Science.gov

Sample records for laser balancing system

  1. Microprocessor-Controlled Laser Balancing System

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1985-01-01

    Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.

  2. Laser Balancing

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  3. Laser balancing system for high material removal rates

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Georgalas, G.; Ortiz, A. L.

    1984-01-01

    A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.

  4. Nonlocal systems of balance laws in several space dimensions with applications to laser technology

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Marcellini, Francesca

    2015-12-01

    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt.

  5. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  6. Experiments on multiplane balancing using a laser for material removal

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1979-01-01

    The modifications of a flexible rotor system for two-plane laser balancing is described. Experimental testing of the laser material removal method for balancing through the first bending critical speed was demonstrated. The test rig, optical configuration, and a neodymium glass laser system were assembled and calibrated for static and rotating material removal rates. The laser control computer program was combined with the influence coefficient balancing process, resulting in a completely automated data acquisition, laser, and balancing system. The laser system rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  7. Laser balancing demonstration on a high-speed flexible rotor

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.; Rio, R. A.; Fleming, D. P.

    1979-01-01

    This paper describes a flexible rotor system used for two-plane laser balancing and an experimental demonstration of the laser material removal method for balancing. A laboratory test rotor was modified to accept balancing corrections using a laser metal removal method while the rotor is at operating speed. The laser setup hardware required to balance the rotor using two correction planes is described. The test rig optical configuration and a neodymium glass laser were assembled and calibrated for material removal rates. Rotor amplitudes before and after balancing, trial and correction weights, rotor speed during operation of laser, and balancing time were documented. The rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  8. Active control of a balanced two-stage pendulum vibration isolation system and its application to laser interferometric gravity wave detectors

    SciTech Connect

    Veitch, P.J.; Robertson, N.A.; Cantley, C.A.; Hough, J. )

    1993-05-01

    The investigation of the servo control of the position of the bottom mass in a balanced two-stage pendulum vibration isolation system is reported. Experimental results for a simple prototype system and predictions based on a model presented in this paper are in good agreement. The application of such a system to a high-sensitivity laser interferometric gravity wave detector is discussed.

  9. Human Balance System

    MedlinePlus

    ... and vision problems, and difficulty with concentration and memory. What is balance? Balance is the ability to maintain the body’s center of mass over its base of support. 1 A properly functioning balance system allows humans to see clearly while moving, identify orientation with ...

  10. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  11. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  12. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  13. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  14. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  15. Rotor balancing apparatus and system

    NASA Technical Reports Server (NTRS)

    Lyman, Frank (Inventor); Lyman, Joseph (Inventor)

    1976-01-01

    Rotor balancing apparatus and a system comprising balance probes for measuring unbalance at the ends of a magnetically suspended rotor are disclosed. Each balance probe comprises a photocell which is located in relationship to the magnetically suspended rotor such that unbalance of the rotor changes the amount of light recorded by each photocell. The signal from each photocell is electrically amplified and displayed by a suitable device, such as an oscilloscope.

  16. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  17. Identifying Balance in a Balanced Scorecard System

    ERIC Educational Resources Information Center

    Aravamudhan, Suhanya; Kamalanabhan, T. J.

    2007-01-01

    In recent years, strategic management concepts seem to be gaining greater attention from the academicians and the practitioner's alike. Balanced Scorecard (BSC) concept is one such management concepts that has spread in worldwide business and consulting communities. The BSC translates mission and vision statements into a comprehensive set of…

  18. A Balanced Higher Education System

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    This article explores what is meant by "a balanced higher education system". It argues that the Clarkian "triangle of coordination" (Clark, 1983) and the more recent model of Martinez and Richardson (2003) should be replaced by one that distinguishes between "self" and "collective" interests in both the…

  19. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  20. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  1. Laser cutting system

    SciTech Connect

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  2. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  3. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  4. Balance Systems and the Variational Bicomplex

    NASA Astrophysics Data System (ADS)

    Preston, Serge

    2011-07-01

    In this work we show that the systems of balance equations (balance systems) of continuum thermodynamics occupy a natural place in the variational bicomplex formalism. We apply the vertical homotopy decomposition to get a local splitting (in a convenient domain) of a general balance system as the sum of a Lagrangian part and a complemental ''pure non-Lagrangian'' balance system. In the case when derivatives of the dynamical fields do not enter the constitutive relations of the balance system, the ''pure non-Lagrangian'' systems coincide with the systems introduced by S. Godunov [Soviet Math. Dokl. 2 (1961), 947-948] and, later, asserted as the canonical hyperbolic form of balance systems in [Müller I., Ruggeri T., Rational extended thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, 1998].

  5. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  6. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  7. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  8. Photodynamic therapy laser system

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoqin; Lin, Qing; Wang, Feng; Shu, Chao; Wang, Jianhua

    2009-08-01

    Photodynamic therapy (PDT) treatment is a new treatment for tumour and Dermatology. With the successful development of the second-generation photosensitizer and the significant manifestations in clinics, PDT has shown a more extensive application potentials. To activate the photosensitizer, in this paper, we present a GaAs-based diode laser system with a wavelength of 635 nm. In this system, to prolong the working life-time of the diode lasers, we use specific feedback algorithm to control the current and the temperature of the diode laser with high precision. The clinic results show an excellent effect in the treatment of Condyloma combined with 5-ALA.

  9. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  10. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  11. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  12. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  13. Robotic Laser Coating Removal System

    DTIC Science & Technology

    2008-08-01

    completion of this evaluation a 6 kW CO2 laser from Rofin -Sinar was selected for use in the RLCRS. This laser provided the highest quality laser ...DATA AND ASSUMPTIONS................................................................B-1 iii LIST OF FIGURES Page Figure 1. Six kW CO2 laser ...for proposal (RFP) that was distributed throughout the laser industry. In response to this RFP, 15 laser systems (nine CO2 , three Nd:YAG, and three

  14. Coherent laser vision system

    SciTech Connect

    Sebastion, R.L.

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  15. Laser autostereoscopic projection system

    NASA Astrophysics Data System (ADS)

    Wang, Yuchang; Huang, Junejei

    2013-09-01

    The current autostereoscopic projection system is accomplished by array projectors. It is easy to realize optically but has a drawback with size. Another type is to place the shutter on the screen. It saves the volume but reduces the efficiency depending on how many views are produced. The shutter in the lens aperture has the same efficiency problem, too. To overcome these problems, a full HD autostereoscopic projector based on the lens aperture switching type is proposed. It has RGB laser sources and can produce 16-views or even higher stereoscopic images. This system removes the shutter in the lens aperture by the opti-mechanism itself. The specific light on the lens aperture coming from the point on the DMD is reflected to different angles. The proper angle of light is generated in the object side by the relay and folding system. The UHP lamps or the LED rays are difficult to constrain in a relative small cone angle. For this reason, the laser is applied to the design. The very small etendue of the laser is good for this architecture. The rays are combined by dichroic filter from RGB laser sources then forming and expanding to the mirror. The mirror is synchronized with DMD by the DSP control system. The images of different views are generated by DMD and specific position of the mirror. By the double lenticular screen, the lens aperture is imaged to the observer's viewing zone and the 3D scene is created.

  16. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  17. Laser security systems

    NASA Astrophysics Data System (ADS)

    Kolev, Ivan S.; Stoeva, Ivelina S.

    2004-06-01

    This report presents the development of single-beam barrier laser security system. The system utilizes the near infrared (IR) range λ=(850-900)nm. The security system consists of several blocks: Transmitter; Receiver; Logical Unit; Indication; Power Supply. There are four individually software programmable security zones Z1 - Z4. The control logic is implemented on a PIC16F84 MCU. The infrared beam is a pulse pack, coded and modulated in the transmitter with frequency of 36 kHz. The receiver demodulates and decodes the beam. The software for the MCU is developed along with the electrical circuits of the security system.

  18. Laser system preset unit

    DOEpatents

    Goodwin, William L.

    1977-01-01

    An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

  19. Laser multiplexing system

    DOEpatents

    Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  20. Reflective optical imaging system with balanced distortion

    DOEpatents

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  1. Ionization balance in semiconductor quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Pan, Janet L.

    1994-01-01

    The commonly assumed quasiequilibrium particle distribution with the same quasi-Fermi-level for all quantum-dot carriers in the same energy (conduction or valence) band is found not to be valid for a wide range of temperatures at the inversion populations and bound energy separations (greater than a LO phonon energy) used in the literature. Bound state occupation factors obtained from the steady state solution of rate equations describing the ionization balance in room-temperature 100-Å-radius GaAs quantum dots whose centers are separated by 400 Å are found to be very different from the quasiequilibrium distribution used in an example from the literature. In such quantum dots, bound state transitions result from collisions between charged particles via the Coulomb interaction, and from interband and intraband radiative processes. The critical free electron concentration above which collisional processes can establish a quasiequilibrium in the conduction band is found to exceed 1019 cm-3. Our numerical solution is in good agreement with Pitaevskii's model from atomic physics of an electron random walk in energy as modeled by a Fokker-Planck equation. In our simple model, electrons are captured into a bound conduction band state via three-body recombination and phonon emission, and drop into lower energy bound states via a series of collisional deexcitations before combining with a valence band hole. Solution of the rate equations is standard in numerical studies of stimulated emission in atomic plasmas, but our present discussion is, to our knowledge, the first in the literature on semiconductor quantum-dot lasers.

  2. Adaptive automatic balancing of magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Sun

    Rotating machinery including magnetic bearings are usually persistently excited by the rotation related disturbances such as mass unbalance; hence there exists a residual vibration in the steady state response even if the closed loop system is asymptotically stable. In order to control the periodic disturbances, a disturbance accommodating controller (DAC) is designed based on the disturbance estimator and applied to the forced balancing of magnetic bearing system. The control objective is to minimize the synchronous component of shaft displacement or control current. In order to account for the variation of the disturbance model due to the shaft of operating speed, an adaptive disturbance accommodating control scheme is developed based on a certain optimality criterion. The continuous time design discretized to implement the controller in the digital computer and the merits and demerits are studied numerically. It is shown that the proposed method is efficient in reducing rotor unbalance and automatic balancing.

  3. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  4. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  5. Battery Cell Balancing System and Method

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  6. Lunar Laser Communication System

    DTIC Science & Technology

    2014-10-01

    an uplink rate to the moon 5000 times that of radio tech- nology. The LLCS, flown aboard NASA’s Lunar Atmosphere and Dust Environment Explorer...NASA’s Lunar Atmosphere and Dust Envi- ronment Explorer spacecraft. Above, the LLCS’s ground terminal was deployed at White Sands, N.M., for the...OCT 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Lunar Laser Communication System 5a. CONTRACT NUMBER 5b

  7. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  8. Reflective optical imaging systems with balanced distortion

    DOEpatents

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  9. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  10. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  11. Laser system for isotope separation

    NASA Astrophysics Data System (ADS)

    Shirayama, Shimpey; Mikatsura, Takefumi; Ueda, Hiroaki; Konagai, Chikara

    1990-06-01

    Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J), a joint Japanese utility companies research organization, was founded in April, 1987, to push a development program for laser uranium enrichment. Based on research results obtained from Japanese National Labs, and Universities , Laser-J is now constructing an AVLIS experimental facility at Tokai-mura. It is planned to have a 1-ton swu capacity per year in 1991. Previous to the experimental facility construction , Toshiba proceeded with the preliminary testing of an isotope separation system, under contract with Laser-J. Since the copper vapor laser (CVL) and the dye laser (DL) form a good combination , which can obtain high power tunable visible lights ,it is suitable to resonate uranium atoms. The laser system was built and was successfully operated in Toshiba for two years. The system consist of three copper vapor lasers , three dye lasers and appropriate o Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J) , a joint Japanese utility companies research organization , was founded in April, 1987, to push a development program for laser uranium enrichment

  12. Development of a multiplane multispeed balancing system for turbine systems

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1984-01-01

    A prototype high speed balancing system was developed for assembled gas turbine engine modules. The system permits fully assembled gas turbine modules to be operated and balanced at selected speeds up to full turbine speed. The balancing system is a complete stand-alone system providing all necesary lubrication and support hardware for full speed operation. A variable speed motor provides the drive power. A drive belt and gearbox provide rotational speeds up to 21,000 rpm inside a vacuum chamber. The heart of the system is a dedicated minicomputer with attendant data acquisition, storage and I/O devices. The computer is programmed to be completely interactive with the operator. The system was installed at CCAD and evaluated by testing 20 T55 power turbines and 20 T53 power turbines. Engine test results verified the performance of the high speed balanced turbines.

  13. Laser interlock system

    SciTech Connect

    Woodruff, Steven D; Mcintyre, Dustin L

    2015-01-13

    A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second optical source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.

  14. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  15. Development of laser transmission system

    NASA Astrophysics Data System (ADS)

    Song, Jiawu; Zhang, Yulan; Yang, Jiandong; Zhang, Xinming

    1998-08-01

    This paper discusses a light transfer system of therapeutic machine using carbon-dioxide laser. This system is based on imitating human being arm motion principle, consists of optical cardans mainly and can move in three-D space freely. Through it carbon-dioxide laser (which wavelength is 10.6 micrometer) is reflected, focused or diverged and transferred to the different therapeutic part of body to realize the purpose of cutting operation, gasification, cauterization and irradiation. This system includes an indicating system using He-Ne laser, by which carbon-dioxide laser can arrive therapeutic part accurately. This system possesses some advantages e.g. an accurate transfer, large moving range, small power consumption, high power density and easy operation. At present the occupancy in home market of this kind laser transfer system products is over 95%. Some products have been exported to other countries.

  16. System Risk Balancing Profiles: Software Component

    NASA Technical Reports Server (NTRS)

    Kelly, John C.; Sigal, Burton C.; Gindorf, Tom

    2000-01-01

    The Software QA / V&V guide will be reviewed and updated based on feedback from NASA organizations and others with a vested interest in this area. Hardware, EEE Parts, Reliability, and Systems Safety are a sample of the future guides that will be developed. Cost Estimates, Lessons Learned, Probability of Failure and PACTS (Prevention, Avoidance, Control or Test) are needed to provide a more complete risk management strategy. This approach to risk management is designed to help balance the resources and program content for risk reduction for NASA's changing environment.

  17. Magnetic suspension and balance system study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1984-01-01

    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.

  18. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  19. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  20. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  1. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  2. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  3. Laser optical displacement system

    NASA Astrophysics Data System (ADS)

    Starritt, Larry W.; Matthews, Larryl K.

    1995-04-01

    The current quality of our nations bridges is on a decline. There are roughly half a million highway bridges in the United States and out of the half a million more than 200,000 are deficient. With catastrophic failure of bridges causing the loss of life and property, the need for bridge inspection and maintenance is evident. When the Silver Bridge that crossed the Ohio River collapsed in December 1967, 46 people were killed. The failure to prevent the disaster was attributed to the poor inspection techniques used by the bridge inspectors. Current inspection techniques depend on humans being able to recognize structural imperfections without the aid of instrumentation. The Federal-Aid Highway Act of 1968 mandated both national bridge inspection standards and training for bridge inspectors. This act has encouraged the development of instruments that would allow inspectors to perform more complete inspections of bridges. To improve the quality of inspection and data, there is a great need for proven methods and instruments used to acquire data. The Laser Optical Displacement System (L.O.D.S.) developed at New Mexico State University by the Optical and Materials Science Lab is such a device. The L.O.D.S. has been tested and proven in both laboratory situations and in the field. This paper describes some of the methods that are now being used to measure deflections in bridges. Then, a description of the development and application of the L.O.D.S. unit is given.

  4. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  5. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  6. System integration for laser restructuring

    NASA Astrophysics Data System (ADS)

    Moreno, Wilfrido A.; Saini, Nitin; Acon, Otto

    1995-09-01

    The Center for Microelectronics Research (CMR) at the University of South Florida has pursued the development of new technologies in the area of high density interconnects. The laser restructuring of electronic circuits, fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative for custom programming of electronic circuits that allows for low cost and quick turn around of the restructured parts. A Laser System for restructuring Electronic Systems has been integrated using state of the art hardware components. This Laser System is fully computer controlled using a newly developed Microsoft Windows based software application running on a 486-66 MHz IBM compatible computer. The laser system consists of a high energy 5 watt Argon CW laser, a 2 watt double frequency pulsed Nd:YAG laser, a blocking shutter, electro-optic shutter (EOS), optic delivery system, a high precision x-y translation stage, and a video camera system used to observe the surface under laser processing. All the system components are mounted on granite table installed on four self leveling pneumatic legs for a vibration free process environment. The z-axis mechanisms consists of a stepper motor based translation stage for automatic focus controls. All control software was written using C++ programming language utilizing the power of readily available plug in boards which provide resources such as: counters, timers, image processing and IEEE-488 interfacing for remote laser control. The control environment exhibits a high degree of consistency with widely accepted visually programmed graphical 'point- and-click' interfaces.

  7. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  8. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  9. Balanced interferometric system for stability measurements

    SciTech Connect

    Ellis, Jonathan D.; Joo, Ki-Nam; Spronck, Jo W.; Munnig Schmidt, Robert H

    2009-03-20

    We describe two different, double-sided interferometer designs for measuring material stability. Both designs are balanced interferometers where the only optical path difference is the sample and the reference beams are located within the interferometer. One interferometer is a double-pass design, whereas the other is a single-pass system. Based on a tolerancing analysis, the single-pass system is less susceptible to initial component misalignment and motions during experiments. This single-pass interferometer was tested with an 86 nm thin-film silver sample for both short-term repeatability and long-term stability. In 66 repeatability tests of 30 min each, the mean measured drift rate was less than 1 pm/h rms. In two long-term tests (>9 h), the mean drift rate was less than 1.1 pm/h, which shows good agreement between the short- and long-term measurements. In these experiments, the mean measured length change was 2 nm rms.

  10. Guidance system for laser targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1978-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  11. Laser system of extended range

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1972-01-01

    A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.

  12. Laser-Frequency Stabilization via a Quasimonolithic Mach-Zehnder Interferometer with Arms of Unequal Length and Balanced dc Readout

    NASA Astrophysics Data System (ADS)

    Gerberding, Oliver; Isleif, Katharina-Sophie; Mehmet, Moritz; Danzmann, Karsten; Heinzel, Gerhard

    2017-02-01

    Low-frequency high-precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer-level sensitivities in the 0.1-mHz to 1-Hz regime, where laser-frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilizing an external cavity diode laser to a quasimonolithic unequal arm-length Mach-Zehnder interferometer readout at midfringe via balanced detection. We find this stabilization scheme to be an elegant solution combining a minimal number of optical components, no additional laser modulations, and relatively low-frequency-noise levels. The Mach-Zehnder interferometer is designed and constructed to minimize the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool ifocad. We achieve frequency-noise levels below 100 Hz /√{Hz } at 1 Hz and are able to demonstrate the LISA frequency prestabilization requirement of 300 Hz /√{Hz } down to frequencies of 100 mHz by beating the stabilized laser with an iodine-locked reference.

  13. NREL Offshore Balance-of-System Model

    SciTech Connect

    Maness, Michael; Maples, Benjamin; Smith, Aaron

    2017-01-01

    The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast of Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.

  14. Laser Pyro System Standardization and Man Rating

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  15. Energy balance in laser ablation of metal targets

    SciTech Connect

    Sobral, H.; Villagran-Muniz, M.; Bredice, F.

    2005-10-15

    Laser-generated plasma was induced on metallic targets glued to a piezoelectric microphone and placed between the plates of a planar charged capacitor. The plasma generates a temporal redistribution of electric charge on the plates that can easily be measured by a resistor connected to the ground plate; this signal is proportional to the total number of ions removed by breakdown. Both the absorbed and scattered energies were simultaneously monitored by the photoacoustic signal and an energy meter. From these signals it was possible to determine the energy involved in each of the processes. Just above the ablation threshold most of the delivered energy is absorbed and the acoustic signal prevails compared to other contributions. Above this region, the electric signal, which is proportional to the energy involved in the ablation process, becomes dominant.

  16. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  17. High brightness laser systems incorporating advanced laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; Vethake, Thilo; Gottdiener, Mark; Wunderlin, Jens; Negoita, Viorel; Li, Yufeng; Barnowski, Tobias; Gong, Tim; An, Haiyan; Treusch, Georg

    2013-02-01

    The performance of high power and high brightness systems has been developing and is developing fast. In the multi kW regime both very high spatial and spectral brightness systems are emerging. Also diode laser pumped and direct diode lasers are becoming the standard laser sources for many applications. The pump sources for thin Disk Laser systems at TRUMPF Photonics enabled by high power and efficiency laser bars are becoming a well established standard in the industry with over two thousand 8 kW Disk Laser pumps installed in TruDisk systems at the customer site. These systems have proven to be a robust and reliable industrial tool. A further increase in power and efficiency of the bar can be easily used to scale the TruDisk output power without major changes in the pump source design. This publication will highlight advanced laser systems in the multi kW range for both direct application and solid state laser pumping using specifically tailored diode laser bars for high spatial and/or high spectral brightness. Results using wavelength stabilization techniques suitable for high power CW laser system applications will be presented. These high power and high brightness diode laser systems, fiber coupled or in free space configuration, depending on application or customer need, typically operate in the range of 900 to 1070 nm wavelength.

  18. Effect of balance training with Biodex Stability System on balance in diabetic neuropathy

    PubMed Central

    Eftekhar-Sadat, Bina; Azizi, Roghayyeh; Aliasgharzadeh, Akbar; Toopchizadeh, Vahideh; Ghojazadeh, Morteza

    2015-01-01

    Objectives: Diabetic neuropathy (DN) in the elderly is a common complication of diabetes that can negatively influence balance control. In this study, we aimed to evaluate the efficacy of balance training program on postural stability of diabetic patients. Patients and methods: In this randomized clinical trial, 34 elderly DN patients were divided into intervention (n = 17) and control (n = 17) groups. The experimental group underwent a balance training program using the Biodex Balance System (BBS) for 10 sessions. All subjects in both groups were assessed using timed ‘up and go’ (TUG) test, the Berg balance scale, and the fall risk and postural stability tests, at baseline and at the end of the study. Results: TUG (p = 0.01), fall risk index (p = 0.002), anterior/posterior index (p = 0.01), medial/lateral index (p = 0.04), overall stability index (p = 0.01) and Berg balance scale (p = 0.04) were significantly improved after the training in the intervention group, but had no significant differences in the control group. The changes in TUG (p < 0.001) and fall risk index (p < 0.001) in the intervention group were significantly higher than those in the control group. Conclusion: According to our results, balance training would improve postural stability and balance in elderly patients with DN. PMID:26445646

  19. Mass balance and exergy analysis of a fast pyrolysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass balance closure and exergetic efficiency is evaluated for a bench scale fast pyrolysis system. The USDA Agricultural Research Service (ARS) has developed this system for processing energy crops and agricultural residues for bio-oil (pyrolysis oil or pyrolysis liquids) production. Mass balance c...

  20. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  1. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  2. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  3. Energy balance in disk and CO2 laser beam inert gas fusion cutting

    NASA Astrophysics Data System (ADS)

    Scintilla, Leonardo Daniele; Tricarico, Luigi; Wetzig, Andreas; Beyer, Eckhard

    2012-03-01

    Experimental, numerical and analytical investigations were performed to give a possible explanation of the differences in cutting quality detected for inert gas laser beam cutting process performed with disk and CO2 laser sources. Cutting experiments were carried out at maximum cutting speed on cold work steel test specimens with different sheet thicknesses. The particular feature of the applied experimental setup was the similar geometry of both the CO2 and the disk laser beam with comparable values of the focus diameter and the Rayleigh length. The thermodynamic analysis was based on experimentally primary losses evaluation by means of polymethylmethacrylate (PMMA) blocks, on numerical computation of conductive power losses and analytical calculation of the remaining terms of energy balance. Energy balance allowed the evaluation of secondary losses and proportion of vaporized kerf volume used for justifying the lower quality of disk laser cuts. The lower proportion of vaporized kerf volume detected for disk laser cuts results in an increased process temperature, thus an increase of viscosity of molten material and the subsequent more difficult ejection of the melted material from the cut kerf.

  4. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    PubMed Central

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  5. A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-based DOP tunable fiber ring laser.

    PubMed

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-05-12

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.

  6. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer.

    PubMed

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune

    2008-12-22

    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  7. Ultra-broadband hybrid infrared laser system

    NASA Astrophysics Data System (ADS)

    Budilova, O. V.; Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu. M.; Kotkov, A. A.; Kozlov, A. Yu.

    2016-03-01

    A hybrid IR laser system consisting of molecular gas lasers with frequency conversion of laser radiation in a solid-state converter (nonlinear crystal) was developed. One of these gas lasers is a carbon monoxide laser operating in multi-line or single-line mode. Another one is a carbon dioxide laser operating in multi-line mode. The two lasers operate under Q-switching with a joint rotating mirror. Due to sum- and difference-frequency generation in nonlinear crystals, the laser system emits within wavelength range from 2.5 to 16.6 μm. The laser system emitting radiation over such an extremely wide wavelength range (2.7 octaves) is of interest for remote sensing and other applications connected with laser beam propagation in the atmosphere.

  8. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  9. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  10. The brain endocannabinoid system in the regulation of energy balance.

    PubMed

    Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena

    2009-02-01

    The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.

  11. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  12. Geoscience laser altimeter system - stellar reference system

    SciTech Connect

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-15

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with {approx}15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 kmx100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to {approx}5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  13. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  14. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.L.; Kulp, T.J.

