Science.gov

Sample records for laser desorption ionisation

  1. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-01-01

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  2. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-01-01

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  3. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry.

    PubMed

    Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K

    2007-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material.

  4. Beer fingerprinting by Matrix-Assisted Laser Desorption-Ionisation-Time of Flight Mass Spectrometry.

    PubMed

    Šedo, Ondrej; Márová, Ivana; Zdráhal, Zbyněk

    2012-11-15

    A method allowing parallel fingerprinting of proteins and maltooligosaccharides directly from untreated beer samples is presented. These two classes of compounds were detected by Matrix-Assisted Laser Desorption-Ionisation-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) analysis of beer mixed with 2,5-dihydroxybenzoic acid solution. The maltooligosaccharide profiles acquired from the MALDI sample spot center were not found characteristic for beers of different source and technology. On the other hand, according to profiles containing protein signals acquired from crystals formed on the border of the MALDI sample spot, we were able to distinguish beer samples of the same brand produced by different breweries. The discriminatory abilities of the method were further examined on a set of 17 lager beers, where the fingerprints containing protein signals enabled resolution of majority of examined brands. We propose MALDI-TOF-MS profiling as a rapid tool for beer brewing technology process monitoring, quality control, and determination of beer authenticity.

  5. In situ analysis of Titan's tholins by Laser 2 steps Desorption Ionisation

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Carrasco, N.; Cernogora, G.; Gazeau, M.; Mahjoub, A.; Szopa, C.; Schwell, M.

    2013-12-01

    The main objective of the whole project developed in collaboration (LISA/LATMOS) is to provide a better understanding of the chemical composition of Titan aerosols laboratory analogs, called tholins, and thereby of their formation pathways. The tholins are produced in the PAMPRE reactor (French acronyme for Aerosols Microgravity Production by Reactives Plasmas) developed at LATMOS. These tholins are generated in levitation (wall effects are thus limited) in a low pressure radiofrequency plasma. Up to now, the determination of the physical and chemical properties of these tholins was achieved after their collection and ex-situ analysis by several methods. Their bulk composition was then determined but their insoluble part is still unknown. Other studies were performed after the transfer of the soluble part of the aerosols to different analytical instruments. Therefore, possible artifacts could have influenced the results. We present the SMARD (a French acronym for Mass Spectrometry of Aerosols by InfraRed Laser Desorption) program. A challenging issue of our work is to perform the soluble and unsoluble parts of PAMPRE tholins' analysis in real time and in situ. The coupling of the PAMPRE reactor to a unique instrument (Single Particle Laser Ablation Mass Spectrometry) developed at LISA should allow determining in real time and in situ the characteristics (chemical composition together with granulometry) of the nanometric aerosols. The later are introduced in the analytical instrument using an aerodynamic lens device. Their detection and aerodynamic diameter are determined using two continuous diode lasers operating at λ = 403 nm. Then, the L2DI (Laser 2 steps Desorption Ionisation) technique is used in order to access to the chemical composition of individual particles: they are vaporized using a 10 μm CO2 pulsed laser and the gas produced is then ionized by a 248 nm KrF Excimer laser. Finally, the molecular ions are analyzed by a 1 m linear time-of-flight mass

  6. Formation of aluminium, aluminium nitride and nitrogen clusters via laser ablation of nano aluminium nitride. Laser Desorption Ionisation and Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry.

    PubMed

    Panyala, Nagender Reddy; Prysiazhnyi, Vadym; Slavíček, Pavel; Černák, Mirko; Havel, Josef

    2011-06-30

    Laser Desorption Ionisation (LDI) and Matrix-Assisted Laser Desorption Ionisation (MALDI) Time-of-Flight Mass Spectrometry (TOFMS) were used to study the pulsed laser ablation of aluminium nitride (AlN) nano powder. The formation of Al(m)(+) (m=1-3), N(n)(+) (n=4, 5), AlN(n)(+) (n=1-5, 19, 21), Al(m)N(+) (m=2-3), Al(3)N(2)(+), Al(9)N(n)(+) (n=5, 7, 9, 11 and 15), Al(11)N(n)(+) (n=4, 6, 10, 12, 19, 21, 23, and 25), and Al(13)N(n)(+) (n=25, 31, 32, 33, 34, 35, and 36) clusters was detected in positive ion mode. Similarly, Al(m)(-) (m=1-3), AlN(n)(-) (n=1-3, 5), Al(m)N(-) (n=2, 3), Al(2)N(n)(-) (n=2-4, 28, 30), N(n)(-) (n=2, 3), Al(4)N(7)(-) Al(8)N(n)(-) (n=1-6), and Al(13)N(n)(-) (n=9, 18, 20, 22, 24, 26, 28, 33, 35, 37, 39, 41 and 43) clusters were observed in negative ion mode. The formation of the stoichiometric Al(10) N(10) cluster was shown to be of low abundance. On the contrary, the laser ablation of nano-AlN led mainly to the formation of nitrogen-rich Al(m)N(n) clusters in both negative and positive ion mode. The stoichiometry of the Al(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling. PMID:21598328

  7. Formation of aluminium, aluminium nitride and nitrogen clusters via laser ablation of nano aluminium nitride. Laser Desorption Ionisation and Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry.

    PubMed

    Panyala, Nagender Reddy; Prysiazhnyi, Vadym; Slavíček, Pavel; Černák, Mirko; Havel, Josef

    2011-06-30

    Laser Desorption Ionisation (LDI) and Matrix-Assisted Laser Desorption Ionisation (MALDI) Time-of-Flight Mass Spectrometry (TOFMS) were used to study the pulsed laser ablation of aluminium nitride (AlN) nano powder. The formation of Al(m)(+) (m=1-3), N(n)(+) (n=4, 5), AlN(n)(+) (n=1-5, 19, 21), Al(m)N(+) (m=2-3), Al(3)N(2)(+), Al(9)N(n)(+) (n=5, 7, 9, 11 and 15), Al(11)N(n)(+) (n=4, 6, 10, 12, 19, 21, 23, and 25), and Al(13)N(n)(+) (n=25, 31, 32, 33, 34, 35, and 36) clusters was detected in positive ion mode. Similarly, Al(m)(-) (m=1-3), AlN(n)(-) (n=1-3, 5), Al(m)N(-) (n=2, 3), Al(2)N(n)(-) (n=2-4, 28, 30), N(n)(-) (n=2, 3), Al(4)N(7)(-) Al(8)N(n)(-) (n=1-6), and Al(13)N(n)(-) (n=9, 18, 20, 22, 24, 26, 28, 33, 35, 37, 39, 41 and 43) clusters were observed in negative ion mode. The formation of the stoichiometric Al(10) N(10) cluster was shown to be of low abundance. On the contrary, the laser ablation of nano-AlN led mainly to the formation of nitrogen-rich Al(m)N(n) clusters in both negative and positive ion mode. The stoichiometry of the Al(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling.

  8. Nanostructured weathering steel for matrix-free laser desorption ionisation mass spectrometry and imaging of metabolites, drugs and complex glycans.

    PubMed

    Etxebarria, Juan; Calvo, Javier; Reichardt, Niels-Christian

    2014-06-01

    Weathering steel has been employed for the first time to prepare sample plates for matrix-free laser desorption ionisation mass spectrometry (LDI-MS) of small molecules up to a mass range of around 1500 Da. The effective UV absorption, heat conductivity and porosity of the nanostructured inner rust layer formed during passivation determine the excellent performance in LDI-MS for a broad range of different analyte classes. The inexpensive material was evaluated in a series of relevant analytical applications ranging from the matrix-free detection of serum metabolites, lactose quantification, lipid analysis in milk to the glycoprofiling of antibodies and imaging mass spectrometry of brain tissue samples. PMID:24737011

  9. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    PubMed

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  10. 2,5-Dihydroxybenzoic acid: laser desorption/ionisation as a function of elevated temperature

    NASA Astrophysics Data System (ADS)

    Wallace, W. E.; Arnould, M. A.; Knochenmuss, R.

    2005-03-01

    The temperature dependence of laser desorption/ionization (LDI) ion yields has been measured for 2,5-dihydroxybenzoic acid (2,5-DHB) single crystals from room temperature to 160 °C using time-of-flight (TOF) mass spectrometry. A steep rise in ion production occurs at 90 °C, achieving a maximum at 120 °C, then decreases sharply to a minimum at 140 °C, and returns to a second maximum at 150 °C. Above 160 °C, useful information could not be obtained because of rapid volatilization of the sample into the vacuum. The overall trend in ion production, but not some of the details, is well described by a recent two-step theory of the laser desorption/ionization process, which takes into account the temperature-dependent effects of plume expansion. Measuring the background vacuum composition with a quadrupole mass spectrometer residual gas analyzer (RGA) showed an increase in thermal desorption of 2,5-DHB starting at 90 °C and maximizing at 130 °C. The increased neutral production by thermal desorption is believed to be the cause of the decrease in LDI ion production due to reduced pooling probabilities for laser-excited 2,5-DHB molecules. Thermal dehydration, condensation, and decarboxylation increase the volume of gas released at high temperatures which also serve to decrease LDI ion production at elevated temperatures. Lastly, to confirm the mass spectrometry results, the thermal desorption of 2,5-DHB single crystals under vacuum was measured using a quartz-crystal microbalance (QCM). The onset of desorption was found to occur at 90 °C and the maximum desorption rate was found at 135 °C.

  11. Solvent Separating Secondary Metabolites Directly from Biosynthetic Tissue for Surface-Assisted Laser Desorption Ionisation Mass Spectrometry

    PubMed Central

    Rudd, David; Benkendorff, Kirsten; Voelcker, Nicolas H.

    2015-01-01

    Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of “on surface” solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples. PMID:25786067

  12. Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging

    PubMed Central

    2011-01-01

    Matrix-Assisted Laser Desorption/Ionisation (MALDI) mass spectrometry imaging (MSI) uses the power of high mass resolution time of flight (ToF) mass spectrometry coupled to the raster of lasers shots across the cut surface of tissues to provide new insights into the spatial distribution of biomolecules within biological tissues. The history of this technique in animals and plants is considered and the potential for analysis of proteins by this technique in plants is discussed. Protein biomarker identification from MALDI-MSI is a challenge and a number of different approaches to address this bottleneck are discussed. The technical considerations needed for MALDI-MSI are reviewed and these are presented alongside examples from our own work and a protocol for MALDI-MSI of proteins in plant samples. PMID:21726462

  13. Optimisation of the quantitative determination of chlormequat by matrix-assisted laser desorption/ionisation mass spectrometry.

    PubMed

    Horak, J; Werther, W; Schmid, E R

    2001-01-01

    The plant growth regulator chlormequat, an involatile quaternary ammonium salt, has been quantified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). Restrictions for quantitative MALDI-TOFMS analysis, such as irreproducible crystallisation and unsatisfactory laser stability, have been overcome by the application of two synthesised isotopically labelled standards and the optimisation of the measurement protocol. Data acquisition at constant laser power was compared to data acquisition at approximately constant ion abundance of the relevant ions (analyte and internal standards). Data acquisition at constant ion abundance performed better and enabled a high number of consecutive firings to the same sample deposition area. Furthermore an increased sample-to-sample repeatability and a high reproducibility over several weeks without re-calibration have been attained by this method. Linearity over three orders of magnitude (0.05 to 30 ng/microL chlormequat), with a correlation coefficient of 0.9997, was achieved using [13C3]-chlormequat as internal standard. Limit of detection and limit of determination were determined to be in the low pg/microL range for pure standard solutions. Thin-layer chromatography was applied for the removal of high amounts of choline, which is often present in plant tissue extracts and can adversely affect the ionisation and detection of chlormequat by MALDI-TOFMS. The use of two internal standards ([13C3]- and [2H9]-chlormequat) enabled direct quantification and simultaneous control of the recovery. PMID:11223954

  14. Detection of drugs in lifted cyanoacrylate-developed latent fingermarks using two laser desorption/ionisation mass spectrometric methods.

    PubMed

    Sundar, Latha; Rowell, Frederick

    2014-02-01

    This paper describes a method for lifting cyanoacrylate (CNA)-developed latent fingermarks from a glass surface and the detection of five drugs in lifted marks from fingers that had been in contact with the drugs, using Surface Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry (SALDI-TOF-MS) or Matrix Assisted Laser Desorption Ionisation TOF-MS (MALDI-TOF-MS). Two drugs of abuse (cocaine and methadone) and three therapeutic drugs (aspirin, paracetamol and caffeine) were used as contact residues. Latent fingermarks spiked with the drugs were subjected to CNA fuming followed by dusting with ARRO SupraNano™ MS black magnetic powder (SALDI-TOF-MS) or 2,5-dihydroxybenzoic acid (DHB) (MALDI-TOF-MS). The dusted mark was then exposed to solvent vapour before lifting with a commercial fingerprint lifting tape following established procedures. The presence of the drugs was then confirmed by direct analysis on the tape without further processing using SALDI- or MALDI-TOF-MS. The black magnetic fingerprint powder provided visual enhancement of the CNA-fingermark while no visual enhancement was observed for marks dusted with DHB powder. Similar [M + H](+) peaks for all the drug analytes were observed for both methods along with some sodium and potassium adducts for SALDI-MS and some major fragment ions but the SALDI signals were generally more intense. Simple exposure to acetone vapour of the CNA-developed marks enabled their effective transfer onto the tape which was crucial for subsequent MS detection of the analytes.

  15. Rapid assignment of malting barley varieties by matrix-assisted laser desorption-ionisation - Time-of-flight mass spectrometry.

    PubMed

    Šedo, Ondrej; Kořán, Michal; Jakešová, Michaela; Mikulíková, Renata; Boháč, Michal; Zdráhal, Zbyněk

    2016-09-01

    A method for discriminating malting barley varieties based on direct matrix-assisted laser desorption-ionisation - time-of-flight mass spectrometry (MALDI-TOF MS) fingerprinting of proteins was developed. Signals corresponding to hordeins were obtained by simple mixing of powdered barley grain with a MALDI matrix solution containing 12.5mgmL(-1) of ferulic acid in an acetonitrile:water:formic acid 50:33:17 v/v/v mixture. Compared to previous attempts at MALDI-TOF mass spectrometric analysis of barley proteins, the extraction and fractionation steps were practically omitted, resulting in a significant reduction in analytical time and costs. The discriminatory power was examined on twenty malting barley varieties and the practicability of the method was tested on sixty barley samples acquired from Pilsner Urquell Brewery. The method is proposed as a rapid tool for variety assignment and purity determination of malting barley that may replace gel electrophoresis currently used for this purpose. PMID:27041307

  16. Towards the integration of matrix assisted laser desorption ionisation mass spectrometry imaging into the current fingermark examination workflow.

    PubMed

    Bradshaw, Robert; Bleay, Stephen; Wolstenholme, Rosalind; Clench, Malcolm Ronald; Francese, Simona

    2013-10-10

    A wide range of fingermark enhancement techniques (FET) is currently employed to visualise latent fingermarks at crime scenes. However, if smudged, partial, distorted or absent in the National Fingerprint Database, crime scene marks may be not useful for identification purposes. In these circumstances, a technology enabling chemical imaging of both endogenous and exogenous species contained within the fingermark could provide additional and associative investigative information, to profile the suspect's activities prior to the crime. Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging (MALDI MSI) has proven to be such a technique, enabling investigative information to be gathered, for example, on what substances the donor has come in contact with and what they have ingested. Nonetheless, to be employed, MALDI MSI has to be validated and its compatibility with FET tested for integration into the standard fingermark examination workflow. For the first time, a direct comparison has been made between the efficiency of a range of FET and MALDI MSI under different conditions. This information will build towards validation of the technology. Also, for the first time, MALDI MSI has been successfully employed as a sequential step following fingermark enhancement using many of the currently employed FET. Additionally, known enhancers have been "re-visited" by combining them with a MALDI matrix, providing both improved fingermark development and chemical species detection via MALDI MSI. The result reported here are good indication in favour of the integration of MALDI MSI into the current fingermark examination workflow for gathering additional investigative information.

  17. Identification of Tsetse (Glossina spp.) Using Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry

    PubMed Central

    Hoppenheit, Antje; Murugaiyan, Jayaseelan; Bauer, Burkhard; Steuber, Stephan; Clausen, Peter-Henning; Roesler, Uwe

    2013-01-01

    Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the future. PMID:23875040

  18. A simple protocol for combinatorial cyclic depsipeptide libraries sequencing by matrix-assisted laser desorption/ionisation mass spectrometry.

    PubMed

    Gurevich-Messina, Juan M; Giudicessi, Silvana L; Martínez-Ceron, María C; Acosta, Gerardo; Erra-Balsells, Rosa; Cascone, Osvaldo; Albericio, Fernando; Camperi, Silvia A

    2015-01-01

    Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of 'one-bead-one-peptide' combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4-hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc-Asp[2-phenylisopropyl (OPp)]-OH to Ala-Gly-oxymethylbenzamide-ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N-terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N-Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one-bead-one-cyclic depsipeptide libraries that can be easily open for its sequencing by matrix-assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis.

  19. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    PubMed

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    PubMed

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27434807

  1. Identification of sulfoglycolipids from the alga Porphyridium purpureum by matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight mass spectrometry.

    PubMed

    Naumann, Ivonne; Darsow, Kai H; Walter, Christian; Lange, Harald A; Buchholz, Rainer

    2007-01-01

    Sulfoglycolipids, isolated from different phototrophic organisms, particularly plants and algae, have already been identified as bioactive compounds. In addition to their antiviral activity their influence on the immune response in mammalian cells is the focus of many studies. For the first time it has been possible to investigate purified sulfoquinovosyldiacylglycerols (SQDGs) from the microalga Porphyridium purpureum by matrix-assisted laser desorption/ionisation (MALDI) in the negative ion reflectron mode. Thereby, different solid and ionic liquid matrices have been tested to improve signal intensity during the laser ionisation. By using the MALDI Trap time-of-flight (ToF) multiple-stage (MS(n)) hybrid mass spectrometer the fatty acid compositions of the SQDGs were analysed by MS, and confirmed by MS(2) and MS(3) experiments. Thereby, hexadecanoic acid (C16:0), octadecadienoic acid (C18:2), eicosatetraenoic acid (C20:4), and eicosapentaenoic acid (C20:5) were detected in the purified fraction of SQDGs. The localisation of hexadecanoic acid (C16:0) at the sn-2 position, and unsaturated fatty acids at the sn-1 position of the SQDGs, determined by specific enzymatic hydrolysis, marks a procaryotic biosynthesis of SQDGs in the eucaryotic alga cells.

  2. Development of novel guanidino-labelling derivatisation (GLaD) reagents for liquid chromatography/matrix-assisted laser desorption/ionisation analysis.

    PubMed

    Brancia, Francesco L; Bereszczak, Jessica Z; Piatkowska, Elzbieta; Delneri, Daniela

    2007-01-01

    A new generation of guanidino-labelling (GLaD) reagents were developed for quantitative proteomics using offline microcapillary liquid chromatography (LC) matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). In order to reduce the unwanted overlapping between the isotopic envelopes of the two differentially labelled peptide ions, a novel synthetic route was described for production of both (13)C- and (15)N-containing isotopomers of N,O-dimethylisourea. The use of these types of isotopes has no deleterious effect on the retention times of both differentially labelled peptides during offline microbore reversed-phase LC. In addition, the possibility to incorporate a mass difference of 4 Da can be exploited during post-source decay analysis to generate product ion spectra in which fragment ions containing the modifications appear as doublets in the corresponding product ion spectra, thus facilitating identification of the C-terminal fragment ions.

  3. Comparative study of matrices for their use in the rapid screening of anabolic steroids by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Galesio, M; Rial-Otero, R; Capelo-Martínez, J-L

    2009-06-01

    New data on sample preparation and matrix selection for the fast screening of androgenic anabolic steroids (AAS) by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is presented. The rapid screening of 15 steroids included in the World Anti-Doping Agency (WADA) prohibited list using MALDI was evaluated. Nine organic and two inorganic matrices were assessed in order to determine the best matrix for steroid identification in terms of ionisation yield and interference by characteristic matrix ions. The best results were achieved for the organic matrices 2-(4-hydroxyphenylazo)benzoic acid (HABA) and trans-3-indoleacrylic acid (IAA). Good signals for all the steroids studied were obtained for concentrations as low as 0.010 and 0.050 microg/mL on the MALDI sample plate for the HABA and IAA matrices, respectively. For these two matrices, the sensitivity achieved by MALDI is comparable with the sensitivity achieved by gas chromatography/mass spectrometry (GC/MS), which is the conventional technique used for AAS detection. Furthermore, the accuracy and precision obtained with MALDI are very good, since an internal mass calibration is performed with the matrix ions. For the inorganic matrices, laser fluences higher than those used with organic matrices are required to obtain good MALDI signals. When inorganic matrices were used in combination with glycerol as a dispersing agent, an important reduction of the background noise was observed. Urine samples spiked with the study compounds were processed by solid-phase extraction (SPE) and the screening was consistently positive.

  4. Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry.

    PubMed

    Panyala, Nagender Reddy; Peña-Méndez, Eladia María; Havel, Josef

    2012-05-15

    Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time-of-flight mass spectrometry (LDI TOFMS). Gold clusters Au(m)(+) (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For P(n)(+) (n = 2 to ~111) clusters, the intensities of odd-numbered phosphorus clusters are much higher than those for even-numbered phosphorus clusters. During ablation of P-nanogold mixtures, clusters Au(m)(+) (m = 1-12), P(n)(+) (n = 2-7, 9, 11, 13-33, 35-95 (odd numbers)), AuP(n)(+) (n = 1, 2-88 (even numbers)), Au(2)P(n)(+) (n = 1-7, 14-16, 21-51 (odd numbers)), Au(3)P(n)(+) (n = 1-6, 8, 9, 14), Au(4)P(n)(+) (n = 1-9, 14-16), Au(5)P(n)(+) (n = 1-6, 14, 16), Au(6)P(n)(+) (n = 1-6), Au(7)P(n)(+) (n = 1-7), Au(8)P(n)(+) (n = 1-6, 8), Au(9)P(n)(+) (n = 1-10), Au(10)P(n)(+) (n = 1-8, 15), Au(11)P(n)(+) (n = 1-6), and Au(12)P(n)(+) (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Au(m)(-) (m = 1-5), P(n)(-) (n = 2, 3, 5-11, 13-19, 21-35, 39, 41, 47, 49, 55 (odd numbers)), AuP(n)(-) (n = 4-6, 8-26, 30-36 (even numbers), 48), Au(2)P(n)(-) (n = 2-5, 8, 11, 13, 15, 17), A(3) P(n)(-) (n = 6-11, 32), Au(4)P(n)(-) (n = 1, 2, 4, 6, 10), Au(6)P(5)(-), and Au(7)P(8)(-) clusters were observed. In both modes, phosphorus-rich Au(m)P(n) clusters prevailed. The first experimental evidence for formation of AuP(60) and gold-covered phosphorus Au(12)P(n) (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of

  5. A novel matrix-assisted laser desorption/ionisation mass spectrometry imaging based methodology for the identification of sexual assault suspects.

    PubMed

    Bradshaw, Robert; Wolstenholme, Rosalind; Blackledge, Robert D; Clench, Malcolm R; Ferguson, Leesa S; Francese, Simona

    2011-02-15

    An increase in the use of condoms by sexual offenders has been observed. This is likely to be due both to the risk of sexually transmitted diseases and to prevent the transfer of DNA evidence. In this scenario the detection of condom lubricants at a crime scene could aid in proving corpus delicti. Here we show a novel application of Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (MALDI MSI) for mapping the fingermark ridge pattern simultaneously to the detection of the condom lubricant within the fingermark itself. Two condom brands have been investigated to prove the concept. Condoms were handled producing lubricant-contaminated fingermarks. Images of the ridge pattern were obtained simultaneously to the detection of two lubricants, even several weeks after the fingermark deposition. The results therefore show the potential of MALDI MSI to link the suspect (identification through fingermark ridge pattern) to the crime (detection of condom lubricant) in one analysis. This would enable forensic scientists to provide evidence with stronger support in alleged cases of sexual assault. PMID:21213360

  6. Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software.

    PubMed

    Bright, John J; Claydon, Martin A; Soufian, Majeed; Gordon, Derek B

    2002-02-01

    Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) of intact microorganisms, also known as intact cell MALDI-TOF-MS (ICM-MS), has been shown to produce characteristic mass spectral fingerprints of moieties desorbed from the cell surface. ICM-MS spectra can be obtained in minutes after removal of a colony from a culture plate. The similarity of ICM-MS spectra of replicate samples and of two different batches of the same bacterial strain demonstrates, in this study, the reproducibility of the technique. We have developed the Manchester Metropolitan University Search Engine (MUSE) to rapidly build and search databases of ICM-MS spectra. A database of 35 strains, representing 20 species and 12 genera, was built with MUSE and used to identify 212 isolates. The database was created in 26 s and loaded in 10 s, ready for searching, which took less than 1 s per isolate. Correct matches were made in 79%, 84% and 89% of the 212 samples at strain, species and genus levels, respectively. At least 50% of the replicates of 42 of the 45 isolates matched the correct strain, and the most commonly identified species for 43 of the 45 isolates was the correct one. The close match of the Escherichia coli strains containing the O157 antigen and the E. coli strains containing the K1 antigen suggests that these antigens may have a dominating influence on the ICM-MS fingerprints of these strains. We now have the ability to acquire ICM-MS fingerprints of bacteria and to search a database of these fingerprints within minutes, so that the rapid identification of bacteria to the strain level can be realised.

  7. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    PubMed

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  8. A quick and easy method to identify bacteria by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Pennanec, Xaviera; Dufour, Alain; Haras, Dominique; Réhel, Karine

    2010-02-01

    Concerns with water quality have increased in recent years, in part due to the more frequent contamination of water by pathogens like E. coli and L. pneumophila. Current methods for the typing of bacteria in water samples are based on culture of samples on specific media. These techniques are time-consuming, subject to the impact of interferents and do not totally meet all the requirements of prevention. There is a need for accurate and rapid identification of these microorganisms. This report deals with the detection of bacteria, more precisely of Legionella spp., and the development of an analytical strategy for a rapid and unambiguous identification of these pathogens in water from diverse origins. Therefore, a protein mass mapping using matrix-assisted laser desorption/ionisation mass spectrometry (MALDI MS) of whole bacteria combined with a home-made database of bacteria spectra is applied. A large variety of different bacteria and microorganisms is used to approach the actual composition of samples with numerous interferents. The objective is to propose a universal method for sampling preparation before MALDI MS analysis and optimised spectrometric conditions for reproducible intense peaks. Several experimental factors known to influence signal quality such as time and media of culture have been studied. The proposed method gives promising results for a sure differentiation of Legionella species and subspecies and a rapid identification of bacteria which are the most dangerous or difficult to eradicate. This method is easy to perform with an excellent reproducibility. The analytical protocol and the corresponding database were validated on samples from different origins (cooling tower, plumbing hot water). PMID:20049880

  9. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

    PubMed Central

    2012-01-01

    Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than

  10. Comparison of phenotypic methods and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for the identification of aero-tolerant Actinomyces spp. isolated from soft-tissue infections.

    PubMed

    Ng, L S Y; Sim, J H C; Eng, L C; Menon, S; Tan, T Y

    2012-08-01

    Aero-tolerant Actinomyces spp. are an under-recognised cause of cutaneous infections, in part because identification using conventional phenotypic methods is difficult and may be inaccurate. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a promising new technique for bacterial identification, but with limited data on the identification of aero-tolerant Actinomyces spp. This study evaluated the accuracy of a phenotypic biochemical kit, MALDI-TOF MS and genotypic identification methods for the identification of this problematic group of organisms. Thirty aero-tolerant Actinomyces spp. were isolated from soft-tissue infections over a 2-year period. Species identification was performed by 16 s rRNA sequencing and genotypic results were compared with results obtained by API Coryne and MALDI-TOF MS. There was poor agreement between API Coryne and genotypic identification, with only 33% of isolates correctly identified to the species level. MALDI-TOF MS correctly identified 97% of isolates to the species level, with 33% of identifications achieved with high confidence scores. MALDI-TOF MS is a promising new tool for the identification of aero-tolerant Actinomyces spp., but improvement of the database is required in order to increase the confidence level of identification.

  11. Characterisation of ship diesel primary particulate matter at the molecular level by means of ultra-high-resolution mass spectrometry coupled to laser desorption ionisation--comparison of feed fuel, filter extracts and direct particle measurements.

    PubMed

    Rüger, Christopher P; Sklorz, Martin; Schwemer, Theo; Zimmermann, Ralf

    2015-08-01

    In this study, positive-mode laser desorption-ionisation ultra-high-resolution mass spectrometry (LDI-FT-ICR-MS) was applied to study combustion aerosol samples obtained from a ship diesel engine as well as the feed fuel, used to operate the engine. Furthermore, particulate matter was sampled from the exhaust tube using an impactor and analysed directly from the impaction foil without sample treatment. From the high percentage of shared sum formula as well as similarities in the chemical spread of aerosol and heavy fuel oil, results indicate that the primary aerosol mainly consists of survived, unburned species from the feed fuel. The effect of pyrosynthesis could be observed and was slightly more pronounced for the CH-class compared to other compound classes, but in summary not dominant. Alkylation pattern as well as the aromaticity distribution, using the double bond equivalent, revealed a shift towards lower alkylation state for the aerosol. The alkylation pattern of the most dominant series revealed a higher correlation between different aerosol samples than between aerosol and feed samples. This was confirmed by cluster analysis. Overall, this study shows that LDI-FT-ICR-MS can be successfully applied for the analysis of combustion aerosol at the molecular level and that sum formula information can be used to identify chemical differences between aerosol and fuel as well as between different size fractions of the particulate matter.

  12. Differentiation of vanA-positive Enterococcus faecium from vanA-negative E. faecium by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Nakano, Satoshi; Matsumura, Yasufumi; Kato, Karin; Yunoki, Tomoyuki; Hotta, Go; Noguchi, Taro; Yamamoto, Masaki; Nagao, Miki; Ito, Yutaka; Takakura, Shunji; Ichiyama, Satoshi

    2014-09-01

    Vancomycin-resistant enterococci are important nosocomial pathogens that require rapid and accurate detection for infection control. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) has begun to be used in many clinical laboratories because it is a rapid, simple and inexpensive method for identifying micro-organisms. In this study, the performance of MALDI-TOF/MS to differentiate vanA-positive Enterococcus faecium (VPEF) from vanA-negative E. faecium (VNEF) was evaluated. A total of 61 VPEF isolates collected during regional surveillance in Kyoto (Japan) and 71 VNEF isolates collected from bacteraemia patients were analysed using MALDI-TOF/MS with three ClinProTools models. All of the isolates were correctly identified as E. faecium using the MALDI Biotyper system. To discriminate between VPEF and VNEF, all three ClinProTools models yielded >90% recognition capability (basic sensitivity) and cross-validation (reliability of the models); the genetic algorithm model exhibited the highest performance (99.18% and 92.40%, respectively). The high detection performance of MALDI-TOF/MS for VPEF offers the potential for routine laboratory use. PMID:25104134

  13. Differentiation of vanA-positive Enterococcus faecium from vanA-negative E. faecium by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Nakano, Satoshi; Matsumura, Yasufumi; Kato, Karin; Yunoki, Tomoyuki; Hotta, Go; Noguchi, Taro; Yamamoto, Masaki; Nagao, Miki; Ito, Yutaka; Takakura, Shunji; Ichiyama, Satoshi

    2014-09-01

    Vancomycin-resistant enterococci are important nosocomial pathogens that require rapid and accurate detection for infection control. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) has begun to be used in many clinical laboratories because it is a rapid, simple and inexpensive method for identifying micro-organisms. In this study, the performance of MALDI-TOF/MS to differentiate vanA-positive Enterococcus faecium (VPEF) from vanA-negative E. faecium (VNEF) was evaluated. A total of 61 VPEF isolates collected during regional surveillance in Kyoto (Japan) and 71 VNEF isolates collected from bacteraemia patients were analysed using MALDI-TOF/MS with three ClinProTools models. All of the isolates were correctly identified as E. faecium using the MALDI Biotyper system. To discriminate between VPEF and VNEF, all three ClinProTools models yielded >90% recognition capability (basic sensitivity) and cross-validation (reliability of the models); the genetic algorithm model exhibited the highest performance (99.18% and 92.40%, respectively). The high detection performance of MALDI-TOF/MS for VPEF offers the potential for routine laboratory use.

  14. Genotyping for Glycophorin GYP(B-A-B) Hybrid Genes Using a Single Nucleotide Polymorphism-Based Algorithm by Matrix-Assisted Laser Desorption/Ionisation, Time-of-Flight Mass Spectrometry.

