ARPES) provides unique information about angle and energy distribution of photoelectrons. Laser ARPES gives unique insight into how NEA materials work. ARPES combined with some ancillary measurements gives a very complete picture of system electronic physics. For H:C[100] there is now a clear program for engineering as well as development analogous systems. ARPES well suited for identifying 'ideal' photocathodes with intrinsically low emittance and high QE.

  17. Laser-beam power for lunar and space applications

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1992-01-01

    Photovoltaic properties of GaAlAs/GaAs heteroface converters were measured using a 0.81-micron diode laser. Results indicate that the converters under consideration are promising devices for converting diode-laser radiation to electricity. Conversion efficiency as high as 45 percent has been obtained using GaAs devices, while Si converters of the SSF type give efficiencies up to 34.2 percent.

  18. Nozzle flow of laser-heated radiating hydrogen with application to a laser-heated rocket

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1977-01-01

    This paper presents a model for the steady heating of flowing hydrogen by a CW 10.6 micron laser, to consider the feasibility of a laser-heated rocket. The hydrogen flow and the laser beam are parallel, and move into a converging-diverging nozzle. The absorption of laser energy is initiated by a laser-supported combustion wave. The hydrogen is in chemical equilibrium, absorbs laser energy by inverse Bremsstrahlung, and loses energy by radiation. The hydrogen flow was calculated from the rear of the LSC wave to the throat. Estimates of convective heat losses were made using a hydrogen boundary layer analysis. Specific impulse, obtained by expanding isentropically from the throat to 1 atm or a vacuum, varies from 1400 to 3000 s. Radiation losses are 5 to 20%, though the energy fluxes to the walls are quite high. Convective loss estimates are high enough to indicate that coupling to the hot gas flow is required for a 10 kW engine, but not for a 5 MW engine.

  19. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  20. Development of an application set for intraoperative and percutaneous laser-induced interstitial thermotherapy (LITT)

    NASA Astrophysics Data System (ADS)

    Roggan, Andre; Albrecht, Dirk; Berlien, Hans-Peter; Beuthan, Juergen; Germer, Christoph-Thomas; Koch, H.; Wodrich, Werner R.; Mueller, Gerhard J.

    1994-12-01

    A variable application-set was developed to enable a safe and effective LITT treatment. The set consists of various laser applicators, a protecting catheter and an introducing equipment. The laser applicator was developed with different radiation patterns to match the topological conditions of the diseased area. For MRI-controlled LITT treatments a special marker is mounted at the distal end of the glass fiber which facilitates its localization. To increase the patient's safety a special protecting catheter was designed which is temperature stable up to 250 degree(s)C and transparent for NIR-radiation. The catheter can be placed into the diseased area using the introducing equipment which consists of modified parts of standard interventional radiology equipment. The laser applicator is finally guided through the protecting catheter so that there is no direct contact between applicator and tissue. The system can be used both for intraoperative and for percutaneous treatments.

  1. Development of high precision laser measurement to Space Debris and Applications in SHAO

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongping; Chen, Juping; Xiong, Yaoheng; Han, Xingwei

    2016-07-01

    Artificial space debris has become the focus during the space exploration because of producing the damage for the future active spacecrafts and high precision measurement for space debris are required for debris surveillance and collision avoidance. Laser ranging technology is inherently high accurate and will play an important role in precise orbit determination, accurate catalog of space debris. Shanghai Astronomical Observatory (SHAO) of CAS, has been developing the technology of laser measurement to space debris for several years. According to characteristics of laser echoes from space debris and the experiences of relevant activities, high repetition rate, high power laser system and low dark noise APD detector with high quantum efficiency and high transmissivity of narrow bandwidth spectral filter are applied to laser measurement to space debris in SHAO. With these configurations, great achievements of laser measurement to space debris are made with hundreds of passes of laser data from space debris in the distance between 500km and 2500km with Radar Cross Section (RCS) of more than 10 m^{2} to less than 0.5m^{2} at the measuring precision of less than 1m (RMS). For better application of laser ranging technology, Chinese Space Debris Observation network, consisting of Shanghai, Changchun and Kunming station, has been preliminary developed and the coordinated observation has been performed to increase the measuring efficiency for space debris. It is referred from data that laser ranging technology can be as the essential high accuracy measurement technology in the study of space debris.