    1995-03-10

    Practical limitations of underwater imaging systems are reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and the resolution necessary for target discovery and identification. The advent of high power lasers operating in the oceanic transmission window of the visible spectrum (blue-green portion) has led to improved experimental illumination systems for underwater imaging The properties of laser bearm in range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence effect of common volume back scatter to reduce or eliminate noise, increase signal to noise levels. Synchronously scanned systems rely on the highly collimated nature of the laser beam for spatial rejection of common volume back scatter. A synchronous, raster-scanning underwater laser imaging system (UWLIS) has been developed at Lawrence liver-more National Laboratory. The present UWLIS system differs from earlier synchronous scanners in its ability to scan in two dimensions at conventional video frame rate (30 Hz). The imaging performance of the present UWLIS was measured at distances of up to 6.3 AL (at a physical distance of 15.2 meters) during an in-water tank test and 4.5 to 5.0 AL (at a physical distance of 30 meters) during open water oceanic testing. The test results indicate that the UWLIS system is already capable of extending the underwater imaging range beyond that of conventional floodlight illuminated SIT cameras. The real or near real time frame rates of the UWLIS make possible operations in a mode in which the platform speed is randomly varied. This is typical of the operational environment in which the platform is often maneuvered above and around rugged seafloor terrain`s and obstacles.

  15. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  16. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  17. Use of the Microsoft Kinect system to characterize balance ability during balance training.

    PubMed

    Lim, Dohyung; Kim, ChoongYeon; Jung, HoHyun; Jung, Dukyoung; Chun, Keyoung Jin

    2015-01-01

    The risk of falling increases significantly in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of preventing falling using real-time systems to evaluate balance; however, it is difficult to monitor the results of such characterizations in real time. Herein, we describe the use of Microsoft's Kinect depth sensor system to evaluate balance in real time. Six healthy male adults (25.5±1.8 years, 173.9±6.4 cm, 71.4±6.5 kg, and 23.6±2.4 kg/m(2)), with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in various directions. The dynamic motion of the subjects was measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras. The two systems yielded similar results for changes in the center of body mass (P>0.05) with a large Pearson's correlation coefficient of γ>0.60. The results for the two systems showed similarity in the mean lower-limb joint angle with flexion-extension movements, and these values were highly correlated (hip joint: within approximately 4.6°; knee joint: within approximately 8.4°) (0.40<γ<0.74) (P>0.05). Large differences with a low correlation were, however, observed for the lower-limb joint angle in relation to abduction-adduction and internal-external rotation motion (γ<0.40) (P<0.05). These findings show that clinical and dynamic accuracy can be achieved using the Kinect system in balance training by measuring changes in the center of body mass and flexion-extension movements of the lower limbs, but not abduction-adduction and internal-external rotation.

  18. Laser System Reliability

    DTIC Science & Technology

    1977-03-01

    NEALE CAPT. RANDALL D. GODFREY CAPT. JOHN E. ACTON HR. DAVE B. LEMMING (ASD) :,^ 19 . ••^w**** SECTION III RELIABILITY PREDICTION...Dete Exchange Program) failure rate date bank. In addition, some data have been obtained from Hughes. Rocketdyne , Garrett, and the AFWL’s APT Failure...Central Ave, Suite 306, Albuq, NM 87108 R/M Systems, Inc (Dr. K. Blemel), 10801 Lomas 81vd NE, Albuquerque, NM 87112 Rocketdyne 01 v, Rockwell

  19. Body balance in patients with systemic vertigo after rehabilitation exercise.

    PubMed

    Mraz, M; Curzytek, M; Mraz, M A; Gawron, W; Czerwosz, L; Skolimowski, T

    2007-11-01

    The aim of this paper was to characterize structural balance of the body in people with systemic vertigo after applying rehabilitation exercise, such as motor-visual coordination on a posturographic platform and balance exercise. Physiotherapeutic procedures were carried out in a group of 12 people, aged 25-60 years suffering from vertigo. The evaluation of body balance in the standing position was performed by means of recording of postural sways based on force-plate posturography. The examination was performed before and after the rehabilitation program. Standard tests were done, with eyes open, eyes closed, and with conscious visual control-biofeedback. Patients with vertigo underwent a month-long therapy, which included: exercise of motor-visual coordination on a posturographic platform and balance exercise, which consisted of repeated visual, vestibular, and somatosensory stimulation for conscious postural control. The rehabilitation program resulted in a decrease of the range of sways, improved visuomotor coordination and thus also improved balance.

  20. Spectrally balanced chromatic landing approach lighting system

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1981-01-01

    Red warning lights delineate the runway approach with additional blue lights juxtaposed with the red lights such that the red lights are chromatically balanced. The red/blue point light sources result in the phenomenon that the red lights appear in front of the blue lights with about one and one-half times the diameter of the blue. To a pilot observing these lights along a glide path, those red lights directly below appear to be nearer than the blue lights. For those lights farther away seen in perspective at oblique angles, the red lights appear to be in a position closer to the pilot and hence appear to be above the corresponding blue lights. This produces a very pronounced three dimensional effect referred to as chromostereopsis which provides valuable visual cues to enable the pilot to perceive his actual position above the ground and the actual distance to the runway.

  1. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  2. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy

    PubMed Central

    2016-01-01

    Purpose. To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods. Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results. In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively (p > 0.05). Conclusion. The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser. PMID:28070417

  3. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  4. Balance perturbation system to improve balance compensatory responses during walking in old persons

    PubMed Central

    2010-01-01

    Ageing commonly disrupts the balance control and compensatory postural responses that contribute to maintaining balance and preventing falls during perturbation of posture. This can lead to increased risk of falling in old adults (65 years old and over). Therefore, improving compensatory postural responses during walking is one of the goals in fall prevention programs. Training is often used to achieve this goal. Most fall prevention programs are usually directed towards improving voluntary postural control. Since compensatory postural responses triggered by a slip or a trip are not under direct volitional control these exercises are less expected to improve compensatory postural responses due to lack of training specificity. Thus, there is a need to investigate the use balance perturbations during walking to train more effectively compensatory postural reactions during walking. This paper describes the Balance Measure & Perturbation System (BaMPer System) a system that provides small, controlled and unpredictable perturbations during treadmill walking providing valuable perturbation, which allows training compensatory postural responses during walking which thus hypothesize to improve compensatory postural responses in older adults. PMID:20630113

  5. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  6. Laser docking system flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Experiments necessary in the development of the Laser Docking System (LDS) are described. The LDS would be mounted in the Orbiter payload bay, along with a grid connected by fiber optic link to a computer in the cabin. The tests would be performed to aid in the design of an operational sensor which could track a passive target accurately enough to permit soft docking. Additional data would be gained regarding the LDS performance in space, the effects of Orbiter RCS plume impingement on the target, and refinements needed for the flight hardware. A working model which includes an IR laser steered by galvanometer-driven motors for bouncing beams off retroreflectors mounted on targets is described, together with a 300 ft long indoor test facility. Tests on Orbiter flights would first be in a wholly automatic mode and then in a man-in-the-loop mode.

  7. Projection-free approximate balanced truncation of large unstable systems

    NASA Astrophysics Data System (ADS)

    Flinois, Thibault L. B.; Morgans, Aimee S.; Schmid, Peter J.

    2015-08-01

    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.

  8. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  9. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  10. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  11. Laser Doppler And Range Systems For Spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, P. W.; Gagliardi, R. M.

    1990-01-01

    Report discusses two types of proposed laser systems containing active transponders measuring distance (range) and line-of-sight velocity (via Doppler effect) between deep space vehicle and earth-orbiting satellite. Laser system offers diffraction advantage over microwave system. Delivers comparable power to distant receiver while using smaller transmitting and receiving antennas and less-powerful transmitter. Less subject to phase scintillations caused by passage through such inhomogeneous media as solar corona. One type of system called "incoherent" because range and Doppler measurements do not require coherence with laser carrier signals. Other type of system called "coherent" because successful operation requires coherent tracking of laser signals.

  12. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  13. Use of the Microsoft Kinect system to characterize balance ability during balance training

    PubMed Central

    Lim, Dohyung; Kim, ChoongYeon; Jung, HoHyun; Jung, Dukyoung; Chun, Keyoung Jin

    2015-01-01

    The risk of falling increases significantly in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of preventing falling using real-time systems to evaluate balance; however, it is difficult to monitor the results of such characterizations in real time. Herein, we describe the use of Microsoft’s Kinect depth sensor system to evaluate balance in real time. Six healthy male adults (25.5±1.8 years, 173.9±6.4 cm, 71.4±6.5 kg, and 23.6±2.4 kg/m2), with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in various directions. The dynamic motion of the subjects was measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras. The two systems yielded similar results for changes in the center of body mass (P>0.05) with a large Pearson’s correlation coefficient of γ>0.60. The results for the two systems showed similarity in the mean lower-limb joint angle with flexion–extension movements, and these values were highly correlated (hip joint: within approximately 4.6°; knee joint: within approximately 8.4°) (0.40<γ<0.74) (P>0.05). Large differences with a low correlation were, however, observed for the lower-limb joint angle in relation to abduction–adduction and internal–external rotation motion (γ<0.40) (P<0.05). These findings show that clinical and dynamic accuracy can be achieved using the Kinect system in balance training by measuring changes in the center of body mass and flexion–extension movements of the lower limbs, but not abduction–adduction and internal–external rotation. PMID:26170647

  14. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  15. System balance analysis for vector computers

    NASA Technical Reports Server (NTRS)

    Knight, J. C.; Poole, W. G., Jr.; Voight, R. G.

    1975-01-01

    The availability of vector processors capable of sustaining computing rates of 10 to the 8th power arithmetic results pers second raised the question of whether peripheral storage devices representing current technology can keep such processors supplied with data. By examining the solution of a large banded linear system on these computers, it was found that even under ideal conditions, the processors will frequently be waiting for problem data.

  16. Laser fiber optics ordnance initiation system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1976-01-01

    Recent progress on system development in the laser initiation of explosive devices is summarized. The topics included are: development of compact free-running mode and Q-switched lasers, development of low-loss fiber optic bundles and connectors, study of nuclear radiation effects on the system, characterization of laser initiation sensitivities of insensitive high explosives, and the design methods used to achieve attractive system weight and cost savings. Direction for future work is discussed.

  17. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  18. Nursing elective: balancing caregiving in oppressive systems.

    PubMed

    Scarry, K D

    1999-12-01

    This course was developed when health care reform was being birthed in local hospitals under the slogan "Patient First." Architects of the change promised to involve nursing in all decisions. In the end, nursing leaders and advocates were terminated or squeezed out of the organizations. No one there now speaks for nurses at an executive level. Returning registered nurses experience this lack of voice in their organizations and come to class feeling powerless to stop the emergence of unsafe or fraudulent practices in health care (i.e. use of unlicensed assistants, altering of diagnostic codes to lengthen stays, etc.). Nurses want to take action but lack the political knowledge and skills to know where to start. Developing and implementing a course in oppression in nursing challenged this author to face the ways nursing education continues to oppress students and prepares them to blend into the status quo. Students graduate to practice in systems consumed with restructuring health care, lowering patient costs, and providing the least amount of qualified staff. Learning about oppression and how to withstand domination of one's nursing practice in deviant health care systems is not part of the regular language of teaching. The course was an attempt to flush out, articulate, and confront the meta-world of the curriculum that silently instructs students to accept oppressive practices in the workplace. The course labeled the beast and served as a catalyst for many interesting discussions. Oppression and tactics to counter oppression must be actively taught to our students. Oppressed nurses equal oppressed nursing care. Based on my learning and a critical eye to the scary realities of practice, this course marks for me my intent to support Jane Hardens (1996) call to teach for peaceful revolution.

  19. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  20. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  1. Dynamically variable spot size laser system

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  2. Ground Energy Balance For Shallow Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Rivera, J.

    2015-12-01

    Vertical borehole heat exchangers (BHE) represent the most common applications by far in the field of shallow geothermal energy. They are typically operated for decades for energy extraction from the top 400 m of the subsurface. During this lifetime, thermal anomalies are generated in the ground and surface-near aquifers. These anomalies often grow over the years and compromise the overall performance of the geothermal system. As a basis for prediction and control of the developing energy imbalance in the ground, the focus is often set on the ground temperatures. This is reflected, for instance, in regulative temperature thresholds. As an alternative to temperature, we examine the temporal and spatial variability of heat fluxes and power sources during geothermal heat pump operation. The underlying idea is that knowledge of the primary heat sources is fundamental for the control of ground temperature evolution. For analysis of heat fluxes, an analytical framework for BHE simulation based on Kelvin's line source is re-formulated. This is applied to a synthetic study and for modelling a long-term application in the field. Our results show that during early operation phase, energy is extracted mainly from the underground. Local depletion at the borehole enhances the vertical fluxes with the relative contribution from the bottom reaching a limit of 24 % of the total power demand. The relative contribution from the ground surface becomes dominant for Fourier numbers larger than 0.13. For the full life cycle, vertical heat flux from the ground surface dominates the basal heat flux towards the BHE and it provides about two thirds of the demanded power. Finally, we reveal that the time for ground energy recovery after BHE shutdown may be longer than what is expected from simulated temperature trends.

  3. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  4. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  5. A prospectus on airborne laser mapping systems

    NASA Technical Reports Server (NTRS)

    Link, L. E.; Krabill, W. B.; Swift, R. N.

    1983-01-01

    Airborne laser systems have demonstrated enormous potential for topographic and bathymetric mapping. Both profiling and scanning systems have been evaluated for terrain elevation mapping, stream valley cross-section determination, and nearshore bottom profiling. Performance of the laser systems has been impressive and for some applications matches current operational accuracy requirements. Determining the position of individual laser measurements remains a constraint for most applications. Laser technology constrains some terrain and bathymetric applications, particularly for water penetration and frequency of measurements for high-spatial resolution over large areas.

  6. A laser-powered flight transportation system

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.; Jones, W. S.

    1978-01-01

    Laser energy transmitted from a solar-power satellite via a set of relay satellites is used to power a cruising air transport; i.e., a laser-powered airplane. The result is a nearly fuelless pollution-free flight transportation system which is cost competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser-power satellite, relay satellites, laser-powered turbofans, and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  7. Simulation model of load balancing in distributed computing systems

    NASA Astrophysics Data System (ADS)

    Botygin, I. A.; Popov, V. N.; Frolov, S. G.

    2017-02-01

    The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user’s request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task.

  8. Design of a CO2 laser power control system for a Spacelab microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wenzler, Carl J.; Eichenberg, Dennis J.

    1990-01-01

    The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.

  9. Increasing cropping system diversity balances productivity, profitability and environmental health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  10. Dual strain gage balance system for measuring light loads

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W. (Inventor)

    1991-01-01

    A dual strain gage balance system for measuring normal and axial forces and pitching moment of a metric airfoil model imparted by aerodynamic loads applied to the airfoil model during wind tunnel testing includes a pair of non-metric panels being rigidly connected to and extending towards each other from opposite sides of the wind tunnel, and a pair of strain gage balances, each connected to one of the non-metric panels and to one of the opposite ends of the metric airfoil model for mounting the metric airfoil model between the pair of non-metric panels. Each strain gage balance has a first measuring section for mounting a first strain gage bridge for measuring normal force and pitching moment and a second measuring section for mounting a second strain gage bridge for measuring axial force.

  11. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  12. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  13. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  14. Data Partitioning and Load Balancing in Parallel Disk Systems

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter; Weikum, Gerhard; Zabback, Peter

    1997-01-01

    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible waves, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent, self-reliant file system that aims to optimize striping by taking into account the requirements of the applications and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces.

  15. Laser Based Information Systems (Selected Pages),

    DTIC Science & Technology

    1986-05-22

    CO lasers . Microwaves, 1967, M* 7. 85. W e I s s P. F., T o h n s o n R. E. Laser tracking wiht automatic reacquisi- tion capability. Appl. Optics, 1968, Vol. 7, M* 6. I it 313 lab- Now - ...DIVISIONCD LASER BASED INFORMATION SYSTEMS (Selected Pages) bDTIC L.Z. Kriksunov EL’, %N16 86 4. I’, Approved for public release; Distribution...HUMAN TRANSLATION FTD-ID(RS)T-0563-85 22 May 1986 MICROFICHE NR: FTD-86-C-O01863 LASER BASED INFORMATION SYSTEMS (Selected Pages) By: L.Z.

  16. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.

  17. The Theory of Random Laser Systems

    SciTech Connect

    Jiang, Xunya

    2001-01-01

    Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge.

  18. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  19. Laser system to detonate explosive devices

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Yang, L. C.

    1974-01-01

    Detonating system is not affected by electromagnetic interference. System includes laser source, Q-switch, and optical fiber connected to explosive device. Fiber can be branched out and connected to several devices for simultaneous detonation.

  20. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  1. A novel load balancing method for hierarchical federation simulation system

    NASA Astrophysics Data System (ADS)

    Bin, Xiao; Xiao, Tian-yuan

    2013-07-01

    In contrast with single HLA federation framework, hierarchical federation framework can improve the performance of large-scale simulation system in a certain degree by distributing load on several RTI. However, in hierarchical federation framework, RTI is still the center of message exchange of federation, and it is still the bottleneck of performance of federation, the data explosion in a large-scale HLA federation may cause overload on RTI, It may suffer HLA federation performance reduction or even fatal error. Towards this problem, this paper proposes a load balancing method for hierarchical federation simulation system based on queuing theory, which is comprised of three main module: queue length predicting, load controlling policy, and controller. The method promotes the usage of resources of federate nodes, and improves the performance of HLA simulation system with balancing load on RTIG and federates. Finally, the experiment results are presented to demonstrate the efficient control of the method.

  2. Fuzzy Pool Balance: An algorithm to achieve a two dimensional balance in distribute storage systems

    NASA Astrophysics Data System (ADS)

    Wu, Wenjing; Chen, Gang

    2014-06-01

    The limitation of scheduling modules and the gradual addition of disk pools in distributed storage systems often result in imbalances among their disk pools in terms of both disk usage and file count. This can cause various problems to the storage system such as single point of failure, low system throughput and imbalanced resource utilization and system loads. An algorithm named Fuzzy Pool Balance (FPB) is proposed here to solve this problem. The input of FPB is the current file distribution among disk pools and the output is a file migration plan indicating what files are to be migrated to which pools. FPB uses an array to classify the files by their sizes. The file classification array is dynamically calculated with a defined threshold named Tmax that defines the allowed pool disk usage deviations. File classification is the basis of file migration. FPB also defines the Immigration Pool (IP) and Emigration Pool (EP) according to the pool disk usage and File Quantity Ratio (FQR) that indicates the percentage of each category of files in each disk pool, so files with higher FQR in an EP will be migrated to IP(s) with a lower FQR of this file category. To verify this algorithm, we implemented FPB on an ATLAS Tier2 dCache production system. The results show that FPB can achieve a very good balance in both free space and file counts, and adjusting the threshold value Tmax and the correction factor to the average FQR can achieve a tradeoff between free space and file count.

  3. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  4. The Effect of Balance Training by Tetraks Interactive Balance System on Balance and Fall Risk in Parkinson’s Patients: A Report of Four Cases

    PubMed Central

    BALCI, Nilay Çömük; TONGA, Eda; GÜLŞEN, Mustafa

    2013-01-01

    This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson’s disease. Four patients with Parkinson’s disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson’s Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson’s patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson’s disease patients.

  5. Balance impairment in people with multiple sclerosis: preliminary evidence for the Balance Evaluation Systems Test.

    PubMed

    Jacobs, Jesse V; Kasser, Susan L

    2012-07-01

    This study examined the validity of the Balance Evaluation Systems Test (BESTest) to identify balance impairments in people with multiple sclerosis (MS) by evaluating differences in BESTest performance between people with and without MS. We also assessed the BESTest's validity by correlation with objective measures of postural performance as well as with disease severity and fall status. Thirteen subjects with MS (Expanded Disability Status Scale; EDSS: 0-4.5) and 13 matched subjects without MS were evaluated on the BESTest, asked about fall history, and assessed by force plates and motion capture as they performed laboratory tasks of step initiation, forward leaning to the limits of stability, and postural responses to rotations of the support surface. Compared to subjects without MS, subjects with MS exhibited lower total BESTest scores (mean (95%) score for subjects with MS=91 (83-99); subjects without MS=105 (104-107)) as well as section scores pertaining to mechanical constraints, limits of stability, anticipatory postural adjustments, and gait. BESTest scores significantly correlated with objective laboratory measures of step velocity during step initiation (Pearson r(2)=0.48, P<0.01) as well as center-of-pressure displacements during both the leaning (Pearson r(2)=0.55, P<0.005) and postural-response tasks (Pearson r(2)=0.76, P<0.0001). BESTest total scores were 92% accurate to identify fallers and non-fallers, and BESTest scores significantly correlated with EDSS scores (Spearman's rho=0.85, P<0.0005). Thus, the BESTest provides a valid clinical assessment of balance impairments in people with MS.

  6. Laser Image Contrast Enhancement System

    NASA Technical Reports Server (NTRS)

    Kurtz, Robert L. (Inventor); Holmes, Richard R. (Inventor); Witherow, William K. (Inventor)

    2002-01-01

    An optical image enhancement system provides improved image contrast in imaging of a target in high temperature surroundings such as a furnace. The optical system includes a source of vertically polarized light such as laser and a beam splitter for receiving the light and directing the light toward the target. A retardation plate is affixed to a target-facing surface of the beam splitter and a vertical polarizer is disposed along a common optical path with the beam splitter between the retardation plate and the target. A horizontal polarizer disposed in the common optical path, receives light passing through a surface of the beam splitter opposed to the target-facing surface. An image detector is disposed at one end of the optical path. A band pass filter having a band pass filter characteristic matching the frequency of the vertically polarized light source is disposed in the path between the horizontal polarizer and the image detector. The use of circular polarization, together with cross polarizers, enables the reflected light to be passed to the detector while blocking thermal radiation.

  7. Large-scale violation of detailed balance in biological systems

    NASA Astrophysics Data System (ADS)

    Broedersz, Chase; Battle, Christopher; Fakhri, Nikta; Mackintosh, Fred; Schmidt, Christopher

    2015-03-01

    Living systems are out of equilibrium. A fundamental manifestation of non-equilibrium dynamics in biological systems is the violation of detailed balance: at the microscopic level, enzymatic processes such as kinetic proofreading or molecular motor activity clearly violate detailed balance. We study how such non-equilibrium dynamics emerge at macroscopic scales in cellular assemblies. We measure the steady-state dynamics of two systems, beating flagella of Chlamydomonas reinhardtii and mechanosensitive primary cilia protruding from epithelial kidney cells. The flagellum exhibits clear non-equilibrium driving, whereas fluctuations in the primary cilium are difficult to differentiate from Brownian motion. We parameterize the shapes of the flagellum and primary cilium using a low-dimensional representation of their configuration phase space, and use the measured dynamics to infer the steady-state probability distributions and probability currents. For both the flagellum and the primary cilium we find significant, coherent circulating probability currents, demonstrating that these systems violate detailed balance at the mesoscopic scale.

  8. Laser measuring system for large machine tools

    NASA Astrophysics Data System (ADS)

    Wessel, L. E.; Brazys, D.

    1982-08-01

    With development of the Laser Interferometer, it was envisioned that older existing machine tools could be up-graded by retrofitting them with laser Interferometer Measuring Systems. The Laser Interferometer provides the machine tool industry with a high accuracy length standard. The accuracy of the Interferometer is determined by the laser wave length which is known within 0.5 parts per million. This degree of accuracy is more than adequate for most machine tool measuring, calibration and inspection requirements. In conclusion, the Laser Measuring System presently available is not recommended for general implementation at this time. Results of this work indicate that the equipment and installation cost are very high and pay back would be very slow. Also, the reliability of the electronic components is in need of improvement. The system requires frequent realignment and maintenance due to it's lack of toleration to "Shop Floor' conditions.

  9. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  10. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  11. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  12. Offshore Wind Balance-of-System Cost Modeling

    SciTech Connect

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  13. Smithsonian Astrophysical Observatory laser tracking systems

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Lanham, N. W.; Lehr, C. G.; Wohn, J.

    1977-01-01

    The four SAO laser satellite-ranging systems, located in Brazil, Peru, Australia, and Arizona, have been in operation for more than five years and have provided ranging data at accuracy levels of a meter or better. The paper examines system hardware (laser transmitter, the electronics, mount, photoreceiver, minicomputer, and station timing) and software (prediction program, calibration programs, and data handling and quick-look programs) and also considers calibration, station operation, and system performance.

  14. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  15. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  16. Space Applications Industrial Laser System (SAILS)

    NASA Astrophysics Data System (ADS)

    McCay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-10-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  17. Unsteady response of flow system around balance piston in a rocket pump

    NASA Astrophysics Data System (ADS)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  18. Laser Threat Analysis System (LTAS)

    NASA Astrophysics Data System (ADS)

    Pfaltz, John M.; Richardson, Christina E.; Ruiz, Abel; Barsalou, Norman; Thomas, Robert J.

    2002-11-01

    LTAS is a totally integrated modeling and simulation environment designed for the purpose of ascertaining the susceptibility of Air Force pilots and air crews to optical radiation threats. Using LTAS, mission planners can assess the operational impact of optically directed energy weapons and countermeasures. Through various scenarios, threat analysts are able to determine the capability of laser threats and their impact on operational missions including the air crew's ability to complete their mission effectively. Additionally, LTAS allows the risk of laser use on training ranges and the requirement for laser protection to be evaluated. LTAS gives mission planners and threat analysts complete control of the threat environment including threat parameter control and placement, terrain mapping (line-of-site), atmospheric conditions, and laser eye protection (LEP) selection. This report summarizes the design of the final version of LTAS, and the modeling methodologies implemented to accomplish analysis.

  19. Microoptoelectromechanical system (MOEMS) based laser

    SciTech Connect

    Hutchinson, Donald P.

    2003-11-04

    A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.

  20. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  1. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  2. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  3. Atmospheric propagation properties of various laser systems

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Glass, Sara; Kamer, Brian; Klennert, Wade L.; Hostutler, David A.

