DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Ella; Bellum, John; Kletecka, Damon
We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less
Field, Ella; Bellum, John; Kletecka, Damon
2014-11-06
We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less
Laser Ablation Cleaning of Self-Reacting Friction Stir Weld Seam Surfaces: A Preliminary Evaluation
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C. K.; Brooke, S. A.; Parry, Q.; Lowrey, N. M.
2014-01-01
Anodized aluminum panels were cleaned by three lasers at three separate sites with a view to determining whether more economical laser cleaning might supplant current manual cleaning methods for preparation of surfaces to be welded by the self-reacting friction stir process. Uncleaned panels yielded welds exhibiting residual oxide defect (ROD) and failing at very low stresses along the trace of the weld seam. Manually cleaned panels yielded welds without ROD; these welds failed at nominal stress levels along an angled fracture surface not following the weld seam trace. Laser cleaned panels yielded welds failing at intermediate stress levels. The inadequacy of the laser cleaning processes leaves questions: Was the anodized aluminum test too stringent to represent actual cleaning requirements? Were the wrong laser cleaning techniques/parameters used for the study? Is the laser cleaning mechanism inadequate for effective preweld surface cleaning?
NASA Astrophysics Data System (ADS)
Sentis, M. L.; Delaporte, Ph; Marine, W.; Uteza, O.
2000-06-01
The laser ablation performed with an automated excimer XeCl laser unit is used for large surface cleaning. The study focuses on metal surfaces that are oxidised and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The unit contains an XeCl laser, the beam delivery system, the particle collection cell, and the system for real-time control of cleaning processes. The interaction of laser radiation with a surface is considered, in particular, the surface damage caused by cleaning radiation. The beam delivery system consists of an optical fibre bundle of 5 m long and allows delivering 150 W at 308 nm for laser surface cleaning. The cleaning process is controlled by analysing in real time the plasma electric field evolution. The system permits the cleaning of 2 to 6 m2 h-1 of oxides with only slight substrate modifications.
NASA Astrophysics Data System (ADS)
Abdel-Kareem, Omar; Harith, M. A.
2008-07-01
Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.
Surface preparation of Ti-3Al-2.5V alloy tubes for welding using a fiber laser
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Gupta, Mool C.
2009-11-01
Ti-3Al-2.5V tubes are widely used in aircraft hydraulic systems. Meticulous surface preparation before welding is necessary to obtain a sound weld involving these alloy tubes. Conventionally this is done by cleaning with environmentally malign toxic chemicals, such as, hydrofluoric acid and nitric acid. This paper describes the laser-cleaning process of the surface of these tubes with a fiber laser as a preparation for pulsed gas tungsten arc welding and results obtained. A simple one-dimensional heat equation has been solved to evaluate the temperature profile of the irradiated surface. It is shown that surface preparation by laser cleaning can be an environmentally friendly alternative process by producing acceptable welds with laser-processed tubes.
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
Surface Analysis of the Laser Cleaned Metal Threads
NASA Astrophysics Data System (ADS)
Sokhan, M.; Hartog, F.; McPhail, D.
The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.
Characterization of Laser Cleaning of Artworks
Marczak, Jan; Koss, Andrzej; Targowski, Piotr; Góra, Michalina; Strzelec, Marek; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Ostrowski, Roman; Rycyk, Antoni
2008-01-01
The main tasks of conservators of artworks and monuments are the estimation and analysis of damages (present condition), object conservation (cleaning process), and the protection of an object against further degradation. One of the physical methods that is becoming more and more popular for dirt removal is the laser cleaning method. This method is non-contact, selective, local, controlled, self-limiting, gives immediate feedback and preserves even the gentlest of relief - the trace of a paintbrush. Paper presents application of different, selected physical sensing methods to characterize condition of works of art as well as laser cleaning process itself. It includes, tested in our laboratories, optical surface measurements (e.g. colorimetry, scatterometry, interferometry), infrared thermography, optical coherent tomography and acoustic measurements for “on-line” evaluation of cleaning progress. Results of laser spectrometry analyses (LIBS, Raman) will illustrate identification and dating of objects superficial layers. PMID:27873884
Spectroscopic Monitoring of the Laser Cleaning Applied to Ancient Marbles from Mediterranean Areas
NASA Astrophysics Data System (ADS)
Lazic, V.; Colao, F.; Fantoni, R.; Fiorani, L.; Palucci, A.; Striber, J.; Santagata, A.; Morone, A.; Spizzicchino, V.
Laser Induced Breakdown Spectroscopy (LIBS) analysis by Nd:YAG laser emitting at 355nm were performed on different clean and dirty surfaces of marble fragments collected from ancient quarries in Greece, Turkey and Italy, in order to determine semi-quantitavely the atomic composition of the bulk material and encrustation. The method here developed for element concentrations retrieval could be applied during laser cleaning process to supply the information about the effective crust composition at different depths and the point where the process should be interrupted. The knowledge of the crust composition along successive layers is also important for determining the restoration procedures. The elements measured in the encrustations, such as Si, Al, Ca, C, Ti, Mn, Mg, Na, Ba, Sr and Cu are also present in the bulk, but at different concentrations whose determination allows for the process monitoring. The only element here observed in the crusts and not detected in the bulk materials is Chromium, whose progressive disappearance from LIBS spectra could be used as another indicator of the laser cleaning effectiveness. On a sample from Turkey also Vanadium was detected in the encrustation. The present LIBS measuring method was validated by SEM-EDX and ICP analyses. The clean marble surface and encrustations were further analysed by Laser Induced Fluorescence (LIF), which could be used as an alternative technique for the on-line control of the cleaning effectiveness. Better discrimination between dirty and clean marble surface was obtained when 266nm excitation was applied instead of 355 nm. Characteristic LIF spectral signatures allows for the discrimination between different type of the natural stones, even under the water.
NASA Astrophysics Data System (ADS)
Pouli, Paraskevi; Oujja, Mohamed; Castillejo, Marta
2012-02-01
In the last twenty years lasers have acquired an important role in the study and the preservation of Cultural Heritage (CH) objects and Monuments, as they have effectively illuminated a number of complex diagnostic and restoration problems. Their unique properties have enabled their use in a wide range of conservation applications, since they ensure interventions with precise control, material selectivity and immediate feedback. Surface cleaning, based on laser ablation, is a delicate, critical and irreversible process, which, given the multitude of materials that may be present on a CH object and the often fragile or precarious condition of the original surfaces, is fraught with many potential complications. Therefore it is crucial to choose the best possible laser cleaning methodology for each individual case, which involves optimising the laser parameters according to material properties, as well as the thorough knowledge of the ablation mechanisms involved. In this context the systematic investigation and elucidation of potential damage or side effects occurring upon cleaning is essential, as it delineates the possibilities and limitations of laser ablation and allows the fine-tuning of the operating parameters for a successful cleaning intervention. This paper is an overview of studies investigating the mechanisms which are responsible for the laser-induced discoloration effects. Emphasis is given on the yellowing coloration observed on stonework upon infrared (IR) ablation of pollution encrustations, while the various theories introduced to approach the different physical and/or chemical processes and mechanisms responsible for such side effects are discussed. In this respect the different laser cleaning methodologies, which are based on the use of laser systems with different pulse durations and wavelength characteristics, introduced in order to rectify or prevent discoloration on stonework are presented. In parallel, the darkening phenomena which occur upon laser irradiation of painted surfaces are also considered. Studies on series of model paints performed in order to understand the sensitivity of pigments to laser irradiation are critically reviewed. In this respect the importance of the optimal wavelength and pulse-duration selection for a safe and controlled laser cleaning intervention is also addressed.
Corrosion behaviour of laser-cleaned AA7024 aluminium alloy
NASA Astrophysics Data System (ADS)
Zhang, F. D.; Liu, H.; Suebka, C.; Liu, Y. X.; Liu, Z.; Guo, W.; Cheng, Y. M.; Zhang, S. L.; Li, L.
2018-03-01
Laser cleaning has been considered as a promising technique for the preparation of aluminium alloy surfaces prior to joining and welding and has been practically used in the automotive industry. The process is based on laser ablation to remove surface contaminations and aluminium oxides. However the change of surface chemistry and oxide status may affect corrosion behaviour of aluminium alloys. Until now, no work has been reported on the corrosion characteristics of laser cleaned metallic surfaces. In this study, we investigated the corrosion behaviour of laser-cleaned AA7024-T4 aluminium alloy using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The results showed that the laser-cleaned surface exhibited higher corrosion resistance in 3.5 wt.% NaCl solution than as-received hot-rolled alloy, with significant increase in impedance and decrease in capacitance, while SVET revealed that the active anodic points appeared on the as-received surface were not presented on the laser-cleaned surfaces. Such corrosion behaviours were correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS). It was suggested that the removal of the original less protective oxide layer consisting of MgO and MgAl2O4 on the as-received surfaces and the newly formed more protective oxide layer containing mainly Al2O3 and MgO by laser cleaning were responsible for the improvement of the corrosion performance.
Laser cleaning treatment of burnt paintings
NASA Astrophysics Data System (ADS)
Antonopoulou-Athera, N.; Chatzitheodoridis, E.; Doulgerides, M.; Evangelatos, Ch.; Serafetinides, A. A.; Terlixi, A.
2015-01-01
Three samples taken from two paintings partly burned by fire are investigated for cleaning with lasers. The paintings belong to the collection of the National Gallery of Athens and were made by the great Greek artist Konstantinos Parthenis. To remove the damaged surface and achieve an acceptable restoration result, the optimum combination of fluence and wavelength are sought. Seven different wavelengths with a set of fluences where used, i.e., the five harmonics of a Nd:YAG laser (1064, 532, 355, 266, and 213 nm), a TEA 10.6 μm CO2 and a free running laser Er:YAG 2.94 μm. Characterization was performed prior and after the cleaning process by optical and electron microscopy and analysis (SEM/BSE EDS), as well as X-Ray Diffraction (XRD). The results of this work indicate that the wavelength in the visible spectrum (532 nm) with fluences between 0.1-0.4J/cm2 show the optimum cleaning. The optical microscopy observation shows that with these laser parameters the burnt layer was preferentially removed, exposing the original colors that Parthenis had used in these paintings. Electron microscopy imaging and chemical analysis revealed that the original texture and materials of these samples are preserved after irradiation. Since the damage varies along the surface of the painting, more experiments should be performed in order to find and optimize the full cleaning and characterization process for the homogeneous cleaning of the whole surface of the painting.
Cleaning of copper traces on circuit boards with excimer laser radiation
NASA Astrophysics Data System (ADS)
Wesner, D. A.; Mertin, M.; Lupp, F.; Kreutz, E. W.
1996-04-01
Cleaning of Cu traces on circuit boards is studied using pulsed excimer laser radiation (pulse width ˜ 20 ns, wavelength 248 nm), with the goal of improving the properties of the Cu surface for soldering and bonding. Traces with well-defined oxide overlayers are cleaned by irradiation in air using ≤ 10 3 laser pulses at fluences per pulse of ≤ 2 J cm -2. After treatment the surface morphology is analyzed using optical microscopy, optical profilometry, and scanning electron microscopy, while the chemical state of the surface is investigated with X-ray photoelectron (XPS) spectroscopy. Ellipsometry is used to determine the oxide overlayer thickness. Prior to cleaning samples exhibit a contamination overlayer about 15-25 nm in thickness containing Cu 2O and C. Cleaning reduces the overlayer thickness to ≤ 10 nm by material removal. The process tends to be self-limiting, since the optical reflectivity of the oxidized Cu surface for laser radiation is smaller than that of the cleaned surface. Additionally, the interaction with the laser radiation results in surface segregation of a minor alloy component out of the bulk (e.g. Zn), which may help to passivate the surface for further chemical reactions.
Visualization of flow during cleaning process on a liquid nanofibrous filter
NASA Astrophysics Data System (ADS)
Bílek, P.
2017-10-01
This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.
Seiffert, Gary; Sutcliffe, Chris
2015-01-01
Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906
NASA Astrophysics Data System (ADS)
Costil, S.; Lamraoui, A.; Langlade, C.; Heintz, O.; Oltra, R.
2014-01-01
Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.
Laser cleaning of the contaminations on the surface of tire mould
NASA Astrophysics Data System (ADS)
Ye, Yayun; Jia, Baoshen; Chen, Jing; Jiang, Yilan; Tang, Hongping; Wang, Haijun; Luan, Xiaoyu; Liao, Wei; Zhang, Chuanchao; Yao, Caizhen
2017-07-01
During the manufacturing of tires, surface pollutants on tire mould will lead to the production of unqualified tires. Tire moulds need to be regularly cleaned. Laser cleaning is recognized as a non-destructive, effective, precise and environmental friendly method. In this paper, laser cleaning was used to remove contaminants on tire mould surface. First, laser induced damage experiments were performed. The results showed that the roughness and hardness of the cast steel sample surface seldom changed under the energy range of 140.1-580.2 mJ laser irradiation 1 pulse and the energy range of 44.7-168.9 mJ laser irradiation 100 pulses. In the laser cleaning experiments, the cleaning thresholds and the optimal cleaning parameters were obtained. Results indicated that laser cleaning was safe and effective for tire mould contamination removal.
Materials Science Clean Room Facility at Tulane University (Final Technical Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altiero, Nicholas
2010-09-30
The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.
NASA Technical Reports Server (NTRS)
1983-01-01
NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.
Laser etching of polymer masked leadframes
NASA Astrophysics Data System (ADS)
Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.
1997-02-01
A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.
NASA Astrophysics Data System (ADS)
AlShaer, A. W.; Li, L.; Mistry, A.
2014-12-01
Laser welding of aluminium alloys typically results in porosity in the fusion zones, leading to poor mechanical and corrosion performances. Mechanical and chemical cleaning of surfaces has been used previously to remove contaminants for weld joint preparations. However, these methods are slow, ineffective (e.g. due to hydrogen trapping) or lead to environmental hazards. This paper reports the effects of short pulsed laser surface cleaning on porosity formation and reduction in laser welding of AC-170PX (AA6014) aluminium sheets (coated with Ti/Zr and lubricated using a dry lubricant AlO70) with two types of joints: fillet edge and flange couch, using an AA4043 filler wire for automotive component assembly. The effect of laser cleaning on porosity reduction during laser welding using a filler wire has not been reported before. In this work, porosity and weld fusion zone geometry were examined prior to and after laser cleaning. The nanosecond pulsed Nd:YAG laser cleaning was found to reduce porosity significantly in the weld fusion zones. For the fillet edge welds, porosity was reduced to less than 0.5% compared with 10-80% without laser cleaning. For flange couch welds, porosity was reduced to 0.23-0.8% with laser cleaning from 0.7% to 4.3% without laser cleaning. This has been found to be due to the elimination of contaminations and oxide layers that contribute to the porosity formation. The laser cleaning is based on thermal ablation. This research focuses on porosity reduction in laser welding of aluminium alloy. Weld quality was investigated for two joints, fillet edge and flange couch joints. The effect of laser cleaning on porosity reduction after welding was investigated. It was found that laser cleaning reduced porosity less than 1% in both joints. Weld dimensions and strength were evaluated and discussed for both types of joints.
Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser
NASA Astrophysics Data System (ADS)
Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-05-01
The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.
Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris
2017-01-01
Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay
2017-02-01
In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.
Development of megasonic cleaning for silicon wafers
NASA Technical Reports Server (NTRS)
Mayer, A.
1980-01-01
A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.
Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.
Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao
2016-04-10
HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6 W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.
Recent studies of laser science in paintings conservation and research.
Pouli, Paraskevi; Selimis, Alexandros; Georgiou, Savas; Fotakis, Costas
2010-06-15
The removal of aged and deteriorated molecular overlayers from the surface of paintings is a delicate and critical intervention in Cultural Heritage (CH) conservation. This irreversible action gets particularly complicated given the multitude of materials that may be present within a painted work of art (often in ultrathin layers or traces), as well as the exceptional sensitivity of the original surfaces to environmental conditions such as heat, light, and so on. Lasers hold an important role among the available cleaning methodologies, as they enable high control and accuracy, material selectivity, and immediate feedback. Still, prior to their implementation, it is imperative to optimize the cleaning parameters, so to ensure that any potential implications to the remaining materials are minimal and well understood. Toward this aim, research at IESL-FORTH is focused on both refining and continuously updating the laser-cleaning protocols (by introducing novel laser technologies into the field, i.e., ultrashort laser pulses), as well as on investigating and studying the nature and extent of laser-induced physicochemical alterations to the involved materials. In this Account, extended work for the understanding of ultraviolet (UV) laser ablation of polymers is presented. Emphasis is placed on the use of model systems (polymers doped with chromophores of known photochemistry) to examine the in-depth laser-induced modifications at the processed surfaces and thus to illustrate the dependence of their nature and extent on laser parameters and material properties. Furthermore, studies for the potential use of femtosecond UV pulses to overcome certain limitations involved with the nanosecond ablation of molecular overlayers from CH surfaces are highlighted. In particular, it is demonstrated that in the femtosecond regime any chemical modifications are, qualitatively and quantitatively, highly defined, limited and nearly independent of the material properties, such as the absorptivity and the degree of polymerization/molecular weight. Thus, they can be highly potent in the treatment of molecular substrates, enabling new material processing schemes that have not been possible with nanosecond laser technology, as for example, processing of ultrathin varnish layers. Finally, a sensitive indicator is introduced to elucidate the extent of any photochemical or structural modification induced at the substrate on the process of the laser-assisted removal of overpaints. A realistic scenario of an overlayered modern painting is simulated by a sensitive polymer film covered with acrylic paint. The indicator is doped with photosensitizers of known photochemistry and strong fluorescence emission, which allow the employment of laser induced fluorescence (LIF) for the detection of any chemical modifications generated into the substrate during laser cleaning. In addition, nonlinear microscopy techniques are successfully employed to examine the extent of these modifications. The suggested methodology is proven to reliably and accurately detect potential changes, and thus, it can serve as a monitoring tool to fine-tune the cleaning protocol and safeguard the original painting.
NASA Astrophysics Data System (ADS)
Bílek, Petr; Hrůza, Jakub
2018-06-01
This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.
Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser
NASA Astrophysics Data System (ADS)
Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu
2018-02-01
Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.
Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.
Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert
2012-12-01
Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Yu, Zhishui
2018-06-01
Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.
Laser versus scalpel cleaning of crustose lichens on granite
NASA Astrophysics Data System (ADS)
Rivas, T.; Pozo-Antonio, J. S.; López de Silanes, M. E.; Ramil, A.; López, A. J.
2018-05-01
This paper addresses the evaluation of the cleaning of crustose lichens developing on granite. The evaluation was performed considering the effectiveness of the cleanings and harmfulness exerted on the granite. The laser cleaning of lichen was compared with the most conventional procedure, scalpel. The combination of both procedures was also tested. The study, which was carried out with two different species of crustose lichen, was also focused on the influence of the intrinsic characteristics of the lichen on the effectiveness. The cleanings were evaluated by optic and electronic microscopies, FTIR and colour spectrophotometry. A previous characterization of the lichen and its interaction with the granite using those analytical techniques were also performed. The laser cleaning effectiveness depends on the coverage and the colour of the lichen; also, the prior mechanical weakening of the lichen by scalpel seemed to improve the laser cleaning. The darkest lichen was satisfactorily removed by laser and with the combined cleaning. Conversely, the lightest lichen was more difficult to extract with laser than the darkest lichen, being necessary to apply both methods sequentially. Despite laser and the combination of methods cleaned satisfactorily the surface, they were unable to eliminate the thalli into fissures.
Temperature-feedback direct laser reshaping of silicon nanostructures
NASA Astrophysics Data System (ADS)
Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.
2017-12-01
Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.
Laser Cutting Eliminates Nucleic Acid Cross-Contamination in Dried-Blood-Spot Processing
Daza, Glenda; Chang, Ming; Coombs, Robert
2012-01-01
Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing. PMID:23052309
Surface Cleaning of Iron Artefacts by Lasers
NASA Astrophysics Data System (ADS)
Koh, Y. S.; Sárady, I.
In this paper the general method and ethics of the laser cleaning technique for conservation are presented. The results of two experiments are also presented; experiment 1 compares cleaning of rust by an Nd:YAG laser and micro-blasting whilst experiment 2 deals with removing the wax coating from iron samples by a TEA CO2 laser. The first experiment showed that cleaning with a pulsed laser and higher photon energy obtained a better surface structure than micro blasting. The second experiment showed how differences in energy density affect the same surface.
Composition of the excimer laser-induced plume produced during LASIK refractive surgery
NASA Astrophysics Data System (ADS)
Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom
2003-07-01
Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness
NASA Astrophysics Data System (ADS)
Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.
2014-11-01
Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.
Lateral scattered light used to study laser light propagation in turbid media phantoms
NASA Astrophysics Data System (ADS)
Valdes, Claudia; Solarte, Efrain
2010-02-01
Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Buzinskij, O. I.; Gubsky, K. L.
A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxidemore » films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.« less
Hora, H.; Korn, G.; Eliezer, S.; ...
2016-10-11
Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabovemore » $$10^{20}~\\text{cm}~\\text{s}^{-2}$$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $$f_{\\text{NL}}$$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).« less
NASA Astrophysics Data System (ADS)
Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an
2018-06-01
In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.
Q-switched all-solid-state lasers and application in processing of thin-film solar cell
NASA Astrophysics Data System (ADS)
Liu, Liangqing; Wang, Feng
2009-08-01
Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.
Boulder damage symposium annual thin film laser damage competition
Stolz, Christopher J.
2012-11-28
Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed betweenmore » different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count and spectral properties had minimal impact.« less
The Radiance Process is a patented dry process for removing contaminants from surfaces. It uses light, usually from a pulsed laser and a gas inert to the surface, to entrain released contaminants. The focus of this effort is to assess the applicability of the Radiance Process t...
Comparative study of pulsed laser cleaning applied to weathered marble surfaces
NASA Astrophysics Data System (ADS)
Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.
2013-10-01
The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.
Sealing glass ampoules with CO2 lasers.
Jiao, Junke; Wang, Xinbing; Tang, Wenlong
2008-12-10
Glass ampoules were always sealed by melting in the presence of a flame to create closures. Some poisonous gases were generated in this sealing process that pollute the injection drug and are physically harmful. In this study, CO(2) lasers were proposed for sealing glass ampoules. Because of the clean noncontact sealing process with lasers, there was nearly no pollution of the injection drug. To study in detail the principle of this sealing process, a mathematical model was put forward, and the temperature and the thermal stress field around the ampoule's neck were calculated by ANSYS software. Through experimental study, 1 ml and 5 ml ampoules were sealed successfully by a dual-laser-beam method. The results show that a laser source is an ideal heat source for sealing glass ampoules.
NASA Astrophysics Data System (ADS)
Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.
Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.
Boyce, Angela; Piterina, Anna V; Walsh, Gary
2010-10-01
The potential suitability of 10 commercial protease and lipase products for cleaning-in-place (CIP) application in the dairy industry was investigated on a laboratory scale. Assessment was based primarily on the ability of the enzymes to remove an experimentally generated milk fouling deposit from stainless steel (SS) panels. Three protease products were identified as being most suitable for this application on the basis of their cleaning performance at 40 °C, which was comparable to that of the commonly used cleaning agent, 1% NaOH at 60 °C. This was judged by quantification of residual organic matter and protein on the SS surface after cleaning and analysis by laser scanning confocal microscopy (LSCM). Enzyme activity was removed/inactivated under conditions simulating those normally undertaken after cleaning (rinsing with water, acid circulation, sanitation). Preliminary process-scale studies strongly suggest that enzyme-based CIP achieves satisfactory cleaning at an industrial scale. Cost analysis indicates that replacing caustic-based cleaning procedures with biodegradable enzymes operating at lower temperatures would be economically viable. Additional potential benefits include decreased energy and water consumption, improved safety, reduced waste generation, greater compatibility with wastewater treatment processes and a reduction in the environmental impact of the cleaning process.
NASA Astrophysics Data System (ADS)
Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.
2018-02-01
Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.
The Cleaning of the Parthenon West Frieze by Means of Combined IR- and UV-Radiation
NASA Astrophysics Data System (ADS)
Frantzikinaki, K.; Marakis, G.; Panou, A.; Vasiliadis, C.; Papakonstantinou, E.; Pouli, P.; Ditsa, T.; Zafiropulos, Vassilis; Fotakis, Costas
This chapter deals with the cleaning of the Parthenon West Frieze by means of an innovative laser cleaning methodology. Following a comparative study of various cleaning methods, laser cleaning was proven to be the most efficient method for the removal of loose deposits and black crusts. The laser system employed is a Q-switched Nd:YAG system emitting at the fundamental and the third harmonic frequencies designed and developed by FORTH-IESL. The system emits in two wavelength beams individually or in combination. This feature, along with possible modification of the laser parameters - energy density, number of pulses, the contribution of each beam to the final combined beam - for each individual case of encrustation and substrate (marble, monochromatic layers), leads to a safe and controlled cleaning result. The project commenced in 2002 and was completed in January 2005. Since then, the Parthenon West Frieze is on display at the Acropolis Museum in Athens, Greece.
Cleaning of titanium substrates after application in a bioreactor.
Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C
2015-03-10
Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.
The effect of optical system design for laser micro-hole drilling process
NASA Astrophysics Data System (ADS)
Ding, Chien-Fang; Lan, Yin-Te; Chien, Yu-Lun; Young, Hong-Tsu
2017-08-01
Lasers are a promising high accuracy tool to make small holes in composite or hard material. They offer advantages over the conventional machining process, which is time consuming and has scaling limitations. However, the major downfall in laser material processing is the relatively large heat affect zone or number of molten burrs it generates, even when using nanosecond lasers over high-cost ultrafast lasers. In this paper, we constructed a nanosecond laser processing system with a 532 nm wavelength laser source. In order to enhance precision and minimize the effect of heat generation with the laser drilling process, we investigated the geometric shape of optical elements and analyzed the images using the modulation transfer function (MTF) and encircled energy (EE) by using optical software Zemax. We discuss commercial spherical lenses, including plano-convex lenses, bi-convex lenses, plano-concave lenses, bi-concave lenses, best-form lenses, and meniscus lenses. Furthermore, we determined the best lens configuration by image evaluation, and then verified the results experimentally by carrying out the laser drilling process on multilayer flexible copper clad laminate (FCCL). The paper presents the drilling results obtained with different lens configurations and found the best configuration had a small heat affect zone and a clean edge along laser-drilled holes.
Contrast Enhancement of the LOASIS CPA Laser and Effects on Electron Beam Performance of LWFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Csaba; Gonsalves, Anthony J.; Panasenko, Dmitriy
2009-01-22
A nonlinear optical pulse cleaning technique based on cross-polarized wave (XPW) generation filtering [1] has been implemented to improve laser pulse contrast, and consequently to control pre-ionization in laser-plasma accelerator experiments. Three orders of magnitude improvement in pre-pulse contrast has been achieved, resulting in 4-fold increase in electron charge and improved stability of both the electron beam energy and THz radiation generated as a secondary process in the gas-jet-based LWFA experiments.
Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.
Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C
2011-04-25
Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.
Research on temperature field of KDP crystal under ion beam cleaning.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2016-06-20
KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12 mm is successfully processed by this method.
Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products
NASA Astrophysics Data System (ADS)
Reinl, S.
Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.
Pulsed Excimer Laser Processing for Cost-Effective Solar Cells
NASA Technical Reports Server (NTRS)
Wong, D.
1985-01-01
Residual lattice damage by 5 keV ion implantation and surface flaws induced by wafer cleaning are proven to affect the V sub oc more adversely for laser annealed cells than conventional thermal diffusion. However, an alternative, molecular implantation of molecular species holds potential. The first experimental results are encouraging. The lack of a commercially available mass analyzed implantation with low energy, high fluence ions is constraining.
Laser cleaning of ITER's diagnostic mirrors
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Gentile, C. A.; Doerner, R.
2012-10-01
Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.
NASA Astrophysics Data System (ADS)
Daurelio, G.; Andriani, E. S.; Albanese, A.; Catalano, I. M.; Teseo, G.; Marano, D.
2008-10-01
Nowadays one the main problem of stone monuments conservation is not only the natural environment deterioration but the defaced, in particular esthetic, due to graffiti. This paper presents the different stages of the cleaning graffiti research: the laboratory study phase, in which the aims were to investigate the laser cleaning effect on substrate and testing user-friendly and efficient solutions for in situ application; the application phase in which the study results were applied in the restoration of Palazzo de Mattis facade. The graffiti cleaning were carried out by using a Q-Switch Nd:YAG laser source (λ=1064 nm with pulse duration, t=8 ns, f=2 to 20 Hz, energy per impulse up to 280 mJ) in dry, wet and Very wet modes adopting the Daurelio technique n.1 (blade spot laser). The Q-Switch Nd:Yag laser source has demonstrated to be the most suitable for a fully or, according to new restoring theory, "de veiling" graffiti ablation.
Comparison of laser regimes for stamp cleaning
NASA Astrophysics Data System (ADS)
Radvan, Roxana N.; Dan, Suzana; Popovici, Nicoleta; Striber, J.; Savastru, Dan; Savastru, Roxana
2001-10-01
This paper presents a comparative study of the laser cleaning regimes applied to colored substrates with various chromatic characteristics, including colored paper and printed paper with different dpi (dots per inch) values. Tests are done under microscope with high precision techniques, using controlled Nd:YAG laser. The wavelength preponderantly used in the experiments is the Nd:YAG fundamental regime (1064 nm). Parallel experiments at 532 nm have been developed on difficult cases, or when the results were not satisfactory with 1064 nm. The main part of the work presents some results on stamp cleaning. Experimental results indicate that cleaning efficiency is correlated with the color of substrate, age of the ink on the stamp, color quality and paper quality.
A comparative study on laser induced shock cleaning of radioactive contaminants in air and water
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.
2018-03-01
Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.