  2. Glass microprocessing by laser-induced plasma-assisted ablation: fundamental to industrial applications

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Midorikawa, Katsumi; Yamaoka, Hiroshi; Gomi, Yutaka; Otsuki, Masayoshi; Hong, Ming Hui; Wu, Dong Jiang; Wong, Lai Lee; Chong, Tow Chong

    2004-07-01

    Laser-induced plasma-assisted ablation (LIPAA), in which a single conventional pulsed laser of small size is employed (typically 2nd harmonic of Nd:YAG laser), enables to process transparent materials like glass with micron order spatial resolution, high speed and low cost. In this process, a laser beam is first directed to a glass substrate placed in vacuum or air. The laser beam passes through the substrate since the wavelength of laser beam must have no absorption by the substrate for the LIPAA process. The transmitted laser beam is absorbed by a solid target (typically metal) located behind the substrate. The target is then ablated, resulting in plasma generation. Due to the interaction of the laser beam and the laser-induced plasma, significant ablation takes place at the rear surface of substrate. This process demonstrates surface microstructuring, crack-free marking, color marking, painting and selective metallization of glass. Based on these achievements, we have developed a prototype of workstation of LIPAA microfabrication system which is now commercially available. The discussion includes mechanism and practical applications in industry of LIPAA process.

  3. Transendoscopic application of CO2 laser irradiation using the OmniGuide fiber

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P., Jr.; Elce, Yvonne A.

    2005-04-01

    Transendoscopic laser surgery has been performed in large animals since 1984. It is used to treat many upper respiratory disorders, as well as urogenital diseases. Initially, the Nd:YAG laser was the laser of choice until the early 1990's, when smaller, more compact diode lasers entered the veterinary field. In the mid 1980's, several attempts were made to transmit CO2 laser energy transendoscopically. True success was not obtained until 2004 when the OmniGuide CO2 Laser Hollow Light Guide (fiber) was fabricated. Although there is attenuation of energy, this very flexible fiber allows the CO2 laser to be used transendoscopically for incision and ablation of tissue. Both healing and recuperation time are reduced, compared to other wavelengths transmitted through solid quartz fiber. The OmniGuide fiber can be coupled to the output ports of CO2 lasers commonly used in veterinary medicine. Transendoscopic application of the CO2 laser is advantageous in that there is no endoscopic white-out, no volume heating of tissue, and it provides accurate means of performing upper respiratory surgery in the standing large animal.

  4. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  5. Building block diode laser concept for high brightness laser output in the kW range and its applications

    NASA Astrophysics Data System (ADS)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). In the next steps, further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with about 500 W launched into a 100 μm fiber with 0.15 NA. Higher power levels can be achieved by stacking those building blocks using the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific

  6. Carlo Borromeo, Archbishop of Milan, in the Midst of Religious Disciplining, Pastoral Renewal and Christian Education (1564-1584)

    ERIC Educational Resources Information Center

    Patrizi, Elisabetta

    2008-01-01

    The twenty year period of pastoral action of the Milan Archbishop Carlo Borromeo, are examined in the light of the "social disciplining," that was a basic component of the Reform, and a sign of the evolution of the modern State and society after the Tridentine turning point. The Borromaic pastoral aimed at putting into effects the Tridentine…

  7. Organisation and Management of a Complete Bachelor Degree Offered Online at the University of Milan for Ten Years

    ERIC Educational Resources Information Center

    Milani, Manuela; Papini, Sabrina; Scaccia, Daniela; Scarabottolo, Nello

    2014-01-01

    This paper is aimed at presenting some reflections on organisation and management of SSRI online: an e-learning initiative started at the University of Milan (Italy) in the academic year 2004/05 and offered to students over the last ten years. The initiative consisted in implementing the online version of an already existing three-year bachelor…

  8. Milan Popović - from the stationary clerk of Belgrade Astronomical Observatory to the great man of Serbian surrealism

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.