    PubMed

    Wei, Ling; Lopez, Genghis H; Ji, Yanli; Condon, Jennifer A; Irwin, Darryl L; Luo, Guangping; Hyland, Catherine A; Flower, Robert L

    2016-10-01

    The genetic basis for five GP(B-A-B) MNS system hybrid glycophorin blood group antigens results from rearrangement between the homologous GYPA and GYPB genes. Each hybrid glycophorin displays a characteristic profile of antigens. Currently, no commercial serological reagents are currently available to serologically type for these antigens. The aim of this study was to develop a single nucleotide polymorphism (SNP) mapping genotyping technique to allow characterisation of various GYP(B-A-B) hybrid alleles. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS) assays were designed to genotype five GYP(B-A-B) hybrid alleles. Eight nucleotide positions were targeted and incorporated into the SNP mapping protocol. The allelic frequencies were calculated using peak areas. Sanger sequencing was performed to resolve a GYP*Hop 3' breakpoint. Observed allelic peak area ratios either coincided with the expected ratio or were skewed (above or below) from the expected ratio with switching occurring at and after the expected break point to generate characteristic mass spectral plots for each hybrid. Sequencing showed that the GYP*Hop crossover in the intron 3 region, for this example, was identical to that for GYP*Bun reference sequence. An analytical algorithm using MALDI-TOF MS genotyping platform defined GYPA inserts for five GYP(B-A-B) hybrids. The SNP mapping technique described here demonstrates proof of concept that this technology is viable for genotyping hybrid glycophorins, GYP(A-B-A), GYP(A-B) and GYP(B-A), and addresses the gap in current typing technologies.

  15. Selective solid-phase isolation of methionine-containing peptides and subsequent matrix-assisted laser desorption/ionisation mass spectrometric detection of methionine- and of methionine-sulfoxide-containing peptides.

    PubMed

    Grunert, Tom; Pock, Katharina; Buchacher, Andrea; Allmaier, Günter

    2003-01-01

    Methionine residues and the oxidised forms in proteins are becoming more and more important in view of their biological function. In particular, methionine sulfoxide seems to have a regulatory function. This paper presents a fast strategy for simultaneous determination of methionine- and methionine-sulfoxide-containing peptides, involving application of methionine-specific solid-phase reagent chemistry combined with matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). In the first step, methionine-containing peptides are covalently bound as sulfonium salts to glass beads, whereas methionine-sulfoxide-containing peptides and other methionine-free peptides are not bound and are washed out. The wash solution is used for MALDI-MS analysis to determine the molecular masses of these peptides and to perform, if necessary, seamless post-source decay (PSD) fragment ion analysis. Methionine-sulfoxide-containing peptides can be identified due to the characteristic metastable loss of methanesulfenic acid from the protonated molecules. In the second step, the bound peptides are cleaved from the matrix of the beads by addition of 2-mercaptoethanol at pH 8.5-8.8. The resulting peptides, mainly methionine-containing peptides, are analysed in a straightforward manner by MALDI-MS and seamless PSD. The strategy allows the fast identification of methionine- and methionine-sulfoxide-containing peptides even in complex tryptic digests, as demonstrated here for the glycoprotein antithrombin. These results show that sometimes methionine-containing tryptic peptides are not detected due to steric restrictions (e.g. glycosylation near the methionine residue) on the binding reaction, and that, on the other hand, some methionine-free peptides can be quite strongly bound non-covalently to the matrix of the beads. The latter observation indicates the necessity of seamless PSD fragment ion analysis for unambiguous identification. Furthermore, there are indications that

  16. Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometry.

    PubMed

    Stübiger, Gerald; Marchetti, Martina; Nagano, Marietta; Reichel, Christian; Gmeiner, Günter; Allmaier, Günter

    2005-01-01

    Our experiments show that it is possible to detect different types of recombinant human erythropoietins (rhEPOs), EPO-alpha, EPO-beta and novel erythropoesis stimulating protein (NESP), based on exact molecular weight (MW) determination by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) applying a high-resolution time-of-flight (TOF) mass analyser in the linear mode. Detection limits for the highly purified, intact glycoproteins were achievable in the low fmol range (25-50 fmol) using a sample preparation method applying a hydrophobic sample support (DropStop) as MALDI target surface. These results are very promising for the development of highly sensitive detection methods for a direct identification of rhEPO after enrichment from human body fluids. During our investigation we were able to differentiate EPO-alpha, EPO-beta and NESP based on distinct molecular substructures at the protein level by specific enzymatic reactions. MW determination of the intact molecules by high resolving one-dimensional sodium dodecyl sulfate /polyacrylamide gel electrophoresis (1D SDS-PAGE) and isoform separation by planar isoelectric focusing (IEF) was compared with MALDI-MS data. Migration differences between the rhEPOs were observed from gel electrophoresis, whereby MWs of 38 kDa in the case of EPO-alpha/beta and 49 kDa for NESP could be estimated. In contrast, an exact MW determination by MALDI-MS based on internal calibration revealed average MWs of 29.8 +/- 0.3 kDa for EPO-alpha/beta and 36.8 +/- 0.4 kDa for NESP. IEF separation of the intact rhEPOs revealed the presence of four to eight distinct isoforms in EPO-alpha and EPO-beta, while four isoforms, which appeared in the more acidic area of the gels, were detected by immunostaining in NESP. A direct detection of the different N- or O-glycoform pattern from rhEPOs using MALDI-MS was possible by de-sialylation of the glycan structures and after de-N-glycosylation of the intact molecules. Thereby, the

  17. Laser-modified electron scattering from a slowly ionising atom

    NASA Technical Reports Server (NTRS)

    Fiordilino, E.; Mittleman, M. H.

    1983-01-01

    When an electron scatters from an atom in the presence of a laser field which is resonant with an atomic transition, off-shell effects enter into the cross section. These only become significant at higher laser intensities where the atom may also be ionised by the laser. Cross-sections are obtained for electron-atom scattering in which these off-shell effects appear and in which the slow ionisation of the atom by the laser is included. Experiments are suggested in which simplifications can occur and which still retain these 'exotic' effects.

  18. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS).

    PubMed

    Morelato, Marie; Beavis, Alison; Kirkbride, Paul; Roux, Claude

    2013-03-10

    Desorption electrospray ionisation mass spectrometry (DESI-MS) is an emerging analytical technique that enables in situ mass spectrometric analysis of specimens under ambient conditions. It has been successfully applied to a large range of forensically relevant materials. This review assesses and highlights forensic applications of DESI-MS including the analysis and detection of illicit drugs, explosives, chemical warfare agents, inks and documents, fingermarks, gunshot residues and drugs of abuse in urine and plasma specimens. The minimal specimen preparation required for analysis and the sensitivity of detection achieved offer great advantages, especially in the field of forensic science.

  19. The effect of electrospray solvent composition on desorption electrospray ionisation (DESI) efficiency and spatial resolution.

    PubMed

    Green, F M; Salter, T L; Gilmore, I S; Stokes, P; O'Connor, G

    2010-04-01

    In desorption electrospray ionisation (DESI) the interaction between the electrospray and the surface is key to two important analytical parameters, the spatial resolution and the sensitivity. We evaluate the effect of the electrospray solvent type, organic solvent fraction with water, analyte solubility and substrate wettability on DESI erosion diameter and material transferral into useful ion signal. To do this five amino acids, glycine, alanine, valine, leucine and phenylalanine are prepared as thin films on three substrates, UV/ozone treated glass, glass and polytetrafluoroethylene (PTFE). Four different solvents, acetonitrile (ACN), methanol (MeOH), ethanol (EtOH) and propan-2-ol (IPA), are used with organic solvent fractions with water varying from 0.1 to 1. These model systems allow the solubility or wettability to be kept constant as other parameters are varied. Additionally, comparison with electrospray ionisation (ESI) allows effects of ionisation efficiency to be determined. It is shown that the DESI efficiency is linearly dependent on the solubility (for these materials at least) and for analytes with solubilities below 1.5 g kg(-1), additional strategies may be required for DESI to be effective. We show that the DESI erosion diameter improves linearly with organic solvent fraction, with an organic solvent fraction of 0.9 instead of 0.5 leading to a 2 fold improvement. Furthermore, this leads to a 35 fold increase in DESI efficiency, defined as the molecular ion yield per unit area. It is shown that these improvements correlate with smaller droplet sizes rather than surface wetting or ionisation. PMID:20349538

  20. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry.

    PubMed

    Martin, Helen J; Reynolds, James C; Riazanskaia, Svetlana; Thomas, C L Paul

    2014-09-01

    The non-invasive nature of volatile organic compound (VOC) sampling from skin makes this a priority in the development of new screening and diagnostic assays. Evaluation of recent literature highlights the tension between the analytical utility of ambient ionisation approaches for skin profiling and the practicality of undertaking larger campaigns (higher statistical power), or undertaking research in remote locations. This study describes how VOC may be sampled from skin and recovered from a polydimethylsilicone sampling coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening of volatile fatty acids (VFAs) from human skin. Analysis times were reduced by 79% compared to gas chromatography-mass spectrometry methods (GC-MS) and limits of detection in the range 300 to 900 pg cm(-2) for VFA skin concentrations were obtained. Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high and 5 low odour, were sampled in Manilla and the samples returned to the UK and screened by TD-SESI-MS and TD-GC-MS for malodour precursors with greater than >95% agreement between the two analytical techniques. Eight additional VFAs were also identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-MS appears to have significant potential for the high throughput targeted screening of volatile biomarkers in human skin.

  1. Quantum theory of laser-stimulated desorption

    NASA Technical Reports Server (NTRS)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  2. First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons.

    PubMed

    Oster, Markus; Elsasser, Michael; Schnelle-Kreis, Jürgen; Zimmermann, Ralf

    2011-12-01

    The on-line analysis of single aerosol particles with mass spectrometrical methods is an important tool for the investigation of aerosols. Often, a single laser pulse is used for one-step laser desorption/ionisation of aerosol particles. Resulting ions are detected with time-of-flight mass spectrometry. With this method, the detection of inorganic compounds is possible. The detection of more fragile organic compounds and carbon clusters can be accomplished by separating the desorption and the ionisation in two steps, e.g. by using two laser pulses. A further method is, using a heated metal surface for thermal desorption of aerosol particles. If an ultraviolet laser is used for ionisation, a selective ionisation of polycyclic aromatic hydrocarbons (PAH) and alkylated PAH is possible via a resonance-enhanced multiphoton-ionisation process. Laser velocimetry allows individual laser triggering for single particles and additionally delivers information on aerodynamic particle diameters. It was shown that particles deriving from different combustion sources can be differentiated according to their PAH patterns. For example, retene, a C(4)-alkylated phenanthrene derivative, is a marker for the combustion of coniferous wood. In this paper, the first field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer during a measurement campaign in Augsburg, Germany in winter 2010 is presented. Larger PAH-containing particles (i.e. with aerodynamic diameters larger than 1 μm), which are suspected to be originated by re-suspension processes of agglomerated material, were in the focus of the investigation. Due to the low concentration of these particles, an on-line virtual impactor enrichment system was used. The detection of particle-bound PAH in ambient particles in this larger size region was possible and in addition, retene could be detected on several particles, which allows to identify wood combustion as

  3. Laser-induced desorption from sapphire surfaces

    SciTech Connect

    Hamza, A.V.; Schildbach, M.A.

    1992-03-01

    Laser-induced desorption of energetic ({approximately}7eV) aluminum ions was observed from clean and water-covered sapphire (1102) surfaces using time-of-flight mass spectrometry with laser wavelengths of 1064, 355, and 266 nm. In sharp contrast, O{sup +} (H{sup +} and OH{sup +}) ions were observed in electron-induced desorption measurements with 300 eV electrons from the bare (water- covered) (1102) surface. Sapphire surfaces were characterized with low energy electron diffraction, reflection electron energy loss spectroscopy, and Auger electron spectroscopy. 8 refs.

  4. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    PubMed

    Ehlert, Sven; Walte, Andreas; Zimmermann, Ralf

    2013-11-19

    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown.

  5. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  6. A study of ionisation of free and clustered molecules under the action of femtosecond laser radiation

    SciTech Connect

    Apatin, V M; Kompanets, V O; Lokhman, V N; Ogurok, N-D D; Poydashev, D G; Ryabov, E A; Chekalin, S V

    2014-05-30

    We have investigated the processes of excitation and ionisation of monomers and clusters of CF{sub 3}I, IF{sub 2}CCOF and Fe(CO){sub 5} molecules under the action of femtosecond laser radiation at the wavelengths of 266, 400 and 800 nm. It is concluded that the nature of the excitation of free molecules and clustered molecules by femtosecond pulses is different. The simulation of the ionisation yield of the objects under study has shown that the multiphoton ionisation is the key mechanism in the case of free molecules, while the field ionisation may play a significant role for clusters, in particular, in the case of ionisation at the wavelength of λ = 800 nm. (interaction of radiation with matter)

  7. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  8. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets

    PubMed Central

    Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.

    2008-01-01

    We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311

  9. Two step laser desorption - laser ionization of PAHs. Experimental Setup

    NASA Astrophysics Data System (ADS)

    Poveda, Juan C.; Guerrero, Alfonso; Álvarez, Ignacio; Cisneros, Carmen

    2012-11-01

    We present an experimental setup for the photoionization of PAHs in a cooled molecular beam using laser radiation of 266 nm. Molecular beams was produced by laser desorption of samples using unfocused laser radiation of 522 nm, which was synchronously coupled with ionization laser pulses. At low energies per pulse, <1 mJ, the molecular ionization of PAHs take place in the soft conditions regimen producing a poor molecular dissociation. The R-ToF spectra are mainly characterized by the presence of the parent molecular ion. When buffer gases as Helium were used it helps to avoid the molecular clustering and contributes to the molecular cooling when the adiabatic expansion takes place.

  10. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  11. Laser-induced thermal desorption of aniline from silica surfaces

    NASA Astrophysics Data System (ADS)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  12. Pulsed UV laser induced desorption of ions from aluminum

    NASA Astrophysics Data System (ADS)

    Taylor, David Paul; Helvajian, Henry

    2000-04-01

    A study of pulsed UV laser induced desorption (LID) has been performed on an Al(111) sample. The positive ion desorption was investigated at low laser fluence, in a regime in which the ion yield exhibits a highly non-linear dependence on the laser fluence. The peak of the kinetic energy distribution of the desorbed ions has been measured to be about 15 eV. This result is consistent with the conjecture that the ion departing the metal surface can acquire a kinetic energy kick from a process associated with plasmon annihilation. The Al + ion kinetic energy peak is asymmetric and about 3 eV full-width at half-maximum (FWHM). This experiment indicates that plasmon excitation can play a significant role in laser stimulated desorption induced by electronic transitions (DIET).

  13. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lončarić, Ivor; Alducin, Maite; Saalfrank, Peter; Juaristi, J. Iñaki

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O2 is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  14. The laser desorption/laser ionization mass spectra of some indole derivatives and alkaloids

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1992-06-01

    The laser desorption and laser ionization mass spectra of some indole derivatives and alkaloids are described with particular reference to their modes of fragmentation. Mass spectra of yohimbine, reserpine, quinine and quinidine are presented. Full experimental details are given.

  15. Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds

    SciTech Connect

    Pento, A V; Nikiforov, S M; Simanovsky, Ya O; Grechnikov, A A; Alimpiev, S S

    2013-01-31

    A new method was developed for the mass spectrometric analysis of organic and bioorganic compounds, which involves laser ablation with the ionisation of its products by laser-plasma radiation and enables analysing gaseous, liquid, and solid substances at atmospheric pressure without sample preparation. The capabilities of this method were demonstrated by the examples of fast pharmaceutical composition screening, real-time atmosphere composition analysis, and construction of the mass spectrometric images of organic compound distributions in biological materials. (interaction of laser radiation with matter)

  16. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  17. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  18. LASER DESORPTION IONIZATION OF SIZE RESOLVED LIQUID MICRODROPLETS. (R823980)

    EPA Science Inventory

    Mass spectra of single micrometer-size glycerol droplets containing organic and inorganic analytes were obtained by on-line laser desorption ionization. Aerosol droplets entered the mass spectrometer through an inlet where they were detected by light scattering of a continuous la...

  19. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  20. Production of negative osmium ions by laser desorption and ionization.

    PubMed

    Rodríguez, D; Sonnenschein, V; Blaum, K; Block, M; Kluge, H-J; Lallena, A M; Raeder, S; Wendt, K

    2010-01-01

    The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionization with pulsed lasers and identification of the ions by time-of-flight mass spectrometry. First investigations of negative osmium ion production using a pulsed laser for desorption and ionization and a commercial matrix-assisted laser desorption/ionization time-of-flight system for identification has demonstrated the suitability of this technique. More than 10(3) negative osmium ions per shot were registered after bombarding pure osmium powder with a 5 ns pulse width Nd:yttrium aluminum garnet laser. The limitation in the ion number was imposed by the detection limit of the microchannel plate detector.

  1. Laser desorption in an ion trap mass spectrometer

    SciTech Connect

    Eiden, G.C.; Cisper, M.E.; Alexander, M.L.; Hemberger, P.H.; Nogar, N.S.

    1993-02-01

    Laser desorption in a ion-trap mass spectrometer shows significant promise for both qualitative and trace analysis. Several aspects of this methodology are discussed in this work. We previously demonstrated the generation of both negative and positive ions by laser desorption directly within a quadrupole ion trap. In the present work, we explore various combinations of d.c., r.f., and time-varying fields in order to optimize laser generated signals. In addition, we report on the application of this method to analyze samples containing compounds such as amines, metal complexes, carbon clusters, and polynuclear aromatic hydrocarbons. In some cases the ability to rapidly switch between positive and negative ion modes provides sufficient specificity to distinguish different compounds of a mixture with a single stage of mass spectrometry. In other experiments, we combined intensity variation studies with tandem mass spectrometry experiments and positive and negative ion detection to further enhance specificity.

  2. Investigations into ultraviolet matrix-assisted laser desorption

    SciTech Connect

    Heise, T.W.

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm{sup 2}. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  3. Laser desorption time-of-flight mass spectrometry of vacuum UV photo-processed methanol ice

    NASA Astrophysics Data System (ADS)

    Paardekooper, D. M.; Bossa, J.-B.; Linnartz, H.

    2016-07-01

    Context. Methanol in the interstellar medium mainly forms upon sequential hydrogenation of solid CO. With typical abundances of up to 15% (with respect to water) it is an important constituent of interstellar ices where it is considered as a precursor in the formation of large and complex organic molecules (COMs), e.g. upon vacuum UV (VUV) photo-processing or exposure to cosmic rays. Aims: This study aims at detecting novel complex organic molecules formed during the VUV photo-processing of methanol ice in the laboratory using a technique more sensitive than regular surface diagnostic tools. In addition, the formation kinetics of the main photo-products of methanol are unravelled for an astronomically relevant temperature (20 K) and radiation dose. Methods: The VUV photo-processing of CH3OH ice is studied by applying laser desorption post-ionisation time-of-flight mass spectrometry (LDPI TOF-MS), and analysed by combining molecule-specific fragmentation and desorption features. Results: The mass spectra correspond to fragment ions originating from a number of previously recorded molecules and from new COMs, such as the series (CO)xH, with x = 3 and y < 3x-1, to which prebiotic glycerin belongs. The formation of these large COMs has not been reported in earlier photolysis studies and suggests that such complex species may form in the solid state under interstellar conditions.

  4. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  5. Correlation of the ionisation response at selected points of IC sensitive regions with SEE sensitivity parameters under pulsed laser irradiation

    SciTech Connect

    Gordienko, A V; Mavritskii, O B; Egorov, A N; Pechenkin, A A; Savchenkov, D V

    2014-12-31

    The statistics of the ionisation response amplitude measured at selected points and their surroundings within sensitive regions of integrated circuits (ICs) under focused femtosecond laser irradiation is obtained for samples chosen from large batches of two types of ICs. A correlation between these data and the results of full-chip scanning is found for each type. The criteria for express validation of IC single-event effect (SEE) hardness based on ionisation response measurements at selected points are discussed. (laser applications and other topics in quantum electronics)

  6. Laser Desorption of Explosives Traces with Low Vapors Pressure

    NASA Astrophysics Data System (ADS)

    Akmalov, A. E.; Chistyakov, A. A.; Kotkovskii, G. E.

    In this work comparison of the desorption effectiveness of picosecond and nanosecond laser sources (λ = 266, 532 nm) were carried out to investigate the possibility of creating a non-contact sampling device for detectors of explosives on the principles of ion mobility spectrometry (IMS) and field asymmetric ion mobility spectrometry (FAIMS). The results of mass spectrometric studies of TNT (2,4,6-Trinitrotoluene), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), RDX (1,3,5-Trinitro-1,3,5-triazacyclohexane) laser desorption from a quartz substrate are presented. It is shown that the most effective laser source is a Nd:YAG3+ laser (λ = 266 nm; E = 1 mJ; τ = 5-10 ns; q = 108 W/cm2). The typical desorbed mass is 2 ng for RDX, 4-6 ng for TNT and 0.02 ng HMX per single laser pulse. The results obtained make it possible to create a non-contact portable laser sampling device operating in frequency mode with high efficiency.

  7. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    SciTech Connect

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  8. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  9. ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)

    EPA Science Inventory

    In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...

  10. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    DOEpatents

    Vertes, Akos; Chen, Yong

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  11. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  12. Nanoassisted laser desorption-ionization-MS imaging of tumors.

    PubMed

    Tata, Alessandra; Fernandes, Anna Maria A P; Santos, Vanessa G; Alberici, Rosana M; Araldi, Dioneia; Parada, Carlos A; Braguini, Wellington; Veronez, Luciana; Silva Bisson, Gabriela; Reis, Felippe H Z; Alberici, Luciane C; Eberlin, Marcos N

    2012-08-01

    The ability of nanoassisted laser desorption-ionization mass spectrometry (NALDI-MS) imaging to provide selective chemical monitoring with proper spatial distribution of lipid profiles from tumor tissues after plate imprinting has been tested. NALDI-MS imaging identified and mapped several potential lipid biomarkers in a murine model of melanoma tumor (inoculation of B16/F10 cells). It also confirmed that the in vivo treatment of tumor bearing mice with synthetic supplement containing phosphoethanolamine (PHO-S) promoted an accentuated decrease in relative abundance of the tumor biomarkers. NALDI-MS imaging is a matrix-free LDI protocol based on the selective imprinting of lipids in the NALDI plate followed by the removal of the tissue. It therefore provides good quality and selective chemical images with preservation of spatial distribution and less interference from tissue material. The test case described herein illustrates the potential of chemically selective NALDI-MS imaging for biomarker discovery.

  13. Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.

    1998-03-01

    Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.

  14. Numerical simulation of impurity desorption induced by nanosecond and femtosecond laser pulses

    SciTech Connect

    Chi Yinsheng; Lin Xiaohui; Chen Minhua; Chen Yunfei

    2006-08-01

    A model based on a stochastic process was developed to study the impurity molecule desorption from a substrate induced by nanosecond and femtosecond lasers. The dynamics of adsorbed molecules irradiated by the laser pulses can be considered to be a Brownian motion in the bath of excited energy carriers. A two-step model was used to describe the nonequilibrium heating process induced by the femtosecond laser pulses. The difference between the desorption processes induced by nanosecond and femtosecond lasers was discussed based on the numerical results for the desorption of CO molecules from a Ru surface. Results indicate that the femtosecond laser is a much better tool for desorption than the nanosecond laser.

  15. Photochemical Reactions of Aminonaphthols Caused by Laser Desorption/Ionization

    PubMed Central

    Nagoshi, Keishiro; Inatomi, Kazuma; Osaka, Issey; Takayama, Mitsuo

    2016-01-01

    The formation of monomeric and dimeric ions of seven different aminonaphthols (ANLs) has been studied by using laser desorption/ionization (LDI) with a nitrogen laser. The positive-ion data of all the ANLs merely showed molecular ion M·+ without protonated molecule [M+H]+, while 1-amino-2-naphthol (1,2-ANL) and 2-amino-1-naphthol (2,1-ANL) showed an intense dimeric ion [2 M−2H2O+H]+. The negative-ion data showed deprotonated molecule [M−H]− in common, while the spectra of 1,2-ANL, 2,1-ANL and 8-amino-2-naphthol (8,2-ANL) accompanied an intense peak corresponding to negative molecular ion M·− and the 8,2-ANL and 4-amino-1-naphthol (4,1-ANL) accompanied dehydrogenated anion [M−2H]·−. The formation of monomeric ions was discussed from the standpoints of thermochemical properties such as ionization energy, gas-phase acidity, electron affinity, and bond dissociation energy. The formation of dimeric ions [2 M−2H2O+H]+ observed in the 1,2-ANL and 2,1-ANL could be explained by the radical combination in the amino groups. An isomer 5-amino-1-naphthol (1-ANL) did not give any dimeric ions in the both positive- and negative-ion spectra. The influence of laser fluence upon the appearance of the monomeric ions such as M·+, [M+H]+, [M−H]− and [M−2H]·− of the 5,1-ANL has been examined. PMID:27563510

  16. Photochemical Reactions of Aminonaphthols Caused by Laser Desorption/Ionization.

    PubMed

    Nagoshi, Keishiro; Inatomi, Kazuma; Osaka, Issey; Takayama, Mitsuo

    2016-01-01

    The formation of monomeric and dimeric ions of seven different aminonaphthols (ANLs) has been studied by using laser desorption/ionization (LDI) with a nitrogen laser. The positive-ion data of all the ANLs merely showed molecular ion M(·+) without protonated molecule [M+H](+), while 1-amino-2-naphthol (1,2-ANL) and 2-amino-1-naphthol (2,1-ANL) showed an intense dimeric ion [2 M-2H2O+H](+). The negative-ion data showed deprotonated molecule [M-H](-) in common, while the spectra of 1,2-ANL, 2,1-ANL and 8-amino-2-naphthol (8,2-ANL) accompanied an intense peak corresponding to negative molecular ion M(·-) and the 8,2-ANL and 4-amino-1-naphthol (4,1-ANL) accompanied dehydrogenated anion [M-2H](·-). The formation of monomeric ions was discussed from the standpoints of thermochemical properties such as ionization energy, gas-phase acidity, electron affinity, and bond dissociation energy. The formation of dimeric ions [2 M-2H2O+H](+) observed in the 1,2-ANL and 2,1-ANL could be explained by the radical combination in the amino groups. An isomer 5-amino-1-naphthol (1-ANL) did not give any dimeric ions in the both positive- and negative-ion spectra. The influence of laser fluence upon the appearance of the monomeric ions such as M(·+), [M+H](+), [M-H](-) and [M-2H](·-) of the 5,1-ANL has been examined. PMID:27563510

  17. CHARACTERIZATION OF CRYPTOSPORIDIUM PARVUM BY MATRIX-ASSISTED LASER DESORPTION -- IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...

  18. Laser desorption mass spectrometry for fast DNA analysis

    SciTech Connect

    Chen, C.H.; Ch`ang, L.Y.; Taranenko, N.I.; Allman, S.L.; Tang, K.; Matteson, K.J.

    1995-09-01

    During the past few years, major effort has been directed toward developing mass spectrometry to measure biopolymers because of the great potential benefit to biomedical research. Hellenkamp and his co-workers were the first to report that large polypeptide molecules can be ionized and detected without significant fragmentation when a greater number of nicotinic acid molecules are used as a matrix. This method is now well known as matrix-assisted laser desorption/ionization (MALDI). Since then, various groups have reported measurements of very large proteins by MALDI. Reliable protein analysis by MALDI is more or less well established. However, the application of MALDI to nucleic acids analysis has been found to be much more difficult. Most research on the measurement of nucleic acid by MALDI were stimulated by the Human Genome Project. Up to now, the only method for reliable routine analysis of nucleic acid is gel electrophoresis. Different sizes of nucleic acids can be separated in gel medium when a high electric field is applied to the gel. However, the time needed to separate different sizes of DNA segments usually takes from several minutes to several hours. If MALDI can be successfully used for nucleic acids analysis, the analysis time can be reduced to less than I millisecond. In addition, no tagging with radioactive materials or chemical dyes is needed. In this work, we will review recent progress related to MALDI for DNA analysis.

  19. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  20. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  1. Quantum-mechanical calculations of residual current density excited during gas ionisation by an intense two-colour laser pulse

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Romanov, A. A.; Silaev, A. A.

    2016-05-01

    By solving analytically and numerically the three-dimensional time-dependent Schrödinger equation, we have studied the excitation of a residual current density during gas ionisation by a two-colour laser pulse containing a field at the fundamental frequency and an additional field at the doubled frequency. We have found the dependences of the residual current density on the phase shift between the components of the field and on the intensity of the fundamental harmonic. It is shown that the strong-field approximation taking into account the interaction of freed electrons with the parent ion yields a good quantitative agreement with the results of direct numerical simulation.

  2. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  3. Laser desorption of explosives as a way to create an effective non-contact sampling device

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.

    2015-10-01

    Comparison of desorption effectiveness of Nd3+:YAG nanosecond laser sources (λ=266, 354, 532 nm) has been carried out to investigate a possibility of creating a non-contact sampling device for detectors of explosives based on principles of ion mobility spectrometry (IMS) and field asymmetric ion mobility spectrometry (FAIMS). The results of mass spectrometric study of laser desorption of nitroamine, nitrate ester and nitroaromatic compounds from a quartz substrate are presented. It is shown that irradiation of adsorbed layers of studied samples by a single pulse of non-resonant laser radiation (λ=532 nm) leads to efficient desorption at laser intensity 107 W/cm2 and above. Excitation of the first singlet state of nitro compounds by resonant radiation (λ=354 nm) provides heating of adsorbed layers and thermal desorption. A strongly non-equilibrium (non-thermal) dissociation process is developed when the second singlet state of nitroaromatic molecules is excited by radiation at λ=266 nm, along with thermal desorption. It is shown that Nd3+: YAG laser with wavelength λ=266 nm, pulse duration 5-10 ns, intensity 107-109 W/cm2 is the most effective source for creation a non-contact sampling device based on desorption of explosives from surfaces.

  4. Laser Desorption Supersonic Jet Spectroscopy of Hydrated Tyrosine

    NASA Astrophysics Data System (ADS)

    Oba, Hikari; Shimozono, Yoko; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Carcabal, Pierre

    2013-06-01

    The structure of tyrosine (tyr) consists of amino-acid chain and phenol, and it has roughly two possible binding sites for water, amino-acid site and phenolic OH site. Investigating how water molecule binds to tyr will give fundamental information for hydrations of peptide and protein. Resonance enhanced multi photon ionization (REMPI) spectrum of tyr-water 1:1 cluster has already been reported by de Vries and co-workers, however, no analysis on the hydrated structures has been reported. In the REMPI spectrum, two clusters of bands are observed; one appears at ˜35600 cm^{-1} energy region which is the almost same with 0-0 transitions of tyr monomer, and another is observed at ˜300 cm^{-1} lower than the former. Based on the electronic transition energy of phenylalanine and the hydrated clusters, the former is expected to be derived from a structure that water binds to amino acid site. On the other hand, it is plausibly predicted that the latter originates from a structure that water binds to phenolic OH group, because the electronic transition of mono hydrated phenol is ˜300 cm^{-1} red-shifted from the monomer. We applied IR dip spectroscopy which can measure conformer selective IR spectra to the tyr-(H_{2}O)_{1} clusters by using laser desorption supersonic jet technique to confirm the assignments. Especially in the phenolic OH bound isomer, it was found that the intra molecular hydrogen bond within amino-acid chain, which is far from the water molecule and cannot interact directly with each other, is strengthened by the hydration. A. Abio-Riziq et al., J. Phys. Chem. A, 115, 6077 (2011). Y. Shimozono, et al., Phys. Chem. Chem. Phys., (2013) DOI: 10.1039/c3cp43573c. T. Ebata et al., Phys. Chem. Chem. Phys., 8, 4783 (2006). T. Watanabe et al., J. Chem. Phys., 105, 408 (1996).

  5. Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays.

    PubMed

    Stolee, Jessica A; Vertes, Akos

    2011-05-28

    Tailored silicon nanopost arrays (NAPA) enable controlled and resonant ion production in laser desorption ionization experiments and have been termed nanophotonic ion sources (Walker et al., J. Phys. Chem. C, 2010, 114, 4835-4840). As the post dimensions are comparable to or smaller than the laser wavelength, near-field effects and localized electromagnetic fields are present in their vicinity. In this contribution, we explore the desorption and ionization mechanism by studying how surface derivatization affects ion yields and fragmentation. We demonstrate that by increasing the laser fluence on derivatized NAPA with less polar surfaces that have decreased interaction energy between the structured silicon substrate and the adsorbate, the spectrum changes from exhibiting primarily molecular ions to showing a growing variety and abundance of fragments. The polarization angle of the laser beam had been shown to dramatically affect the ion yields of adsorbates. For the first time, we report that by rotating the plane of polarization of the desorption laser, the internal energy of the adsorbate can also be modulated resulting in polarization dependent fragmentation. This polarization effect also resulted in selective fragmentation of vitamin B(12). To explore the internal energy of NAPA generated ions, the effect of the post aspect ratios on the laser desorption thresholds and on the internal energy of a preformed ion was studied. Elevated surface temperatures and enhanced near fields in the vicinity of high aspect ratio posts are thought to contribute to desorption and ionization from NAPA. Comparison of the fluence dependence of the internal energies of ions produced from nanoporous silicon and NAPA substrates indicates that surface restructuring or transient melting by the desorption laser is a prerequisite for the former but not for the latter. PMID:21437297

  6. Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays.