    2012-06-01

    Atmospheric propagation properties of various laser systems, including diode pumped alkali lasers (DPALs) and the Chemical Oxygen Iodine Laser (COIL), are of importance. However, there appears to be a lack of highly accurate transmission characteristics of these systems associated with their operating conditions. In this study laser propagation of the rubidium-based DPAL and the COIL has been simulated utilizing integrated cavity output spectroscopy. This technique allowed for the simulation of laser propagation approaching distances of 3 kilometers on a test stand only 35 cm long. The spectral output from these simulations was compared to the HITRAN database with excellent agreement. The spectral prole and proximity of the laser line to the atmospheric absorbers is shown. These low pressure spectral proles were then extrapolated to higher pressures using an in-house hyperne model. These models allowed for the comparison of proposed systems and their output spectral prole. The diode pumped rubidium laser at pressures under an atmosphere has been shown to interact with only one water absorption feature, but at pressures approaching 7 atmospheres the D1 transition may interact with more than 6 water lines depending on resonator considerations. Additionally, a low pressure system may have some slight control of the overlap of the output prole with the water line by changing the buer gases.

  4. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  5. The TileCal Laser Calibration System

    NASA Astrophysics Data System (ADS)

    Giangiobbe, Vincent; ATLAS Tile Calorimeter Group

    TileCal is the central hadronic calorimeter of the ATLAS detector operating at LHC. It is a sampling calorimeter whose active material is made of scintillating plastic tiles. Scintillation light is read by photomultipliers. A Laser system is used to monitor their gain stability. During dedicated calibration runs the Laser system sends via long optical fibers, a monitored amount of light simultaneously to all the ≈10000 photomultipliers of TileCal. This note describes two complementary methods to measure the stability of the photomultipliers gain using the Laser calibration runs. The results of validation tests are presented for both methods and theirrespective performances and limitations are discussed.

  6. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  7. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  8. Laser traffic control system upgrades for Maunakea

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Campbell, Randy; Cumming, Tom; Kackley, Russell; Kwok, Shui; Thomas, Jim

    2016-07-01

    The Maunakea Laser Traffic Control System (LTCS) has been in use since 2002 providing a mechanism to prevent the laser guide star or Rayleigh scatter from a laser propagated from one telescope from interfering with science observations at any of the other telescopes that share the mountain. LTCS has also been adopted at several other astronomical sites around the world to address that same need. In 2014 the stakeholders on Maunakea began the process of improving LTCS capability to support common observing techniques with enhanced First On Target (FoT) equity. The planned improvements include support for non-sidereal observing, laser checkout at zenith, dynamic field of view size, dithering, collision calculations even when a facility is not laser impacted, multiple alert severity levels, and software refactoring. The design of these improvements was completed in early 2015, and implementation is expected to be completed in 2016. This paper describes the Maunakea LTCS collaboration and the design of these planned improvements.

  9. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  10. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  11. Repetitive output laser system and method using target reflectivity

    DOEpatents

    Johnson, Roy R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target reflection.

  12. Long range laser traversing system

    NASA Technical Reports Server (NTRS)

    Caudill, L. O. (Inventor)

    1974-01-01

    The relative azimuth bearing between first and second spaced terrestrial points which may be obscured from each other by intervening terrain is measured by placing at one of the points a laser source for projecting a collimated beam upwardly in the vertical plane. The collimated laser beam is detected at the second point by positioning the optical axis of a receiving instrument for the laser beam in such a manner that the beam intercepts the optical axis. In response to the optical axis intercepting the beam, the beam is deflected into two different ray paths by a beam splitter having an apex located on the optical axis. The energy in the ray paths is detected by separate photoresponsive elements that drive logic networks for proving indications of: (1) the optical axis intercepting the beam; (2) the beam being on the left of the optical axis and (3) the beam being on the right side of the optical axis.

  13. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras.

    PubMed

    Wiegand, Christian; Herrmann, Michael; Bachtler, Sebastian; Klier, Jens; Molter, Daniel; Jonuscheit, Joachim; Beigang, René

    2010-03-15

    We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined.

  14. Highlights of recent balance of system research and evaluation

    SciTech Connect

    Thomas, M.G.; Stevens, J.W.

    1994-10-01

    The cost of most photovoltaic (PV) systems is more a function of the balance of system (BOS) components than the collectors. The exception to this rule is the grid-tied system whose cost is related more directly to the collectors, and secondarily to the inverter/controls. In fact, recent procurements throughout the country document that collector costs for roof-mounted, utility-tied systems (Russell, PV Systems Workshop, 7/94) represent 60% to 70% of the system cost. This contrasts with the current market for packaged stand-alone all PV or PV-hybrid systems where collectors represent only 25% to 35% of the total. Not only are the BOS components the cost drivers in the current cost-effective PV system market place, they are also the least reliable components. This paper discusses the impact that BOS issues have on component performance, system performance, and system cost and reliability. We will also look at recent recommended changes in system design based upon performance evaluations of fielded PV systems.

  15. Nutrient balances as indicators for sustainability of broiler production systems.

    PubMed

    Kratz, S; Halle, I; Rogasik, J; Schnug, E

    2004-04-01

    1. Flock balances of nitrogen, phosphorus, zinc and copper (N, P, Zn, Cu) were calculated in order to evaluate environmental effects of three different broiler production systems (intensive indoor, free range and organic). 2. Nutrient gain in birds per unit nutrient intake (retention) in intensive indoor production was higher than in free range and organic production. 3. Nutrient surplus relative to nutrient retention was higher in organic production than in free range and intensive indoor production. 4. The main reasons for differences in nutrient efficiency between intensive indoor, free range and organic production were duration of growth period, strain of broilers and feeding strategy. 5. The calculation of whole farm indicators (livestock density, N and P excretions per hectare of farmland) demonstrates how defining system boundaries affects the outcome of an evaluation: organic farms had the smallest livestock densities and the lowest N and P excretions per hectare of farmland. 6. In the efforts to reach a more holistic evaluation of agricultural production systems, the definition of adequate system boundaries must be discussed. In addition to nutrient balances, further indicators of sustainability, such as human and ecological toxicity, should be considered.

  16. Magnetic Suspension and Balance Systems: A Selected, Annotated Bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle Marie H.; Kilgore, Robert A.; Boyden, Richmond P.

    1983-01-01

    This publication, containing 206 entries, supersedes an earlier bibliography, NASA TM-80225 (April 1980). Citations for 18 documents have been added in this updated version. Most of the additions report results of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems, e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. Some of the additions address the problem of scaling from the relatively small size of existing systems to much larger sizes. The purpose of this bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of publication. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order.

  17. Automated retinal robotic laser system instrumentation

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Wright, Cameron H. G.; Jerath, Maya R.; Lewis, R. Stephen, II; Dillard, Bryan C.; Rylander, Henry G., III; Welch, Ashley J.

    1995-05-01

    Researchers at the University of Texas at Austin's Biomedical Engineering Laser Laboratory investigating the medical applications of lasers have worked toward the development of a retinal robotic laser system. The ultimate goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Researchers at the USAF Academy's Department of Electrical Engineering have also become involved with this research due to similar interests. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Work is ongoing to build a prototype system to simultaneously control lesion depth and placement. The instrumentation aspects of the prototype subsystems were presented at SPIE Conference 1877 in January 1993. Since then our efforts have concentrated on combining the lesion depth control subsystem and the lesion placement subsystem into a single prototype capable of simultaneously controlling both parameters. We have designed this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. An initial CALOSOS prototype design is provided. We have also investigated methods to improve system response time. The use of high speed non-standard frame rate CCD cameras and high speed local bus frame grabbers hosted on personal computers are being investigated. A review of system testing in vivo to date is provided in SPIE Conference proceedings 2374-49 (Novel Applications of Lasers and Pulsed Power, Dual-Use Applications of Lasers: Medical session).

  18. Laser beam control and diagnostic systems for the copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Bliss, E.S.; Peterson, R.L.; Salmon, J.T.; Thomas, R.A.

    1992-11-01

    The laser system described in the previous paper is used for experiments in which success requires tight tolerances on beam position, direction, and wavefront. Indeed, the optimum performance of the laser itself depends on careful delivery of copper laser light to the dye amplifiers, precise propagation of dye laser beams through restricted amplifier apertures, and accurate monitoring of laser power at key locations. This paper describes the alignment systems, wavefront correction systems, and laser diagnostics systems which ensure that the control requirements of both the laser and associated experiments are met. Because laser isotope separation processes utilize more than one wavelength, these systems monitor and control multiple wavelengths simultaneously.

  19. Fast Offset Laser Phase-Locking System

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog

  20. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  1. Modelling human balance using switched systems with linear feedback control

    PubMed Central

    Kowalczyk, Piotr; Glendinning, Paul; Brown, Martin; Medrano-Cerda, Gustavo; Dallali, Houman; Shapiro, Jonathan

    2012-01-01

    We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations. PMID:21697168

  2. Leptin: at the crossroads of energy balance and systemic inflammation

    PubMed Central

    Steiner, Alexandre A.; Romanovsky, Andrej A.

    2007-01-01

    In addition to playing a central role in energy homeostasis, leptin is also an important player in the inflammatory response. Systemic inflammation is accompanied by fever (less severe cases) or hypothermia (more severe cases). In leptin-irresponsive mutants, the hypothermia of systemic inflammation is exaggerated, presumably due to the enhanced production and cryogenic action of tumor necrosis factor (TNF)-α. Mechanisms that exaggerate hypothermia can also attenuate fever, particularly in a cool environment. Another common manifestation of systemic inflammation is behavioral depression. Along with the production of interleukin (IL)-1β, this manifestation is exaggerated in leptin-irresponsive mutants. The enhanced production of TNF-α and IL-1β may be due, at least in part, to insufficient activation of the anti-inflammatory hypothalamo-pituitary-adrenal axis by immune stimuli in the absence of leptin signaling. In experimental animals and humans that are responsive to leptin, suppression of leptin production under conditions of negative energy balance (e.g., fasting) can exaggerate both hypothermia and behavioral depression. Since these manifestations aid energy conservation, exaggeration of these manifestations under conditions of negative energy balance is likely to be beneficial. PMID:17275915

  3. New Electronic-Transition Laser Systems. Part 1. Electron Pumped Systems. Part 2. Chemically Pumped Systems

    DTIC Science & Technology

    1976-12-01

    laser development . There has not yet been a demonstration of gain in a visible chemical laser systems, and it appears unlikely that practical lasers of this type will be developed in the near future. Substantial progress has been made

  4. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  5. Analysis of reactor trips originating in balance of plant systems

    SciTech Connect

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W. )

    1990-09-01

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.

  6. Magnetic suspension and balance system advanced study, phase 2

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1990-01-01

    The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.

  7. Experimental nonlinear laser systems: Bigger data for better science?

    SciTech Connect

    Kane, D. M.; Toomey, J. P.; McMahon, C.; Noblet, Y.; Argyris, A.; Syvridis, D.

    2014-10-06

    Bigger data is supporting knowledge discovery in nonlinear laser systems as will be demonstrated with examples from three semiconductor laser based systems – one with optical feedback, a photonic integrated circuit (PIC) chaotic laser and a frequency shifted feedback laser system.

  8. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  9. Active And Autonomous Balancing System For Satellites Batteries

    NASA Astrophysics Data System (ADS)

    Mosset, E.

    2011-10-01

    Lithium-ion technology offers a great number of advantages, compared to the nickel-cadmium (Ni-Cd) and the nickel-hydrogen (NiH2) ones, and in return, it presents only one major constraint. This unique constraint of lithium-ion technology is linked to the lack of an overcharge mechanism that forbids the overcharge of the lower energy cells, in order to fully charge the higher ones. That means that end of charge sequence shall be carefully controlled, otherwise the lithium-ion cell voltage rises endless (like a capacitor) generating Li-ion plating on the negative electrode leading to a premature ageing (capacity loss & internal resistance increase) or a thermal runaway beyond a threshold. So in order to maximize the energy stored into the cells connected in series and to avoid any risk of overcharge a balancing system is recommended to equalize the state of charge from cell to cell within a cell serial string. Saft is familiar with such systems for various applications and in particular for space applications. However, in order to reduce its cost and improve its efficiency, Saft carry on seeking for innovating solutions. In this frame, a very simple and efficient balancing circuit have been identified which is based on a flight proven component.

  10. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  11. Laser tracking system with automatic reacquisition capability.

    PubMed

    Johnson, R E; Weiss, P F

    1968-06-01

    A laser based tracking system is described that has the capability of automatically performing an acquisition search to locate the target. This work is intended for precision launch phase tracking of the Saturn V launch vehicle. System tracking accuracies limited only by the atmosphere have been demonstrated, as has acquisition over a 1 degrees x 1 degrees field of view.

  12. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  13. Injection mode-locking Ti-sapphire laser system

    DOEpatents

    Hovater, James Curtis; Poelker, Bernard Matthew

    2002-01-01

    According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.

  14. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  15. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    PubMed Central

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  16. Increasing cropping system diversity balances productivity, profitability and environmental health.

    PubMed

    Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.

  17. Sustaining high performance: dynamic balancing in an otherwise unbalanced system.

    PubMed

    Wolf, Jason A

    2011-01-01

    As Ovid said, "There is nothing in the whole world which is permanent." It is this very premise that frames the discoveries in this chapter and the compelling paradox it has raised. What began as a question of how performance is sustained, unveiled a collection of core organizational paradoxes. The findings ultimately suggest that sustained high performance is not a permanent state an organization achieves, but rather it is through perpetual movement and dynamic balance that sustainability occurs. The idea of sustainability as movement is predicated on the ability of organizational members to move beyond the experience of paradox as an impediment to progress. Through holding three critical "movements"--agile/consistency, collective/individualism, and informative/inquiry--not as paradoxical, but as active polarities, the organizations in the study were able to transcend paradox, and take active steps to continuous achievement in outperforming their peers. The study, focused on a collection of hospitals across the Unites States, reveals powerful stories of care and service, of the profound grace of human capacity, and of clear actions taken to create significant results. All of this was achieved in an environment of great volatility, in essence an unbalanced system. It was the discovery of movement and ultimately of dynamic balancing that allowed the organizations to in this study to move beyond stasis to the continuous "state" of sustaining high performance.

  18. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  19. Laser system with partitioned prism

    SciTech Connect

    Nettleton, J. E.; Barr, D. N.

    1985-03-26

    An array of optical frequency-sensitive elements such as diffraction gratings or interference filters are arranged in a row, and the optical path of the laser cavity can be directed to include one of these elements. A partitioned optical prism consisting of a triangular portion and one or more paralleogramatic portions are used to direct the path. Between the portions are piezoelectric elements which, when energized, expand to provide an air gap between the portions and to allow total reflection of an optical ray at the surface of the prism next to the gap.

  20. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  1. A review of Magnetic Suspension and Balance Systems

    NASA Technical Reports Server (NTRS)

    Boyden, Richmond P.

    1988-01-01

    This paper traces the development of Magnetic Suspension and Balance Systems (MSBSs) for use in wind tunnels. The expression MSBS implies a system that can both suspend a model and also measure the forces and moments acting on the model. This avoids the need for any mechanical support of the model. An MSBS uses electromagnets located outside the test section walls to create magnetic fields inside the test section. Measurement of the electrical current flowing in each of the electromagnets can be used to determine the forces and moments acting on the suspended model. An MSBS is capable of supporting a model with an internal magnetized core subject to gravity, aerodynamic, and inertial loads. The model must have a core made of either a permanent magnet, magnetized soft iron, or a solenoid. The position of the suspended body is inherently unstable. A closed-loop control system which includes a position sensing system has to control the position of the body by controlling the applied magnetic fields. This paper includes a discussion of all the known MSBSs and the outlook for larger systems.

  2. Energy Balance for Random Vibrations of Piecewise-Conservative Systems

    NASA Astrophysics Data System (ADS)

    IOURTCHENKO, D. V.; DIMENTBERG, M. F.

    2001-12-01

    Vibrations of systems with instantaneous or stepwise energy losses, e.g., due to impacts with imperfect rebounds, dry friction forces(s) (in which case the losses may be treated as instantaneous ones by appropriate introduction of the response energy) and/or active feedback “bang-bang” control of the systems' response are considered. Response of such (non-linear) systems to a white-noise random excitation is considered for the case where there are no other response energy losses. Thus, a simple linear energy growth with time between “jumps” is observed. Explicit expressions for the expected response energy are derived by direct application of the stochastic differential equations calculus, which contains the expected time interval between two consecutive jumps. The latter may be predicted as a solution to the relevant first-passage problem. Perturbational analysis of the relevant PDE for this problem for a certain vibroimpact system demonstrated the possibility for using the solution to the corresponding free vibration problem as a zero order approximation. The method is applied to an s.d.o.f. system with a feedback inertia control, designed according to a certain previously introduced “generalized reversed swings law”. Extensive Monte-Carlo simulation results are presented for this system as well as for several previously analyzed ones: system with impacts; system with dry friction; system with stiffness control; pendulum with controlled length. The results are compared with those due to the asymptotic stochastic averaging approach. Both methods are shown to provide adequate accuracy far beyond the expected applicability range of the asymptotic approach (which requires both excitation intensity and losses to be small), with direct energy balance being generally superior.

  3. Laser-SPS systems analysis and environmental impact assessment

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The systems feasibility and environmental impact of replacing the microwave transmitters on the Satellite Power System with laser transmitters are examined. The lasers suggested are two molecular-gas electric-discharge lasers (EDL's), namely the CO and CO2 lasers. Calculations are made on system efficiency, atmospheric transmission efficiency, and laser beam spreading. It is found that the present satellite concept using lasers is far too inefficient and massive to be economically viable. However, the safety issues associated with laser power transmission appear tractable, and no effects could be identified which present a real danger of serious injury to the environment, although certain phenomena deserve closer scrutiny.

  4. The global light system laser station prototype

    NASA Astrophysics Data System (ADS)

    Hunt, Patrick R.

    2015-08-01

    We describe the design and fabrication of a prototype Global Light System (GLS) laser station for the JEM-EUSO project. The GLS will consist of a network of ground-based Ultraviolet (UV) light-emitting diodes (LEDs) and steered lasers to monitor and calibrate the cosmic ray detector planned for install on the International Space Station (ISS). The GLS units will generate optical signatures in the atmosphere that are comparable to tracks from cosmic ray extensive air showers (EASs). Unlike an EAS, the number, time, energy, location and direction (for lasers) of GLS events can be specified as JEM-EUSO passes 400 km overhead. Laser tracks from the GLS prototype will be recorded by prototype detectors in ground-to-ground tests. Distant tracks with low angular speed are of particular interest because these are the types of EAS tracks that will be measured by JEM-EUSO. To do these ground-to-ground tests, the prototype detectors will need to measure the laser through the atmosphere at low elevation viewing angles. The beam energy can be adjusted from 1 to 90 mJ to compensate for this additional atmospheric attenuation. The frequency-tripled Nd:YAG laser produces 355 nm (7 ns pulse) light. This wavelength is near the center of the UV EAS fluorescence spectrum. The system is housed in a utility trailer that can be transported by a small truck for domestic campaigns or shipped in an industry standard 20 foot container for global deployment. In operation mode, the laser platform inside the trailer is isolated mechanically to maintain beam pointing accuracy. A retractable two stage steering head can point in any direction above the horizon. A slip ring eliminates cable wrap problems. The GLS prototype will be used to test the EUSO-TA detector and will also be used in preflight tests of the EUSO-balloon payload planned for a super pressure balloon mission.

  5. COHERENT LASER VISION SYSTEM (CLVS) OPTION PHASE

    SciTech Connect

    Robert Clark

    1999-11-18

    The purpose of this research project was to develop a prototype fiber-optic based Coherent Laser Vision System (CLVS) suitable for DOE's EM Robotic program. The system provides three-dimensional (3D) vision for monitoring situations in which it is necessary to update the dimensional spatial data on the order of once per second. The system has total immunity to ambient lighting conditions.

  6. Kinetic modelling of krypton fluoride laser systems

    SciTech Connect

    Jancaitis, K.S.

    1983-11-01

    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  7. Laser beam shaping and packaging system

    NASA Astrophysics Data System (ADS)

    Luo, Daxin; Zhao, Baiqin

    2012-10-01

    This paper presents a semiconductor laser beam shaping system, that can collimate the irradiance profile effectively and package the laser diode(LD) at the same time. Due to the semiconductor LD is a kind of line source, a particular ellipsoidal lens is designed after both the fast-axis and the slow-axis of the laser beam analyzed. Geometrical optics analysis based on the ray tracing method is done and the formulas to calculate the shape of the lens are given. Both the theoretical and experimental result show that the laser beam system works effectively; the divergence angle is reduced to less than 0.5 degree in the fast-axial direction and 1.8 degree in the slow-axial direction. In addition, it is the same process that makes the laser beam shaper and packages the LD by using epoxy resin, which simplifies the manufacturing process and reduces the LD volume greatly. Because of the advantages of small volume, low-cost, high rigidity and easy fabrication, the shaper is of great value in the field of semiconductor LD applications.

  8. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  9. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  10. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  11. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  12. Investigations of a Dual Seeded 1178 nm Raman Laser System

    DTIC Science & Technology

    2016-01-14

    20 W. Because of the linewidth broadening, a co-pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application...pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth. Keywords: Raman...resonator, linewidth broadening, fiber Bragg grating bandwidth 1. INTRODUCTION Current narrow linewidth sodium guidestar lasers are either

  13. Method and system for powering and cooling semiconductor lasers

    SciTech Connect

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  14. Photovoltaic balance-of-system designs and costs at PVUSA

    NASA Astrophysics Data System (ADS)

    Reyes, A. B.; Jennings, C.

    1995-05-01

    This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA's main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA's key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

  15. Photovoltaic balance-of-system designs and costs at PVUSA

    SciTech Connect

    Reyes, A.B.; Jennings, C.

    1995-05-01

    This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA`s main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

  16. Intraband Auger processes and simple models of the ionization balance in semiconductor quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Pan, Janet L.

    1994-04-01

    The importance of intraband Auger processes in determining the ionization balance in quantum dots is reported. The numerically inexpensive binary-encounter model for a Coulomb collision between identical particles is found to be a good estimator of the intraband Auger rates out of a quantum dot. Intraband and the conventional interband Auger processes differ in that the former involve only intraband transitions whereas the latter always involve a radiationless interband transition. As such, intraband Auger rates do not involve the evaluation of the very small overlap integral of a conduction band with a valence band Bloch wave function and are thus much larger than interband Auger rates, especially for large-band-gap semiconductors like GaAs. Though intraband Auger processes are not strong enough to establish a quasiequilibrium within the entire conduction band at the room-temperature free-carrier concentrations (1016 cm-3) and bound energy separations (greater than an LO phonon energy) commonly assumed in the quantum-dot literature, they are capable of placing almost as many bound carriers in states near the band edge as would be predicted erroneously by a quasiequilibrium Fermi-Dirac distribution. Such large bound state occupations are important for quantum-dot laser design. A sufficient condition for a quasiequilibrium to exist within all of an energy (conduction or valence) band is found to be the existence of many inverse Auger processes faster than interband spontaneous emission, which occurs for total (bound plus free) electron concentrations greater than 5×1017 cm-3 at room temperature in 100 Å radius GaAs/Al0.3Ga0.7As quantum dots whose centers are separated by 400 Å. The nonlocal thermodynamic equilibrium populations in quantum dots can be understood from a simple model in which states connected by fast Auger or phonon processes are in Saha-Boltzmann equilibrium. All other states have occupation factors which are determined by the ratio of intraband

  17. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  18. Transition of the BELLA PW laser system towards a collaborative research facility in laser plasma science

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Evans, Dave; Gonsalves, Anthony J.; Kirkpatrick, Mark; Magana, Art; Mannino, Greg; Mao, Hann-Shin; Nakamura, Kei; Riley, Joe R.; Steinke, Sven; Sipla, Tyler; Syversrud, Don; Ybarrolaza, Nathan; Leemans, Wim P.

    2017-03-01

    The advancement of Laser-Plasma Accelerators (LPA) requires systematic studies with ever increasing precision and reproducibility. A key component of such a research endeavor is a facility that provides reliable, well characterized laser sources, flexible target systems, and comprehensive diagnostics of the laser pulses, the interaction region, and the produced electron beams. The Berkeley Lab Laser Accelerator (BELLA), a PW laser facility, now routinely provides high quality focused laser pulses for high precision experiments. A description of the commissioning process, the layout of the laser systems, the major components of the laser and radiation protection systems, and a summary of early results are given. Further scientific plans and highlights of operational experience that serve as the basis for transition to a collaborative research facility in high-peak power laser-plasma interaction research are reviewed.

  19. Demonstration of high sensitivity laser ranging system

    NASA Technical Reports Server (NTRS)

    Millar, Pamela S.; Christian, Kent D.; Field, Christopher T.

    1994-01-01

    We report on a high sensitivity semiconductor laser ranging system developed for the Gravity and Magnetic Earth Surveyor (GAMES) for measuring variations in the planet's gravity field. The GAMES laser ranging instrument (LRI) consists of a pair of co-orbiting satellites, one which contains the laser transmitter and receiver and one with a passive retro-reflector mounted in an drag-stabilized housing. The LRI will range up to 200 km in space to the retro-reflector satellite. As the spacecraft pair pass over the spatial variations in the gravity field, they experience along-track accelerations which change their relative velocity. These time displaced velocity changes are sensed by the LRI with a resolution of 20-50 microns/sec. In addition, the pair may at any given time be drifting together or apart at a rate of up to 1 m/sec, introducing a Doppler shift into the ranging signals. An AlGaAs laser transmitter intensity modulated at 2 GHz and 10 MHz is used as fine and medium ranging channels. Range is measured by comparing phase difference between the transmit and received signals at each frequency. A separate laser modulated with a digital code, not reported in this paper, will be used for coarse ranging to unambiguously determine the distance up to 200 km.

  20. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming.

  1. Redundant Strapdown Laser Gyro Navigation System

    NASA Technical Reports Server (NTRS)

    Mcpherson, B. W.; Walls, B. F.; White, J. B.