    2002-04-01

    We present in this work the personality of Milan Popović (6 May 1905, Surdulica - April 1969) the great Serbian surrealistic painter, which from 21 January 1949 up to 31 May 1949 worked at the Belgrade Astronomical Observatory as senior stationary clerk.

  9. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    PubMed

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications.

  10. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    PubMed

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications. PMID:27188011

  11. High power lasers: Sources, laser-material interactions, high excitations, and fast dynamics in laser processing and industrial applications; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 3, 1987

    NASA Technical Reports Server (NTRS)

    Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)

    1987-01-01

    The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.

  12. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    SciTech Connect

    Bertolini, Luca Carsana, Maddalena Gastaldi, Matteo Lollini, Federica Redaelli, Elena

    2013-06-15

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniques throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico

  13. Accidental Thawing of Embryos, Cryopreserved for Transfer. Two Italian cases, Milan and Rome.

    PubMed

    Busardò, Francesco P; Vergallo, Gianluca Montanari; Turillazzi, Emanuela; Bolino, Giorgio; Vullo, Annamaria; Frati, Paola

    2016-01-01

    The bioethical and juridical debate on the status of frozen embryos sometimes adds new issues arising from new scientific evidence or by accidental occurrences that bring to the attention of the scientific community the need for new practical solutions. Within this scenario, there have been, in recent years, episodes concerning the accidental thawing of embryos, which have been cryopreserved for transfer. Two Italian cases (the Milan and the Rome cases) are here reported: the Milan case involves a couple undergoing artificial insemination. Three eggs were collected for insemination and two of them had been fertilized. During the night of 8/9 May 2007 a short circuit occurred, resulting in an electricity blackout, which caused the loss of the embryos in culture, which should have been transferred to the woman's uterus on 9 May. The couple applied for damage compensation from the hospital following the loss of the embryos. The case went to Court and the result was a judgment issued by the Milan civil court, which recognized that the centre was to blame for irreparable damage to the embryos. The Rome case, involves two couples (A and B) affected by sterility who applied to an authorized public centre to undergo an ART program. Following the medical procedures, two of the embryos produced were transferred to the woman in couple A and five were frozen, whereas three embryos produced by couple B were transferred to the uterus of the woman and six eggs were cryopreserved in the centre. Two years after the procedure there was an electricity blackout, and the backup electricity generator failed to function, causing the loss of the gametes and the embryos cryopreserved in the centre. Legal proceedings begun by the couples to obtain compensation for damages are still underway. The above reported cases have significantly intensified the bioethical debate on the lawfulness of such practices and on the fate of the cryopreserved embryos, at the same time opening new frontiers in

  14. Aspects of laser optics qualification for space applications

    NASA Astrophysics Data System (ADS)

    Riede, Wolfgang; Allenspacher, Paul; Schröder, Helmut; Mahnke, Peter; Paunescu, Gabriela; Wernham, Denny

    2009-10-01

    As a consequence of the ongoing interest for deployment of laser systems into space, suitable optical components have to be developed and must be extensively space qualified to ensure reliable, continuous, and autonomous operation. The exposure to space environment can adversely affect the longevity of optics, mainly coatings, and lead to system degradation. An increased operational risk is due to the air-vacuum effect, which can strongly reduce the laser damage resistance of optical coatings. For this purpose, a vacuum laser damage test bench has been developed and is operated at DLR. In extensive test campaigns, all damage-prone optics of the ALADIN laser system (being the laser source of the upcoming ESA ADM Aeolus mission) were tested under operative conditions at the fundamental and at the harmonic wavelengths of Nd:YAG. Further operational risks are due directly to operation under high vacuum. In the past, several space-based laser missions have suffered from anomalous performance loss or even failure after short operation times. This degradation is due to selective contamination of laser-exposed optical surfaces fed by outgassing constituents. These volatile components are omnipresent in vacuum vessels. Various organic and inorganic species were tested at our facilities for their criticality on deposit built-up. Finally, active optical components like Q-switch crystals or frequency converter crystals can also suffer from bulk absorption induced by high-energy radiation (gray tracking) and dehydration. To analyze these effects, an ultrahigh vacuum phase matching unit was set up to test various combinations of SHG and THG frequency converters.