NASA Astrophysics Data System (ADS)
Lu, Xiaoming; Leng, Yuxin; Sui, Zhan; Li, Yanyan; Zhang, Zongxin; Xu, Yi; Guo, Xiaoyang; Liu, Yanqi; Li, Ruxin; Xu, Zhizhan
2014-02-01
We demonstrate high amplified spontaneous emission (ASE) contrast pulses in a Nd:glass laser system based on the hybrid double chirped pulse amplification (double CPA) scheme. By an OPA temporal cleaning device, ~100 uJ/46 fs/ 1011 clean pulses are generated and amplified in the next Nd:glass laser. After compressor, >150 mJ/~0.5 ps/1 Hz pulses can be obtained. The ASE temporal contrast of amplified pulses is ~1011 with energy gain ~2.5×104 in the Nd:glass amplifiers.
Cleaning of optical surfaces by excimer laser radiation
NASA Astrophysics Data System (ADS)
Mann, K.; Wolff-Rottke, B.; Müller, F.
1996-04-01
The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.
Otolith Trace Element Chemistry of Juvenile Black Rockfish
NASA Astrophysics Data System (ADS)
Hardin, W.; Bobko, S. J.; Jones, C. M.
2002-12-01
In the summer of 1997 we collected young-of -the-year (YOY) black rockfish, Sebastes melanops, from floating docks and seagrass beds in Newport and Coos Bay, Oregon. Otoliths were extracted from randomly selected fish, sectioned and polished under general laboratory conditions, and cleaned in a class 100 clean room. We used Laser Ablation - Inductively Coupled Mass Spectrometry (LA-ICPMS) to analyze elemental composition of the estuarine phase of the otoliths. While we observed differences in Mn/Ca ratios between the two estuaries, there was no statistical difference in otolith trace element chemistry ratios between estuaries using MANOVA. To determine if laboratory processing of otoliths might have impeded us from detecting differences in otolith chemistry, we conducted a second experiment. Right and left otoliths from 10 additional Coos Bay fish were randomly allocated to two processing methods. The first method was identical to our initial otolith processing, sectioning and polishing under normal laboratory conditions. In the second method, polishing was done in the clean room. For both methods otoliths went through a final cleaning in the clean room and analyzed with LA-ICPMS. While we did not detect statistical differences in element ratios between the two methods, otoliths polished outside the clean room had much higher variances. This increased variance might have lowered our ability to detect differences in otolith chemistry between estuaries. Based on our results, we recommend polishing otoliths under clean room conditions to reduce contamination.
Trends in high power laser applications in civil engineering
NASA Astrophysics Data System (ADS)
Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori
2005-03-01
This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.
Laser Techniques in Conservation of Artworks:. Problems and Breakthroughs
NASA Astrophysics Data System (ADS)
Salimbeni, Renzo; Siano, Salvatore
2010-04-01
After more than thirty years since the first experiment in Venice, only in the last decade laser techniques have been widely recognised as one of the most important innovation introduced in the conservation of artworks for diagnostics, restoration and monitoring aims. Especially the use of laser ablation for the delicate phase of cleaning has been debated for many years, because of the problems encountered in finding an appropriate setting of the laser parameters. Many experimentations carried out on stone, metals and pigments put in evidence unacceptable side effects such as discoloration and yellowing after the treatment, or scarce cleaning productivity in respect of other techniques. Many research projects organised at European level have contributed to find breakthroughs in laser techniques that could avoid such problems. The choices of specific laser parameters better suited for cleaning of stone, metals and pigments are described. A series of validation case studies is reported.
Removal of dust particles from metal-mirror surfaces by excimer-laser radiation
NASA Astrophysics Data System (ADS)
Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.
1995-07-01
The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.
NASA Astrophysics Data System (ADS)
Chantada, A.; Penide, J.; Riveiro, A.; del Val, J.; Quintero, F.; Meixus, M.; Soto, R.; Lusquiños, F.; Pou, J.
2017-10-01
Tailoring the wetting characteristics of materials has gained much interest in applications related to surface cleaning in both industry and home. Zimbabwe black granite is a middle-to-fine-grained natural stone commonly used as countertops in kitchens and bathrooms. In this study, the laser texturing of Zimbabwe black granite surfaces is investigated with the aim to enhance its hydrophobic character, thus reducing the attachment of contaminants on the surface. Two laser sources (λ = 1064 and 532 nm) were used for this purpose. The treatment is based on the irradiation of the stone by a laser focused on the surface of the targeting sample. The influence of different laser processing parameters on the surface characteristics of granite (wettability, roughness, and chemistry) was statistically assessed. Most suitable laser processing parameters required to obtain the highest hydrophobicity degree were identified. It has been possible to identify the 532 nm laser wavelength as the most effective one to increase the hydrophobic degree of Zimbabwe black granite surface. The phenomenon governing wettability changes was found to be the surface roughness patterns, given the unaltered chemical surface composition after laser processing.
Shi, Xiaofei; Chen, Rui; Huo, Lingling; Zhao, Lin; Bai, Ru; Long, Dingxin; Pui, David Y H; Rang, Weiqing; Chen, Chunying
2015-12-01
Indoor air quality has great impact on the human health. An increasing number of studies have shown that printers could release particulate matters and pose adverse effects on indoor air quality. In this study, a thorough investigation was designed to assess the aerosol printer particle total number concentration (TNC) and size distribution in normal office environment, one copy center, and a clean chamber. Particle analyzers, SMPS, OPS, and CPC3007 were used to monitor the total printing process. In normal office environment, 37 laser printers out of all surveyed 55 printers were classified as high particle emitters. Comparing to laser printers, 5 inkjet printers showed no particle emission. Particle emission level in a copy center increased slightly with TNC elevating to about 2 times of the aerosol background. Simulating test in a clean chamber indicated that printer-emitted particles were dominated by particles in nanoscale (diameter of particle, D(p) < 100 nm). These particles in a sealed clean chamber attenuated so slowly that it still held at high level with the concentration of 1.5 x 10(4) particles/cm3 after printing for 2.5 hours. Our present results demonstrate that printers indeed release particulates which keeping at a high concentration level in the indoor environment. Special care should be taken to this kind of widely applied machines and effective controls of particle emission at printing processes are necessary.
NASA Technical Reports Server (NTRS)
Mardesich, N.; Garcia, A.; Bunyan, S.; Pepe, A.
1979-01-01
The technological readiness of the proposed process sequence was reviewed. Process steps evaluated include: (1) plasma etching to establish a standard surface; (2) forming junctions by diffusion from an N-type polymeric spray-on source; (3) forming a p+ back contact by firing a screen printed aluminum paste; (4) forming screen printed front contacts after cleaning the back aluminum and removing the diffusion oxide; (5) cleaning the junction by a laser scribe operation; (6) forming an antireflection coating by baking a polymeric spray-on film; (7) ultrasonically tin padding the cells; and (8) assembling cell strings into solar circuits using ethylene vinyl acetate as an encapsulant and laminating medium.
355-nm, nanosecond laser mirror thin film damage competition
NASA Astrophysics Data System (ADS)
Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.; Caputo, Mark
2017-11-01
This competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. In addition to the laser damage resistance results, details of the deposition processes, cleaning method, coating materials and layer count are also shared.
Removal of dust particles from metal mirror surfaces by excimer laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, K.; Wolff-Rottke, B.; Mueller, F.
1995-12-31
The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope (VLT) mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence,more » being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.« less
NASA Astrophysics Data System (ADS)
Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.
2002-06-01
The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.
Laser restorative dentistry in children and adolescents.
Olivi, G; Genovese, M D
2011-04-01
The idea of substituting a drill with a laser light, has led to its introduction in dentistry. Besides being more accepted to patients, in paediatric dentistry the laser has demonstrated safety compared with rotating instruments. A review of the past 20 years of the dental literature concerning laser use in dentistry, including paediatric dentistry was completed. The findings of that review are presented. The various types of lasers and their uses for caries detection, tooth sealing and caries removal are described. Laser caries detection demonstrated a good reproducibility, reliability and predictability to monitor the caries process over time. Erbium lasers have been found to be efficient for caries removal, tooth cleaning and decontamination. The laser erbium technology represents a safe device to effectively and selectively remove carious tissues from decayed teeth. For children, all the recognized advantages of this technique play a decisive role in the successful day-to-day treatment of dental caries.
NASA Astrophysics Data System (ADS)
Pilgrim, Christian G.; Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas
2000-03-01
Periodontal therapy aims in a most sufficient cleaning of tooth surfaces from supra- and subgingival calculus. As a standard dental procedure teeth are treated with ultrasonic devices. The competence of the frequency doubled Alexandrite laser for a highly effective and selective removal of calculus has been repeatedly proved. Aim of the study presented here was to determine the efficiency at simulated clinical conditions of the frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 microsecond, pulse repetition rate 70 Hz, water cooling) by quantifying it's calculus removing efficiency. The evaluated data were compared to those obtained with an ultrasonic calculus remover. In the first part of the study sample material consisted of 23 pigs' jaws. They were divided into two groups. The teeth of one group were cleaned on their buccal surfaces using an ultrasonic device (Sonosoft Lux, KaVo, Biberach, Germany; tip #9). Than hand-guided cleaning was performed until no further improvement in cleanness was visible. Cleaning time was measured. Photographic documentation was taken before and after the treatment. The teeth in the second group were cleaned engaging a frequency doubled Alexandrite laser. Treatment time was measured and photographs were taken in the same way. In the second part of the study 21 surfaces of human teeth set up in an artificial pocket model were treated with both systems again. Measurements followed the same protocol. The results strongly support the use of the frequency doubled Alexandrite laser for calculus removal.
Rapid Repairs: Surface Preparation of Ti-3 Al-2.5V Alloy Tubes by Fiber Laser and Welding
2008-11-01
processing of titanium 6Al - 4V alloy for potential aerospace component cleaning application, Appl Surf Sci 2005;247:623-630. [11] Turner MW, Crouse...Debroy T, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti- 6Al - 4V , 304 Stainless Steel and Vanadium, J Phy D : Appl Phy...14Titanium alloys are used extensively in aerospace applications mainly due to their superior strength to weight ratio. Different grades of titanium
Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-03-01
Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.
Hardware cleanliness methodology and certification
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Lash, Thomas J.; Rawls, J. Richard
1995-01-01
Inadequacy of mass loss cleanliness criteria for selection of materials for contamination sensitive uses, and processing of flight hardware for contamination sensitive instruments is discussed. Materials selection for flight hardware is usually based on mass loss (ASTM E-595). However, flight hardware cleanliness (MIL 1246A) is a surface cleanliness assessment. It is possible for materials (e.g. Sil-Pad 2000) to pass ASTM E-595 and fail MIL 1246A class A by orders of magnitude. Conversely, it is possible for small amounts of nonconforming material (Huma-Seal conformal coating) to not present significant cleanliness problems to an optical flight instrument. Effective cleaning (precleaning, precision cleaning, and ultra cleaning) and cleanliness verification are essential for contamination sensitive flight instruments. Polish cleaning of hardware, e.g. vacuum baking for vacuum applications, and storage of clean hardware, e.g. laser optics, is discussed. Silicone materials present special concerns for use in space because of the rapid conversion of the outgassed residues to glass by solar ultraviolet radiation and/or atomic oxygen. Non ozone depleting solvent cleaning and institutional support for cleaning and certification are also discussed.
Samiei, Mohammad; Pakdel, Seyyed Mahdi Vahid; Rikhtegaran, Sahand; Shakoei, Sahar; Ebrahimpour, Delaram; Taghavi, Pedram
2014-08-01
This study evaluated the cleaning efficacy of a root canal system by Nd:YAG laser and rotary instruments. Sixty single-rooted human teeth were divided into four experimental groups (n=15). In the first group the teeth were prepared with a step-back technique using conventional K-files. In the second and third groups, tooth preparation was carried out using Nd:YAG laser and rotary NiTi instruments, respectively. Teeth in the fourth group were prepared by combined laser and rotary methods. The smear layer remaining on canal walls was then assessed by scanning electron microscopy in the coronal, middle, and apical portions. The comparison of smear layer removal efficacy between groups was carried out by Kruskal-Wallis and Mann-Whitney U tests. The mean grades of smear layer removal in rotary-laser, rotary, laser and step-back techniques were 1.34 ± 0.18, 2.2 ± 0.28, 1.91 ± 0.25, and 2.42 ± 0.19, respectively. On the whole, differences between rotary-laser and rotary groups, step-back, and the three other techniques (rotary, laser, and rotary-laser) were significant at p=0.034. Based on the findings of this study, the cleaning efficacy of rotary, laser, and rotary-laser techniques were better than the step-back technique and the combined laser and rotary technique was the most efficient method.
NASA Astrophysics Data System (ADS)
Batishche, Sergei; Englezis, Apostolis; Gorovets, Tatiana; Kouzmouk, Andrei; Pilipenka, Uladzimir; Pouli, Paraskevi; Tatur, Hennady; Totou, Garyfallia; Ukhau, Viktar
2005-07-01
In the present study, a newly developed one-beam IR-UV laser cleaning system is presented. This system may be used for different applications in diverse fields, such as outdoors stonework conservation and canvas paintings restoration. The simultaneous use of the fundamental radiation of a Q-switched Nd:YAG laser at 1064 nm and its third harmonic at 355 nm was found appropriate to clean pollution crusts, while ensuring that no discoloration ("yellowing") would occur. The optimum ratio of UV to IR wavelengths in the final cleaning beam was investigated. In parallel, the same system was tested in diverse applications, such as the removal of bonding glues from duplicated canvases. The optimum laser parameters were investigated both on technical samples as well as on original paintings.
Aluminum Surface Texturing by Means of Laser Interference Metallurgy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.
2015-01-01
The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.
NASA Astrophysics Data System (ADS)
Karnakis, Dimitris; Stephens, Tim; Chabrol, Gregoire
2013-03-01
Rapid developments in organic electronics promise low cost devices for applications such as OLED, organic transistors and organic photovoltaics on large-area glass or flexible substrates in the near future. The technology is very attractive as most device layers can be solution printed. But when directly patterned deposition is impossible, a post-patterning step is required and laser processing is gradually emerging as a key-enabling tool. DPSS lasers offer several advantages including maskless, non-contact, dry patterning, but also scalable large area processing, well suited to roll-to-roll manufacturing at μm resolutions. However, very few reports discuss in detail the merits of DPSS laser patterning technology, especially on flexible substrates. This paper describes the potential of ultrafast DPSS laser technology for OLED fabrication on foil and, specifically, picosecond laser ablation of PEDOT:PSS on multilayered barrier/foil or metal grids aimed as a synthetic alternative to inorganic transparent conductive electrodes. Key requirements include: (a) the complete removal of PEDOT layers without residue, (b) the complete absence of surface contamination from redeposited laser debris to avoid short circuiting and (c) no loss in performance of from laser exposure. We will demonstrate that with careful optimisation and appropriate choice of ultrafast laser, the above criteria can be fulfilled. A suitable process window exists resulting in clean laser structuring without damage to the underlying heat sensitive barrier layers whilst also containing laser debris. A low temperature ablation most likely proceeds via a stress-assisted (film fracture and ejection) process as opposed to vaporisation or other phase change commonly encountered with longer pulse lasers.
Liu, Jun; Okamura, Kotaro; Kida, Yuichiro; Teramoto, Takahiro; Kobayashi, Takayoshi
2010-09-27
Clean 7.5 fs pulses at 400 nm with less than 3% energy in tiny satellite pulses were obtained by spectral broadening in a hollow fiber and dispersive compensating using a prism pair together with a deformable mirror system. As an example, this stable and clean pulse was used to study the ultrafast pump-probe spectroscopy of photoactive yellow protein. Moreover, the self-diffraction signal shows a smoothed and broadened laser spectrum and is expected to have a further clean laser pulse, which makes it more useful in the ultrafast pump-probe spectroscopy in the future.
Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser
NASA Astrophysics Data System (ADS)
Hung, Chia-Hung; Chang, Fuh-Yu
2017-05-01
In this study, a curve micromaching process on the edges of nitinol biliary stent was proposed by a femtosecond laser system with a galvano-mirror scanner. Furthermore, the outer diameter of nitinol tube was 5.116 mm, its inner diameter was 4.648 mm, and its length was 100 mm. The initial fabricated results of nitinol biliary stent represented that the edges of nitinol biliary stent were steep and squared by femtosecond laser. However, the results also indicated that if the laser movement path was precisely programmed by utilizing the unique characteristic of Gaussian beam of femtosecond laser with aligning the edges of stent, the radius of edges enhanced significantly from 9 μm to 42.5 μm. As a result, the edges of nitinol biliary stent can be successfully fabricated from squared edges to rounded-shaped edges with precise dimension, clean surface morphology, and minimal heat-affected zone remained. Hence, the nitinol biliary stent, after femtosecond laser micromachining, would not need any further post-process to remove heat-affected zone and the squared edges.
Tailor cutting of crystalline solar cells by laser micro jet
NASA Astrophysics Data System (ADS)
Bruckert, F.; Pilat, E.; Piron, P.; Torres, P.; Carron, B.; Richerzhagen, B.; Pirot, M.; Monna, R.
2012-03-01
Coupling a laser into a hair thin water micro jet (Laser Micro Jet, LMJ) for cutting applications offers a wide range of processes that are quite unique. As the laser beam is guided by internal reflections inside of a liquid cylinder, the cuts are naturally straight and do not reflect any divergence as otherwise occurs with an unguided laser beam. Furthermore, having a liquid media at the point of contact ensures a fast removal of heat and eventual debris ensuring clean cuts, which are free of any burrs. Many applications have indeed been developed for a large variety of materials, which are as different as e.g. diamond, silicon, aluminum, ceramic and hard metals. The photovoltaic industry has enjoyed in the last decades tremendous growth rates, which are still projected into the future. We focus here on the segment of Building Integrated PV (BIPV), which requests tailored solutions to actual buildings and not-one-fits-it-all standardized modules. Having the option to tailor cut solar cells opens a new field of BIPV applications. For the first time, finished crystalline solar cells have been LMJ cut into predetermined shapes. First results show that the cut is clean and neat. Preliminary solar performance measurements are positive. This opens a new avenue of tailored made modules instead of having to rely on the one-fits-alloy approach used so far.
Gao, Hang; Wang, Xu; Guo, Dongming; Liu, Ziyuan
2018-01-01
Laser induced damage threshold (LIDT) is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP) crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT), followed by water dissolution ultra-precision polishing (WDUP) and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD) analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal. PMID:29534032
Root canal preparation in endodontics: conventional versus laser methods
NASA Astrophysics Data System (ADS)
Goodis, Harold E.; White, Joel M.; Marshall, Sally J.; Marshall, Grayson W.; Moskowitz, Emrey
1992-06-01
Conventional cleaning and shaping of root canal systems employs hand and/or rotary instrumentation to remove the contents of the canal and shape the canal to receive a filling material. With the advent of the Nd:YAG laser system another method of accomplishing proper cleaning and shaping is evaluated. Single rooted teeth were radiographed bucco- lingually and mesio-distally and were divided into 2 groups. The first group was accessed and the root canal systems cleaned and shaped with a step back technique utilizing hand files and gates glidden burs. At completion of the procedure the teeth were again radiographed at the same positions as those prior to the procedure. The teeth were split longitudinally and examined under scanning electron microscopy to assess cleaning. The second group of teeth were accessed, and cleaning and shaping was accomplished using the Nd:YAG laser in combination with hand files and rotary instruments. These teeth were subjected to the same analysis as those in the first group. The before and after radiographs of each group were subjected to image analysis to determine effectiveness of the two methods in shaping the canal systems. We will discuss the ability of Nd:YAG to clean and shape root canal spaces and remove smear layer and organic tissue remnants from those areas.
Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure
NASA Astrophysics Data System (ADS)
He, Hao; Wang, Shaoyang; Li, Xun; Li, Shiyang; Hu, Minglie; Cao, Youjia; Wang, Ching-Yue
2012-04-01
Calcium is a second messenger in all cells for various cellular processes. It was found in astrocytes and neurons that femtosecond laser stimulation could induce Ca2+ wave propagation. In this work, a femtosecond laser with a power above a certain threshold was focused on single HeLa/HEK293T cells for Ca2+ mobilization. Several types of Ca2+ oscillation patterns were found in neighboring cells. The Ca2+ wave propagated very fast across 40-μm gaps in the Ca2+-free medium mediated by the adenosine-triphosphate released from cells. This approach could provide a clean methodology to investigate the Ca2+ dynamics in non-excitable cells.
Plasma cleaning of nanoparticles from EUV mask materials by electrostatics
NASA Astrophysics Data System (ADS)
Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.
2008-03-01
Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2017-07-01
Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.
NASA Astrophysics Data System (ADS)
Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich
2017-01-01
Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
Laser-assisted decontamination—A wavelength dependent study
NASA Astrophysics Data System (ADS)
Nilaya, J. Padma; Raote, Pallavi; Kumar, Aniruddha; Biswas, Dhruba J.
2008-09-01
We present here the experimental results on cleaning of radioactive dielectric particulates, loosely deposited on stainless steel, by coherent light of 1064 nm wavelength and its three harmonics occurring at 532 nm, 355 nm and 266 nm, derived from an Nd-YAG laser. For the initial few exposures, the decontamination factor has been found to be highest when exposed to 1064 nm radiation. With increasing number of exposures, however, the radiation with reducing wavelength assumes a more important role as a cleaning agent. The observation of almost no cleaning with 1064 nm and much reduced cleaning with its harmonics when the contamination is deposited on a transparent substrate confirms the dominant role played by metal substrate towards expelling the loose particulates from its surface.
Light self-focusing in the atmosphere: Thin window model
Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; ...
2016-08-02
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminatemore » the impact of self-focusing in the atmosphere on the laser beam. Furthermore, the area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.« less
Silicon wafer temperature monitoring using all-fiber laser ultrasonics
NASA Astrophysics Data System (ADS)
Alcoz, Jorge J.; Duffer, Charles E.
1998-03-01
Laser-ultrasonics is a very attractive technique for in-line process control in the semiconductor industry as it is compatible with the clean room environment and offers the capability to inspect parts at high-temperature. We describe measurements of the velocity of laser-generated Lamb waves in silicon wafers as a function of temperature using fiber- optic laser delivery and all-fiber interferometric sensing. Fundamental anti-symmetric Lamb-wave modes were generated in 5 inches < 111 > silicon wafers using a Nd:YAG laser coupled to a large-core multimode fiber. Generation was also performed using an array of sources created with a diffraction grating. For detection a compact fiber-optic sensor was used which is well suited for industrial environments as it is compact, rugged, stable, and low-cost. The wafers were heated up to 1000 degrees C and the temperature correlated with ultrasonic velocity measurements.
NASA Astrophysics Data System (ADS)
Gorrini, F.; Cazzanelli, M.; Bazzanella, N.; Edla, R.; Gemmi, M.; Cappello, V.; David, J.; Dorigoni, C.; Bifone, A.; Miotello, A.
2016-10-01
Nanodiamonds are the subject of active research for their potential applications in nano-magnetometry, quantum optics, bioimaging and water cleaning processes. Here, we present a novel thermodynamic model that describes a graphite-liquid-diamond route for the synthesis of nanodiamonds. Its robustness is proved via the production of nanodiamonds powders at room-temperature and standard atmospheric pressure by pulsed laser ablation of pyrolytic graphite in water. The aqueous environment provides a confinement mechanism that promotes diamond nucleation and growth, and a biologically compatible medium for suspension of nanodiamonds. Moreover, we introduce a facile physico-chemical method that does not require harsh chemical or temperature conditions to remove the graphitic byproducts of the laser ablation process. A full characterization of the nanodiamonds by electron and Raman spectroscopies is reported. Our model is also corroborated by comparison with experimental data from the literature.
Excimer laser annealing to fabricate low cost solar cells
NASA Technical Reports Server (NTRS)
1984-01-01
The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.
Fabrication of high performance thin-film transistors via pressure-induced nucleation.
Kang, Myung-Koo; Kim, Si Joon; Kim, Hyun Jae
2014-10-31
We report a method to improve the performance of polycrystalline Si (poly-Si) thin-film transistors (TFTs) via pressure-induced nucleation (PIN). During the PIN process, spatial variation in the local solidification temperature occurs because of a non-uniform pressure distribution during laser irradiation of the amorphous Si layer, which is capped with an SiO2 layer. This leads to a four-fold increase in the grain size of the poly-Si thin-films formed using the PIN process, compared with those formed using conventional excimer laser annealing. We find that thin films with optimal electrical properties can be achieved with a reduction in the number of laser irradiations from 20 to 6, as well as the preservation of the interface between the poly-Si and the SiO2 gate insulator. This interface preservation becomes possible to remove the cleaning process prior to gate insulator deposition, and we report devices with a field-effect mobility greater than 160 cm(2)/Vs.
Laser paper cleaning: the method of cleaning historical books
NASA Astrophysics Data System (ADS)
Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.
2016-01-01
Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.
1991-06-01
of this laser system to remove paint from metals, including aluminum, and from carbon fiber reinforced composites cleanly and without damage to the...The tests perpendicular to fiber direction in the unidirectional composite were selected as most sensitive indicators of damage. Flexural tests on the... Composite Flexural Strength Tests 10 2.2.11 Composite Compressive Strength Tests 11 2.2.12 Turbine Blade Cleaning 11 2.2.13 Residual Carbon 11 2.2.14
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Subrata
2017-09-01
CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.
Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenchik, A M; McGrann, T J; Yamamoto, R M
This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase themore » local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.« less
Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics
NASA Astrophysics Data System (ADS)
Moreno Fernández, H.; Thomasset, M.; Sauthier, G.; Rogler, D.; Dietsch, R.; Barrett, R.; Carlino, V.; Pellegrin, E.
2017-05-01
Boron carbide (B4C) - due to its exceptional mechanical properties - is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, B4C-coated optics are subject to ubiquitous carbon contaminations. These contaminations - that are presumably produced via cracking of CHx and CO2 molecules by photoelectrons emitted from the optical components - represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of B4C cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated B4C test samples via an inductively coupled O2/Ar and Ar/H2 remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the B4C optical coatings and surfaces before and after the plasma cleaning process are reported.
Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy
NASA Astrophysics Data System (ADS)
Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting
2016-03-01
Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.
LISK-BROOM: A laser concept for clearing space junk
NASA Astrophysics Data System (ADS)
Phipps, Claude
1994-10-01
A mathematical model predicts the economical effectiveness of using powerful laser beams for cleaning space junk. The propelling force comes from the ablation caused by repetitive laser pulses. Lasers will use Earth-based power to de-orbit waste objects in cooperation with observatory telescopes. (AIP)
Active optical system for advanced 3D surface structuring by laser remelting
NASA Astrophysics Data System (ADS)
Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.
2015-03-01
Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.
Method for Cleaning Laser-Drilled Holes on Printed Wiring Boards by Plasma Treatment
NASA Astrophysics Data System (ADS)
Hirogaki, Toshiki; Aoyama, Eiichi; Minagi, Ryu; Ogawa, Keiji; Katayama, Tsutao; Matsuoka, Takashi; Inoue, Hisahiro
We propose a new method for cleaning blind via holes after laser drilling of PWBs using oxygen plasma treatment. This report dealt with three kinds of PWB materials: epoxy resin and two kinds of aramid fiber reinforced plastics (AFRP: Technora or Kevlar fiber reinforcement). We observed the drilled holes after plasma treatment using both an optical and a scanning electric microscope (SEM). It was confirmed that adequate etching took place in the drilled holes by plasma treatment. We also compared the hole wall and hole bottom after plasma treatment with ones after chemical etching. It was clear that there was no damage to the aramid fiber tip on the hole wall, and that a smooth roughness of the hole wall was obtained by means of plasma treatment. As a result, we demonstrated that the plasma treatment is effective in cleaning the laser drilled holes of PWBs.
Holographic digital microscopy in on-line process control
NASA Astrophysics Data System (ADS)
Osanlou, Ardeshir
2011-09-01
This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.
Meire, Maarten A; Havelaerts, Sophie; De Moor, Roeland J
2016-05-01
Laser-activated irrigation (LAI) using erbium lasers is an irrigant agitation technique with great potential for improved cleaning of the root canal system, as shown in many in vitro studies. However, lasing parameters for LAI vary considerably and their influence remains unclear. Therefore, this study sought to investigate the influence of pulse energy, pulse frequency, pulse length, irradiation time and fibre tip shape, position and diameter on the cleaning efficacy of LAI. Transparent resin blocks containing standardized root canals (apical diameter of 0.4 mm, 6% taper, 15 mm long, with a coronal reservoir) were used as the test model. A standardized groove in the apical part of each canal wall was packed with stained dentin debris. The canals were filled with irrigant, which was activated by an erbium: yttrium aluminium garnet (Er:YAG) laser (2940 nm, AT Fidelis, Fotona, Ljubljana, Slovenia). In each experiment, one laser parameter was varied, while the others remained constant. In this way, the influence of pulse energy (10-40 mJ), pulse length (50-1000 μs), frequency (5-30 Hz), irradiation time (5-40 s) and fibre tip shape (flat or conical), position (pulp chamber, canal entrance, next to groove) and diameter (300-600 μm) was determined by treating 20 canals per parameter. The amount of debris remaining in the groove after each LAI procedure was scored and compared among the different treatments. The parameters significantly (P < 0.05, Kruskal-Wallis) affecting debris removal from the groove were fibre tip position, pulse length, pulse energy, irradiation time and frequency. Fibre tip shape and diameter had no significant influence on the cleaning efficacy.
NASA Astrophysics Data System (ADS)
Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng
2016-10-01
Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.