    1976-01-01

    For the last several years, NASA has pursued the development of low-cost high-reliability inertial navigation systems that would satisfy a broad spectrum of future space and avionics missions. Two specific programs have culminated in the construction of a Redundant Strapdown Laser Gyro Navigation System. These two programs were for development of a space ultrareliable modular computer (SUMC) and a redundant laser gyro inertial measurement unit (IMU). The SUMC is a digital computer that employs state-of-the-art large-scale integrated circuits configured in a functional modular breakdown. The redundant laser gyro IMU is a six-pack strapdown sensor package in a dodecahedron configuration which uses six laser gyros to provide incremental angular positions and six accelerometers for linear velocity outputs. The sensor arrangement allows automatic accommodation of two failures; a third failure can be tolerated provided it can be determined. The navigation system also includes redundant power supplies, built-in test-equipment (BITE) circuits for failure detection, and software which provides for navigation, redundancy management, and automatic calibration and alignment.

  2. Preliminary comparison of laser and solar space power systems

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Tepper, W. D.; Conway, E. J.; Humes, D. H.

    1983-01-01

    Four laser receiver systems are compared to onboard solar photovoltaic power generation for spacecraft electrical requirements. The laser photovoltaic and laser MHD receivers were found to be lighter than a comparable planar solar photovoltaic system. The laser receiver also shows less drag at lower altitudes. Panel area is also reduced for the laser receiver allowing fewer Shuttle trips for construction. Finally, it is shown that a 1 megawatt laser and receiver system might be constructed with less weight than a comparable planar solar photovoltaic system.

  3. Spaceborne CO2 laser communications systems

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. H.; Mcavoy, N.; Johnson, E. H.; Goodwin, F. E.; Peyton, B. J.

    1975-01-01

    Projections of the growth of earth-sensing systems for the latter half of the 1980's show a data transmission requirement of 300 Mbps and above. Mission constraints and objectives lead to the conclusion that the most efficient technique to return the data from the sensing satellite to a ground station is through a geosynchronous data relay satellite. Of the two links that are involved (sensing satellite to relay satellite and relay satellite to ground), a laser system is most attractive for the space-to-space link. The development of CO2 laser systems for space-to-space applications is discussed with the completion of a 300 Mpbs data relay receiver and its modification into a transceiver. The technology and state-of-the-art of such systems are described in detail.

  4. Balanced dynamics of mesoscale vortices produced in simulated convective systems

    SciTech Connect

    Davis, C.A.; Weisman, M.L. )

    1994-07-01

    Long-lived, mesoscale convective systems are known to occasionally produce Mesoscale Convective Vortices (MCVs) in the lower to middle troposphere with horizontal scales averaging 100-200 km. The formation of MCVs is investigated using fully three-dimensional cloud model simulations of idealized, Mesoscale Convective Systems (MCSs), initialized with a finite length line of unstable perturbations. In agreement with observations, the authors find that environmental conditions favoring MCV formation exhibit weak vertical shear confined to roughly the lowest 3 km, provided the Coriolis parameter (f) is chosen appropriate for midlatitudes. With f = 0, counterrotating vortices form on the line ends, positive to the north and negative to the south with westerly environmental shear. The MCV and end vortices are synonymous with anomalies of potential vorticity (PV). Using PV inversion techniques, the authors show that the vortices are nearly balanced, even with f = 0. However, the formation of mesoscale vortices depends upon the unbalanced, sloping, front-to-rear and rear inflow circulations of the mature squall line. End vortices form partly from the tilting of ambient shear but more from the tilting of the perturbation horizontal vorticity inherent in the squall line circulation. With the addition of earth's rotation, an asymmetric structure results with the cyclonic vortex dominant on the northern end of the line.

  5. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr.

    PubMed

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-06-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.

  6. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr

    PubMed Central

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-01-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks. PMID:23822327

  7. Quantification of the Balance Error Scoring System with Mobile Technology

    PubMed Central

    Alberts, Jay L.; Thota, Anil; Hirsch, Joshua; Ozinga, Sarah; Dey, Tanujit; Schindler, David D.; Koop, Mandy Miller; Burke, Daniel; Linder, Susan M.

    2015-01-01

    Purpose The aim of this project was to develop a biomechanically based quantification of the Balance Error Scoring System (BESS) using data derived from the accelerometer and gyroscope of a mobile tablet device. Methods Thirty-two healthy youth and adults completed the BESS while an iPad was positioned at the sacrum. Data from the iPad data was compared to position data gathered from a 3D motion capture system. Peak-to-peak (P2P), normalized path length (NPL), and root mean squared (RMS) were calculated for each system and compared. Additionally, a 95% ellipsoid volume, iBESS volume, was calculated using center of mass (COM) movements in the anterior-posterior (AP), mediolateral (ML), and trunk rotation planes of movement to provide a comprehensive, 3-dimensional metric of postural stability. Results Across all kinematic outcomes, data from the iPad were significantly correlated with the same outcomes derived from the motion capture system (Rho range: 0.37- 0.94, p<0.05). The iBESS volume metric was able to detect a difference in postural stability across stance and surface, showing a significant increase in volume in increasingly difficult conditions, while traditional error scoring was not as sensitive to these factors. Conclusions The kinematic data provided by the iPad is of sufficient quality relative to motion capture data to accurately quantify postural stability in healthy young adults. The iBESS volume provides a more sensitive measure of postural stability than error scoring alone, particularly in conditions 1 and 4, which often suffer from floor effects, and condition 5, which can experience ceiling effects. The iBESS metric is ideally suited for clinical and in the field applications in which characterizing postural stability is of interest. PMID:26378948

  8. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Discharge energy balance in the nitrogen-containing active medium of an electron-beam-controlled CO laser

    NASA Astrophysics Data System (ADS)

    Dolinina, V. I.; Koterov, V. N.; Pyatakhin, Mikhail V.; Urin, B. M.

    1989-02-01

    Numerical methods were used to investigate theoretically the dynamics of the energy balance of a discharge in a CO-N2 mixture, taking into account the mutual influence of the distributions of the electron energy and of the populations of the molecules over the vibrational levels. It was shown that this influence plays a decisive part in substantially redistributing the pump energy between the vibrational levels of the CO and N2 molecules in favor of the N2 molecules. A stabilizing action of the nitrogen on the thermal regime of the CO laser-active medium was discovered and the range of optimal CO:N2 ratios was determined.

  9. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  10. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  11. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  12. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  13. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  14. Precision Laser Transmission Spectroscopy: Applications to Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Tanner, Carol; Li, Frank; Hwang, Ching-Ting; Schafer, Robert; Ruggiero, Steven

    2011-05-01

    We describe the implementation of precision laser transmission spectroscopy (LTS) for determining the size, shape, and number of nanoparticles in suspension. Our apparatus incorporates a tunable laser and balanced optical system, which measures light transmission over a wide wavelength range (210-2300 nm) with high precision and sensitivity. Spectral inversion is employed to determine both the particle size distribution and the absolute number density of particles ranging in diameter from 5 to 3000 nm with ~3 nm resolution. With respect to density, the sensitivity or our measurement system ranges from ~1000 particles/mL up to 1010 particles/mL (5×10-8 vol.% to 0.5 vol. %). The size range of applicability is comparable to that of dynamic light scattering (DLS) but with approximately six orders of magnitude higher sensitivity and five times the resolution. The technique also allows us to determine the length and width of rod shaped particles including biological objects. Currently, LTS is being applied as a tool to investigate various biological and non-biological nanoparticle systems including: metals, oxides, carbon, organic materials, proteins, viruses, bacteria, liposomes, DNA, etc. We acknowledge the support of the University of Notre Dame Office of the Vice President for Research and NDnano/MIND.

  15. Performance results on the laser portion of the Keck laser guide star system

    SciTech Connect

    Cooke, J B; Danforth, P M; Erbert, G V; Feldman, M; Friedman, H W; Gavel, D T; Jenkins, S L; Jones, H E; Kanz, V K; Kuklo, T; Newman, M J; Pierce, E L; Presta, R W; Salmon, J T; Thompson, G R; Wong, N J

    1998-09-29

    The Laser Guide Star (LGS) system for the Keck II, 10 m telescope consists of two separate but interconnected systems, the laser and the adaptive optics bench. The laser portion of the LGSl is a set of five frequency doubled YAG lasers pumping a master oscillator-power amplifier dye chain to produce up to 30 W of 589 p at 26 kHz of tuned light. Presently the laser system has been set up at the Keck facility in Waimea, HI and is undergoing test and evaluation. When it will be set up on the Keck II telescope, the pump lasers, dye master oscillator and associated control equipment will be located on the dome floor and the dye laser amplifiers, beam control system and diagnostics will be mounted directly on the telescope as shown in Fig. 1, Extensive use of fiber optics for both transmission of the oscillator pulse and the pump laser light has been used.

  16. Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.

    SciTech Connect

    Augustoni, Arnold L.

    2003-08-01

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  17. Energy balance between vaporization and heating in the absorption of CO2 laser radiation by water

    NASA Astrophysics Data System (ADS)

    Mueller, Robert E.; Yam, Henry; Duley, Walter W.

    1997-03-01

    The use of lasers in industrial and medical procedures continues to increase. A fundamental question in many laser- material interactions is how is the incident laser power transferred to the target material, and how is the power distributed among the phases (solid, liquid, vapor) of the material. This paper describes the results of a fundamental calorimetry experiment to determine the fraction of incident carbon-dioxide laser energy which is used to vaporize water from a target volume, and the fraction of power used to simply heat the remaining liquid. The experiment was performed over a range of incident laser powers from 60 to 300 W. Over most of the range of incident power, the fraction used to vaporize water is 30 to 35 percent. This fraction increases at the lowest powers.

  18. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  19. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  20. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  1. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1993-01-01

    Work on the development of an interferometric system for the purpose of absolute length determination commenced in January of this year. Our goal is to develop a system capable of measurements on the order of one meter with an accuracy of 1 part in 10 or greater. A modified Michelson bread board with stabilized laser diode source was assembled. Some preliminary measurements began using the tunable Santek laser in an FM modulation scheme. During this same period a literature search yielded a paper by Suematsu and Takeda which discusses a promising fourier transform technique for real time data analysis. We are in the process of evaluating this technique while we continue to change and upgrade the system configuration.

  2. Testing Postural Stability: Are the Star Excursion Balance Test and Biodex Balance System Limits of Stability Tests Consistent?

    PubMed

    Glave, A Page; Didier, Jennifer J; Weatherwax, Jacqueline; Browning, Sarah J; Fiaud, Vanessa

    2016-01-01

    There are a variety of options to test postural stability; however many physical tests lack validity information. Two tests of postural stability - the Star Excursion Balance Test (SEBT) and Biodex Balance System Limits of Stability Test (LOS) - were examined to determine if similar components of balance were measured. Healthy adults (n=31) completed the LOS (levels 6 and 12) and SEBT (both legs). SEBT directions were offset by 180° to approximate LOS direction. Correlations and partial correlations controlling for height were analyzed. Correlations were significant for SEBT 45° and LOS back-left (6: r=-0.41; 12: r=-0.42; p<0.05), SEBT 90° and LOS 6 left (r=-0.51, p<0.05), SEBT 135(o) and LOS 6 front-left (r=-0.53, p<0.05), SEBT overall and LOS 6 overall (r=-0.43, p<0.05). Partial correlations were significant for SEBT 90° and LOS 6 left (rSEBT,LOS·H=-0.45, p<0.05) and SEBT 135° and LOS 6 front-left (rSEBT,LOS·H=-0.51, p<0.05), and SEBT overall and LOS 6 overall (rSEBT,LOS·H=-0.37, p<0.05). These findings indicate the tests seem to assess different components of balance. Research is needed to determine and define what specific components of balance are being assessed. Care must be taken when choosing balance tests to best match the test to the purpose of testing (fall risk, athletic performance, etc.).

  3. Commercialization plan laser-based decoating systems

    SciTech Connect

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  4. Three-component laser anemometer measurement systems

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  5. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  6. Potential benefits of magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.; Dress, David A.; Kilgore, Robert A.

    1987-01-01

    The potential of Magnetic Suspension and Balance Systems (MSBS) to improve conventional wind tunnel testing techniques is discussed. Topics include: elimination of model geometry distortion and support interference to improve the measurement accuracy of aerodynamic coefficients; removal of testing restrictions due to supports; improved dynamic stability data; and stores separation testing. Substantial increases in wind tunnel productivity are anticipated due to the coalescence of these improvements. Specific improvements in testing methods for missiles, helicopters, fighter aircraft, twin fuselage transports and bombers, state separation, water tunnels, and automobiles are also forecast. In a more speculative vein, new wind tunnel test techniques are envisioned as a result of applying MSBS, including free-flight computer trajectories in the test section, pilot-in-the-loop and designer-in-the-loop testing, shipboard missile launch simulation, and optimization of hybrid hypersonic configurations. Also addressed are potential applications of MSBS to such diverse technologies as medical research and practice, industrial robotics, space weaponry, and ore processing in space.

  7. Solar, Install, Mount, Production, Labor, Equipment Balance of Systems

    SciTech Connect

    Gentry, Russell; Al-Haddad, Tristan; Valdes, Francisco; Caravati, Kevin; Goodman, Joseph

    2015-08-27

    The GTRI led project team in partnership with the DOE, universities, and numerous industry leaders, have advanced the mission of the DOE EERE, the Solar Energy Technologies Program, and the SunShot Initiative by accelerating the research, development, and demonstration of solar PV technologies that provide Extreme Balance of Systems Cost Reductions (BOS-X). The research produced 132 design concepts, resulting in 19 invention disclosures, five patent applications, four 90% pre-commercial designs, and three licensed technologies. Technology practice rights were obtained by an industry partner, and a new solar commercial start-up company was launched in Atlanta as a result of this project. Innovations in residential, commercial, and utility scale balance of systems technologies were realized through an unprecedented multi-disciplinary university/industry partnership with over 50 students and 24 faculty members that produced 18 technical publications, a PhD thesis, and two commercially deployed operating prototypes. The technical effectiveness and economic feasibility of the multidisciplinary systems based approach executed by the project team was realized through 1) a comprehensive evaluation of industry, regulatory, and public stakeholder requirements; 2) numerous industry/student/faculty engagements in design studios, technical conferences, and at solar PV installation sites; 3) time and motion studies with domain experts that provided technical data and costs for each phase and component of the solar PV installation processes; 4) extensive wind tunnel and systems engineering modeling; and 5) design, construction, and demonstration of the selected technologies in the field at high profile sites in Atlanta. The SIMPLE BOS project has benefitted the public in the following ways: • Workforce development: The launch of a start-up company to commercialize the DOE funded SIMPLE BoS designs has directly created 9 new jobs in the State of Georgia. As of November 2014, the

  8. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  9. High power laser workover and completion tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  10. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  11. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  12. Multiple beam laser cell micropatterning system

    NASA Astrophysics Data System (ADS)

    Narasimhan, Sriram V.; Goodwin, Richard L.; Borg, Thomas K.; Dawson, Darren M.; Gao, Bruce Z.

    2004-10-01

    The various cell mechanisms, including cell-cell interactions, in native tissue could be better understood by engineering a cell coculture with a micro environment that closely mimics the natural cell arrangement. To this end, we developed a cell micropatterning system that uses a weakly focused laser beam to trap individual cells at the center of the beam and propel them forward onto an appropriate substrate. The optimal methods of introducing different cell types to be patterned into the patterning system and preventing cells from randomly falling onto the pattern were issues to be addressed with this system. Here, we report the development of a multi-chamber, multi-beam laser cell micropatterning system, in which the delivery of specific cells into the beam can be controlled using secondary laser beams. This permits consecutive creation of a pattern involving multiple cell types at specific relative positions. As examples, various patterns of fibroblasts have been created on collagen coated coverslips. In addition, two asynchronously beating clusters of cardiomyocytes were connected with fibroblasts of cardiac origin, yielding a deeper insight into the electrophysiological role of fibroblasts in conduction of the action potentials among cardiomyocytes.

  13. ACTD Laser Line Scan System

    DTIC Science & Technology

    1997-09-30

    communications with a computer system in the MILVAN. For the ACTD a single board computer dedicated to the EOID Sensor will be inserted into GEM. This... single board computer will provide real time control of the EOID Sensor. Since the bandwidth of the microwave data link is smaller than the data rate of...EOID Sensor image data will be maintained in a circular buffer on the single board computer in GEM. Upon command, full resolution data from any segment

  14. Performance of laser based optical imaging system

    NASA Astrophysics Data System (ADS)

    Shah, Dhrupesh S.; Banerjee, Arup; Vora, Anup; Biswas, Amiya; Patel, Naimesh; Kurulkar, Amit; Dutt, Ashutosh

    2016-05-01

    Day night imaging application requires high dynamic range optical imaging system to detect targets of interest covering mid-day (>32000 Lux)[1], and moonless night ( 1mLux)[1] under clear sky- (visibility of >10km, atmospheric loss of <1dB/km) and hazy (visibility of >500m, atmospheric loss of >15dB/Km) conditions. Major governing factors for development of such camera systems are (i) covert imaging with ability to identify the target, (ii) imaging irrespective to the scene background, (iii) reliable operation , (iv) imaging capabilities in inclement weather conditions, (v) resource requirement vs availability power & mass, (vi) real-time data processing, (vii) self-calibration, and (viii) cost. Identification of optimum spectral band of interest is most important to meet these requirements. Conventional detection systems sensing in MWIR and LWIR band has certain draw backs in terms of target detection capabilities, susceptibility to background and huge thermo-mechanical resource requirement. Alternatively, range gated imaging camera system sensing in NIR/SWIR spectrum has shown significant potential to detect wide dynamic range targets. ToF Camera configured in NIR band has certain advantages in terms of Focal Plane Assembly (FPA) development with large format detectors and thermo-mechanical resource requirement compared to SWIR band camera configuration. In past, ToF camera systems were successfully configured in NIR spectrum using silicon based Electron Multiplying CCD (EMCCD), Intensifier CCD (ICCD) along with Gating device and pulsed laser source having emission in between 800nm to 900nm. However, these systems have a very low dynamic range and not suitable for clear sky mid-day conditions. Recently silicon based scientific grade CMOS image sensors have shown significant improvement in terms of high NIR responsivity and available in bigger formats (5MP or more), adequate Full well capacity for day time imaging (>30Ke), very low readout noise (<2e) required for

  15. CO2 laser ranging systems study

    NASA Technical Reports Server (NTRS)

    Filippi, C. A.

    1975-01-01

    The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.

  16. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  17. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  18. Laser Obstacle Detection System Flight Testing

    DTIC Science & Technology

    2003-09-01

    without hazardous effect or adverse biological changes in the eye for a repetitively pulsed laser is the more restrictive of several MPE calculations...crossed above them. The LODS system detection ranges appeared not to be effected by sunlight from behind the aircraft. - Raw Data and Safety Line ...obstacles - Raw data and safety line detection ranges were similar to those at wire set 1 (900-1000 meters) and did not appear to be effected by the

  19. BRIEF COMMUNICATIONS: Experimental study of the energy balance in the interaction of a pulsed CO2 laser with metal and insulating targets in air

    NASA Astrophysics Data System (ADS)

    Babaeva, N. A.; Vas'kovskiĭ, Yu M.; Rovinskiĭ, R. E.; Ryabinkina, V. A.

    1991-09-01

    Measurements were made of components of the energy balance in the interaction of pulsed CO2 laser radiation with Dural, glass, quartz, ebonite, and Plexiglas in air at atmospheric pressure. At laser energy densities between 1 and 20 J/cm2 and in the spectral range 0.2-7 μm, the re-emission of radiation by the laser plasma was found to be less than 1 %. At energy densities exceeding 10 J/cm2, up to 90% of the laser energy failed to reach the irradiated surface.

  20. Laser Research and Development Studies for Laser Guide Star Systems

    SciTech Connect

    Pennington, D.; Beach, R.; Ebbers, C.; Erbert, G.; Nguyen, H.; Page, R.; Payne, S.; Perry, M.

    2000-02-23

    In this paper we consider two CW solid state laser approaches to a 589 nm LGS system. Both are based on the technique of sum-frequency generation, but differ in the cavity architecture. Both technologies are very promising and are worth of further consideration. This preliminary proposal is intended to encompass both designs. A down select shall be performed early in the project execution to focus on the most promising option. The two design options consist of: (1) A dual-frequency resonator with intra-cavity doubling in LB0 offers the promise of a simple architecture and may scale more easily to high power. This design has been shown to be highly reliable, efficient and high power when used in frequency-doubled Nd:YAG lasers for programs at LLNL and in commercial products. The challenge in this design is the demonstration of a high power13 18 nm oscillator with adequate suppression of the 1064 nm line. (2) A MOPA based design uses commercial low power oscillators to produce both wavelengths, then amplifies the wavelengths before doubling. This design requires the demonstration of a 1318 nm amplifier, though the design is scaled from a kW CW amplifier already delivered to a customer at a different wavelength. The design must also demonstrate high power scaling of sum-frequency generation in the relatively new nonlinear material, PPLN. The first step in the process would be to further evaluate the two conceptual options for technical feasibility, cost and constructability. Then a down selection to one design would be conducted. Finally, R&D on that design would then proceed. Minimal testing should be required for this selection. The majority of the funding received would be allocated to development of the design selected.

  1. Mathematical model for light scanning system based on circular laser

    NASA Astrophysics Data System (ADS)

    Xu, Peiquan; Yao, Shun; Lu, Fenggui; Tang, Xinhua; Zhang, Wei

    2005-11-01

    A novel light scanning system based on circular laser trajectory for welding robot is developed. With the help of image processing technique, intelligent laser welding could be realized. According to laser triangulation algorithm and Scheimpflug condition, mathematical model for circular laser vision is built. This scanning system projects circular laser onto welded seams and recovers the depth of the welded seams, escapes from shortcomings of less information, explains ambiguity and single tracking direction inherent in "spot" or "line" type laser trajectory. Three-dimensional (3D) model for welded seams could be recognized after depth recovery. The imaging error is investigated also.

  2. Operations of the laser traffic control system in Paranal

    NASA Astrophysics Data System (ADS)

    Santos, P.; Amico, P.; Summers, D.; Duhoux, P.; Arsenault, R.; Bierwirth, T.; Kuntschner, H.; Madec, P.-Y.; Pruemm, M.; Rejkuba, M.

    2016-07-01

    The Laser Traffic Control System (LTCS) of the Paranal Observatory is the first component of the Adaptive Optics Facility (AOF, [8]) entering routine operations: a laser beam avoidance tool to support operations of an observatory equipped with five lasers and several laser-sensitive instruments, providing real-time information about ongoing and future collisions. LTCS-Paranal interfaces with ESO's observing tools, OT and vOT. Altogether, this system allows the night operators to plan and execute their observations without worrying about possible collisions between the laser beam(s) and other lasersensitive equipment, aiming at a more efficient planning of the night, preventing time losses and laser-contaminated observations.

  3. LISP: a laser imaging simulation package for developing and testing laser vision systems

    NASA Astrophysics Data System (ADS)

    Wu, Kung C.

    1993-01-01

    The difficulties commonly encountered in developing laser imaging technologies are: (1) high cost of the laser system, and (2) time and cost involved in modeling and maneuvering a physical environment for the desired scenes. In contrast to the real imaging systems, computer generated laser images provide researchers with fast, accurate, cost-effective data for testing and developing algorithms. The laser imaging simulation package (LISP) described in this paper provides an interactive solid modeler that allows users to construct the artificial environment by various solid modelling techniques. Two fast ray tracing algorithms were developed and discussed in this paper for generating the near realistic laser data of any desired scene. These computer generated laser data facilitates the researchers in developing laser imaging algorithms. Thus, LISP not only provides an ideal testbed for developing and testing algorithms, but also an opportunity to explore the limitation of laser imaging applications.

  4. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  5. Laser experimental system as teaching aid for demonstrating basic phenomena of laser feedback

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Zhao, Shijie; Zhang, Shulian

    2015-03-01

    An experimental laser teaching system is developed to demonstrate laser feedback phenomena, which bring great harm to optical communication and benefits to precision measurement. The system consists of an orthogonally polarized He-Ne laser, a feedback mirror which reflects the laser output light into the laser cavity, and an optical attenuator which changes the intensity of the feedback light. As the feedback mirror is driven by a piezoelectric ceramic, the attenuator is adjusted and the feedback mirror is tilted, the system can demonstrate many basic laser feedback phenomena, including weak, moderate and strong optical feedback, multiple feedback and polarization flipping. Demonstrations of these phenomena can give students a better understanding about the intensity and polarization of lasers. The system is well designed and assembled, simple to operate, and provides a valuable teaching aid at an undergraduate level.

  6. 26 CFR 801.1 - Balanced performance measurement system; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 20 2010-04-01 2010-04-01 false Balanced performance measurement system; in general. 801.1 Section 801.1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INTERNAL REVENUE PRACTICE BALANCED SYSTEM FOR MEASURING ORGANIZATIONAL AND EMPLOYEE...

  7. Absorption of 308-nm excimer laser radiation by balanced salt solution, sodium hyaluronate, and human cadaver eyes

    SciTech Connect

    Keates, R.H.; Bloom, R.T.; Schneider, R.T.; Ren, Q.; Sohl, J.; Viscardi, J.J. )

    1990-11-01

    Absorption of the excimer laser radiations of 193-nm argon fluorine and 308-nm xenon chloride in balanced salt solution, sodium hyaluronate, and human cadaver eyes was measured. The absorption of these materials as considerably different for the two wavelengths; we found that 308-nm light experienced much less absorption than the 193-nm light. The extinction coefficient (k) for 308 nm was k = 0.19/cm for balanced salt solution and k = 0.22/cm for sodium hyaluronate. In contrast to this, the extinction coefficient for 193 nm was k = 140/cm for balanced salt solution and k = 540/cm for sodium hyaluronate. Two 1-day-old human phakic cadaver eyes showed complete absorption with both wavelengths. Using aphakic eyes, incomplete absorption was noted at the posterior pole with 308 nm and complete absorption was noted with 193 nm. The extinction in the anterior part of aphakic eyes (the first 6 mm) was 4.2/cm for 308 nm, meaning that the intensity of the light is reduced by a factor of 10 after traveling the first 5.5 mm. However, we observed that the material in the eye fluoresces, meaning the 308 nm is transformed into other (longer) wavelengths that travel through the total eye with minimal absorption. Conclusions drawn from this experiment are that the use of the 308-nm wavelength may have undesirable side effects, while the use of the 193-nm wavelength should be consistent with ophthalmic use on both the cornea and the lens.