  15. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Scheuermann, J.; von Edlinger, M.; Weih, R.; Becker, S.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-05-01

    Compared to the near infrared, many technologically and industrially relevant gas species have more than an order of magnitude higher absorption features in the mid-infrared (MIR) wavelength range. These species include for example important hydrocarbons (methane, acetylene), nitrogen oxides and sulfur oxides. Tunable laser absorption spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. We present interband cascade lasers (ICLs), which have evolved into important laser sources for the MIR spectral range from 3 to 7 μm. ICLs achieve high efficiency by cascading optically active zones whilst using interband transitions, so they combine common diode laser as well as quantum cascade laser based technologies. Our application grade singlemode distributed feedback devices operate continuous wave at room temperature and are offering several features especially useful for high performance TLAS applications like: side mode suppression ratio of > 30 dB, continuous tuning ranges up to 30 nm, low threshold power densities and low overall power consumption. The devices are typically integrated in a thermoelectrically cooled TO-style package, hermetically sealed using a cap with anti-reflection coated window. This low power consumption as well as the compact size and ruggedness of the fabricated laser sources makes them perfectly suited for battery powered portable solutions for in field spectroscopy applications.

  16. 10-year experience of CO2-laser application in ambulance gynecology

    NASA Astrophysics Data System (ADS)

    Stachanov, Michael L.; Masychev, Victor I.; Velsher, Leonid Z.; Kirkin, Vladimir V.; Zhashkov, Roman V.; Kocharian, Emilia A.

    2000-10-01

    CO2-laser surgical systems have come to stay in everyday practice of modern physicians and are successfully used in colposcopic and laparoscopic surgery. Results, obtained in ambulance gynecology are especially impressing. CO2- laser provides high medical- and cost-effective treatment. Presented work describes many-years experience of CO2- laser application. 439 patients with various vulvaric and cervix diseases were operated within this period. Laser beam parameters were selected according to requirements ((tau) =4 J/cm2) treatment without carbonization. Analyses of the results showed that the laser successfully destructs uterine cervix erosion, endocervicosis, dysplasia, leukoplakia, eritoplakia of uterine cervix, various benignant pathologies and focus degenerative process in ambulate conditions.

  17. In-situ and non-destructive focus determination device for high-precision laser applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Oskar; Naghilou, Aida; Pöhl, Hannes; Kautek, Wolfgang

    2016-09-01

    A non-destructive, in-line, and low-cost focusing device based on an image sensor has been developed and demonstrated. It allows an in situ focus determination for a broad variety of laser types (e.g. cw and pulsed lasers). It provides stringent focusing conditions with high numerical apertures. This approach does not require sub-picosecond and/or auxiliary lasers, or high fluences above damage thresholds. Applications of this system include, but are not limited to the laser-illumination of micro-electrodes, pump-probe microscopy on thin films, and laser ablation of small samples without sufficient surface area for focus determination by ablation. An uncertainty of the focus position by an order of magnitude less than the respective Rayleigh length could be demonstrated.

  18. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  19. Application Of Endoscopic Lasers For Operations In Gastro-Intestinal Tract

    NASA Astrophysics Data System (ADS)

    Skobelkin, O. K.; Saphronov, A. M.; Shapovalov, A. M.; Zaharov, P. I.

    1988-06-01

    We have described our experience in the application of high energy argon and Nd:YAG lasers for endoscopic surgical manipulations. Laser was used for the removal of polyps with a wide base, villi tumours in colon, for the elimination of scar strictures in colon anastomosis, for the formation of primary-delayed colon anastomosis and for the removal of timoral stenosis in esophagus and in colon. Laser therapy has certain advantages over other endoscopic manipulations: long-term and immediate results are better. One can use this therapy in combination with others (radial therapy, surgical treatment). We have worked out a classification of polyps and stenosing tumours in the digestive system to determine indications for laser endoscopy and to choose the best parameters of laser irradiation.