    PubMed

    Stolee, Jessica A; Vertes, Akos

    2011-05-28

    Tailored silicon nanopost arrays (NAPA) enable controlled and resonant ion production in laser desorption ionization experiments and have been termed nanophotonic ion sources (Walker et al., J. Phys. Chem. C, 2010, 114, 4835-4840). As the post dimensions are comparable to or smaller than the laser wavelength, near-field effects and localized electromagnetic fields are present in their vicinity. In this contribution, we explore the desorption and ionization mechanism by studying how surface derivatization affects ion yields and fragmentation. We demonstrate that by increasing the laser fluence on derivatized NAPA with less polar surfaces that have decreased interaction energy between the structured silicon substrate and the adsorbate, the spectrum changes from exhibiting primarily molecular ions to showing a growing variety and abundance of fragments. The polarization angle of the laser beam had been shown to dramatically affect the ion yields of adsorbates. For the first time, we report that by rotating the plane of polarization of the desorption laser, the internal energy of the adsorbate can also be modulated resulting in polarization dependent fragmentation. This polarization effect also resulted in selective fragmentation of vitamin B(12). To explore the internal energy of NAPA generated ions, the effect of the post aspect ratios on the laser desorption thresholds and on the internal energy of a preformed ion was studied. Elevated surface temperatures and enhanced near fields in the vicinity of high aspect ratio posts are thought to contribute to desorption and ionization from NAPA. Comparison of the fluence dependence of the internal energies of ions produced from nanoporous silicon and NAPA substrates indicates that surface restructuring or transient melting by the desorption laser is a prerequisite for the former but not for the latter.

  7. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    PubMed

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  8. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    PubMed

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies. PMID:20590219

  9. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.

  10. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  11. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  12. LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)

    EPA Science Inventory

    Laser desorption/ionization characteristics of single
    ultrafine multicomponent aerosols have been investigated.
    The results confirm earlier findings that (a) the negative
    ion spectra are dominated by free electrons and (b) the ion
    yield-to-mass ratio is higher for ...

  13. Laser desorption time-of-flight mass spectrometer DNA analyzer. Final report

    SciTech Connect

    Chen, C.H.W.; Martin, S.A.

    1997-02-01

    The objective of this project is the development of a laser desorption time-of-flight mass spectrometer DNA analyzer which can be broadly used for biomedical research. Tasks include: pulsed ion extraction to improve resolution; two-component matrices to enhance ionization; and solid phase DNA purification.

  14. Benzimidazole, coumrindione and flavone derivatives as alternate UV laser desorption ionization (LDI) matrices for peptides analysis

    PubMed Central

    2013-01-01

    Background Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization mass spectrometric technique, allowing the analysis of bio-molecules and other macromolecules. The matrix molecules require certain characteristic features to serve in the laser desorption/ionization mechanism. Therefore, only a limited number of compounds have been identified as ultraviolet- laser desorption/ionization (UV-LDI) matrices. However, many of these routine matrices generate background signals that useful information is often lost in them. We have reported flavones, coumarindione and benzimidazole derivatives as alternate UV-LDI matrices. Results Thirty one compounds have been successfully employed by us as matrices for the analysis of low molecular weight (LMW) peptides (up to 2000 Da). Two peptides, bradykinin and renin substrate tetra-decapeptide were analyzed by using the newly developed matrices. The MS measurements were made after mixing the matrix solution with analyte by using dried droplet sample preparation procedures. The synthesized matrix materials showed better S/N ratios and minimal background signals for low mass range. Furthermore, pico molar concentrations of [Glu1]-fibrinopeptide B human could be easily analyzed with these matrices. Finally, BSA-digest was analyzed and identified through database search against Swiss-Prot by using Mascot. Conclusions These results validate the good performance of the synthesized UV-laser desorption/ionization (LDI) matrices for the analysis of low molecular weight peptides. PMID:23621998

  15. Laser Desorption Mass Spectrometry for High Throughput DNA Analysis and Its Applications

    SciTech Connect

    Allman, S.L.; Chen, C.H.; Golovlev, V.V.; Isola, N.R.; Matteson, K.J.; Potter, N.T.; Taranenko, N.I.

    1999-01-23

    Laser desorption mass spectrometry (LDMS) has been developed for DNA sequencing, disease diagnosis, and DNA Fingerprinting for forensic applications. With LDMS, the speed of DNA analysis can be much faster than conventional gel electrophoresis. No dye or radioactive tagging to DNA segments for detection is needed. LDMS is emerging as a new alternative technology for DNA analysis.

  16. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  17. Laser desorption mass spectrometry for high-throughput DNA analysis and its applications

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Golovlev, Valeri V.; Taranenko, N. I.; Allman, S. L.; Isola, Narayana R.; Potter, N. T.; Matteson, K. J.; Chang, Linus Y.

    1999-05-01

    Laser desorption mass spectrometry (LDMS) has been developed for DNA sequencing, disease diagnosis, and DNA fingerprinting for forensic applications. With LDMS, the speed of DNA analysis can be much faster than conventional gel electrophoresis. No dye or radioactive tagging to DNA segments for detection is needed. LDMS is emerging as a new alternative technology for DNA analysis.

  18. UV laser desorption of nitric oxide from semiconducting C60/Cu(111)

    NASA Astrophysics Data System (ADS)

    Hoger, T.; Grimmer, D.; Zacharias, H.

    2007-08-01

    The desorption of NO from a well-characterized, epitaxially grown semiconducting C60 surface is reported. Two different channels are identified in the laser desorption. Both channels yield a comparably high desorption cross section of σ1=7.0×10-17 cm2 and σ2=5.5×10-17 cm2 for the first and second channel, respectively. The laser desorbed NO molecules are detected with rovibrational state selectivity by (1+1) REMPI in the A^2Σ^+ to{X}^2 Pi γ-bands. In the first channel the desorbing molecules are highly excited with an average kinetic energy of =174 meV. The rotational population distribution can be fitted by a rotational temperature of Trot=800 K. A rotational translational coupling is observed, with velocities ranging from 1000 m/s for low to 1300 m/s for high rotational states. The vibrationally excited population is estimated to be less than 1% of the ground state. The second channel yields less excited molecules and an almost Boltzmann distributed rotational population with a temperature of Trot=280 K. The apparent velocity distribution derived from the pump-probe delay yields molecules much too slow to be explained by even a thermal desorption. This desorption is probably caused by a long-lived electronic excitation in the substrate for which a lifetime of τ≈160 μs is estimated.

  19. Interaction of extreme ultraviolet laser radiation with solid surface: ablation, desorption, nanostructuring

    NASA Astrophysics Data System (ADS)

    Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Frolov, Oleksandr; Juha, Libor; Chalupsky, Jaromir

    2015-02-01

    The area, where interaction of focused XUV laser radiation with solid surface takes place, can be divided according to local fluency into desorption region (if fluency is larger than zero and smaller than ablation threshold) and ablation region (if fluency is equal or larger than this threshold). It turned out that a direct nanostructuring (e.g. imprinting diffraction pattern created on edges of windows of proximity standing grid) is possible in the desorption region only. While for femtosecond pulses the particle (atom/molecule) removal-efficiency η in the desorption region is very small (η < 10%), and hence, it can be easily distinguished from the ablation region with η ~ 100%, for nanosecond pulses in desorption region this η rises at easily ablated materials from 0% at the periphery up to ~90% at the ablation contour and, therefore, the boundary between these two regions can be found with the help of nanostructuring only. This rise of removal efficiency could be explained by gradually increased penetration depth (due to gradually removed material) during laser pulse. This is a warning against blind using crater shape for fluency mapping in the case of long laser pulses. On the other hand it is a motivation to study an ablation plum (or ablation jet) and to create a knowledge bank to be used at future numerical modeling of this process.

  20. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    SciTech Connect

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-03-17

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  1. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils.

    SciTech Connect

    Zinovev, A. V.; Veryovkin, I. V.; Pellin, M. J.; Materials Science Division

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  2. Efficient ionisation of calcium, strontium and barium by resonant laser pumping

    NASA Technical Reports Server (NTRS)

    Skinner, C. H.

    1980-01-01

    Efficient ionization has been observed when an atomic vapor of strontium, barium or calcium was illuminated with a long pulse tunable laser at the frequency of the atomic resonance line. The variation in the degree of ionization with neutral density and laser intensity has been measured using the 'hook' method. The maximum ionization observed was 94%. Excited state populations were measured yielding an excitation temperature (depending on exact experimental conditions) in the region of 0.4 eV. The decay of ion density after the laser pulse was monitored and the recombination coefficients determined. The results are interpreted in terms of an electron heating model.

  3. Applications of X-ray lasers utilizing plasmas that are only a few times ionised

    SciTech Connect

    Nilsen, J; Scofield, J H

    2004-06-09

    With the advent of tabletop X-ray lasers that operate at high repetition rate more emphasis is being put on finding useful applications for these lasers. The 14.7 nm Ni-like Pd X-ray laser at Lawrence Livermore National Laboratory is being used to do many interferometer experiments. As detailed quantitative comparisons are done between experiments and code simulations it is clear that some of the assumptions used to analyze the experiments need to be modified as one explores plasmas that are only a few times ionized. In the case of aluminium plasmas that have been analyzed with interferometers there has been some unusual behavior where the fringe lines bend the wrong way. In this work we will discuss how the index of refraction for aluminium is far more complicated than generally assumed because there are significant contributions to the index from the continuum and line structure of the bound electrons that can dominate the free electron contribution and even cause the index to be greater than one. We will also discuss some potential applications of the high repetition rate Ne-like Ar X-ray laser at 46.9 nm. In particular we will present modeling that shows how the Ar laser could be used to modify the absorption coefficient of a helium plasma and allow one to study the kinetics of plasmas with very low temperatures of a few eV. We will also discuss frequency doubling of the 46.9 nm laser.

  4. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  5. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-09-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  6. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks

    NASA Astrophysics Data System (ADS)

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering.

  7. Laser desorption mass spectrometry: Technical limitations, fundamentals, and application to coal

    SciTech Connect

    Hunt, J.E.; Winans, R.E.

    1995-12-31

    Objective of this study is to assess scope and limitations of laser desorption (LD) and matrix-assisted laser desorption (MALDI) as applied to coals. LD and MALDI mass spectrometry are increasingly used to detect intact molecular species, such as proteins with masses from 1000 to 100,000 amu and beyond. MALDI is also being used for high molecular weight polymers. A good example, related to coal-type systems, is the report on lignin mass spectrometry by MALDI. The mass spectrum shows a wide molecular distribution of several hundred to larger than 16000, with the center of gravity of the distribution around 2600. Results are interpreted in terms of oligomeric lignin molecules. Thus, if there are indeed large molecular species in a polymeric content in coals or coal extracts, MALDI is an attractive technique.

  8. Fossil fuel characterization using laser desorption mass spectrometry: Applications and limitations

    SciTech Connect

    Hunt, J.E.; Winans, R.E.

    1995-08-01

    Laser desorption mass spectroscopy (LDMS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI) are applicable to the high molecular weight compounds in fossil fuels which resist intact ionization. LD or MALDI of coals and extracts do not show reproducible ion intensity over mass 2000. This paper describes the scope and limitations of LD and MALD in time-of-flight mass spectrometers applied to high molecular weight molecules such as proteins and polymers. Coal was also analyzed. It is concluded that the sample preparation step is perhaps the most important part in MALDI. Observed high mass ions in coal may be from contaminant proteins. Optimal matrices must be found. Finally, the mass spectrum is senstive to number average molecular weight; a low value, however, does not preclude presence of high molecular weight species.

  9. Translational energy and desorption rate of NO from Pt(111) by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Pelak, Robert A.; Booth, M. F.; Busch, D. G.; Gao, Shiwu; Ho, Wilson

    1995-09-01

    Photodesorption of nitric oxide from Pt(111) using femtosecond laser pulses at 620 nm and 310 nm is found to result in a superlinear dependence of desorption yield on absorbed laser fluence. The translational energy distributions of the desorbed molecules are found to be nearly Maxwell-Boltzmann. For both 620 nm and 310 nm pulses with adsorbed fluences greater than 2.5 mJ/cm2, the average translational energy is found to increase linearly. At lower fluences, it is constant at 750 K, possibly suggesting a transition between DIMET and DIET desorption processes. In two pulse correlation measurements, it is found that the first pulse yield and the average translational energy have different widths as a function of delay between pulses.

  10. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal

    NASA Astrophysics Data System (ADS)

    Maier, Marta S.; Parera, Sara D.; Seldes, Alicia M.

    2004-04-01

    Carminic acid, isolated from cochineal, was analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray mass spectrometry (ESI-MS). Application of both techniques to the analysis of carminic acid suspended in linseed oil and applied to a piece of canvas, demonstrated the ability of MALDI and ESI-MS to identify this organic dye in a mixture as those used in easel painting.

  11. Energy-resolved study of laser-stimulated Si + desorption from Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Wu, Z.

    1995-06-01

    An energy-resolved study of Si + desorption from Si(1 0 0) under the irradiation of low fluence 193 nm pulsed laser beam is made using high resolution mass-selected time-of-flight (TOF) technique. New features in the kinetic energy distribution of desorbed Si ions have been observed. A simple DIET model is found to provide a reasonably good understanding for the main features in the TOF spectra.

  12. Mass spectrometric imaging and laser desorption ionization (LDI) with ice as a matrix using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Berry, Jamal Ihsan

    The desorption of biomolecules from frozen aqueous solutions on metal substrates with femtosecond laser pulses is presented for the first time. Unlike previous studies using nanosecond pulses, this approach produces high quality mass spectra of biomolecules repeatedly and reproducibly. This novel technique allows analysis of biomolecules directly from their native frozen environments. The motivation for this technique stems from molecular dynamics computer simulations comparing nanosecond and picosecond heating of water overlayers frozen on Au substrates which demonstrate large water cluster formation and ejection upon substrate heating within ultrashort timescales. As the frozen aqueous matrix and analyte molecules are transparent at the wavelengths used, the laser energy is primarily absorbed by the substrate, causing rapid heating and explosive boiling of the ice overlayer, followed by the ejection of ice clusters and the entrained analyte molecule. Spectral characteristics at a relatively high fluence of 10 J/cm 2 reveal the presence of large molecular weight metal clusters when a gold substrate is employed, with smaller cluster species observed from frozen aqueous solutions on Ag, Cu, and Pb substrates. The presence of the metal clusters is indicative of an evaporative cooling mechanism which stabiles cluster ion formation and the ejection of biomolecules from frozen aqueous solutions. Solvation is necessary as the presence of metal clusters and biomolecular ion signals are not observed from bare metal substrates in absence of the frozen overlayer. The potential for mass spectrometric imaging with femtosecond LDI of frozen samples is also presented. The initial results for the characterization of peptides and peptoids linked to combinatorial beads frozen in ice and the assay of frozen brain tissue from the serotonin transporter gene knockout mouse via LDI imaging are discussed. Images of very good quality and resolution are obtained with 400 nm, 200 fs pulses

  13. Matrix-assisted laser desorption fourier transform mass spectrometry for biological compounds

    SciTech Connect

    Hettich, R.; Buchanan, M.

    1990-01-01

    The recent development of matrix-assisted UV laser desorption (LD) mass spectrometry has made possible the ionization and detection of extremely large molecules (with molecular weights exceeding 100,000 Daltons). This technique has generated enormous interest in the biological community for the direct examination of large peptides and oligonucleotides. Although this matrix-assisted ionization method has been developed and used almost exclusively with time-of-flight (TOF) mass spectrometers, research is currently in progress to demonstrate this technique with trapped ion mass spectrometers, such as Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The potential capabilities of FTMS for wide mass range, high resolution measurement, and ion trapping experiments suggest that this instrumental technique should be useful for the detailed structural characterization of large ions generated by the matrix-assisted technique. We have recently demonstrated that matrix-assisted ultraviolet laser desorption can be successfully used with FTMS for the ionization of small peptides. The objective of this report is to summarize the application and current limitations of matrix-assisted laser desorption FTMS for the characterization of peptides and oligonucleotides at the isomeric level. 4 refs., 3 figs., 2 tabs.

  14. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    PubMed

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-01

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI. PMID:26705612

  15. The Need for Speed in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

    PubMed Central

    Prentice, Boone M.; Caprioli, Richard M.

    2016-01-01

    Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ ionization (MALDI) represents one of the most broadly applicable IMS technologies. In recent years, advances in solid state laser technology, mass spectrometry instrumentation, computer technology, and experimental methodology have produced IMS systems capable of unprecedented data acquisition speeds (>50 pixels/second). In applications of this technology, throughput is an important consideration when designing an IMS experiment. As IMS becomes more widely adopted, continual improvements in experimental setups will be important to address biologically and clinically relevant time scales. PMID:27570788

  16. Aerosol matrix-assisted laser desorption ionization for liquid chromatography/time-of-flight mass spectrometry

    SciTech Connect

    Murray, K.K.; Lewis, T.M.; Beeson, M.D.; Russell, D.H. )

    1994-05-15

    We report the application of aerosol matrix-assisted laser desorption ionization (MALDI) to liquid chromatography/mass spectrometry (LC/MS). The aerosol MALDI experiment uses aerosol liquid introduction in conjunction with pulsed UV laser ionization to form ions from large biomolecules in solution. Mass analysis is achieved in a time-of-flight mass spectrometer. In the LC/MALDI-MS experiment, the matrix solution is combined with the column effluent in a mixing tee, LC/MALDI-MS is demonstrated for the separation of bradykinin, gramicidin S, and myoglobin. 32 refs., 8 figs., 1 tab.

  17. omniSpect: an open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images.

    PubMed

    Parry, R Mitchell; Galhena, Asiri S; Gamage, Chaminda M; Bennett, Rachel V; Wang, May D; Fernández, Facundo M

    2013-04-01

    We present omniSpect, an open source web- and MATLAB-based software tool for both desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) that performs computationally intensive functions on a remote server. These functions include converting data from a variety of file formats into a common format easily manipulated in MATLAB, transforming time-series mass spectra into mass spectrometry images based on a probe spatial raster path, and multivariate analysis. OmniSpect provides an extensible suite of tools to meet the computational requirements needed for visualizing open and proprietary format MSI data.

  18. Two-color Laser Desorption of Nanostructured MgO Thin Films

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.

    2009-09-30

    Neutral magnesium atom emission from nanostructured MgO thin films is induced using two-color nanosecond laser excitation. We find that combined visible/UV excitation, for single-color pulse energies below the desorption threshold, induces neutral Mg-atom emission with hyperthermal kinetic energies in the range of 0.1- 0.2 eV. The observed metal atom emission is consistent with a mechanism involving rapid electron transfer to 3-coordinated Mg surface sites. The two-color Mg-atom signal is significant only for parallel laser polarizations and temporally overlapped laser pulses indicating that intermediate excited states are short-lived compared to the 5 nanosecond laser pulse duration.

  19. Structure of neat and hydrated liquid nicotine and laser resonant desorption of clusters from nicotine-water solutions

    NASA Astrophysics Data System (ADS)

    Mihesan, Claudia; Ziskind, Michael; Focsa, Cristian; Seydou, Mahamadou; Lecomte, Frédéric; Schermann, Jean Pierre

    2008-11-01

    The microscopic structures of neat liquid nicotine and nicotine-water mixtures are examined through infrared spectroscopy and laser resonant desorption mass-spectroscopy. The infrared spectra of the solutions are analyzed using DFT calculations of homogenous and mixed hydrogen-bonded clusters. Neat nicotine and hydrated nicotine cluster are experimentally observed through IR laser resonant desorption of a nicotine/water ice mixture followed by laser ionization mass-spectrometry. A sizable fraction of those cluster ions is the result of laser ionization of small neutral clusters already present in the sample.

  20. Matrix-assisted laser-desorption-ionization mass spectrometry of proteins using a free-electron laser

    SciTech Connect

    Cramer, R.; Hillenkamp, F.; Haglund, R.

    1995-12-31

    Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is one of the most promising techniques for spectral fingerprinting large molecules, such as proteins, oligonucleotides and carbohydrates. In the usual implementation of this technique, the analyte molecule is dissolved in an aromatic liquid matrix material which resonantly absorbs ultraviolet laser light. Resonant absorption by {pi}-{pi}* transitions volatilizes the matrix and initiates subsequent charge transfer to the analyte molecules, which are detected by time-of-flight mass spectrometry. Recent MALDI-MS studies with Er:YAG (2.94 {mu}m) and CO{sub 2}{sup 4} (9.4-10.6 {mu}m) lasers suggest that them is significant unexplored potential for mass spectrometry of macromolecules, including oligonucleotide, in the mid-infrared. Preliminary experiments show that it is possible to capitalize on the rich rovibronic absorption spectrum of virtually all organics to initiate resonant desorption in matrix material over the entire range of pH values. However, the mechanism of charge transfer is particularly problematic for infrared MALDI because of the low photon energy. In this paper, we report the results of MALI-MS studies on small proteins using the Vanderbilt FEL and several matrix materials. Proteins with masses up to roughly 6,000 amu were detected with high resolution in a linear time-of-flight mass spectrometer. By varying the pulse duration using a broadband Pockels cell, we have been able to compare the results of relatively long (5 {mu}s) and short (0.1 {mu}s) irradiation on the desorption and ionization processes. Compared to uv-MALDI spectra of identical analytes obtained with a nitrogen laser (337 nm) in the same time-of-flight spectrometer, the infrared results appear to show that the desorption and ionization process goes on over a somewhat longer time scale.

  1. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  2. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    SciTech Connect

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  3. Matrix-assisted laser desorption mass spectrometry of gas-phase peptide-metal complexes

    NASA Astrophysics Data System (ADS)

    Hortal, Ana R.; Hurtado, Paola; Martínez-Haya, Bruno

    2008-12-01

    Cation attachment to a model peptide has been investigated in matrix-assisted laser desorption experiments. Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) is chosen as a system for study, and Cu2+ and K+ salts are used as cationizing agents. Three fundamentally different types of samples are investigated: (1) a crystalline sample of Ang I, metal salt and MALDI matrix, prepared with the conventional dried droplet method; (2) a solvent-free fine powder mixture of the same three compounds, and (3) a solution of the angiotensin and the metal salt in an ionic liquid matrix (a molten organic salt that acts as a MALDI active solvent). Effective protonation and cationization of the peptide are achieved with the three methods. The transition metal systematically provides more efficient cationization than the alkali metal. At sufficiently high concentration of the salt, the attachment of up to four copper cations to the angiotensin is observed in the MALDI spectrum. In contrast, only one K+ cation is efficiently bound to the peptide. For a given salt concentration, the highest degree of cationization is obtained in the laser desorption from the ionic liquid matrix. This is attributed to the efficient transfer of free metal cations to the desorption plume, where the complexation takes place.

  4. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  5. Measurement of desorption energies of H 2 and CO from SS-304 LN and inconel 625 surfaces by laser induced thermal desorption

    NASA Astrophysics Data System (ADS)

    Tagle, J. A.; Pospieszczyk, A.

    Stainless steel (AISI 304 LN) and Inconel 625 surfaces have been exposed to different pressures of H 2 and CO in the temperature range of 300-473 K. A laser heating technique for studying fast surface processes was applied to determine the desorption energies of these gasses from SS 304 LN and Inconel 625 surfaces. The Clausius-Clapeyron plots give a desorption energy value of 97 kJ mol -1 for H 2/SS 304 LN and 77.4 kJ mol -1 for H 2/Inconel 625. The adsorption of CO on these surfaces is drastically affected by the fast growing of a chromium oxide layer at the surface during the laser shots. In this case the desorption energy was determined by fitting both the experimental recoverage times and the equilibrium coverage curves. The oxide passivation layer produces a decrease of the desorption energy from 92.8 to 72.8 kJ mol -1 for CO/SS 304 LN and from 91.8 to 77.9 kJ mol -1 for CO/Inconel 625 when the oxygen surface concentration increases to 14%.

  6. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Yagnik, Gargey B; Hansen, Rebecca L; Korte, Andrew R; Reichert, Malinda D; Vela, Javier; Lee, Young Jin

    2016-09-20

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. The screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules. PMID:27573492

  7. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens.

    PubMed

    Bokhart, M T; Muddiman, D C

    2016-09-21

    Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) is a technique well suited for analysis of biological specimens. This tutorial review focuses on recent advancements and applications of IR-MALDESI MSI to better understand key biological questions. Through optimization of user-defined source parameters, comprehensive and quantitative MSI data can be obtained for a variety of analytes. The effect of an ice matrix layer is well defined in the context of desorption dynamics and resulting ion abundance. Optimized parameters and careful control of conditions affords quantitative MSI data which provides valuable information for targeted, label-free drug distribution studies and untargeted metabolomic datasets. Challenges and limitations of MSI using IR-MALDESI are addressed in the context of the bioimaging field. PMID:27484166

  8. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  9. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    SciTech Connect

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  10. Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles.

    PubMed

    Bernier, Matthew C; Wysocki, Vicki H; Dagan, Shai

    2015-07-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid.

  11. Laser desorption/Fourier transform mass spectra of glycoalkaloids and steroid glycosides.

    PubMed

    Coates, M L; Wilkins, C L

    1986-04-01

    Positive- and negative-ion mass spectra of five glycoconjugates were obtained using laser desorption/Fourier transform mass spectrometry. These were the glycoalkaloids alpha-solanine and alpha-tomatine and the steroid glycosides gitoxin, lanatoside A and digitonin. Doping with KCl yielded both potassium- and chloride-attachment ions. Few fragment ions were observed for these species, with the exception of digitonin, although the negative-ion spectra showed relatively more fragmentation than the positive-ion spectra. All major fragments appeared to arise from losses of sugar groups due to cleavages at the glycosidic linkages. This contrasted sharply with the behavior of the malto-oligosaccharides studied in this laboratory.

  12. Time-Dependent Theory of Laser-Induced Desorption of Small Molecules from Metals, and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Saalfrank, Peter

    1998-03-01

    As an alternative to ``ordinary'', i.e., thermally induced chemistry at the interface of a molecular gas and a solid substrate, surface photochemistry has gained importance in recent years. In this talk, we describe our efforts towards a quantum--dynamical theory of laser--induced elementary processes at adsorbate--covered metal surfaces. First, using time--dependent open--system reduced density matrix theory and nuclear wave packet methods, the indirect (``hot--electron mediated''), ultraviolet/visible--laser induced desorption of small molecules (nitric oxide or ammonia) from metal substrates (platinum or copper) will be addressed. We model both the single-- (DIET, ``desorption induced by electronic transitions'' -- use of continuous wave lasers) and multiple--excitation limits (DIMET, M=``multiple'' -- use of femtosecond lasers). Based on our simulations, the lifetimes of adsorbate electronic states will be estimated, experimental observations will be rationalized, and strategies for the active control of photochemical reactions at surfaces will be proposed. For the example system ammonia/copper, alternatives to the UV/visible--laser induced adsorbate photochemistry will be explored in which the adsorbate remains electronically unexcited. For instance, using laser pulses in the infrared, desorption can also be enforced by ``vibrational ladder climbing''. An analogous, modified strategy can be used to achieve isomerization of adsorbed species. Finally, as the reverse process to desorption, IR laser--induced adsorption will be considered.

  13. Highly Reproducible Laser Beam Scanning Device for an Internal Source Laser Desorption Microprobe Fourier Transform Mass Spectrometer

    SciTech Connect

    Scott, Jill Rennee; Tremblay, Paul Leland

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (~5 µm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ~9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  14. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer

    NASA Astrophysics Data System (ADS)

    Scott, Jill R.; Tremblay, Paul L.

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  15. Comparative mass spectrometric analyses of Photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry.

    PubMed

    Siegel, M M; Tabei, K; Tsao, R; Pastel, M J; Pandey, R K; Berkenkamp, S; Hillenkamp, F; de Vries, M S

    1999-06-01

    Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix-assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 +/- 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques.

  16. Statistical discrimination of black gel pen inks analysed by laser desorption/ionization mass spectrometry.

    PubMed

    Weyermann, Céline; Bucher, Lukas; Majcherczyk, Paul; Mazzella, Williams; Roux, Claude; Esseiva, Pierre

    2012-04-10

    Pearson correlation coefficients were applied for the objective comparison of 30 black gel pen inks analysed by laser desorption ionization mass spectrometry (LDI-MS). The mass spectra were obtained for ink lines directly on paper using positive and negative ion modes at several laser intensities. This methodology has the advantage of taking into account the reproducibility of the results as well as the variability between spectra of different pens. A differentiation threshold could thus be selected in order to avoid the risk of false differentiation. Combining results from positive and negative mode yielded a discriminating power up to 85%, which was better than the one obtained previously with other optical comparison methodologies. The technique also allowed discriminating between pens from the same brand. PMID:22115723

  17. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  18. Applications of electrospray laser desorption ionization mass spectrometry for document examination.

    PubMed

    Cheng, Sy-Chyi; Lin, Yu-Shan; Huang, Ming-Zong; Shiea, Jentaie

    2010-01-01

    We have employed electrospray laser desorption ionization mass spectrometry (ELDI-MS) to rapidly characterize certain classes of compounds--the inks within the characters made by inks and inkjet printer on regular paper and the chemical compounds within thermal papers. This ELDI-MS approach allowed the ink and paper samples to be distinguished in terms of their chemical compositions. Sample pretreatment was unnecessary and the documents were practically undamaged after examination. The ink chemicals on the documents were desorbed through laser irradiation (sampling spot area: <100 microm(2)); the desorbed molecules then entered an electrospray plume--prepared from an acidic methanol/water solution (50%)--where they became ionized through fusion or ion-molecule reactions with the charged solvent species and droplets in the plume.

  19. Ion intensity and thermal proton transfer in ultraviolet matrix-assisted laser desorption/ionization.

    PubMed

    Lu, I-Chung; Lee, Chuping; Chen, Hui-Yuan; Lin, Hou-Yu; Hung, Sheng-Wei; Dyakov, Yuri A; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-04-17

    The ionization mechanism of ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) was investigated by measuring the total cation intensity (not including sodiated and potasiated ions) as a function of analyte concentration (arginine, histidine, and glycine) in a matrix of 2,4,6-trihydroxyacetophenone (THAP). The total ion intensity increased up to 55 times near the laser fluence threshold as the arginine concentration increased from 0% to 1%. The increases were small for histidine, and a minimal increase occurred for glycine. Time-resolved fluorescence intensity was employed to investigate how analytes affected the energy pooling of the matrix. No detectable energy pooling was observed for pure THAP and THAP/analyte mixtures. The results can be described by using a thermal proton transfer model, which suggested that thermally induced proton transfer is crucial in the primary ion generation in UV-MALDI.

  20. Investigation of thin ZnO layers in view of laser desorption-ionization

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Alimpiev, S. S.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Dimova-Malinovska, D.; Angelov, O. I.

    2010-04-01

    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  1. Laser desorption mass spectrometry and small angle neutron scattering of heavy fossil materials

    SciTech Connect

    Hunt, J.E.; Winans, R.E.; Thiyagarajan, P.

    1997-09-01

    The determination of the structural building blocks and the molecular weight range of heavy hydrocarbon materials is of crucial importance in research on their reactivity and for their processing. The chemically and physically heterogenous nature of heavy hydrocarbon materials, such as coals, heavy petroleum fractions, and residues, dictates that their structure and reactivity patterns be complicated. The problem is further complicated by the fact that the molecular structure and molecular weight distribution of these materials is not dependent on a single molecule, but on a complex mixture of molecules which vary among coals and heavy petroleum samples. Laser Desorption mass spectrometry (LDMS) is emerging as a technique for molecular weight determination having found widespread use in biological polymer research, but is still a relatively new technique in the fossil fuel area. Small angle neutron scattering (SANS) provides information on the size and shape of heavy fossil materials. SANS offers the advantages of high penetration power even in thick cells at high temperatures and high contrast for hydrocarbon systems dispersed in deuterated solvents. LDMS coupled with time of flight has the advantages of high sensitivity and transmission and high mass range. We have used LDMS to examine various heavy fossil-derived materials including: long chain hydrocarbons, asphaltenes from petroleum vacuum resids, and coals. This paper describes the application of laser desorption and small angle neutron scattering techniques to the analysis of components in coals, petroleum resids and unsaturated polymers.

  2. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates. PMID:26842733

  3. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    PubMed

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates.