  8. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  9. Compact laser illumination system for endoscopic interventions.

    PubMed

    Blase, Bastian

    2015-08-01

    External cold light sources as well as LEDs are commonly used for abdominal illumination in minimally invasive surgery. Still, both feature certain disadvantages. A new illumination system for endoscopes based on laser diodes is placed in the handle. No external light cables are needed. High conversion and coupling efficiencies and small package size allow for several diodes to be integrated, enabling color mixing and the adjustment of color temperatures. An optical module to collimate and combine the light is described. The heat to be dissipated is stored in a passive latent heat storage based on phase change materials surrounding the optical module. Thereby, operation time is considerably extended, as the handle's temperature is stabilized. To reduce the negative effect of coherent light on optical rough surfaces leading to patterns of spots, several devices for speckle reduction are developed and tested. By combining these components, an assembly of a powerful RGB laser light module for the integration in standard sized endoscopes is formed.

  10. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  11. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  12. Integrated laser/radar satellite ranging and tracking system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1974-01-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse/sec ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f/11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling/recording systems. The basic concept of the laser/radar is outlined together with a listing of the numerous advantages over present singular laser range-finding systems. The developmental laser hardware is described along with preliminary range-finding results and expectations.

  13. Research on optical system of spaceborne laser target indicator

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Zhang, Li-zhong; Wang, Chao

    2016-10-01

    This paper introduces the overall schematic of space borne laser target indicator. The target is tracking by remote sensing imaging system and servo system, and pointing by laser emission system. The key parameters of remote sensing imaging system are optimal selected, including working distance, focal length, aperture, integration time and field view, then the system spectral, pulse width, peak power, beam divergence and direction accuracy of laser emission system are analyzed in this paper .We design a remote sense imaging system and a laser emission system, and the result shows that requirements are meet and may realize in reality. The overall design can realize the 500km orbital altitude with the space borne laser target indicator, which is required by laser pointing function for medium-sized ships.

  14. In-vitro laser anemometry blood flow systems

    NASA Astrophysics Data System (ADS)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  15. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  16. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  17. Potential capabilities of aircraft laser landing systems.

    PubMed

    Kaloshin, G A; Matvienko, G G; Shishkin, S A; Anisimov, V I; Butuzov, V V; Zhukov, V V; Stolyarov, G V; Pasyuk, V P

    2016-10-20

    We present calculations of the efficiency of the laser landing system (LLS), based on determining the minimum required fluxes of scattered radiation from fixed extended landmarks (FELs), which are LLS indicators in the case of visual FEL detection under real operation conditions. It is shown that, when the meteorological visibility range Sm=800  m, for reliable detection of laser beams from the glissade slope group at ranges L∼1.0-1.6  km under nighttime conditions, the minimum required powers are Pmin=0.5  W for λ=0.52 and 0.64 μm, given deviations from the glissade path by the angle ϕ=0°-5°. The green and red rays are visible at distances L=1-1.2  km under twilight conditions. Our calculations corroborated the possibility of creating a new-generation laser-based LLS capable of ensuring aircraft landing under the conditions of International Civil Aviation Organization category 1 (decision height of 60 m at the minimum visibility equal 800 m).

  18. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  19. Helicopter Airborne Laser Positioning System (HALPS)

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Christiansen, Howard; Cross, Jeffrey; Totah, Joseph

    1990-01-01

    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight.

  20. Development of a US Gravitational Wave Laser System for LISA

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  1. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  2. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  3. Perturbation analysis of internal balancing for lightly damped mechanical systems with gyroscopic and circulatory forces

    NASA Technical Reports Server (NTRS)

    Blelloch, P. A.; Mingori, D. L.; Wei, J. D.

    1987-01-01

    Approximate expressions are developed for internally balanced singular values corresponding to the modes of mechanical systems with gyroscopic forces, light damping, and small circulatory forces. A brief overview is first given of the balanced realization model reduction method, including a discussion of recent work. The models considered are defined, and a perturbation analysis is used to show that the modal representation becomes asymptotically balanced as damping reduces to zero. The approximate balanced singular values are calculated, and a simple example of a flexible, dual-spin spacecraft is given as an illustration of the results.

  4. Laser radar in a system perspective

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2011-06-01

    As a result of recent achievements in the field of laser radars, new options are available for their operation as system components. In addition to complementing and cross-checking one another, system components can generate new synergetic values. In this article, we address various roles and functions that laser radar may perform in a complete system context. Special attention is paid to range-gated imaging ladars operating in conjunction with infrared 2D sensors providing target recognition/identification at long distances and under adverse conditions of natural illumination. The multi- or hyper-spectral features of passive IR or visible sensors may be complemented by multispectral, broadband, tunable or switchable 3D imaging ladar in order to exploit the differences in target reflectance and absorption. This option opens another possibility for multi-spectral, mid-IR ladar to differentiate targets of various types, or to enhance the visualization potential and to facilitate the scene description with small targets like mines or mine-like objects. The recently discovered specificity of Raman scattering in the perturbed sea water makes the long-standing efforts in submarine wake detection more viable. Furthermore, the combination of microwave radar and laser radar, when amplified with new achievements in the fourth generation dual-mode imaging sensors, creates the possibility of single payload configurations suitable for small platforms. Emphasis is also made of the efficiency of Doppler velocimetry for precise vehicle navigation, such as for advance cruise missile control or autonomous landing. Finally, recent advances in coherent micro-ladars for optical coherence tomography now permit the reconstruction of time resolved 3D (i.e., 4D) dynamics of blood flow in heart vessels.

  5. Demand-Supply Balancing Capability Analysis for a Future Power System

    NASA Astrophysics Data System (ADS)

    Ogimoto, Kazuhiko; Kataoka, Kazuto; Ikegami, Takashi; Nonaka, Shunsuke; Azuma, Hitoshi; Fukutome, Suguru

    Under the anticipated high penetration of variable renewable energy generation such as photovoltaics and higher share of nuclear generation, the issue of supply-demand balancing capability should be evaluated and fixed in a future power system. Improvement of existing balancing measures and new technologies such as demand activation and energy storage are expected to solve the issue. Under the situation, a long-range power system supply-demand analysis should have the capability to evaluate the balancing capability and balancing counter measures. This paper presents a new analysis methodology of activated demand model and evaluation of supply-demand balancing capability for a long-range power system demand-supply analysis model, ESPRIT. Model analysis was made to verify the new methodology of the tool including day-ahead scheduling of a heat pump water heater, an EV/PHEV and a battery.

  6. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rakhman, A.; Menshov, A.; Webster, A.; Gorlov, T.; Aleksandrov, A.; Cousineau, S.

    2017-03-01

    Recently, a high-efficiency laser assisted hydrogen ion (H-) beam stripping was successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This paper reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  7. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  8. Laser system for a subpicosecond electron linac.

    SciTech Connect

    Crowell, R. A.

    1998-09-25

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions.

  9. Atmospheric refraction errors in laser ranging systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.

    1976-01-01

    The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.

  10. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  11. The Notion of Structural Balance and the International System.

    DTIC Science & Technology

    1972-01-01

    the theory of directed graphs is contained in Dorwin Cartwright and Frank Harary, "Structural Balance: A Generalization of Heider’s Theory," Psy ical...316- 323; and Frank Harary, Robert Z.Norman, and Dorwin Cartwright , Structural Models: An Introduction to the Theory of Directed Graphs (New York: john...concept is Harary, op. cit., 1959; and Harary, Norman and Cartwright , op. cit. p.-.,. 34 8James N. Rosenau, "Pre-theories and ’heories of Foreign

  12. A modified pump laser system to pump the titanium sapphire laser

    NASA Technical Reports Server (NTRS)

    Petway, Larry B.

    1990-01-01

    As a result of the wide tunability of the titanium sapphire laser NASA has sited it to be used to perform differential absorption lidar (DIAL) measurements of H2O vapor in the upper and lower troposphere. The titanium sapphire laser can provide a spectrally narrow (0.3 to 1.0 pm), high energy (0.5 to 1.0 J) output at 727, 762, and 940 nm which are needed in the DIAL experiments. This laser performance can be obtained by addressing the line-narrowing issues in a master oscillator and the high energy requirement in a fundamental mode oscillator. By injection seeding, the single frequency property of the master oscillator can produce a line narrow high energy power oscillator. A breadboard model of the titanium sapphire laser that will ultimately be used in NASA lidar atmospheric sensing experiment is being designed. The task was to identify and solve any problem that would arise in the actual laser system. One such problem was encountered in the pump laser system. The pump laser that is designed to pump both the master oscillator and power oscillator is a Nd:YLF laser. Nd:YLF exhibits a number of properties which renders this material an attractive option to be used in the laser system. The Nd:YLF crystal is effectively athermal; it produces essentially no thermal lensing and thermally induced birefringence is generally insignificant in comparison to the material birefringence resulting from the uniaxial crystal structure. However, in application repeated fracturing of these laser rods was experience. Because Nd:YLF rods are not commercially available at the sizes needed for this application a modified pump laser system to replace the Nd:YLF laser rod was designed to include the more durable Nd:YAG laser rods. In this design, compensation for the thermal lensing effect that is introduced because of the Nd:YAG laser rods is included.

  13. Keck II laser guide star AO system and performance with the TOPTICA/MPBC laser

    NASA Astrophysics Data System (ADS)

    Chin, Jason C. Y.; Wizinowich, Peter; Wetherell, Ed; Lilley, Scott; Cetre, Sylvain; Ragland, Sam; Medeiros, Drew; Tsubota, Kevin; Doppmann, Greg; Otarola, Angel; Wei, Kai

    2016-07-01

    The Keck II Laser Guide Star (LGS) Adaptive Optics (AO) System was upgraded from a dye laser to a TOPTICA/MPBC Raman-Fibre Amplification (RFA) laser in December 2015. The W. M. Keck Observatory (WMKO) has been operating its AO system with a LGS for science since 2004 using a first generation 15 W dye laser. Using the latest diode pump laser technology, Raman amplification, and a well-tuned second harmonic generator (SHG), this Next Generation Laser (NGL) is able to produce a highly stable 589 nm laser beam with the required power, wavelength and mode quality. The beam's linear polarization and continuous wave format along with optical back pumping are designed to improve the sodium atom coupling efficiency over previously operated sodium-wavelength lasers. The efficiency and operability of the new laser has also been improved by reducing its required input power and cooling, size, and the manpower to operate and maintain it. The new laser has been implemented on the telescope's elevation ring with its electronics installed on a new Nasmyth sub-platform, with the capacity to support up to three laser systems for future upgrades. The laser is projected from behind the telescope's secondary mirror using the recently implemented center launch system (CLS) to reduce LGS spot size. We will present the new laser system and its performance with respect to power, stability, wavelength, spot size, optical repumping, polarization, efficiency, and its return with respect to pointing alignment to the magnetic field. Preliminary LGSAO performance is presented with the system returning to science operations. We will also provide an update on current and future upgrades at the WMKO.

  14. Effect of powder characteristics on the balance of radiation energy in coaxial laser sintering

    SciTech Connect

    Niz'ev, V G; Mirzade, F Kh; Khomenko, M D

    2014-09-30

    We have analysed the effect of scattering and absorption by powder microparticles on the transfer of laser energy during laser sintering with powder injection into the sintering zone through a coaxial nozzle. The energy flow into the sintering zone is summed up of a part of the radiation energy transmitted through the dispersion medium to the substrate and the energy carried by the particles heated by the radiation during their transportation from the nozzle to the substrate. We have found that the relative fraction of the energy supply to the substrate by these two channels can be different depending on the process parameters, and therefore the neglect of one of them is generally not justified. It is shown that, when using a two-component powder blend, powder components entering into the interaction zone may have different temperatures, and even be in a different aggregation state (depending on the powder material, particle size and flow parameters). This provides additional opportunities for controlling the process, for example at sintering gradient materials. (laser technology)

  15. High power laser downhole cutting tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  16. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    DTIC Science & Technology

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  17. Stability design considerations for mirror support systems in ICF lasers

    SciTech Connect

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems.

  18. State of the art of CO laser angioplasty system

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  19. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating

  20. Laser Spectroscopy Investigations of Materials for Solid State Laser Systems.

    DTIC Science & Technology

    1988-02-01

    July 1987. R.C. Powell, A. Suchocki, G.D. Gilliland, and G.J. Quarles, "Four-Wave Mixing in Cr 3 +-Doped Laser Crystals: Ruby, Emerald , Alexandrite...34Spectroscopy and Four-Wave Mixing in Emerald ", Opt. Soc. Am. Meeting, Rochester, October 1987. G.D. Gilliland, R.C. Powell, and L. Esterowitz...University, May 1985. "Laser Spectroscopic Studies of Europium-Doped Glasses and Emerald ", G.J. Quarles, Ph.D. Thesis, Oklahoma State University, Dec

  1. Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems

    SciTech Connect

    Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

    1980-04-01

    The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

  2. Cell balancing considerations for lithium-ion battery systems

    SciTech Connect

    Bentley, W.F.

    1997-12-01

    Charge algorithms for Li-Ion batteries require that charging current stop once a maximum voltage threshold is reached. Each battery in a Li-Ion pack must be individually monitored for this condition, so charging of the entire pack ceases as soon as one cell reaches this voltage limitation. Cell balancing algorithms seek to remove charge from the offending cell to equalize voltage and enable additional charging of the pack. This paper considers the technical merits of this approach and the issues associated with its implementation.

  3. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.; Smith, Larry K.

    1994-01-01

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  4. Multi-access laser communications transceiver system

    NASA Technical Reports Server (NTRS)

    Ross, Monte (Inventor); Lokerson, Donald C. (Inventor); Fitzmaurice, Michael W. (Inventor); Meyer, Daniel D. (Inventor)

    1993-01-01

    A satellite system for optical communications such as a multi-access laser transceiver system. Up to six low Earth orbiting satellites send satellite data to a geosynchronous satellite. The data is relayed to a ground station at the Earth's surface. The earth pointing geosynchronous satellite terminal has no gimbal but has a separate tracking mechanism for tracking each low Earth orbiting satellite. The tracking mechanism has a ring assembly rotatable about an axis coaxial with the axis of the field of view of the geosynchronous satellite and a pivotable arm mounted for pivotal movement on the ring assembly. An optical pickup mechanism at the end of each arm is positioned for optical communication with one of the orbiting satellites by rotation of the ring.

  5. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    SciTech Connect

    Hehlen, Markus Peter

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm3+, Er3+, and Co-doped two-tone RBLs: (Yb3+, Nd3+) and (Ho3+, Tm3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  6. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  7. Laser scribing system for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Shi, Yaling; Su, Xiaorong; Yan, Shuming; Xu, Hong

    1993-01-01

    In this paper, we describe a laser scribing system for the fabrication of a-Si solar cells. Additionally, we provide a theoretical analysis of the system. The system was used to scribe the TCO and a-Si films.

  8. Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Lee, Ja H.

    1991-01-01

    A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.

  9. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  10. Constructing a low-budget laser axotomy system to study axon regeneration in C. elegans.

    PubMed

    Williams, Wes; Nix, Paola; Bastiani, Michael

    2011-11-15

    Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans(1). The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system(2,3). However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1 um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers(4)). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on

  11. Spectroscopic Investigation of Materials for Frequency Agile Laser Systems.

    DTIC Science & Technology

    1985-01-01

    fluorescence spectra and lifetimes of divalent Rh, Ru, Pt, and Ir ions in alkali halide crystals are measured using pulsed nitrogen laser excitation...AD-Ai5t 73t SPECTROSCOPIC INVESTIGRTION OF MATERIALS FOR FREQUENCY t/ AGILE LASER SYSTEMS(U) OKLAHOMA STATE UNIV STILLWATER DEPT OF PHYSICS R C...INVESTIGATION OF MATERIALS FOR FREQUENCY AGILE LASER SYSTEMS Richard C. Powell, Ph.D. Principal Investigator Department of Physics OKLAHOMA STATE UNIVERSITY

  12. Wind Tunnel Seeding Systems for Laser Velocimeters

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Compiler); Nichols, C. E., Jr. (Compiler)

    1985-01-01

    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field.

  13. Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems

    NASA Astrophysics Data System (ADS)

    Stegmann, Philipp; König, Jürgen

    2017-03-01

    We discuss the possibility to generate in Coulomb-blockade systems steady states that violate detailed balance. This includes both voltage biased and non-biased scenarios. The violation of detailed balance yields that the charge-transfer statistics for electrons tunneling into an island experiencing strong Coulomb interaction is different from the statistics for tunneling out. This can be experimentally tested by time-resolved measurement of the island's charge state. We demonstrate this claim for two model systems.

  14. Performance Analysis and Portability of the PLUM Load Balancing System

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1998-01-01

    The ability to dynamically adapt an unstructured mesh is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive numerical computations in a message-passing environment. PLUM requires that all data be globally redistributed after each mesh adaption to achieve load balance. We present an algorithm for minimizing this remapping overhead by guaranteeing an optimal processor reassignment. We also show that the data redistribution cost can be significantly reduced by applying our heuristic processor reassignment algorithm to the default mapping of the parallel partitioner. Portability is examined by comparing performance on a SP2, an Origin2000, and a T3E. Results show that PLUM can be successfully ported to different platforms without any code modifications.

  15. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  16. Cost of photovoltaic energy systems as determined by balance-of-system costs

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  17. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  18. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  19. Mercury: The Los Alamos ICF KrF laser system

    SciTech Connect

    Czuchlewski, S.J.; York, G.W.; Bigio, I.J.; Brucker, J.; Hanson, D.; Honig, E.M.; Kurnit, N.; Leland, W.; McCown, A.W.; McLeod, J.; Rose, E.; Thomas, S.; Thompson, D.

    1993-01-19

    The Mercury KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora system. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a tested for a variety of advanced KrF technology concepts.

  20. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  1. Comparison Of Laser And Waterjet Systems For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Mosavi, Reza K.

    1986-07-01

    High power laser systems and high pressure waterjet systems are both emerging as non-conventional cutting tools, capable of increasing productivity and quality in the manufacture of a great number of products employing diverse material. It is often a confusing issue for the manufacturing engineer or production manager to decide which system would be most suited for his applications. This paper is intended to provide some insights into the engineering and economic aspects of laser systems versus waterjet systems.

  2. A Laser Stabilization System for Rydberg Atom Physics

    DTIC Science & Technology

    2015-09-06

    offset locking method which we did. For each system, a small amount of light from a 852 nm (780 nm) diode laser is picked off from the output beam ...this way, tunable sidebands, from 1-10 GHz, that are themselves modulated at .05-5 MHz, can be generated on the input laser beam . The light from the...phase modulation signal. This signal is fed back into the fast (10 MHz bandwidth) locking electronics of the diode laser system to lock the laser to

  3. Automatic alignment technology in high power laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Dai, Wan-jun; Wang, Yuan-cheng; Lian, Bo; Yang, Ying; Yuan, Qiang; Deng, Xue-wei; Zhao, Jun-pu; Zhou, Wei

    2015-02-01

    The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.

  4. Design of high-precision ranging system for laser fuze

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Zhang, He; Xu, Xiaobin

    2016-10-01

    According to the problem of the high-precision ranging in the circumferential scanning probe laser proximity fuze, a new type of pulsed laser ranging system has been designed. The laser transmitting module, laser receiving module and ranging processing module have been designed respectively. The factors affecting the ranging accuracy are discussed. And the method of improving the ranging accuracy is studied. The high-precision ranging system adopts the general high performance microprocessor C8051FXXX as the core. And the time interval measurement chip TDC-GP21 was used to implement the system. A PCB circuit board was processed to carry on the experiment. The results of the experiment prove that a centimeter level accuracy ranging system has been achieved. The works can offer reference for ranging system design of the circumferential scanning probe laser proximity fuze.

  5. Tunable near ultraviolet laser system from a frequency doubled alexandrite laser

    SciTech Connect

    Barnes, N.P.; Gettemy, D.J.; Johnson, T.M.

    1983-09-01

    A laser system which is capable of producing radiation tunable over the region from approximately 0.36-0.40 ..mu.. is described. The laser produces in excess of 5.0 mJ per pulse in a about 0.1 ..mu..s pulse length.

  6. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  7. Modeling and experiments with a subsea laser radar system

    NASA Astrophysics Data System (ADS)

    Bjarnar, Morten L.; Klepsvik, John O.; Nilsen, Jan E.

    1991-12-01

    Subsea laser radar has a potential for accurate 3-D imaging in water. A prototype system has been developed at Seatex A/S in Norway as a prestudy for the design of an underwater laser radar scanning system. Parallel to the experimental studies, a numerical radiometric model has been developed as an aid in the system design. This model simulates a raster scanning laser radar system for in-water use. Thus this parametric model allows for analysis and predictions of the performance of such a sensor system. Experiments have been conducted to test a prototype laser radar system. The experimental system tested uses a Q-switched, frequency doubled, Nd:YAG solid state laser operating at a wavelength of 532 nm, which is close to optimal for use in water due to the small light attenuation around this wavelength in seawater. The laser has an energy output of 6 (mu) J per pulse 1 kHz pulse repetition frequency (PRF) and the receiver aperture is approximately 17 cm2. The laser radar prototype was mounted onto an accurate pan and tilt unit in order to test the 3-D imaging capabilities. The ultimate goal of the development is to provide an optical 3-D imaging tool for distances comparable to high frequency sonars with a range capability of approximately 30 - 50 m. The results from these experiments are presented. The present implementation of the scanning laser radar model is described and some outputs from the simulation are shown.

  8. Uncertainty Analysis of the Single-Vector Force Balance Calibration System

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Liu, Tianshu

    2002-01-01

    This paper presents an uncertainty analysis of the Single-Vector Force Balance Calibration System (SVS). This study is focused on the uncertainty involved in setting the independent variables during the calibration experiment. By knowing the uncertainty in the calibration system, the fundamental limits of the calibration accuracy of a particular balance can be determined. A brief description of the SVS mechanical system is provided. A mathematical model is developed to describe the mechanical system elements. A sensitivity analysis of these parameters is carried out through numerical simulations to assess the sensitivity of the total uncertainty to the elemental error sources. These sensitivity coefficients provide valuable information regarding the relative significance of the elemental sources of error. An example calculation of the total uncertainty for a specific balance is provided. Results from this uncertainty analysis are specific to the Single-Vector System, but the approach is broad in nature and therefore applicable to other measurement and calibration systems.

  9. Spectrally-balanced chromatic approach-lighting system

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1977-01-01

    Approach lighting system employing combinations of red and blue lights reduces problem of color-based optical illusions. System exploits inherent chromatic aberration of eye to create three-dimensional effect, giving pilot visual clues of position.

  10. The Balanced Scorecard: a strategic management system for multi-sector collaboration and strategy implementation.

    PubMed

    Inamdar, S N; Kaplan, R S; Jones, M L; Menitoff, R

    2000-01-01

    This article illustrates the application of the Balanced Scorecard, a method more commonly associated with the business world, to a nonprofit multisector National Women's Health Quality Initiative (NWHQI). The article delineates the following multiple uses of the Balanced Scorecard for the NWHQI effort: Set NWHQI strategy and structure. Provide the framework and principles to implement NWHQI's strategy. Develop a measurement system to assess the progress and success of NWHQI's strategy. Serve as a collaboration mechanism for multisector stakeholders. Advance women's health knowledge base. This article concludes by sharing key insights regarding the utility of the Balanced Scorecard to promote the success of this nationwide women's health quality initiative.

  11. FY 2005 Quantum Cascade Laser Alignment System Final Report

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  12. Motivations for laser detonator and firing system developments

    NASA Astrophysics Data System (ADS)

    Kennedy, James E.

    2006-08-01

    For ordnance system and testing applications in which safety is paramount, laser detonators and firing systems are strong candidates. Both low-power (1 W) and high-power (~1 MW) laser-driven explosive devices provide safety against stray current and electrostatic discharges, including lightning. This article addresses only one class of high-power laser-driven detonators that provide prompt detonation - the laser-driven analog of electrical exploding bridgewire (EBW) detonatorsm which we call a "laser EBW." Coupling of laser power into a plasma and then to the explosive powder will be described. Drawing upon current initiatives within DOE laboratories, this talk will emphasize similarities between high-power laser detonators and high-power electrical detonators in terms of firing power requirements and development of deonation. In explosive testing applications, laser detonators provide separation of noisy electrical firing systems from diagnostic sensors that may be embedded in an experimental assembly. Laser detonators can be made without any metallic content, and that is desirable for radiography experiments. Feasibility of reliable transmission of a firing pulse through optical fibers is a key element in applications for missile ordnance, warhead firing, and other mobile systems. The preparation and characterization of fibers, and their capabilities and limitations are also discussed briefly.