  20. Multiwave hybrid laser processing of micrometer scale features for flexible electronic applications

    NASA Astrophysics Data System (ADS)

    Hillman, J.; Sukhman, Y.; Miller, D.; Oropeza, M.; Risser, C.

    2016-03-01

    MultiWave HybridTM laser processing allows two or more laser wavelengths to be combined into a single beam. This technology has been shown to be advantageous for laser cutting composite and laminate materials, where the individual components have different optical or physical properties. In this work we will explore the application of MultiWave Hybrid technology to the fabrication of flexible electronic circuits. The advantages of using multiple laser wavelengths for manufacturing steps, such as opening vias through a KaptonTM insulator to an underlying copper conductor, will be demonstrated. Several rapid prototyping processes for flexible electronic circuits will be reviewed. These involve selective ablation of conductive materials to pattern an interconnect layer without the need for a costly and time consuming photolithography process. We will also investigate a process for producing laser induced graphene (LIG) from a commercially available polymer substrate.

  1. Application of a nanosecond laser pulse to evaluate dynamic hardness under ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Radziejewska, Joanna

    2016-04-01

    The paper presents results of experimental tests of plastic metals deformation generated by a shock wave induced by laser pulse. Tests were carried out on the Nd:YAG laser with a wavelength of 1064 nm and the laser pulse of 10 ns duration. The shock wave generate by the laser pulse was used to induced local plastic deformation of the material surface. The study examined the possibility of application the process to develop a new method of measuring the dynamic hardness of materials under ultra-high strain rate. It has been shown that the shock wave induced by the laser pulse with an energy of 0.35-1.22 J causes a repeatable plastic deformation of surface of commercially available metals and alloys without thermal effects on the surfaces. Based on the knowledge of an imprint geometry, it is possible to evaluate the dynamic hardness of materials at strain rate in the range of 107 s-1.

  2. A study of particle generation during laser ablation with applications

    SciTech Connect

    Liu, Chunyi

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  3. Atmospheric transmission of CO2 laser radiation with application to laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1975-01-01

    The molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated at the P16, P18, P20, P22, and P24 lines of the CO2 laser for temperatures from 200 to 300 K and for pressures from 100 to 1100 mb. The temperature variation of the continuum absorption coefficient of water vapor is taken into account semi-empirically from Burch's data. The total absorption coefficient from the present calculations falls within + or - 20 percent of the results of McClatchey and Selby. The transmission loss which the CO2 pulsed laser Doppler system experiences was calculated for flight test conditions for the five P-lines. The total transmission loss is approximately 7 percent higher at the P16 line and 10 percent lower at the P24 line compared to the P20 line. Comparison of the CO2 laser with HF and DF laser transmission reveals the P2(8) line at 3.8 micrometers of the DF laser is much better from the transmission point of view for altitudes below 10 km.

  4. Application of CO II laser for removal of oral mucocele

    NASA Astrophysics Data System (ADS)

    Kato, J.; Moriya, K.; Hirai, Y.

    2006-02-01

    Mucocele is an oral soft tissue cyst caused by the disturbance of saliva flow. Mucocele is widely observed in child patients and recurrence is high. The objective of this study was to clarify the effect of CO II laser irradiation in the case of mucocele. A CO II laser was used on 45 subjects, aged between 0 to 15 years, having mucocele on lip, lingual, or buccal mucosa. Our procedure in using CO II laser was not to vaporize the mucocele but to remove the whole mucocele mass. The border of mucocele was firstly incised by laser following defocusly ablating the root or body of mucocele separating from sorrounding tissue. As a result, mucocele was easily and completely removed without breaking the wall of mucocele. None of the cases required suturing. The results were as follows. 1. The mucocele of lip or lingual mucosa with a rich blood supply, was efficiently removed, without bleeding, giving a clear operative field during the operation. 2. The surgery itself was simple and less time-consuming. 3. After two or three weeks the wound was completely healed without almost any discomfort in all patients 4. Wound contraction and scarring were decreased or eliminated. 5. The reoccurrence of mucocele was not seen, except only in one case of lingual mucocele. In conclusion the use of CO II laser proved to be a very safe and effective mode for the removal of mucocele, especially in small children.