  4. Detection of Biosignatures by Geomatrix-Assisted Laser Desorption/Ionization (GALDI) Mass Spectrometry

    SciTech Connect

    Jill R. Scott; Beizhan Yan; Daphne L. Stoner; J. Michelle Kotler; Nancy W. Hinman

    2007-04-01

    Identification of mineral-associated biosignatures is of significance for retrieving biochemical information from geological records here on Earth and detecting signs of life on other planets, such as Mars. The importance of the geomatrix for identifying amino acids (e.g., histidine, threonine, and cysteine) and small proteins (e.g., gramicidin S) was investigated by laser desorption Fourier transform mass spectrometry. The investigated geomatrices include analogues of Fe-bearing minerals such as hematite and Na-bearing evaporites (e.g., halite). Samples were prepared by two methods: 1) application of analyte to the geomatrix surface and 2) production of homogenous analyte:geomatrix mixtures. Comparison of the two sample preparation methods revealed that the mixing method produces a better signal/noise ratio than surface application for the analyses of amino acids. The composition of the geomatrix has a profound influence on the detection of biomolecules. Peaks corresponding to the cation-attached biomolecular ions were observed for the Na-bearing evaporite analogue. No detectable peaks for the biomolecular ion species were observed when the biomolecules were associated with Fe-bearing minerals. Instead, only minor peaks were observed that may correspond to ions from fragments of the biomolecules. Depending on the underlying mineral composition, geomatrix-assisted laser desorption/ionization shows promise for directly identifying biosignatures associated with minerals.

  5. Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry

    SciTech Connect

    Moro, L.; Ruoff, R.S.; Becker, C.H.; Lorents, D.C.; Malhotra, R. )

    1993-07-01

    Laser desorption (LD) and thermal desorption (TD) mass spectra of the metallofullerenes found in arc-produced primary soots have been studied for a large variety of alkaline earth and lanthanide elements. The metallofullerene ratios found in the LD spectra indicate that two distinct groups are observed: Sc, Y, La, Ce, Pr, Nd, Gd, Tb, Ho, Er, and Lu (group A) and Ca, Sr, Sm, Eu, and Yb (group B). The TD spectra of most of these same soots also separate into two groups that contain the same elements as groups A and B. Group A metallofullerenes show strong signals in both LD and TD spectra. Group B metallofullerenes are distinguished by their presence in the LD spectra but absence in the TD spectra. From the general ionic behavior of the elements of these groups, and recent studies of the endohedral oxidation states, we propose that the oxidation states are +3 for group A and +2 for group B. C[sub 70] metallofullerenes are anomalous in that they are absent in TD spectra for all group A and B elements, even at T = 750[degrees]C, but present in LD spectra. 31 refs., 4 figs., 2 tabs.

  6. Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis.

    PubMed

    Wu, Ching-Yi; Lee, Kai-Chieh; Kuo, Yen-Ling; Chen, Yu-Chie

    2016-10-28

    Surface-assisted laser desorption/ionization (SALDI) coupled with mass spectrometry (MS) is frequently used to analyse small organics owing to its clean background. Inorganic materials can be used as energy absorbers and the transfer medium to facilitate the desorption/ionization of analytes; thus, they are used as SALDI-assisting materials. Many studies have demonstrated the usefulness of SALDI-MS in quantitative analysis of small organics. However, some characteristics occurring in SALDI-MS require certain attention to ensure the reliability of the quantitative analysis results. The appearance of a coffee-ring effect in SALDI sample preparation is the primary factor that can affect quantitative SALDI-MS analysis results. However, to the best of our knowledge, there are no reports relating to quantitative SALDI-MS analysis that discuss or consider this effect. In this study, the coffee-ring effect is discussed using nanoparticles and nanostructured substrates as SALDI-assisting materials to show how this effect influences SALDI-MS analysis results. Potential solutions for overcoming the existing problems are also suggested.This article is part of the themed issue 'Quantitative mass spectrometry'.

  7. Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis.

    PubMed

    Wu, Ching-Yi; Lee, Kai-Chieh; Kuo, Yen-Ling; Chen, Yu-Chie

    2016-10-28

    Surface-assisted laser desorption/ionization (SALDI) coupled with mass spectrometry (MS) is frequently used to analyse small organics owing to its clean background. Inorganic materials can be used as energy absorbers and the transfer medium to facilitate the desorption/ionization of analytes; thus, they are used as SALDI-assisting materials. Many studies have demonstrated the usefulness of SALDI-MS in quantitative analysis of small organics. However, some characteristics occurring in SALDI-MS require certain attention to ensure the reliability of the quantitative analysis results. The appearance of a coffee-ring effect in SALDI sample preparation is the primary factor that can affect quantitative SALDI-MS analysis results. However, to the best of our knowledge, there are no reports relating to quantitative SALDI-MS analysis that discuss or consider this effect. In this study, the coffee-ring effect is discussed using nanoparticles and nanostructured substrates as SALDI-assisting materials to show how this effect influences SALDI-MS analysis results. Potential solutions for overcoming the existing problems are also suggested.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644973

  8. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments

    SciTech Connect

    Ana R. Hortal; Paola Hurtado; Bruno Martinez-Haya; Oliver C. Mullins

    2007-09-15

    Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width 150 amu) with an average molecular weight of 340 amu. The petroleum asphaltenes display a broader MWD (full width 300 amu) and are heavier on average (680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm. 32 refs., 8 figs.

  9. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    SciTech Connect

    Korte, Andrew R

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  11. Review of Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry for Lipid Biochemical Histopathology

    PubMed Central

    Yalcin, Emine B.

    2015-01-01

    Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) is a rapidly evolving method used for the in situ visualization and localization of molecules such as drugs, lipids, peptides, and proteins in tissue sections. Therefore, molecules such as lipids, for which antibodies and other convenient detection reagents do not exist, can be detected, quantified, and correlated with histopathology and disease mechanisms. Furthermore, MALDI-IMS has the potential to enhance our understanding of disease pathogenesis through the use of “biochemical histopathology”. Herein, we review the underlying concepts, basic methods, and practical applications of MALDI-IMS, including post-processing steps such as data analysis and identification of molecules. The potential utility of MALDI-IMS as a companion diagnostic aid for lipid-related pathological states is discussed. PMID:26209083

  12. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko

    2009-06-01

    We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  13. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B. ); Wahl, Jon H. ); Kingsley, Mark T. ); Wahl, Karen L. )

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  14. Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Tu, Tingting; Gross, Michael L.

    2009-01-01

    The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation. We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation. We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology. PMID:20161086

  15. Ammonium Ion Exchanged Zeolite for Laser Desorption/Ionization Mass Spectrometry of Phosphorylated Peptides

    PubMed Central

    Yang, Mengrui; Fujino, Tatsuya

    2015-01-01

    α-Cyano-4-hydroxycinnamic acid (CHCA), an organic matrix molecule for matrix-assisted laser desorption/ionization mass spectrometry, was adsorbed to NH4+-type zeolite surface, and this new matrix was used for the detection of low-molecular-weight compounds. It was found that this matrix could simplify the mass spectrum in the low-molecular-weight region and prevent interference from fragments and alkali metal ion adducted species. CHCA adsorbed to NH4+-type ZSM5 zeolite (CHCA/NH4ZSM5) was used to measure atropine and aconitine, two toxic alkaloids in plants. In addition, CHCA/NH4ZSM5 enabled us to detect phosphorylated peptides; peaks of the protonated peptides had higher intensities than the peaks observed using CHCA only. PMID:26448749

  16. Identification of Bacillus Spores by Matrix-Assisted Laser Desorption Ionization–Mass Spectrometry

    PubMed Central

    Hathout, Yetrib; Demirev, Plamen A.; Ho, Yen-Peng; Bundy, Jonathan L.; Ryzhov, Victor; Sapp, Lisa; Stutler, James; Jackman, Joany; Fenselau, Catherine

    1999-01-01

    Unique patterns of biomarkers were reproducibly characterized by matrix-assisted laser desorption ionization (MALDI)–mass spectrometry and were used to distinguish Bacillus species members from one another. Discrimination at the strain level was demonstrated for Bacillus cereus spores. Lipophilic biomarkers were invariant in Bacillus globigii spores produced in three different media and in B. globigii spores stored for more than 30 years. The sensitivity was less than 5,000 cells deposited for analysis. Protein biomarkers were also characterized by MALDI analysis by using spores treated briefly with corona plasma discharge. Protein biomarkers were readily desorbed following this treatment. The effect of corona plasma discharge on the spores was examined. PMID:10508053

  17. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples.

  18. Direct laser desorption ionization of endogenous and exogenous compounds from insect cuticles: practical and methodologic aspects.

    PubMed

    Yew, Joanne Y; Soltwisch, Jens; Pirkl, Alexander; Dreisewerd, Klaus

    2011-07-01

    We recently demonstrated that ultraviolet laser desorption ionization orthogonal time-of-flight mass spectrometry (UV-LDI o-TOF MS) could be used for the matrix-free analysis of cuticular lipids (unsaturated aliphatic and oxygen-containing hydrocarbons and triacylglycerides) directly from individual Drosophila melanogaster fruit flies (Yew, J. Y.; Dreisewerd, K.; Luftmann, H.; Pohlentz, G.; Kravitz, E. A., Curr. Biol. 2009, 19, 1245-1254). In this report, we show that the cuticular hydrocarbon, fatty acid, and triglyceride profiles of other insects and spiders can also be directly analyzed from intact body parts. Mandibular pheromones from the jaw of a queen honey bee are provided as one example. In addition, we describe analytical features and examine mechanisms underlying the methodology. Molecular ions of lipids can be generated by direct UV-LDI when non-endogenous compounds are applied to insect wings or other body parts. Current sensitivity limits are in the 10 pmol range. We show also the dependence of ion signal intensity on collisional cooling gas pressure in the ion source, laser wavelength (varied between 280-380 nm and set to 2.94 μm for infrared LDI), and laser pulse energy.

  19. Direct Laser Desorption Ionization of Endogenous and Exogenous Compounds from Insect Cuticles: Practical and Methodologic Aspects

    NASA Astrophysics Data System (ADS)

    Yew, Joanne Y.; Soltwisch, Jens; Pirkl, Alexander; Dreisewerd, Klaus

    2011-07-01

    We recently demonstrated that ultraviolet laser desorption ionization orthogonal time-of-flight mass spectrometry (UV-LDI o-TOF MS) could be used for the matrix-free analysis of cuticular lipids (unsaturated aliphatic and oxygen-containing hydrocarbons and triacylglycerides) directly from individual Drosophila melanogaster fruit flies (Yew, J. Y.; Dreisewerd, K.; Luftmann, H.; Pohlentz, G.; Kravitz, E. A., Curr. Biol. 2009, 19, 1245-1254). In this report, we show that the cuticular hydrocarbon, fatty acid, and triglyceride profiles of other insects and spiders can also be directly analyzed from intact body parts. Mandibular pheromones from the jaw of a queen honey bee are provided as one example. In addition, we describe analytical features and examine mechanisms underlying the methodology. Molecular ions of lipids can be generated by direct UV-LDI when non-endogenous compounds are applied to insect wings or other body parts. Current sensitivity limits are in the 10 pmol range. We show also the dependence of ion signal intensity on collisional cooling gas pressure in the ion source, laser wavelength (varied between 280-380 nm and set to 2.94 μm for infrared LDI), and laser pulse energy.

  20. Thermal proton transfer reactions in ultraviolet matrix-assisted laser desorption/ionization.

    PubMed

    Chu, Kuan Yu; Lee, Sheng; Tsai, Ming-Tsang; Lu, I-Chung; Dyakov, Yuri A; Lai, Yin Hung; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-03-01

    One of the reasons that thermally induced reactions are not considered a crucial mechanism in ultraviolet matrix-assisted laser desorption ionization (UV-MALDI) is the low ion-to-neutral ratios. Large ion-to-neutral ratios (10(-4)) have been used to justify the unimportance of thermally induced reactions in UV-MALDI. Recent experimental measurements have shown that the upper limit of the total ion-to-neutral ratio is approximately 10(-7) at a high laser fluence and less than 10(-7) at a low laser fluence. Therefore, reexamining the possible contributions of thermally induced reactions in MALDI may be worthwhile. In this study, the concept of polar fluid was employed to explain the generation of primary ions in MALDI. A simple model, namely thermal proton transfer, was used to estimate the ion-to-neutral ratios in MALDI. We demonstrated that the theoretical calculations of ion-to-neutral ratios exhibit the same trend and similar orders of magnitude compared with those of experimental measurements. Although thermal proton transfer may not generate all of the ions observed in MALDI, the calculations demonstrated that thermally induced reactions play a crucial role in UV-MALDI.

  1. Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review.

    PubMed

    Paine, Martin R L; Barker, Philip J; Blanksby, Stephen J

    2014-01-15

    The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis.

  2. Electron-ion dynamics in laser-assisted desorption of hydrogen atoms from H-Si(111) surface

    SciTech Connect

    Bubin, Sergiy; Varga, Kalman

    2011-09-15

    In the framework of real time real space time-dependent density functional theory we have studied the electron-ion dynamics of a hydrogen-terminated silicon surface H-Si(111) subjected to intense laser irradiation. Two surface fragments of different sizes have been used in the simulations. When the intensity and duration of the laser exceed certain levels (which depend on the wavelength) we observe the desorption of the hydrogen atoms, while the underlying silicon layer remains essentially undamaged. Upon further increase of the laser intensity, the chemical bonds between silicon atoms break as well. The results of the simulations suggest that with an appropriate choice of laser parameters it should be possible to remove the hydrogen layer from the H-Si(111) surface in a matter of a few tens of femtoseconds. We have also observed that at high laser field intensities (2-4 V/A in this work) the desorption occurs even when the laser frequency is smaller than the optical gap of the silicon surface fragments. Therefore, nonlinear phenomena must play an essential role in such desorption processes.

  3. Non-volatile analysis in fruits by laser resonant ionization spectrometry: application to resveratrol (3,5,4'-trihydroxystilbene) in grapes

    NASA Astrophysics Data System (ADS)

    Montero, C.; Orea, J. M.; Soledad Muñoz, M.; Lobo, R. F. M.; González Ureña, A.

    A laser desorption (LD) coupled with resonance-enhanced multiphoton ionisation (REMPI) and time-of-flight mass spectrometry (TOFMS) technique for non-volatile trace analysis compounds is presented. Essential features are: (a) an enhanced desorption yield due to the mixing of metal powder with the analyte in the sample preparation, (b) a high resolution, great sensitivity and low detection limit due to laser resonant ionisation and mass spectrometry detection. Application to resveratrol content in grapes demonstrated the capability of the analytical method with a sensitivity of 0.2 pg per single laser shot and a detection limit of 5 ppb.

  4. Laser Desorption Ionization of small molecules assisted by Tungsten oxide and Rhenium oxide particles

    PubMed Central

    Bernier, Matthew; Wysocki, Vicki; Dagan, Shai

    2015-01-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization (LDI) with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are an attractive option due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3, in microparticle (μP) powder forms, can efficiently ionize various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/μL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under LDI. Qualitatively, the WO3 μP showed an improved detection of apigenin, sodiated glucose, and the precharged analyte choline, while the ReO3 μP allowed detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/μL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than CCA. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to that used with CCA. PMID:26349643

  5. Laser desorption/ionization mass spectrometry of diesel particulate matter with charge-transfer complexes.

    PubMed

    Carré, Vincent; Vernex-Loset, Lionel; Krier, Gabriel; Manuelli, Pascal; Muller, Jean-François

    2004-07-15

    Polycyclic aromatic hydrocarbons (PAHs) are often associated with complex matrixes such as exhaust diesel particulate matter (DPM), which complicates their study. In that case, laser desorption/ionization mass spectrometry is one of the techniques which ensures their direct analysis in the solid state. We demonstrate in this paper that the use of charge-transfer pi-complexing agents allows us to selectively detect by Fourier transform ion cyclotron resonance mass spectrometry PAHs adsorbed on diesel particles with high sensitivity. 2,4,7-trinitro-9-fluorenone and 7,7',8,8'-tetracyanoquinodimethane pi-acceptor compounds form charge-transfer complexes with PAHs and prevent their evaporation in the mass spectrometer during analysis. Moreover, the production of PAH molecular ions is dramatically increased by laser irradiation of these complexes at short wavelength (221.7 nm) and low power density (5 x 10(6) W cm(-)(2)). This methodology is applied for the first time to the examination of DPM collected during the new European driving cycle for light-duty vehicles. Differentiation criteria may coherently be assigned to engine operating mode (engine temperature, driving conditions). DPM samples can also be easily distinguished in negative ions according to the high sensitivity of this detection mode to sulfate compounds.

  6. Efficient Methods to Generate Reproducible Mass Spectra in Matrix-Assisted Laser Desorption Ionization of Peptides

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Bae, Yong Jin; Kim, Myung Soo

    2013-06-01

    In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.

  7. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization.

    PubMed

    Lee, Chuping; Lu, I-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser. Graphical Abstract ᅟ.

  8. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Lee, Chuping; Lu, I.-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser.

  9. Identification of colorants in pigmented pen inks by laser desorption mass spectrometry.

    PubMed

    Papson, Kaitlin; Stachura, Sylwia; Boralsky, Luke; Allison, John

    2008-01-01

    Pigments are rapidly replacing dyes as colorants in pen and printer inks, due to their superior colors and stability. Unfortunately, tools commonly used in questioned document examination for analyzing pen inks, such as TLC, cannot be used for the analysis of insoluble pigments on paper. Laser desorption mass spectrometry is demonstrated here as a tool for analyzing pigment-based pen inks. A pulsed nitrogen laser can be focused onto a pen stroke from a pigmented ink pen on paper, and positive and negative ions representative of the pigment can be generated for subsequent mass spectrometric analysis. Targeted pens for this work were a set of Uni-ball 207 pigmented ink pens containing blue, light blue, orange, green, violet, red, pink, and black inks. Copper phthalocyanine was identified as the pigment used to make both blue inks. A mixture of halogenated copper phthalocyanines were identified in the green ink. Unexpectedly, the pink ink was found to contain a red pigment, Pigment Red 12, treated with a mixture of water-soluble dyes. Each sample yielded ions representative of the pigments present.

  10. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then

  11. Electroless plating of silver nanoparticles on porous silicon for laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun

    2009-03-01

    An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.

  12. Ultraviolet photodegradation of tris(8-hydroxy-quinolinate) aluminum (Alq3) thin films studied by electron and laser stimulated desorption

    NASA Astrophysics Data System (ADS)

    Brito, W. R.; Quirino, W. G.; Legnani, C.; Ponciano, C. R.; Cremona, M.; Rocco, M. L. M.

    2012-11-01

    Alq3 has been the reference material used widely in the fabrication and characterization of efficient OLEDs due to its good properties as electroluminescent and electron transporting layer. Although the inclusion of these devices in commercial displays and lighting devices represents many benefits, the knowledge about the progressive loss of performance and efficiency with time for such devices is still limited. Therefore, it is an incentive to understand the mechanisms of Alq3 degradation when it is subjected to the influence of various extrinsic factors such as UV radiation. In the present work the degradation processes of Alq3 thin films as a result of 254 nm UV light irradiation are presented and discussed. The degradation products produced by the action of UV light were evaluated by time-of-flight mass spectrometry using electron stimulated ion desorption and laser desorption ionization techniques. Strong evidence for carboxylic acid formation after photodegradation was observed by the electron desorption technique.

  13. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  14. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  15. A miniaturised laser ablation/ionisation analyser for investigation of elemental/isotopic composition with the sub-ppm detection sensitivity

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Riedo, A.; Meyer, S.; Iakovleva, M.; Neuland, M.; Wurz, P.

    2012-04-01

    Detailed knowledge of the elemental and isotopic composition of solar system objects imposes critical constraints on models describing the origin of our solar system and can provide insight to chemical and physical processes taking place during the planetary evolution. So far, the investigation of chemical composition of planetary surfaces could be conducted almost exclusively by remotely controlled spectroscopic instruments from orbiting spacecraft, landers or rovers. With some exceptions, the sensitivity of these techniques is, however, limited and often only abundant elements can be investigated. Nevertheless, the spectroscopic techniques proved to be successful for global chemical mapping of entire planetary objects such as the Moon, Mars and asteroids. A combined afford of the measurements from orbit, landers and rovers can also yield the determination of local mineralogy. New instruments including Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation/Ionisation Mass Spectrometer (LIMS), have been recently included for several landed missions. LIBS is thought to improve flexibility of the investigations and offers a well localised chemical probing from distances up to 10-13 m. Since LIMS is a mass spectrometric technique it allows for very sensitive measurements of elements and isotopes. We will demonstrate the results of the current performance tests obtained by application of a miniaturised laser ablation/ionisation mass spectrometer, a LIMS instrument, developed in Bern for the chemical analysis of solids. So far, the only LIMS instrument on a spacecraft is the LAZMA instrument. This spectrometer was a part of the payload for PHOBOS-GRUNT mission and is also currently selected for LUNA-RESURCE and LUNA-GLOB missions to the lunar south poles (Managadze et al., 2011). Our LIMS instrument has the dimensions of 120 x Ø60 mm and with a weight of about 1.5 kg (all electronics included), it is the lightest mass analyser designed for in situ chemical

  16. Development of matrix-assisted ultraviolet laser desorption/ionization mass spectrometry for the structural analysis of glycoproteins

    SciTech Connect

    Chevrier, M.R.

    1993-01-01

    This thesis describes the design, construction and characterization of an ultraviolet laser desorption time-of-flight [TOF] mass spectrometer and its subsequent application to glycoprotein structural analysis utilizing matrix-assisted laser desorption/ionization [MALDI] mass spectrometry. At the inception of this work, commercial mass spectrometers utilizing MALDI were not available, and most reports of the phenomena utilized the 266 nm wavelength provided by frequency-quadrupled Nd:YAG lasers. This work involved the design and construction of a high-voltage-extraction linear TOF mass analyzer equipped with a multiple sample inlet system and a 337 manometer, 600 picosecond pulsed nitrogen laser. In MALDI the [open quotes]matrix[close quotes], a strong absorber of a laser wavelength, is co-crystallized with the analyte. The laser photons absorbed by the matrix lead to ionization of the analyte and subsequent desorption from the surface into the gas phase. While nicotinic acid and caffeic acid were reported as effective matrices at 266 and 355 nm, respectively, several other matrices were examined for their efficiency at 337 nm, including [alpha]-cyano-4-hydroxy cinnamic acid and gentisic acid, which proved to be advantageous for glycoconjugate analysis. Glycoproteins, phosphoproteins, nucleic acids, and proteolytic digests were all successfully analyzed using the pulsed nitrogen laser. Analysis of numerous peptides and proteins demonstrated femtomolar sensitivity, mass range in excess of 350 kiloDaltons, mass resolution circa 700, and mass accuracy better than 0.1%. The completed instrument was utilized to analyze glycopeptides for carbohydrate sites and microheterogeneity, by performing MALDI mass spectrometry [MALDI/MS] following enzymatic and chemical reactions. In many cases, unfractionated or partially fractionated mixtures were analyzed directly thereby reducing preparative chromatography.

  17. The Effect of Culture Conditions on Microorganism Identification by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B.; Wunschel, Sharon C.; Wunschel, David S.; Petersen, Catherine E.; Wahl, Karen L.

    2005-01-01

    Abstract Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to identify bacteria based upon protein signatures. This research shows that while some different proteins are produced by vegetative bacteria when they are cultured in different growth media, positive identification with MALDI-TOF MS is still possible with the protocol established at Pacific Northwest National Laboratory (PNNL)(11). A core set of small proteins remain constant under at least four different culture media conditions including minimal medium -M9, rich media - tryptic soy broth (TSB) or Luria-Bertani (LB) broth and blood agar plates such that analysis of the intact cells by matrix-assisted laser desorption/ionization mass spectrometry allows for consistent identification.

  18. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS.

    PubMed

    Benešová, Iva; Dlabková, Kristýna; Zelenák, František; Vaculovič, Tomáš; Kanický, Viktor; Preisler, Jan

    2016-03-01

    Single particle inductively coupled plasma mass spectrometry (SP-ICPMS) has been generally accepted as a powerful tool in the field of nanoanalysis. The method has usually been restricted to direct nanoparticle (NP) introduction using nebulization or microdroplet generation systems. In this work, AuNPs are introduced into ICPMS by substrate-assisted laser desorption (SALD) directly from a suitable absorbing plastic surface using a commercial ablation cell for the first time. In SALD, desorption of individual NPs is mediated using a frequency-quintupled Nd:YAG laser (213 nm) operated at a rather low laser fluence. Conditions including laser fluence, laser beam scan rate, and carrier gas flow rate were optimized in order to gain the highest AuNP transport efficiency and avoid AuNP disintegration within the laser irradiation. The method was demonstrated on a well-characterized reference material, 56 nm AuNPs with a transport efficiency of 61% and commercially available 86 nm AuNPs. Feasibility of our technique for NP detection and characterization is discussed here, and the results are compared with an established technique, nebulizer SP-ICPMS.

  19. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  20. Jarosite as a Storage Mineral for Small Organic Molecules: Investigations of Natural Samples Using an 'In Situ' Laser Desorption Fourier Transform Mass Spectrometry Technique

    NASA Astrophysics Data System (ADS)

    Kotler, J. M.; Hinman, N. W.; Yan, B.; Stoner, D. L.; Scott, J. R.

    2007-03-01

    The use of laser desorption Fourier transform mass spectrometry has revealed the presence of organic matter in several jarosite samples from various locations worldwide including jarosite precipitated in the lab by acidothiobacillus ferroxidans.

  1. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José; Bou, Germán

    2016-03-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min. PMID:26677247

  2. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids.

    PubMed

    He, Xiao-Mei; Ding, Jun; Yu, Lei; Hussain, Dilshad; Feng, Yu-Qi

    2016-09-01

    Quantitative analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been a challenging task due to matrix-derived interferences in low m/z region and poor reproducibility of MS signal response. In this study, we developed an approach by applying black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix for the quantitative analysis of small molecules for the first time. Black phosphorus-assisted laser desorption/ionization mass spectrometry (BP/ALDI-MS) showed clear background and exhibited superior detection sensitivity toward quaternary ammonium compounds compared to carbon-based materials. By combining stable isotope labeling (SIL) strategy with BP/ALDI-MS (SIL-BP/ALDI-MS), a variety of analytes labeled with quaternary ammonium group were sensitively detected. Moreover, the isotope-labeled forms of analytes also served as internal standards, which broadened the analyte coverage of BP/ALDI-MS and improved the reproducibility of MS signals. Based on these advantages, a reliable method for quantitative analysis of aldehydes from complex biological samples (saliva, urine, and serum) was successfully established. Good linearities were obtained for five aldehydes in the range of 0.1-20.0 μM with correlation coefficients (R (2)) larger than 0.9928. The LODs were found to be 20 to 100 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 10.4 %, and the recoveries in saliva samples ranged from 91.4 to 117.1 %. Taken together, the proposed SIL-BP/ALDI-MS strategy has proved to be a reliable tool for quantitative analysis of aldehydes from complex samples. Graphical Abstract An approach for the determination of small molecules was developed by using black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix. PMID:27382971

  3. Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Nie, Shuping; Tian, Baoyu; Wang, Xiaowei; Pincus, David H; Welker, Martin; Gilhuley, Kathleen; Lu, Xuedong; Han, Yiping W; Tang, Yi-Wei

    2015-04-01

    We explored the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of Fusobacterium nucleatum subspecies. MALDI-TOF MS spectra of five F. nucleatum subspecies (animalis, fusiforme, nucleatum, polymorphum, and vincentii) were analyzed and divided into four distinct clusters, including subsp. animalis, nucleatum, polymorphum, and fusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34 F. nucleatum clinical isolates to the subspecies level.

  4. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José; Bou, Germán

    2016-03-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min.

  5. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry

    PubMed Central

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José

    2015-01-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min. PMID:26677247

  6. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids.

    PubMed

    He, Xiao-Mei; Ding, Jun; Yu, Lei; Hussain, Dilshad; Feng, Yu-Qi

    2016-09-01

    Quantitative analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been a challenging task due to matrix-derived interferences in low m/z region and poor reproducibility of MS signal response. In this study, we developed an approach by applying black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix for the quantitative analysis of small molecules for the first time. Black phosphorus-assisted laser desorption/ionization mass spectrometry (BP/ALDI-MS) showed clear background and exhibited superior detection sensitivity toward quaternary ammonium compounds compared to carbon-based materials. By combining stable isotope labeling (SIL) strategy with BP/ALDI-MS (SIL-BP/ALDI-MS), a variety of analytes labeled with quaternary ammonium group were sensitively detected. Moreover, the isotope-labeled forms of analytes also served as internal standards, which broadened the analyte coverage of BP/ALDI-MS and improved the reproducibility of MS signals. Based on these advantages, a reliable method for quantitative analysis of aldehydes from complex biological samples (saliva, urine, and serum) was successfully established. Good linearities were obtained for five aldehydes in the range of 0.1-20.0 μM with correlation coefficients (R (2)) larger than 0.9928. The LODs were found to be 20 to 100 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 10.4 %, and the recoveries in saliva samples ranged from 91.4 to 117.1 %. Taken together, the proposed SIL-BP/ALDI-MS strategy has proved to be a reliable tool for quantitative analysis of aldehydes from complex samples. Graphical Abstract An approach for the determination of small molecules was developed by using black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix.

  7. UV-UV hole burning and IR dip spectroscopy of homophenylalanine by laser desorption supersonic jet technique

    NASA Astrophysics Data System (ADS)

    Sohn, Woon Yong; Ishiuchi, Shun-ichi; Çarçabal, Pierre; Oba, Hikari; Fujii, Masaaki

    2014-12-01

    Conformer selected electronic and vibrational spectra of homophenylalanine, phenylalanine analogue molecule, were measured by UV-UV hole burning and IR dip spectroscopy combined with laser desorption technique. 10 conformers were found by UV-UV hole burning spectroscopy and their structures were assigned by IR dip and UV absorption spectra with aid of quantum chemical calculations in both S0 and S1. This study shows that the combination of simulated IR and UV spectra is powerful to assign flexible molecules.

  8. Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices

    SciTech Connect

    Paardekooper, D. M. Bossa, J.-B.; Isokoski, K.; Linnartz, H.

    2014-10-01

    A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRI²CES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organic compounds upon UV photolysis for astronomically relevant ice mixtures and temperatures. The performance of the experimental setup is demonstrated by the kinetic analysis of the different photoproducts of pure methane (CH₄) ice at 20 K. A quantitative approach provides formation yields of several new species with up to four carbon atoms. Convincing evidence is found for the formation of even larger species. Typical mass resolutions obtained range from M/ΔM ~320 to ~400 for CH₄ and argon, respectively. Additional tests show that the typical detection limit (in monolayers) is ⩽0.02 ML, substantially more sensitive than the regular techniques used to investigate chemical processes in interstellar ices.

  9. Analysis of mainstream and sidestream cigarette smoke particulate matter by laser desorption mass spectrometry.

    PubMed

    Schramm, Sébastien; Carré, Vincent; Scheffler, Jean-Luc; Aubriet, Frédéric

    2011-01-01

    Laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI-FTICRMS) was used to investigate particulate matter (PM) associated with mainstream (MSS) and sidestream cigarette smokes (SSS). The high mass resolution and the high mass measurement accuracy allowed a molecular formula for each detected signal in the 150-500 m/z range to be assigned. The high number of peaks observed in mass spectra required additional data processing to extract information. In this context, Kendrick maps and Van Krevelen diagrams were drawn. These postacquisition treatments were used to more easily compare different cigarette smokes: (i) MSS from different cigarettes and (ii) MSS and SSS from the same cigarette. In both ion detection modes, most of the detected species were found to be attributed to C(6-31)H(2-35)N(0-7)O(0-9) compounds. The compounds observed in the study of SSS appeared to be more unsaturated and less oxygenated than those observed when MSS of the same cigarette was investigated.

  10. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ostrom, Peggy H.; Schall, Michael; Gandhi, Hasand; Shen, Tun-Li; Hauschka, Peter V.; Strahler, John R.; Gage, Douglas A.

    2000-03-01

    Structural characterization of ancient proteins is confounded by the small quantity of material remaining in fossils, difficulties in purification, and the inability to obtain sequence information by classical Edman degradation. We present a microbore reversed phase high performance liquid chromatography (rpHPLC) method for partial purification of small quantities (picomoles) of the bone protein osteocalcin (OC) and subsequent characterization of this material by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The presence of OC in the modern and ancient samples was suggested by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and radioimmunoassay (RIA). The SDS-PAGE of material isolated from 800 yr BP and 10,000 yr BP bones demonstrates a band consistent with the molecular weight of OC and the RIA indicated OC in concentrations of 0.2 to 450ng/mg of bone for samples between 800 and 53,000 yr BP. In modern samples, we demonstrate the use of MALDI-MS to confirm the molecular weight of intact OC and to sequence OC via peptide mass mapping and a novel derivatization approach with post-source decay analysis. MALDI-MS data for three ancient samples with RIA-confirmed osteocalcin (800 yr BP, 10,000 yr BP and 53,000 yr BP) indicate peaks with a molecular mass within the range of modern OC.