  13. Effects of balance training using a virtual-reality system in older fallers.

    PubMed

    Duque, Gustavo; Boersma, Derek; Loza-Diaz, Griselda; Hassan, Sanobar; Suarez, Hamlet; Geisinger, Dario; Suriyaarachchi, Pushpa; Sharma, Anita; Demontiero, Oddom

    2013-01-01

    Poor balance is considered a challenging risk factor for falls in older adults. Therefore, innovative interventions for balance improvement in this population are greatly needed. The aim of this study was to evaluate the effect of a new virtual-reality system (the Balance Rehabilitation Unit [BRU]) on balance, falls, and fear of falling in a population of community-dwelling older subjects with a known history of falls. In this study, 60 community-dwelling older subjects were recruited after being diagnosed with poor balance at the Falls and Fractures Clinic, Nepean Hospital (Penrith, NSW, Australia). Subjects were randomly assigned to either the BRU-training or control groups. Both groups received the usual falls prevention care. The BRU-training group attended balance training (two sessions/week for 6 weeks) using an established protocol. Change in balance parameters was assessed in the BRU-training group at the end of their 6-week training program. Both groups were assessed 9 months after their initial assessment (month 0). Adherence to the BRU-training program was 97%. Balance parameters were significantly improved in the BRU-training group (P < 0.01). This effect was also associated with a significant reduction in falls and lower levels of fear of falling (P < 0.01). Some components of balance that were improved by BRU training showed a decline after 9 months post-training. In conclusion, BRU training is an effective and well-accepted intervention to improve balance, increase confidence, and prevent falls in the elderly.

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. High-speed modelocked semiconductor lasers and applications in coherent photonic systems

    NASA Astrophysics Data System (ADS)

    Lee, Wangkuen

    1.55-mum high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed (>5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with broadband optical frequency combs. Laser frequency stability is improved by applying the Pound-Drever-Hall (PDH) frequency stabilization technique to the MSLs. The improved laser performance after the frequency stabilization (a frequency drifting of less than 350 MHz), is extensively studied with respect to the laser linewidth (˜ 3 MHz), the relative intensity noise (RIN) (< -150 dB/Hz), as well as the modal RIN (˜ 3 dB reduction). MSL to MSL, and tunable laser to MSL synchronization is demonstrated by using a dual-mode injection technique and a modulation sideband injection technique, respectively. Dynamic locking behavior and locking bandwidth are experimentally and theoretically studied. Stable laser synchronization between two MSLs is demonstrated with an injection seed power on the order of a few microwatt. Several coherent heterodyne detections based on the synchronized MSL systems are demonstrated for applications in microwave photonic links and ultra-dense wavelength division multiplexing (UD-WDM) system. In addition, efficient coherent homodyne balanced receivers based on synchronized MSLs are developed and demonstrated for a spectrally phase-encoded optical CDMA (SPE-OCDMA) system.

  16. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  17. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  18. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  19. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts.

  20. A Medical Excimer Laser System For Corneal Surgery And Laser Angioplasty

    NASA Astrophysics Data System (ADS)

    Caro, R. G.; Muller, D. F.

    1987-03-01

    The authors report the design criteria and performance of the ExciMeda UV200 medical excimer laser system. A beam delivery system for controlled photoablative machining of variable power optical lenses in organic material is described. Some of the potential applications of this delivery system in corneal surgery are presented. The uses of the UV200 laser system in other areas of medical research are discussed and, in particular, its application i the field of laser angioplasty is outlined. There has been considerable interest recently in the use of excimer lasers in a variety of fields in medicine. The ultraviolet, high peak power beam emitted by an excimer laser has been shown to be capable of producing very clean and precise cuts in organic material. In particular, cuts can be made in biological material with minimal disturbance of the material adjacent to the cut. For example, tissue can be cut in such a way as to produce negligible charring or vacuolization in adjacent areas of the tissue. This is in marked contrast to the results when organic material is cut by a continuous wave laser such as an Argon ion laser, or c.w. CO2 laser. The potential applications in clinical settings which are suggested by this feature of the interaction of tissue with excimer laser radiation have been largely unrealized outside the laboratory as yet. A primary reason for this is that, until recently, excimer lasers have been available only in a form that was suitable for the scientific laboratory. These lasers required large amounts of space, were not mobile once installed, and required con nection to external sources of water cooling, vacuum exhaust, a high current electrical supply, and a variety of gas bottles including the gases F2 and C12. These systems were not designed with clinical applications in mind, and thus provided unnecessary performance features at the cost of added complexity. They also posed potential electrical and gaseous safety hazards not suitable for a

  1. Recent Developments In Theory Of Balanced Linear Systems

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek

    1994-01-01

    Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.

  2. Using a Human Performance System Model To Balance Professional and Personal Life.

    ERIC Educational Resources Information Center

    Markel, Geraldine

    2000-01-01

    Suggests that professionals can use a human performance system to better balance their professional and personal lives. Illustrates the components of the human performance system, and describes nine steps for professional and personal self-management using a systems approach. Identifies attitudinal barriers to success. Includes a performance…

  3. Development of laser-based imaging systems for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Witte, S.; Salumbides, M.; Peterman, E. J. G.; Brakenhoff, R.; van Dongen, G.; Toonen, R.; Mansvelder, H. D.; Groot, M. L.

    We present a laser system with high wavelength flexibility, suitable for nonlinear microscopy and optical coherence tomography, for visualization of disease-related morphological changes in vivo. A single-shot 2D OCT system is demonstrated.

  4. Lasers in tattoo and pigmentation control: role of the PicoSure® laser system

    PubMed Central

    Torbeck, Richard; Bankowski, Richard; Henize, Sarah; Saedi, Nazanin

    2016-01-01

    Background and objectives The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure® laser system (755/532 nm). Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure® laser system for tattoo removal. Study design and methods A PubMed search was conducted using the term “picosecond” combined with “laser”, “dermatology”, and “laser tattoo removal”. Results A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow). Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change. Conclusion Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure® laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments. PMID:27194919

  5. System, Apparatus and Method Employing a Dual Head Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B. (Inventor); Stysley, Paul R. (Inventor); Poulios, Demetrios (Inventor)

    2015-01-01

    A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.

  6. Integrated laser/radar satellite ranging and tracking system.

    PubMed

    Hoge, F E

    1974-10-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse sec/ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling[equation]recording systems. The basic concept of the laser[equation]radar is outlined together with a listing of the numerous advantages over present singular laser rangefinding systems. The developmental laser hardware is described along with preliminary rangefinding results and expectations. The prototype system was assembled to investigate the feasibility of such systems and aid in the development of detailed specifications for an operational system. Both the feasibility and desirability of such systems integrations have been adequately demonstrated.

  7. High performance distributed feedback fiber laser sensor array system

    NASA Astrophysics Data System (ADS)

    He, Jun; Li, Fang; Xu, Tuanwei; Wang, Yan; Liu, Yuliang

    2009-11-01

    Distributed feedback (DFB) fiber lasers have their unique properties useful for sensing applications. This paper presents a high performance distributed feedback (DFB) fiber laser sensor array system. Four key techniques have been adopted to set up the system, including DFB fiber laser design and fabrication, interferometric wavelength shift demodulation, digital phase generated carrier (PGC) technique and dense wavelength division multiplexing (DWDM). Experimental results confirm that a high dynamic strain resolution of 305 fɛ/√Hz (@ 1 kHz) has been achieved by the proposed sensor array system. And the multiplexing of eight channel DFB fiber laser sensor array has been demonstrated. The proposed DFB fiber laser sensor array system is suitable for ultra-weak signal detection, and has potential applications in the field of petroleum seismic explorations, earthquake prediction, and security.

  8. Nova laser system at ultra high fluence levels

    SciTech Connect

    Hunt, J.T.

    1985-01-01

    The Nova experimental facility consists of a ten arm laser system and five experimental stations and was completed in December 1984. Two of these stations are used for inertial confinement fusion (ICF) experiments and the other three are dedicated to doing large aperture (30 to 74 cm) laser experiments. The laser system is deployed in a master oscillator-power amplifier architecture and uses Nd: phosphate glass for the active medium. The fundamental wavelength of the system is 1.05 microns. Frequency converters constructed from potassium dihydrogen phosphate (KDP) crystals are located at the end of each of the ten arms and are used to produce high power frequency doubled (0.53 microns) and tripled (0.35 microns) beams for either ICF or laser experiments. Thus, the Nova laser system can produce high power beams with wavelengths ranging from the infrared to the ultraviolet.

  9. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  10. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  11. Fiber Optically Coupled Eyesafe Laser Threat Warning System

    DTIC Science & Technology

    2000-05-11

    WARNING SYSTEM 11 MAY 2000 MSS SPECIALTY GROUP ON INFRARED COUNTERMEASURES NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA PRESENTED BY: DR. AL TORRES...A Dates Covered (from... to) - Title and Subtitle Fiber Optically Coupled Eyesafe Laser Threat Warning System Contract Number Grant Number... WARNING SYSTEM (ESLTWS) PHASE II SBIR PROGRAM • CONCEPT: - TO DEVELOP A UNIQUE AND NOVEL EYE SAFE LASER THREAT WARNING RECEIVER SYSTEM. MUST BE

  12. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  13. Improving laser system productivity through production line integration

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1994-09-01

    Thousands of laser systems are employed profitably in a variety of industrial applications. These installations have proved successful for economic and technical reasons. And, in certain applications: ceramic scribing, resistor trimming, sheet metal cutting, and air foil drilling, for example, have become the industry standard. Most of these installations are free standing or, at best, part of an off-line manufacturing cell. Examples of laser systems fully integrated into a production line, where the laser process is synchronized with up and down stream manufacturing operation, are rare. The laser has been under utilized in its potential contribution to production line productivity. Current development in laser beam delivery: multiplexing, beam splitting and other distributed energy concepts make the laser an attractive option for just-in-time manufacturing operations. The reasons for this apparent neglect of the laser's full potential are reviewed in this paper, and suggestions for improvement of this situation are offered. Examples of fully integrated laser systems and their successful implementation are described and a forecast of changes in the way lasers contribute to improved productivity and profitability will be made.

  14. A semi-automatic 3D laser scan system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    Digital 3D models are now used everywhere, from traditional fields of industrial design, artistic design, to heritage conservation. Although laser scan is very useful to get densely samples of the objects, nowadays, such an instrument is expensive and always need to be connected to a computer with stable power supply, which prevent it from usage for fieldworks. In this paper, a new semi-automatic 3D laser scan method is proposed using two line laser sources. The planes projected from the laser sources are orthogonal, one of which is fixed relative to the camera, and the other can be rotated along a settled axis. Before scanning, the system must be calibrated, from which the parameters of the camera, the position of the fixed laser plane and the settled axis are introduced. In scanning process, the fixed laser plane and the camera form a conventional structured light system, and the 3d positions of the intersection curves of the fixed laser plane with the object can be computed. The other laser plane is rotated manually or mechanically, and its position can be determined from the cross point intersecting with the fixed laser plane on the object, so the coordinates of sweeping points can be obtained. The new system can be used without a computer (The data can be processed later), which make it suitable for fieldworks. A scanning case is given in the end.

  15. Laser metrology in food-related systems

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, Patricia; Lopez, Daniel; Kongraksawech, Teepakorn; Vazquez, Pedro; Torres, J. Antonio; Ramirez, Jose A.; Huerta-Ruelas, Jorge

    2005-02-01

    An optical system was developed using a low-cost semiconductor laser and commercial optical and electronic components, to monitor food processes by measuring changes in optical rotation (OR) of chiral compounds. The OR signal as a function of processing time and sample temperature were collected and recorded using a computer data acquisition system. System has been tested during two different processes: sugar-protein interaction and, beer fermentation process. To study sugar-protein interaction, the following sugars were used: sorbitol, trehalose and sucrose, and in the place of Protein, Serum Albumin Bovine (BSA, A-7906 Sigma-Aldrich). In some food processes, different sugars are added to protect damage of proteins during their processing, storage and/or distribution. Different sugar/protein solutions were prepared and heated above critical temperature of protein denaturation. OR measurements were performed during heating process and effect of different sugars in protein denaturation was measured. Higher sensitivity of these measurements was found compared with Differential Scanning Calorimetry, which needs higher protein concentration to study these interactions. The brewing fermentation process was monitored in-situ using this OR system and validated by correlation with specific density measurements and gas chromatography. This instrument can be implemented to monitor fermentation on-line, thereby determining end of process and optimizing process conditions in an industrial setting. The high sensitivity of developed OR system has no mobile parts and is more flexible than commercial polarimeters providing the capability of implementation in harsh environments, signifying the potential of this method as an in-line technique for quality control in food processing and for experimentation with optically active solutions.

  16. Management Information System Based on the Balanced Scorecard

    ERIC Educational Resources Information Center

    Kettunen, Juha; Kantola, Ismo

    2005-01-01

    Purpose: This study seeks to describe the planning and implementation in Finland of a campus-wide management information system using a rigorous planning methodology. Design/methodology/approach: The structure of the management information system is planned on the basis of the management process, where strategic management and the balanced…

  17. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme "Time-sharing focus, fast conversion" is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  18. Operation of the APS photoinjector drive laser system.

    SciTech Connect

    Li, Y.; Accelerator Systems Division

    2008-08-04

    The APS photoinjector drive laser system has been in operation since 1999 and is achieving a performance level exceeding the requirement of stable operation of the LEUTL FEL system. One remarkable number is the UV energy stability of better than 2% rms, sometimes less than 1% rms. This report summarizes the operation experience of the laser system and the improvements made along the way. We also outline the route of upgrade of the system and some frontier laser research and development opportunities in ultrabright electron beam generation.

  19. Updated laser safety & hazard analysis for the ARES laser system based on the 2007 ANSI Z136.1 standard.

    SciTech Connect

    Augustoni, Arnold L.

    2007-08-01

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2007 version of the American National Standards Institutes (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2005 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  20. Balancing Management and Leadership in Complex Health Systems

    PubMed Central

    Kwamie, Aku

    2015-01-01

    Health systems, particularly those in low- and middle-income countries (LMICs), need stronger management and leadership capacities. Management and leadership are not synonymous, yet should be considered together as there can be too much of one and not enough of the other. In complex adaptive health systems, the multiple interactions and relationships between people and elements of the system mean that management and leadership, so often treated as domains of the individual, are additionally systemic phenomena, emerging from these relational interactions. This brief commentary notes some significant implications for how we can support capacity strengthening interventions for complex management and leadership. These would necessarily move away from competency-based models focused on training for individuals, and would rather encompass longer-term initiatives explicitly focused on systemic goals of accountability, innovation, and learning. PMID:26673472

  1. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  2. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.; Li, Lin

    2004-07-01

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  3. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  4. Laser Beam Duct Pressure Controller System.

    DTIC Science & Technology

    the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.

  5. Integrated design of electrical distribution systems: Phase balancing and phase prediction case studies

    NASA Astrophysics Data System (ADS)

    Dilek, Murat

    Distribution system analysis and design has experienced a gradual development over the past three decades. The once loosely assembled and largely ad hoc procedures have been progressing toward being well-organized. The increasing power of computers now allows for managing the large volumes of data and other obstacles inherent to distribution system studies. A variety of sophisticated optimization methods, which were impossible to conduct in the past, have been developed and successfully applied to distribution systems. Among the many procedures that deal with making decisions about the state and better operation of a distribution system, two decision support procedures will be addressed in this study: phase balancing and phase prediction. The former recommends re-phasing of single- and double-phase laterals in a radial distribution system in order to improve circuit loss while also maintaining/improving imbalances at various balance point locations. Phase balancing calculations are based on circuit loss information and current magnitudes that are calculated from a power flow solution. The phase balancing algorithm is designed to handle time-varying loads when evaluating phase moves that will result in improved circuit losses over all load points. Applied to radial distribution systems, the phase prediction algorithm attempts to predict the phases of single- and/or double phase laterals that have no phasing information previously recorded by the electric utility. In such an attempt, it uses available customer data and kW/kVar measurements taken at various locations in the system. It is shown that phase balancing is a special case of phase prediction. Building on the phase balancing and phase prediction design studies, this work introduces the concept of integrated design, an approach for coordinating the effects of various design calculations. Integrated design considers using results of multiple design applications rather than employing a single application for a

  6. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  7. Solid-state-based laser system as a replacement for Ar+ lasers.

    PubMed

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  8. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  9. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  10. Laser photovoltaic power system synergy for SEI applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  11. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  12. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  13. Evaluation of surface energy and radiation balance systems on the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.

    1987-01-01

    Four Surface Energy and Radiation Balance Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. Surface energy and radiation balances were investigated on six sites on the Konza Prairie about 3 km south of Manhattan, Kansas. Measurements were made to allow the computation of these radiation components: total solar and diffuse radiation, reflected solar radiation, net radiation, and longwave radiation upward and downward. Measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. The report includes a description of the experimental sites, data acquisition systems and sensors, data acquisitions system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the energy balance components for all days and systems are given.

  14. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  15. Rugged TDLAS system for High Energy Laser atmospheric propagation characterization

    NASA Astrophysics Data System (ADS)

    Perram, Glen; Rice, Christopher

    2008-10-01

    An active remote sensing instrument for the characterization of atmospheric absorption, scattering, and scintillation at several key high energy laser wavelengths is in development. The instrument is based on narrow band tunable diode lasers fiber coupled to a 12'' Ritchey-Chretien transmit telescope and a second receive telescope with visible or near infrared imager. For example, tunable diode lasers have been used to obtain absorption spectra in the laboratory for the Cs D2 lines near 852 nm and the oxygen X-b lines near 760 nm, key to the Diode Pumped Alkali Laser (DPAL) concept. Absorbencies of less than 0.5% are observable. Applications will be assessed including effects to HEL atmospheric propagation from molecular and aerosol absorption and scattering, Cn2 estimation from atmospheric turbulence, hazardous chemical emission detection, and laser communication interception from side scattering. The system will soon be deployed to a military laser test range to characterize path lengths of greater than 1 km.

  16. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  17. A comparison of winds from the STRATAN data assimilation system to balanced wind estimates

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Rood, Richard B.; Newman, Paul A.

    1994-01-01

    Winds derived from a stratospheric and tropospheric data assimilation system (STRATAN) are compared with balance winds derived from National Meteorological Center/Climate Analysis Center (NMC/CAC) heights. At middle latitudes in the lower stratosphere, the results show that STRATAN winds are comparable to the balance winds. In addition STRATAN winds provide useful horizontal divergence analyses, and hence, vertical velocity fields. More generally, the STRATAN winds are useful in a more extended domain than the balanced winds. In particular, they are useful in the Tropics and the upper stratosphere where the balanced winds fail. The assimilation also captures the quasi-biennial oscillation, but does not do a good job of representing tropical waves.

  18. Quantitative performance targets by using balanced scorecard system: application to waste management and public administration.

    PubMed

    Mendes, Paula; Nunes, Luis Miguel; Teixeira, Margarida Ribau

    2014-09-01

    This article demonstrates how decision-makers can be guided in the process of defining performance target values in the balanced scorecard system. We apply a method based on sensitivity analysis with Monte Carlo simulation to the municipal solid waste management system in Loulé Municipality (Portugal). The method includes two steps: sensitivity analysis of performance indicators to identify those performance indicators with the highest impact on the balanced scorecard model outcomes; and sensitivity analysis of the target values for the previously identified performance indicators. Sensitivity analysis shows that four strategic objectives (IPP1: Comply with the national waste strategy; IPP4: Reduce nonrenewable resources and greenhouse gases; IPP5: Optimize the life-cycle of waste; and FP1: Meet and optimize the budget) alone contribute 99.7% of the variability in overall balanced scorecard value. Thus, these strategic objectives had a much stronger impact on the estimated balanced scorecard outcome than did others, with the IPP1 and the IPP4 accounting for over 55% and 22% of the variance in overall balanced scorecard value, respectively. The remaining performance indicators contribute only marginally. In addition, a change in the value of a single indicator's target value made the overall balanced scorecard value change by as much as 18%. This may lead to involuntarily biased decisions by organizations regarding performance target-setting, if not prevented with the help of methods such as that proposed and applied in this study.

  19. Magnetic suspension and balance system (MSBS) advanced study.I - System design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Abdelsalam, Mostafa K.; Eyssa, Yehia M.; Mcintosh, Glen E.

    1987-01-01

    A magnetic suspension and balance system is designed to support models of aircraft or other objects in wind tunnels by means of magnetic forces. Major design improvements have been achieved, resulting in reductions of the system size, weight, and cost. These improvements are due to: (1) the use of holmium in the model core to increase its magnetic moment, (2) the use of a powerful new permanent magnet material in the model wings, (3) a new arrangement for the roll coils, and (4) the use of a nonmetallic structure to eliminate eddy current losses. The conceptual design of the holmium core superconductive solenoid and of the new permanent magnet wing assembly is described in detail. The discussion includes comparisons of the pole strengths for different model core magnets, the design of a superconducting solenoid and cryostat, and the analysis of model wing magnetic requirements.

  20. Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser.

    PubMed

    Nakano, Masaharu; Kawata, Yoshimasa

    2003-08-01

    We present a compact confocal readout system for three-dimensional optical memories that uses the thresholding property of a semiconductor laser for feedback light. The system has higher axial resolution than a conventional confocal system with a pinhole. We demonstrate readout results for data recorded in two recording layers with the developed system.

  1. Tools for Predicting Optical Damage on Inertial Confinement Fusion-Class Laser Systems

    SciTech Connect

    Nostrand, M C; Carr, C W; Liao, Z M; Honig, J; Spaeth, M L; Manes, K R; Johnson, M A; Adams, J J; Cross, D A; Negres, R A; Widmayer, C C; Williams, W H; Matthews, M J; Jancaitis, K S; Kegelmeyer, L M

    2010-12-20

    Operating a fusion-class laser to its full potential requires a balance of operating constraints. On the one hand, the total laser energy delivered must be high enough to give an acceptable probability for ignition success. On the other hand, the laser-induced optical damage levels must be low enough to be acceptably handled with the available infrastructure and budget for optics recycle. Our research goal was to develop the models, database structures, and algorithmic tools (which we collectively refer to as ''Loop Tools'') needed to successfully maintain this balance. Predictive models are needed to plan for and manage the impact of shot campaigns from proposal, to shot, and beyond, covering a time span of years. The cost of a proposed shot campaign must be determined from these models, and governance boards must decide, based on predictions, whether to incorporate a given campaign into the facility shot plan based upon available resources. Predictive models are often built on damage ''rules'' derived from small beam damage tests on small optics. These off-line studies vary the energy, pulse-shape and wavelength in order to understand how these variables influence the initiation of damage sites and how initiated damage sites can grow upon further exposure to UV light. It is essential to test these damage ''rules'' on full-scale optics exposed to the complex conditions of an integrated ICF-class laser system. Furthermore, monitoring damage of optics on an ICF-class laser system can help refine damage rules and aid in the development of new rules. Finally, we need to develop the algorithms and data base management tools for implementing these rules in the Loop Tools. The following highlights progress in the development of the loop tools and their implementation.

  2. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rumel, John D.

    1987-01-01

    Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here the biochemical stoichiometry is developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source.

  3. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury

    PubMed Central

    2011-01-01

    Background Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. Methods In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. Results The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. Conclusions The results suggest that e

  4. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    Jain 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at

  5. Ultrashort-pulse laser system for hard dental tissue procedures

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Da Silva, Luiz B.; Feit, Michael D.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    1996-04-01

    In spite of intensive research, lasers have not replaced conventional tools in many hard tissue applications. Ultrashort pulse lasers offer several advantages in their highly per-pulse-efficient operation, negligible thermal and mechanical damage and low noise operation. Possible development of optimal laser systems to replace the high-speed dental drill is discussed. Applications of ultrashort pulse systems for dental procedures are outlined. Selection criteria and critical parameters are considered, and are compared to the conventional air-turbine drill and to long and short pulsed systems.

  6. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  7. Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy.

    PubMed

    Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier

    2014-03-01

    The present study covers a new experimental system, designed to improve the balance and postural control of adults with cerebral palsy. This system is based on a serious game for balance rehabilitation therapy, designed using the prototype development paradigm and features for rehabilitation with serious games: feedback, adaptability, motivational elements, and monitoring. In addition, the employed interaction technology is based on computer vision because motor rehabilitation consists of body movements that can be recorded, and because vision capture technology is noninvasive and can be used for clients who have difficulties in holding physical devices. Previous research has indicated that serious games help to motivate clients in therapy sessions; however, there remains a paucity of clinical evidence involving functionality. We rigorously evaluated the effects of physiotherapy treatment on balance and gait function of adult subjects with cerebral palsy undergoing our experimental system. A 24-week physiotherapy intervention program was conducted with nine adults from a cerebral palsy center who exercised weekly in 20-min sessions. Findings demonstrated a significant increase in balance and gait function scores resulting in indicators of greater independence for our participating adults. Scores improved from 16 to 21 points in a scale of 28, according to the Tinetti Scale for risk of falls, moving from high fall risk to moderate fall risk. Our promising results indicate that our experimental system is feasible for balance rehabilitation therapy.

  8. Not as Easy as It Sounds: Designing a Balanced Assessment System

    ERIC Educational Resources Information Center

    Chattergoon, Rajendra; Marion, Scott

    2016-01-01

    Many states and school districts are rethinking how they do educational assessment. A few are going further: attempting to build "balanced," "comprehensive," or "next-generation" assessment systems. At the same time, practitioners and researchers have long mulled the purposes and parts such systems should have. But…

  9. A design of atmospheric laser communication system based on semiconductor laser

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2016-01-01

    This paper uses semiconductor laser with 905nm wave length as light source to design a set of short-distance atmospheric laser communication system. This system consists of laser light source, launch modulation circuit, detector, receiving and amplifying circuit and so on. First, this paper analyzes the factors which lead to the decrease of luminous power of laser communication link under the applicable environment-specific sea level, then this paper elicits the relationship of luminous power of receiving optical systems and distance, slant angle and divergence angle which departures from the laser beam axis by using gaussian beam geometric attenuation mode. Based on the two reasons that PPM modulation theory limits the transmission rate of PPM modulation, that is, this paper makes an analysis on repetition frequency and pulse width of laser, makes theoretical calculation for typical parameters of semiconductor laser and gets the repetition frequency which is 10KHz, pulse width is50ns, the transmission rate is 71.66 Kb/s, at this time, modulation digit is 9; then this paper selects frame synchronization code of PPM modulation and provides implementation method for test; lastly, programs language based on Verilog, uses the FPGA development board to realize PPM modulation code and does simulation test and hardware test. This paper uses APD as the detector of receiving and amplifying circuit. Then this paper designs optical receiving circuit such as amplifying circuit, analog-digital conversion circuit based on the characteristics of receipt.