  5. Application of wavelet analysis in laser Doppler vibration signal denoising

    NASA Astrophysics Data System (ADS)

    Lan, Yu-fei; Xue, Hui-feng; Li, Xin-liang; Liu, Dan

    2010-10-01

    Large number of experiments show that, due to external disturbances, the measured surface is too rough and other factors make use of laser Doppler technique to detect the vibration signal contained complex information, low SNR, resulting in Doppler frequency shift signals unmeasured, can not be demodulated Doppler phase and so on. This paper first analyzes the laser Doppler signal model and feature in the vibration test, and studies the most commonly used three ways of wavelet denoising techniques: the modulus maxima wavelet denoising method, the spatial correlation denoising method and wavelet threshold denoising method. Here we experiment with the vibration signals and achieve three ways by MATLAB simulation. Processing results show that the wavelet modulus maxima denoising method at low laser Doppler vibration SNR, has an advantage for the signal which mixed with white noise and contained more singularities; the spatial correlation denoising method is more suitable for denoising the laser Doppler vibration signal which noise level is not very high, and has a better edge reconstruction capacity; wavelet threshold denoising method has a wide range of adaptability, computational efficiency, and good denoising effect. Specifically, in the wavelet threshold denoising method, we estimate the original noise variance by spatial correlation method, using an adaptive threshold denoising method, and make some certain amendments in practice. Test can be shown that, compared with conventional threshold denoising, this method is more effective to extract the feature of laser Doppler vibration signal.

  6. Infrared fibre ring laser for spectroscopic application of gas molecules

    NASA Astrophysics Data System (ADS)

    Ryu, Han Young; Suh, Ho Suhng

    2006-09-01

    We fabricated erbium-doped fiber ring laser with a new structure that can operate in C- & L-band wavelength region in the optical communication band. We performed the absorption spectroscopy of acetylene ( 13C IIH II) and hydrogen cyanide (H 13C 14N) by using a low noise erbium-doped fiber ring laser and measured absorption spectra of more than fifty transition lines of these gases with an excellent signal to noise ratio (SNR). The wavelength of this laser can be continuously tuned over 102 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity with a novel cavity structure and the optimal gain medium length. The acetylene cell and the hydrogen cyanide cells were fabricated with gas pressure of 120 torr and 250 torr and length of 5 cm and 15 cm, respectively. The pressure broadening coefficients of acetylene transition lines are obtained using this fiber ring laser and an external cavity laser diode.

  7. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  8. Application of short pulsed laser systems for micro-scale processing.

    SciTech Connect

    Jared, Bradley Howell

    2010-03-01

    The relatively recent development of short (nsec) and ultra-short (fsec) pulsed laser systems has introduced process capabilities which are particularly suited for micro-manufacturing applications. Micrometer feature resolutions and minimal heat affected zones are commonly cited benefits, although unique material interactions also prove attractive for many applications. A background of short and ultra-short pulsed laser system capabilities and material interactions will be presented for micro-scale processing. Processing strengths and limitations will be discussed and demonstrated within the framework of applications related to micro-machining, material surface modifications, and fundamental material science research.

  9. Mathematical Modeling of Laser Ablation in Liquids with Applications to Laser Ultrasonics

    SciTech Connect

    Conant, R. J.; Telschow, Kenneth Louis; Walter, John Bradley

    2002-12-01

    The use of laser ablation as a means of generating ultrasonic waves in liquid metals is studied in this paper. A mathematical model for predicting the onset of ablation is developed, as is a model of the ablation process based on steady state, one-dimensional gas dynamics in which the vapor phase is treated as an ideal gas. The results of this model are then used in a quasi-two-dimensional model of laser ablation that accounts for the spatial distribution of intensity in the laser beam. Model predictions are compared with experiments conducted on liquid mercury and excellent agreement is obtained. Based on these results, a simplified model is developed that shows excellent agreement with both the theory and the experiments.