  11. Bimetallic silver-gold clusters by matrix-assisted laser desorption/ionization.

    PubMed

    Kéki, Sándor; Nagy, Lajos; Deák, György; Zsuga, Miklós

    2004-10-01

    Pure gold clusters (Aun+) were produced up to the cluster size of n = 100 by matrix-assisted laser desorption/ionization (MALDI). The mass spectrum of the resulting clusters showed alteration in the ion intensity at odd-even clusters size. On the other hand, intensity drops at cluster size predicted by the jellium model theory was also observed. Positively and negatively charged bimetallic silver-gold clusters were produced under MALDI conditions from the mixture of HAuCl4/silver trifluoroacetate and the 2-(4-hydroxyphenylazo)benzoic acid (HABA) matrix. A linear correlation was found between the intensity ratio of AunAgm+ to Au(n+1)Ag(m-1)+ cluster ions and the molar ratio of the gold to silver salt. It was observed that the composition and the distribution of the clusters can be varied with the molar ratio of the silver and gold salts. It was also found that the resulting cluster sizes obey the lognormal distribution. PMID:15465358

  12. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  13. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Zhang, Hui

    2007-01-01

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in two-dimensional separation. Estrogen-DNA adducts as 4-OHE1(E2)-1-N3Ade and 4-OHEI(E2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE1-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were

  14. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation.

    PubMed

    Škrášková, Karolina; Claude, Emmanuelle; Jones, Emrys A; Towers, Mark; Ellis, Shane R; Heeren, Ron M A

    2016-07-15

    The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids. However, a thorough sample preparation and necessity of vacuum for efficient ionization might hamper its use for high-throughput lipid analysis. Desorption electrospray ionization (DESI) is a relatively young MS technique. In DESI, ionization of molecules occurs under ambient conditions, which alleviates sample preparation. Moreover, DESI does not require the application of an external matrix, making the detection of low mass species more feasible due to the lack of chemical matrix background. However, irrespective of the ionization method, the final information obtained during an MSI experiment is very complex and its analysis becomes challenging. It was shown that coupling MSI to ion mobility separation (IMS) simplifies imaging data interpretation. Here we employed DESI and MALDI MSI for a lipidomic analysis of the murine brain using the same IMS-enabled instrument. We report for the first time on the DESI IMS-MSI of multiply sialylated ganglioside species, as well as their acetylated versions, which we detected directly from the murine brain tissue. We show that poly-sialylated gangliosides can be imaged as multiply charged ions using DESI, while they are clearly separated from the rest of the lipid classes based on their charge state using ion mobility. This represents a major improvement in MSI of intact fragile lipid species. We additionally show that complementary lipid information is reached under particular conditions when DESI is compared to MALDI MSI.

  15. Laser-induced desorption of atomic and molecular fragments from a tin dioxide surface modified by a thin organic covering of copper phthalocyanine

    SciTech Connect

    Komolov, A. S. Komolov, S. A.; Lazneva, E. F.; Turiev, A. M.

    2012-01-15

    The systematic features of laser-induced desorption from an SnO{sub 2} surface exposed to 10-ns pulsed neodymium laser radiation are studied at the photon energy 2.34 eV, in the range of pulse energy densities 1 to 50 mJ/cm{sup 2}. As the threshold pulse energy 28 mJ/cm{sup 2} is achieved, molecular oxygen O{sub 2} is detected in the desorption mass spectra from the SnO{sub 2} surface; as the threshold pulse energy 42 mJ/cm{sup 2} is reached, tin Sn, and SnO and (SnO){sub 2} particle desorption is observed. The laser desorption mass spectra from the SnO{sub 2} surface coated with an organic copper phthalocyanine (CuPc) film 50 nm thick are measured. It is shown that laser irradiation causes the fragmentation of CuPc molecules and the desorption of molecular fragments in the laser pulse energy density range 6 to 10 mJ/cm{sup 2}. Along with the desorption of molecular fragments, a weak desorption signal of the substrate components O{sub 2}, Sn, SnO, and (SnO){sub 2} is observed in the same energy range. Desorption energy thresholds of substrate atomic components from the organic film surface are approximately five times lower than thresholds of their desorption from the atomically clean SnO{sub 2} surface, which indicates the diffusion of atomic components of the SnO{sub 2} substrate to the bulk of the deposited organic film.

  16. Using electrospray laser desorption ionization mass spectrometry to rapidly examine the integrity of proteins stored in various solutions.

    PubMed

    Cho, Yi-Tzu; Huang, Min-Zong; Wu, Sih-You; Hou, Ming-Feng; Li, Jianjun; Shiea, Jentaie

    2014-01-01

    Electrospray laser desorption ionization mass spectrometry (ELDI/MS) allows the rapid desorption and ionization of proteins from solutions under ambient conditions. In this study, we have demonstrated the use of ELDI/MS to efficiently examine the integrity of the proteins stored in various solutions before they were further used for other biochemical tests. The protein standards were prepared in the solutions containing buffers, organic salts, inorganic salts, strong acid, strong base, and organic solvents, respectively, to simulate those collected from solvent extraction, filtration, dialysis, or chromatographic separation. Other than the deposit of a drop of the sample solution on the metallic sample plate in an ELDI source, no additional sample pretreatment is needed. The sample drop was then irradiated with a pulsed laser; this led to desorption of the analyte molecules, which subsequently entered the ESI plume to undergo post-ionization. Because adjustment of the composition of the sample solution is unnecessary, this technique appears to be useful for rapidly evaluating the integrity of proteins after storage or prior to further biochemical treatment. In addition, when using acid-free and low-organic-solvent ESI solutions for ELDI/MS analysis, the native conformations of the proteins in solution could be detected.

  17. High-throughput proteomics using matrix-assisted laser desorption/ ionization mass spectrometry.

    PubMed

    Cramer, Rainer; Gobom, Johan; Nordhoff, Eckhard

    2005-06-01

    It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses. PMID:16000086

  18. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization- time-of-flight mass spectrometry.

    PubMed

    Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-10-28

    Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'.

  19. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization- time-of-flight mass spectrometry.

    PubMed

    Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-10-28

    Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644968

  20. Combined Chemical and Topographic Imaging at Atmospheric Pressure via Microprobe Laser Desorption/Ionization Mass Spectrometry-Atomic Force Microscopy

    SciTech Connect

    Bradshaw, James A; Ovchinnikova, Olga S; Meyer, Kent A; Goeringer, Doug

    2009-01-01

    The operational characteristics and imaging performance are described for a new instrument comprising an atomic force microscope (AFM) coupled with a pulsed laser and a linear ion trap mass spectrometer. The AFM operating mode is used to produce topographic surface images having nanometer-scale spatial and height resolution. Spatially resolved mass spectra of ions, produced from the same surface via microprobe-mode laser desorption/ionization at atmospheric pressure, are then used to create a 100 x 100 m chemical image. The effective spatial resolution of the image (~2 m) was constrained by the limit of detection (estimated to be 109 1010 ions) rather than by the diameter of the focused laser spot or the step size of the AFM sample stage. Thus, it is expected that improvements in imaging performance can be realized by implementation of post-ionization methods.

  1. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence.

    PubMed

    Kononikhin, Alexey; Huang, Min-Zong; Popov, Igor; Kostyukevich, Yury; Kukaev, Evgeny; Boldyrev, Alexey; Spasskiy, Alexander; Leypunskiy, Ilya; Shiea, Jentaie; Nikolaev, Eugene

    2013-01-01

    The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins. The experiments were performed on an LTQ-FT mass spectrometer equipped with a home-made ELDI ion source. A cutter blade with black oxide coating was used as a target. A nitrogen laser was used with the following parameters: 337 nm, pulse duration 4ns, repetition rate 10 Hz, fluence to approximately 700 Jm(-2). More than a five times signal increase was observed for a substance P peptide when a coated and a non-coated metal target were compared. No ion signal was observed for proteins if the same fluence and the standard stainless steel target were used. With the assistance of the Fe3O4 coated metal target and a relatively low laser fluence < or =700 Jm(-2)), proteins such as insulin, ubiquitin and myoglobin were successfully ionized. It was demonstrated that the Fe3O4-coated metal target can be used efficiently to assist laser desorption and thus significantly increase the analyte signal in ELDI-MS. A relatively low laser fluence (< or = 700 Jm(-2)) was enough to desorb peptides and proteins (up to 17 kDal with the assistance of the Fe3O4-coated metal target under ambient conditions. PMID:24575623

  2. A Compact, Solid-State UV (266 nm) Laser System Capable of Burst-Mode Operation for Laser Ablation Desorption Processing

    NASA Technical Reports Server (NTRS)

    Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William

    2015-01-01

    Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).

  3. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  4. Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds

    NASA Astrophysics Data System (ADS)

    Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.

    2014-05-01

    A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.

  5. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils.

    PubMed

    Picca, Rosaria Anna; Calvano, Cosima Damiana; Lo Faro, Maria Josè; Fazio, Barbara; Trusso, Sebastiano; Ossi, Paolo Maria; Neri, Fortunato; D'Andrea, Cristiano; Irrera, Alessia; Cioffi, Nicola

    2016-09-01

    In this work, novel hybrid nanostructured surfaces, consisting of dense arrays of silicon nanowires (SiNWs) functionalized by Ag nanoparticles (AgNP/SiNWs), were used for the laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) analysis of some typical unsaturated food components (e.g. squalene, oleic acid) to assess their MS performance. The synthesis of the novel platforms is an easy, cost-effective process based on the maskless wet-etching preparation at room temperature of SiNWs followed by their decoration with AgNPs, produced by pulsed laser deposition. No particular surface pretreatment or addition of organic matrixes/ionizers was necessary. Moreover, oil extracts (e.g. extra virgin olive oil, peanut oil) could be investigated on AgNP/SiNWs surfaces, revealing their different MS profiles. It was shown that such substrates operate at reduced laser energy, typically generating intense silver cluster ions and analyte adducts. A comparison with bare SiNWs was also performed, indicating the importance of AgNP density on NW surface. In this case, desorption/ionization on silicon was invoked as probable LDI mechanism. Finally, the influence of SiNW length and surface composition on MS results was assessed. The combination of typical properties of SiNWs (hydrophobicity, antireflectivity) with ionization ability of metal NPs can be a valid methodology for the further development of nanostructured surfaces in LDI-TOF MS applications. Copyright © 2016 John Wiley & Sons, Ltd.

  6. A new approach for detection of explosives based on ion mobility spectrometry and laser desorption/ionization on porous silicon

    NASA Astrophysics Data System (ADS)

    Kuzishchin, Yury; Kotkovskii, Gennadii; Martynov, Igor; Dovzhenko, Dmitriy; Chistyakov, Alexander

    2016-05-01

    We demonstrate a new way for detection ultralow concentration of explosives in this study. It combines an ion mobility spectrometry (IMS) and a promising method of laser desorption/ionization on silicon (DIOS). The DIOS is widely used in mass spectrometry due to the possibility of small molecule detection and high sensitivity. It is known that IMS based on laser ion source is a power method for the fast detection of ultralow concentration of organic molecules. However requirement of using high energy pulse ultraviolet laser increases weight and size of the device. The use of DIOS in an ion source of IMS could decrease energy pulse requirements and allows one to construct both compact and high sensitive device for analyzing gas and liquid probes. On the other hand mechanisms of DIOS in gas media is poorly studied, especially in case of nitroaromatic compounds. The investigation of the desorption/ionization on porous silicon (pSi) surface of nitroaromatic compounds has been carried out for 2,4,6-trinitrotoluene (TNT) using IMS and mass spectrometry (MS). It has been demonstrated that TNT ion formation in a gas medium is a complicated process and includes both an electron emission from the pSi surface with subsequent ion-molecular reactions in a gas phase and a proton transfer between pSi surface and TNT molecule.

  7. Mycobacterium abscessus Complex Identification with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Panagea, Theofano; Pincus, David H.; Grogono, Dorothy; Jones, Melissa; Bryant, Josephine; Parkhill, Julian; Floto, R. Andres

    2015-01-01

    We determined that the Vitek MS Plus matrix-assisted laser desorption ionization–time of flight mass spectrometry using research-use-only (RUO) v.4.12 and in vitro-diagnostic (IVD) v.3.0 databases accurately identified 41 Mycobacterium abscessus subsp. abscessus and 13 M. abscessus subsp. massiliense isolates identified by whole-genome sequencing to the species but not the subspecies level, from Middlebrook 7H11 and Burkholderia cepacia selective agars. Peak analysis revealed three peaks potentially able to differentiate between subspecies. PMID:25948607

  8. Mycobacterium abscessus Complex Identification with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Panagea, Theofano; Pincus, David H; Grogono, Dorothy; Jones, Melissa; Bryant, Josephine; Parkhill, Julian; Floto, R Andres; Gilligan, Peter

    2015-07-01

    We determined that the Vitek MS Plus matrix-assisted laser desorption ionization-time of flight mass spectrometry using research-use-only (RUO) v.4.12 and in vitro-diagnostic (IVD) v.3.0 databases accurately identified 41 Mycobacterium abscessus subsp. abscessus and 13 M. abscessus subsp. massiliense isolates identified by whole-genome sequencing to the species but not the subspecies level, from Middlebrook 7H11 and Burkholderia cepacia selective agars. Peak analysis revealed three peaks potentially able to differentiate between subspecies. PMID:25948607

  9. Ion Yields in the Coupled Chemical and Physical Dynamics Model of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Knochenmuss, Richard

    2015-08-01

    The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.

  10. Authenticity assessment of beef origin by principal component analysis of matrix-assisted laser desorption/ionization mass spectrometric data.

    PubMed

    Zaima, Nobuhiro; Goto-Inoue, Naoko; Hayasaka, Takahiro; Enomoto, Hirofumi; Setou, Mitsutoshi

    2011-06-01

    It has become necessary to assess the authenticity of beef origin because of concerns regarding human health hazards. In this study, we used a metabolomic approach involving matrix-assisted laser desorption/ionization imaging mass spectrometry to assess the authenticity of beef origin. Highly accurate data were obtained for samples of extracted lipids from beef of different origin; the samples were grouped according to their origin. The analysis of extracted lipids in this study ended within 10 min, suggesting this approach can be used as a simple authenticity assessment before a definitive identification by isotope analysis.

  11. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-11-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  12. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-09-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  13. Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis.

    PubMed

    da Silva, David; Wasselin, Thierry; Carré, Vincent; Chaimbault, Patrick; Bezdetnaya, Lina; Maunit, Benoît; Muller, Jean-François

    2011-07-15

    Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage.

  14. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Lu, I.-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A.; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI.

  15. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization.

    PubMed

    Lu, I-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI.

  16. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry (GALDI-FTMS)

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been employed to determine how well bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition of C18H39O7Na . A natural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination was estimated to be 3 parts per trillion or ~7 zeptomoles per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTMS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  17. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    PubMed

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  18. An investigation of liquid secondary ion and laser desorption mass spectroscopy for the analysis of planar chromatograms

    SciTech Connect

    Dunphy, J.C.

    1990-11-01

    In the work described in this dissertation, interfaces between two mass spectrometric methods, liquid secondary ion mass spectrometry (LSIMS) and laser desorption/ionization Fourier transform mass spectrometry (LD/FTMS), and thin-layer chromatography (TLC) and slab gel electrophoresis were developed for bioanalytical applications. In an investigation of direct LSIMS for TLC analysis (TLC/LSIMS), mass spectra of bile acids and bile salts were characterized directly from high-performance TLC plates. The scanning ability of the LSIMS instrument was used to generate spatial profiles of the characteristic bile acid ions in the mass spectra. A procedure for the analysis of bile salts in dog bile was developed involving an extraction step, followed by TLC separation and direct TLC/LSIMS detection and semi-quantitation. For peptides, an experiment called selected-sequence monitoring'' was developed to locate target peptides related in structure in complex mixtures developed on TLC plates. Ions characteristic of the bradykinin and enkephalin peptides were used to generate spatial profiles of members of those peptide families on TLC plates. Using a Fourier transform mass spectrometer (FTMS), a fundamental investigation was conducted into the factors affecting the quality of analytical data obtained using direct laser desorption/ionization to produce mass spectra from TLC plates.

  19. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    PubMed

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars. PMID:25622133

  20. Matrix-Free UV-Laser Desorption Ionization Mass Spectrometry as a Versatile Approach for Accelerating Dereplication Studies on Lichens.

    PubMed

    Le Pogam, Pierre; Schinkovitz, Andreas; Legouin, Béatrice; Le Lamer, Anne-Cécile; Boustie, Joël; Richomme, Pascal

    2015-10-20

    The present study examined the suitability of laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) for the rapid chemical fingerprinting of lichen extracts. Lichens are known to produce a wide array of secondary metabolites. Most of these compounds are unique to the symbiotic condition but some can be found in many species. Therefore, dereplication, that is, the rapid identification of known compounds within a complex mixture is crucial in the search for novel natural products. Over the past decade, significant advances were made in analytical techniques and profiling methods specifically adapted to crude lichen extracts, but LDI-MS has never been applied in this context. However, most classes of lichen metabolites have UV chromophores, which are quite similar to commercial matrix molecules used in matrix-assisted laser desorption ionization (MALDI). It is consequently postulated that these molecules could be directly detectable by matrix-free LDI-MS. The present study evaluated the versatility of this technique by investigating the LDI properties of a vast array of single lichen metabolites as well as lichen extracts of known chemical composition. Results from the LDI experiments were compared with those obtained by direct ESI-MS detection as well as LC-ESI-MS. It was shown that LDI ionization leads to strong molecular ion formation with little fragmentation, thus, facilitating straightforward spectra interpretation and representing a valuable alternative to time-consuming LC-MS analysis.

  1. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    SciTech Connect

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  2. Cellular Level Mass Spectrometry Imaging using Infrared Matrix Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) by Oversampling

    PubMed Central

    Nazari, Milad; Muddiman, David C.

    2014-01-01

    Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 μm by utilizing the method of oversampling; where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (± 1 ppm) and high mass resolving power (140,000 at m/z=200) was achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed. PMID:25486925

  3. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging.

    PubMed

    Kim, Young-Kwan; Na, Hee-Kyung; Kwack, Sul-Jin; Ryoo, Soo-Ryoon; Lee, Youngmi; Hong, Seunghee; Hong, Sungwoo; Jeong, Yong; Min, Dal-Hee

    2011-06-28

    Matrix-assisted laser desorption/ionization mass spectrometry has been considered an important tool for various biochemical analyses and proteomics research. Although addition of conventional matrix efficiently supports laser desorption/ionization of analytes with minimal fragmentation, it often results in high background interference and misinterpretation of the spatial distribution of biomolecules especially in low-mass regions. Here, we show design, systematic characterization, and application of graphene oxide/multiwalled carbon nanotube-based films fabricated on solid substrates as a new matrix-free laser desorption/ionization platform. We demonstrate that the graphene oxide/multiwalled carbon nanotube double layer provides many advantages as a laser desorption/ionization substrate, such as efficient desorption/ionization of analytes with minimum fragmentation, high salt tolerance, no sweet-spots for mass signal, excellent durability against mechanical and photoagitation and prolonged exposure to ambient conditions, and applicability to tissue imaging mass spectrometry. This platform will be widely used as an important tool for mass spectrometry-based biochemical analyses because of its outstanding performance, long-term stability, and cost effectiveness.

  4. Direct identification of various copper phthalocyanine pigments in automotive paints and paint smears by laser desorption ionization mass spectrometry.

    PubMed

    Mukai, Tadashi; Nakazumi, Hiroyuki; Kawabata, Shin-ichirou; Kusatani, Masaru; Nakai, Seita; Honda, Sadao

    2008-01-01

    Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.

  5. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils.

    PubMed

    Picca, Rosaria Anna; Calvano, Cosima Damiana; Lo Faro, Maria Josè; Fazio, Barbara; Trusso, Sebastiano; Ossi, Paolo Maria; Neri, Fortunato; D'Andrea, Cristiano; Irrera, Alessia; Cioffi, Nicola

    2016-09-01

    In this work, novel hybrid nanostructured surfaces, consisting of dense arrays of silicon nanowires (SiNWs) functionalized by Ag nanoparticles (AgNP/SiNWs), were used for the laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) analysis of some typical unsaturated food components (e.g. squalene, oleic acid) to assess their MS performance. The synthesis of the novel platforms is an easy, cost-effective process based on the maskless wet-etching preparation at room temperature of SiNWs followed by their decoration with AgNPs, produced by pulsed laser deposition. No particular surface pretreatment or addition of organic matrixes/ionizers was necessary. Moreover, oil extracts (e.g. extra virgin olive oil, peanut oil) could be investigated on AgNP/SiNWs surfaces, revealing their different MS profiles. It was shown that such substrates operate at reduced laser energy, typically generating intense silver cluster ions and analyte adducts. A comparison with bare SiNWs was also performed, indicating the importance of AgNP density on NW surface. In this case, desorption/ionization on silicon was invoked as probable LDI mechanism. Finally, the influence of SiNW length and surface composition on MS results was assessed. The combination of typical properties of SiNWs (hydrophobicity, antireflectivity) with ionization ability of metal NPs can be a valid methodology for the further development of nanostructured surfaces in LDI-TOF MS applications. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27476797

  6. Detecting Biosignatures Associated with Minerals by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transorm Mass Spectromety (GALDI-FTMS)

    SciTech Connect

    C. Doc Richardson; J. Michelle Kotler; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    The ability to detect carbon signatures that can be linked to complex, possibly biogenic, organic molecules is imperative in research into the origin and distribution of life in our solar system particularly when used in conjunction with inorganic, mineralogical, and isotopic signatures that provide strong evidence for geochemical influences of living organisms on their environment. Ideally, the method used to detect these signatures must (i) accurately and automatically translate the organic and other information into usable forms, (ii) precisely distinguish such information from alternative compositions, (iii) operate with high spatial resolution coupled with precise location abilities, and (iv) require little to no sample preparation because of the potential for contamination. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been used to determine the presence of bio/organic molecules (BOM) associated with different minerals and mineraloids including oxide, sulfate, carbonate, chloride, and silicate minerals. BOM is defined as an organic structure that can be produced by living organisms or derived from another organic compound made by living organisms (i.e., degradation product). GALDI requires no sample preparation because the mineral matrix assists desorption. Ultimately, however, the detectability of BOM is controlled by the desorption efficiency, ionization efficiency, and the specific experimental conditions. Results from experiments with combinations of known BOM and mineral standards indicated that the detectability of BOM increased with decreasing concentration, contrary to most analytical procedures. Results suggest that BOM when combined with certain minerals is more easily detected than when combined with other minerals. Such conclusions can guide selection of appropriate samples for sample return missions.

  7. Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser desorption ionisation time of flight mass spectrometry.

    PubMed

    Girard, Victoria; Mailler, Sandrine; Chetry, Marion; Vidal, Céline; Durand, Géraldine; van Belkum, Alex; Colombo, Arnaldo L; Hagen, Ferry; Meis, Jacques F; Chowdhary, Anuradha

    2016-08-01

    Candida auris is an emerging antifungal resistant yeast species causing nosocomial and invasive infections, emphasising the need of improved diagnostics and epidemiological typing methods. We show that MALDI-TOF VITEK-MS followed by amplified length polymorphisms allows for accurate species identification and subsequent epidemiological characterisation of strains encountered during potential outbreaks.

  8. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    PubMed

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn.

  9. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can accurately differentiate Aeromonas dhakensis from A. hydrophila, A. caviae, and A. veronii.

    PubMed

    Chen, Po-Lin; Lee, Tai-Fen; Wu, Chi-Jung; Teng, Shih-Hua; Teng, Lee-Jene; Ko, Wen-Chien; Hsueh, Po-Ren

    2014-07-01

    Among 217 Aeromonas isolates identified by sequencing analysis of their rpoB genes, the accuracy rates of identification of A. dhakensis, A. hydrophila, A. veronii, and A. caviae were 96.7%, 90.0%, 96.7%, and 100.0%, respectively, by the cluster analysis of spectra generated by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

  10. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species.

  11. THE USE OF MATRIX-ASSISTED LASER DESORPTION/IONIZATION-MASS SPECTROMETRY FOR THE IDENTIFICATION OF AEROMONAS ISOLATES OBTAINED FROM WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  14. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  15. The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese.

    PubMed

    Angeletti, R; Gioacchini, A M; Seraglia, R; Piro, R; Traldi, P

    1998-06-01

    Adulteration by addition of bovine milk to water buffalo milk employed for mozzarella cheese production is often observed. Water buffalo milk and mozzarella cheese were analysed by matrix-assisted laser desorption/ionization mass spectrometry in order to achieve their rapid and accurate characterization and to evaluate possible fraudulence in mozzarella cheese production.

  16. Detection of Posaconazole by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid-Liquid Microextraction

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.

    2015-03-01

    A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.

  17. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    PubMed

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples.

  18. Efficient sample preparation in immuno-matrix-assisted laser desorption/ionization mass spectrometry using acoustic trapping

    PubMed Central

    Hammarström, Björn; Yan, Hong; Nilsson, Johan; Ekström, Simon

    2013-01-01

    Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm2 glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples. PMID:24404012

  19. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  20. Selective analysis of lipids by thin-layer chromatography blot matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Zaima, Nobuhiro; Goto-Inoue, Naoko; Adachi, Kohsuke; Setou, Mitsutoshi

    2011-01-01

    Thin-layer chromatography (TLC) is an essential method for food composition analyses such as lipid nutrition analysis. TLC can be used to obtain information about the lipid composition of foods; however, it cannot be used for analyses at the molecular level. Recently we developed a new method that combines matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) with TLC-blotting (TLC-Blot-MALDI-IMS). The combination of MALDI-IMS and TLC blotting enabled detailed and sensitive analyses of lipids. In this study, we applied TLC-Blot-MALDI-IMS for analysis of major phospholipids extracted from bluefin tuna. We showed that TLC-Blot-MALDI-IMS analysis could visualize and identify major phospholipids such as phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin.

  1. 5-Methoxysalicylic Acid Matrix for Ganglioside Analysis with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Dongkun; Cha, Sangwon

    2015-03-01

    In this note, we report that high quality ganglioside profiles with minimal loss of sialic acid residues can be obtained in the positive ion mode by using a 5-methoxysalicylic acid (MSA) matrix for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our results showed that MSA produced much less sialic acid losses from gangliosides than DHB, although MSA and DHB are differ only by their functional groups at their 5-positions (-OH for DHB and -OCH3 for MSA). Furthermore, our data also demonstrated that addition of an alkali metal additive was effective for simplifying ganglioside profiles, but not necessary for stabilizing glycosidic bonds of gangliosides if MSA was used as a matrix. This suggests that MALDI MS with MSA has a potential to gain additional benefits from the positive-ion mode analyses without losing performance in ganglioside profiling.

  2. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Discrimination of Food-Borne Microorganisms

    PubMed Central

    Mazzeo, Maria Fiorella; Sorrentino, Alida; Gaita, Marcello; Cacace, Giuseppina; Di Stasio, Michele; Facchiano, Angelo; Comi, Giuseppe; Malorni, Antonio; Siciliano, Rosa Anna

    2006-01-01

    A methodology based on matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact bacterial cells was used for rapid discrimination of 24 bacterial species, and detailed analyses to identify Escherichia coli O157:H7 were carried out. Highly specific mass spectrometric profiles of pathogenic and nonpathogenic bacteria that are well-known major food contaminants were obtained, uploaded in a specific database, and made available on the Web. In order to standardize the analytical protocol, several experimental, sample preparation, and mass spectrometry parameters that can affect the reproducibility and accuracy of data were evaluated. Our results confirm the conclusion that this strategy is a powerful tool for rapid and accurate identification of bacterial species and that mass spectrometric methodologies could play an essential role in polyphasic approaches to the identification of pathogenic bacteria. PMID:16461665

  3. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  4. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE PAGESBeta

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  5. Matrix-assisted laser desorption/ionization mass spectrometry of neutral and acidic oligosaccharides with collision-induced dissociation.

    PubMed

    Mechref, Y; Baker, A G; Novotny, M V

    1998-12-15

    Using ribonuclease B and human alpha 1-acid glycoprotein (AGP) as model glycoproteins, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry with collision-induced dissociation (CID) is validated here as an effective tool for oligosaccharide sequencing. The spectra acquired for high-mannose and complex oligosaccharide structures show characteristic fragments resulting from cleavages of the glycosidic bonds and a few cross-ring cleavages. Esterification of the sialic acid residues is essential in stabilizing the acidic N-linked oligosaccharides. An important analytical feature observed in all acquired spectra is the occurrence of cleavages on the same antenna up to the branching point, as deduced from the absence of fragmentation due to the simultaneous cleavages on two or more antennas.

  6. Efficient sample preparation in immuno-matrix-assisted laser desorption/ionization mass spectrometry using acoustic trapping.

    PubMed

    Hammarström, Björn; Yan, Hong; Nilsson, Johan; Ekström, Simon

    2013-01-01

    Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm(2) glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples.

  7. Development of proteomic signatures of platelet activation using surface-enhanced laser desorption/ionization technology in a clinical setting.

    PubMed

    Yin, Wei; Czuchlewski, David; Peerschke, Ellinor I

    2008-06-01

    The objective of this study was to develop proteomic profiles that would distinguish between resting and activated platelets in a clinical setting using surface-enhanced laser desorption/ionization (SELDI) time of flight (TOF) technology. A data set of 50 donors was analyzed. Distinct spectral patterns emerged in the low-molecular-weight range (2-10 kDa) for resting platelets and platelets aggregated with adenosine diphosphate (ADP) or thrombin receptor activation peptide SFLLRN (TRAP) and in platelets exposed to shear stress. Platelets from patients treated with ADP receptor antagonists did not show the expected change in proteomic profile following aggregation with ADP. These data provide the first demonstration that proteomic signatures of platelets can be developed using SELDI-TOF in a clinical laboratory setting. PMID:18480001

  8. Gas-phase reactions of charged phenyl radicals with neutral biomolecules evaporated by laser-induced acoustic desorption.

    PubMed

    Petzold, Christopher J; Ramírez-Arizmendi, Luis E; Heidbrink, Jenny L; Pérez, James; Kenttämaa, Hilkka I

    2002-02-01

    A generally applicable method for the study of phenyl radicals' reactions with neutral biomolecules in the gas phase is demonstrated. Neutral biomolecules were evaporated into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR) by means of laser-induced acoustic desorption (LIAD) and subsequently reacted with trapped charged phenyl radicals. The structural integrity of the evaporated alanylalanine molecules was verified by reaction with dichlorophosphenium ions. Examination of the reactions of charged phenyl radicals with alanylalanine and thymidine evaporated via LIAD revealed hydrogen atom abstraction for both alanylalanine and thymidine as well as an addition/elimination product for the reaction with thymidine. These reactions are consistent with the results obtained by others in solution. Further, a previously unstudied reaction of the nucleotide of thymine (T1) with charged phenyl radical was found to yield analogous products as the reaction with thymidine.

  9. Interference-effects in the laser-induced desorption of small molecules from surfaces: a model study

    NASA Astrophysics Data System (ADS)

    Thiel, S.; Klüner, T.; Freund, H.-J.

    1998-09-01

    A diabatic treatment of laser-induced desorption of small molecules from surfaces is considered to be an essential step of the theoretical quantum mechanical simulation of a DIET process on an ab initio basis. The consequences of this treatment are investigated especially with respect to the resulting velocity distributions of the desorbing species. The distributions of NO desorbing from nickel oxide surfaces are characterised by a bimodal structure. In our calculations the diabatic coupling between several investigated two-state systems is introduced via the off-diagonal elements of the Hamiltonian, which determines the time evolution of the quantum system. This procedure is the basis for a discussion of the experimentally observed features in the velocity distributions in terms of a coherent diabatic picture.

  10. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  11. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Cozzolino, R; Passalacqua, S; Salemi, S; Malvagna, P; Spina, E; Garozzo, D

    2001-09-01

    The development is described of a rapid, simply and accurate analytical method aimed at evaluating both the presence of cow milk in either raw ewe and water buffalo milk samples employed in industrial processes and the addition of powdered milk to samples of fresh raw milk, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The presence of adulteration is defined by evaluating the protein patterns coming from the most abundant whey proteins, alpha-lactalbumin and beta-lactoglobulin, used as molecular markers. As no pretreatment of the milk samples is required and owing to the speed and ease of use of MALDI-MS the proposed analytical protocol can be used as a routine strategy for the identification of possible adulteration of the raw fresh milk samples that the dairy industry receives from producers every day.

  12. Aerosol matrix-assisted laser desorption ionization. Effects of analyte concentration and matrix-to-analyte ratio

    SciTech Connect

    Beeson, M.D.; Murray, K.K.; Russell, D.H.