  10. Gemini North Laser Guide Star System: operations and maintenance review

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; d'Orgeville, Celine

    2010-07-01

    The Gemini North telescope has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. In this paper we comment on the reliability of the Laser Guide Star Facility high-power solid-state laser during normal operations, and discuss progress made on various issues that will enable a "turn-key" operation mode for the laser system. In this effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. These upgrades are discussed, including pump laser diode replacements, as well as sum frequency generation (SFG) crystal degradation along with our detailed plans to improve overall laser reliability, and availability. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  11. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing.

  12. Control for laser hemangioma treatment system

    SciTech Connect

    Muckerheide, M.C.

    1982-02-23

    A laser is disclosed for directing a nominally 5 micron wavelength beam at a hemangioma or other variegated lesion. A fiber optic bundle for intercepting radiation reflected from the lesion at an intensity corresponding with the color intensity of the region at which the beam is directed. The output beam from the fiber optic bundle modulates a photodetector stage whose amplified output drives a galvanometer. The galvanometer shaft is coupled to the shaft of a potentiometer which is adjustable to regulate the laser power supply and, hence, the laser output energy level so laser beam energy is reduced when high absorption regions in the lesion are being scanned by the beam and increased as low absorption regions are being scanned.

  13. Focused laser lithographic system with sub-wavelength resolution based on vortex laser induced opacity of photochromic material.

    PubMed

    Wei, Zhen; Bai, Jian; Xu, Jianfeng; Wang, Chen; Yao, Yuan; Hu, Neibin; Liang, Yiyong; Wang, Kaiwei; Yang, Guoguang

    2014-12-01

    A focused laser lithographic system combines with vortex laser induced opacity of photochromic layer to write patterns with linewidth below wavelength. A photochromic layer is formed by coating the mixture of metanil yellow and aqueous PVA solution on the photoresist layer. In our system, the center of a lithographic laser with a 405 nm wavelength coincides with the center of vortex laser with a 532 nm wavelength. When a photochromic layer is illuminated by both lasers simultaneously, the absorbance for the lithographic laser decreases at the hollow region of the vortex laser but increases at its annular region, so that a transparent aperture for the lithographic laser is created and its size could be tuned by changing the power of vortex laser; therefore, the linewidth of written patterns is variable. Experimentally, using a 20× lens (NA = 0.4), this system condenses the linewidth of written patterns from 6614 to 350 nm.

  14. Technology Solutions Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois

    SciTech Connect

    2014-09-01

    In multifamily building hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. In this case study , Partnership for Advanced Residential Retrofit and Elevate Energy. explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs.

  15. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system.

    PubMed

    Zinin, Pavel V; Prakapenka, Vitali B; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  16. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    NASA Astrophysics Data System (ADS)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-01-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs

  17. [Assessment of the microcirculation system by laser Doppler flowmetry].

    PubMed

    Barkhatov, I V

    2013-01-01

    Laser Doppler flowmetry (LDF) is extensively used to study microcirculatory disorders, a main problem facing modern medicine. A wealth of data have been obtained on microcirculation in diabetes mellitus, HD, venous insufficiency and other diseases. This review focuses on basic principles of the method for the assessment of microcirculatory disorders by LDF using the domestically produced equipment. The main elements of the microcirculation system, capillary hemodynamics, and mechanisms of its regulation are described. The main elements and terms of LDF are considered, such as microcirculation index, flux, and variation coefficient along with elements of analysis of the amplitude-frequency fluctuation spectrum and different types of tissue blood flow. Active factors of microcirculation control modulate the blood flow from the vascular wall; their action is mediated through its muscular component. Passive factors cause variations of blood flow outside the microcirculation system; they are the pulsed wave originating from arteries and the sucking action of the venous respiratory pump. Under normal conditions, the vasomotor rhythm driven by the pacemaker in the precapillary segment of the microcirculation bed predominates. The compensatory role of other regulatory mechanisms increases with decreasing contribution of vasomotion to the active modulation of microcirculation hemodynamics. A change in the low to high frequency rhythm ratio reflects the microcirculation index (MI). In case of well-balanced active vasomotor and passive compensatory modulations of tissue blood flow observed in normoemic type of microcirculation, MI amounts to 2.2 ± 0.05. Enhancement of high-frequency and pulsed fluctuation spectra results in a decrease of MI to 1.73 ± 0.04 (hyperemic type) and 1.86 ± 0.053 (hypoemic type).

  18. Polarization Loss Compensation in a Laser Transceiver System

    NASA Technical Reports Server (NTRS)

    Hoffman, Jeffrey M.; Page, Norman A.

    2006-01-01

    JPL is developing a polarization-based sky tracking laser transceiver system in which some mirror coatings produce significant polarization losses that vary with tracking angle. We describe a useful method for dynamically compensating these effects.

  19. Interferometer combines laser light source and digital counting system

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of small linear displacements in digital readouts with extreme accuracy and sensitivity is achieved by an interferometer. The instrument combines a digital electro-optical fringe-counting system and a laser light source.

  20. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  1. Robust laser speckle recognition system for authenticity identification.

    PubMed

    Yeh, Chia-Hung; Sung, Po-Yi; Kuo, Chih-Hung; Yeh, Ruey-Nan

    2012-10-22

    This paper proposes a laser speckle recognition system for authenticity verification. Because of the unique imperfection surfaces of objects, laser speckle provides identifiable features for authentication. A Gabor filter, SIFT (Scale-Invariant Feature Transform), and projection were used to extract the features of laser speckle images. To accelerate the matching process, the extracted Gabor features were organized into an indexing structure using the K-means algorithm. Plastic cards were used as the target objects in the proposed system and the hardware of the speckle capturing system was built. The experimental results showed that the retrieval performance of the proposed method is accurate when the database contains 516 laser speckle images. The proposed system is robust and feasible for authenticity verification.

  2. Update on Modular Laser Launch System and Heat Exchanger Thruster

    NASA Astrophysics Data System (ADS)

    Kare, Jordin T.

    2011-11-01

    The heat-exchanger (HX) thruster and modular laser array provide a comparatively low-risk route to a ground-to-orbit laser launch system. Recently, the reference designs for the propulsion system, laser array, and overall launch system have evolved significantly. By combining a variable flow of dense propellant with the primary hydrogen propellant, the heat exchanger thruster can trade reduced Isp for increased thrust at liftoff, with minimal increase in tank mass. Single-mode CW fiber lasers up to 10 kW power allow a beam module to be built with off-the-shelf commercial lasers. Low-cost high-radiance laser diode arrays can deliver launch-level fluxes of 5-10 MW/m2 over tens of kilometers, sufficient to power a vehicle through the atmosphere, and high enough to hand off propulsion to a main laser array several hundred kilometers downrange. These and other enhancements enable a system design with a true single-stage vehicle in which the only component not yet demonstrated is the silicon-carbide heat exchanger itself.

  3. Laser-produced plasma source system development

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Brandt, David C.; Bykanov, Alexander N.; Ershov, Alexander I.; Partlo, William N.; Myers, David W.; Böwering, Norbert R.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Hoffman, Jerzy R.; Vargas L., Ernesto; Simmons, Rodney D.; Chavez, Juan A.; Chrobak, Christopher P.

    2007-03-01

    This paper describes the development of laser produced plasma (LPP) technology as an EUV source for advanced scanner lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for critical layer patterning below 32 nm beginning with beta generation scanners in 2009. This paper describes the development status of subsystems most critical to the performance to meet joint scanner manufacturer requirements and semiconductor industry standards for reliability and economic targets for cost of ownership. The intensity and power of the drive laser are critical parameters in the development of extreme ultraviolet LPP lithography sources. The conversion efficiency (CE) of laser light into EUV light is strongly dependent on the intensity of the laser energy on the target material at the point of interaction. The total EUV light generated then scales directly with the total incident laser power. The progress on the development of a short pulse, high power CO2 laser for EUV applications is reported. The lifetime of the collector mirror is a critical parameter in the development of extreme ultra-violet LPP lithography sources. The deposition of target materials and contaminants, as well as sputtering of the collector multilayer coating and implantation of incident particles can reduce the reflectivity of the mirror substantially over the exposure time even though debris mitigation schemes are being employed. The results of measurements of high energy ions generated by a short-pulse CO2 laser on a laser-produced plasma EUV light source with Sn target are presented. Droplet generation is a key element of the LPP source being developed at Cymer for EUV lithography applications. The main purpose of this device is to deliver small quantities of liquid target material as droplets to the laser focus. The EUV light in such configuration is obtained as a result of creating a highly ionized plasma from the material of the

  4. Aircraft Detection System Ensures Free-Space Laser Safety

    NASA Technical Reports Server (NTRS)

    Smithgall, Brian; Wilson, Keith E.

    2004-01-01

    As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.

  5. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  6. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  7. Craniomandibular System and Postural Balance after 3-Day Dry Immersion

    PubMed Central

    Treffel, Loïc; Dmitrieva, Liubov; Gauquelin-Koch, Guillemette; Custaud, Marc-Antoine; Blanc, Stéphane; Gharib, Claude; Millet, Catherine

    2016-01-01

    The objective of the study was to determine the influence of simulated microgravity by exposure to dry immersion on the craniomandibular system. Twelve healthy male volunteers participated in a 3-day dry immersion study. Before and immediately after exposure we measured maximal bite force using piezoresistive sensors. The mechanical properties of the jaw and cervical muscles were evaluated before, during, and after dry immersion using MyotonPRO. Because recent studies reported the effects of jaw motor activity on the postural stability of humans, stabilometric measurements of center of pressure were performed before and after dry immersion in two mandibular positions: rest position without jaw clenching, and intercuspidal position during voluntary teeth clenching. Results revealed no significant changes of maximal bite force after dry immersion. All postural parameters were significantly altered by dry immersion. There were however no significant differences in stabilometric data according to mandibular position. Moreover the masseter tonicity increased immediately after the end of dry immersion period. Dry immersion could be used as a valid model for studying the effects of microgravity on human subjects. However, 3 days appear insufficient in duration to evaluate the effects of weightlessness on maximal bite force. Our research suggests a link between postural disturbance after dry immersion and masseter tonicity. PMID:26913867

  8. Compact-range coordinate system established using a laser tracker.

    SciTech Connect

    Gallegos, Floyd H.; Bryce, Edwin Anthony

    2006-12-01

    Establishing a Cartesian coordinate reference system for an existing Compact Antenna Range using the parabolic reflector is presented. A SMX (Spatial Metrix Corporation) M/N 4000 laser-based coordinate measuring system established absolute coordinates for the facility. Electric field characteristics with positional movement correction are evaluated. Feed Horn relocation for alignment with the reflector axis is also described. Reference points are established for follow-on non-laser alignments utilizing a theodolite.

  9. Thermodynamics of radiation-balanced lasing

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.

    2003-05-01

    Athermal lasers dispose of their waste heat in the form of spontaneous fluorescence (i.e., by laser cooling) to avoid warming the medium. The thermodynamics of this process is discussed both qualitatively and quantitatively from the point of view of the first and second laws. The steady-state optical dynamics of an ytterbium-doped KGd(WO4)2 fiber is analyzed as a model radiation-balanced solid-state laser. A Carnot efficiency for all-optical amplification is derived in terms of the energy and entropy transported by the pump, fluorescence, and laser beams. This efficiency is compared with the performance of the model system.

  10. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Laser with resonators coupled by a dynamic hologram

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. B.; Golyanov, A. V.; Luk'yanchuk, B. S.; Ogluzdin, Valerii E.; Rubtsova, I. L.; Sugrobov, V. A.; Khizhnyak, A. I.

    1987-11-01

    The nature of operation of a laser with a phase-conjugate mirror utilizing multibeam interaction was found to have a considerable influence on the coupling of its resonator to the resonator of a laser used to pump the mirror. A system of this kind with resonators coupled by a dynamic hologram exhibited "soft" lasing in the presence of a self-pumped phase-conjugate mirror.

  11. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  12. An equivalent unbalance identification method for the balancing of nonlinear squeeze-film damped rotordynamic systems

    NASA Astrophysics Data System (ADS)

    Torres Cedillo, Sergio G.; Bonello, Philip

    2016-01-01

    The high pressure (HP) rotor in an aero-engine assembly cannot be accessed under operational conditions because of the restricted space for instrumentation and high temperatures. This motivates the development of a non-invasive inverse problem approach for unbalance identification and balancing, requiring prior knowledge of the structure. Most such methods in the literature necessitate linear bearing models, making them unsuitable for aero-engine applications which use nonlinear squeeze-film damper (SFD) bearings. A previously proposed inverse method for nonlinear rotating systems was highly limited in its application (e.g. assumed circular centered SFD orbits). The methodology proposed in this paper overcomes such limitations. It uses the Receptance Harmonic Balance Method (RHBM) to generate the backward operator using measurements of the vibration at the engine casing, provided there is at least one linear connection between rotor and casing, apart from the nonlinear connections. A least-squares solution yields the equivalent unbalance distribution in prescribed planes of the rotor, which is consequently used to balance it. The method is validated on distinct rotordynamic systems using simulated casing vibration readings. The method is shown to provide effective balancing under hitherto unconsidered practical conditions. The repeatability of the method, as well as its robustness to noise, model uncertainty and balancing errors, are satisfactorily demonstrated and the limitations of the process discussed.

  13. Reliability of the good balance system(®) for postural sway measurement in poststroke patients.

    PubMed

    Ha, Hyungeun; Cho, Kihun; Lee, Wanhee

    2014-01-01

    [Purpose] The purpose of this study was to examine test-retest reliability of the Good Balance system(®) for measurement of postural sway in poststroke patients. [Subjects] Sixty chronic stroke patients (40 men and 20 women; age 63.08 years; stroke duration 16.45 months) participated in this study. [Methods] Postural sway was evaluated using a force platform system (Good Balance system, Metitur Oy, Jyvaskyla, Finland). Two examiners measured postural sway for all participants during two separate testing sessions. The second measurement was performed one week after the first measurement. Intraclass correlation coefficients [ICC(2,1)] were used for estimation of reliability. [Results] The ICC (95% CI) for intra-examiner reliability was good to very good, ranging from 0.69 to 0.93 (0.53-0.96), and the ICC for inter-examiner reliability was good to very good, ranging from 0.85 to 0.98 (0.77-0.99). [Conclusion] The results of the current study indicated that the intra- and inter-examiner reliability of the Good Balance system(®) for measurement of postural sway was good to very good. Therefore, we suggest that measurement of postural sway using the Good Balance system(®) would be useful for clinical assessment in poststroke patients.

  14. Mass-balance Approach to Interpreting Weathering Reactions in Watershed Systems

    NASA Astrophysics Data System (ADS)

    Bricker, O. P.; Jones, B. F.; Bowser, C. J.

    2003-12-01

    The mass-balance approach is conceptually simple and has found widespread applications in many fields over the years. For example, chemists use mass balance (Stumm and Morgan, 1996) to sum the various species containing an element in order to determine the total amount of that element in the system (free ion, complexes). Glaciologists use mass balance to determine the changes in mass of glaciers ( Mayo et al., 1972 and references therein). Groundwater hydrologists use this method to interpret changes in water balance in groundwater systems ( Rasmussen and Andreasen, 1959; Bredehoeft et al., 1982; Heath, 1983; Konikow and Mercer, 1988; Freeze and Cherry, 1979; Ingebritsen and Sanford, 1998). This method has also been used to determine changes in chemistry along a flow path ( Plummer et al., 1983; Bowser and Jones, 1990) and to quantify lake hydrologic budgets using stable isotopes ( Krabbenhoft et al., 1994). Blum and Erel (see Chapter 5.12) discuss the use of strontium isotopes, Chapelle (see Chapter 5.14) treats carbon isotopes in groundwater, and Kendall and Doctor (see Chapter 5.11) and Kendall and McDonnell (1998) discuss the use of stable isotopes in mass balance. Although the method is conceptually simple, the parameters that define a mass balance are not always easy to measure. Watershed investigators use mass balance to determine physical and chemical changes in watersheds ( Garrels and Mackenzie, 1967; Plummer et al., 1991; O'Brien et al., 1997; Drever, 1997). Here we focus on describing the mass-balance approach to interpret weathering reactions in watershed systems including shallow groundwater.Because mass balance is simply an accounting of the flux of material into a system minus the flux of material out of the system, the geochemical mass-balance approach is well suited to interpreting weathering reactions in watersheds (catchments) and in other environmental settings (Drever, 1997). It is, perhaps, the most accurate and reliable way of defining

  15. Laser System for Precise, Unambiguous Range Measurements

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, Oliver

    2005-01-01

    The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used

  16. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  17. Flyer Velocity Characteristics of the Laser-Driven Miniflyer System

    SciTech Connect

    Gehr, R.J.; Harper, R.W.; Robbins, D.L.; Rupp, T.D.; Sheffield, S.A.; Stahl, D.B.

    1999-07-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity, are discussed.

  18. Off-line-locked laser diode species monitor system

    NASA Technical Reports Server (NTRS)

    Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)

    1995-01-01

    An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.

  19. Remote Operations of Laser Guide Star Systems: Gemini Observatory.

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine

    2011-03-01

    The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  20. Laser system for secondary cooling of {sup 87}Sr atoms

    SciTech Connect

    Khabarova, K Yu; Slyusarev, S N; Strelkin, S A; Belotelov, G S; Kostin, A S; Pal'chikov, Vitaly G; Kolachevsky, Nikolai N

    2012-11-30

    A laser system with a narrow generation line for secondary laser cooling of {sup 87}Sr atoms has been developed and investigated. It is planned to use ultracold {sup 87}Sr atoms loaded in an optical lattice in an optical frequency standard. To this end, a 689-nm semiconductor laser has been stabilised using an external reference ultrastable cavity with vibrational and temperature compensation near the critical point. The lasing spectral width was 80 Hz (averaging time 40 ms), and the frequency drift was at a level of 0.3 Hz s{sup -1}. Comparison of two independent laser systems yielded a minimum Allan deviation: 2 Multiplication-Sign 10{sup -14} for 300-s averaging. It is shown that this system satisfies all requirements necessary for secondary cooling of 87Sr atoms using the spectrally narrow {sup 1}S{sub 0} - {sup 3}P{sub 1} transition ({lambda} = 689 nm). (cooling of atoms)

  1. Spatial intensity profiling of an industrial laser welding system

    SciTech Connect

    Milewski, J.O.

    1991-12-31

    A investigation was conducted to devise a method to sense the laser beam intensity profile of an industrial laser welding system. The research focuses on monitoring methods and assessing locations within the system where data can be taken which reveal the relationship between the laser beam intensity profile and the input system parameters of the laser beam welding process. Emphasis has been placed on the configuration of a distributed computing environment to acquire, analyze and display the results of the sensed beam profile. Conventional image processing techniques are demonstrated. It was found that a distributed computing environment was useful for processing the large volumes of data generated by this process characterization method, and the distributed computing environment provided the computing power required for computationally intensive analysis and display techniques. The mathematical techniques used to discriminate one data set from another and relate the results to processing conditions are discussed.

  2. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  3. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  4. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  5. Smart CO2 laser surgical system based on autodyne monitoring of laser-evaporated biotissues: first results in oncology

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. K.; Varev, G. A.; Konovalov, A. N.; Kortunov, V. N.; Panchenko, V. Y.; Reshetov, I. V.; Matorin, O. V.; Maiboroda, V. F.; Ul'yanov, V. A.

    2005-08-01

    New method based on techniques of self-induced autodyne effect for diagnostics and control of laser-tissue evaporation by radiation of high-frequency pumped waveguide CO2 laser is developed. This method is used for creation of feed-back for smart CO2 laser surgical system of "Lancet" series. The results of medical testing of the smart laser surgical system are presented.

  6. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  7. Science Assessments for All: Integrating Science Simulations into Balanced State Science Assessment Systems

    ERIC Educational Resources Information Center

    Quellmalz, Edys S.; Timms, Michael J.; Silberglitt, Matt D.; Buckley, Barbara C.

    2012-01-01

    This article reports on the collaboration of six states to study how simulation-based science assessments can become transformative components of multi-level, balanced state science assessment systems. The project studied the psychometric quality, feasibility, and utility of simulation-based science assessments designed to serve formative purposes…

  8. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  9. The mass balance approach: application to interpreting the chemical evolution of hydrologic systems.

    USGS Publications Warehouse

    Plummer, L.N.; Back, W.

    1980-01-01

    Mass balance calculations are applied to observed chemical and isotopic data of three natural water systems involving carbonate reactions in order to define mineral stoichiometry of reactants and products, relative rates of reactions, and mass transfer. One study evaluates reactions in a lagoon on the east coast of the Yucatan Peninsula, Mexico.- from Authors

  10. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  11. Bench checkout equipment for spaceborne laser altimeter systems

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Elman, Gregory C.; Christian, Kent D.; Cavanaugh, John F.; Ramos-Izquierdo, Luis; Hopf, Dan E.

    1993-01-01

    This paper addresses the requirements for testing and characterizing spaceborne laser altimeter systems. The Bench Checkout Equipment (BCE) system, test requirements, and flow-down traceability from the instrument system's functional requirements will also be presented. Mars Observer Laser Altimeter (MOLA) and the MOLA BCE are presented as representative of a 'typical' laser altimeter and its corresponding test system. The testing requirements of other or future laser altimeter systems may vary slightly due to the specific spacecraft interface and project requirements. MOLA, the first solid-state interplanetary laser altimeter, was designed to be operational in Mars orbit for two Earth years. MOLA transmits a 7.5 ns pulse at a wavelength of 1.064 microns with a 0.25 mr beam divergence and a pulse repetition rate of 10 Hz. The output energy is specified at 45 mj at the beginning of mapping orbit and 30 mj at the end of one Martian year. MOLA will measure the laser pulse transit time from the spacecraft to the Mars surface and return to a resolution of 1.5 meters.

  12. Laser System for Livermore's Mono Energetic Gamma-Ray Source

    SciTech Connect

    Gibson, D; Albert, F; Bayramian, A; Marsh, R; Messerly, M; Ebbers, C; Hartemann, F

    2011-03-14

    A Mono-energetic Gamma-ray (MEGa-ray) source, based on Compton scattering of a high-intensity laser beam off a highly relativistic electron beam, requires highly specialized laser systems. To minimize the bandwidth of the {gamma}-ray beam, the scattering laser must have minimal bandwidth, but also match the electron beam depth of focus in length. This requires a {approx}1 J, 10 ps, fourier-transform-limited laser system. Also required is a high-brightness electron beam, best provided by a photoinjector. This electron source requires a second laser system with stringent requirements on the beam including flat transverse and longitudinal profiles and fast rise times. Furthermore, these systems must be synchronized to each other with ps-scale accuracy. Using a novel hyper-dispersion compressor configuration and advanced fiber amplifiers and diode-pumped Nd:YAG amplifiers, we have designed laser systems that meet these challenges for the X-band photoinjector and Compton-scattering source being built at Lawrence Livermore National Laboratory.

  13. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  14. Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.

    1982-01-01

    The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.

  15. Team-based work and work system balance in the context of agile manufacturing.

    PubMed

    Yauch, Charlene A

    2007-01-01

    Manufacturing agility is the ability to prosper in an environment characterized by constant and unpredictable change. The purpose of this paper is to analyze team attributes necessary to facilitate agile manufacturing, and using Balance Theory as a framework, it evaluates the potential positive and negative impacts related to these team attributes that could alter the balance of work system elements and resulting "stress load" experienced by persons working on agile teams. Teams operating within the context of agile manufacturing are characterized as multifunctional, dynamic, cooperative, and virtual. A review of the literature relevant to each of these attributes is provided, as well as suggestions for future research.

  16. Model study of the effects of interactions between systemic and peripheral circulation on interstitial fluid balance.

    PubMed

    Aletti, Federico; Baselli, Giuseppe

    2007-07-01

    Interstitial fluid balance is severely altered in microgravity, but the mechanisms underlying the fluid shift from lower to upper body are still partially unclear. A lumped parameter model of the arterial tree with active and non linear modulation of peripheral resistances and capillary fluid exchange was adopted to simulate the response of microcirculation to pulsatility and edema. Results suggest that myogenic regulation not only impinges on arteriolar radius, but it also indirectly affects interstitial fluid balance. Non linear dynamics of blood pressure (BP) and flow in capillary beds are influenced by systemic pulsatility, hinting that local activity is involved in the response to peripheral edema as well.

  17. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  18. Radionuclide mass balance for the TMI-2 accident: data-base system and preliminary mass balance. Volume 1

    SciTech Connect

    Goldman, M I; Davis, R J; Strahl, J F; Arcieri, W C; Tonkay, D W

    1983-04-01

    After the accident at Three Mile Island, Unit 2 (TMI-2), on March 28, 1979, GEND stated its intention to support an effort to determine, as accurately as possible, the current mass balances of significant radiological toxic species. GEND gave two primary reasons for support this effort: (1) such exercises guarantee completeness of the studies, and (2) mass balance determinations ensure that all important sinks and attentuation mechanisms have been identified. The primary objective of the studies conducted by NUS Corporation was to support the goals of the GEND planners and to continue the mass balance effort by generating a preliminary accounting of key radioactive species following the TMI-2 accident. As a result of these studies, secondary objectives, namely a computerized data base and recommendations, have been achieved to support future work in this area.

  19. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  20. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    PubMed

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-06

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP.