High throughput laser texturing of super-hydrophobic surfaces on steel
NASA Astrophysics Data System (ADS)
Gemini, Laura; Faucon, Marc; Romoli, Luca; Kling, Rainer
2017-03-01
Super-hydrophobic surfaces are nowadays of primary interest in several application fields, as for de-icing devices in the automotive and aerospace industries. In this context, laser surface texturing has widely demonstrated to be an easy one-step method to produce super-hydrophobic surfaces on several materials. In this work, a high average power (up to 40W), high repetition-rate (up to 1MHz), femtosecond infrared laser was employed to produce super-hydrophobic surfaces on 316L steel. The set of process and laser parameters for which the super-hydrophobic behavior is optimized, was obtained by varying the laser energy and repetition rate. The morphology of the textured surfaces was firstly analyzed by SEM and confocal microscope analyses. The contact angle was measured over time in order to investigate the effect of air environment on the hydrophobic properties and define the period of time necessary for the super-hydrophobic properties to stabilize. An investigation on the effect of after-processing cleaning solvents on the CA evolution was carried to assess the influence of the after-processing sample handling on the CA evaluation. Results show that the highest values of contact angle, that is the best hydrophobic behavior, are obtained at high repetition rate and low energy, this way opening up a promising scenario in terms of upscaling for reducing the overall process takt-time.
Utilization of gas-atomized titanium and titanium-aluminide powder
NASA Astrophysics Data System (ADS)
Moll, John H.
2000-05-01
A gas-atomization process has been developed producing clean, high-quality, prealloyed spherical titanium and titanium-aluminide powder. The powder is being used to manufacture hot-isostatically pressed consolidated shapes for aerospace and nonaerospace allocations. These include gamma titanium-aluminide sheet and orthorhombic titanium-aluminide wire as well as niche markets, such as x-ray drift standards and sputtering targets. The powder is also being used in specialized processes, including metal-matrix composites, laser forming, and metal-injection molding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hora, H.; Korn, G.; Eliezer, S.
Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabovemore » $$10^{20}~\\text{cm}~\\text{s}^{-2}$$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $$f_{\\text{NL}}$$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).« less
Casoli, Antonella; Di Diego, Zaira; Isca, Clelia
2014-12-01
Cleaning is one of the most important, delicate, and at the same time controversial processes in the conservation treatment of paintings. Although a strict definition of cleaning would be the removal of dirt, grime, or other accretions (surface cleaning), in the conservation field, cleaning is used in the broader meaning to include thinning/removing altered or “unwanted layers” of materials without damaging or altering the physicochemical properties of the surfaces to be preserved. The cleaning of unvarnished paintings is one of the most critical issues that are currently discussed. Several studies exist regarding different cleaning tools, such as gels, soaps, enzymes, ionic liquids, and foams, as well as various dry methods and lasers, but only a few have been performed on the risk associated with the use of water and organic solvents for the cleaning treatments in relation to the original paint binder. The aim of the study is to verify analytically the behavior of water gelling agents during cleaning treatments and the interaction of the following elements: water or organic solvents applied for the removal of gel residues with the original lipid paint binder. For this purpose, the study was conducted on a fragment of canvas painting (sixteenth to seventeenth century) of Soprintendenza per i Beni Storici, Artistici ed Etnoantropologici del Friuli Venezia Giulia (Superintendence for the Historical, Artistic and Ethno-anthropological Heritage of Friuli Venezia Giulia), Udine by means of Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and scanning electron microscopy.
Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H
2017-11-01
We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5 molecule cm -3 ), whilst that of HO 2 was 1.3×10 7 molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8 molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8 molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J
2016-11-02
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.
Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.
2016-01-01
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063
Laser techniques in conservation in Europe
NASA Astrophysics Data System (ADS)
Salimbeni, Renzo
2005-06-01
The state of the art of laser techniques employed in conservation of cultural heritage is continuously growing in Europe. Many research projects organised at the European level have contributed to this achievement, being complementary to the development carried out at national level. The COST Action G7 is playing its unique role since the year 2000 in promoting the experimentation, comparing the experiences and disseminating best practices. This role has been particularly effective for monitoring of the results of many short-term research projects completed along the G7 Action lifetime. After that several laser cleaning techniques have been followed and evaluated it appears now clear an evolution of the systems, a specialization of the cleaning task, the achievement of side-effect free procedures. The validation of these advanced cleaning techniques has been extensive and diffused in many European countries, especially for stone and metals. Laser-based diagnostics have also specialised their tasks toward material analysis, defects detection and multidimensional documentation. Laser and optical methods successfully monitor deterioration effects. In many European countries interdisciplinary networks are managing the experimentation of these techniques giving them a sound scientific approach, but also a technology transfer to end-users. So doing the appreciation for these techniques is growing in all the conservation institutions involved at national level, disseminating a positive evaluation about the benefits provided by laser techniques in conservation. Several laser systems became products for the activity of professional restorers and their increasing sales demonstrate a growing utilisation throughout all Europe.
The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth.
Bahar, A; Tagomori, S
1994-01-01
The effects of normal pulsed Nd-YAG laser irradiation on the acid resistance of human dental enamel of pits and fissures, the cleaning of the pit and fissure contents and fluoride uptake into deep pits and fissures were examined. The acid resistance of the pit and fissure enamel was evaluated by the amount of dissolved calcium per square millimeter of the surface area. The pit and fissure enamel treated with laser irradiation obtained an acid resistance 30% higher than that of the unlased controls. The cleaning effect of laser irradiation on the pit and fissure contents was compared with chemicomechanical and mechanical methods. The laser irradiation was found to clean the pits and fissures to a greater depth without alterating the shape of pits and fissures, compared with the other two methods. The distribution of calcium, phosphorus and fluoride in the enamel of the pits and fissures was then measured by electron probe microanalyzer. At the entrance and in the deep part of the pits and fissures, the fluoride content of the enamel treated with acidulated phosphate fluoride after laser irradiation was higher than that of the enamel treated with acidulated phosphate fluoride alone. These results thus suggest that Nd-YAG laser irradiation might be effective in increasing the acid resistance of the pit and fissure enamel, while removing the pit and fissure debris contents and increasing the fluoride uptake into the pit and fissure enamel.
Optical cell cleaning with NIR femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten
2015-03-01
Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.
Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers
Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.
2017-01-01
Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468
Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.
Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R
2017-01-26
Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2018-03-01
Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.
Contamination detection NDE for cleaning process inspection
NASA Technical Reports Server (NTRS)
Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.
1995-01-01
In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.
Low work function surface layers produced by laser ablation using short-wavelength photons
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2000-01-01
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Novel Laser Ablation Technology for Surface Decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chung H.
2004-06-01
Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less
NASA Astrophysics Data System (ADS)
Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin
2017-05-01
The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.
Exploring novel structures for manipulating relativistic laser-plasma interaction
NASA Astrophysics Data System (ADS)
Ji, Liangliang
2016-10-01
The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).
The Use of Lasers in Disinfection and Cleanliness of Root Canals: a Review
Anić, Ivica
2014-01-01
The outcome of root canal treatment is based on efficient disinfection of the root canal system and prevention of reinfection. Current chemomechanical cleaning methods do not always achieve these goals, and insufficient root canal disinfection is the main reason for endodontic failure. Due to high energy content and specific characteristics of laser light, laser treatment has been proposed for cleaning and disinfecting the root canal system. This paper reviews the literature covering the effect of Er:YAG, Er,Cr:YSGG, Nd:YAG and diode laser on the root canal wall in the removal of smear layer and against intracanal bacteria. Recently, the use of laser energy to induce cavitation and acoustic streaming of intracanal irrigants has been investigated. Based on recent literature, it can be concluded that lasers have bactericidal effects. However, they still cannot replace sodium hypochlorite and should be considered as an adjunct to the current chemical root canal disinfection protocols. Certain lasers can help in removing the smear layer and debris and can modify the morphology of the root canal wall. Unfortunately, there have not been enough randomized clinical studies evaluating endodontic treatment outcome following the use of laser. PMID:27688346
Enabling Microfluidics: From Clean Rooms to Makerspaces
2016-09-30
anyone can make 133 and rapidly scale to bulk manufacturing . To enable others to take part in this type of product 134 design and development, we...cost molds for a fee; however, the 77 design process is slowed down waiting for molds to be manufactured and shipped. While 78 PDMS devices may be...finished prototype into a commercial product . An example of a rapid 101 prototyping method amenable to scaled-up manufacturing is laser cutting. Figure
A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material
NASA Astrophysics Data System (ADS)
Wang, Wesley; Kelly, Shawn
2016-03-01
Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.
Laser micro-structuring of surfaces for applications in materials and biomedical science
NASA Astrophysics Data System (ADS)
Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta
2016-12-01
Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.
Development of AISI 316L stainless steel coronary stent
NASA Astrophysics Data System (ADS)
García-López, Erika; Siller, Héctor R.; Rodríguez, Ciro A.
2018-02-01
Coronary stents are manufactured through a sequence of processes and each step demands the process control to assure surface quality. This study is focused on the influence of laser cutting parameters and electropolishing on average surface roughness and back wall dross percentage for fiber laser cutting of AISI 316L coronary struts. A preliminary test and a design of experiments (DOE) were implemented to determine the limiting cutting conditions and the effect of these parameters on quality indicators. Preliminary results identify four cutting zones from a non-cut zone to a burned zone, in a frequency range between 1000 and 1500 Hz and a peak power between 160 to 180 W for clean cuts. From the DOE results, several interactions between factors were observed; however, a laser frequency of 1000 to 1500 Hz and a cutting speed of 250 mm/min minimize the backwall dross percentage and the surface roughness to values less than 2% and 0.9 μm, respectively. After the laser conditions selection, coronary stents were manufactured and electropolished to reduce the surface roughness on the strut edge. Electropolishing results indicate a surface roughness reduction from 0.9 μm to 0.3 μm after 300 s of electropolishing time.
Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.
2016-06-01
Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less
Field, Ella S.; Bellum, John C.; Kletecka, Damon E.
2016-07-15
Here, optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low-base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence and high-reflection coatings for 527 nm at 45-deg angle of incidence in P-polarization.« less
Investigations on laser hard tissue ablation under various environments
NASA Astrophysics Data System (ADS)
Kang, H. W.; Oh, J.; Welch, A. J.
2008-06-01
The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 µm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.
Crude Oil Remote Sensing, Characterization and Cleaning with CW and Pulsed Lasers
NASA Technical Reports Server (NTRS)
Kukhtareva, Tatiana; Chirita, Arc; Gallegos, Sonia C.
2014-01-01
For detection, identification and characterization of crude oil we combine several optical methods of remote sensing of crude oil films and emulsions (coherent fringe projection illumination (CFP), holographic in-line interferometry (HILI), and laser induced fluorescence). These methods allow the three-dimensional characterization of oil spills, important for practical applications. Combined methods of CFP and HILI are described in the frame of coherent superposition of partial interference patterns. It is shown, that in addition to detection/identification laser illumination in the green-blue region can also degrade oil slicks. Different types of surfaces contaminated by oil spills are tested: oil on the water, oil on the flat solid surfaces and oil on the curved surfaces of pipes. For the detection and monitoring of the laser-induced oil degradation in pipes, coherent fiber bundles were used. Both continuous-wave (CW) and pulsed lasers are tested using pump-probe schemes. This finding suggests that properly structured laser clean-up can be an alternative environmentally-friendly method of decontamination, as compared to the currently used chemical methods that are dangerous to environment.
Ownby, G.W.; White, C.W.; Zehner, D.M.
1979-12-28
This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an atomically clean region. This can be accomplished in a system at a pressure below 10-/sup 8/ Torr, using Q-switched ruber-laser pulses having an energy density in the range of from about 60 to 190 MW/cm/sup 2/.
Ownby, Gary W.; White, Clark W.; Zehner, David M.
1981-01-01
This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Laser-based gluing of diamond-tipped saw blades
NASA Astrophysics Data System (ADS)
Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter
2016-03-01
To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.
Laser removal of sludge from steam generators
Nachbar, Henry D.
1990-01-01
A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.
NASA Astrophysics Data System (ADS)
Ocaña, Jose L.; Jagdheesh, R.; García-Ballesteros, J. J.
2016-02-01
The current availability of new advanced fiber and DPSS lasers with characteristic pulse lengths ranging from ns to fs has provided a unique frame in which the development of laser-generated microstructures has been made possible for very diverse kinds of materials and applications. At the same time, the development of the appropriate laser-processing workstations granting the appropriate precision and repeatability of the respective laser interaction processes in line with the characteristic dimension features required in the microstructured samples has definitively consolidated laser surface microstructuring as a reference domain, nowadays, unavoidable for the design and manufacturing of current use microsystem: MEMSs, fluidic devices, advanced sensors, biomedical devices and instruments, etc., are all among the most well-known developments of the micromanufacturing technology. Completing the broad spectrum of applications developed mostly involving the generation of geometrical features on a subtrate with specific functional purposes, a relatively new, emerging class of laser-microstructuring techniques is finding an important niche of application in the generation of physically structured surfaces (particularly of metallic materials) with specific contact, friction, and wear functionalities, for whose generation the concourse of different types of laser sources is being found as an appropriate tool. In this paper, the application of laser sources with emission in the UV and at ns time regime to the surface structuration of metal surfaces (specifically Al) for the modification of their wettability properties is described as an attractive application basis for the generation of self-cleaning properties of extended functional surfaces. Flat aluminum sheets of thickness 100 μm were laser machined with ultraviolet laser pulses of 30 ns with different laser parameters to optimize the process parameters. The samples produced at the optimum conditions with respect to contact angle measurement were subjected to microstructure and chemical analysis. The wetting properties were evaluated by static contact angle measurements on the laser-patterned surface. The laser-patterned microstructures exhibited superhydrophobicity with a maximum contact angle of 180° for the droplet volumes in the range of 8-12 μl.
Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam
NASA Astrophysics Data System (ADS)
Lee, Jinsoo; Kim, Seongsu; Lee, Myeongkyu
2012-09-01
Here we demonstrate that indium tin oxide (ITO) films deposited on glass can be directly patterned by a spatially -modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident onto the film. This method utilizes a pulsed laser-induced thermo-elastic force exerting on the film which plays a role to detach it from the substrate. Sharp-edged clean patterns with feature size as small as 4 μm could be obtained. The threshold pulse energy density for patterning was estimated to be ˜0.8 J/cm2 for 150 nm-thick ITO film, making it possible to pattern over one square centimeter by a single pulse with energy of 850 mJ. Not only being free from photoresist and chemical etching steps, the presented method can also provide much higher throughput than the tradition photoablation process utilizing a tightly focused beam.
Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.
2000-01-01
There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.
Laser-ultrasonic technologies for medicine
NASA Astrophysics Data System (ADS)
Zharov, Vladimir P.; Latyshev, Alexei S.
1999-06-01
This review tackles the problem of further developing laser- ultrasonic medical technologies and gives the comparison of different laser and ultrasound combinations. The features of combined influence on biotissue are explicated with due regard for mechanic, ultrasonic (US), and thermal effects. The review present the effect of self-cleaning an optical fiber tip from the laser destruction products of biotissue, the result of research on the possibility of laser-US technology applications in endoscopy, and the ways of suppressing unwanted bending oscillations. Various spheres and peculiarities of applying laser-US technologies are discussed, including microsurgery, cosmetology, transcutaneous drug delivery, and the treatment of chronic prostatitis and infected wounds. Furthermore, the analysis of transcutaneous drug delivery methods employing a portable pulsed Er:YAG laser is presented. Drug diffusion has been shown to be enhanced under acoustic and US effects. The photo-vacuum drug injection mechanism recently suggested is discussed. It turned out that laser-US technology can be suitable for both impregnating the photosensitizer in local photodynamic therapy procedures and conducting microsurgery operations involving drug injection. Treatment of infectious processes based on the bactericidal action of photosensitizers and ultrasound due to the cavitation effect in solutions is described. An additional therapeutic effect can be achieved via the US intermingling of solutions with their simulations illumination by a matrix of red lasers or light diodes. An outlook on further developing laser-US technology and the ways of its apparatus realization are considered.
Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng
2015-02-20
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.
NASA Astrophysics Data System (ADS)
Farid, N.; Dasgupta, P.; O’Connor, G. M.
2018-04-01
The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (<5) of applied pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.
NASA Astrophysics Data System (ADS)
Ullah, S.; Dogar, A. H.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.
2018-04-01
Ions emitted from planar Al and Cu targets irradiated with a 1064 nm pulsed laser were investigated with the help of a time-resolving Langmuir probe. It was found that the intensity of the ions emitted from a target area rapidly decreases with the increasing number of laser shots, and seems to reach saturation after about 10 laser shots. The saturated intensity of Al and Cu ions was approximately 0.1 and 0.3 times the intensity of the respective ions measured at the first laser shot, respectively. The higher target ion intensity for the first few shots is thought to be due to the enhanced ionization of target atoms by vacuum-ultraviolet radiations emitted from the thermally excited/ionized surface contaminants. The reduction of target ion intensity with an increasing number of laser shots thus indicates the removal of contaminants from the irradiated surface area. Laser-cleaned Al and Cu surfaces were then allowed to be recontaminated with residual vacuum gases and the ion intensity was measured at various time delays. The prolonged exposure of the cleaned target to vacuum residual gases completely restores the ion intensity. Regarding surface contaminants removal, laser shots of higher intensities were found to be more effective than a higher number of laser shots having lower intensities.
Optodynamic Phenomena During Laser-Activated Irrigation Within Root Canals
NASA Astrophysics Data System (ADS)
Lukač, Nejc; Gregorčič, Peter; Jezeršek, Matija
2016-07-01
Laser-activated irrigation is a powerful endodontic treatment for smear layer, bacteria, and debris removal from the root canal. In this study, we use shadow photography and the laser-beam-transmission probe to examine the dynamics of laser-induced vapor bubbles inside a root canal model and compare ultrasonic needle irrigation to the laser method. Results confirm important phenomenological differences in the two endodontic methods with the laser method resulting in much deeper irrigation. Observations of simulated debris particles show liquid vorticity effects which in our opinion represents the major cleaning mechanism.
Monte-Carlo based Uncertainty Analysis For CO2 Laser Microchanneling Model
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Nitish; Kumar, Subrata
2016-09-01
CO2 laser microchanneling has emerged as a potential technique for the fabrication of microfluidic devices on PMMA (Poly-methyl-meth-acrylate). PMMA directly vaporizes when subjected to high intensity focused CO2 laser beam. This process results in clean cut and acceptable surface finish on microchannel walls. Overall, CO2 laser microchanneling process is cost effective and easy to implement. While fabricating microchannels on PMMA using a CO2 laser, the maximum depth of the fabricated microchannel is the key feature. There are few analytical models available to predict the maximum depth of the microchannels and cut channel profile on PMMA substrate using a CO2 laser. These models depend upon the values of thermophysical properties of PMMA and laser beam parameters. There are a number of variants of transparent PMMA available in the market with different values of thermophysical properties. Therefore, for applying such analytical models, the values of these thermophysical properties are required to be known exactly. Although, the values of laser beam parameters are readily available, extensive experiments are required to be conducted to determine the value of thermophysical properties of PMMA. The unavailability of exact values of these property parameters restrict the proper control over the microchannel dimension for given power and scanning speed of the laser beam. In order to have dimensional control over the maximum depth of fabricated microchannels, it is necessary to have an idea of uncertainty associated with the predicted microchannel depth. In this research work, the uncertainty associated with the maximum depth dimension has been determined using Monte Carlo method (MCM). The propagation of uncertainty with different power and scanning speed has been predicted. The relative impact of each thermophysical property has been determined using sensitivity analysis.
Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Ams, Martin; Dekker, Peter; Gross, Simon; Withford, Michael J.
2017-01-01
Optical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.
Laser cleaning of works of art: evaluation of the thermal stress induced by Er:YAG laser
NASA Astrophysics Data System (ADS)
De Cruz, A.; Andreotti, A.; Ceccarini, A.; Colombini, M. P.
2014-06-01
The Er:YAG laser has proven particularly efficient in cleaning procedures of works of art. The removal of the superficial deposits is achieved through melting, thermal decomposition and evaporation. However, the energy absorbed by vibrational modes is dissipated as heat, increasing the temperature of the surface coating that could cause damage on the object. The aim of this study was to evaluate the temperature increase induced by a Er:YAG MonaLaser (LLC., Orlando, FL, USA). To that purpose, we designed a dedicated device to perform the tests in an inert atmosphere or with a wetting agent, to measure the radiant energy per laser pulse. Tests were carried out both on graphite, which absorbs IR radiation and showed a very intense flash emission, and on different kind of samples representative of materials with different levels of conductivity and thermal diffusivity. Results obtained showed that the temperature increase in the irradiated surface depends on the substrate but never causes the damage of the organic and inorganic material. The use of a solvent as wetting agent has been also tested.
An observation of ablation effect of soft biotissue by pulsed Er:YAG laser
NASA Astrophysics Data System (ADS)
Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin
2007-02-01
Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.
CTE:YAG laser applications in dentistry
NASA Astrophysics Data System (ADS)
Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.
1998-04-01
The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.
Crude Oil Remote Sensing, Characterization and Cleaning with ContinuousWave and Pulsed Lasers
2015-01-23
explained by strong pressure spikes during cavitation in liquid jets . These experiments were not directly tested for the pipe cleaning, but their results...analytical functions (like circular, elliptical and similar shapes). In our case of cylindrical symmetry of the oil film shape is defined by two...the high-pressure (50 – 100 atm) oil and water jets (with cavitations in narrow tubes) revealed a new potential for a more efficient cleaning of
Comparative Mirror Cleaning Study: 'A Study on Removing Particulate Contamination'
NASA Technical Reports Server (NTRS)
Houston, Karrie
2007-01-01
The cleanliness of optical surfaces is recognized as an industry-wide concern for the performance of optical devices such as mirrors and telescopes, microscopes and lenses, lasers and interferometers, and prisms and optical filters. However, no standard has been established for optical cleaning and there is no standard definition of a 'clean' optical element. This study evaluates the effectiveness of commonly used optical cleaning techniques based on wafer configuration, contamination levels, and the number and size of removed particles. It is concluded that cleaning method and exposure time play a significant factor in obtaining a high removal percentage. The detergent bath and solvent rinse method displayed an increase in effective removal percentage as the contamination exposure increased. Likewise, CO2 snow cleaning showed a relatively consistent cleaning effectiveness. The results can help ensure mission success to flight projects developed for the NASA Origins Program. Advantages and disadvantages of each of the optical cleaning methods are described.
Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning.
Skinner, C H; Gentile, C A; Doerner, R
2012-10-01
Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.
NASA Astrophysics Data System (ADS)
Hamilton, J.
2012-09-01
Protection and cleaning of precision optical surfaces on large scale astronomical instruments has entered a new era. First surface mirrors have been restored to "like-new" condition avoiding the expense and downtime of recoating. Nearly 10 years of testing and evaluation at a variety of sites including optics at Vandenberg Air Force Base, the Canada France Hawaii Telescope (CFHT) and the W.M Keck Telescope on Mauna Kea, have yielded impressive results: restored reflectivity, no residue, insitu cleaning and better coating performance when used as a precleaner when coating. Metrology and research in our labs has resulted in these novel, commercially available polymeric stripcoatings that are applied as a liquid and subsequently peeled off the substrate as a solid film. These designer polymer solutions safely clean and protect a wide variety of nanostructured surfaces and leave the surface almost atomically clean. Contaminant removal was monitored by a variety of techniques including Reflectivity, Nomarski, Atomic Force and Scanning Electron Microscopy as well as XPS. In addition, data demonstrates that the material safely removes particulate contamination and finger oils from nanostructures such as the 300nm wide lines on diffraction gratings and similar submicron features on Si wafers. High power laser damage testing found no residue on the optical surfaces following dried film removal and YAG laser damage thresholds after cleaning on coated BK7 of 15J/cm2 at 20ns and 20Hz were unchanged. Additionally to these adhesion tunable polymer systems, nanotube and graphene doped, ESD free polymer strip coatings for surface protection, nanoreplication, cleaning and dust mitigation have also been developed. Our coatings have been successfully used on diverse surfaces like high power laser optics, the Hope Diamond in Washington DC, CCD s for the 520 megapixel Dark Energy Survey Camera being built at Fermilab and lithographically fabbed detector surfaces for the Cryogenic Dark Matter Search.
Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S.; Buzhinsky, O. I.
2015-12-15
The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.
Active mode-locked operation of a diode pumped colour-centre laser
NASA Astrophysics Data System (ADS)
Mazighi, K.; Doualan, J. L.; Hamel, J.; Margerie, J.; Mounier, D.; Ostrovsky, A.
1991-09-01
The cw laser diode pumping of an (F +2) ∗ colour centre laser has been recently demonstrated in our laboratory. The intensity of the pumping diode can easily be hf modulated. We present here the first experiments in which the colour centre laser is synchronously pumped at the mode spacing frequency, resulting in the emission of clean, regularly spaced pulses. The opto-electronic feedback is a very promising method of obtaining such a pulsed operation of a diode pumped colour centre laser without the use of an external hf oscillator.
Lukač, Nejc; Jezeršek, Matija
2018-05-01
When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.
NASA Astrophysics Data System (ADS)
Ma, Yong-Won; Jeong, Myung Yung; Lee, Sang-Mae; Shin, Bo Sung
2016-03-01
A new approach for fabricating a high-density nano-porous structure on polyimide (PI) by using a 355-nm UV laser is presented here. When PI was irradiated by using a laser, debris that had electrical conductivity was generated. Accordingly, that debris caused electrical defects in the field of electronics. Thus, many researchers have tried to focus on a clean processing without debris. However, this study focused on forming a high density of debris so as to fabricate a nano-porous structure consisting of nanofibers on the PI film. A PI film with closed pores and open pores was successfully formed by using a chemical blowing agent (azodicarbonamide, CBA) in an oven. Samples were precured at 130 °C and cured at 205 °C in sequence so that the closed pores might not coalesce in the film. When the laser irradiated the PI film with closed pores, nanofibers were generated because polyimide was not completely decomposed by photochemical ablation. Our results indicated that a film with micro-closed pores, in conjunction with a 355-nm pulsed laser, can facilitate the fabrication of a high-density nano-porous structure.
Portable Handheld Laser Small Area Supplemental Coatings Removal System, Version 2.0
2005-08-17
awkward posture can cause unnecessary stress at the shoulder ( acromioclavicular joint and the glenohumeral joint) and may contribute to bursitis or...order to point the laser at the surface to be cleaned. This awkward posture can cause unnecessary stress at the shoulder ( acromioclavicular joint and
Cleanliness for the NIF 1ω Laser Amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaeth, M. L.; Manes, K. R.; Honig, J.
During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1ω amplifiers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab-high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, wouldmore » lead to higher than acceptable slab-refurbishment rates. Finally, this study tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1ω amplifier slabs.« less
Cleanliness for the NIF 1ω Laser Amplifiers
Spaeth, M. L.; Manes, K. R.; Honig, J.
2017-03-23
During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1ω amplifiers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab-high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, wouldmore » lead to higher than acceptable slab-refurbishment rates. Finally, this study tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1ω amplifier slabs.« less
Minimal invasive control of paintings cleaning by LIBS
NASA Astrophysics Data System (ADS)
Staicu, A.; Apostol, I.; Pascu, A.; Urzica, I.; Pascu, M. L.; Damian, V.
2016-03-01
In cultural heritage restoration and conservation, it has been proved that LIBS is an appropriate technique for pigments identification, analysis of multilayered paintings, and quantitative analysis of ancient materials. Generally, experiments involving the use of laser for paint cleaning and LIBS in order to identify the composition of the removed material are made. Here, we report LIBS studies on mastic and dammar varnishes removal using visible (532 nm) and UV (266 nm) laser pulses (5 ns) with fluences in the range 0.6-4.4 J/cm2. The studied varnish layers were on-purpose painted on glass supports or were part of several mock-up samples having dammar or mastic as final layer - gold foil, yellow ochre or cobalt blue egg tempera as painting layer - chalk or acrylic ground as link to an wooden support. LIBS was used to monitor the laser induced stepwise selective removal of the layers and to analyze their composition.
NASA Astrophysics Data System (ADS)
Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.
2015-09-01
The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.
Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip
2014-06-11
Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.
Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina
2014-01-01
Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning process was used on these simply geometric specimens that resulted in what appears to be very smooth internal surfaces, when compared to other aerospace hardware cleaning methods.
Damage behavior of Nd:glass of high-power disk amplifier medium in ICF Facility
NASA Astrophysics Data System (ADS)
He, Shaobo; Chen, Lin; Yuan, Xiaodong; Chen, Yuanbin; Cheng, Xiaofeng; Xie, Xudong; Wang, Wenyi; Zu, Xiaotao
2016-12-01
Large aperture Nd:glass disk is often used as the amplifier medium in the inertial confinement fusion (ICF) facilities. The typical size of Nd:glass is up to 810mm×460mm×40mm and more than 3,000 Nd:glass components are needed in the ICF facility. At present, the 3ω fused silica glass and DKDP crystal are mainly responsible for the damage of driver used for ICF. However, with the enlargement of the facility and increase of laser shot number, the laser damage of Nd:glass at 1ω waveband is still an important problem to limit the stable operation of facility and improvement of laser beam quality. In this work, the influence of Nd:glass material itself, mechanical processing, service environment, and laser beam quality on its damage behavior is investigated experimentally and theoretically. The results and conclusions can be summarized as follows: (1) It is very important to control the concentration of platinum impurity particles during melting and the sputtering effect of the cladding materials. (2) The number and length of fractural and brittle scratches should be strictly suppressed during mechanical processing of Nd:glass. (3) The B-integral of high power laser beam should be rigorously controlled. Particularly, the top shape of pulses must be well controlled when operating at high peak laser power. (4) The service environment should be well managed to make sure the cleanness of the surface of Nd:glass better than 100/A level during mounting and running. (5) The service environment and beam quality should be monitored during operation.
Key techniques for space-based solar pumped semiconductor lasers
NASA Astrophysics Data System (ADS)
He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua
2014-12-01
In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.
Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...
2017-12-06
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D. R.; Ulreich, J.; Wittman, M. D.
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth.
Bahrololoomi, Zahra; Fekrazad, Reza; Zamaninejad, Shiva
2017-01-01
Introduction: Laser irradiation has been suggested as an adjunct to traditional methods of canal preparation but few studies are available on the antibacterial effect of diode laser in pulpectomy of primary teeth. The purpose of the present study is to investigate the antibacterial effect of diode laser in pulpectomy of primary teeth, in addition to define the optimal and harmless diode lasing conditions in the root canal. Methods: A total of 125 single rooted primary teeth were selected. After traditional canal cleaning, they were divided in 2 groups. Sixty-five specimens after culturing of Enterococcus faecalis into the canals, were divided in 3 groups: (1) traditional canal cleaning with 0.5% NaOCl irrigation, (2) method of group 1+ 1.5 W diode laser (980 nm, pulse), (3) without treatment (5 specimens). Then the specimens were cultured and after colony counting under light microscope, were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests. For 60 specimens, temperature rise of apical and cervical parts of the external root surface were measured using 2 thermocouple type K, when radiating a 1.5 W diode laser into the canal. Results: In the first experiment, the diode laser group showed tmost reduction in bacterial count. And in the second experiment, the mean temperature rise of external root surface was less than the threshold of periodontal ligament (PDL) damage. Conclusion: Diode laser with a power output of 1.5 W, is effective in reduction of E. faecalis bacterial count without damaging periodontal structures.
Apparatus for depositing a low work function material
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2006-10-10
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Technical Reports Server (NTRS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
1987-01-01
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Astrophysics Data System (ADS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W
2013-02-01
A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and validation of an algorithm for laser application in wound treatment 1
da Cunha, Diequison Rite; Salomé, Geraldo Magela; Massahud, Marcelo Renato; Mendes, Bruno; Ferreira, Lydia Masako
2017-01-01
ABSTRACT Objective: To develop and validate an algorithm for laser wound therapy. Method: Methodological study and literature review. For the development of the algorithm, a review was performed in the Health Sciences databases of the past ten years. The algorithm evaluation was performed by 24 participants, nurses, physiotherapists, and physicians. For data analysis, the Cronbach’s alpha coefficient and the chi-square test for independence was used. The level of significance of the statistical test was established at 5% (p<0.05). Results: The professionals’ responses regarding the facility to read the algorithm indicated: 41.70%, great; 41.70%, good; 16.70%, regular. With regard the algorithm being sufficient for supporting decisions related to wound evaluation and wound cleaning, 87.5% said yes to both questions. Regarding the participants’ opinion that the algorithm contained enough information to support their decision regarding the choice of laser parameters, 91.7% said yes. The questionnaire presented reliability using the Cronbach’s alpha coefficient test (α = 0.962). Conclusion: The developed and validated algorithm showed reliability for evaluation, wound cleaning, and use of laser therapy in wounds. PMID:29211197
Design and research of built-in sample cell with multiple optical reflections
NASA Astrophysics Data System (ADS)
Liu, Jianhui; Wang, Shuyao; Lv, Jinwei; Liu, Shuyang; Zhou, Tao; Jia, Xiaodong
2017-10-01
In the field of trace gas measurement, with the characteristics of high sensitivity, high selectivity and rapid detection, tunable diode laser absorption spectroscopy (TDLAS) is widely used in industrial process and trace gas pollution monitoring. Herriott cell is a common form of multiple reflections of the sample cell, the structure of the Herriott cell is relatively simple, which be used to application of trace gas absorption spectroscopy. In the pragmatic situation, the gas components are complicated, and the continuous testing process for a long time can lead to different degree of pollution and corrosion for the reflector in the sample cell. If the mirror is not cleaned up in time, it will have a great influence on the detection accuracy. In order to solve this problem in the process of harsh environment detection, this paper presents a design of the built-in sample cell to avoid the contact of gas and the mirror, thereby effectively reducing corrosion pollution. If there is optical pollution, direct replacement of the built-in optical sample cell can easily to be disassembled, and cleaned. The advantage of this design is long optical path, high precision, cost savings and so on.
Method of nitriding niobium to form a superconducting surface
Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja
2014-08-19
A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.
Kamalak, Aliye; Uzun, Ismail; Arslan, Hakan; Keleş, Ali; Doğanay, Ezgi; Keskin, Cangül; Akçay, Merve
2016-10-01
Additional cleaning techniques and devices are required to remove maximum amount of residual filling material, which might limit disinfection of root canal system during retreatment. This study aimed to compare fracture resistance of roots when self-adjusting file (SAF), photon-induced photoacoustic streaming (PIPS), passive ultrasonic irrigation (PUI), erbium-doped yttrium aluminum garnet (Er:YAG), or neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers are applied following the use of retreatment files in endodontics. A total of 117 human mandibular canine teeth of similar dimensions were selected and divided into nine groups (n = 13). Aside from control, instrumented, and only-prepared groups, 91 teeth were remaining, of which 13 were assigned to the only-filling group and final 78 to retreatment, thus R-Endo file, R-Endo+SAF, R-Endo+PUI, R-Endo+Er:YAG laser, R-Endo+Nd:YAG laser, and R-Endo+PIPS. The fracture strengths of the retreatment groups were lower than control, instrumented, and only-filling groups (p < 0.05). There was no difference between the R-Endo group and additional retreatment procedure groups (p > 0.05). Further cleaning methods using SAF, PIPS, Er:YAG laser, Nd:YAG laser, or PUI did not decrease the fracture resistance when compared with the R-Endo group.
NASA Astrophysics Data System (ADS)
Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.
2013-05-01
Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production chambers... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.
Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E
2018-01-22
Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.
Uranium speciation in biofilms studied by laser fluorescence techniques.
Arnold, Thuro; Grossmann, Kay; Baumann, Nils
2010-03-01
Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.
NASA Astrophysics Data System (ADS)
Anjana, R.; Kurias, K. M.; Jayaraj, M. K.
2017-10-01
Upconversion luminescent nanomaterials have great outlook towards imaging applications. These materials have high chemical and thermal stability, low auto fluorescence, high photo stability and IR excitation does not cause photo damage to living cells and penetrate deeply into tissue. Most of the reported nanoparticles are synthesized through chemical methods in which surface modification is needed for dispersing nanoparticles in water. In this paper we report clean and simple synthesis of upconversion luminescent yttrium oxyfluoride (YOF) nanoparticles through laser ablation in deionized water. YOF:Er3+, Yb3+ pellets were used for ablation. Er3+ is the emission centre Yb3+ is the sensitizer. Obtained colloidal solution is transparent to day light and showing red emission on exciting with 980 nm IR laser. By controlling ablation parameters particles of size less than 10 nm dispersed uniformly in water can be obtained through this surfactant free method. The synthesized nanoparticles can be used for cell imaging.
Delta II ICESat-2 Fairing Cleaning and Sampling
2018-04-06
On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, a technician cleans and takes samples from the payload fairing the will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Fairing Cleaning and Sampling
2018-04-06
On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, technicians and engineers clean and take samples from the payload fairing the will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Fairing Cleaning and Sampling
2018-04-06
On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, technicians and engineers check samples during cleaning of the payload fairing that will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.
Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi
2011-06-01
Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar
2017-09-01
This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.
Reliability of Semiconductor Laser Packaging in Space Applications
NASA Technical Reports Server (NTRS)
Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.
2008-01-01
A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.
Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber.
Rodgers, B C; Russell, T H; Roh, W B
1999-08-15
A new technique for combining low-power laser beams has been demonstrated by use of semiconductor diode lasers. The technique, which is appropriate for any single-longitudinal-mode laser, is based on stimulated Brillouin scattering (SBS) in long multimode optical fibers. It produces a clean Gaussian-like beam that corresponds to the fundamental fiber mode, irrespective of the profile of the pump. Coherent as well as incoherent combining was demonstrated, and conversion slope efficiencies as high as 67% and 83% were shown to be achievable for the single-pass and ring-cavity SBS geometries, respectively.
New approach of Co2 laser use in plastic and dermo-cosmetic surgery
NASA Astrophysics Data System (ADS)
Trelles, Mario A.; Trelles, O. R.; Romero, L. F.
1996-01-01
Laboratory and mathematical skin examination has played an important role in defining the clinical usefulness and limitations of laser, developing concepts and techniques that have further improved the effectiveness of laser treatment. In addition to this, new technological developments over the years, have helped define the specificity of laser-tissue interaction. Instantaneous conversion by thermal energy of water in a liquid state to a gaseous state when irradiation of skin is done by high power density carbon dioxide laser in short pulses, occurs so quickly that there is minimal thermal conduction to the adjacent tissues structures. The zone of thermal injury could be minimized to the order of only 50 micron thick. In spite of the limited effects of heat conduction, coagulation in vessels can be obtained as well, since small blood vessels are immediately sealed by the laser. Modern carbon dioxide systems can be programmed and make it possible to reproduce shots precisely to vaporize identically thin layers of soft tissue, since absorption by intracellular water limits the depth of penetration. Moreover, collimated handpieces make it possible to deliver a fixed beam diameter and a constant power density as the handpiece is steadily moved over lesions situated on uneven facial contours. The use of large spot sizes gives a more uniform vaporization thus damaging adjacent tissues to a lesser degree, but enlarging of the spot size requires higher energy levels per pulse so that the whole surface can reach a sufficiently high fluence for clean vaporization to take place. For this to be achieved, the fluence required is about 4 - 5 J/cm2 and so UltraPulseR carbon dioxide laser with a 3 mm spot size may be operated with optimal parameters for clean ablation. The resulting surface, covered by dry debris, can be removed by gently scrubbing to avoid thermal build-up, otherwise this remaining tissue can act as a refracting surface as the practical absence of water content means that the carbon dioxide laser light is not efficiently absorbed. This process is repeated layer-by-layer using the same laser parameters until all remaining abnormal tissue has been grossly removed. Utilized as a chain of rapid, short (approx. 1 ms) pulses, with high peak power, tissue can be effectively eliminated, taking advantage of the concept of the known thermal relaxation time of soft tissue. The current laser systems which are built according to the new concept of high technology based upon the knowledge of laser tissue interaction, known as UltraPulsedR Carbon Dioxide Laser, are capable of precise ablation and also of being used in cosmetically sensitive areas with minimal thermal damage. Although the precise clinical role for this laser has yet to be accurately defined, the potential benefits offered by its use appear to be substantial.
Guha, Samit; Shaw, Scott K; Spence, Graeme T; Roland, Felicia M; Smith, Bradley D
2015-07-21
The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications.
Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.
2015-01-01
The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326
Colour changes by laser irradiation of reddish building limestones
NASA Astrophysics Data System (ADS)
Grossi, C. M.; Benavente, D.
2016-10-01
We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.
Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less
Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.; ...
2017-03-16
Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less
Ngo, Chi-Vinh; Chun, Doo-Man
2016-11-08
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.
Ngo, Chi-Vinh; Chun, Doo-Man
2016-01-01
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport. PMID:27824132
New laser surface treatments: cleaning, derusting, deoiling, depainting, deoxidizing, and degreasing
NASA Astrophysics Data System (ADS)
Daurelio, Giuseppe; Chita, Giuseppe; Cinquepalmi, Massimo
1997-08-01
Many materials as substrates and surface products have been tested. Typically ferrous (Carbon Steels and Stainless Steels) and non ferrous (Al and Cu metals and its alloys) ones have been employed. Some epoxy, polyurethane, polyester and acrylic paints in different thickness and color have been tested. Many types of the surface rust and oxide on different bulk material have been undertaken to test. Similarly some different types of oils and greases, usually used in industry against the oxidation, have been studied. Anyway many types of dirt, grit, calcareous one and so on, present on industrial components, have been laser cleaned without using solvents, acid baths and other ones. Different types of laser sources have been employed: an axial fast flow, 1.5 KW CO2 c.w. and pulsed laser source, emitting a 10.6 micrometers beam; a portable CO2 laser, c.w. (1 to 25 W) and pulsed (1 to 100 Hz and 400 ms max pulse duration) source, emitting a 10.6 micrometers beam with a multi-articulated seven mirrors guiding device and focussing head; a portable Nd-YAG laser, Q-switched and normal-mode source. 1st harmonic 1.06 micrometers (6 ns pulse duration), 2nd harmonic 532 nm (120 microsecond(s) duration pulse- 1J max per-pulse) wavelengths, multi-articulated seven mirrors beam guiding device, 20 Hz repetition rate. This lets shots with 600 mJ max energy per pulse and 100 MW peak power per-pulse with a very low beam divergence, 0.5 mrad at full angle; a transverse fast flow 2.5 kW CO2 laser.
Time-dependent preparation of gelatin-stabilized silver nanoparticles by pulsed Nd:YAG laser
NASA Astrophysics Data System (ADS)
Darroudi, Majid; Ahmad, M. B.; Zamiri, Reza; Abdullah, A. H.; Ibrahim, N. A.; Sadrolhosseini, A. R.
2011-03-01
Colloidal silver nanoparticles (Ag-NPs) were successfully prepared using a nanosecond pulsed Nd:YAG laser, λ = 1064 nm, with laser fluence of approximately about 360 mJ/pulse, in an aqueous gelatin solution. In this work, gelatin was used as a stabilizer, and the size and optical absorption properties of samples were studied as a function of the laser ablation times. The results from the UV-vis spectroscopy demonstrated that the mean diameter of Ag-NPs decrease as the laser ablation time increases. The Ag-NPs have mean diameters ranging from approximately 10 nm to 16 nm. Compared with other preparation methods, this work is clean, rapid, and simple to use.
Hakki, Sema S; Tatar, Gulsah; Dundar, Niyazi; Demiralp, Burak
2017-04-01
The aims of this in vitro study are to compare the efficacy of different cleaning methods in removing debris of failed implants and to detect thermal changes of the implants treated by various scaling instruments. Twenty-seven failed implants and two unused implants as control were included to this study-group 1: plastic curette (P), group 2: titanium curette (T), group 3: carbon curette (C), group 4: titanium brush (TB), group 5: Er:YAG laser (laser 1 (L1) 100 mJ/pulse at 10 Hz), group 6: Er:YAG laser (laser 2 (L2) 150 mJ/pulse at 10 Hz), group 7: Er:YAG laser (laser 3 (L3) 200 mJ/pulse at 10 Hz), group 8: ultrasonic scaler appropriate for titanium (US), group 9: air abrasive method (AA) + citric acid, and group 10: implantoplasty (I). The changes on the treated/untreated titanium surfaces and remnant debris were observed by scanning electron microscopy (SEM). Temperature of the implants before and after treatment was detected using a thermocouple. The use of air abrasive and citric acid combination and Er:YAG laser groups was found as the best methods for the decontamination of titanium surfaces of failed implant. When the hand instruments were compared, titanium curette was found better than both the plastic and the carbon curettes which leave plastics and carbon remnants on the titanium surface. The temperature was higher after hand instrumentation when compared to other experimental groups (p < 0.05). Within the limitations of the present in vitro model, it can be concluded that the best method for decontamination of the implant surface is the use of air abrasives and Er:YAG laser.
Dye laser traveling wave amplifier
NASA Technical Reports Server (NTRS)
Davidson, F.; Hohman, J.
1984-01-01
A flashlamp pumped dye laser suitable for use as a single stage amplifier is described. Particular emphasis is placed on the efforts to increase output pulse energy and improve the temporal profile of the injected pulse. By using high power thin film polarizers, output energies reach from 4 to 45 mJ. Various dispersive elements are used to develop an amplified pulse with an extremely clean temporal profile.
Estimation of Greenland's Ice Sheet Mass Balance Using ICESat and GRACE Data
NASA Astrophysics Data System (ADS)
Slobbe, D.; Ditmar, P.; Lindenbergh, R.
2007-12-01
Data of the GRACE gravity mission and the ICESat laser altimetry mission are used to create two independent estimates of Greenland's ice sheet mass balance over the full measurement period. For ICESat data, a processing strategy is developed using the elevation differences of geometrically overlapping footprints of both crossing and repeated tracks. The dataset is cleaned using quality flags defined by the GLAS science team. The cleaned dataset reveals some strong, spatially correlated signals that are shown to be related to physical phenomena. Different processing strategies are used to convert the observed temporal height differences to mass changes for 6 different drainage systems, further divided into a region above and below 2000 meter elevation. The results are compared with other altimetry based mass balance estimates. In general, the obtained results confirm trends discovered by others, but we also show that the choice of processing strategy strongly influences our results, especially for the areas below 2000 meter. Furthermore, GRACE based monthly variations of the Earth's gravity field as processed by CNES, CSR, GFZ and DEOS are used to estimate the mass balance change for North and South Greenland. It is shown that our results are comparable with recently published GRACE estimates (mascon solutions). On the other hand, the estimates based on GRACE data are only partly confirmed by the ICESat estimates. Possible explanations for the obvious differences will be discussed.
Aqueous cleaning and verification processes for precision cleaning of small parts
NASA Technical Reports Server (NTRS)
Allen, Gale J.; Fishell, Kenneth A.
1995-01-01
The NASA Kennedy Space Center (KSC) Materials Science Laboratory (MSL) has developed a totally aqueous process for precision cleaning and verification of small components. In 1990 the Precision Cleaning Facility at KSC used approximately 228,000 kg (500,000 lbs) of chlorofluorocarbon (CFC) 113 in the cleaning operations. It is estimated that current CFC 113 usage has been reduced by 75 percent and it is projected that a 90 percent reduction will be achieved by the end of calendar year 1994. The cleaning process developed utilizes aqueous degreasers, aqueous surfactants, and ultrasonics in the cleaning operation and an aqueous surfactant, ultrasonics, and Total Organic Carbon Analyzer (TOCA) in the nonvolatile residue (NVR) and particulate analysis for verification of cleanliness. The cleaning and verification process is presented in its entirety, with comparison to the CFC 113 cleaning and verification process, including economic and labor costs/savings.
Elimination of leukemic cells from human transplants by laser nano-thermolysis
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Lukianova, Ekaterina; Potapnev, Michail; Aleinikova, Olga; Oraevsky, Alexander
2006-02-01
We describe novel ex vivo method for elimination of tumor cells from bone marrow and blood, Laser Activated Nano-Thermolysis for Cell Elimination Technology (LANTCET) and propose this method for purging of transplants during treatment of leukemia. Human leukemic cells derived from real patients with different diagnoses (acute lymphoblastic leukemias) were selectively damaged by LANTCET in the experiments by laser-induced micro-bubbles that emerge inside individual specifically-targeted cells around the clusters of light-absorbing gold nanoparticles. Pretreatment of the transplants with diagnosis-specific primary monoclonal antibodies and gold nano-particles allowed the formation of nanoparticle clusters inside leukemic cells only. Electron microscopy found the nanoparticulate clusters inside the cells. Total (99.9%) elimination of leukemic cells targeted with specific antibodies and nanoparticles was achieved with single 10-ns laser pulses with optical fluence of 0.2 - 1.0 J/cm2 at the wavelength of 532 nm without significant damage to normal bone marrow cells in the same transplant. All cells were studied for the damage/viability with several control methods after their irradiation by laser pulses. Presented results have proved potential applicability of developed LANTCET technology for efficient and safe purging (cleaning of residual tumor cells) of human bone marrow and blood transplants. Design of extra-corporeal system was proposed that can process the transplant for one patient for less than an hour with parallel detection and counting residual leukemic cells.
Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
NASA Astrophysics Data System (ADS)
Cai, Jinguang; Watanabe, Akira; Lv, Chao
2017-02-01
Micro-supercapacitors with small size, light weight, flexibility while maintaining high energy and power output are required for portable miniaturized electronics. The fabrication methods and materials should be cost-effective, scalable, and easily integrated to current electronic industry. Carbon materials have required properties for high-performance flexible supercapacitors, including high specific surface areas, electrochemical stability, and high electrical conductivity, as well as the high mechanical tolerance. Laser direct writing method is a non-contact, efficient, single-step fabrication technique without requirements of masks, post-processing, and complex clean room, which is a useful patterning technique, and can be easily integrated with current electronic product lines for commercial use. Previously we have reported micro-supercapacitors fabricated by laser direct writing on polyimide films in air or Ar, which showed highcapacitive performance. However, the conductivity of the carbon materials is still low for fast charge-discharge use. Here, we demonstrated the fabrication of flexible carbon/Au composite high-performance MSCs by first laser direct writing on commercial polyimide films followed by spin-coating Au nanoparticles ink and second in-situ laser direct writing using the low-cost semiconductor laser. As-prepared micro-supercapacitors show an improved conductivity and capacitance of 1.17 mF/cm2 at a high scanning rate of 10,000 mV/s, which is comparable to the reported capacitance of carbon-based micro-supercapacitors. In addition, the micro-supercapacitors have high bend tolerance and long-cycle stability.
2007-06-28
femtosecond laser radiation Makin V.S.1, Vorobyev A.Y.2 1 Reseach Inst. for Complex Testing of Opto-Electronic Devices, Sosnovy Bor City, Leningrad...fuel in symmetrical conditions is designed to study DT-mixture compression and heating. To enhance the investigation abilities on this direction the...experimental test bench of average power ∼50 kW with supersonic flow of working medium in the resonator has been developed on its basis. FLAMN-07 3
Test Area B-75 Final Range Environmental Assessment (REA), Revision 1
2010-08-01
Committee on Hearing, Bioacoustics, and Biomechanics CO Carbon Monoxide CS/CSS Combat Support/Combat Service Support CWA Clean Water Act CZMA Coastal...Explosives 88 0 0 0 MK-82, AFX-644-3 HE FILL 12 0 0 0 Lasers LASER GUIDED TRAINING RD 0 4 0 16 LASER OPS, 1 HR 0 14 0 56 Mines MINE AT HEAVY M15 0 462 0...Primary) 40,000 µg/m³ = Micrograms per Cubic Meter; Avg = Average; CO = Carbon Monoxide ; hr = Hour; NOx = Nitrogen Oxides; PM = Particulate
Laser-induced breakdown spectroscopy for analysis of plant materials: A review
NASA Astrophysics Data System (ADS)
Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José
2012-05-01
Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.
Solid state laser applications in photovoltaics manufacturing
NASA Astrophysics Data System (ADS)
Dunsky, Corey; Colville, Finlay
2008-02-01
Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.
Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma
NASA Astrophysics Data System (ADS)
Elg, Daniel Tyler
Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation of this debris is one of the main problems facing potential manufacturers of EUV sources. which can damage the collector optic in three ways: sputtering, implantation, and deposition. The first two damage processes are irreversible and are caused by the high energies (1-10 keV) of the ion debris. Debris mitigation methods have largely managed to reduce this problem by using collisions with H2 buffer gas to slow down the energetic ions. However, deposition can take place at all ion and neutral energies, and no mitigation method can deterministically deflect all neutrals away from the collector. Thus, deposition still takes place, lowering the collector reflectivity and increasing the time needed to deliver enough EUV power to pattern a wafer. Additionally, even once EUV reaches HVM insertion, source power will need to be continually increased as feature sizes continue to shrink; this increase in source power may potentially come at a cost of increased debris. Thus, debris mitigation solutions that work for the initial generation of commercial EUVL systems may not be adequate for future generations. An in-situ technology to clean collector optics without source downtime is required. which will require an in-situ technology to clean collector optics. The novel cleaning solution described in this work is to create the radicals directly on the collector surface by using the collector itself to drive a capacitively-coupled hydrogen plasma. This allows for radical creation at the desired location without requiring any delivery system and without requiring any source downtime. Additionally, the plasma provides energetic radicals that aid in the etching process. This work will focus on two areas. First, it will focus on experimental collector cleaning and EUV reflectivity restoration. Second, it will focus on developing an understanding of the fundamental processes governing Sn removal. It will be shown that this plasma technique can clean an entire collector optic and restore EUV reflectivity to MLMs without damaging them. Additionally, it will be shown that, within the parameter space explored, the limiting factor in Sn etching is not hydrogen radical flux or SnH4 decomposition but ion energy flux. This will be backed up by experimental measurements, as well as a plasma chemistry model of the radical density and a 3D model of SnH4 transport and redeposition.
Dry etching technologies for the advanced binary film
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio
2011-11-01
ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.
Beam cleaning of an incoherent laser via plasma Raman amplification
Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.; ...
2017-09-25
We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less
Beam cleaning of an incoherent laser via plasma Raman amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.
We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less
Micro particle launcher/cleaner based on optical trapping technology.
Liu, Zhihai; Liang, Peibo; Zhang, Yu; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo
2015-04-06
Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.
Laser-induced contamination control for high-power lasers in space-based LIDAR missions
NASA Astrophysics Data System (ADS)
Alves, Jorge; Pettazzi, Federico; Tighe, Adrian; Wernham, Denny
2017-11-01
In the framework of the ADM-Aeolus satellite mission, successful test campaigns have been performed in ESTEC's laser laboratory, and the efficiency of several mitigation techniques against Laser-Induced Contamination (LIC) have been demonstrated for the ALADIN laser. These techniques include the standard contamination control methods of materials identification with particular tendency to cause LIC, reduction of the outgassing of organic materials by vacuum bake-out and shielding of optical surfaces from the contamination sources. Also novel mitigation methods such as in-situ cleaning via partial pressures, or the usage of molecular absorbers were demonstrated. In this context, a number of highly sensitive optical measurement techniques have been developed and tested to detect and monitor LIC deposits at nanometre level.
Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune
2006-08-01
A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.
Laser range pole field evaluation report
NASA Technical Reports Server (NTRS)
1973-01-01
A field evaluation was made of the laser pole equipment. The basic plan for the evaluation was to expose the equipment to the actual people and environment for which it was intended and determine, through the use of the equipment, its resultant effectivity in terms of improved performance. Results show the equipment performed better than expected in the high elevation clean air of Colorado, and did as well in Tennessee.
Clean WS2 and MoS2 Nanoribbons Generated by Laser-Induced Unzipping of the Nanotubes.
Vasu, Kuraganti; Yamijala, Sharma S R K C; Zak, Alla; Gopalakrishnan, Kothandam; Pati, Swapan K; Rao, C N R
2015-08-26
The preparation of 1D WS(2) and MoS(2) flexible nanoribbons by laser-induced unzipping of the nanotubes is reported. The nanoribbons are of high quality, uniform width, and devoid of surface contamination. The zig-zag edges in WS(2) nanoribbons give rise to ferromagnetism at room temperature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
Sterilization of root canal spaces using an Nd:YAG laser, in vitro
NASA Astrophysics Data System (ADS)
Goodis, Harold E.; White, Joel M.; Yee, Barbara; Marshall, Sally J.; Marshall, Grayson W.
1995-05-01
A smear layer is created during the cleaning and shaping of root canal systems. The Nd:YAG laser has been shown to be effective in removing that smear layer and any tissue remnants from prepared root canal systems suggesting that it may aid in root canal sterilization without detrimental thermal effects to adjacent tissues. The root canal system of 72 single-rooted teeth was conventionally prepared and sterilized using gamma radiation. The teeth were divided into three groups of 24 each, 8 of which were inoculated only with sterile broth and remained as negative controls. Sixteen teeth of each group were inoculated with one of three organisms of 106 to 1010 CFU/(mu) l: B subtilis (BS), E. coli (EC) and S. marcescens (SM) (10 (mu) l). Eight in each group were not treated further and served as positive controls. Sixteen test teeth were treated with the laser three times using each exposure parameter: 1 W, 10 Hz pulses per second (pps); 2 W, 20 Hz; and 3 W, 30 Hz inserted to the radiographic apex. Laser exposures were completed while withdrawing the fiber from the root canal system. At completion of laser exposure, all teeth were cultured, using sterile paper points and plated on brain heat infusion agar. Three cultures were taken for each tooth, the plates incubated for 72 hours, and read for the presence of growth of colony-forming units. The laser was able to reduce the number of organisms placed in root canal systems, and suggests that the laser may be used in root canal therapy for bacterial reduction and cleaning of the root canal space.
In vitro study of the variable square pulse Er:YAG laser cutting efficacy for apicectomy.
Grgurević, Josko; Grgurević, Lovro; Miletić, Ivana; Karlović, Zoran; Krmek, Silvana Jukić; Anić, Ivica
2005-06-01
Variable square pulse (VSP) Er:YAG laser should be quicker than older Er:YAG lasers. The objectives were: (1) comparison of VSP laser and mechanical handpiece efficacy for apicectomy and (2) determination of optimal pulse width/energy/frequency combination. Sixty extracted, single-rooted mature human teeth with round apical parts were instrumented, root filled, cleaned, and divided into four groups. Apical 2 mm of each root were apicectomized with mechanical handpiece and Er:YAG laser with three different settings (LaserA = 200 mJ/300 microseconds/ 8 Hz; LaserB = 200 mJ/100 microseconds/8 Hz; LaserC = 380 mJ/100 microseconds/20 Hz). Timing results were statistically compared. LaserC was the most efficient setting. Differences between groups were significant except between LaserC-Mechanical and LaserA-LaserC (P < 0.05). VSP Er:YAG laser used for apicectomy is slower by a factor of 7-31 than mechanical handpiece, but treatment outcome is acceptable. Optimal settings for apicectomy with VSP laser are 380 mJ/100 microseconds/20 Hz. Copyright 2005 Wiley-Liss, Inc.