    1995-07-01

    We have recently developed an aerosol-liquid introduction interface for matrix-assisted laser desorption ionization (MALDI) mass spectrometry. In this study, we examine the effect of matrix-to-analyte ratio and analyte concentration on analyte ion yield. These studies were performed using bradykinin, gramicidin S, bovine insulin, and myoglobin as analytes and {alpha}-cyano-4-hydroxycinnamic acid and 4-nitroaniline as matrices. The optimum matrix-to-analyte molar ratio for aerosol MALDI was determined to be 10-100:1, which is lower than that typically used for conventional surface MALDI (100-10 000:1). The ion yield was found to be a nonlinear function of analyte concentration. Possible explanations for these observations are discussed. 43 refs., 3 figs., 1 tab.

  13. Application of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of Neisseria species.

    PubMed

    Gudlavalleti, Seshu K; Sundaram, Appavu K; Razumovski, Jane; Doroshenko, Vladimir

    2008-07-01

    Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS.

  14. Dissipative dynamics within the electronic friction approach: the femtosecond laser desorption of H2/D2 from Ru(0001).

    PubMed

    Füchsel, Gernot; Klamroth, Tillmann; Monturet, Serge; Saalfrank, Peter

    2011-05-21

    An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H(2) and D(2) from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.

  15. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    SciTech Connect

    Aizikov, Konstantin; Lin, Tzu-Yung; Smith, Donald F.; Heeren, Ron M. A.; Chargin, David A.; Ivanov, Sergei; O'Connor, Peter B.

    2011-05-15

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The range of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  16. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  17. Detection of Biosignatures in Natural and Microbial Cultured Jarosites Using Laser- Desorption Fourier Transform Mass Spectrometry: Implications for Astrobiology

    NASA Astrophysics Data System (ADS)

    Kotler, J.; Hinman, N. W.; Yan, B.; Stoner, D. L.; Scott, J. R.

    2006-12-01

    The jarosite group minerals have received increasing attention since the discovery by the Mars Exploration Rover-Opportunity of jarosite on the Martian surface. The general chemical formula for jarosite is XFe3(SO4)2(OH)6 where the X represents both monovalent and divalent cations that can occupy the axial positions in the crystal structure. Commonly found ions include K+, Na+, H3O+, NH4+, and Pb2+ with reports of other large ions occupying this position in the literature. Modeling efforts have been performed to confirm that jarosite has the ability to incorporate a variety of "foreign" cations. The minerals unique ability to incorporate various large ions in its structure and its association with biological activity in terrestrial environments has lead to investigations regarding its use as an indicator of aqueous and/or biological activity. The use of laser desorption Fourier transform mass spectrometry (LD-FTMS) has revealed the presence of organic matter including the amino acid, glycine, in several jarosite samples from various worldwide locations. Iron precipitates derived from acidophilic microbial cultures were also analyzed. Using attenuated total reflectance infrared spectroscopy (ATR-IR), signals indicative of microbes or microbial exudates were weak and ambiguous. In contrast, LD-FTMS clearly detected bioorganic constituents in some desorption spots. However, the signals were sporadic and required the laser scanning/imaging capability of our laboratory built system to locate the microbial signatures in the heterogeneous samples. The ability to observe these bioorganic signatures in jarosite samples using the instrumental technique employed in this study furthers the goals of planetary geologists to determine whether signs of life (e.g., presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples.

  18. Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix-free infrared laser desorption and ionization.

    PubMed

    Ullom, J N; Frank, M; Gard, E E; Horn, J M; Labov, S E; Langry, K; Magnotta, F; Stanion, K A; Hack, C A; Benner, W H

    2001-05-15

    We demonstrate that molecular ions with mass-to-charge ratios (m/z) ranging from a few hundred to 19 050 can be desorbed from whole bacterial spores using infrared laser desorption and no chemical matrix. We have measured the mass of these ions using time-of-flight mass spectrometry and we observe that different ions are desorbed from spores of Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Bacillus niger. Our results raise the possibility of identifying microorganisms using mass spectrometry without conventional sample preparation techniques such as the addition of a matrix. We have measured the dependence of the ion yield from B. subtilis on desorption wavelength over the range 3.05-3.8 microm, and we observe the best results at 3.05 microm. We have also generated mass spectra from whole spores using 337-nm ultraviolet laser desorption, and we find that these spectra are inferior to spectra generated with infrared desorption. Since aerosol analysis is a natural application for matrix-free desorption, we have measured mass spectra from materials such as ragweed pollen and road dust that are likely to form a background to microbial aerosols. We find that these materials are readily differentiated from bacterial spores.

  19. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS-NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    SciTech Connect

    Gudipati, Murthy S.; Yang Rui E-mail: ryang73@ustc.edu

    2012-09-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Ly{alpha} radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K-close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies-the first glimpses into interstellar ice chemistry through analog studies-show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  20. Direct Analysis of Textile Fabrics and Dyes Using IR Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Mass Spectrometry

    PubMed Central

    Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David

    2012-01-01

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  1. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Muddiman, David C; Hinks, David

    2013-01-15

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then postionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  2. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    PubMed Central

    Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C.; Carlson, Ross P.; Ahmed, Musahid; Hanley, Luke

    2013-01-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups, two “pure” groups, and a mixed region. Furthermore, the “pure” regions of the E. coli cocultures showed greater variance by PCA at 7.87 eV photon energies compared to 10.5 eV radiation. This is consistent with the expectation that the 7.87 eV photoionization selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species. PMID:24067765

  3. Laser desorption-ion mobility spectrometry as a useful tool for imaging of thin layer chromatography surface.

    PubMed

    Ilbeigi, Vahideh; Sabo, Martin; Valadbeigi, Younes; Matejcik, Stefan; Tabrizchi, Mahmoud

    2016-08-12

    We present a novel method for coupling thin layer chromatography (TLC) with ion mobility spectrometry (IMS) using laser desorption technique (LD). After separation of the compounds by TLC, the TLC surface was sampled by the LD-IMS without any further manipulation or preparation. The position of the laser was fixed and the TLC plate was moved in desired directions by the motorized micro-positioning stage. The method was successfully applied to analyze the TLC plates containing explosives (tri nitro toluene, 1,3,5-trinitro- 1,3,5-triazacyclohexane, pentaerythritol tetranitrate, 2,4-dinitro toluene and 3,4-dinitro toluene), amino acids (alanine, proline and isoleucine), nicotine and diphenylamine mixtures and detection limits for these compounds were determined. Combination of TLC with LD-IMS technique offers additional separation dimension, allowing separation of overlapping TLC analytes. The time for TLC sampling by LD-IMS was less than 80s. The scan rate for LD is adjustable so that fast and effective analysis of the mixtures is possible with the proposed method. PMID:27397925

  4. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Muddiman, David C; Hinks, David

    2013-01-15

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then postionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard.

  5. Two-Step Resonance-Enhanced Desorption Laser Mass Spectrometry for In Situ Analysis of Organic-Rich Environments

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Grubisic, A.; Uckert, K.; Li, X.; Cornish, T.; Cook, J. E.; Brinckerhoff, W. B.

    2016-01-01

    A wide diversity of planetary surfaces in the solar system represent high priority targets for in situ compositional and contextual analysis as part of future missions. The planned mission portfolio will inform our knowledge of the chemistry at play on Mars, icy moons, comets, and primitive asteroids, which can lead to advances in our understanding of the interplay between inorganic and organic building blocks that led to the evolution of habitable environments on Earth and beyond. In many of these environments, the presence of water or aqueously altered mineralogy is an important indicator of habitable environments that are present or may have been present in the past. As a result, the search for complex organic chemistry that may imply the presence of a feedstock, if not an inventory of biosignatures, is naturally aligned with targeted analyses of water-rich surface materials. Here we describe the two-step laser mass spectrometry (L2MS) analytical technique that has seen broad application in the study of organics in meteoritic samples, now demonstrated to be compatible with an in situ investigation with technique improvements to target high priority planetary environments as part of a future scientific payload. An ultraviolet (UV) pulsed laser is used in previous and current embodiments of laser desorption/ionization mass spectrometry (LDMS) to produce ionized species traceable to the mineral and organic composition of a planetary surface sample. L2MS, an advanced technique in laser mass spectrometry, is selective to the aromatic organic fraction of a complex sample, which can provide additional sensitivity and confidence in the detection of specific compound structures. Use of a compact two-step laser mass spectrometer prototype has been previously reported to provide specificity to key aromatic species, such as PAHs, nucleobases, and certain amino acids. Recent improvements in this technique have focused on the interaction between the mineral matrix and the

  6. In situ identification of organic components of ink used in books from the 1900s by atmospheric pressure matrix assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Giurato, Laura; Candura, Andrea; Grasso, Giuseppe; Spoto, Giuseppe

    2009-11-01

    This paper describes the use of atmospheric pressure/matrix assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of organic components of inks used to print coloured parts of ancient books. The possibility to operate at atmospheric pressure makes MALDI-MS a new in situ micro-destructive diagnostic tool suitable for analysing samples in air, simplifying the investigation of the organic components of artistic and archaeological objects. In this work, several organic dyes and pigments were identified in situ by analysing different coloured areas of books printed in the years 1911 and 1920. The detected colouring materials, which were available since the 1890s, were often identified as a mixture, confirming the typical procedures used in the lithographic printing processes. The matrix deposition and the laser desorption process did not cause visible alteration of the sample surface.

  7. Determination of Macrolide Antibiotics Using Dispersive Liquid-Liquid Microextraction Followed by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Yu; Yang, Thomas C.; Chang, Sarah Y.

    2012-06-01

    A novel method for the determination of macrolide antibiotics using dispersive liquid-liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.

  8. Differentiation of Raoultella ornithinolytica/planticola and Klebsiella oxytoca clinical isolates by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    PubMed

    de Jong, Eefje; de Jong, Arjan S; Smidts-van den Berg, Nathalie; Rentenaar, Rob J

    2013-04-01

    Ninety-nine clinical isolates previously identified as Klebsiella oxytoca were evaluated using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Eight isolates were identified as Raoultella spp., being 5 Raoultella spp. and 3 K. oxytoca, by 16S rRNA sequencing. These isolates were correctly identified by applying the 10% differential rule for the MALDI-TOF MS score values. This approach might be useful to discriminate Raoultella species from K. oxytoca.

  9. Analysis of Melamine, Cyanuric Acid, Ammelide, and Ammeline Using Matrix-Asssisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry (MALDI/TOFMS)

    SciTech Connect

    Campbell, James A.; Wunschel, David S.; Petersen, Catherine E.

    2007-12-01

    Melamine and cyanuric acid, two compounds connected to tainted pet food, have been analyzed using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. (M+H)+ ions were observed for melamine, ammelide, and ammeline under positive ion conditions with sinapinic acid as the matrix. With alpha-cyano-4-hydroxy-cinnamic acid as the matrix, a matrix-melamine complex was observed. (M-H)- was observed for cyanuric acid with sinapinic acid as the matrix.

  10. Identification of Non-diphtheriae Corynebacterium by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Alatoom, Adnan A.; Cazanave, Charles J.; Cunningham, Scott A.; Ihde, Sherry M.

    2012-01-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for identification of 92 clinical isolates of Corynebacterium species in comparison to identification using rpoB or 16S rRNA gene sequencing. Eighty isolates (87%) yielded a score of ≥1.700, and all of these were correctly identified to the species level with the exception of Corynebacterium aurimucosum being misidentified as the closely related Corynebacterium minutissimum. PMID:22075579

  11. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase.

  12. Pretreatment of Urine Samples with SDS Improves Direct Identification of Urinary Tract Pathogens with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Sánchez-Juanes, F.; Siller Ruiz, M.; Moreno Obregón, F.; Criado González, M.; Hernández Egido, S.; de Frutos Serna, M.; González-Buitrago, J. M.

    2014-01-01

    We pretreated with SDS 71 urine samples with bacterial counts of >105 CFU/ml and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) identification scores of <2, in order to minimize failure rates. Identification improved in 46.5% of samples, remained unchanged in 49.3%, and worsened in 4.2%. The improvement was more evident for Gram-negative (54.3%) than for Gram-positive (32%) bacteria. PMID:24226916

  13. Identification of Neisseria gonorrhoeae by the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System Is Improved by a Database Extension.

    PubMed

    Schweitzer, Valentijn A; van Dam, Alje P; Hananta, I Putu Yuda; Schuurman, Rob; Kusters, Johannes G; Rentenaar, Rob J

    2016-04-01

    Identification ofNeisseria gonorrhoeaeby the Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system may be affected by "B consistency categorization." A supplementary database of 17N. gonorrhoeaemain spectra was constructed. Twelve of 64N. gonorrhoeaeidentifications were categorized with B consistency, which disappeared using the supplementary database. Database extension did not result in misidentification ofNeisseria meningitidis. PMID:26763972

  14. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry.

    PubMed

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R

    2013-09-01

    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

  15. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase. PMID:27076665

  16. Interlaboratory Comparison of Intact-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Results for Identification and Differentiation of Brucella spp.

    PubMed Central

    Karger, Axel; Melzer, Falk; Timke, Markus; Bettin, Barbara; Kostrzewa, Markus; Nöckler, Karsten; Hohmann, Angelika; Tomaso, Herbert; Neubauer, Heinrich

    2013-01-01

    Classical microbiological diagnosis of human brucellosis is time-consuming, hazardous, and subject to variable interpretation. Intact-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the routine identification of Brucella spp. Analysis of mass peak patterns allowed accurate identification to the genus level. However, statistical models based on peak intensities were needed for definite species differentiation. Interlaboratory comparison confirmed the reproducibility of the results. PMID:23850950

  17. A Simple and Safe Protocol for Preparing Brucella Samples for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Analysis

    PubMed Central

    Mesureur, Jennifer; Ranaldi, Sébastien; Monnin, Valérie; Girard, Victoria; Arend, Sandrine; Welker, Martin; O'Callaghan, David

    2015-01-01

    We describe a simple protocol to inactivate the biosafety level 3 (BSL3) pathogens Brucella prior to their analysis by matrix-assisted laser desorption ionization–time of flight mass spectrometry. This method is also effective for several other bacterial pathogens and allows storage, and eventually shipping, of inactivated samples; therefore, it might be routinely applied to unidentified bacteria, for the safety of laboratory workers. PMID:26582837

  18. Identification of Neisseria gonorrhoeae by the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System Is Improved by a Database Extension

    PubMed Central

    Schweitzer, Valentijn A.; van Dam, Alje P.; Hananta, I Putu Yuda; Schuurman, Rob; Kusters, Johannes G.

    2016-01-01

    Identification of Neisseria gonorrhoeae by the Bruker matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) system may be affected by “B consistency categorization.” A supplementary database of 17 N. gonorrhoeae main spectra was constructed. Twelve of 64 N. gonorrhoeae identifications were categorized with B consistency, which disappeared using the supplementary database. Database extension did not result in misidentification of Neisseria meningitidis. PMID:26763972

  19. Effect of impurities on the matrix-assisted laser desorption mass spectra of single-stranded oligodeoxynucleotides.

    PubMed

    Shaler, T A; Wickham, J N; Sannes, K A; Wu, K J; Becker, C H

    1996-02-01

    The effect of impurities on the analysis of single-stranded DNA oligomers by the technique of matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry has been studied using the matrix 3-hydroxypicolinic acid and 355-nm pulsed light. By mixing the DNA oligomers with different concentrations of impurities and recording mass spectra, limits are set on the tolerable level of a given impurity in a sample. The tolerance limits for sodium chloride, potassium chloride, sodium acetate, sodium fluoride, sodium dodecyl sulfate (SDS), and manganese(II) chloride were found to be approximately 10(-2) M. It was found that magnesium salts degraded the mass spectrum at much lower levels of 10(-4) M. The organic compounds tris(hydroxymethyl)aminomethane (Tris), urea, dithiothreitol (DTT), glycerol, and ethylenediaminetetraacetic acid (EDTA), when present as its ammonium salt, were tolerable at concentrations into the range of 0.25-0.5 M, while the organic polyamine compound spermine substantially degraded the mass spectrum at concentrations above 10(-2) M. When comparing these results for DNA analysis with previously reported limits for protein analysis, large differences are seen for some of the impurities tested. PMID:8712365

  20. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  1. Detergent enhancement of on-tissue protein analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Mainini, Veronica; Angel, Peggi M; Magni, Fulvio; Caprioli, Richard M

    2011-01-15

    Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS) is a molecular technology that allows simultaneous investigation of the content and spatial distribution of molecules within tissue. In this work, we examine different classes of detergents, the anionic sodium dodecyl sulfate (SDS), the nonionic detergents Triton X-100, Tween 20 and Tween 80, and the zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) for use in MALDI IMS of analytes above m/z 4000. These detergents were found to be compatible with MALDI MS and did not cause signal suppression relative to non-detergent applications and did not produce interfering background signals. In general, these detergents enhanced signal acquisition within the mass range m/z 4-40 000. Adding detergents into the matrix was comparable with the separate application of detergent and matrix. Evaluation of spectra collected from organ-specific regions of a whole mouse pup section showed that different detergents perform optimally with different organs, indicating that detergent selection should be optimized on the specific tissue for maximum gain. These data show the utility of detergents towards enhancement of protein signals for on-tissue MALDI IMS analysis.

  2. Velocity distribution of laser photoionized neutrals ejected from methanol-dosed aluminium(111) by electron-stimulated desorption

    SciTech Connect

    Young, C.E.; Whitten, J.E.; Pellin, M.J.; Gruen, D.M.; Jones, P.L.; Ohio State Univ., Columbus, OH . Dept. of Chemistry)

    1989-01-01

    Nonresonant multiphoton ionization at 193 nm wavelength was employed for efficient detection of electron-stimulated neutral desorption from Al(111) dosed with methanol to produce monolayer methoxide coverage. Velocity spectra were measured by the flight time from the crystal surface to the focal region of the laser beam with a pulsed primary electron beam of 3 keV and the sample at 300 K. Either the C{sup +} or HCO{sup +} photofragment indicated the same non-Boltzmann velocity spectrum for the neutral parent precursor with a peak kinetic energy of {approximately}0.1 eV. Identical distributions were obtained when the cleaned crystal was pre-oxidized with O{sub 2} prior to methanol dosing. As the crystal temperature was raised, photoion signal from the HCO{sup +} fragment declined steadily, while C{sup +} increased until {approximately}550 K. The total cross section for loss of parent signal with dose of 3 keV electrons was measured to be 2{plus minus}1 {times} 10{sup {minus}17}cm{sup {minus}2}. 19 refs., 4 figs.

  3. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization

    PubMed Central

    Bokhart, Mark T.; Rosen, Elias; Thompson, Corbin; Sykes, Craig; Kashuba, Angela D. M.; Muddiman, David C.

    2015-01-01

    A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2±1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4±2.8 μg/gtissue. PMID:25318460

  4. Glycine Identification in Natural Jarosites Using Laser Desorption Fourier Transform Mass Spectrometry: Implications for the Search for Life on Mars

    NASA Astrophysics Data System (ADS)

    Kotler, J. Michelle; Hinman, Nancy W.; Yan, Beizhan; Stoner, Daphne L.; Scott, Jill R.

    2008-04-01

    The jarosite group minerals have received increasing attention since the discovery of jarosite on the martian surface by the Mars Exploration Rover Opportunity. Given that jarosite can incorporate foreign ions within its structure, we have investigated the use of jarosite as an indicator of aqueous and biological processes on Earth and Mars. The use of laser desorption Fourier transform mass spectrometry has revealed the presence of organic matter in several jarosite samples from various locations worldwide. One of the ions from the natural jarosites has been attributed to glycine because it was systematically observed in combinations of glycine with synthetic ammonium and potassium jarosites, Na2SO4 and K2SO4. The ability to observe these organic signatures in jarosite samples with an in situ instrumental technique, such as the one employed in this study, furthers the goals of planetary geologists to determine whether signs of life (e.g., the presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples.

  5. Evaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin Analysis

    PubMed Central

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100–600) in the positive ion mode offers a “fingerprint” of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study. PMID:23300342

  6. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Dubois, Damien; Leyssene, David; Chacornac, Jean Paul; Kostrzewa, Markus; Schmit, Pierre Olivier; Talon, Régine; Bonnet, Richard; Delmas, Julien

    2010-03-01

    Whole-cell fingerprinting by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in combination with a dedicated bioinformatic software tool (MALDI Biotyper 2.0) was used to identify 152 staphylococcal strains corresponding to 22 staphylococcal species. Spectra of the 152 isolates, previously identified at the species level using a sodA gene-based oligonucleotide array, were analyzed against the main spectra of 3,030 microorganisms. A total of 151 strains out of 152 (99.3%) were correctly identified at the species level; only one strain was identified at the genus level. The MALDI-TOF MS method revealed different clonal lineages of Staphylococcus epidermidis that were of either human or environmental origin, which suggests that the MALDI-TOF MS method could be useful in the profiling of staphylococcal strains. The topology of the dendrogram generated by the MALDI Biotyper 2.0 software from the spectra of 120 Staphylococcus reference strains (representing 36 species) was in general agreement with that inferred from the 16S rRNA gene-based analysis. Our findings indicate that the MALDI-TOF MS technology, associated with a broad-spectrum reference database, is an effective tool for the swift and reliable identification of Staphylococci.

  7. Optimization of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Analysis for Bacterial Identification

    PubMed Central

    Khot, Prasanna D.; Couturier, Marc R.; Wilson, Andrew; Croft, Ann

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a relatively new addition to the clinical microbiology laboratory. The performance of the MALDI Biotyper system (Bruker Daltonics) was compared to those of phenotypic and genotypic identification methods for 690 routine and referred clinical isolates representing 102 genera and 225 unique species. We systematically compared direct-smear and extraction methods on a taxonomically diverse collection of isolates. The optimal score thresholds for bacterial identification were determined, and an approach to address multiple divergent results above these thresholds was evaluated. Analysis of identification scores revealed optimal species- and genus-level identification thresholds of 1.9 and 1.7, with 91.9% and 97.0% of isolates correctly identified to species and genus levels, respectively. Not surprisingly, routinely encountered isolates showed higher concordance than did uncommon isolates. The extraction method yielded higher scores than the direct-smear method for 78.3% of isolates. Incorrect species were reported in the top 10 results for 19.4% of isolates, and although there was no obvious cutoff to eliminate all of these ambiguities, a 10% score differential between the top match and additional species may be useful to limit the need for additional testing to reach single-species-level identifications. PMID:22993178

  8. Differentiation of Aeromonas isolated from drinking water distribution systems using matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Donohue, Maura J; Best, Jennifer M; Smallwood, Anthony W; Kostich, Mitchell; Rodgers, Mark; Shoemaker, Jody A

    2007-03-01

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the whole cells of both reference strains and unknown Aeromonas isolates obtained from water distribution systems. A library of over 45 unique m/z signatures was created from 40 strains that are representative of the 17 recognized species of Aeromonas, as well as 3 reference strains from genus Vibrio and 2 reference strains from Plesiomonas shigelloides. The library was used to help speciate 52 isolates of Aeromonas. The environmental isolates were broken up into 2 blind studies. Group 1 contained isolates that had a recognizable phenotypic profile and group 2 contained isolates that had an atypical phenotypic profile. MALDI-MS analysis of the water isolates in group 1 matched the phenotypic identification in all cases. In group 2, the MALDI-MS-based determination confirmed the identity of 18 of the 27 isolates. These results demonstrate that MALDI-MS analysis can rapidly and accurately classify species of the genus Aeromonas, making it a powerful tool especially suited for environmental monitoring and detection of microbial hazards in drinking water.

  9. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    PubMed

    Vlek, Anne L M; Bonten, Marc J M; Boel, C H Edwin

    2012-01-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01)). Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  10. Inflation-Fixation Method for Lipidomic Mapping of Lung Biopsies by Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging.

    PubMed

    Carter, Claire L; Jones, Jace W; Farese, Ann M; MacVittie, Thomas J; Kane, Maureen A

    2016-05-01

    Chronic respiratory diseases are among the leading causes of deaths worldwide and major contributors of morbidity and global disease burden. To appropriately investigate lung disease, the respiratory airways must be fixed in their physiological orientation and should be inflated prior to investigations. We present an inflation-fixation method that enables lipidomic investigations of whole lung samples and resected biopsy specimens by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). Formalin-inflation enables sample preparation to parallel standard clinical and surgical procedures, in addition to greatly reducing the complexity of analysis, by decreasing the number of analytes in the MALDI plume and reducing adduct formation in the resulting mass spectra. The reduced complexity increased sensitivity and enabled high-resolution imaging acquisitions without any loss in analyte detection at 10 and 20 μm scans. We present a detailed study of over 100 lipid ions detected in positive and negative ion modes covering the conducting and respiratory airways and parts of the peripheral nervous tissue running through the lungs. By defining the resolution required for clear definition of the alveolar space and thus the respiratory airways we have provided a guideline for MSI investigations of respiratory diseases involving the airways, including the interstitium. This study has provided a detailed map of lipid species and their localization within larger mammalian lung samples, for the first time, thus categorizing the lipidome for future MALDI-MSI studies of pulmonary diseases. PMID:27028398

  11. Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis.

    PubMed

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100-600) in the positive ion mode offers a "fingerprint" of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study.

  12. High throughput screening of genetic polymorphisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Corona, Giuseppe; Toffoli, Giuseppe

    2004-12-01

    In the post genomic era, the screening of many different genetic polymorphisms in large populations represents a major goal that will facilitate the understanding of individual genetic variability in the development of multi factor diseases and in drug response and toxicities. The increasing interest in these pathogenetic and pharmacogenomic studies by both academic and pharmaceutical industry researchers has increased the demand for broad genome association studies. This demand has produced a boom in the development of new and robust high throughput screening methods for genotype analysis. Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents an emerging and powerful technique for DNA analysis because of its high speed, accuracy, no label requirement, and cost-effectiveness. So far, many MALDI-TOF MS approaches have been developed for rapid screening of single nucleotide polymorphisms (SNPs), variable sequences repeat, epigenotype analysis, quantitative allele studies, and for the discovery of new genetic polymorphisms. The more established methods are based on single base primer extension and minisequencing implemented with new chemical features to overcome the limitations associated with DNA analysis using MALDI-TOF MS. These new promising methods of genotyping include both photochemical and other different chemical and enzyme cleavage strategies that facilitate sample automation and MS analysis for both real-time genotyping and resequencing screening. In this review, we analyze and discuss in depth the advantages and the limitations of the more recent developments in MALDI-TOF MS analysis for large-scale genomic studies applications.

  13. Imaging of a tribolayer formed from ionic liquids by laser desorption/ionization-reflectron time-of-flight mass spectrometry.

    PubMed

    Gabler, Christoph; Pittenauer, Ernst; Dörr, Nicole; Allmaier, Günter

    2012-12-18

    For the first time, imaging using laser desorption/ionization (LDI) reflectron time-of-flight (RTOF) mass spectrometry (MS) was demonstrated to be a powerful tool for an offline monitoring of tribometrical experiments directly from disc specimen applying selected ammonium-, phosphonium-, and sulfonium-based ionic liquids (IL) with bis(trifluoromethylsulfonyl)imide as counterion for lubrication. The direct measurement of IL tribolayers by LDI-MS allowed the visualization of the lubricants in the form of the distribution of their intact cations and the anion in and outside the wear scar after the tribometrical experiment with a low degree of in-source generated fragmentation. Besides, also, an oxidation product formed during a tribometrical experiment was detected and located exclusively in the wear track. Comparative data of identical wear tracks were obtained by X-ray photoelectron spectroscopy (XPS) imaging not only enabling the determination of elemental distributions of the IL across the area imaged but also corroborating the mass spectrometry imaging (MSI) data, thus generating multimodal images. Merging data from MSI and XPS imaging exhibited that areas, where iron-fluorine bonds were detected in the wear track, are corresponding to data from LDI-MS imaging showing absence of IL cations and anions.

  14. Rapid differentiation of Panax ginseng and Panax quinquefolius by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lai, Ying-Han; So, Pui-Kin; Lo, Samual Chun-Lap; Ng, Eddy Wing Yin; Poon, Terence Chuen Wai; Yao, Zhong-Ping

    2012-11-13

    A matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based method has been developed for rapid differentiation between Panax ginseng and Panax quinquefolius, two herbal medicines with similar chemical and physical properties but different therapeutic effects. This method required only a small quantity of samples, and the herbal medicines were analyzed by MALDI-MS either after a brief extraction step, or directly on the powder form or small pieces of raw samples. The acquired MALDI-MS spectra showed different patterns of ginsenosides and small chemical molecules between P. ginseng and P. quinquefolius, thus allowing unambiguous differentiation between the two Panax species based on the specific ions, intensity ratios of characteristic ions or principal component analysis. The approach could also be used to differentiate red ginseng or P. quinquefolius adulterated with P. ginseng from pure P. ginseng and pure Panax quinquefolium. The intensity ratios of characteristic ions in the MALDI-MS spectra showed high reproducibility and enabled quantitative determination of ginsenosides in the herbal samples and percentage of P. quinquefolius in the adulterated binary mixture. The method is simple, rapid, robust, and can be extended for analysis of other herbal medicines.

  15. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization.

    PubMed

    Bokhart, Mark T; Rosen, Elias; Thompson, Corbin; Sykes, Craig; Kashuba, Angela D M; Muddiman, David C

    2015-03-01

    A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2 ± 1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4 ± 2.8 μg/gtissue.

  16. Analysis of Microbial Mixtures by Matrix-assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry

    SciTech Connect

    Wahl, Karen L.; Wunschel, Sharon C.; Jarman, Kristin H.; Valentine, Nancy B.; Petersen, Catherine E.; Kingsley, Mark T.; Zartolas, Kimberly A.; Saenz, Adam J.

    2002-12-15

    Many different laboratories are currently developing mass-spectrometric techniques to analyze and identify microorganisms. However, minimal work has been done with mixtures of bacteria. To demonstrate that microbial mixtures could be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), mixed bacterial cultures were analyzed in a double-blind fashion. Nine different bacterial species currently in our MALDI-MS fingerprint library were used to generate 50 different simulated mixed bacterial cultures similar to that done for an initial blind study previously reported.(1) The samples were analyzed by MALDI-MS with automated data extraction and analysis algorithms developed in our laboratory. The components present in the sample were identified correctly to the species level in all but one of the samples. However, correctly eliminating closely related organisms was challenging for the current algorithms, especially in differentiating Serratia marcescens, Escherichia coli, and Yersinia enterocolitica, which have some similarities in their MALDI-MS fingerprints. Efforts to improve the specificity of the algorithms are in progress.

  17. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-07-16

    Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. PMID:26073811

  18. Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Muller, Ludovic; Kailas, Ajay; Jackson, Shelley N.; Roux, Aurelie; Barbacci, Damon; Schultz, J. Albert; Balaban, Carey; Woods, Amina S.

    2015-01-01

    The well-characterized cellular and structural components of the kidney show distinct regional compositions and distribution of lipids. In order to more fully analyze the renal lipidome we developed a matrix-assisted laser desorption/ionization mass spectrometry approach for imaging that may be used to pinpoint sites of changes from normal in pathological conditions. This was accomplished by implanting sagittal cryostat rat kidney sections with a stable, quantifiable and reproducible uniform layer of silver using a magnetron sputtering source to form silver nanoparticles. Thirty-eight lipid species including 7 ceramides, 8 diacylglycerols, 22 triacylglycerols, and cholesterol were detected and imaged in positive ion mode. Thirty-six lipid species consisting of, 7 sphingomyelins, 10 phosphatidylethanolamines, 1 phosphatidylglycerol, 7 phosphatidylinositols and 11 sulfatides, were imaged in negative ion mode for a total of seventy-four high resolution lipidome maps of the normal kidney. Thus, our approach is a powerful tool not only for studying structural changes in animal models of disease, but also for diagnosing and tracking stages of disease in human kidney tissue biopsies. PMID:25671768

  19. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    PubMed Central

    2014-01-01

    Background Phlebotomine sand flies are incriminated in the transmission of several human and veterinary pathogens. To elucidate their role as vectors, proper species identification is crucial. Since traditional morphological determination is based on minute and often dubious characteristics on their head and genitalia, which require certain expertise and may be damaged in the field-collected material, there is a demand for rapid, simple and cost-effective molecular approaches. Methods Six laboratory-reared colonies of phlebotomine sand flies belonging to five species and four subgenera (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius) were used to evaluate the discriminatory power of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Various storage conditions and treatments, including the homogenization in either distilled water or given concentrations of formic acid, were tested on samples of both sexes. Results Specimens of all five analysed sand fly species produced informative, reproducible and species-specific protein spectra that enabled their conclusive species identification. The method also distinguished between two P. sergenti colonies originating from different geographical localities. Protein profiles within a species were similar for specimens of both sexes. Tested conditions of specimen storage and sample preparation give ground to a standard protocol that is generally applicable on analyzed sand fly specimens. Conclusions Species identification of sand flies by MALDI-TOF MS is feasible and represents a novel promising tool to improve biological and epidemiological studies on these medically important insects. PMID:24423215

  20. Molecular weight determination of hyaluronic acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Yeung, B; Marecak, D

    1999-08-13

    An analytical approach has been described for the molecular weight characterization of enzymatically degraded hyaluronic acid (HA). The approach involved the combined use of aqueous gel filtration chromatography (GFC) with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Microfractions were collected across an eluting peak from the chromatography system, followed by mass spectrometric analysis of these narrow fractions. The molecular mass determined by MALDI-MS and the signal obtained from the chromatography established a calibration curve for other hyaluronic acid samples analyzed by this GFC system. Results of one HA sample were obtained from both the calibration curve and direct fraction-by-fraction MALDI-MS analysis, and comparison of these results showed reasonable agreement. In contrast, molecular weights resulted from external calibration using dextran and pullullan standards showed drastically different numbers. Therefore, the GFC-MALDI-MS approach is a reliable method for the molecular weight characterization of polydisperse polysaccharides for which suitable calibration standards are unavailable for conventional GFC analysis. PMID:10481993

  1. Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Son, Jeongjin; Lee, Gwangbin; Cha, Sangwon

    2014-05-01

    Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.