  1. Q-Switched Raman laser system

    DOEpatents

    George, E. Victor

    1985-01-01

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predetermined frequency .nu.=.nu..sub.0, to ultimately produce a Raman or Brillouin pulse at frequency .nu.=.nu..sub.0 .+-..nu..sub.Stokes.

  2. The laser lightning rod system: thunderstorm domestication.

    PubMed

    Ball, L M

    1974-10-01

    An unusual application of the laser, namely protection of life and property from lightning, is described. The device relies on multiphoton ionization in mode-locked beams, rather than on collisional (avalanche) electron production. Feasibility is demonstrated numerically, and relevant principles explained. A method of mobile deployment is mentioned, by which economic (as opposed to scientific) feasibility might be achieved.

  3. Q-switched Raman laser system

    DOEpatents

    George, E.V.

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predeterimined frequency nu = nu/sub O/, to ultimately produce a Raman or Brillouin pulse at frequency nu = nu/sub O/ +- nu /sub Stokes/.

  4. Criteria for the evaluation of laser solar energy converter systems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1985-01-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  5. Criteria for the evaluation of laser solar energy converter systems

    NASA Astrophysics Data System (ADS)

    Harries, W. L.

    1985-10-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  6. Wing tip vortex measurements with laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Fuller, C. E., III

    1973-01-01

    The vortex velocity field produced by a rectangular wing in a subsonic wind tunnel was measured using two laser Doppler velocimeter systems. One system made three dimensional mean velocity measurements and the other made one dimensional turbulence measurements. The systems and test procedures are described and comparisons of the measurements are made. The data defined a strong spiral motion in the vortex formation process.

  7. A picosecond beam-timing system for the OMEGA laser

    DOE PAGES

    Donaldson, W. R.; Katz, J.; Huff, R.; ...

    2016-05-27

    Here, a timing system is demonstrated for the OMEGA Laser System that guarantees all 60 beams will arrive on target simultaneously with a root mean square variability of 4 ps. The system relies on placing a scattering sphere at the target position to couple the UV light from each beam into a single photodetector.

  8. Laser system for space debris cleaning

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Erlandson, A. C.; Liedahl, D.

    2012-07-01

    Starting with intensity requirements for producing efficient ablation thrust, then applying orbital mechanics and taking beam transport into account, we have determined the laser pulse energy and the number of pulses required for removing orbital debris. Our calculations show that a ground-based, diode-pumped, gas-cooled multi-slab laser, that uses only modest extensions of existing technology, would be capable of removing most small debris from low-earth orbit, when used with a 3-m-diameter beam director. Such a laser would also be capable of moving large debris into orbits that avoid high-value satellites and of even removing large debris from orbit, by illuminating the debris over several encounters. The laser design we propose uses diode-pumped, Nd:glass, gas-cooled amplifiers with 25-cm square apertures. When operating at the laser fundamental wavelength of 1054 nm, each beamline would produce ˜ 8kJ/4ns pulses at 15 Hz. Two such beamlines, combined using established polarization-combining methods, would be sufficient for orbital debris cleaning. Alternatively, when operating at the second harmonic of 527 nm, each beamline would produce ˜ 7 kJ/4 ns pulses. Due to reduced beam divergence and a smaller beam diameter at the debris, a single harmonically-converted beamline can be useful. We estimate that the first-of-a-kind beamline could be deployed within 4-5 years of project start at a cost of 100-150M. Later beamlines would require less development and engineering costs and would have substantially lower overall cost.

  9. Stereo vision based hand-held laser scanning system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Wang, Jinming

    2011-11-01

    Although 3D scanning system is used more and more broadly in many fields, such computer animate, computer aided design, digital museums, and so on, a convenient scanning device is expansive for most people to afford. In another hand, imaging devices are becoming cheaper, a stereo vision system with two video cameras cost little. In this paper, a hand held laser scanning system is design based on stereo vision principle. The two video cameras are fixed tighter, and are all calibrated in advance. The scanned object attached with some coded markers is in front of the stereo system, and can be changed its position and direction freely upon the need of scanning. When scanning, the operator swept a line laser source, and projected it on the object. At the same time, the stereo vision system captured the projected lines, and reconstructed their 3D shapes. The code markers are used to translate the coordinate system between scanned points under different view. Two methods are used to get more accurate results. One is to use NURBS curves to interpolate the sections of the laser lines to obtain accurate central points, and a thin plate spline is used to approximate the central points, and so, an exact laser central line is got, which guards an accurate correspondence between tow cameras. Another way is to incorporate the constraint of laser swept plane on the reconstructed 3D curves by a PCA (Principle Component Analysis) algorithm, and more accurate results are obtained. Some examples are given to verify the system.

  10. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  11. Q-Switched Nd: YAG Laser Micro-Machining System

    SciTech Connect

    Messaoud, S.; Allam, A.; Siserir, F.; Bouceta, Y.; Kerdja, T.; Ouadjaout, D.

    2008-09-23

    In this paper, we present the design of a low cost Q-switched Nd: YAG laser micro-machining system for photo masks fabrication. It consists of: Nd:YAG laser source, beam delivery system, X-Y table, PC, The CCD camera and TV monitor. The synchronization between the laser source and the X-Y table is realised by NI PCI-7342, the two axis MID-7602 and LabVIEW based program. The first step of this work consists of engraving continuous and discontinuous lines on a thin film metal with a 100 {mu}m resolution by using the YG 980 Quantel Q-switched Nd:YAG laser.

  12. A Direct Diode Laser System Using a Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  13. Mid-IR laser system for advanced neurosurgery

    NASA Astrophysics Data System (ADS)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  14. Acousto-optic laser projection systems for displaying TV information

    SciTech Connect

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M; Shakin, O V

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  15. The Lunar Laser OCTL Terminal (LLOT) Optical Systems

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas; Wright, Malcolm W.

    2013-01-01

    The Lunar Laser OCTL Terminal is an auxiliary ground station terminal for the Lunar Laser Communication Demonstration (LLCD). The LLOT optical systems exercise modulation and beam divergence control over six 10-watt fiber-based laser transmitters at 1568 nanometers, which act as beacons for pointing of the space-based terminal. The LLOT design transmits these beams from distinct sub-apertures of the F/76 OCTL telescope at divergences ranging from 110 microrad to 40 microrad. LLOT also uses the same telescope aperture to receive the downlink signal at 1550 nanometers from the spacecraft terminal. Characteristics and control of the beacon lasers, methods of establishing and maintaining beam alignment, beam zoom system design, co-registration of the transmitted beams and the receive field of view, transmit/receive isolation, and downlink signal manipulation and control are discussed.

  16. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  17. Battery-driven miniature LDA system with semiconductor laser diode

    NASA Astrophysics Data System (ADS)

    Damp, S.

    1988-06-01

    A one-component miniature system with dimensions of 11 by 4 by 4 cubic centimeters for laser-Doppler anemometry (LDA) is described. As power supply a 12V battery or any other source with the capability to drive a current up to 200mA can be used. The system contains the whole electronics to drive the used laser diode is a safe way. The electronics to amplify and buffer the LDA-signal which is received by a PIN-diode is included. The output of the system can directly fit a filterbank for example. Possible applications in rough environments are mentioned. Measurements show the reliability of the system.

  18. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  19. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2011-11-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  20. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2012-02-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  1. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  2. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  3. Ring-laser gyroscope system using dispersive element(s)

    NASA Technical Reports Server (NTRS)

    Smith, David D. (Inventor)

    2010-01-01

    A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.

  4. Design and performance of a laser guide star system for the Keck II telescope

    SciTech Connect

    Friedman, H. W., LLNL

    1998-05-18

    A laser system to generate sodium-layer guide stars has been designed, built and delivered to the Keck Observatory in Hawaii. The system uses frequency doubled YAG lasers to pump liquid dye lasers and produces 20 W of average power. The design and performance results of this laser system are presented.

  5. Dizziness and Balance

    MedlinePlus

    AUDIOLOGY Dizziness and Balance Inform ation Seri es Our balance system helps us walk, run, and move without falling. ... if I have a problem with balance or dizziness? It is important to see your doctor if ...

  6. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    NASA Astrophysics Data System (ADS)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  7. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, M.

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that the authors' techniques allow more accurate estimation of the global system loading, resulting in fewer object migrations than local methods. The authors' method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.

  8. Optimization of water balance within the martian crew life support system

    NASA Astrophysics Data System (ADS)

    Sychev, V.; Levinskikh, M.

    The present-day scenarios of the first exploration mission differ in the total length crew size period of the stay on Mars etc However no matter the scenario one of the common problems is optimization of water balance within the crew life support system Water balance optimization implies in addition to regeneration of atmospheric moisture and urine also dehydration of biowastes In this mission all wastes will be stored and for this reason safe storage is prerequisite Investigations of two-component laboratory BLSS in which the autotrophic component was composed of algae Spirulina platensis and the heterotrophic component was represented by Japanese quail Coturnix coturnix japonica dom showed that optimization of the autotrophic and heterotrophic gas exchange and water regeneration from quail biowastes could raise the system susbstance balance to 76 of the total balance during autonomic cultivation of algae and birds In these investigations dehydration of quail biowastes caused significant pollution of water and air by organics toxic for humans It was demonstrated that the sorption technologies applied on the Russian space station MIR and ISS cannot fully absorb organic contaminants released in the process of quail wastes drying Algal suspension as a hydrobiological filter was able to control the organic pollination of both air and water These results are in agreement with the data of ground-based simulation studies with participation of human subjects at IBMP According to the simulation data intensive

  9. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    NASA Astrophysics Data System (ADS)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  10. Dissipative solitons in fiber lasers

    NASA Astrophysics Data System (ADS)

    Turitsyn, S. K.; Rosanov, N. N.; Yarutkina, I. A.; Bednyakova, A. E.; Fedorov, S. V.; Shtyrina, O. V.; Fedoruk, M. P.

    2016-07-01

    Dissipative solitons (also known as auto-solitons) are stable, nonlinear, time- or space-localized solitary waves that occur due to the balance between energy excitation and dissipation. We review the theory of dissipative solitons applied to fiber laser systems. The discussion context includes the classical Ginzburg-Landau and Maxwell-Bloch equations and their modifications that allow describing laser-cavity-produced waves. Practical examples of laser systems generating dissipative solitons are discussed.

  11. New insights on the role of the endocannabinoid system in the regulation of energy balance.

    PubMed

    Gatta-Cherifi, B; Cota, D

    2016-02-01

    Within the past 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, as it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories. An overactive endocannabinoid cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders. However, because of the psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as antiobesity treatment were removed from the European market in late 2008. Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders. These aspects will be especially highlighted in this review.

  12. A new balanced modulation code for a phase-image-based holographic data storage system

    NASA Astrophysics Data System (ADS)

    John, Renu; Joseph, Joby; Singh, Kehar

    2005-08-01

    We propose a new balanced modulation code for coding data pages for phase-image-based holographic data storage systems. The new code addresses the coding subtleties associated with phase-based systems while performing a content-based search in a holographic database. The new code, which is a balanced modulation code, is a modification of the existing 8:12 modulation code, and removes the false hits that occur in phase-based content-addressable systems due to phase-pixel subtractions. We demonstrate the better performance of the new code using simulations and experiments in terms of discrimination ratio while content addressing through a holographic memory. The new code is compared with the conventional coding scheme to analyse the false hits due to subtraction of phase pixels.

  13. Cell-balancing currents in parallel strings of a battery system

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Devie, Arnaud; Liaw, Bor Yann

    2016-07-01

    Lithium-ion batteries are attractive for vehicle electrification or grid modernization applications. In these applications, battery packs are required to have multiple-cell configurations and battery management system to operate properly and safely. Here, a useful equivalent circuit model was developed to simulate the spontaneous transient balancing currents among parallel strings in a battery system. The simulation results were validated with experimental data to illustrate the accuracy and validity of the model predictions. Understanding the transient behavior of such cell and string balancing in a parallel circuit configuration is very important to assess the impacts of current fluctuation and cell variability on a battery system's performance, regarding durability, reliability, safety, abuse tolerance and failure prevention, including possible short circuit or open circuit conditions. Additional features and advantages, including the ability to assessing impacts on the performance of the string assemblies from string swapping or cell/module replacement in the strings, could be realized to aid battery management, maintenance and repair.

  14. Direct laser diode welding system with anti-reflection unit

    NASA Astrophysics Data System (ADS)

    Nagayasu, Doukei; Wang, Jing-bo

    2003-11-01

    A high power laser diode system for welding is widely known. However, the reliability and the reasonability are required by an industrial market. Reliability, especially lifetime, mainly depends on the temperature of laser diode (LD) and it might be rise if LD would receive reflection from welding point. This paper conducted the measurement of the reflection during welding by applying 1/4 wavelength plate and PBS. Results indicated the reflection during welding was inevitable. We developed a prototype high power laser diode system, which equipped an anti-reflection unit, to improve the reliability. The system traveled 3m/min and its bead width was 1.2 mm for 1.5 mm Al (A5052) under the spot size 2.7 x 0.6 mm FWHM. Additionally, we started to develop fast and slow collimation lenses for LD to realize a reasonale price for system The brief evaluation of fast collimation lenses was also reported.

  15. 76 FR 2368 - Balance Power Systems, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Balance Power Systems, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Balance Power Systems, LLC's application for...

  16. Intra-Rater and Inter-Rater Reliability of the Balance Error Scoring System in Pre-Adolescent School Children

    ERIC Educational Resources Information Center

    Sheehan, Dwayne P.; Lafave, Mark R.; Katz, Larry

    2011-01-01

    This study was designed to test the intra- and inter-rater reliability of the University of North Carolina's Balance Error Scoring System in 9- and 10-year-old children. Additionally, a modified version of the Balance Error Scoring System was tested to determine if it was more sensitive in this population ("raw scores"). Forty-six…

  17. An exergame system based on force platforms and body key-point detection for balance training.

    PubMed

    Lavarda, Marcos D; de Borba, Pedro A; Oliveira, Matheus R; Borba, Gustavo B; de Souza, Mauren A; Gamba, Humberto R

    2016-08-01

    Postural instability affects a large number of people and can compromise even simple activities of the daily routine. Therapies for balance training can strongly benefit from auxiliary devices specially designed for this purpose. In this paper, we present a system for balance training that uses the metaphor of a game, what contributes to the motivation and engagement of the patients during a treatment. Such approach is usually named exergame, in which input devices for posturographic assessment and a visual output perform the interaction with the subject. The proposed system uses two force platforms, one positioned under the feet and the other under the hip of the subject. The force platforms employ regular load cells and a microcontroller-based signal acquisition module to capture and transmit the samples to a computer. Moreover, a computer vision module performs body key-point detection, based on real time segmentation of markers attached to the subject. For the validation of the system, we conducted experiments with 20 neurologically intact volunteers during two tests: comparison of the stabilometric parameters obtained from the system with those obtained from a commercial baropodometer and the practice of several exergames. Results show that the proposed system is completely functional and can be used as a versatile tool for balance training.

  18. Rayleigh Laser Guide Star Systems: Application to the University of Illinois Seeing Improvement System

    NASA Astrophysics Data System (ADS)

    Thompson, Laird A.; Teare, Scott W.

    2002-09-01

    Laser guide stars created by Rayleigh scattering provide a reasonable means to monitor atmospheric wavefront distortions for real-time correction by adaptive optics systems. Because of the λ-4 wavelength dependence of Rayleigh scattering, short-wavelength lasers are a logical first choice for astronomical laser guide star systems, and in this paper we describe the results from a sustained experimental effort to integrate into an adaptive optics system a 351 nm Rayleigh laser guide star created at an altitude of 20 km (above mean sea level) at the Mount Wilson 2.5 m telescope. In addition to providing obvious scientific benefits, the 351 nm laser guide star projected by the University of Illinois Seeing Improvement System is ``stealth qualified'' in terms of the Federal Aviation Administration and airplane avoidance. Because of the excellent return signal at the wavefront sensor, there is no doubt that future applications will be found for short-wavelength Rayleigh-scattered laser guide stars.

  19. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  20. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  1. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  2. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  3. The Green Bank Telescope Laser Metrology Computer Control System

    NASA Astrophysics Data System (ADS)

    Creager, Ramón E.

    To use the 100-meter Green Bank Telescope at millimeter wavelengths, the antenna surface must be continuously adjusted to compensate for environmental effects. The metrology system, comprising a network of infrared laser rangers, has been developed to measure the position of the surface to an accuracy of 50 microns. The metrology computer control system is described here. The embedded systems which point the 18 lasers and take range measurements are based on Intel x86 computers. The central control of these computers is done using a Pentium PC running Windows NT. Engineering displays of the data are produced by piping the data in real-time to Microsoft Excel.

  4. Numerical control system of battery welding with pulsed YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Guoshun; Yang, Zhaoxia; Zhang, Taishi; Wei, Zhigang; Li, Chaoyang

    1999-09-01

    This article briefly introduces the pulse YAG laser welding system, a new research achievement of my section. This system can weld the electric pole, the holly board and other aluminum parts of lithium battery, and the process of loading, unloading, compressing and welding can be completed automatically. Moreover, the software proprietary of the system is very good, and its interface is friendly too. In order to achieve optimum welding effect, we have designed special laser discharging waveform. Its rise delay time, fall delay time, and width are all designed specially. With this special technology, the welding spot we get is smooth like mirror, and the welding intensity can be controlled conveniently.

  5. A laser imaging system for helicopter avoidance obstacle

    NASA Astrophysics Data System (ADS)

    Wang, WeiRan; Yuan, HongChun; Jin, Yuan

    2006-09-01

    Rotorcraft flying in low-altitude is endangered by power lines or telephone wires. The development of automated tools that can detect obstacles in the flight path and warn the crew would significantly reduce the workload of pilot and increase the safety. Detection and warning are rudimental demand and desire for Helicopter Avoidance Obstacle System (HAOS). And that, An advanced HAOS may be capable of classifying thin obstacles and enhanced vision with distances of obstacles. A laser 3D imaging system for helicopter avoidance obstacle (HAO) had been developed successfully. The laser 3D imaging helicopter avoidance obstacle system can not only detect thin obstacles but also catch more information of all objects of the area in front of the helicopter as possible. Then the information is transformed into intuitionist 3D image modality. In this paper, special features and characteristic of the laser imaging system for HAO are analyzed and discussed. Several design gist for this system are proposed. Especially, the developed zero backlash imaging technology and real-time dynamic imaging synchronizing with radar space scanning are described. The technique implementation problem and the system structure are given as well. Finally, the results of system ground test are presented. The ground test of the developed laser imaging system has demonstrated that the developed imaging system performance can achieve and satisfy commendably the requirements of the mission to prevent "wire strike".

  6. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  7. Apparatus, system, and method for laser-induced breakdown spectroscopy

    SciTech Connect

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  8. Tunable solid state laser system for dermatology applications

    NASA Astrophysics Data System (ADS)

    Azar, Zion; Bank, Alexander; Donskoy, Dmitri M.; Nechitailo, Vladimir S.

    1994-12-01

    The Q-switched Nd:YAG laser is the most recent in a series of pulsed laser systems for plastic surgery. The 532 nm wavelength has been shown to be absorbed by a variety of chromophores. These include tattoo pigments, oxygenated hemoglobin and melanin-containing epidermal cells. A simple multi-line solid state laser module pumped by double-frequency Q- switched YAG laser is presented. This solid state multi-line module enables tuning of the wavelength in the yellow spectral range to 560 nm or to 580 nm for dermatology applications. Conversion efficiency in excess of 70% was achieved at 10 Hz pulse repetition frequency and output energy per pulse of approximately 200 mJ.

  9. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  10. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect

    Yakovlev, I V

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  11. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  12. Multimode lasers as analogs of complex biological systems (a survey)

    NASA Astrophysics Data System (ADS)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  13. Stability design of support systems in ICF lasers

    NASA Astrophysics Data System (ADS)

    Zhu, M. Z.; Wu, W. K.; Chen, G.; Zhan, H.; Xu, Y. L.; Chen, X. J.

    2016-10-01

    Within Inertial Confinement Fusion (ICF) laser systems, many independent laser beams are required to be positioned on target with a very high degree of accuracy until shots are complete. Optical elements that are capable of moving a laser beam on the target must meet the pointing error budget. Optical elements are typically supported by systems which consist of mounts, mount frames, support structures, and foundation. The stability design for support systems in ICF laser have been developed based on the designing and evaluating experience of ShenGuangIII (SGIII). This paper will provide the methodology of position error budget. The stability allocation is developed for evaluating the performance of support systems when they are subjected to multiple sources of excitations that can cause the motion of optical elements during alignment procedures and before shots. The vibrational stability design considerations of support systems are discussed on the fundamental frequency, ambient random vibration, and modal damping. The support structures of optical elements are the relatively large and massive hybrid structure of reinforced concrete and steel frame or vessels. While the reinforced concrete portions provide optical elements stability, the steel portions afford design flexibility. Finite element analyses of ambient random vibration are typically performed to evaluate the vibrational stability performances of support systems. Finally, this paper describes the ambient random vibration and beam pointing error measurements of SGIII. The measurements show the support systems of SGIII meet design requirement. These information can be used on similar systems.

  14. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  15. The implementation of PAYT system under the condition of financial balance in France.

    PubMed

    Le Bozec, André

    2008-12-01

    Since 2005, France has been facing a reform of the financial regulation of the management of municipal solid waste, by tax or flat fees. Nevertheless, the application of unit pricing is limited to about 15 local authorities, but interest is expanding. The French examples confirm the efficiency of this PAYT system. The prevention and the sorting of packaging waste are increasing and the quantity of residual waste falling. But, we have highlighted the difficulty for the local authorities to balance their budgets during the years of PAYT system implementation. After a short review of the situation in France of the financing of waste services, and in particular of PAYT system, the paper presents, firstly the financial model and then, the results of its application in two communities. The cost model takes into account the expenditure of management on various waste flows and the revenues for the sale of by-products. A financial balance is ensured by the payments from households. Consequently, the unit pricing and the effect of the behaviour of the inhabitants are introduced into the simulation model. The application on two local authorities showed that the increase of sorting waste did not restore the balance. From the analysis, three reasons explain this situation: Thus, the development of the tariff must be carried out according to an economic approach. In the end, after the presentation of the financial modelling and its application, we make recommendations to aid the implementation of the PAYT system and the development of the pricing structures by local authorities.

  16. Population-based learning of load balancing policies for a distributed computer system

    NASA Technical Reports Server (NTRS)

    Mehra, Pankaj; Wah, Benjamin W.

    1993-01-01

    Effective load-balancing policies use dynamic resource information to schedule tasks in a distributed computer system. We present a novel method for automatically learning such policies. At each site in our system, we use a comparator neural network to predict the relative speedup of an incoming task using only the resource-utilization patterns obtained prior to the task's arrival. Outputs of these comparator networks are broadcast periodically over the distributed system, and the resource schedulers at each site use these values to determine the best site for executing an incoming task. The delays incurred in propagating workload information and tasks from one site to another, as well as the dynamic and unpredictable nature of workloads in multiprogrammed multiprocessors, may cause the workload pattern at the time of execution to differ from patterns prevailing at the times of load-index computation and decision making. Our load-balancing policy accommodates this uncertainty by using certain tunable parameters. We present a population-based machine-learning algorithm that adjusts these parameters in order to achieve high average speedups with respect to local execution. Our results show that our load-balancing policy, when combined with the comparator neural network for workload characterization, is effective in exploiting idle resources in a distributed computer system.

  17. Effect of age and sex on maturation of sensory systems and balance control.

    PubMed

    Steindl, R; Kunz, K; Schrott-Fischer, A; Scholtz, A W

    2006-06-01

    Maintenance of postural balance requires an active sensorimotor control system. Current data are limited and sometimes conflicting regarding the influence of the proprioceptive, visual, and vestibular afferent systems on posture control in children. This study investigated the development of sensory organization according to each sensory component in relation to age and sex. A total of 140 children (70 males, 70 females; mean age 10y [SD 4y]; age range 3y 5mo-16y 2mo) and 20 adults (10 males, 10 females; mean age 30y 6mo [SD 8y 4mo]; age range 17y 2mo-49y 1mo) were examined using the Sensory Organization Test. Participants were tested in three visual conditions (eyes open, blindfolded, and sway-referenced visual enclosure) while standing on either a fixed or a sway-referenced force platform. Mean equilibrium scores for the six balance conditions showed rapid increases and maturation ceiling levels for age-related development of the sensorimotor control system. Proprioceptive function seemed to mature at 3 to 4 years of age. Visual and vestibular afferent systems reached adult level at 15 to 16 years of age, revealing differences between young males and females. Characterizing balance impairments can contribute to the diagnostic evaluation of neuromotor disorders.

  18. Laser rangefinders for autonomous intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  19. Noncontact laser fiber delivery system for endoscopic medical applications

    NASA Astrophysics Data System (ADS)

    Denisov, Nikolay A.; Griffin, Stephen E.

    1999-02-01

    The objective of the study was to design and to investigate laser fiber delivery system for treatment of obstructed human internal tubular organs using endoscopic techniques. This system eliminates the main disadvantages of both applied contact and non-contact probes, namely surface contamination with concomitant hydrothermal probe deterioration and large beam divergence with poor energy density, respectively. Proposed silica or sapphire probes produce quasi-collimated beam with specific outside diameter and power distribution. To provide comparative analysis of laser delivery systems' optical properties with non-contact endoscopic probes 'steady beam distance' (SBD) and 'steady beam ratio' (SBR) coefficients are proposed. The calculation results are presented in the form of the plots of the SBR - coefficients and SBDs for a 2.0 mm specific outside beam diameter versus laser wavelength, delivery fiber core diameter and its numerical aperture for both probe material. Additionally, the cross power distributions along the SBD were studied. Results obtained could provide a useful tool to designers of non-contact fiber delivery systems intended for a variety of medical applications, including endoscopic surgery with cw or pulse laser tissue irradiation, skin de-epithelialization, laser-induced fluorescence and photodynamic therapy.

  20. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.