Mamalis, Nick; Grossniklaus, Hans E.; Waring, George O.; Werner, Liliana; Brubaker, Jacob; Davis, Don; Espandar, Ladan; Walker, Rudolf; Thyzel, Reinhardt
2010-01-01
PURPOSE To evaluate efficacy of a neodymium:YAG (Nd:YAG) laser photolysis system in removing lens epithelial cells (LECs) and characterize the effect of the laser on laminin and fibronectin involved in LEC adhesion and migration. METHODS Cadaver eyes were evaluated using the Miyake technique. The lenses were removed with phacoemulsification. The modified Nd:YAG laser was used to clean the LECs from the capsule. Only the fornix was cleaned in some eyes and the anterior subcapsular area in other eyes. Some areas were not treated and acted as controls. Standard irrigation/aspiration (I/A) removal of LECs was performed in additional eyes. The eyes were analyzed using light microscopy and immunohistochemical staining. RESULTS Histopathologic evaluation showed that the laser removed the LECs from the anterior lens capsule and from the fornix. Immunohistochemical staining showed fibronectin and laminin staining in the untreated areas that was absent in the treated areas. Standard I/A removal of the LECs showed absence of cells but persistent laminin and fibronectin. Electron microscopy showed epithelial cells in untreated areas with an absence of the LECs and debris in treated areas. CONCLUSIONS The laser photolysis system removed LECs from the anterior lens capsule and capsule fornix. Along with the cells, laminin, fibronectin, and cell debris remained in the untreated areas but were removed by the treatment. This treatment may be useful in preventing posterior capsule opacification. Financial Disclosure No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. PMID:20494774
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
Star Power on Earth: Path to Clean Energy Future
Ed Moses
2017-12-09
Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.
ASRM process development in aqueous cleaning
NASA Technical Reports Server (NTRS)
Swisher, Bill
1992-01-01
Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.
SnTe microcrystals: Surface cleaning of a topological crystalline insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.
Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less
Measurement of optical scattered power from laser-induced shallow pits on silica
Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.
2015-10-01
We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm 2 and 11 J/cm 2 are characterized as well and found in good agreement withmore » model predictions.« less
Regenerating using aqueous cleaners with ozone and electrolysis
NASA Technical Reports Server (NTRS)
Mcginness, Michael P.
1994-01-01
A new process converts organic oil and grease contaminates in used water based cleaners into synthetic surfactants. This permits the continued use of a cleaning solution long after it would have been dumped using previously known methods. Since the organic soils are converted from contaminates to cleaning compounds the need for frequent bath dumps is totally eliminated. When cleaning solutions used in aqueous cleaning systems are exhausted and ready for disposal, they will always contain the contaminates removed from the cleaned parts and drag-in from prior cleaning steps. Even when the cleaner is biodegradable these contaminants will frequently cause the waste cleaning solution to be a hazardous waste. Chlorinated solvents are rapidly being replaced by aqueous cleaners to avoid the new ozone-depletion product-labeling-law. Many industry standard halocarbon based solvents are being completely phased out of production, and their prices have nearly tripled. Waste disposal costs and cradle-to-grave liability are also major concerns for industry today. This new process reduces the amount of water and chemicals needed to maintain the cleaning process. The cost of waste disposal is eliminated because the water and cleaning compounds are reused. Energy savings result by eliminating the need for energy currently used to produce and deliver fresh water and chemicals as well as the energy used to treat and destroy the waste from the existing cleaning processes. This process also allows the cleaning bath to be maintained at the peak performance of a new bath resulting in decreased cycle times and decreased energy consumption needed to clean the parts. This results in a more efficient and cost effective cleaning process.
2012-08-01
include the tactical delivery of air-to-ground munitions, laser designation of targets from ground and airborne platforms, and threat evasion. These...world events, which include the tactical delivery of air-to-ground munitions, laser designation of targets from ground and airborne platforms, and...Closure CAA Clean Air Act CAU Classic Associate Unit CEQ Council on Environmental Quality CFR Code of Federal Regulations CO carbon monoxide
Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination
NASA Astrophysics Data System (ADS)
Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran
2016-04-01
The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.
NASA Astrophysics Data System (ADS)
Field, Ella; Bellum, John; Kletecka, Damon
2015-07-01
Reducing contamination is essential for producing optical coatings with high resistance to laser damage. One aspect of this principle is to make every effort to limit long interruptions during the coating's deposition. Otherwise, contamination may accumulate during the pause and become embedded in the coating after the deposition is restarted, leading to a lower laser-induced damage threshold (LIDT). However, pausing a deposition is sometimes unavoidable, despite our best efforts. For example, a sudden hardware or software glitch may require hours or even overnight to solve. In order to broaden our understanding of the role of embedded contamination on LIDT, and determine whether a coating deposited under such non-ideal circumstances could still be acceptable, this study explores how halting a deposition overnight impacts the LIDT, and whether ion cleaning can be used to mitigate any negative effects on the LIDT. The coatings investigated are a beam splitter design for high reflection at 1054 nm and high transmission at 527 nm, at 22.5° angle of incidence in S-polarization. LIDT tests were conducted in the nanosecond regime.
NASA Astrophysics Data System (ADS)
Omega, Dousmaris; Andika, Aditya
2017-12-01
This paper discusses the results of a research conducted on the production process of an Indonesian pharmaceutical company. The company is experiencing low performance in the Overall Equipment Effectiveness (OEE) metric. The OEE of the company machines are below world class standard. The machine that has the lowest OEE is the filler machine. Through observation and analysis, it is found that the cleaning process of the filler machine consumes significant amount of time. The long duration of the cleaning process happens because there is no structured division of jobs between cleaning operators, differences in operators’ ability, and operators’ inability in utilizing available cleaning equipment. The company needs to improve the cleaning process. Therefore, Critical Path Method (CPM) analysis is conducted to find out what activities are critical in order to shorten and simplify the cleaning process in the division of tasks. Afterwards, The Maynard Operation and Sequence Technique (MOST) method is used to reduce ineffective movement and specify the cleaning process standard time. From CPM and MOST, it is obtained the shortest time of the cleaning process is 1 hour 28 minutes and the standard time is 1 hour 38.826 minutes.
Personal Computer (PC) based image processing applied to fluid mechanics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Stein, Steffen; Schauseil, Michael; Hellak, Andreas; Korbmacher-Steiner, Heike; Braun, Andreas
2018-05-18
The objective of this split-mouth trial was to investigate the influence of photobiomodulation therapy (PBMT) on adjuvant treatment of gingivitis induced by multi-bracket appliances, after bracket debonding and professional tooth cleaning. Thirteen patients (mean age 16.15 years; standard deviation ±2.12 years) who had completed active orthodontic treatment with fixed orthodontic appliances in an orthodontic clinic were included on a randomized basis. At time point T0, after bracket debonding and professional tooth cleaning, the papilla bleeding index (PBI) and bleeding on probing (BOP) were assessed in the upper jaw by the blinded investigator (M.S.), who was not aware at any time of which quadrant received PBMT. The study was based on a patient-blinded split-mouth design. In each patient, PBMT was administered by a practitioner (S.S.) in one upper quadrant (wavelength: 660 nm; Power: 100 mW; Power density: 100 mW/cm 2 ; Energy density per application point = 2 J/cm 2 ; Energy per application point = 2 J; Total dose = 52 J/cm 2 ; Total energy = 52 J; Irradiation time: 26 × 20 sec), while the other upper quadrant received a simulated laser application with the laser system turned off. Randomized equal allocation of the sides was accomplished. The second PBI and BOP assessment followed 4-6 days after laser irradiation (T1) by M.S. No statistical differences were observed between the sides with regard to PBI and BOP values at T0 (p > 0.05). The PBI and BOP values decreased significantly between T0 and T1 on both sides (p < 0.05). At T1, the PBI and BOP values were significantly lower in the laser side in comparison with the control side (p < 0.05). On the basis of these results and study parameters, adjuvant PBMT is able to accelerate the healing process in patients with gingivitis induced by multi-bracket appliances.
Reconstructing the colour palette of the Konstantinos Parthenis' burnt paintings.
Antonopoulou-Athera, N; Chatzitheodoridis, E; Terlixi, A; Doulgerides, M; Serafetinides, A A
2018-05-09
This case study focuses on the reconstruction of the colour palette and the possibility of laser cleaning of burnt paintings. The paintings ORPHEUS IN THE UNDERWORLD and CONCORDIA, composed by the Greek artist Konstantinos Parthenis (1878-1967), have been severely damaged by fire. The colour palette of Parthenis is thoroughly investigated for the first time, and to perform this, a multi-analytical spectroscopic approach was employed. Non-destructive in situ analysis was performed on multiple areas of the paintings by portable XRF. SEM-EDS and Raman, supported by reflected visible light optical microscopy, and ultraviolet light microscopy, as well as structural XRD and molecular FTIR were performed for identifying the pigments, the binder and the substrate of the paintings. This work also unveiled new aspects of the painting technique used by the artist, such as the uncommon use of multiple pigments of red hue in the upper paint layers, comparatively with the rest of Parthenis' paintings. Molecular spectroscopic techniques (i.e., Raman and FTIR) were effective in identifying pigments like chrome yellow (crocoite mineral), chrome orange (phoenicochroite mineral) and viridian green (hydrated chromium oxide). The spectroscopic analyses were also essential in the laser cleaning restoration because of the detection of pigments (i.e., lead white, vermilion etc.) prone to phase transformations due to photothermal and/or photochemical effects. Our investigation establishes the basis on the application of non-conventional cleaning methods on damaged paintings, such as laser irradiation, in order to remove the damaged layer and/or the superficial accretions, while preserving the hues of the original painting. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of wavelength on the laser removal of lichens colonizing heritage stone
NASA Astrophysics Data System (ADS)
Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; de los Rios, A.; Wierzchos, J.; Cañamares, M. V.; Castillejo, M.
2017-03-01
Laser irradiation of lichen thalli on heritage stones serves for the control of epilithic and endolithic biological colonizations. In this work we investigate rock samples from two quarries traditionally used as source of monumental stone, sandstone from Valonsadero (Soria, Spain) and granite from Alpedrete (Madrid, Spain), in order to find conditions for efficient laser removal of lichen thalli that ensure preservation of the lithic substrate. The samples presented superficial areas colonized by different types of crustose lichens, i.e. Candelariella vitellina, Aspicilia viridescens, Rhizocarpon disporum and Protoparmeliopsis muralis in Valonsadero samples and P. cf. bolcana and A. cf. contorta in Alpedrete samples. A comparative laser cleaning study was carried out on the mentioned samples with ns Q-switched Nd:YAG laser pulses of 1064 nm (fundamental radiation), 355 nm (3rd harmonic) and 266 nm (4th harmonic) and sequences of IR-UV pulses. A number of techniques such as UV-Vis absorption spectroscopy, stereomicroscopy, scanning electron microscopy (SEM) at low vacuum, SEM with backscattered electron imaging (SEM-BSE), electron dispersive spectroscopy (EDS) and FT-Raman spectroscopy were employed to determine the best laser irradiation conditions and to detect possible structural, morphological and chemical changes on the irradiated surfaces. The results show that the laser treatment does not lead to the complete removal of the studied lichen thalli, although clearly induces substantial damage, in the form of loss of the lichen upper cortex and damage to the algal layer. In the medium term these alterations could result in the destruction of the lichen thalli, thus providing a degree of control of the biodeterioration processes of the lithic substrate and reducing the chances of subsequent lichen recolonization.
Microstructured snow targets for high energy quasi-monoenergetic proton acceleration
NASA Astrophysics Data System (ADS)
Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.
2013-05-01
Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.
Evaluating the MMI diagnostic on OMEGA direct-drive shots
NASA Astrophysics Data System (ADS)
Baumgaertel, J. A.; Bradley, P. A.; Cobble, J. A.; Fincke, J.; Hakel, P.; Hsu, S. C.; Kanzleiter, R.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Shah, R.; Tregillis, I.; Obrey, K.; Mancini, R. C.; Joshi, T.; Johns, H.; Mayes, D.
2013-10-01
The Defect-Induced Mix Experiment (DIME) project utilized Multiple Monochromatic Imagers (MMI) on symmetric and polar direct-drive shots conducted on the OMEGA laser. The MMI provides spatially and spectrally resolved data of capsule implosions and resultant dopant emissions. The capsules had radii of 430 μm, with CH shells that included an inner layer doped with 1-2 atom % Ti, and a gas fill of 5 atm deuterium. Simulations of the target implosion by codes HYDRA and RAGE are post-processed with self-emission and MMI synthetic diagnostic tools and quantitatively compared to the MMI data to determine the utility of using it for mix model validation. MMI data shows the location of dopants, which are used to diagnose mix. Sensitivities of synthetic MMI images and yield to laser drive and mix levels are explored. Finally, RAGE results, clean and with mix, are compared with time-dependent streak camera data. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Pulse laser-induced particle separation from polymethyl methacrylate: a mechanistic study
NASA Astrophysics Data System (ADS)
Arif, S.; Armbruster, O.; Kautek, W.
2013-04-01
The separation mechanism of opaque and transparent model micro-particles, graphite and polystyrene copolymer spheres, respectively, from polymethyl methacrylate (PMMA) substrates were investigated employing a ns-pulse laser radiating at 532 nm. The particles transparent in the visible wavelength range could be removed from PMMA efficiently in a very narrow fluence range between 1 and 2 J/cm2 according to a simple 1D thermal expansion model. Above this fluence region, with single pulses, the transparent microspheres caused local ablation of the PMMA substrate in the optical microlens nearfield. This process led to removal of the particles themselves due to the expansion of the ablation plasma. The irregularly shaped graphite particles shaded the underlying substrate from the incoming radiation so that no optical nearfield damage mechanism could be observed. Therefore, a substantial cleaning window between 0.5 and more than 16 J/cm2 was provided. The graphite data suggest an ablation mechanism of the particulates themselves due to a high optical absorption coefficient.
Estimation of repetitive interval of periodic bands in laser electrophotographic printer output
NASA Astrophysics Data System (ADS)
Zhang, Jia; Allebach, Jan P.
2015-01-01
In the printing industry, electrophotography (EP) is a commonly used technology in laser printers and copiers. In the EP printing process, there are many rotating components involved in the six major steps: charging, exposure, development, transfer, fusing, and cleaning. If there is any irregularity in one of the rotating components, repetitive defects, such as isolated bands or spots, will occur on the output of the printer or copier. To troubleshoot these types of repetitive defect issues, the repeating interval of these isolated bands or spots is an important clue to locate the irregular rotating component. In our previous work, we have effectively identified the presence of isolated large pitch bands in the output from EP printers. In this paper, we describe an algorithm to estimate the repetitive interval of periodic bands, when the data is corrupted by the presence of aperiodic bands, missing periodic bands, and noise. We will also illustrate the effectiveness and robustness of our method with example results.
Structural and optical properties of novel surfactant-coated Yb@TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Calandra, P.; Lombardo, D.; Pistone, A.; Turco Liveri, V.; Trusso, S.
2011-11-01
In this paper a novel hybrid approach to synthesise composite nanoparticles is presented. It is based on the laser ablation of a bulk target (Yb) immersed in a reversed micellar solution which contains nanoparticles of a different host material (TiO2 nanoparticles) previously synthesised by chemical method. This approach thus exploits the advantages of the chemical synthesis through reversed micellar solution (size control, nanoparticle stabilisation), and of the laser ablation ("clean" synthesis, no side reactions). Central role is played by the microscopic processes controlling the deposition of the ablated Yb atoms onto the surface of TiO2 nanoparticles which actually behave as nucleation seeds. The structural features of the resulting Yb@TiO2 composite nanoparticles have been studied by Transmission Electron Microscopy, whereas their peculiar optical properties have been explored by UV-Vis spectroscopy and steady-state fluorescence. Results consistently show the formation of Yb and TiO2 glued nanodomains to form nearly spherical and non-interacting nanoparticles with enhanced photophysical properties.
Laser removal of graffiti from Pink Morelia Quarry
NASA Astrophysics Data System (ADS)
Penide, J.; Quintero, F.; Riveiro, A.; Sánchez-Castillo, A.; Comesaña, R.; del Val, J.; Lusquiños, F.; Pou, J.
2013-11-01
Morelia is an important city sited in Mexico. Its historical center reflects most of their culture and history, especially of the colonial period; in fact, it was appointed World Heritage Site by UNESCO. Sadly, there is a serious problem with graffiti in Morelia and its historical center is the worst affected since its delicate charming is definitely damaged. Hitherto, the conventional methods employed to remove graffiti from Pink Morelia Quarry (the most used building stone in Morelia) are quite aggressive to the appearance of the monuments, so actually, they are not a very good solution. In this work, we performed a study on the removal of graffiti from Pink Morelia Quarry by high power diode laser. We carried out an extensive experimental study looking for the optimal processing parameters, and compared a single-pass with a multi-pass method. Indeed, we achieved an effective cleaning without producing serious side effects in the stone. In conclusion, the multi-pass method emitting in continuous wave was revealed as the more effective operating modes to remove the graffiti.
NASA Astrophysics Data System (ADS)
He, An; Liu, Wenwen; Xue, Wei; Yang, Huan; Cao, Yu
2018-03-01
Recently, metallic superhydrophobic surfaces with ultrahigh adhesion have got plentiful attention on account of their significance in scientific researches and industrial applications like droplet transport, drug delivery and novel microfluidic devices. However, the long lead time and transience hindered its in-depth development and industrial application. In this work, nanosecond laser ablation was carried out to construct grid of micro-grooves on copper surface, whereafter, by applying fast ethanol assisted low-temperature annealing, we obtained surface with superhydrophobicity and ultrahigh adhesion within hours. And the ultrahigh adhesion force was found tunable by varying the groove spacing. Using ultrasonic cleaning as the simulation of natural wear and tear in service, the renewability of superhydrophobicity was also investigated, and the result shows that the contact angle can rehabilitate promptly by the processing of ethanol assisted low-temperature annealing, which gives a promising fast and cheap circuitous strategy to realize the long wish durable metallic superhydrophobic surfaces in practical applications.
Schwaighofer, Andreas; Kuligowski, Julia; Quintás, Guillermo; Mayer, Helmut K; Lendl, Bernhard
2018-06-30
Analysis of proteins in bovine milk is usually tackled by time-consuming analytical approaches involving wet-chemical, multi-step sample clean-up procedures. The use of external cavity-quantum cascade laser (EC-QCL) based IR spectroscopy was evaluated as an alternative screening tool for direct and simultaneous quantification of individual proteins (i.e. casein and β-lactoglobulin) and total protein content in commercial bovine milk samples. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. A sample set comprising different milk types (pasteurized; differently processed extended shelf life, ESL; ultra-high temperature, UHT) was analysed and results were compared to reference methods. Concentration values of the QCL-IR spectroscopy approach obtained within several minutes are in good agreement with reference methods involving multiple sample preparation steps. The potential application as a fast screening method for estimating the heat load applied to liquid milk is demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Progress Toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike Laser
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Dwarkadas, V. V.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Gjeci, N.; Campbell, D. A.; Marion, D. C.
2007-11-01
In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been observed in the laboratory, no experiment to our knowledge has cleanly diagnosed the KH instability. While the RT instability results from the acceleration of a more dense fluid into a less dense fluid and the RM instability is due to shock deposited vorticity onto an interface, the KH instability is driven by a lifting force generated by velocity shear at a perturbed fluid interface. Understanding the KH instability mechanism in HED plasmas will provide essential insight into detailed RT-spike development, mass stripping, many astrophysical processes, as well as laying the groundwork for future transition to turbulence experiments. We present 2D simulations and data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.
The Care and Maintenance of Videodiscs and Players.
ERIC Educational Resources Information Center
Paris, Judith; Boss, Richard W.
1982-01-01
Explores the effects of library use on both capacitance and laser-optical videodisc systems and outlines proper cleaning, servicing, and storage techniques. The article is excerpted from "Conservation in the Library," a book edited by Susan Swartzberg. (Author/JJD)
Enhancement of surface damage resistance by selective chemical removal of CeO2
NASA Astrophysics Data System (ADS)
Kamimura, Tomosumi; Motokoshi, Shinji; Sakamoto, Takayasu; Jitsuno, Takahisa; Shiba, Haruya; Akamatsu, Shigenori; Horibe, Hideo; Okamoto, Takayuki; Yoshida, Kunio
2005-02-01
The laser-induced damage threshold of polished fused silica surfaces is much lower than the damage threshod of its bulk. It is well known that contaminations of polished surface are one of the causes of low threshold of laser-induced surface damage. Particularly, polishing contamination such as cerium dioxide (CeO2) compound used in optical polishing process is embedded inside the surface layer, and cannot be removed by conventional cleaning. For the enhancement of surface damage resistance, various surface treatments have been applied to the removal of embedded polishing compound. In this paper, we propose a new method using slective chemical removal with high-temperature sulfuric acid (H2SO4). Sulfuric acid could dissolve only CeO2 from the fused silica surface. The surface roughness of fused silica treated H2SO4 was kept through the treatment process. At the wavelength of 355 nm, the surface damage threshold was drastically improved to the nearly same as bulk quality. However, the effect of our treatment was not observed at the wavelength of 1064 nm. The comparison with our previous results obtained from other surface treatments will be discussed.
Wilhelm, Nadja; Perle, Nadja; Simmoteit, Robert; Schlensak, Christian; Wendel, Hans P.; Avci-Adali, Meltem
2014-01-01
Surgical instruments are often strongly contaminated with patients' blood and tissues, possibly containing pathogens. The reuse of contaminated instruments without adequate cleaning and sterilization can cause postoperative inflammation and the transmission of infectious diseases from one patient to another. Thus, based on the stringent sterility requirements, the development of highly efficient, validated cleaning processes is necessary. Here, we use for the first time synthetic single-stranded DNA (ssDNA_ODN), which does not appear in nature, as a test soiling to evaluate the cleaning efficiency of routine washing processes. Stainless steel test objects were coated with a certain amount of ssDNA_ODN. After cleaning, the amount of residual ssDNA_ODN on the test objects was determined using quantitative real-time PCR. The established method is highly specific and sensitive, with a detection limit of 20 fg, and enables the determination of the cleaning efficiency of medical cleaning processes under different conditions to obtain optimal settings for the effective cleaning and sterilization of instruments. The use of this highly sensitive method for the validation of cleaning processes can prevent, to a significant extent, the insufficient cleaning of surgical instruments and thus the transmission of pathogens to patients. PMID:24672793
Mechanisms of single bubble cleaning.
Reuter, Fabian; Mettin, Robert
2016-03-01
The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ. Copyright © 2015 Elsevier B.V. All rights reserved.
Cleaning process for EUV optical substrates
Weber, Frank J.; Spiller, Eberhard A.
1999-01-01
A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... air conditioning wastes are not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but... from cleaning [with or without chemical cleaning compounds] any metal process equipment including, but...
Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1995-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.
What's new in paediatric dentistry?
NASA Astrophysics Data System (ADS)
Vitale, M. C.
2016-03-01
Since the early 80's, the use of laser has been introduced in the daily dental practice and the technological development has also provided over time to optimize its use. Various types of lasers with different wavelengths have been developed for use in a handy, easy and ergonomic manner. In daily paediatric dentistry, laser could be a very useful medical device which can completely replace the traditional high hand-piece and bur to realize a "micro-invasive" dentistry and a "clean" surgery, without bleeding and sutures. According to the international literature and in the light of recent researches, this work could give an overview on assisted laser therapy in paediatric dentistry, highlighting advantages and disadvantages of this new technology and pointing out the high compliance of the young patient.
NASA Technical Reports Server (NTRS)
Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.
1998-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.
NASA Technical Reports Server (NTRS)
Caruso, Salvadore V.
1999-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.
Preliminary Results of Cleaning Process for Lubricant Contamination
NASA Astrophysics Data System (ADS)
Eisenmann, D.; Brasche, L.; Lopez, R.
2006-03-01
Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.
Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudduth, Christie; Vitali, Jason; Keefer, Mark
The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less
Hollow core waveguide as mid-infrared laser modal beam filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patimisco, P.; Giglio, M.; Spagnolo, V.
2015-09-21
A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less
NASA Technical Reports Server (NTRS)
Hartfield, Roy
1996-01-01
Raman scattering is a powerful technique for quantitatively probing high temperature and high speed flows. However, this technique has typically been limited to clean hydrogen flames because of the broadband fluorescence interference which occurs in hydrocarbon flames. Fluorescence can also interfere with the Raman signal in clean hydrogen flames when broadband UV lasers are used as the scattering source. A solution to this problem has been demonstrated. The solution to the fluorescence interference lies in the fact that the vibrational Q-branch Raman signal is highly polarized for 90 deg. signal collection and the fluorescence background is essentially unpolarized. Two basic schemes are available for separating the Raman from the background. One scheme involves using a polarized laser and collecting a signal with both horizontal and vertical laser polarizations separately. The signal with the vertical polarization will contain both the Raman and the fluorescence while the signal with the horizontal polarization will contain only the fluorescence. The second scheme involves polarization discrimination on the collection side of the optical setup. For vertical laser polarization, the scattered Q-branch Raman signal will be vertically polarized; hence the two polarizations can be collected separately and the difference between the two is the Raman signal. This approach has been used for the work found herein and has the advantage of allowing the data to be collected from the same laser shot(s). This makes it possible to collect quantitative Raman data with single shot resolution in conditions where interference cannot otherwise be eliminated.
Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak
NASA Astrophysics Data System (ADS)
Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent
2018-02-01
First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.
Schuettler, M; Stiess, S; King, B V; Suaning, G J
2005-03-01
A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.
Contamination control methods for gases used in the microlithography process
NASA Astrophysics Data System (ADS)
Rabellino, Larry; Applegarth, Chuck; Vergani, Giorgio
2002-07-01
Sensitivity to contamination continues to increase as the technology shrinks from 365 nm I-line lamp illumination to 13.4 nm Extreme Ultraviolet laser activated plasma. Gas borne impurities can be readily distributed within the system, remaining both suspended in the gas and attached to critical surfaces. Effects from a variety of contamination, some well characterized and others not, remain a continuing obstacle for stepper manufacturers and users. Impurities like oxygen, moisture and hydrocarbons in parts per billion levels can absorb light, reducing the light intensity and subsequently reducing the consistence of the process. Moisture, sulfur compounds, ammonia, acid compounds and organic compounds such as hydrocarbons can deposit on lens or mirror surfaces affecting image quality. Regular lens replacement or removal for cleaning is a costly option and in-situ cleaning processes must be carefully managed to avoid recontamination of the system. The contamination can come from outside the controlled environment (local gas supply, piping system, & leaks), or from the materials moving into the controlled environment; or contamination may be generated inside the controlled environment as a result of the process itself. The release of amines can occur as a result of the degassing of the photo-resists. For the manufacturer and user of stepper equipment, the challenge is not in predictable contamination, but the variable or unpredictable contamination in the process. One type of unpredictable contamination may be variation in the environmental conditions when producing the nitrogen gas and Clean Dry Air (CDA). Variation in the CDA, nitrogen and xenon may range from parts per billion to parts per million. The risk due to uncontrolled or unmonitored variation in gas quality can be directly related to product defects. Global location can significantly affect the gas quality, due to the ambient air quality (for nitrogen and CDA), production methods, gas handling equipment maintenance, transportation and storage processes. Fortunately, technology has been developed which can remove the killer impurities from these processes. This paper will review processes, and purification media that can be used in the photolithography processes, and detail the advances in purification technologies for removal of hydrocarbons, oxygen (where applicable), moisture, carbon dioxide, carbon monoxide, hydrogen, nitrogen (where applicable), sulfur compounds, ammonia and acid compounds from process gases such as nitrogen, CDA, argon, krypton and xenon.
Cleaning Processes across NASA Centers
NASA Technical Reports Server (NTRS)
Hammond, John M.
2010-01-01
All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.
NMOS contact resistance reduction with selenium implant into NiPt silicide
NASA Astrophysics Data System (ADS)
Rao, K. V.; Khaja, F. A.; Ni, C. N.; Muthukrishnan, S.; Darlark, A.; Lei, J.; Peidous, I.; Brand, A.; Henry, T.; Variam, N.; Erokhin, Y.
2012-11-01
A 25% reduction in NMOS contact resistance (Rc) was achieved by Selenium implantation into NiPt silicide film in VIISta Trident high-current single-wafer implanter. The Trident implanter is designed for shallow high-dose implants with high beam currents to maintain high throughput (for low CoO), with improved micro-uniformity and no energy contamination. The integration of Se implant was realized using a test chip dedicated to investigating silicide/junction related electrical properties and testable after silicidation. The silicide module processes were optimized, including the pre-clean (prior to RF PVD NiPt dep) and pre- and post-implant anneals. A 270°C soak anneal was used for RTP1, whereas a msec laser anneal was employed for RTP2 with sufficient process window (800-850°C), while maintaining excellent junction characteristics without Rs degradation.
NASA Astrophysics Data System (ADS)
De Moor, Roeland J. G.; Meire, Maarten A.
2016-03-01
Among present-day marketed systems ultrasonic activation appears to be the best way to activate and potentiate endodontic irrigants. An alternative for ultrasonic activation of irrigants is laser activated irrigation (LAI) or photoninitiated acoustic streaming. Based on present-day research it appears that LAI (especially with Erbium lasers) can be more efficient for debris removal out of root canals and interaction with the endodontic biofilms thanks to the induction of specific cavitation phenomena and acoustic streaming. Other wavelengths are now explored to be used for LAI. Another way to interact with biofilms is to rely on laser-induced photoporation in combination with gold nanoparticles ( AuNPs). The latter is an alternative physical method for delivering macromolecules in cells. Nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapour nanobubbles that can emerge around the AuNPs.
Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification
NASA Technical Reports Server (NTRS)
Melton, D. M.
1998-01-01
Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.
High-density plasma deposition manufacturing productivity improvement
NASA Astrophysics Data System (ADS)
Olmer, Leonard J.; Hudson, Chris P.
1999-09-01
High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.
Clean-up and disposal process of polluted sediments from urban rivers.
He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C
2001-10-01
In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
Evaluation of healing of infected cutaneous wounds treated with different energy densities
NASA Astrophysics Data System (ADS)
Santos, Nicole R. S.; Cangussú, Maria C. T.; N. dos Santos, Jean; Pinheiro, Antonio L. B.