  10. Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan

    PubMed Central

    Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea

    2016-01-01

    Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called “no man’s land” between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients’ needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes. PMID:27606308

  11. Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan.

    PubMed

    Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea

    2016-01-01

    Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called "no man's land" between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients' needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes. PMID:27606308

  12. Predicting functional impairment in brain tumor surgery: the Big Five and the Milan Complexity Scale.

    PubMed

    Ferroli, Paolo; Broggi, Morgan; Schiavolin, Silvia; Acerbi, Francesco; Bettamio, Valentina; Caldiroli, Dario; Cusin, Alberto; La Corte, Emanuele; Leonardi, Matilde; Raggi, Alberto; Schiariti, Marco; Visintini, Sergio; Franzini, Angelo; Broggi, Giovanni

    2015-12-01

    OBJECT The Milan Complexity Scale-a new practical grading scale designed to estimate the risk of neurological clinical worsening after performing surgery for tumor removal-is presented. METHODS A retrospective study was conducted on all elective consecutive surgical procedures for tumor resection between January 2012 and December 2014 at the Second Division of Neurosurgery at Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan. A prospective database dedicated to reporting complications and all clinical and radiological data was retrospectively reviewed. The Karnofsky Performance Scale (KPS) was used to classify each patient's health status. Complications were divided into major and minor and recorded based on etiology and required treatment. A logistic regression model was used to identify possible predictors of clinical worsening after surgery in terms of changes between the preoperative and discharge KPS scores. Statistically significant predictors were rated based on their odds ratios in order to build an ad hoc complexity scale. For each patient, a corresponding total score was calculated, and ANOVA was performed to compare the mean total scores between the improved/unchanged and worsened patients. Relative risk (RR) and chi-square statistics were employed to provide the risk of worsening after surgery for each total score. RESULTS The case series was composed of 746 patients (53.2% female; mean age 51.3 ± 17.1). The most common tumors were meningiomas (28.6%) and glioblastomas (24.1%). The mortality rate was 0.94%, the major complication rate was 9.1%, and the minor complication rate was 32.6%. Of 746 patients, 523 (70.1%) patients improved or remained unchanged, and 223 (29.9%) patients worsened. The following factors were found to be statistically significant predictors of the change in KPS scores: tumor size larger than 4 cm, cranial nerve manipulation, major brain vessel manipulation, posterior fossa location, and eloquent area involvement

  13. [Adolescents with cancer: the "Youth Project" at the Istituto Nazionale Tumori in Milan].

    PubMed

    Ferrari, Andrea; Veneroni, Laura; Clerici, Carlo Alfredo; Spreafico, Filippo; Terenziani, Monica; Massimino, Maura; Luksch, Roberto; Casanova, Michela; Meazza, Cristina; Polastri, Daniela; Gandola, Lorenza

    2013-01-01

    Adolescents with cancer are a particular group of patients who are less likely to gain access to optimal cancer services at comprehensive cancer Centers: many studies suggest adolescents fare less well than children with the same disease. The paper describes the key issues of the "Youth Project" of the Pediatric Oncology Unit IRCCS Fondazione Istituto Nazionale Tumori in Milan, dedicated to adolescents (over 15 years old) and young adults (up to 25 years old) with solid tumors. This project is a possible clinical and organizational model to address the unique needs of patients in this age group and for bridge the gap in access to care and in recruitment in clinical trials, in clinical and psycho-social management and in curves of healing. The paper also describes the activity of the Adolescent Commission established by the Italian Pediatric Hematology Oncology (AIEOP).

  14. Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan

    PubMed Central

    Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea

    2016-01-01

    Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called “no man’s land” between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients’ needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes.