  2. Improved Cell Typing by Charge-State Deconvolution of matrix-assisted laser desorption/ionization Mass Spectra

    SciTech Connect

    Wilkes, Jon G.; Buzantu, Dan A.; Dare, Diane J.; Dragan, Yvonne P.; Chiarelli, M. Paul; Holland, Ricky D.; Beaudoin, Michael; Heinze, Thomas M.; Nayak, Rajesh; Shvartsburg, Alexandre A.

    2006-05-30

    Robust, specific, and rapid identification of toxic strains of bacteria and viruses, to guide the mitigation of their adverse health effects and optimum implementation of other response actions, remains a major analytical challenge. This need has driven the development of methods for classification of microorganisms using mass spectrometry, particularly matrix-assisted laser desorption ionization MS (MALDI) that allows high throughput analyses with minimum sample preparation. We describe a novel approach to cell typing based on pattern recognition of MALDI spectra, which involves charge-state deconvolution in conjunction with a new correlation analysis procedure. The method is applicable to both prokaryotic and eukaryotic cells. Charge-state deconvolution improves the quantitative reproducibility of spectra because multiply-charged ions resulting from the same biomarker attaching a different number of protons are recognized and their abundances are combined. This allows a clearer distinction of bacterial strains or of cancerous and normal liver cells. Improved class distinction provided by charge-state deconvolution was demonstrated by cluster spacing on canonical variate score charts and by correlation analyses. Deconvolution may enhance detection of early disease state or therapy progress markers in various tissues analyzed by MALDI.

  3. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    PubMed

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone.

  4. 2-Hydrazinoquinoline: a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry to detect gaseous carbonyl compounds.

    PubMed

    Shigeri, Yasushi; Kamimura, Takuya; Ando, Masanori; Uegaki, Koichi; Sato, Hiroaki; Tani, Fumito; Arakawa, Ryuichi; Kinumi, Tomoya

    2016-01-01

    The sensitivity, range of applications, and reaction mechanism of 2-hydrazinoquinoline as a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were examined. Using a reaction chamber (125L) equipped with a stirring fan and a window for moving the MALDI-MS plate and volatile samples in and out, the sensitivities of 2-hydrazinoquinoline to gaseous aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and n-butyraldehyde) and ketones (acetone, methyl ethyl ketone, and methyl isobutyl ketone) were determined to be at least parts per million (ppm) levels. On the other hand, carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid) and esters (ethyl acetate, pentyl acetate, isoamyl acetate, and methyl salicylate) could not be detected by 2-hydrazinoquinoline in MALDI-MS. In addition to 2,4-dinitrophenylhydrazine, a common derivatization reagent for analyzing carbonyl compounds quantitatively in gas chromatography and liquid chromatography, the dissolution of 2-hydrazinoquinoline in an acidic solution, such as trifluoroacetic acid, was essential for its function as a reactive matrix for MALDI- MS. PMID:27419901

  5. Sequence analysis of phosphorothioate oligonucleotides via matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Schuette, J M; Pieles, U; Maleknia, S D; Srivatsa, G S; Cole, D L; Moser, H E; Afeyan, N B

    1995-09-01

    Modification of the natural phosphodiester backbone of deoxyribooligonucleotides can impart increased biostability via nuclease resistance. Further, uniform incorporation of phosphorothioate linkages renders oligonucleotides highly resistant to reagents traditionally used in sequencing reactions. As a consequence, analytical tests crucial for establishing the identity of such oligonucleotide drugs are less informative. To circumvent this problem, chemical oxidation has been employed for converting the phosphorothioate to the uniform phosphodiester, thereby facilitating enzymatic degradation. Following oxidation, exonucleases which sequentially cleave individual bases from the 3' or 5' terminus of the oligonucleotide or base-specific cleavage chemicals were used to facilitate sequence identification of the oligonucleotide. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), previously used to sequence natural phosphodiester DNA, was then used to sequence the chemically oxidized phosphorothioate. Sequential enzymatic cleavage of desulphurized phosphorothioates in combination with MALDI analysis not only provides a viable alternative to radiolabeling as used in conventional sequencing approaches (e.g. Maxam-Gilbert), but also enables rapid sequencing of phosphorothioate oligonucleotides, for routine drug analysis. PMID:8562591

  6. Positron impact ionisation phenomena

    NASA Astrophysics Data System (ADS)

    Moxom, J.

    A magnetically guided beam of nearly-monoenergetic slow positrons has been used to study positron impact ionisation phenomena in gases. A novel hemispherical scattering cell incorporating an efficient ion extraction and detection system has been developed and has been utilised throughout this work. The energy spectra for the electrons ejected around 0° relative to the incident beam, following positron impact ionisation of Ar, have been measured by a time-of-flight method and a retarding electric field analyzer. The angular acceptance of the electron detection system has been estimated and used to compare the measured spectra with the double differential cross-sections calculated by Mandal et al (1986), Sil et al (1991) and Schultz and Reinhold (1990). The importance of the electron-capture-to-the-continuum process is discussed in this context and found to be minor at small forward angles, in contrast to the case of heavy positively charged projectiles. The apparatus was modified to produce a pulsed beam of slow positrons and utilised to measure in detail the total ionisation cross-section (Qt+) for a variety of atomic and molecular targets. For Ar, He and H2, Qt+ which includes contributions from Ps formation, has been subtracted from corresponding total cross-sections, in order to deduce the behaviour of the elastic scattering cross-section (Qel) in the vicinity of the Ps formation threshold (Eps). Here a small change in the gradient of Qel, has been found. The energy dependencies of the Qt+ for He, Ne and Ar, close to Eps have been interpreted in terms of threshold theory. In the case of Ar the outgoing Ps appears to be predominantly s-wave in character. For He and Ne the analysis suggests that the Ps contains significant contributions from a number of partial waves. In the case of O 2, structure in Qt+ has been found, which is attributed to coupling between two inelastic channels, namely Ps formation and excitation to the Schuman-Runge continuum.

  7. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  8. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    SciTech Connect

    University of Illinois at Chicago; Montana State University; Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C.; Carlson, Ross P.; Ahmed, Musahid; Hanley, Luke

    2013-04-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups two ?pure? groups and a mixed region. Furthermore, the ?pure? regions of the E. coli cocultures showed greater variance by PCA when analyzed by 7.87 eV photon energies than by 10.5 eV radiation. Comparison of the 7.87 and 10.5 eV data is consistent with the expectation that the lower photon energy selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.

  9. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Yonezawa, Tetsu; Kawasaki, Hideya; Tarui, Akira; Watanabe, Takehiro; Arakawa, Ryuichi; Shimada, Toshihiro; Mafuné, Fumitaka

    2009-03-01

    In this paper, we describe systematic detailed considerations of the feasibility of using various metal nanoparticles for organic-matrix-free surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). In order to avoid the influence of organic molecules on the nanoparticles, stabilizer-free bare nanoparticles of Ag, Au, Cu and Pt were prepared by laser ablation. Although all metal nanoparticles absorbed N(2) laser light (337 nm) energy, the performance of desorption/ionization of a representative peptide, angiotensin I, strongly depended on the metal element. Citrate buffer was used as a proton source; it reduced the amount of alkali cation adducts present. Then, protonated molecules of analytes predominated in the mass spectra when Au and Pt nanoparticles were used. Pt nanoparticles showed the highest performance in SALDI-MS, owing to their smaller heat conductivity and higher melting temperature. The selective desorption of a cationic surfactant with longer alkyl chains and a peptide with methionine was also observed. PMID:19276588

  10. Development and Characterization of a New Ionization Technique for Analysis of Biological Macromolecules: Liquid Matrix-Assisted Laser Desorption Electrospray Ionization

    PubMed Central

    Sampson, Jason S.; Hawkridge, Adam M.; Muddiman, David C.

    2013-01-01

    We have developed an atmospheric pressure ionization technique called liquid matrix-assisted laser desorption electrospray ionization (liq-MALDESI) for the generation of multiply-charged ions by laser desorption from liquid samples deposited onto a stainless steel sample target biased at a high potential. This variant of our previously reported MALDESI source does not utilize an ESI emitter to post-ionize neutrals. Conversely, we report desorption and ionization from a macroscopic charged droplet. We demonstrate high mass resolving power single-acquisition FT-ICR-MS analysis of peptides and proteins ranging from 1 to 8.6 kDa at atmospheric pressure. The liquid sample acts as a macroscopic charged droplet similar to those generated by electrospray ionization, whereby laser irradiation desorbs analyte from organic matrix containing charged droplets generating multiply-charged ions. We have observed a singly-charged radical cation of an electrochemically active species indicating oxidation occurs for analytes and therefore water; the latter would play a key role in the mechanism of ionization. Moreover, we demonstrate an increase in ion abundance and a concurrent decrease in surface tension with an increase in the applied potential. PMID:18656949

  11. Laser desorption/ionization time-of-flight mass spectrometry: A predictive tool for the lifetime of organic light emitting devices

    SciTech Connect

    Scholz, Sebastian; Meerheim, Rico; Luessem, Bjoern; Leo, Karl

    2009-01-26

    For improving the lifetime of organic light emitting devices (OLEDs), the analysis of the chemical degradation requires a deep understanding of the involved reaction pathways. We show that the dissociation reactions of phosphorescent emitters and the additional complexations with the used surrounding blocking layers are the dominant intrinsic degradation mechanisms in long living p-i-n type OLEDs. We use the laser desorption/ionization (LDI) time-of-flight mass spectrometry to correlate the laser-induced ion formation with the observed lifetime of the organic devices. The superlinear correlation between the LDI forced reactions and the lifetimes allows the prediction of the lifetime of an OLED with new materials.

  12. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  13. Wavelength Dependence On The Level Of Post-Source Metastable Ion Decay Observed In Infrared Matrix-Assisted Laser Desorption Ionization

    PubMed Central

    Durrant, Edward E.; Brown, Robert S.

    2009-01-01

    The levels of post-source metastable ion decay (PSD) observed in several peptides and proteins ionized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF-MS) are measured utilizing both infrared (IR) and ultraviolet (UV) desorption wavelengths. A gridless deceleration ion optic is employed to temporally separate stable analyte ions from analyte metastable neutral and ion fragments. Comparisons of the extent of PSD that is observed in UV-MALDI at 337 nm and IR-MALDI at multiple wavelengths between 2.8 and 3.0 μm are made using the same matrices and analytes. The amount of PSD observed using IR-MALDI was found to be highly dependent on the specific IR wavelength (2.8–3.0 μm) employed for desorption. IR wavelengths shorter than 2.86 μm tended to produce higher levels of PSD, while longer IR wavelengths typically produced significantly less PSD when using a number of common MALDI matrices. Relative PSD levels are quantified by determining the percentage of the neutral fragment signal intensity to the intensity of the stable singly protonated molecular species observed in decelerated MALDI spectra. These studies suggest that an analyte ion activation pathway leading to significant PSD in IR-MALDI may proceed by way of vibrational excitation of the analyte molecules during the desorption event. PMID:20160868

  14. Atmospheric pressure laser desorption/ionization using a 6-7 µm-band mid-infrared tunable laser and liquid water matrix.

    PubMed

    Hiraguchi, Ryuji; Hazama, Hisanao; Masuda, Katsuyoshi; Awazu, Kunio

    2015-01-01

    Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix-assisted laser desorption/ionization (IR-MALDI). Especially in the 6-7 µm-band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O-H, C=O, and CH3. Additionally, atmospheric pressure (AP) IR-MALDI, which is applicable to liquid-state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP-IR-MALDI mass spectrometry of a peptide, angiotensin II, using a mid-IR tunable laser with a tunable wavelength range of 5.50-10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H](+) of the peptide are measured using a conventional solid matrix, α-cyano-4-hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3-aminoquinoline. Other than the O-H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP-IR-MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H](+) is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O-H bending vibration mode. Moreover, long-lasting and stable ion signals are obtained from the aqueous solution. AP-IR-MALDI using a 6-7 µm-band IR tunable laser and solvents as the matrix may provide a novel on-line interface between liquid chromatography and mass spectrometry.

  15. Photo-ionisation mass spectrometry as detection method for gas chromatography. Optical selectivity and multidimensional comprehensive separations.

    PubMed

    Zimmermann, Ralf; Welthagen, Werner; Gröger, Thomas

    2008-03-14

    Mass spectrometry (MS) with soft ionisation techniques (i.e. ionisation without fragmentation of the analyte molecules) for gaseous samples exhibits interesting analytical properties for direct analysis applications (i.e. direct inlet mass spectrometric on-line monitoring) as well as mass spectrometric detection method for gas chromatography (GC-MS). Commonly either chemical ionisation (CI) or field ionisation (FI) is applied as soft ionisation technology for GC-MS. An interesting alternative to the CI and FI technologies methods are photo-ionisation (PI) methods. PI overcomes some of the limitations of CI and FI and furthermore add some unique analytical properties. The resonance enhanced multi-photon ionisation (REMPI) method uses intense UV-laser pulses (wavelength range approximately 350-193 nm) for highly selective, sensitive and soft ionisation of predominately aromatic compounds. The single photon ionisation (SPI) method utilises VUV light (from lamps or laser sources, wavelengths range approximately 150-110 nm) can be used for a universal soft ionisation of organic molecules. In this article the historical development as well as the current status and concepts of gas chromatography hyphenated to photo-ionisation mass spectrometry are reviewed. PMID:17915237

  16. Potential of laser ablation and laser desorption mass spectrometry to characterize organic and inorganic environmental pollutants on dust particles.

    PubMed

    Carré, Vincent; Aubriet, Frédéric; Scheepers, Paul T; Krier, Gabriel; Muller, Jean-François

    2005-01-01

    Stainless steel factories are known to release particles into the atmosphere. Such particulate matter contains significant amounts of heavy metals or toxic inorganic compounds and organic pollutants such as, for example, Cr(VI) and polycyclic aromatic hydrocarbons (PAHs). The investigation of Cr(VI) and PAHs is often complicated by the associated matrix. Organic and inorganic pollutants present in stainless steel dust particles have been investigated with the same laser microprobe mass spectrometer according to two original methodologies. These analytical methods do not require time-consuming pretreatment (extraction, solubilization) or preconcentration steps. More specifically, experiments are conducted with a Fourier transform ion cyclotron resonance mass spectrometer coupled to an ArF (193 nm) or a tripled frequency Nd-YAG (355 nm) laser. Experiments at 355 nm allow the nature of the most frequently occurring Cr(III)/Cr(VI) compounds in dust particles to be identified. Examination of PAHs at 193 nm is assisted by the formation of pi-complexes with 7,7',8,8'-tetracyanoquinodimethane to prevent their evaporation in the mass spectrometer during analysis and to ensure an increase in sensitivity.

  17. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  18. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    de Respinis, Sophie; Tonolla, Mauro; Pranghofer, Sigrid; Petrini, Liliane; Petrini, Orlando; Bosshard, Philipp P

    2013-07-01

    In this study we evaluated the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of dermatophytes in diagnostic laboratories. First, a spectral database was built with 108 reference strains belonging to 18 species of the anamorphic genera Epidermophyton, Microsporum and Trichophyton. All strains were well characterized by morphological criteria and ITS sequencing (gold standard). The dendrogram resulting from MALDI-TOF mass spectra was almost identical with the phylogenetic tree based on ITS sequencing. Subsequently, MALDI-TOF MS SuperSpectra were created for the identification of Epidermophyton floccosum, Microsporium audouinii, M. canis, M. gypseum (teleomorph: Arthroderma gypseum), M. gypseum (teleomorph: A. incurvatum), M. persicolor, A. benhamiae (Tax. Entity 3 and Am-Eur. race), T. erinacei, T. interdigitale (anthropophilic and zoophilic populations), T. rubrum/T. violaceum, T. tonsurans and T. terrestre. Because T. rubrum and T. violaceum did not present enough mismatches, a SuperSpectrum covering both species was created, and differentiation between them was done by comparison of eight specific peptide masses. In the second part of this study, MALDI-TOF MS with the newly created SuperSpectra was tested using 141 clinical isolates representing nine species. Analyses were done with 3-day-old cultures. Results were compared to morphological identification and ITS sequencing; 135/141 (95.8%) strains were correctly identified by MALDI-TOF MS compared to 128/141 (90.8%) by morphology. Therefore, MALDI-TOF MS has proven to be a useful and rapid identification method for dermatophytes. PMID:23228046

  19. Identification of Weissella species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    PubMed Central

    Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren

    2015-01-01

    Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species. PMID:26594208

  20. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  1. Large-Scale Metabolite Analysis of Standards and Human Serum by Laser Desorption Ionization Mass Spectrometry from Silicon Nanopost Arrays.

    PubMed

    Korte, Andrew R; Stopka, Sylwia A; Morris, Nicholas; Razunguzwa, Trust; Vertes, Akos

    2016-09-20

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysis of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. The broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications.

  2. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry. PMID:24929682

  3. Raman spectroscopy and laser desorption mass spectrometry for minimal destructive forensic analysis of black and color inkjet printed documents.

    PubMed

    Heudt, Laetitia; Debois, Delphine; Zimmerman, Tyler A; Köhler, Laurent; Bano, Fouzia; Partouche, Franck; Duwez, Anne-Sophie; Gilbert, Bernard; De Pauw, Edwin

    2012-06-10

    Inkjet ink analysis is the best way to discriminate between printed documents, or even though more difficult, to connect an inkjet printed document with a brand or model of printers. Raman spectroscopy and laser desorption mass spectrometry (LDMS) have been demonstrated as powerful tools for dyes and pigments analysis, which are ink components. The aim of this work is to evaluate the aforementioned techniques for inkjet inks analysis in terms of discriminating power, information quality, and nondestructive capability. So, we investigated 10 different inkjet ink cartridges (primary colors and black), 7 from the HP manufacturer and one each from Epson, Canon and Lexmark. This paper demonstrates the capabilities of three methods: Raman spectroscopy, LDMS and MALDI-MS. Raman spectroscopy, as it is preferable to try the nondestructive approach first, is successfully adapted to the analysis of color printed documents in most cases. For analysis of color inkjet inks by LDMS, we show that a MALDI matrix (9-aminoacridine, 9AA) is needed to desorb and to ionize dyes from most inkjet inks (except Epson inks). Therefore, a method was developed to apply the 9AA MALDI matrix directly onto the piece of paper while avoiding analyte spreading. The obtained mass spectra are very discriminating and lead to information about ink additives and paper compositions. Discrimination of black inkjet printed documents is more difficult because of the common use of carbon black as the principal pigment. We show for the first time the possibility to discriminate between two black-printed documents coming from different, as well as from the same, manufacturers. Mass spectra recorded from black inks in positive ion mode LDMS detect polyethylene glycol polymers which have characteristic mass distributions and end groups. Moreover, software has been developed for rapid and objective comparison of the low mass range of these positive mode LDMS spectra which have characteristic unknown peaks. PMID

  4. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry.

  5. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-beta-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10(-4)% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS. PMID:10209872

  6. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved.

  7. Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Roy-Lachapelle, Audrey; Fayad, Paul B; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2014-04-11

    A new approach for the analysis of the cyanobacterial microcystins (MCs) in environmental water matrices has been developed. It offers a cost efficient alternative method for the fast quantification of total MCs using mass spectrometry. This approach permits the quantification of total MCs concentrations without requiring any derivatization or the use of a suite of MCs standards. The oxidation product 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) was formed through a Lemieux oxidation and represented the total concentration of free and bound MCs in water samples. MMPB was analyzed using laser diode thermal desorption-atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). LDTD is a robust and reliable sample introduction method with ultra-fast analysis time (<15 s sample(-1)). Several oxidation and LDTD parameters were optimized to improve recoveries and signal intensity. MCs oxidation recovery yield was 103%, showing a complete reaction. Internal calibration with standard addition was achieved with the use of 4-phenylbutyric acid (4-PB) as internal standard and showed good linearity (R(2)>0.999). Limits of detection and quantification were 0.2 and 0.9 μg L(-1), respectively. These values are comparable with the WHO (World Health Organization) guideline of 1 μg L(-1) for total microcystin-LR congener in drinking water. Accuracy and interday/intraday variation coefficients were below 15%. Matrix effect was determined with a recovery of 91%, showing no significant signal suppression. This work demonstrates the use of the LDTD-APCI-MS/MS interface for the screening, detection and quantification of total MCs in complex environmental matrices.

  8. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  9. Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Jeong, Seri; Hong, Jun Sung; Kim, Jung Ok; Kim, Keon-Han; Lee, Woonhyoung; Bae, Il Kwon; Lee, Kyungwon

    2016-01-01

    Background Acinetobacter baumannii has a greater clinical impact and exhibits higher antimicrobial resistance rates than the non-baumannii Acinetobacter species. Therefore, the correct identification of Acinetobacter species is clinically important. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has recently become the method of choice for identifying bacterial species. The purpose of this study was to evaluate the ability of MALDI-TOF MS (Bruker Daltonics GmbH, Germany) in combination with an improved database to identify various Acinetobacter species. Methods A total of 729 Acinetobacter clinical isolates were investigated, including 447 A. baumannii, 146 A. nosocomialis, 78 A. pittii, 18 A. ursingii, 9 A. bereziniae, 9 A. soli, 4 A. johnsonii, 4 A. radioresistens, 3 A. gyllenbergii, 3 A. haemolyticus, 2 A. lwoffii, 2 A. junii, 2 A. venetianus, and 2 A. genomospecies 14TU. After 212 isolates were tested with the default Bruker database, the profiles of 63 additional Acinetobacter strains were added to the default database, and 517 isolates from 32 hospitals were assayed for validation. All strains in this study were confirmed by rpoB sequencing. Results The addition of the 63 Acinetobacter strains' profiles to the default Bruker database increased the overall concordance rate between MALDI-TOF MS and rpoB sequencing from 69.8% (148/212) to 100.0% (517/517). Moreover, after library modification, all previously mismatched 64 Acinetobacter strains were correctly identified. Conclusions MALDI-TOF MS enables the prompt and accurate identification of clinically significant Acinetobacter species when used with the improved database. PMID:27139605

  10. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry.

    PubMed

    Venisse, A; Berjeaud, J M; Chaurand, P; Gilleron, M; Puzo, G

    1993-06-15

    It was recently shown that mycobacterial lipoarabinomannan (LAM) can be classified into two types (Chatterjee, D., Lowell, K., Rivoire B., McNeil M. R., and Brennan, P. J. (1992) J. Biol. Chem. 267, 6234-6239) according to the presence or absence of mannosyl residues (Manp) located at the nonreducing end of the oligoarabinosyl side chains. These two types of LAM were found in a pathogenic Mycobacterium tuberculosis strain and in an avirulent M. tuberculosis strain, respectively, suggesting that LAM with Manp characterizes virulent and "disease-inducing strains." We now report the structure of the LAM from Mycobacterium bovis Bacille Calmette-Guérin (BCG) strain Pasteur, largely used throughout the world as vaccine against tuberculosis. Using an up-to-date analytical approach, we found that the LAM of M. bovis BCG belongs to the class of LAMs capped with Manp. By means of two-dimensional homonuclear and heteronuclear scalar coupling NMR analysis and methylation data, the sugar spin system assignments were partially established, revealing that the LAM contained two types of terminal Manp and 2-O-linked Manp. From the following four-step process: (i) partial hydrolysis of deacylated LAM (dLAM), (ii) oligosaccharide derivatization with aminobenzoic ethyl ester, (iii) HPLC purification, (iv) FAB/MS-MS analysis; it was shown that the dimannosyl unit alpha-D-Manp-(1-->2)-alpha-D-Manp is the major residue capping the termini of the arabinan of the LAM. In this report, LAM molecular mass determination was established using matrix-assisted UV-laser desorption/ionization mass spectrometry which reveals that the LAM molecular mass is around 17.4 kDa. The similarity of the LAM structures between M. bovis BCG and M. tuberculosis H37Rv is discussed in regard to their function in the immunopathology of mycobacterial infection.

  11. Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect ss- and ds-Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Tsen; Huang, Ming-Feng; Chang, Huan-Tsung

    2013-06-01

    We applied surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with HgTe nanostructures as the matrix for the detection of single- and double-stranded oligodeoxynucleotides (ss-ODNs and ds-ODNs). The concentrations of surfactant and additives (metal ions, an amine) and the pH and ionic strength of the sample matrix played significantly different roles in the detection of ss- and ds-ODNs with various sequences. In the presence of Brij 76 (1.5 %), Hg2+ (7.5 μM), and cadaverine (10 μM) at pH 5.0, this SALDI-MS approach allowed the simultaneous detection of T15, T20, T33, and T40, with limits of detection at the femtomole-to-picomole level and sample-to-sample intensity variation <23 %. In the presence of Ag+ (1 μM) and cadaverine (10 μM) at pH 7.0, this technique allowed the detection of randomly sequenced ss- and ds-ODNs at concentrations down to the femtomole level. To the best of our knowledge, this paper is the first to report the detection of ss-ODNs (up to 50-mer) and ds-ODNs (up to 30 base pairs) through the combination of SALDI-MS with HgTe nanostructures as matrices. We demonstrated the practicality of this approach through analysis of a single nucleotide polymorphism that determines the fate of the valine residue in the β-globin of sickle cell megaloblasts.

  12. Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Vrbková, Blanka; Roblová, Vendula; Yeung, Edward S; Preisler, Jan

    2014-09-01

    A new method, reversed phase liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry (RPLC-SALDI MS) for the determination of brassicasterol (BR), cholesterol (CH), stigmasterol (ST), campesterol (CA) and β-sitosterol (SI) in oil samples has been developed. The sample preparation consisted of alkaline saponification followed by extraction of the unsaponificable fraction with diethyl ether. The recovery of the sterols ranged from 91 to 95% with RSD less than 4%. Separation of the five major sterols on a C18 column using methanol-water gradient was achieved in about 10min. An on-line UV detector was employed for the initial sterol detection prior to effluent deposition using a laboratory-built spotter with 1:73 splitter. Off-line SALDI MS was then applied for mass determination/identification and quantification of the separated sterols. Ionization of the nonpolar analytes was achieved by silver ion cationization with silver nanoparticles used as the SALDI matrix providing limits of detection 12, 6 and 11fmol for CH, ST and SI, respectively. Because of the incorporated splitter, the effective limits of detection of the RPLC-SALDI MS analysis were 4, 3 and 4pmol (or 0.08, 0.06 and 0.08μg/mL) for CH, ST and SI, respectively. For quantification, 6-ketocholestanol (KE) was used as the internal standard. The method has been applied for the identification and quantification of sterols in olive, linseed and sunflower oil samples. The described off-line coupling of RPLC to SALDI MS represents an alternative to GC-MS for analysis of nonpolar compounds. PMID:25022478

  13. Identification and differentiation of the red ink entries of seals on document by laser desorption ionization mass spectrometry.

    PubMed

    Wang, Xiang-Feng; Zhang, Yun; Wu, Yao; Yu, Jing; Xie, Meng-Xia

    2014-03-01

    The establishment of approaches for the differentiation of the ink entries of seals on paper can provide evidence to authenticate the related documents and can play a key role in judicial expertise. The identification and discrimination method for 38 red ink entries of seals on paper has been investigated using laser desorption ionization mass spectrometry (LDI-MS). Six dye components for the ink pastes of seals, Scarlet powder (SP), Bronze Red C (BR), Fast Red R (FR), Basic Violet 3 (BV3), Pigment Red 22 (PR22) and Pigment Red 112 (PR112), have been identified by their LDI-MS spectra, and the results have been confirmed by electrospray ionization quadruple-time of flight mass spectrometry (QTOF-ESI-MS/MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The 38 ink entries were classified into six groups based on the presence or the absence of the pigments in their positive and negative LDI-MS spectra, and the discrimination power (DP) was calculated to be about 82%. The ink entries within each group were further differentiated from the relative peak areas (RPA) of the fragments for the pigments and the profile of their LDI-MS spectra, and thus the DP was increased to 98%. All the 38 ink entries could be discriminated (the DP was 100%), if including the contribution of unknown peaks. Compared with the results obtained by the FTIR and Raman methods, the established LDI-MS approach could provide more information of the dye components in the ink entries. The results showed that the developed LDI-MS method is powerful, sensitive and rapid and can directly differentiate the red ink entries of seals from paper substrates, thus offering a novel approach to judge the authenticity of documents.

  14. Numerical simulation of microwave amplification in a plasma channel produced in a gas via multiphoton ionisation by a femtosecond laser pulse

    SciTech Connect

    Bogatskaya, A V; Popov, A M; Volkova, E A

    2014-12-31

    This paper examines the evolution of a nonequilibrium plasma channel produced in xenon by a femtosecond KrF laser pulse. We demonstrate that such a channel can be used to amplify microwave pulses over times of the order of the relaxation time of the photoelectron energy spectrum in xenon. Using the slowly varying amplitude approximation, we analyse the propagation and amplification of an rf pulse in a plasma channel, in particular when the rf field influences the electron energy distribution function in the plasma. (interaction of laser radiation with matter. laser plasma)

  15. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of environmental organisms: the Planctomycetes paradigm.

    PubMed

    Cayrou, Caroline; Raoult, Didier; Drancourt, Michel

    2010-12-01

    We have developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based identification technique for Planctomycetes organisms, which are used here as bacteria of suitable diversity at genus and species level for testing resolution of the method. Planctomyces maris ATCC 29201, Planctomyces brasiliensis ATCC 49424(T) , P. brasiliensis ATCC 49425, Planctomyces limnophilus ATCC 43296(T) , Blastopirellula marina ATCC 49069(T) , Rhodopirellula baltica DSM 10527(T) and Gemmata obscuriglobus DSM 5831(T) were cultured on half-strength marine broth and agar, or alternatively on caulobacter broth and agar. The resulting pellets of organisms (liquid) or colonies (solid agar) were directly applied to a MALDI-TOF plate. This yielded a reproducible, unique protein profiles comprising 23-39 peaks ranging in size from 2403 to 12 091 Da. These peaks were unambiguously distinguished from any of the 3038 bacterial spectra in the Brüker database. Matrix-assisted laser desorption/ionization time-of-flight patterns were similar for isolates grown in solid and in liquid medium, albeit the patterns from solid growth were more easily interpretable. After the incorporation of the herein determined profiles into the Brüker database, Planctomycetes isolates were blindly identified within 10 min, with an identification score in the range of 1.8 to 2.3. Matrix-assisted laser desorption/ionization time-of-flight-based clustering of these Planctomycetes organisms was consistent with 16S rDNA-based phylogeny. However, the incorporation of additional non-Planctomycetes MALDI-TOF profiles in the analysis resulted in inconsequential clustering. In conclusion, MALDI-TOF protein profiling is a new approach for the rapid and accurate identification of cultured environmental organisms, as illustrated in this study through the analysis of Planctomycetes. PMID:23766281

  16. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Bacterial and Yeast Identification

    PubMed Central

    Westblade, Lars F.; Garner, Omai B.; MacDonald, Karen; Bradford, Constance; Pincus, David H.; Mochon, A. Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A.; Burnham, Carey-Ann D.