2011-03-01
We aimed assess the effects of different energy densities of the association of red/IR laser light on the healing of cutaneous wounds infected Staphylococcus aureus. Background: Wound infection is the most common complication on healing wounds and cause both vascular and cellular responses on the tissue. Several therapeutics is used for improving wound healing including the use of different light sources, such as the Laser. Some energy densities present positive photobiological effects on the healing process. Material and Methods: 24 young adult male Wistar rats, under general anesthesia, had their dorsum shaven, cleaned and a 1 x 1cm cutaneous wound created with a scalpel and left without no suturing or dressings. The wounds were infected with Staphylococcus aureus and were randomly divided in 8 subgroups of 3 animals in each: Control, Group 10J/cm2, Group 20J/cm2, and Group 30J/cm2, 7 and 14 days each group. Laser phototherapy was carried out with a diode (λ680nm/790nm, P= 30mW/40mW, CW, Laser, Ø = 3mm, PD=424mW/cm2 and 566mW/cm2, t=11.8/ 8.8 sec, E=0.35J) and started immediately after surgery and repeated at every other day during 7 days. Laser light was applied on 4 points around wounded area. The animals were killed at either 8th or 15th day after contamination. Specimens were taken, routinely cut and processed to wax, stained and underwent histological analysis. The results were statistically analyzed. Results: Both 20 and 30J/cm2 caused intense collagen deposition at the end of the experimental time. But, when 20 J/cm2 was used the fibers were also well organized. Conclusion: Our results indicate that irradiated subjects showed improved wound healing being the 20 J/cm2 the energy the caused better histological response.
Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1984-12-01
A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.
Retrospective Analysis Of CO2 Laser Myringotomy
NASA Astrophysics Data System (ADS)
Lipman, Sidney P.; Guelcher, Robert T.
1988-06-01
A retrospective review of the author's series of 91 carbon dioxide (CO2) laser myringotomy cases performed between 1983 and 1986 is presented. Patients with chronic otitis media with effusion (COME) were selected on the basis of possible benefit from shorter ventilation time than tympanostomy tube insertion. The proceedings were performed on an outpatient basis with topical iontophoretic anesthesia, which offers significant cost savings and a lack of possible complications. The CO2 laser gives clean precise 0.8mm perforations which remain open for 2-4 weeks, this shorter ventilation time minimizing the period of water precautions and other side effects. The laser perforations heal well. With a success rate of 52 % reported, which could be increased with careful patient selection, we feel that the advantages of carbon dioxide laser myringotomy over myringotomy plus intubation outweight the risk of recurrent otitis media with effusion formation in those patients to whom this procedure is applicable.
NASA Astrophysics Data System (ADS)
Goodis, Harold E.; White, Joel M.; Neev, Joseph
1993-07-01
The use of laser energy to clean, shape, and sterilize a root canal system space involves the generation of heat due to the thermal effect of the laser on the organic tissue contents and dentin walls of that space. If heat generation is above physiologic levels, irreparable damage may occur to the periodontal ligament and surrounding bone. This study measured temperature rise on the outer root surfaces of extracted teeth during intracanal laser exposure. Thirty single rooted, recently extracted teeth free of caries and restorations were accessed pulps extirpated and divided into three groups. Each root canal system was treated with a 1.06 micrometers pulsed Nd:YAG laser with quartz contact probes. Temperatures were recorded for all surfaces (mesial distal, buccal, lingual, apical) with infrared thermography utilizing a detector response time of 1 (mu) sec, sensitivity range (infrared) of 8 to 12 micrometers and a scan rate of 30 frames/sec.
High-average-power 2-kHz laser for generation of ultrashort x-ray pulses.
Jiang, Yan; Lee, Taewoo; Li, Wei; Ketwaroo, Gyanprakash; Rose-Petruck, Christoph G
2002-06-01
We describe a Ti:sapphire-based laser-x-ray system specifically designed for generation of ultrafast x-ray pulses in the tenths-of-nanometers spectral range at a 2-kHz repetition rate. To obtain high-contrast laser pulses we divide the laser system into a section for generation of microjoule, high-contrast pulses with pulse cleaning and a subsequent section for chirped-pulse amplification and pulse compression. This laser section operates in conjunction with an x-ray-generation section based on a moving copper wire in a He atmosphere. The high reliability of the entire system permits maintenance-free production of x-ray pulses over tens of hours. Average x-ray fluxes of 10(13) photons/(s 4pi sr 1 keV) at 3 keV and 10(9) photons/(s 4pi sr) above 5 keV of photon energy are produced.
Towards Clean Diesel Engines. Second Symposium. Book of Abstracts.
1998-04-06
and Mie-scattering imaging and EXCIPLEX technique, based on a fluorescence system. This last technique, even if it is able to distinguish...set of experimental data, ob- tained by a collaborative effort with researchers at the RWTH Aachen, is presented. Laser-induced exciplex fluorescence
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...
Heudorf, U; Gasteyer, S; Samoiski, Y; Voigt, K
2012-08-01
Due to the Infectious Disease Prevention Act, public health services in Germany are obliged to check the infection prevention in hospitals and other medical facilities as well as in nursing homes. In Frankfurt/Main, Germany, standardized control visits have been performed for many years. In 2011 focus was laid on cleaning and disinfection of surfaces. All 41 nursing homes were checked according to a standardized checklist covering quality of structure (i.e. staffing, hygiene concept), quality of process (observation of the cleaning processes in the homes) and quality of output, which was monitored by checking the cleaning of fluorescent marks which had been applied some days before and should have been removed via cleaning in the following days before the final check. In more than two thirds of the homes, cleaning personnel were salaried, in one third external personnel were hired. Of the homes 85% provided service clothing and all of them offered protective clothing. All homes had established hygiene and cleaning concepts, however, in 15% of the homes concepts for the handling of Norovirus and in 30% concepts for the handling of Clostridium difficile were missing. Regarding process quality only half of the processes observed, i.e. cleaning of hand contact surfaces, such as handrails, washing areas and bins, were correct. Only 44% of the cleaning controls were correct with enormous differences between the homes (0-100%). The correlation between quality of process and quality of output was significant. There was good quality of structure in the homes but regarding quality of process and outcome there was great need for improvement. This was especially due to faults in communication and coordination between cleaning personnel and nursing personnel. Quality outcome was neither associated with the number of the places for residents nor with staffing. Thus, not only quality of structure but also quality of process and outcome should be checked by the public health services.
Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing
NASA Technical Reports Server (NTRS)
Rothgeb, Matthew J.; McLaughlin, Russell L.
2008-01-01
Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation. Due to the fact that the technology lends itself to a bide variety of processes, several site demonstrations were organized in order to allow for greater evaluation of the laser systems across NASA. The project consisted of an introductory demonstration and a more in-depth evaluation at Wright-Patterson Air Force Base. Additionally, field demonstrations occurred at Glenn Research Center and Kennedy Space Center. During these demonstrations several NASA specific applications were evaluated, including the removal of coatings within Orbiter tile cavities and Teflon from Space Shuttle Main Engine gaskets, removal of heavy grease from Solid Rocket Booster components and the removal of coatings on weld lines for Shuttle and general ground service equipment for non destructive evaluation (NDE). In addition, several general industry applications such as corrosion removal, structural coating removal, weld-line preparation and surface cleaning were evaluated. This included removal of coatings and corrosion from surfaces containing lead-based coatings and applications similar to launch-structure maintenance and Crawler maintenance. During the project lifecycle, an attempt was made to answer process specific concerns and questions as they arose. Some of these initially unexpected questions concerned the effects lasers might have on substrates used on flight equipment including strength, surface re-melting, substrate temperature and corrosion resistance effects. Additionally a concern was PPE required for operating such a system including eye, breathing and hearing protection. Most of these questions although not initially planned, were fully explored as a part of this project. Generally the results from tesng were very positive. Corrosion was effectively removed from steel, but less successfully from aluminum alloys. Coatings were able to be removed, with varying results, generally dark, matte and thin coatings were easier to remove. Steel and aluminum panels were able to be cleaned for welding, with no known deleterious effects and weld-lines were able to have coatings removed in critical areas for NDE while saving time as compared to other methods.
De-Trending Techniques: Methods for Cleaning Questionable Shock Data
NASA Technical Reports Server (NTRS)
Grillo, Vincent J.
2010-01-01
Not all zero shifted acceleration data can De-trended using this technique. DC shifts, improper AC coupling, Circuit noise/EMI/EMR, Equivalent RC circuit gain response/Circuit saturation(Slew Rate Limited), fixture grounding and wiring losses can all contribute to bad shock data being recorded. Some data that is zero-shifted or exhibit large instantaneous velocity shifts is inherently bad and a retest is warranted. Clean Acceleration-Time history data can be bad upon examining the Velocity & Displacement profiles. Laser Vibrometers provide a high level of accuracy for pyrotechnic shock testing. Engineering judgment and experience will determine the validity of Shock data.
Cleaning of parts for new manufacturing and parts rebuilding
NASA Astrophysics Data System (ADS)
Doherty, Jeff
1994-06-01
Parts cleaning is the largest single expense, and the most time consuming activity, in rebuilding and new manufacturing. On average, 25% to 40% of the total labor and overhead burden is spent on cleaning. EPA and OSHA pressures add to the burden by making some methods and chemicals obsolete. Some of the processes and chemicals in current use will be curtailed and or outlawed in the future. How can a shops and industries make long term decisions or capital investments in cleaning and process improvements when the government keeps changing its rules? At the MART Corporation in Saint Louis, Missouri, we manufacture a line of cabinet-style batch cleaning machines known as Power Washers. Twenty years ago MART invented and patented the Power Washer process, a cleaning method that recycles wash solution and blasts contaminates as they are washed off the more heavily contaminated parts. Since the initial invention MART has continued to R&D the washing process and develop ancillary systems that comply with EPA and OSHA regulations. For applications involving new industrial parts or items requiring specification cleaned surfaces. MART provides filtration and solution conditioning systems, part drying operations, and triple rinsing. Units are available in stainless steel or higher alloys. We are not alone in the washer manufacturing business. You have many choices of cleaning solutions (no pun intended) which will perform in your operations and yield good results. As a manufacturer, we are interested in your success with our equipment. We have all heard the horror stories of companies having selected inappropriate cleaning systems and or processes which then brought the company to its knees, production wise. Assembly, appearance, warranty, and performance shortcomings of finished products can often be directly related to the cleaning process and its shortcomings.
Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.
2010-01-01
Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.
Masuda, Yoshiko Murakami; Hossain, Mozammal; Wang, Xiaogu; Matsuoka, Emi; Okano, Tomohiro; Matsumoto, Koukichi
2006-09-01
To investigate the efficacy of Er,Cr:YSGG (erbium,chromium:yttrium scandium gallium garnet) laser irradiation in root canal preparation and to evaluate its effect on eruption of rat incisors after disturbance of the enamel organ in the pulp, 20 canals of lower left incisor teeth were prepared by K-files followed by Er,Cr:YSGG laser irradiation, and 20 canals of right incisors were subjected to K-files only (control). At 1 week after irradiation, both sides of incisors erupted at the same level from the gingival margin. Histological findings showed that laser irradiation produced a slightly larger damage in the pulp than that of control. Scanning electron microscope observation revealed that laser-treated surface revealed a rough, irregular, and very clean surface; there was almost no evidence of debris or smear layer, and dentinal tubules were opened. Adequate power of Er,Cr:YSGG laser irradiation is effective in root canal preparation without disturbance of the eruption.
Evolution of the role of phototherapy during endodontic decontamination
Muhammad, Omid Heidar; Rocca, Jean-Paul; Fornaini, Carlo
2015-01-01
A microbe free root canal space before obturation leads to higher success rate and conventional chemo-mechanical debridement might not achieve this goal completely. First trials of laser in dentistry started from surgical intervention on caries and bones of oral cavity and extended to prepare cavities and even shaping root canals. Afterward lasers were implicated soon into direct debridement of root canal space. Anyhow failure of laser to remove debris totally from root canal space is demonstrated recently, additionally it might lead to damages to surrounding tissues or inorganic material of root canal if be used without precaution. Nowadays the theory of light assisted protocols became another start point for laser in endodontics. Laser has been introduced as an adjuvant to conventional debridement of root canals. We used Medline search engine to collect scientific publications to edit this review article in purpose of revealing the evolution of laser position from an ultimate cleaning methodology to an adjuvant to conventional root canal disinfection protocols. PMID:26877593
The power of the bubble: comparing ultrasonic and laser activated irrigation
NASA Astrophysics Data System (ADS)
De Moor, Roeland J. G.; Meire, Maarten A.; Verdaasdonk, Rudolf M.
2014-01-01
The major problem of irrigation is the fluid motion within the confined geometry of the root canal : efficient dispersion of the liquid is difficult, conventional irrigation is limited due to the absence of turbulence over much of the canal volume, vapour lock may limit apical cleaning and disinfection, there is also a stagnation plane beyond the needle tip. The best way to improve irrigant penetration and biofilm removal is achieved by means of the agitation of the fluid. Today ultrasonic activation appears to be the best way to activate and potentiate irrigants among the present-day used means and marketed systems. Another way to activate irrigation solutions is the use of lasers: laser activated irrigation or photon-initiated acoustic streaming have been investigated. Based on present-day research it appears that the efficacy of laser activation (especially with Erbium lasers) can be more efficient thanks to the induction of specific cavitation phenomena and acoustic streaming. Other wavelengths are now explored to be used for laser activated irrigation.
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...
Low-strain laser-based solder joining of mounted lenses
NASA Astrophysics Data System (ADS)
Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Burkhardt, Diana; Schmidt, Erik; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2015-09-01
A novel laser-based soldering technique - Solderjet Bumping - using liquid solder droplets in a flux-free process with only localized heating is presented. We demonstrate an all inorganic, adhesive free bonding of optical components and support structures suitable for optical assemblies and instruments under harsh environmental conditions. Low strain bonding suitable for a following high-precision adjustment turning process is presented, addressing components and subsystems for objectives for high power and short wavelengths. The discussed case study shows large aperture transmissive optics (diameter approx. 74 mm and 50 mm) made of fused silica and LAK9G15, a radiation resistant glass, bonded to thermally matched metallic mounts. The process chain of Solderjet Bumping - cleaning, solderable metallization, handling, bonding and inspection - is discussed. This multi-material approach requires numerical modelling for dimensioning according to thermal and mechanical loads. The findings of numerical modelling, process parametrization and environmental testing (thermal and vibrational loads) are presented. Stress and strain introduced into optical components as well as deformation of optical surfaces can significantly deteriorate the wave front of passing light and therefore reduce system performance significantly. The optical performance with respect to stress/strain and surface deformation during bonding and environmental testing were evaluated using noncontact and nondestructive optical techniques: polarimetry and interferometry, respectively. Stress induced surface deformation of less than 100 nm and changes in optical path difference below 5 nm were achieved. Bond strengths of about 55 MPa are reported using tin-silver-copper soft solder alloy.
NASA Astrophysics Data System (ADS)
Han, Jinghua; Cui, Xudong; Wang, Sha; Feng, Guoying; Deng, Guoliang; Hu, Ruifeng
2017-10-01
Paint removal by laser ablation is favoured among cleaning techniques due to its high efficiency. How to predict the optimal laser parameters without producing damage to substrate still remains challenging for accurate paint stripping. On the basis of ablation morphologies and combining experiments with numerical modelling, the underlying mechanisms and the optimal conditions for paint removal by laser ablation are thoroughly investigated. Our studies suggest that laser paint removal is dominated by the laser vaporization effect, thermal stress effect and laser plasma effect, in which thermal stress effect is the most favoured while laser plasma effect should be avoided during removal operations. Based on the thermodynamic equations, we numerically evaluated the spatial distribution of the temperature as well as thermal stress in the paint and substrate under the irradiation of laser pulse at 1064 nm. The obtained curves of the paint thickness vs. threshold fluences can provide the reference standard of laser parameter selection in view of the paint layer with different thickness. A multi-pulse model is proposed and validated under a constant laser fluence to perfectly remove a thicker paint layer. The investigations and the methods proposed here might give hints to the efficient operations on the paint removal and lowering the risk of substrate damages.
Cleaning conveyor belts in the chicken-cutting area of a poultry processing plant with 45°c water.
Soares, V M; Pereira, J G; Zanette, C M; Nero, L A; Pinto, J P A N; Barcellos, V C; Bersot, L S
2014-03-01
Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45°C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45°C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.
Personal computer (PC) based image processing applied to fluid mechanics research
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, B.E.
1995-04-01
A cross-functional team of process, product, quality, material, and design lab engineers was assembled to develop an environmentally friendly cleaning process for leadless chip carrier assemblies (LCCAs). Using flush and filter testing, Auger surface analysis, GC-Mass spectrophotometry, production yield results, and electrical testing results over an extended testing period, the team developed an aqueous cleaning process for LCCAs. The aqueous process replaced the Freon vapor degreasing/ultrasonic rinse process.
NASA Astrophysics Data System (ADS)
Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.
2018-03-01
Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.
Equipment and Tracking Test Results for the NRL Ship-to- Ship DF Laser Transmission Experiment.
1982-04-05
combined with the 2" collimated HeNe laser beam at dichoric beam splitter TBSI. TF2, TF1 , and TPFI direct the beam onto the f/6 parabola Pl. From...following work was done on the pumping system: 1. Install new valves , springs, and seats. 2. Install a new drive shaft, with new bearings and seals. 3...Install a new needle valve in the oil regulator. 4. Steam clean the inside pump surface. The new components were tested first with F2 fuel, then with NF 3
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N
2016-09-01
A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
.... 361.8 provides the regulations for the cleaning of imported seed and processing of certain Canadian... with Canada that allows U.S. companies that import seed for cleaning or processing to enter into... Canadian seed and screenings, seed cleaning/processing facility personnel, and Canadian Food Inspection...
78 FR 53479 - Notice of Lodging of Consent Decree Under the Clean Air Act (“CAA”)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... laser detection system around the perimeter of the Hydrofluoric Acid (``HF'') Alkylation Unit that will provide earlier detection of much lower levels of HF. The publication of this notice opens a period for... detection and repair and benzene- [[Page 53480
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...
Occupational deaths and injuries by the types of street cleaning process.
Jeong, Byung Yong
2017-03-01
This study aims to obtain an overall picture of occupational injuries by the types of street cleaning process. Three hundred and fifty-four injured persons were analyzed in terms of the company size and details of the injured persons and accidents. Results show that 'roadway cleaning' was the most common type of cleaning process for injuries, followed by 'sidewalk cleaning,' 'going/returning to work by bike' and 'lifting/carrying.' The findings also show that most accidents which occur when 'going/returning to work by bike' are in the form of traffic accidents, while in other processes they happen most often in the form of slips. Most of the accidents related to 'lifting/carrying' affected workers in their 50s or younger while other processes had a large portion of injured persons in their 50s or older. The findings of this study can be used as baseline data for preventative policies.
Ultrasonic cleaning: Fundamental theory and application
NASA Technical Reports Server (NTRS)
Fuchs, F. John
1995-01-01
This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.
Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping
2017-10-15
Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, H; Johani, K; Gosbell, I B; Jacombs, A S W; Almatroudi, A; Whiteley, G S; Deva, A K; Jensen, S; Vickery, K
2015-09-01
Hospital-associated infections cause considerable morbidity and mortality, and are expensive to treat. Organisms causing these infections can be sourced from the inanimate environment around a patient. Could the difficulty in eradicating these organisms from the environment be because they reside in dry surface biofilms? The intensive care unit (ICU) of a tertiary referral hospital was decommissioned and the opportunity to destructively sample clinical surfaces was taken in order to investigate whether multidrug-resistant organisms (MDROs) had survived the decommissioning process and whether they were present in biofilms. The ICU had two 'terminal cleans' with 500 ppm free chlorine solution; items from bedding, surrounds, and furnishings were then sampled with cutting implements. Sections were sonicated in tryptone soya broth and inoculated on to chromogenic plates to demonstrate MDROs, which were confirmed with the Vitek2 system. Genomic DNA was extracted directly from ICU samples, and subjected to polymerase chain reaction (PCR) for femA to detect Staphylococcus aureus and the microbiome by bacterial tag-encoded FLX amplicon pyrosequencing. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were performed on environmental samples. Multidrug-resistant bacteria were cultured from 52% (23/44) of samples cultured. S. aureus PCR was positive in 50%. Biofilm was demonstrated in 93% (41/44) of samples by CLSM and/or SEM. Pyrosequencing demonstrated that the biofilms were polymicrobial and contained species that had multidrug-resistant strains. Dry surface biofilms containing MDROs are found on ICU surfaces despite terminal cleaning with chlorine solution. How these arise and how they might be removed requires further study. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
The successful of finite element to invent particle cleaning system by air jet in hard disk drive
NASA Astrophysics Data System (ADS)
Jai-Ngam, Nualpun; Tangchaichit, Kaitfa
2018-02-01
Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.
ArF halftone PSM cleaning process optimization for next-generation lithography
NASA Astrophysics Data System (ADS)
Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok
2000-07-01
ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.
Dey, Tania; Naughton, Daragh
2017-05-01
Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.
Surface modification of tooth root canal after application of an X-ray opaque waveguide
NASA Astrophysics Data System (ADS)
Dostálová, T.; Jelínková, H.; Šulc, J.; Němec, M.; Koranda, P.; Bartoňová, M.; Radina, P.; Miyagi, M.; Shi, Y.-W.; Matsuura, Y.
The interest in endodontic use of dental laser systems has been increasing. With the development of thin and flexible delivery systems for various wavelengths, laser applications in endodontics may become even more desirable. The aim of this study is to check the X-ray opacity of a hollow waveguide and to observe the results after laser root canal treatment. The root canal systems of 10 molars were treated endodontically by laser. For the laser radiation source, an Er:YAG laser system generating a wavelength of 2940 nm and an Alexandrite laser system generating a wavelength of 375 nm were used. The hollow waveguide used was checked under X-ray . A root canal surface treated by laser radiation was analyzed by a scanning electron microscope (SEM). The special hollow glass waveguide used was visible in the root canal system under X-ray imaging. Surface modification of the root canal after laser treatment was not found. After conventional treatment the root canal was enlarged. The surface was covered with a smear layer. After application of both laser systems, the smear layer was removed. The resulting canal surface was found to be clean and smooth. Under SEM observation open dentinal tubules were visible. No cracks were present, nor were surface modifications observed.
High power diode lasers for solid-state laser pumps
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Mcdonnell, Patrick N.
1994-01-01
The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.
NASA Astrophysics Data System (ADS)
Varanasi, Rao; Mesawich, Michael; Connor, Patrick; Johnson, Lawrence
2017-03-01
Two versions of a specific 2nm rated filter containing filtration medium and all other components produced from high density polyethylene (HDPE), one subjected to standard cleaning, the other to specialized ultra-cleaning, were evaluated in terms of their cleanliness characteristics, and also defectivity of wafers processed with photoresist filtered through each. With respect to inherent cleanliness, the ultraclean version exhibited a 70% reduction in total metal extractables and 90% reduction in organics extractables compared to the standard clean version. In terms of particulate cleanliness, the ultraclean version achieved stability of effluent particles 30nm and larger in about half the time required by the standard clean version, also exhibiting effluent levels at stability almost 90% lower. In evaluating defectivity of blanket wafers processed with photoresist filtered through either version, initial defect density while using the ultraclean version was about half that observed when the standard clean version was in service, with defectivity also falling more rapidly during subsequent usage of the ultraclean version compared to the standard clean version. Similar behavior was observed for patterned wafers, where the enhanced defect reduction was primarily of bridging defects. The filter evaluation and actual process-oriented results demonstrate the extreme value in using filtration designed possessing the optimal intrinsic characteristics, but with further improvements possible through enhanced cleaning processes
Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M.D.
2005-06-01
Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for predictionmore » of particle generation such that an effective operational strategy can be devised to facilitate worker protection.« less
XeCl excimer laser with new prism resonator configurations and its performance characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.
2015-07-15
New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configurationmore » with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.« less
XeCl excimer laser with new prism resonator configurations and its performance characteristics.
Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra
2015-07-01
New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.
Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.
Ahmad, I; Tansel, B; Mitrani, J D
2001-12-01
Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.
Effectiveness of granite cleaning procedures in cultural heritage: A review.
Pozo-Antonio, J S; Rivas, T; López, A J; Fiorucci, M P; Ramil, A
2016-11-15
Most of the Cultural Heritage built in NW Iberian Peninsula is made of granite which exposition to the environment leads to the formation of deposits and coatings, mainly two types: biological colonization and sulphated black crusts. Nowadays, another form of alteration derives from graffiti paints when these are applied as an act of vandalism. A deep revision needs to be addressed considering the severity of these deterioration forms on granite and the different cleaning effectiveness achieved by cleaning procedures used to remove them. The scientific literature about these topics on granite is scarcer than on sedimentary carbonate stones and marbles, but the importance of the granite in NW Iberian Peninsula Cultural Heritage claims this review centred on biological colonization, sulphated black crusts and graffiti on granite and their effectiveness of the common cleaning procedures. Furthermore, this paper carried out a review of the knowledge about those three alteration forms on granite, as well as bringing together all the major studies in the field of the granite cleaning with traditional procedures (chemical and mechanical) and with the recent developed technique based on the laser ablation. Findings concerning the effectiveness evaluation of these cleaning procedures, considering the coating extraction ability and the damage induced on the granite surface, are described. Finally, some futures research lines are pointed out. Copyright © 2016 Elsevier B.V. All rights reserved.
Cryogenic Cathode Cooling Techniques for Improved SABRE Extraction Ion Diode Li Beam Generation
NASA Astrophysics Data System (ADS)
Hanson, D. L.; Johnston, R. R.; Cuneo, M. E.; Menge, P. R.; Fowler, W. E.; Armijo, J.; Nielsen, D. S.; Petmecky, D.
1997-11-01
We are developing techniques for cryogenic cooling of the SABRE extraction ion diode cathode that, combined with source cleaning, should improve the purity and brightness of Li beams for ICF light ion fusion. By liquid helium (LHe) cathode cooling, we have been able to maintain A-K gap base pressures in the range of 5 - 7x10-8 Torr for about 45 minutes. These base pressures extend the monolayer formation time for the worst beam contaminants (H2 and water vapor) to 10 - 100 sec or longer, which should allow the accelerator to be fired without significant Li source recontamination. This technique is compatible with He glow discharge cleaning, laser cleaning, and in situ Li deposition. We are also developing techniques for Ti-gettering of H2 and for cryogenic cooling of cathode electrodes to delay cathode plasma expansion.
Fluorescent Penetrant INSPECTION—CLEANING Study Update
NASA Astrophysics Data System (ADS)
Eisenmann, D.; Brasche, L.
2009-03-01
Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.
Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1997-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.
Development of a Replacement for Trichloroethylene in the Two-Stage Cleaning Process
1992-12-01
Auger-Determined Carbon/Iron Ratios of Set 4 ..................... 15 3 Abstract Isopropyl alcohol, d- limonene , and a synthetic mineral spirits were...found to be as clean as those alcohol, d- limonene , and a synthetic cleaned by the standard two-stage mineral spirits,- were chosen to be process...selected, therefore, was to soil test specimens with Another candidate was d- limonene . It has representative soils, clean them by the been extensively
[Non-pharmacologic management of rosacea].
Borelli, C; Korting, H C
2011-11-01
Rosacea is like no other disease a problem for patients regarding the use of skin care and cleaning products. The subjective assessment of the severity of the illness is an important factor regarding the development of depression in these patients. Inadequate skin care and cleaning products can lead to irritation and stinging of the skin. Dermatologists should address questions regarding skin care, cleaning and sun screens. Because of the higher irritability of the skin of rosacea patients, all possibly irritating cleaning products or procedures should be avoided. The water temperature is also important; it should be lukewarm to avoid the provocation of a vascular reaction. Soaps should be avoided, because they are alkaline and thus lead to a higher pH of the skin. A higher pH of the skin can lead to irritation. Appropriate make-up causes no aggravation of the skin and increases patient's satisfaction with their skin and thus leads to a higher compliance with pharmacological therapy. Laser or intense pulsed light treatment can improve telangiectasia or erythema. Operative treatment of rhinophyma is effective and well-established.
Fogging technique used to coat magnesium with plastic
NASA Technical Reports Server (NTRS)
Mroz, T. S.
1967-01-01
Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.
NASA Astrophysics Data System (ADS)
Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan
2016-03-01
How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.
Seet, Aaron N; Zilm, Peter S; Gully, Neville J; Cathro, Peter R
2012-12-01
The effectiveness of sonic activation, laser activation and syringe irrigation of 4% sodium hypochlorite in removing an Enterococcus faecalis biofilm was compared. Biofilms were grown in extracted human single rooted teeth using a flow cell apparatus. After 4 weeks' growth, teeth were subjected to each treatment using 4% sodium hypochlorite and radicular dentinal surfaces of the root canals were analysed by scanning electron microscopy. Results showed that sonic activation and syringe irrigation with sodium hypochlorite showed reduced numbers of bacterial cells on the radicular dentine but were not effective in eliminating E. faecalis in the dentinal tubules. Laser activation of sodium hypochlorite resulted in clean dentine walls and undetectable levels of bacteria within dentinal tubules. Qualitatively, sonic or laser activation of 4% NaOCl resulted in greater bacterial reduction compared with syringe irrigation, with laser activation producing the greatest overall reduction. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.
NASA Technical Reports Server (NTRS)
Singh, G.
1973-01-01
An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.
ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E; Neil Davis, N; Renee Spires, R
2008-01-17
The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store thismore » stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.« less
Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range
Kozub, John; Ivanov, Borislav; Jayasinghe, Aroshan; Prasad, Ratna; Shen, Jin; Klosner, Marc; Heller, Donald; Mendenhall, Marcus; Piston, David W.; Joos, Karen; Hutson, M. Shane
2011-01-01
Prior work with free-electron lasers (FELs) showed that wavelengths in the 6- to 7-µm range could ablate soft tissues efficiently with little collateral damage; however, FELs proved too costly and too complex for widespread surgical use. Several alternative 6- to 7-µm laser systems have demonstrated the ability to cut soft tissues cleanly, but at rates that were much too low for surgical applications. Here, we present initial results with a Raman-shifted, pulsed alexandrite laser that is tunable from 6 to 7 µm and cuts soft tissues cleanly—approximately 15 µm of thermal damage surrounding ablation craters in cornea—and does so with volumetric ablation rates of 2–5 × 10−3 mm3/s. These rates are comparable to those attained in prior successful surgical trials using the FEL for optic nerve sheath fenestration. PMID:21559139
Trace contaminant determination in fish scale by laser-ablation technique
NASA Astrophysics Data System (ADS)
Lee, Ida; Coutant, C. C.; Arakawa, E. T.
1993-10-01
Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish's chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.
Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M
2018-06-04
A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.
Retrograde endopyelotomy: a comparison between laser and Acucise balloon cutting catheter.
el-Nahas, Ahmed R
2007-03-01
Endopyelotomy and laparoscopic pyeloplasty are the preferred modalities for treatment of ureteropelvic junction obstruction because of their minimally invasive nature. There are continuous efforts for improving endopyelotomy techniques and outcome. Retrograde access represents the natural evolution of endopyelotomy. The Acucise cutting balloon catheter (Applied Medical Resources Corp., Laguna Hills, CA) and ureteroscopic endopyelotomy using holmium laser are the most widely accepted techniques. The Acucise catheter was developed to simplify retrograde endopyelotomy and made it possible for all urologists, regardless of their endourologic skills. The Acucise catheter depends on incision and dilatation of the ureteropelvic junction under fluoroscopic guidance, whereas ureteroscopy allows visual control of the site, depth, and extent of the incision; the holmium laser is a perfect method for a clean precise incision. Review of the English literature showed that the Acucise technique was more widely performed, though laser had better (but not statistically significant) safety and efficacy profiles.
Tissue dissection using a 1470-nm diode laser and laparoscopic prototype
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Hammerland, John; Nau, William H.; Fried, Nathaniel M.
2017-02-01
A continuous-wave, 40 Watt, 1470 nm laser was explored for rapid and precise dissection of porcine mesentery fascia and liver tissues, ex vivo. Laser energy was delivered through a 550-μm-core optical fiber inside a 5-mm-OD, laparoscopic probe, with detachable, 2 mm, sapphire ball rolling tip. Fascia tissue was cleanly dissected with scanning rates from 2.0 - 4.5 mm/s using 16 - 31W. Fascia collateral thermal damage measured as low as 180 +/- 50 μm at 4.5 mm/s scan speed. Porcine liver ablation crater depth measured up to 1010 +/- 220 μm with 30 W at 2.0 mm/s or as shallow as 80 +/- 30 μm with 10 W at 10 mm/s. Peak temperatures reached 130 °C at ball tip and 75 °C on metal jaws. The 1470-nm laser and probe show promise for laparoscopic tissue cutting and coagulation.
Harris, Candace D.; Shen, Nan; Rubenchik, Alexander M.; ...
2015-11-04
Here, time-resolved plasma emission spectroscopy was used to characterize the energy coupling and temperature rise associated with single, 10-ns pulsed laser ablation of metallic particles bound to transparent substrates. Plasma associated with Fe(I) emission lines originating from steel microspheres was observed to cool from >24,000 to ~15,000 K over ~220 ns asmore » $$\\tau$$ -0.28, consistent with radiative losses and adiabatic gas expansion of a relatively free plasma. Simultaneous emission lines from Si(II) associated with the plasma etching of the SiO2 substrate were observed yielding higher plasma temperatures, ~35,000 K, relative to the Fe(I) plasma. Lastly, the difference in species temperatures is consistent with plasma confinement at the microsphere-substrate interface as the particle is ejected, and is directly visualized using pump-probe shadowgraphy as a function of pulsed laser energy.« less
Application of Blue Laser Triangulation Sensors for Displacement Measurement Through Fire.
Hoehler, Matthew S; Smith, Christopher M
2016-11-01
This paper explores the use of blue laser triangulation sensors to measure displacement of a target located behind or in the close proximity of natural gas diffusion flames. This measurement is critical for providing high-quality data in structural fire tests. The position of the laser relative to the flame envelope can significantly affect the measurement scatter, but has little influence on the mean values. We observe that the measurement scatter is normally distributed and increases linearly with the distance of the target from the flame along the beam path. Based on these observations, we demonstrate how time-averaging can be used to achieve a standard uncertainty associated with the displacement error of less than 0.1 mm, which is typically sufficient for structural fire testing applications. Measurements with the investigated blue laser sensors were not impeded by the thermal radiation emitted from the flame or the soot generated from the relatively clean-burning natural gas.
Surface cleaning for negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang
2012-10-01
In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.
Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System
NASA Technical Reports Server (NTRS)
Parrish, Lewis M.
2009-01-01
NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.
The generation of amplified spontaneous emission in high-power CPA laser systems.
Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph
2016-03-01
An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.
Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B
2016-01-01
Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed.
Contamination control and assay results for the Majorana Demonstrator ultra clean components
NASA Astrophysics Data System (ADS)
Christofferson, C. D.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2018-01-01
The Majorana Demonstrator is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The Demonstrator has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.
Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel
2015-06-01
In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.
Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin
2017-01-01
Abstract The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. PMID:28338887
Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin; Liu, Chao
2017-07-01
The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Ginzburg, V. N.; Kochetkov, A. A.; Potemkin, A. K.; Khazanov, E. A.
2018-04-01
It has been experimentally confirmed that self-cleaning of a laser beam from spatial noise during propagation in free space makes it possible to suppress efficiently the self-focusing instability without applying spatial filters. Measurements of the instability increment by two independent methods have demonstrated quantitative agreement with theory and high efficiency of small-scale self-focusing suppression. This opens new possibilities for using optical elements operating in transmission (frequency doublers, phase plates, beam splitters, polarisers, etc.) in beams with intensities on the order of a few TW cm‑2.
The National Ignition Facility: The Path to a Carbon-Free Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2011-03-16
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
The National Ignition Facility: the path to a carbon-free energy future.
Stolz, Christopher J
2012-08-28
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
Ciupiński, Łukasz; Fortuna-Zaleśna, Elżbieta; Garbacz, Halina; Koss, Andrzej; Kurzydłowski, Krzysztof J.; Marczak, Jan; Mróz, Janusz; Onyszczuk, Tomasz; Rycyk, Antoni; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Strzelec, Marek; Zatorska, Anna; Żukowska, Grażyna Z.
2010-01-01
Metal artworks are subjected to corrosion and oxidation processes due to reactive agents present in the air, water and in the ground that these objects have been in contact with for hundreds of years. This is the case for archaeological metals that are recovered from excavation sites, as well as artefacts exposed to polluted air. Stabilization of the conservation state of these objects needs precise diagnostics of the accrued surface layers and identification of original, historical materials before further protective treatments, including safe laser cleaning of unwanted layers. This paper presents analyses of the chemical composition and stratigraphy of corrosion products with the use of laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy. The discussion of the results is supported by material studies (SEM-EDS, XRF, ion-analyses). The tests were performed on several samples taken from original objects, including copper roofing from Wilanów Palace in Warsaw and Karol Poznański Palace in ŁódŸ, bronze decorative figures from the Wilanów Palace gardens, and four archaeological examples of old jewellery (different copper alloys). Work has been performed as a part of the MATLAS project in the frames of EEA and Norway Grants (www.matlas.eu) and the results enable the comparison of the methodology and to elaborate the joint diagnostic procedures of the three project partner independent laboratories. PMID:22399915
77 FR 14830 - Notice of Lodging of Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Clean Air Act, 42 U.S.C. 7413(b). Defendant processes aluminum scrap and dross to produce various secondary aluminum products, a process that results in emissions of regulated air pollutants, including...
Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting
NASA Astrophysics Data System (ADS)
Migliaccio, Christopher P.; Lazarus, Nathan
2015-10-01
Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.
Automated carbon dioxide cleaning system
NASA Technical Reports Server (NTRS)
Hoppe, David T.
1991-01-01
Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.
Baraldi, G; Bakhti, S; Liu, Z; Reynaud, S; Lefkir, Y; Vocanson, F; Destouches, N
2017-01-20
One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO 2 , we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO 2 porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.
NASA Astrophysics Data System (ADS)
Baraldi, G.; Bakhti, S.; Liu, Z.; Reynaud, S.; Lefkir, Y.; Vocanson, F.; Destouches, N.
2017-01-01
One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO2, we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO2 porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.
[Study on assistant cleaning of ultrasound for the ultrafiltration membrane].
Zhang, Guojun; Liu, Zhongzhou
2003-11-01
The effects of ultrasounds with different frequency on membrane performance were investigated in this paper. The experimental results show that there were nearly no effects of 20 W ultrasound on membrane retention coefficient, but it decreased seriously when the ultrasound power was above 30 W. On the basis of these results, low frequency ultrasound (20 W) was introduced to assist the chemical cleaning in the ultrafiltration process of wastewater from bank note printing works. The cleaning time could be shortened from 20-30 min to 5 min by the ultra-liberation and ultra-blend effects of ultrasound, therefore, the cleaning efficiency was highly improved. However, the fouling substances could not be cleaned entirely in the simple physical cleaning process by SEM analysis.
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
An improved method for polarimetric image restoration in interferometry
NASA Astrophysics Data System (ADS)
Pratley, Luke; Johnston-Hollitt, Melanie
2016-11-01
Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.
Towards sustainable and safe apparel cleaning methods: A review.
Troynikov, Olga; Watson, Christopher; Jadhav, Amit; Nawaz, Nazia; Kettlewell, Roy
2016-11-01
Perchloroethylene (PERC) is a compound commonly used as a solvent in dry cleaning, despite its severe health and environmental impacts. In recent times chemicals such as hydrocarbons, GreenEarth(®), acetal and liquid carbon dioxide have emerged as less damaging substitutes for PERC, and an even more sustainable water-based wet cleaning process has been developed. We employed a systematic review approach to provide a comprehensive overview of the existing research evidence in the area of sustainable and safe apparel cleaning methods and care. Our review describes traditional professional dry cleaning methods, as well as those that utilise solvents other than PERC, and their ecological attributes. In addition, the new professional wet cleaning process is discussed. Finally, we address the health hazards of the various solvents used in dry cleaning and state-of-the-art solvent residue trace analysis techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inertial Confinement Fusion Quarterly Report January-March 1999, Volume 9, Number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atherton, J.
1999-03-31
This quarterly report covers the following topics: (1) Properties of and Manufacturing Methods for NIF Laser Glasses (J. H. Campbell)--The NIF amplifiers require 3380 Nd-doped laser glass slabs; continuous glass melting methods will be used for the first time to manufacture these slabs. The properties of the laser glasses are summarized and the novel continuous melting method is described. (2) Diffractive Optics for the NIF (J. A. Britten)--We have fabricated demonstration diffractive optics according to the NIF baseline design at full scale, via wet-chemical etching of patterns into fused silica. We have examined the effects of dip-coated sol-gel antireflection coatingsmore » on the performance of these optics, and have concluded that diffractive optics should remain uncoated to minimize laser-induced damage to downstream optics and to maximize environmental stability. We have also demonstrated the feasibility of combining all diffractive structures required by NIF, which vary over orders of magnitude in lateral and vertical scales, onto a single surface. (3) Producing KDP and DKDP Crystals for the NIF Laser (A. K. Burnham)--Rapid-growth KDP has overcome most of the hurdles for production of boules for NIF switch crystals and doublers, but some improvements in process reliability at the tripler's 3{omega} damage threshold are needed. The ability to meet KDP finishing specifications has been demonstrated, and the equipment for efficient NIF production is being built. (4) Engineering High-Damage-Threshold NIF Polarizers and Mirrors (C. J. Stolz)--High-fluence polarizer and mirror coatings for the NIF can be realized by engineering the coating process and design once the laser interaction with coating defects is understood. (5) Improved Antireflection Coatings for the NIF (P. K. Whitman)--We summarize our progress in developing antireflection coatings and applications processes for the NIF laser optics. We describe new materials and coating treatments to minimize the sensitivity of these porous sol-gel coatings to environmental humidity and organic contamination. (6) Developing Optics Finishing Technologies for the National Ignition Facility (T. G. Parham)--Fabrication of the 7500 meter-class lenses and flats for the NIF required extension of finishing technologies to meet cost and schedule targets. Developments at LLNL and our industrial partners are described for improved shaping, grinding, polishing, figuring, and metrology of large optics. (7) Laser-Damage Testing and Modeling Methods for Predicting the Performance of Large-Area NIF Optics (M. R. Kozlowski)--Laser damage to high-quality laser optics is limited by localized, defect-initiated processes. The damage performance of such materials is better described by statistical distributions than by discrete damage thresholds. The prediction of the damage performance of a Beamlet focus lens, based on new statistics-based damage data measurement and analysis techniques, is demonstrated. (8) Development of the NIF Target Chamber First Wall and Beam Dumps (A. K. Burnham)--NIF target designs and target chamber ablations are listed by a 1-nm/shot contamination rate of the final optics debris shield, as determined by transmittance and damage lifetime. This constraint forces a self-cleaning louvre design for the first wall and unconverted-light beam dumps. Nickel-free stainless steel is the cheapest and most practical material.« less
Asnaashari, Mohamad; Ebad, Leila Tahmasebi; Shojaeian, Shiva
2016-10-01
Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load.
Asnaashari, Mohamad; Ebad, Leila Tahmasebi
2016-01-01
Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load. PMID:27853346
Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware
NASA Technical Reports Server (NTRS)
Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.
2014-01-01
Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.
Laser micromachining of cadmium tungstate scintillator for high energy X-ray imaging
NASA Astrophysics Data System (ADS)
Richards, Sion Andreas
Pulsed laser ablation has been investigated as a method for the creation of thick segmented scintillator arrays for high-energy X-ray radiography. Thick scintillators are needed to improve the X-ray absorption at high energies, while segmentation is required for spatial resolution. Monte-Carlo simulations predicted that reflections at the inter-segment walls were the greatest source of loss of scintillation photons. As a result of this, fine pitched arrays would be inefficient as the number of reflections would be significantly higher than in large pitch arrays. Nanosecond and femtosecond pulsed laser ablation was investigated as a method to segment cadmium tungstate (CdWO_4). The effect of laser parameters on the ablation mechanisms, laser induced material changes and debris produced were investigated using optical and electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy for both types of lasers. It was determined that nanosecond ablation was unsuitable due to the large amount of cracking and a heat affected zone created during the ablation process. Femtosecond pulsed laser ablation was found to induce less damage. The optimised laser parameters for a 1028 nm laser was found to be a pulse energy of 54 μJ corresponding to a fluence of 5.3 J cm. -2 a pulse duration of 190 fs, a repetition rate of 78.3 kHz and a laser scan speed of 707 mm s. -1 achieving a normalised pulse overlap of 0.8. A serpentine scan pattern was found to minimise damage caused by anisotropic thermal expansion. Femtosecond pulsed ablation was also found to create a layer of tungsten and cadmium sub-oxides on the surface of the crystals. The CdWO_4 could be cleaned by immersing the CdWO_4 in ammonium hydroxide at 45°C for 15 minutes. However, XPS indicated that the ammonium hydroxide formed a thin layer of CdCO_3 and Cd(OH)_2 on the surface. Prototype arrays were shown to be able to resolve features as small as 0.5 mm using keV energy X-rays. The most efficient prototype showed low detective quantum efficiency of 0.08±0.01 at 0 lp/mm using a tube voltage of 160 kVp.
Time Resolved Microfluorescence In Biomedical Diagnosis
NASA Astrophysics Data System (ADS)
Schneckenburger, Herbert
1985-12-01
A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental fields. These projects range from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria, which affect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.
2007-03-01
plane in space. Many such lasers are used for PIV, including: Copper vapor, Argon ion, Helium-Neon, Yttrium Aluminum Garnet (YAG) and Neodymium doped ...velocimetry to measure the velocities of nanoparticles in nanofluids .” Optics Express. Vol 14, No 17: 7559-7566 (2006) 15. Poggie, J., Erbland, P.J., Smits
Progress Toward a Monolithically Integrated Coherent Diode Laser Array.
1981-02-20
eoCteehinique is uised extensively in fabricat ing MBR I iseor, ind pi~ rovide,, adidi t iooat infornation on the quality of the crystal. \\BR CAI FBR AI) \\R...crystals are then cleaned in hot isopropyl alcohol held in a vertical position by a glass holder submerged in isopropyl alcohol. They soak for about 1 hr
Surface cleaning and pure nitridation of GaSb by in-situ plasma processing
NASA Astrophysics Data System (ADS)
Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Chang, Wen Hsin; Yasuda, Tetsuji; Maeda, Tatsuro
2017-10-01
A clean and flat GaSb surface without native oxides has been attained by H2 plasma cleaning and subsequent in-situ N2 plasma nitridation process at 300 oC. The mechanisms of thermal desorption behavior of native oxides on GaSb have been studied by thermal desorption spectroscopy (TDS) analysis. The suitable heat treatment process window for preparing a clean GaSb surface is given. Auger electron spectroscopy (AES) analysis indicates that native oxides were completely removed on the GaSb surface after H2 plasma exposure and the pure nitridation of the clean GaSb surface was obtained at a relatively low temperature of 300 °C. This pure nitridation of GaSb have a possibility to be used as a passivation layer for high quality GaSb MOS devices.
Chemical cleaning/disinfection and ageing of organic UF membranes: a review.
Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P
2014-06-01
Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions, cleaning/disinfection/aging agents/conditions/protocols. The third and last part will be developed the parameters, methods and ways of characterization at our disposal and commonly used to develop and implement membrane cleaning and/or ageing studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL
NASA Astrophysics Data System (ADS)
Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.
2017-03-01
It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.
Evaluation of pressurized water cleaning systems for hardware refurbishment
NASA Technical Reports Server (NTRS)
Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.
1995-01-01
Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'
ERIC Educational Resources Information Center
Clark, Bob
2006-01-01
Green cleaning is gaining momentum. It is a method of cleaning and maintaining facilities that is friendly to the environment and healthful for students and staff. The process uses environmentally friendly and nontoxic cleaning products and practices that must be third-party-certified. Using green cleaning practices and products can result in…
The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...
NASA Technical Reports Server (NTRS)
Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.
1997-01-01
Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor degreasing process.
Ion-Deposited Polished Coatings
NASA Technical Reports Server (NTRS)
Banks, B. A.
1986-01-01
Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.
Non-aqueous cleaning solvent substitution
NASA Technical Reports Server (NTRS)
Meier, Gerald J.
1994-01-01
A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.
NASA Astrophysics Data System (ADS)
Langan, John
1996-10-01
The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)
NASA Astrophysics Data System (ADS)
Mu, Wangzhong; Dogan, Neslihan; Coley, Kenneth S.
2018-05-01
The agglomeration behavior of non-metallic inclusions in the steelmaking process is important for controlling the cleanliness of the steel. In this work, the observation of agglomeration behaviors of inclusions at steel/Ar and steel/slag interfaces using a high-temperature confocal laser scanning microscope (HT-CLSM) is summarized. This HT-CLSM technique has been applied to observe phase transformation during solidification and heat treatment and the engulfment and pushing behavior of inclusions in front of the solidified interface. In the current work, the inclusion agglomeration behavior at steel/Ar and steel/slag interfaces is summarized and discussed. Subsequently, the development of the theoretical work investigating inclusion agglomeration at steel/Ar and steel/slag interfaces including the initial capillary force model and Kralchevsky-Paunov model is described. Finally, the Kralchevsky-Paunov model is applied to investigating nitride inclusion agglomeration at high-manganese steel/Ar interfaces. This work aims to give a critical review of the application of HT-CLSM in secondary refining as well as a better control of inclusion elimination for clean steel production.
NASA Technical Reports Server (NTRS)
Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.
1991-01-01
In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.
Physical and chemical investigations on natural dyes
NASA Astrophysics Data System (ADS)
Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.
2010-09-01
Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.
High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.
Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien
2016-01-01
Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.
High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips
Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien
2016-01-01
Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340
Latest technologies on ultrasonic cleaning
NASA Astrophysics Data System (ADS)
Hofstetter, Hans U.
2007-05-01
UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning... the cleaning water subcategory are processes where water comes in contact with the plastic product for... equipment, such as molds and mandrels, that contact the plastic material for the purpose of cleaning the...
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
NASA Principal Center for Review of Clean Air Act Regulations
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)
2002-01-01
The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.
Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel
NASA Astrophysics Data System (ADS)
Yang, Liang; Cheng, Guo-guang
2017-08-01
The Al2O3, MnS, and TiN inclusions in bearing steel will deteriorate the steel's mechanical properties. Therefore, elucidating detailed characteristics of these inclusions in consumable electrode during the electroslag remelting process is important for achieving a subsequently clean ingot. In this study, a confocal scanning violet laser microscope was used to simulate the remelting process and observe, in real time, the behaviors of inclusions. The obtained images show that, after the temperature exceeded the steel solidus temperature, MnS and TiN inclusions in the specimen began to dissolve. Higher temperatures led to faster dissolution, and the inclusions disappeared before the steel was fully liquid. In the case of an observed Al2O3 inclusion, its shape changed from angular to a smooth ellipsoid in the region where the solid and liquid coexisted and it began to dissolve as the temperature continued to increase. This dissolution was driven by the difference in oxygen potential between the inclusion and the liquid steel.
The laser-induced discoloration of stonework; a comparative study on its origins and remedies.
Pouli, P; Fotakis, C; Hermosin, B; Saiz-Jimenez, C; Domingo, C; Oujja, M; Castillejo, M
2008-12-01
For understanding the phenomena associated with the discoloration observed in some cases of infrared laser cleaned stonework surfaces, a comparative study of three different types and morphologies of pollution encrustation and stone substrates was undertaken. Fragments originating from monuments with historic and/or artistic value, bearing homogeneous thin soiling on Pentelic marble (Athens, Greece), thick encrustation on Hontoria limestone (Burgos, Spain) and compact thin crust on gypsum decorations (Athens, Greece), have been studied on the basis of their composition and origin, together with the conditions that may induce yellowing effects upon their laser cleaning with IR wavelengths. While irradiation in the UV (i.e. at 355 nm) could not effectively remove the encrustations studied, irradiation at 1,064 nm was found efficient to remove all the studied pollution accumulations. Discoloration towards yellow was evident in all cases and at different levels, including the samples with intentional patination layer. To the limit of Raman detection no chemical alterations were detected on the irradiated areas while the presence of yellow polar compounds in all the pollution crusts studied supports the argument that the discoloration of the stone surfaces upon their IR irradiation may be due to the uncovering of existing yellow layers as result of the migration of these compounds inwards to the original stone surface. To correct and/or prevent such undesired coloration the use of IR and UV radiation both in sequential and synchronous mode was considered, with positive results.
The laser-induced discoloration of stonework; a comparative study on its origins and remedies
NASA Astrophysics Data System (ADS)
Pouli, P.; Fotakis, C.; Hermosin, B.; Saiz-Jimenez, C.; Domingo, C.; Oujja, M.; Castillejo, M.
2008-12-01
For understanding the phenomena associated with the discoloration observed in some cases of infrared laser cleaned stonework surfaces, a comparative study of three different types and morphologies of pollution encrustation and stone substrates was undertaken. Fragments originating from monuments with historic and/or artistic value, bearing homogeneous thin soiling on Pentelic marble (Athens, Greece), thick encrustation on Hontoria limestone (Burgos, Spain) and compact thin crust on gypsum decorations (Athens, Greece), have been studied on the basis of their composition and origin, together with the conditions that may induce yellowing effects upon their laser cleaning with IR wavelengths. While irradiation in the UV (i.e. at 355 nm) could not effectively remove the encrustations studied, irradiation at 1064 nm was found efficient to remove all the studied pollution accumulations. Discoloration towards yellow was evident in all cases and at different levels, including the samples with intentional patination layer. To the limit of Raman detection no chemical alterations were detected on the irradiated areas while the presence of yellow polar compounds in all the pollution crusts studied supports the argument that the discoloration of the stone surfaces upon their IR irradiation may be due to the uncovering of existing yellow layers as result of the migration of these compounds inwards to the original stone surface. To correct and/or prevent such undesired coloration the use of IR and UV radiation both in sequential and synchronous mode was considered, with positive results.
Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui; Tong, Shi; Liu, Yuan; Boppart, Stephen A.
2013-01-01
We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers. PMID:24104233
NASA Astrophysics Data System (ADS)
Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S.
2015-03-01
The periodical removal of biodeteriogens is a fundamental need for the preservation of outdoor stone cultural heritage, which is stimulating significant efforts toward the development of low-impact conservation strategies. In the present work, the potential of laser removal of Verrucaria nigrescens Pers. from Carrara marble and the evaluation of the associated biocide effect on the organism residues embedded in the surface texture and through the outer porosities of the stone substrate were investigated. The fundamental wavelength of Nd:YAG laser (1,064 nm), commonly used in stone cleaning, and its second harmonic (532 nm) were comparatively tested. The phenomenology of laser treatments carried out in different irradiation conditions was characterized using optical, epifluorescence, and electron microscopes along with chlorophyll fluorescence with pulsed amplitude-modulated imaging. The results achieved show that 532 nm can provide significant advantages with respect to 1,064 nm. The potential of the latter against the biodeteriogens appears rather limited because of the low optical absorption, whereas the former can allow effective and practicable laser treatments, which disclose a significant application perspective.
Optimization and analysis of NF3 in situ chamber cleaning plasmas
NASA Astrophysics Data System (ADS)
Ji, Bing; Yang, James H.; Badowski, Peter R.; Karwacki, Eugene J.
2004-04-01
We report on the optimization and analysis of a dilute NF3 in situ plasma-enhanced chemical vapor deposition chamber cleaning plasma for an Applied Materials P-5000 DxL chamber. Using design of experiments methodology, we identified and optimized operating conditions within the following process space: 10-15 mol % NF3 diluted with helium, 200-400 sccm NF3 flow rate, 2.5-3.5 Torr chamber pressure, and 950 W rf power. Optical emission spectroscopy and Fourier transform infrared spectroscopy were used to endpoint the cleaning processes and to quantify plasma effluent emissions, respectively. The results demonstrate that dilute NF3-based in situ chamber cleaning can be a viable alternative to perfluorocarbon-based in situ cleans with added benefits. The relationship between chamber clean time and fluorine atom density in the plasma is also investigated.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
Staying sticky: contact self-cleaning of gecko-inspired adhesives.
Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-05-06
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.
Staying sticky: contact self-cleaning of gecko-inspired adhesives
Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-01-01
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579
Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K
2001-04-01
The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.
Qualification and Selection of Flight Diode Lasers for Space Applications
NASA Technical Reports Server (NTRS)
Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.
2010-01-01
The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode traceablity.
Al-Kattan, Ahmed; Nirwan, Viraj P; Popov, Anton; Ryabchikov, Yury V; Tselikov, Gleb; Sentis, Marc; Fahmi, Amir; Kabashin, Andrei V
2018-05-24
Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.
NASA Astrophysics Data System (ADS)
Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.
2013-11-01
Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.
Hair as a Biomarker of Environmental Manganese Exposure
Eastman, Rachel R.; Jursa, Tom P.; Benedetti, Chiara; Lucchini, Roberto G.; Smith, Donald R.
2013-01-01
The absence of well-validated biomarkers of manganese (Mn) exposure in children remains a major obstacle for studies of Mn toxicity. We developed a hair cleaning methodology to establish the utility of hair as an exposure biomarker for Mn and other metals (Pb, Cr, Cu), using ICP-MS, scanning electron microscopy, and laser ablation ICP-MS to evaluate cleaning efficacy. Exogenous metal contamination on hair that was untreated or intentionally contaminated with dust or Mn-contaminated water was effectively removed using a cleaning method of 0.5% Triton X-100 sonication plus 1N nitric acid sonication. This cleaning method was then used on hair samples from children (n=121) in an ongoing study of environmental Mn exposure and related health effects. Mean hair Mn levels were 0.121 μg/g (median = 0.073 μg/g, range = 0.011 – 0.736 μg/g), which are ~4 to 70-fold lower than levels reported in other pediatric Mn studies. Hair Mn levels were also significantly higher in children living in the vicinity of active, but not historic, ferroalloy plant emissions compared to controls (P<0.001). These data show that exogenous metal contamination on hair can be effectively cleaned of exogenous metal contamination, and they substantiate the use of hair Mn levels as a biomarker of environmental Mn exposure in children. PMID:23259818
Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, Edward; Spires, Renee; Davis, Neil
2009-02-11
At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full advantage of the many CORD-UV{reg_sign} benefits, performance demonstration testing was initiated using available SRS sludge simulant. The demonstration testing confirmed that ECC is a viable technology, as it can dissolve greater than 90% of the sludge simulant and destroy greater than 90% of the oxalates. Additional simulant and real waste testing are planned.« less
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
Machine Cleans And Degreases Without Toxic Solvents
NASA Technical Reports Server (NTRS)
Gurguis, Kamal S.; Higginson, Gregory A.
1993-01-01
Appliance uses hot water and biodegradable chemicals to degrease and clean hardware. Spray chamber essentially industrial-scale dishwasher. Front door tilts open, and hardware to be cleaned placed on basket-like tray. During cleaning process, basket-like tray rotates as high-pressure "V" jets deliver steam, hot water, detergent solution, and rust inhibitor as required.
Effect of SPM-based cleaning POR on EUV mask performance
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.
2011-11-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.
Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter
2016-07-15
The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility. Copyright © 2016 Elsevier Inc. All rights reserved.