  15. Predicting functional impairment in brain tumor surgery: the Big Five and the Milan Complexity Scale.

    PubMed

    Ferroli, Paolo; Broggi, Morgan; Schiavolin, Silvia; Acerbi, Francesco; Bettamio, Valentina; Caldiroli, Dario; Cusin, Alberto; La Corte, Emanuele; Leonardi, Matilde; Raggi, Alberto; Schiariti, Marco; Visintini, Sergio; Franzini, Angelo; Broggi, Giovanni

    2015-12-01

    OBJECT The Milan Complexity Scale-a new practical grading scale designed to estimate the risk of neurological clinical worsening after performing surgery for tumor removal-is presented. METHODS A retrospective study was conducted on all elective consecutive surgical procedures for tumor resection between January 2012 and December 2014 at the Second Division of Neurosurgery at Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan. A prospective database dedicated to reporting complications and all clinical and radiological data was retrospectively reviewed. The Karnofsky Performance Scale (KPS) was used to classify each patient's health status. Complications were divided into major and minor and recorded based on etiology and required treatment. A logistic regression model was used to identify possible predictors of clinical worsening after surgery in terms of changes between the preoperative and discharge KPS scores. Statistically significant predictors were rated based on their odds ratios in order to build an ad hoc complexity scale. For each patient, a corresponding total score was calculated, and ANOVA was performed to compare the mean total scores between the improved/unchanged and worsened patients. Relative risk (RR) and chi-square statistics were employed to provide the risk of worsening after surgery for each total score. RESULTS The case series was composed of 746 patients (53.2% female; mean age 51.3 ± 17.1). The most common tumors were meningiomas (28.6%) and glioblastomas (24.1%). The mortality rate was 0.94%, the major complication rate was 9.1%, and the minor complication rate was 32.6%. Of 746 patients, 523 (70.1%) patients improved or remained unchanged, and 223 (29.9%) patients worsened. The following factors were found to be statistically significant predictors of the change in KPS scores: tumor size larger than 4 cm, cranial nerve manipulation, major brain vessel manipulation, posterior fossa location, and eloquent area involvement

  16. The application of Raman laser in gravity measurement and metrology

    SciTech Connect

    Ru, Ning; Zhang, Li; Wang, Yu; Fan, Shangchun

    2014-05-27

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter, it is based on the atom interferometry technology by coherently manipulating the cold atoms in a fountain (with a height of 1m) with specific Raman lasers, the cold atom wave packet is splitted, combined, and then re-splitted in the process. Then the atomic wave packet will acquire different phase because of the different evolution path. The precise acceleration can be deduced through the precision measurement of atomic interference fringes phase, and this will be a high precision standard of acceleration. At present, the preparation of Raman laser and the precise control of the laser Frequency have been finished, and they have been proved to meet the requirements of the experiment.

  17. Application of laser bar code technology in power fitting evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Liu, Shuhuab

    2007-12-01

    In this work, an automatic encoding and management system on power fittings (PFEMS) is developed based on laser bar coding technology. The system can encode power fittings according to their types, structure, dimensions, materials, and technical characteristics. Both the character codes and the laser bar codes of power fittings can be produced from the system. The system can evaluate power fittings and search process-paper automatically. The system analyzes the historical values and technical information of congeneric fittings, and forms formulae of evaluation with recursive analytical method. And then stores the formulae and technical documents into the database for index. Scanning the bar code with a laser bar code reader, accurate evaluation and corresponding process-paper of the fittings can be produced. The software has already been applied in some power stations and worked very well.

  18. Eyesafe laser application in military and law enforcement training

    NASA Astrophysics Data System (ADS)

    Mosbrooker, Michael L.

    1991-04-01

    Training is a process of imparting a particular set of skills to a target group either by having them perform an actual task until proficiency is gained or by performing a similar task until confidence of proficiency is attained. Doing an actual task may be preferred but many factors may dictate that this objective is not feasible. The armed services and civilian law enforcement groups must train to use their weapons but often weapon characteristics, expense and the availability of appropriate facilities dictate that some sort of simulation be employed. Eyesafe laser are playing a major role in this sort of simulation. Present uses include their employment as replacements for non-eyesafe lasers in determining the distance to a target, designating a target for laser energy seeking munitions and to signal the arrival of a munition at a target is a benign manner compared to what the replicated munition would do were it used instead.

  19. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques.

  20. Calibration technology in application of robot-laser scanning system

    NASA Astrophysics Data System (ADS)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.