Time-Resolved Microfluorescence In Biomedical Diagnosis
NASA Astrophysics Data System (ADS)
Schneckenburger, Herbert
1985-02-01
A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental field. These projects are ranging from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria which effect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials
2016-04-27
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical...vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic, semiconducting, and ceramic thin films with
Application of blue laser triangulation sensors for displacement measurement through fire
NASA Astrophysics Data System (ADS)
Hoehler, Matthew S.; Smith, Christopher M.
2016-11-01
This paper explores the use of blue laser triangulation sensors to measure displacement of a target located behind or in the close proximity of natural gas diffusion flames. This measurement is critical for providing high-quality data in structural fire tests. The position of the laser relative to the flame envelope can significantly affect the measurement scatter, but has little influence on the mean values. We observe that the measurement scatter is normally distributed and increases linearly with the distance of the target from the flame along the beam path. Based on these observations, we demonstrate how time-averaging can be used to achieve a standard uncertainty associated with the displacement error of less than 0.1 mm, which is typically sufficient for structural fire testing applications. Measurements with the investigated blue laser sensors were not impeded by the thermal radiation emitted from the flame or the soot generated from the relatively clean-burning natural gas.
Application of Blue Laser Triangulation Sensors for Displacement Measurement Through Fire
Hoehler, Matthew S.; Smith, Christopher M.
2016-01-01
This paper explores the use of blue laser triangulation sensors to measure displacement of a target located behind or in the close proximity of natural gas diffusion flames. This measurement is critical for providing high-quality data in structural fire tests. The position of the laser relative to the flame envelope can significantly affect the measurement scatter, but has little influence on the mean values. We observe that the measurement scatter is normally distributed and increases linearly with the distance of the target from the flame along the beam path. Based on these observations, we demonstrate how time-averaging can be used to achieve a standard uncertainty associated with the displacement error of less than 0.1 mm, which is typically sufficient for structural fire testing applications. Measurements with the investigated blue laser sensors were not impeded by the thermal radiation emitted from the flame or the soot generated from the relatively clean-burning natural gas. PMID:28066131
Paint removal activities in Canada
NASA Astrophysics Data System (ADS)
Foster, Terry
1993-03-01
Paint removal activities currently under way in Canada include: research and development of laser paint stripping; development and commercialization of a new blasting medium based on wheat starch; commercialization of a new blasting medium and process using crystalline ice blasting for paint removal and surface cleaning; and the development of automated and robotic systems for paint stripping applications. A specification for plastic media blasting (PMB) of aircraft and aircraft components is currently being drafted by NDHQ for use by the Canadian Armed Forces (CAF) and contractors involved in coating removal for the CAF. Defense Research Establishment Pacific (DREP) is studying the effects of various blast media on coating removal rates, and minimizing the possibility of damage to substrates other than aluminum such as graphite epoxy composite and Kevlar. The effects of plastic media blasting on liquid penetrant detection of fatigue cracks is also under investigation.
Implementation of environmentally compliant cleaning and insulation bonding for MNASA
NASA Technical Reports Server (NTRS)
Hutchens, Dale E.; Keen, Jill M.; Smith, Gary M.; Dillard, Terry W.; Deweese, C. Darrell; Lawson, Seth W.
1995-01-01
Historically, many subscale and full-scale rocket motors have employed environmentally and physiologically harmful chemicals during the manufacturing process. This program examines the synergy and interdependency between environmentally acceptable materials for solid rocket motor insulation applications, bonding, corrosion inhibiting, painting, priming, and cleaning, and then implements new materials and processes in subscale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of modified-NASA materials test motor (MNASA) components and identify alternate materials and/or processes following NASA Operational Environmental Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin, and insulation case bonding using ozone depleting chemical (ODC) compliant primers and adhesives.
Laser peening with fiber optic delivery
Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.
2004-11-16
A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.
NASA Astrophysics Data System (ADS)
Park, J.-H.; Jung, W.; Cho, D.; Seo, J.-T.; Moon, Y.; Woo, S. H.; Lee, C.; Park, C.-Y.; Ahn, J. R.
2013-10-01
The clean removal of a poly(methyl methacrylate) (PMMA) film on graphene has been an essential part of the process of transferring chemical vapor deposited graphene to a specific substrate, influencing the quality of the transferred graphene. Here we demonstrate that the clean removal of PMMA can be achieved by a single heat-treatment process without the chemical treatment that was adopted in other methods of PMMA removal. The cleanness of the transferred graphene was confirmed by four-point probe measurements, synchrotron radiation x-ray photoemission spectroscopy, optical images, and Raman spectroscopy.
CPICOR{trademark}: Clean power from integrated coal-ore reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintrell, R.; Miller, R.N.; Harbison, E.J.
1997-12-31
The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less
Rudimentary Cleaning Compared to Level 300A
NASA Technical Reports Server (NTRS)
Arpin, Christina Y. Pina; Stoltzfus, Joel
2012-01-01
A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.
Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing
2012-03-01
The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.
2014-04-27
One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was amore » significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.« less
40 CFR 463.21 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...
40 CFR 463.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with shaping...
Study of discharge cleaning process in JIPP T-2 Torus by residual gas analyzer
NASA Astrophysics Data System (ADS)
Noda, N.; Hirokura, S.; Taniguchi, Y.; Tanahashi, S.
1982-12-01
During discharge cleaning, decay time of water vapor pressure changes when the pressure reaches a certain level. A long decay time observed in the later phase can be interpreted as a result of a slow deoxidization rate of chromium oxide, which may dominate the cleaning process in this phase. Optimization of plasma density for the cleaning is discussed comparing the experimental results on density dependence of water vapor pressure with a result based on a zero dimensional calculation for particle balance. One of the essential points for effective cleaning is the raising of the electron density of the plasma high enough that the dissociation loss rate of H2O is as large as the sticking loss rate. A density as high as 10 to the 11th power/cu cm is required for a clean surface condition where sticking probability is presumed to be around 0.5.
Chemical cleaning re-invented: clean, lean and green.
Hanson, Margaret; Vangeel, Michel
2014-01-01
A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.
Jackson, Lauren S; Al-Taher, Fadwa M; Moorman, Mark; DeVries, Jonathan W; Tippett, Roger; Swanson, Katherine M J; Fu, Tong-Jen; Salter, Robert; Dunaif, George; Estes, Susan; Albillos, Silvia; Gendel, Steven M
2008-02-01
Food allergies affect an estimated 10 to 12 million people in the United States. Some of these individuals can develop life-threatening allergic reactions when exposed to allergenic proteins. At present, the only successful method to manage food allergies is to avoid foods containing allergens. Consumers with food allergies rely on food labels to disclose the presence of allergenic ingredients. However, undeclared allergens can be inadvertently introduced into a food via cross-contact during manufacturing. Although allergen removal through cleaning of shared equipment or processing lines has been identified as one of the critical points for effective allergen control, there is little published information on the effectiveness of cleaning procedures for removing allergenic materials from processing equipment. There also is no consensus on how to validate or verify the efficacy of cleaning procedures. The objectives of this review were (i) to study the incidence and cause of allergen cross-contact, (ii) to assess the science upon which the cleaning of food contact surfaces is based, (iii) to identify best practices for cleaning allergenic foods from food contact surfaces in wet and dry manufacturing environments, and (iv) to present best practices for validating and verifying the efficacy of allergen cleaning protocols.
Development of clean coal and clean soil technologies using advanced agglomeration techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignasiak, B.; Ignasiak, T.; Szymocha, K.
1990-01-01
Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)
Tug fleet and ground operations schedules and controls. Volume 3: Program cost estimates
NASA Technical Reports Server (NTRS)
1975-01-01
Cost data for the tug DDT&E and operations phases are presented. Option 6 is the recommended option selected from seven options considered and was used as the basis for ground processing estimates. Option 6 provides for processing the tug in a factory clean environment in the low bay area of VAB with subsequent cleaning to visibly clean. The basis and results of the trade study to select Option 6 processing plan is included. Cost estimating methodology, a work breakdown structure, and a dictionary of WBS definitions is also provided.
Stabilization of flux during dead-end ultra-low pressure ultrafiltration.
Peter-Varbanets, Maryna; Hammes, Frederik; Vital, Marius; Pronk, Wouter
2010-06-01
Gravity driven ultrafiltration was operated in dead-end mode without any flushing or cleaning. In contrary to general expectations, the flux value stabilized after about one week of operation and remained constant during an extended period of time (several months). Different surface water types and diluted wastewater were used as feed water and, depending on the feed water composition, stable flux values were in the range of 4-10 L h(-1) m(-2). When sodium azide was added to the feed water to diminish the biological activity, no stabilization of flux occurred, indicating that biological processes play an important role in the flux stabilization process. Confocal laser scanning microscopy revealed the presence of a biofouling layer, of which the structure changed over time, leading to relatively heterogeneous structures. It is assumed that the stabilization of flux is related to the development of heterogeneous structures in the fouling layer, due to biological processes in the layer. The phenomenon of flux stabilization opens interesting possibilities for application, for instance in simple and low-cost ultrafiltration systems for decentralized drinking water treatment in developing and transition countries, independent of energy supply, chemicals, or complex process control. 2010 Elsevier Ltd. All rights reserved.
ICALEO '91 - Laser materials processing; Proceedings of the Meeting, San Jose, CA, Nov. 3-8, 1991
NASA Astrophysics Data System (ADS)
Metzbower, Edward A.; Beyer, Eckhard; Matsunawa, Akira
Consideration is given to new developments in LASERCAV technology, modeling of deep penetration laser welding, the theory of radiative transfer in the plasma of the keyhole in penetration laser welding, a synchronized laser-video camera system study of high power laser material interactions, laser process monitoring with dual wavelength optical sensors, new devices for on-line process diagnostics during laser machining, and the process development for a portable Nd:YAG laser materials processing system. Attention is also given to laser welding of alumina-reinforced 6061 aluminum alloy composite, the new trend of laser materials processing, optimization of the laser cutting process for thin section stainless steels, a new nozzle concept for cutting with high power lasers, rapid solidification effects during laser welding, laser surface modification of a low carbon steel with tungsten carbide and carbon, absorptivity of a polarized beam during laser hardening, and laser surface melting of 440 C tool steel. (No individual items are abstracted in this volume)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, N.; Lorcet, H.; Beauchamp, F.
2012-07-01
Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, amore » functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)« less
NASA Astrophysics Data System (ADS)
Keen, Jill M.; Hutchens, D. E.; Smith, G. M.; Dillard, T. W.
1994-06-01
MNASA, a quarter-scale space shuttle solid rocket motor, has historically been processed using environmentally and physiologically harmful chemicals. This program draws from previous testing done in support of full-scale manufacturing and examines the synergy and interdependency between environmentally acceptable materials for Solid Rocket Motor insulation applications, bonding, corrosion inhibiting, painting, priming and cleaning; and then implements new materials and processes in sub-scale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of MNASA components and identify alternate materials and/or processes following NASA Operational Environment Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin and insulation case bonding using ODC compliant primers and adhesives.
[Effect of manual cleaning and machine cleaning for dental handpiece].
Zhou, Xiaoli; Huang, Hao; He, Xiaoyan; Chen, Hui; Zhou, Xiaoying
2013-08-01
Comparing the dental handpiece' s cleaning effect between manual cleaning and machine cleaning. Eighty same contaminated dental handpieces were randomly divided into experimental group and control group, each group contains 40 pieces. The experimental group was treated by full automatic washing machine, and the control group was cleaned manually. The cleaning method was conducted according to the operations process standard, then ATP bioluminescence was used to test the cleaning results. Average relative light units (RLU) by ATP bioluminescence detection were as follows: Experimental group was 9, control group was 41. The two groups were less than the recommended RLU value provided by the instrument manufacturer (RLU < or = 45). There was significant difference between the two groups (P < 0.05). The cleaning quality of the experimental group was better than that of control group. It is recommended that the central sterile supply department should clean dental handpieces by machine to ensure the cleaning effect and maintain the quality.
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
SURVEY OF AIR AND GAS CLEANING OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenthaler, A.C.
1959-09-01
An informative summary of air and gas cleaning operations in the Chemicai Processing Department of the Hanfor Atomic Products Operation, Richland, Washington, is presented. Descriptlons of the fundamental components of cleaning systems, their applications, and cost information are included. (R.G.G.)
CLEANING OF FLUE GASES FROM WASTE COMBUSTORS
The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...
ENVIRONMENTALLY FRIENDLIER ALTERNATIVES TO ORGANIC SYNTHESES
An overview of the research activity at the USEPA AWBERC Research Center in general and the Sustainable Technology Division with specific reference to clean process development will be presented. Several examples of clean and efficient chemical processes will be highlighted that ...
Multiphoton Production and Detection of Atoms.
1985-04-01
photodissociation of metal ligand analogues of ferrocene would cleanly photodis- sociate to give metal atoms, producing atomic cobalt, ruthinium, nickel...in the exper- iments with triphenyl phosphine and phosphine , only at high I pressures, with a long-pulse (1 microsecond) laser. Sulphur atoms were...unassigned in our experiments. These probably originate in the poorly understood metastable SO state. Ashfold et.al., in their work on MPD/MPI on phosphine
NASA Technical Reports Server (NTRS)
Pickett, Lorri A. (Editor)
1995-01-01
Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.
Assessment of disinfection of hospital surfaces using different monitoring methods1
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos, Aires Garcia
2015-01-01
OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process. PMID:26312634
Assessment of disinfection of hospital surfaces using different monitoring methods.
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia
2015-01-01
to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.
Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidaka, Y.; She, Y.; Murphy, J.B.
2011-03-28
We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and amore » short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.« less
Direct emission of chirality controllable femtosecond LG01 vortex beam
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.
2018-05-01
Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.
Early diagnosis of incipient caries based on non-invasive lasers
NASA Astrophysics Data System (ADS)
Velescu, A.; Todea, C.; Vitez, B.
2016-03-01
AIM: The aim of this study is to detect incipient caries and enamel demineralization using laser fluorescence.This serves only as an auxilary aid to identify and to monitor the development of these lesions. MATERIALS AND METHODS: 6 patients were involved in this study, three females and three male. Each patient underwent a professional cleaning, visual examination of the oral cavity, and then direct inspection using DiagnoCam and DIAGNOdent. After data recording each patient was submitted to retro-alveolar X-ray on teeth that were detected with enamel lesions. All data was collected and analyzed statistically. RESULTS: Of 36 areas considered in clinically healthy, 24 carious surfaces were found using laser fluorescence, a totally non-invasive method for detecting incipient carious lesions compared with the radiographic examination. CONCLUSIONS: This method has good applicability for patients because it improves treatment plan by early detection of caries and involves less fear for anxious patients and children.
Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites
NASA Technical Reports Server (NTRS)
Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.
2010-01-01
Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.
Laser Surface Preparation and Bonding of Aerospace Structural Composites
NASA Technical Reports Server (NTRS)
Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.
2010-01-01
Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.
JPRS report: Science and technology. Central Eurasia: Physics and mathematics
NASA Astrophysics Data System (ADS)
1993-11-01
Translated articles cover the following topics: laser-acoustic cleaning of surfaces from mechanical microparticles; supersonic CO laser with HF excitation in combustion products; possibility of use of interaction between acoustic and light waves in fiber light conductors for generation of short light pulses; steady three-dimensional flow of viscous gas through channels and nozzles; current fluctuations in superconductor with superlattice in strong electric and magnetic fields; influence of strong electric field on conductivity of high-temperature superconductor ceramic of YBaCuO system; effect of electron bombardment on peak-effect in YBa2 Cu3Ox single crystals; and evolution of homogeneous isotropic universe, dark mass, and absence of monopoles.
Wang, Jing; Gao, Yan; Wang, Qing-shan; Zhang, Yan; Rong, Li; Wang, Jiu
2014-08-01
To evaluate the cleaning effect of the C-shaped canal treated by manual K file and ProTaper rotary endodontic file combined with ultrasonic cleaning, and find a better cleaning program for the C-shaped root canal. Fifty mandibular second molars were randomly divided into 5 groups: K file group, K file+ultrasonic rinsing group, ProTaper group, ProTaper+ultrasonic rinsing group and the control group. After initial shaping and cleaning, the mandibular second molars were soaked in formalin and stained. Under microscopy, the cleaning rate of necrotic tissue and cutting area were observed and analyzed. The data was processed with SPSS 17.0 software package. The cleaning rates of the treated groups were significantly higher than that of the control group (P<0.05); In each treatment group, the cleaning rate of the apex was significantly lower than that of the crown and central part (P<0.05); The cutting score of ProTaper+ultrasonic cleaning group was lower than that of the other treatment groups; The cutting score of the K file+ultrasonic rinsing group was significantly lower than that of the K file group (P<0.05); The cutting score and cleaning rate were negatively correlated (r=-0.712, P=0.000 ), the linear regression was the cleaning rate =98.325-4.325 × wall cutting score (R=0.454, P<0.05). In the process of shaping and cleaning of C-shaped canal, it is recommended that the ProTaper nickel-titanium rotary endodontic file should be chosen to clean the top of the taproot pipe and combined with ultrasonic rinsing to achieve better results.
NASA Astrophysics Data System (ADS)
Iliev, Marin
Good pulse quality, high peak power and tunable central wavelength are amongst the most desired qualities in modern lasers. The nonlinear effect cross-polarized wave generation (XPW), can be used in ultrafast laser systems to achieve various pulse quality enhancements. The XPW yield depends on the cube of the input intensity and acts as a spatio-temporal filter. It is orthogonally polarized to the input pulse and highly Gaussian. If the input pulse is well compressed, the output spectrum is smoother and broader. These features make XPW an ideal reference signal in pulse characterization techniques. This thesis presents a detailed analysis of the XPW conversion process, and describes novel applications to pulse characterization and high-quality pulse cleaning. An extensive computer model was developed to describe XPW generation via solution of the full coupled non-linear differential equations. The model accounts for dispersion inside the nonlinear crystal and uses split-step Fourier optics beam propagation to simulate the evolution of the electro-magnetic fields of the pump and XPW through free-space and imaging systems. A novel extension to the self-referenced spectral interferometry (SRSI) pulse characterization technique allows the retrieval of the energy and spectral content of the amplified spontaneous emission (ASE) present in ultrashort pulse amplifier systems. A novel double-pass XPW conversion scheme is presented. In it the beam passes through a single XPW crystal (BaF2) and is re-imaged with a curved mirror. The technique resulted in good (˜30%) efficiency without the spatial aberrations commonly seen in another arrangement that uses two crystals in succession. The modeling sheds light on the complicated nonlinear beam dynamics of the double-crystal conversion, including self- and cross-phase modulation, self-focusing, and the effects of, relative on-axis phase-difference, relative beam sizes, and wave-front curvature matching on seeded XPW conversion. Finally, a design is presented for exploiting the clean-up properties of XPW at the output of an optical parametric generation (OPA) setup in conjunction with an extremely compact prism compressor. The prisms material, separation and geometry are designed carefully to work at the correct wavelength of the OPA setup and are extrapolated to accommodate wavelengths, such as 2mum of parametric wave generation.
Hazardous Waste: Cleanup and Prevention.
ERIC Educational Resources Information Center
Vandas, Steve; Cronin, Nancy L.
1996-01-01
Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)
Pelletier, Mathew G
2008-02-08
One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU) as an alternative to thePC's traditional use of the central processing unit (CPU). The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit "GPU", for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC's central processing unit "CPU", wasgained. The new parallel algorithm operating on the GPU was able to process a 1024x1024image in less than 17ms. At this improved speed, the image processing system's performance should now be sufficient to provide a system that would be capable of realtimefeed-back control that is in tight cooperation with the cleaning equipment.
New electrostatic coal cleaning method cuts sulfur content by 40%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-12-01
An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.
NATO/CCMS PILOT STUDY ON CLEAN PRODUCTS & PROCESSES
Led by the United States, represented by the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, the Pilot Study on Clean Products and Processes was instituted to create an international forum where current trends, developments, and expert...
Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2001-01-01
The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.
Results Of Automating A Photolithography Cell In A Clean Tunnel
NASA Astrophysics Data System (ADS)
June, David H.
1987-01-01
A prototype automated photobay was installed in an existing fab area utilizing flexible material handling techniques within a clean tunnel. The project objective was to prove design concepts of automated cassette-to-cassette handling within a clean tunnel that isolated operators from the wafers being processed. Material handling was by monorail track transport system to feed cassettes to pick and place robots. The robots loaded and unloaded cassettes of wafers to each of the various pieces of process equipment. The material handling algorithms, recipe downloading and statistical process control functions were all performed by custom software on the photobay cell controller.
Green Solvents for Precision Cleaning
NASA Technical Reports Server (NTRS)
Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul
2013-01-01
Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm.
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Liu, Zhu; Li, Lin
2018-01-01
Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method
Efficient Production of 4-KeV X Rays from Laser-Heated Xe Gas = Confined Within a Hohlraum
NASA Astrophysics Data System (ADS)
Grun, Jacob; Suter, Larry J.; Back, Christina A.; Decker, Chris; Kauffman, Robert L.; Davis, John F.
1996-11-01
Clean (debris-free) and efficient multi-kilovolt x-ray sources are needed for irradiating large military test objects and for use as backlighters in future Inertial Confinement Fusion experiments. Laser-plasma x-ray sources are particularly attractive for these uses since their spectrum can be controlled by proper choice of plasma material and laser intensity; and because many laser-plasma sources can be designed to produce little or no particulate debris. We report on an experiment in which we measured the production-efficiency, spectrum, and time history of 1-4 KeV x-rays from beryllium hohlraums which were filled with 1 and 2 atm of Xe gas and then irradiated by a 2-nsec pulse from the NOVA laser. It is predicted that 17be converted into > 4KeV x rays and 30history of >4KeV part of the spectrum is predicted to exhibit a dip in intensity whose depth and location vary with fill pressure and hohlraum size.. We also measured the debris produced by these sources. Work supported by the Defense Special Weapons Agency and the U.S. Department of Energy at LLNL under W-7405-ENG-48.
Relationship between analysis of laser speckle image and Knoop hardness on softening enamel.
Koshoji, Nelson H; Prates, Renato A; Bussadori, Sandra K; Bortoletto, Carolina C; de Miranda Junior, Walter G; Librantz, André F H; Leal, Cintia Raquel Lima; Oliveira, Marcelo T; Deana, Alessandro M
2016-09-01
In this study is presented the correlation between laser speckle images and enamel hardness loss. In order to shift the enamel hardness, a dental demineralization model was applied to 32 samples of vestibular bovine teeth. After they were cleaned, cut and polished, the samples were divided into 4 groups and immersed in 30ml of a cola-based soft drink for 10, 20, 30 and 40min twice a day for 7 consecutive days with half the surface protected by two layers of nail polish. Each sample was analyzed by Knoop hardness and laser speckle imaging. Pearson's correlation analysis demonstrated that the laser speckle image technique presents a strong correlation with the hardness loss of the enamel (r=0.7085, p<0.0001). This finding is corroborated by Blend & Altman analysis, in which the data presented a constant behavior throughout the whole interval. For both analyses, more than 95% of the data is within the confidence interval, as expected. This work demonstrates, for the first time to our knowledge, an empirical model for correlating laser speckle images with the loss of tooth enamel hardness. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; W., Adler; Oetter, N.; Stelzle, F.; Schmidt, M.
2016-06-01
Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.
Calcium and lithium ion production for laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M.; Palm, K.; Stifler, C.
2015-08-23
Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-statemore » Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less
Surface Analysis Evaluation of Handwipe Cleaning for the Space Shuttle RSRM
NASA Technical Reports Server (NTRS)
Lesley, Michael W.; Anderson, Erin L.; McCool, Alex (Technical Monitor)
2001-01-01
In this paper we discuss the role of surface-sensitive spectroscopy (electron spectroscopy for chemical analysis, or ESCA) in the selection of solvents to replace 1,1,1-trichloroethane in handwipe cleaning of bonding surfaces on NASA's Space Shuttle Reusable Solid Rocket Motor (RSRM). Removal of common process soils from a wide variety of metallic and polymeric substrates was characterized. The cleaning efficiency was usually more dependent on the type of substrate being cleaned and the specific process soil than on the solvent used. A few substrates that are microscopically rough or porous proved to be difficult to clean with any cleaner, and some soils were very tenacious and difficult to remove from any substrate below detection limits. Overall, the work showed that a wide variety of solvents will perform at least as well as 1,1,1-trichloroethane.
Electrostatic Hazard Considerations for ODC Solvent Replacement Selection Testing
NASA Technical Reports Server (NTRS)
Fairbourn, Brad
1999-01-01
ODC solvents are used to clean many critical substrates during solid rocket motor production operations. Electrostatic charge generation incidental to these cleaning operations can pose a major safety issue. Therefore, while determining the acceptability of various ODC replacement cleaners, one aspect of the selection criteria included determining the extent of electric charge generation during a typical solvent cleaning operation. A total of six candidate replacement cleaners, sixteen critical substrates, and two types of cleaning swatch materials were studied in simulated cleaning operations. Charge generation and accumulation effects were investigated by measuring the peak voltage and brush discharging effects associated with each cleaning process combination. In some cases, charge generation was found to be very severe. Using the conductivity information for each cleaner, the peak voltage data could in some cases, be qualitatively predicted. Test results indicated that severe charging effects could result in brush discharges that could potentially result in flash fire hazards when occurring in close proximity to flammable vapor/air mixtures. Process controls to effectively mitigate these hazards are discussed.
Validation of cleaning method for various parts fabricated at a Beryllium facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Cynthia M.
This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less
Comparison of nerve trimming with the Er:YAG laser and steel knife
NASA Astrophysics Data System (ADS)
Josephson, G. D.; Bass, Lawrence S.; Kasabian, A. K.
1995-05-01
Best outcome in nerve repair requires precise alignment and minimization of scar at the repair interface. Surgeons attempt to create the sharpest cut surface at the nerve edge prior to approximation. Pulsed laser modalities are being investigated in several medical applications which require precise atraumatic cutting. We compared nerve trimming with the Er:YAG laser (1375 J/cm2) to conventional steel knife trimming prior to neurorrhaphy. Sprague- Dawley rats were anesthetized with ketamine and xylazine. Under operating microscope magnification the sciatic nerve was dissected and transected using one of the test techniques. In the laser group, the pulses were directed axially across the nerve using a stage which fixed laser fiber/nerve distance and orientation. Specimens were sent for scanning electron microscopy (SEM) at time zero. Epineurial repairs were performed with 10 - 0 nylon simple interrupted sutures. At intervals to 90 days, specimens were harvested and sectioned longitudinally and axially for histologic examination. Time zero SEM revealed clean cuts in both groups but individual axons were clearly visible in all laser specimens. Small pits were also visible on the cut surface of laser treated nerves. No significant differences in nerve morphology were seen during healing. Further studies to quantify axon counts, and functional outcome will be needed to assess this technique of nerve trimming. Delivery system improvements will also be required, to make the technique clinically practical.
NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES
The proposed objective of the NATO/CCMS Pilot on clean products and processes is to facilitate further gains in pollution prevention, waste minimization, and design for the environment. It is anticipated that the free exchange of knowledge, experience, data, and models will fost...
SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM
The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...
Tunneling Spectroscopy of Chemically Treated Surfaces of GaAs(001)
NASA Astrophysics Data System (ADS)
Fan, Jia-Fa; Tokumoto, Hiroshi
1996-03-01
Effect of surface chemical treatment on the surface electronic properties of GaAs(001) was studied by tunneling spectroscopy. Samples of highly-Si-doped GaAs were first cleaned and etched using conventional processes, then soaked in aqueous solutions of (NH_4)_2Sx and/or NH_4F for few hours, and finally rinsed in ethanol. The constant separation spectroscopy was done under pure N2 ambient at room temperature (295K) with our scanning tunneling microscope (STM). As a result, the sulfide treament lead to electron tunnelings starting typically at the sample voltages of -0.50 V and 0.90 V at initial settings of 1.50 V and 0.20 nA. For etched-only surface, however, the starting voltages were -0.70 V and 0.70 V. Effects of heating, laser-irradiation, and the fluoride treatment will be presented. Also, the mechanism of the shift of the surface Fermi level will be discussed.
NASA Technical Reports Server (NTRS)
Tylka, Jonathan
2016-01-01
Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.
Idealized gas turbine combustor for performance research and validation of large eddy simulations.
Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R
2007-03-01
This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.
Cleaning a Martian Meteoritean Meteorite
2018-02-13
A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being blasted into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22247
Chung, Tim S; Ayitou, Anoklase J-L; Park, Jin H; Breslin, Vanessa M; Garcia-Garibay, Miguel A
2017-04-20
Aqueous nanocrystalline suspensions provide a simple and efficient medium for performing transmission spectroscopy measurements in the solid state. In this Letter we describe the use of laser flash photolysis methods to analyze the photochemistry of 2-azidobiphenyl and several aryl-substituted derivatives. We show that all the crystalline compounds analyzed in this study transform quantitatively into carbazole products via a crystal-to-crystal reconstructive phase transition. While the initial steps of the reaction cannot be followed within the time resolution of our instrument (ca. 8 ns), we detected the primary isocarbazole photoproducts and analyzed the kinetics of their formal 1,5-H shift reactions, which take place in time scales that range from a few nanoseconds to several microseconds. It is worth noting that the high reaction selectivity observed in the crystalline state translates into a clean and simple kinetic process compared to that in solution.
Automated processing of endoscopic surgical instruments.
Roth, K; Sieber, J P; Schrimm, H; Heeg, P; Buess, G
1994-10-01
This paper deals with the requirements for automated processing of endoscopic surgical instruments. After a brief analysis of the current problems, solutions are discussed. Test-procedures have been developed to validate the automated processing, so that the cleaning results are guaranteed and reproducable. Also a device for testing and cleaning was designed together with Netzsch Newamatic and PCI, called TC-MIC, to automate processing and reduce manual work.
Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.
1979-01-01
A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.
Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials
NASA Astrophysics Data System (ADS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-09-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials.
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.