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification. PMID:25926486

  17. In Situ Probing of Cholesterol in Astrocytes at the Single Cell Level using Laser Desorption Ionization Mass Spectrometric Imaging with Colloidal Silver

    SciTech Connect

    Perdian, D.C.; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-18

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  18. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Method for Discrimination between Molecular Types of Cryptococcus neoformans and Cryptococcus gattii

    PubMed Central

    Posteraro, Brunella; Vella, Antonietta; Cogliati, Massimo; De Carolis, Elena; Florio, Ada Rita; Posteraro, Patrizia; Tortorano, Anna Maria

    2012-01-01

    We evaluated the usefulness of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for Cryptococcus identification at the species and subspecies levels by using an in-house database of 25 reference cryptococcal spectra. Eighty-one out of the 82 Cryptococcus isolates (72 Cryptococcus neoformans and 10 Cryptococcus gattii) tested were correctly identified with respect to their molecular type designations. We showed that MALDI-TOF MS is a practicable alternative to conventional mycology or DNA-based methods. PMID:22573595

  19. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    PubMed

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. PMID:26320964

  20. A technique for obtaining matrix-assisted laser desorption/ionization time-of-flight mass spectra of poorly soluble and insoluble aromatic polyamides.

    PubMed

    Gies, Anthony P; Nonidez, William K

    2004-04-01

    Wet grinding methods for obtaining matrix-assisted laser desorption/ionization time-of-flight mass spectra of poorly soluble and insoluble low molecular mass oligomers (<4600 Da) of Nomex and Kevlar are described. Optimum conditions for sample preparation are given along with a detailed analysis of the spectra obtained. Two matrix materials were employed in this analysis, 1,8-dihydroxyanthrone (dithranol) and 3-aminoquinoline with potassium trifluoroacetate used as the cationizing agent. The spectra obtained in this study are sensitive to the matrix, molar mixing ratios of matrix/polymer/cationizing agent, and the sample preparation method. PMID:15053662

  1. Rapid Identification of Positive Blood Cultures by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Using Prewarmed Agar Plates

    PubMed Central

    Bhatti, M. M.; Boonlayangoor, S.; Beavis, K. G.

    2014-01-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation. PMID:25232166

  2. Rapid identification of positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry using prewarmed agar plates.

    PubMed

    Bhatti, M M; Boonlayangoor, S; Beavis, K G; Tesic, V

    2014-12-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation.

  3. Advances in Identification of Clinical Yeast Isolates by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Buchan, Blake W.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based identification is being adopted by clinical laboratories for routine identification of microorganisms. To date, the majority of studies have focused on the performance and optimization of MALDI-TOF MS for the identification of bacterial isolates. We review recent literature describing the use of MALDI-TOF MS for the routine identification of a variety of yeasts and yeast-like isolates. Specific topics include the effect of optimized or streamlined extraction methods, modified scoring thresholds, expanded reference libraries, and the possibility of conducting antifungal susceptibility testing using MALDI-TOF MS. PMID:23426924

  4. Verification of a Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Method for Diagnostic Identification of High-Consequence Bacterial Pathogens

    PubMed Central

    Tracz, Dobryan M.; Antonation, Kym S.

    2015-01-01

    We examined the utility of a single matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry method for the identification of security-sensitive biological agents (risk group 3 bacterial pathogens). The goal was 2-fold: to verify a method for inclusion into our scope of accreditation, and to assess the biological safety of extractions. We developed our sample flow to include a tube-based chemical extraction, followed by filtration, before processing on MALDI-TOF MS instruments in a containment level 2 laboratory. PMID:26677252

  5. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints.

    PubMed

    Walton, Barbara L; Verbeck, Guido F

    2014-08-19

    Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.

  6. Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging.

    PubMed

    Rosen, Elias P; Thompson, Corbin G; Bokhart, Mark T; Prince, Heather M A; Sykes, Craig; Muddiman, David C; Kashuba, Angela D M

    2016-01-19

    Adherence to a drug regimen can be a strong predictor of health outcomes, and validated measures of adherence are necessary at all stages of therapy from drug development to prescription. Many of the existing metrics of drug adherence (e.g., self-report, pill counts, blood monitoring) have limitations, and analysis of hair strands has recently emerged as an objective alternative. Traditional methods of hair analysis based on LC-MS/MS (segmenting strands at ≥1 cm length) are not capable of preserving a temporal record of drug intake at higher resolution than approximately 1 month. Here, we evaluated the detectability of HIV antiretrovirals (ARVs) in hair from a range of drug classes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) with 100 μm resolution. Infrared laser desorption of hair strands was shown to penetrate into the strand cortex, allowing direct measurement by MSI without analyte extraction. Using optimized desorption conditions, a linear correlation between IR-MALDESI ion abundance and LC-MS/MS response was observed for six common ARVs with estimated limits of detection less than or equal to 1.6 ng/mg hair. The distribution of efavirenz (EFV) was then monitored in a series of hair strands collected from HIV infected, virologically suppressed patients. Because of the role hair melanin plays in accumulation of basic drugs (like most ARVs), an MSI method to quantify the melanin biomarker pyrrole-2,3,5-tricarboxylic acid (PTCA) was evaluated as a means of normalizing drug response between patients to develop broadly applicable adherence criteria. PMID:26688545

  7. Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging.

    PubMed

    Rosen, Elias P; Thompson, Corbin G; Bokhart, Mark T; Prince, Heather M A; Sykes, Craig; Muddiman, David C; Kashuba, Angela D M

    2016-01-19

    Adherence to a drug regimen can be a strong predictor of health outcomes, and validated measures of adherence are necessary at all stages of therapy from drug development to prescription. Many of the existing metrics of drug adherence (e.g., self-report, pill counts, blood monitoring) have limitations, and analysis of hair strands has recently emerged as an objective alternative. Traditional methods of hair analysis based on LC-MS/MS (segmenting strands at ≥1 cm length) are not capable of preserving a temporal record of drug intake at higher resolution than approximately 1 month. Here, we evaluated the detectability of HIV antiretrovirals (ARVs) in hair from a range of drug classes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) with 100 μm resolution. Infrared laser desorption of hair strands was shown to penetrate into the strand cortex, allowing direct measurement by MSI without analyte extraction. Using optimized desorption conditions, a linear correlation between IR-MALDESI ion abundance and LC-MS/MS response was observed for six common ARVs with estimated limits of detection less than or equal to 1.6 ng/mg hair. The distribution of efavirenz (EFV) was then monitored in a series of hair strands collected from HIV infected, virologically suppressed patients. Because of the role hair melanin plays in accumulation of basic drugs (like most ARVs), an MSI method to quantify the melanin biomarker pyrrole-2,3,5-tricarboxylic acid (PTCA) was evaluated as a means of normalizing drug response between patients to develop broadly applicable adherence criteria.

  8. Fatal Nocardia farcinica Bacteremia Diagnosed by Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry in a Patient with Myelodysplastic Syndrome Treated with Corticosteroids

    PubMed Central

    Moretti, Amedeo; Guercini, Francesco; Cardaccia, Angela; Furbetta, Leone; Agnelli, Giancarlo; Bistoni, Francesco; Mencacci, Antonella

    2013-01-01

    Nocardia farcinica is a Gram-positive weakly acid-fast filamentous saprophytic bacterium, an uncommon cause of human infections, acquired usually through the respiratory tract, often life-threatening, and associated with different clinical presentations. Predisposing conditions for N. farcinica infections include hematologic malignancies, treatment with corticosteroids, and any other condition of immunosuppression. Clinical and microbiological diagnoses of N. farcinica infections are troublesome, and the isolation and identification of the etiologic agent are difficult and time-consuming processes. We describe a case of fatal disseminated infection in a patient with myelodysplastic syndrome, treated with corticosteroids, in which N. farcinica has been isolated from blood culture and identified by Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry. The patient died after 18 days of hospitalization in spite of triple antimicrobial therapy. Nocardia farcinica infection should be suspected in patients with history of malignancy, under corticosteroid therapy, suffering from subacute pulmonary infection,and who do not respond to conventional antimicrobial therapy. Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry can be a valuable tool for rapid diagnosis of nocardiosis. PMID:23690786

  9. Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody.

    PubMed

    Jeyarajah, S; Parker, C E; Summer, M T; Tomer, K B

    1998-02-01

    In this study we have applied epitope excision and epitope extraction strategies, combined with matrix assisted laser desorption/ionization mass spectrometry, to determine the fine structure of epitopes recognized by a polyclonal antibody to human immunodeficiency virus envelope glycoprotein gp120. This is the first application of this approach to epitope mapping on a large, heavily glycosylated protein. In the epitope excision method, gp120 in the native form is first bound to the antibody immobilized on sepharose beads and cleaved with endoproteinase enzymes. In the epitope extraction method, the gp120 was first proteolytically cleaved and then allowed to react with the immobilized antibody. The fragments that remain bound to the antibody, after repeated washing to remove the unbound peptides, contain the antigenic region that is recognized by the antibody, and the bound peptides in both methods can be characterized by direct analysis of the immobilized antibody by matrix assisted laser desorption ionization/mass spectrometry. In this study we have carried out epitope excision and extraction experiments with three different enzymes and have identified residues 472-478 as a major epitope. In addition, antigenic regions containing minor epitopes have also been identified.

  10. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GALDI-FTICR-MS)

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; J. Michelle Kotler; Jill R. Scott

    2008-10-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been employed to determine how effectively bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO-2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition ofC18H39O7Na-. Anatural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination were estimated to be 3 parts per trillion or~7 zeptomoles (10-21) per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  11. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated. PMID:27169661

  12. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds.

    PubMed

    Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl

    2011-06-01

    The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material's morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C(60) fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.

  13. Matrix-assisted and polymer-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of low molecular weight polystyrenes and polyethylene glycols.

    PubMed

    Woldegiorgis, Andreas; Löwenhielm, Peter; Björk, Anders; Roeraade, Johan

    2004-01-01

    Recently, matrices based on oligomers of dioxin and thiophene (polymer-assisted laser desorption/ionization (PALDI)) have been described for mass spectrometric (MS) analysis of low molecular weight compounds (Woldegiorgis A, von Kieseritzky F, Dahlstedt E, Hellberg J, Brinck T, Roeraade J. Rapid Commun. Mass Spectrom. 2004; 18: 841-852). In this paper, we report the use of PALDI matrices for low molecular weight polymers. An evaluation with polystyrene and polyethylene glycol showed that no charge transfer ionization occurs. Ionization is mediated through metal ion adduction. Comparison of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) data for two very low molecular weight polymers with data obtained from size-exclusion chromatography (SEC) revealed a systematic difference regarding mean molecular weight and dispersity. Further, the mass spectra obtained with PALDI matrices had a higher signal-to-noise ratio than the spectra obtained with conventional matrices. For polymers with higher molecular weights (>1500 Da), the conventional matrices gave better performance. For evaluation of the MALDI spectra, three non-linear mathematical models were evaluated to model the cumulative distributions of the different oligomers and their maximal values of Mw, Mn and PDI. Models based on sigmoidal or Boltzmann equations proved to be most suitable. Objective modeling tools are necessary to compare different sample and instrumental conditions during method optimization of MALDI analysis of polymers, since the bias between MALDI and SEC data can be misleading.

  14. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  15. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Kawasaki, Hideya; Sugitani, Tsuyoshi; Watanabe, Takehiro; Yonezawa, Tetsu; Moriwaki, Hiroshi; Arakawa, Ryuichi

    2008-10-01

    Layer-by-layer (LBL) self-assembled multilayer films of gold nanoparticles (AuNPs) on a silicon wafer were demonstrated to be promising substrates for surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) of peptides and environmental pollutants for the first time. LBL multilayer films, (AuNPs/PAHC)n, consisting of alternating layers of ammonium citrate capped AuNPs and poly(allylamine hydrochloride) (PAHC) were prepared on a silicon surface. Silicon plates with aggregated AuNPs were more suitable than those with dispersed AuNPs for the SALDI-MS of peptides. The number of particle layers had a significant effect on the laser desorption/ionization of angiotensin I; the peak intensity of the peptide (molecular ion amount) increased with an increase in the number of layers of AuNPs. As a result, the (AuNPs/PAHC)5 multilayer films increased the sensitivity of the angiotensin I to subfemtomoles and raised the useful analyte mass range, thus making it possible to detect small proteins (a 12 kDa cytochrome c). The signal enhancement when using (AuNPs/PAHC)5 may be due to (i) the high absorption of the UV laser light at 337 nm by the AuNP layers, (ii) the low thermal conductivity due to the AuNPs being covered with a thin monolayer of PAHC, and (iii) the increase in the surface roughness (approximately 100 nm) with the number of AuNP layers. Thus, laser-induced rapid high heating of AuNPs for effective desorption/ionization of peptides is possible. In addition, it was found that (AuNPs/PAHC)5 could be used to extract environmental pollutants (pyrene and dimethyldistearylammonium chloride) from very dilute aqueous solutions with concentrations less than 10(-10) mg/mL, and the analytes trapped in the LBL film could be identified by introducing the film directly into the SALDI mass spectrometer without needing to elute the analytes out of the film.

  16. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues

    PubMed Central

    2016-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization. PMID:27181709

  17. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues.

    PubMed

    Wu, Qian; Comi, Troy J; Li, Bin; Rubakhin, Stanislav S; Sweedler, Jonathan V

    2016-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization.

  18. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization-Tandem Time of Flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...

  19. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxin 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-light mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...

  20. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Blood Isolates of Vibrio Species

    PubMed Central

    Cheng, Wern-Cherng; Jan, I-Shiow; Chen, Jong-Min; Teng, Shih-Hua; Teng, Lee-Jene; Sheng, Wang-Huei; Ko, Wen-Chien

    2015-01-01

    Among 56 blood isolates of Vibrio species identified by sequencing analysis of 16S rRNA and rpoB genes, the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system correctly identified all isolates of Vibrio vulnificus (n = 20), V. parahaemolyticus (n = 2), and V. fluvialis (n = 1) but none of the isolates of serogroup non-O1/O139 (non-serogroup O1, non-O139) V. cholerae (n = 33) to the species level. All of these serogroup non-O1/O139 V. cholerae isolates were correctly identified using the newly created MALDI-TOF MS database. PMID:25740773

  1. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  2. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI MSI)

    PubMed Central

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-01-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers. PMID:25893271

  3. Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization MS.

    PubMed

    López de Laorden, Carlos; Beloqui, Ana; Yate, Luis; Calvo, Javier; Puigivila, Maria; Llop, Jordi; Reichardt, Niels-Christian

    2015-01-01

    Due to their electrical conductivity and optical transparency, slides coated with a thin layer of indium tin oxide (ITO) are the standard substrate for protein imaging mass spectrometry on tissue samples by MALDI-TOF MS. We have now studied the rf magnetron sputtering deposition parameters to prepare ITO thin films on glass substrates with the required nanometric surface structure for their use in the matrix-free imaging of metabolites and small-molecule drugs, without affecting the transparency required for classical histology. The custom-made surfaces were characterized by atomic force microscopy, scanning electron microscopy, ellipsometry, UV, and laser desorption ionization MS (LDI-MS) and employed for the LDI-MS-based analysis of glycans and druglike molecules, the quantification of lactose in milk by isotopic dilution, and metabolite imaging on mouse brain tissue samples. PMID:25411795

  4. Development of Spectral Pattern Matching Approaches to Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry for Bacterial Identification

    SciTech Connect

    Jarman, Kristin H.; Wahl, Karen L.

    2005-12-01

    The concept of rapid microorganism identification using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) dates back to the mid-1990’s. Prior to 1998, researchers relied on visual inspection in an effort to demonstrate feasibility of MALDI-MS for bacterial identification (Holland, Wilkes et al. 1996), (Krishnamurthy and Ross 1996), (Claydon, Davey et al. 1996). In general, researchers in these early studies visually compared the biomarker intensity profiles between different organisms and between replicates of the same organism to show that MALDI signatures are unique and reproducible. Manual tabulation and comparison of potential biomarker mass values observed for different organisms was used by numerous researchers to qualitatively characterize microorganisms using MALDI-MS spectra (e.g. (Lynn, Chung et al. 1999), (Winkler, Uher et al. 1999), (Ryzhov, Hathout et al. 2000), (Nilsson 1999)).

  5. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    SciTech Connect

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.

  6. Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection.

    PubMed

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek

    2013-11-01

    Monolithic 50 μm thin poly(4-methylstyrene-co-chloromethylstyrene-co-divinylbenzene) layers attached to 6.0 cm × 3.3 cm glass plates have been prepared, using a thermally initiated polymerization process. These layers had a well-defined porous structure with a globular morphology demonstrated with SEM images and exhibited superhydrophobic properties characterized with a water contact angle of 157°. They were then used for thin-layer chromatography of peptides and proteins fluorescently labeled with fluorescamine. The spots of individual separated compounds were visualized using UV light, and their identities were confirmed with a matrix-assisted laser desorption/ionization time of flight mass spectrometry. The presence of chloromethylstyrene units in the polymer enabled hypercrosslinking via a Friedel-Crafts alkylation reaction, and led to monoliths with much larger surface areas, which were suitable for separations of small dye molecules.

  7. Gas-phase spectroscopy and anharmonic vibrational analysis of the 3-residue peptide Z-Pro-Leu-Gly-NH2 by the laser desorption supersonic jet technique

    NASA Astrophysics Data System (ADS)

    Ishiuchi, Shun-ichi; Yamada, Kohei; Chakraborty, Shamik; Yagi, Kiyoshi; Fujii, Masaaki

    2013-06-01

    The electronic excitation and infrared (IR) spectra of a capped tri-peptide, Z-PLG-NH2 (Z = benzyloxycarbonyl, P = Pro, L = Leu, G = Gly), were measured in the gas phase by using the laser desorption supersonic jet technique. By measuring an ultraviolet-ultraviolet hole burning spectrum, it was found that Z-PLG-NH2 has the maximum three conformers in the gas phase, but that the population is mainly distributed to a single conformation. Molecular dynamics simulations and density functional theory calculations well-reproduced the observed IR spectrum, except for splitting of the NH stretching bands by a β-turn structure that corresponds to a global minimum structure. Anharmonic vibrational analysis by vibrational quasi-degenerate perturbation theory (VQDPT) successfully reproduced the anharmonic splitting, and confirmed the assignments.

  8. Rapid inactivation of Mycobacterium and nocardia species before identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Dunne, W Michael; Doing, Kirk; Miller, Elizabeth; Miller, Eric; Moreno, Erik; Baghli, Mehdi; Mailler, Sandrine; Girard, Victoria; van Belkum, Alex; Deol, Parampal

    2014-10-01

    The identification of mycobacteria outside biocontainment facilities requires that the organisms first be rendered inactive. Exposure to 70% ethanol (EtOH) either before or after mechanical disruption was evaluated in order to establish a safe, effective, and rapid inactivation protocol that is compatible with identification of Mycobacterium and Nocardia species using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A combination of 5 min of bead beating in 70% EtOH followed by a 10-min room temperature incubation period was found to be rapidly bactericidal and provided high-quality spectra compared to spectra obtained directly from growth on solid media. The age of the culture, the stability of the refrigerated or frozen lysates, and freeze-thaw cycles did not adversely impact the quality of the spectra or the identification obtained.

  9. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    PubMed

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  10. Determination of bacterial protein profiles by matrix-assisted laser desorption/ionization mass spectrometry with high-performance liquid chromatography.

    PubMed

    Liang, X; Zheng, K; Qian, M G; Lubman, D M

    1996-01-01

    A rapid method for profiling bacterial and cellular proteins has been developed using a combination of capillary high-performance liquid chromatography separation followed by (MALDI-MS) matrix-assisted laser desorption/ionization mass spectrometric analysis. In this method, bacteria are sonicated, the cell walls broken, and the water-soluble proteins precipitated for analysis. The proteins are separated by capillary liquid chromatography and detected on-line by a UV absorption detector. The eluents are then collected for off-line analysis by MALDI-MS. Using this method, it is demonstrated that bacteria can be discriminated based upon their protein profiles to the species level with only pmol level detection of proteins. It has also proved to be a fast and accurate means for monitoring the expression of Hsp27 in an insect cell system.

  11. Microbial Typing by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Do We Need Guidance for Data Interpretation?

    PubMed Central

    van Belkum, Alex; Goering, Richard V.; Girard, Victoria; Welker, Martin; Van Nuenen, Marc; Pincus, David H.; Arsac, Maud; Durand, Géraldine

    2014-01-01

    The integration of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology has revolutionized species identification of bacteria, yeasts, and molds. However, beyond straightforward identification, the method has also been suggested to have the potential for subspecies-level or even type-level epidemiological analyses. This minireview explores MALDI-TOF MS-based typing, which has already been performed on many clinically relevant species. We discuss the limits of the method's resolution and we suggest interpretative criteria allowing valid comparison of strain-specific data. We conclude that guidelines for MALDI-TOF MS-based typing can be developed along the same lines as those used for the interpretation of data from pulsed-field gel electrophoresis (PFGE). PMID:25056329

  12. Desorption/Ionization Fluence Thresholds and Improved Mass Spectral Consistency Measured Using a Flattop Laser Profile in the Bioaerosol Mass Spectrometry of Single Bacillus Endospores

    SciTech Connect

    Steele, P T; Srivastava, A; Pitesky, M E; Fergenson, D P; Tobias, H J; Gard, E E; Frank, M

    2004-11-30

    Bioaerosol mass spectrometry (BAMS) is being developed to analyze and identify biological aerosols in real-time. Mass spectra of individual Bacillus endospores were measured here with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores this threshold had a mean value of approximately 1 nJ/{micro}m{sup 2} (0.1 J/cm{sup 2}). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.

  13. Two-dimensional surrogate Hamiltonian investigation of laser-induced desorption of NO/NiO(100)

    SciTech Connect

    Dittrich, Soeren; Freund, Hans-Joachim; Koch, Christiane P.; Kosloff, Ronnie; Kluener, Thorsten

    2006-01-14

    The photodesorption of NO from NiO(100) is studied from first principles, with electronic relaxation treated by the use of the surrogate Hamiltonian approach. Two nuclear degrees of freedom of the adsorbate-substrate system are taken into account. To perform the quantum dynamical wave-packet calculations, a massively parallel implementation with a one-dimensional data decomposition had to be introduced. The calculated desorption probabilities and velocity distributions are in qualitative agreement with experimental data. The results are compared to those of stochastic wave-packet calculations where a sufficiently large number of quantum trajectories is propagated within a jumping wave-packet scenario.

  14. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry.

    PubMed

    Mohammadi, Amir Saeid; Phan, Nhu T N; Fletcher, John S; Ewing, Andrew G

    2016-09-01

    We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections. Graphical abstract Schematic of mass spectral imaging of a mouse brain tissue using GCIB-SIMS and MALDI techniques. PMID:27549796

  15. Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/Ionization for the Detection of Circulating Tumor Cells.

    PubMed

    Chiu, Wei-Jane; Ling, Tsung-Kai; Chiang, Hai-Pang; Lin, Han-Jia; Huang, Chih-Ching

    2015-04-29

    In this paper, we describe the use of pulsed laser desorption/ionization mass spectrometry (LDI-MS) for the detection of tumor cells through the analysis of gold cluster ions [Aun](+) from aptamer-modified gold nanofilms (Au NFs). We observed not only the transformation of the Au NFs into gold nanoparticles (Au NPs) but also the formation of gaseous gold cluster ions ([Au(n)](+); n = 1-5) under irradiation with a nanosecond pulsed laser. The size and density of the formed Au NPs and the abundance of [Au(n)](+) ions were both highly dependent on the thickness of the Au NFs (10-100 nm). Thin Au NFs tended to form highly dense Au NPs on the substrate and favored the desorption and ionization of gold cluster ions. The signal intensities of the [Au(n)](+) species, monitoring using mass spectrometry, decreased upon increasing the thickness of the Au NF from 10 to 100 nm and after modification with thiolated DNA. Furthermore, we found that Au NFs modified with mucin1-binding aptamer (AptMUC1-Au NFs) could selectively enrich MCF-7 cells (human breast adenocarcinoma cell line) in blood samples; coupled with LDI-MS analysis of the [Au(n)](+) ions, we could detect MCF-7 cells selectively in blood samples at abundances as low as 10 cells. This approach offers the advantages of high sensitivity, selectivity, and throughput for the detection of circulating tumor cells, and has great potential for use as a powerful analytical platform for clinical diagnoses of tumor metastasis.

  16. Tailor-Made Stable Zr(IV)-Based Metal-Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides.

    PubMed

    Chen, Lianfang; Ou, Junjie; Wang, Hongwei; Liu, Zhongshan; Ye, Mingliang; Zou, Hanfa

    2016-08-10

    Although thousands of metal-organic frameworks (MOFs) have been fabricated and widely applied in gas storage/separations, adsorption, catalysis, and so on, few kinds of MOFs have been used as adsorption materials while simultaneously serving as matrixes to analyze small molecules for laser desorption/ionization mass spectrometry (LDI-MS). Herein, a new concept is introduced to design and synthesize MOFs as both adsorption materials and matrixes according to the structure of ligands and common matrixes. The proof of concept design was demonstrated by selection of 2,5-pyridinedicarboxylic acid (PDC) and 2,5-dihydroxyterephthalic acid (DHT) as ligands for synthesis of MOFs. Two Zr(IV)-based MOFs of UiO-66-PDC and UiO-66-(OH)2 were synthesized and applied for the first time as new matrixes for analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Both of them showed low matrix interferences, high ionization efficiency, and good reproducibility when used as matrixes. A variety of small molecules, including saccharides, amino acids, nucleosides, peptides, alkaline drugs, and natural products, were analyzed. In addition, UiO-66-(OH)2 exhibited potential for application in the quantitative determination of glucose and pyridoxal 5'-phosphate. Furthermore, thanks to its intrinsically large surface area and highly ordered pores, UiO-66-(OH)2 also showed sensitive and specific enrichment of phosphopeptides prior to MS analysis. These results demonstrated that this strategy can be used to efficiently screen tailor-made MOFs as matrixes to analyze small molecules by MALDI-TOF-MS. PMID:27427857

  17. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry.

    PubMed

    Mohammadi, Amir Saeid; Phan, Nhu T N; Fletcher, John S; Ewing, Andrew G

    2016-09-01

    We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections. Graphical abstract Schematic of mass spectral imaging of a mouse brain tissue using GCIB-SIMS and MALDI techniques.

  18. Micro- and nanopatterning of functional organic monolayers on oxide-free silicon by laser-induced photothermal desorption.

    PubMed

    Scheres, Luc; Klingebiel, Benjamin; ter Maat, Jurjen; Giesbers, Marcel; de Jong, Hans; Hartmann, Nils; Zuilhof, Han

    2010-09-01

    The photothermal laser patterning of functional organic monolayers, prepared on oxide-free hydrogen-terminated silicon, and subsequent backfilling of the laser-written lines with a second organic monolayer that differs in its terminal functionality, is described. Since the thermal monolayer decomposition process is highly nonlinear in the applied laser power density, subwavelength patterning of the organic monolayers is feasible. After photothermal laser patterning of hexadecenyl monolayers, the lines freed up by the laser are backfilled with functional acid fluoride monolayers. Coupling of cysteamine to the acid fluoride groups and subsequent attachment of Au nanoparticles allows easy characterization of the functional lines by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Depending on the laser power and writing speed, functional lines with widths between 1.1 μm and 250 nm can be created. In addition, trifluoroethyl-terminated (TFE) monolayers are also patterned. Subsequently, the decomposed lines are backfilled with a nonfunctional hexadecenyl monolayer, the TFE stripes are converted into thiol stripes, and then finally covered with Au nanoparticles. By reducing the lateral distance between the laser lines, Au-nanoparticle stripes with widths close to 100 nm are obtained. Finally, in view of the great potential of this type of monolayer in the field of biosensing, the ease of fabricating biofunctional patterns is demonstrated by covalent binding of fluorescently labeled oligo-DNA to acid-fluoride-backfilled laser lines, which--as shown by fluorescence microscopy--is accessible for hybridization.

  19. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments.

    PubMed

    Barry, Jeremy A; Muddiman, David C

    2011-12-15

    Design of experiments (DOE) is a systematic and cost-effective approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response can be measured in few experiments. Herein, we describe the use of statistical DOE to improve a few of the analytical figures of merit of the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for mass spectrometry. In a typical experiment, bovine cytochrome c was ionized via electrospray, and equine cytochrome c was desorbed and ionized by IR-MALDESI such that the ratio of equine:bovine was used as a measure of the ionization efficiency of IR-MALDESI. This response was used to rank the importance of seven source parameters including flow rate, laser fluence, laser repetition rate, ESI emitter to mass spectrometer inlet distance, sample stage height, sample plate voltage, and the sample to mass spectrometer inlet distance. A screening fractional factorial DOE was conducted to designate which of the seven parameters induced the greatest amount of change in the response. These important parameters (flow rate, stage height, sample to mass spectrometer inlet distance, and laser fluence) were then studied at higher resolution using a full factorial DOE to obtain the globally optimized combination of parameter settings. The optimum combination of settings was then compared with our previously determined settings to quantify the degree of improvement in detection limit. The limit of detection for the optimized conditions was approximately 10 attomoles compared with 100 femtomoles for the previous settings, which corresponds to a four orders of magnitude improvement in the detection limit of equine cytochrome c.

  20. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    PubMed

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions.

  1. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    PubMed

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. PMID:24913399

  2. Ionisers in the management of bronchial asthma.

    PubMed Central

    Nogrady, S G; Furnass, S B

    1983-01-01

    Because of recent interest in the possible benefits to asthmatic patients of negative ion generators and the largely uncontrolled and inconclusive nature of earlier studies a double blind crossover study of this treatment was carried out in 20 subjects with stable asthma over six months. After an initial two week period without an ioniser, active or placebo ionisers were installed in subjects' bedrooms for two eight week periods separated by a four week "washout" period when no ioniser was present. The study was completed by a final four week period when no ioniser was present. Subjects were randomly allocated to receive an active or a placebo ioniser first. Subjects recorded their peak expiratory flow rate (PEFR) twice daily, completed a daily symptom score questionnaire, and noted any treatment they took on a diary card. Recordings were completed throughout the trial. Ion counts and dust concentrations were measured in subjects' bedrooms during the study. Mean ion counts rose considerably when ionisers were activated (p less than 0.001). There were no significant differences in PEFR, symptom score, or consumption of medication between the periods that active ionisers and either no ionisers or placebo ionisers were in operation. This study has failed to show a statistically significant benefit in asthmatic subjects from the use of negative ion generators. PMID:6364442

  3. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Brinkworth, Craig S; Pigott, Eloise J; Bourne, David J

    2009-02-15

    Ricin is a highly toxic protein from the seeds of the castor bean plant. Crude extracts from castor beans are toxic by several routes, and there is international concern about the use of these extracts by terrorist organizations. Lethality in aerosolized form has spurred the development of methods for the rapid detection of this protein from air samples that is critical in determining the illicit use of this material. Matrix-assisted laser desorption ionization (MALDI) mass measurement with an automated laser firing sequence was used to detect intact ricin from solutions containing less than 4 microg/mL of ricin in the presence of other endogenous seed proteins. This sensitivity was attained with the addition of 0.01% Tween 80 to the extracts that greatly enhanced the ricin signal. Importantly, this treatment substantially reduces the interference from the castor bean seed storage proteins. Commonly the ricin signal can be completely obscured by the oligomers of seed storage proteins, and this treatment reveals the ricin molecular ion, allowing the analyst to make a judgment as to the ricin content of the extract. This method provides for sensitive and rapid identification of intact ricin from aqueous samples with little sample preparation and is amenable to automatic acquisition. PMID:19159212

  4. Functional wave time-lag focusing matrix-assisted laser desorption/ionization in a linear time-of-flight mass spectrometer: improved mass accuracy.

    PubMed

    Whittal, R M; Russon, L M; Weinberger, S R; Li, L

    1997-06-01

    A strength of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is its ability to analyze mixtures without separation. MALDI mass spectrometers capable of providing a linear mass calibration over a broad mass range should find wide use in these applications. This work addresses issues pertinent to mass measurement accuracy of a time-lag focusing MALDI time-of-flight instrument and presents a new approach to improving mass accuracy by using a functional wave extraction pulse, instead of a square wave, for time-lag focusing. A model is described of an ideal extraction pulse shape that provides constant total kinetic energy for all ions. If total kinetic energy is constant, then there is an exact linear correlation between ion mass and flight time raised to the second power. Using a descending wave extraction pulse, it is demonstrated that mass accuracy of better than 30 ppm using two internal calibrants and better than 70 ppm using external calibrants can be obtained over a 25 ku mass range. The practical aspects of an instrument needed to obtain consistent mass accuracy is discussed. It is found that ion flight time shows a small dependence upon laser flux; flight times increase slightly as the flux increases. But this dependence is much smaller than is observed in continuous-extraction MALDI.

  5. 6-Amidopyrene as a label-assisted laser desorption/ionization (LA-LDI) enhancing tag: development of photoaffinity pyrene derivative

    PubMed Central

    Yoneda, Kozo; Hu, Yaping; Kita, Masaki; Kigoshi, Hideo

    2015-01-01

    Pyrene-conjugated compounds are detected by label-assisted laser desorption/ionization mass spectrometry (LA-LDI MS) without matrixes. We found that 6-amidopyrene derivatives were highly detectable by the LDI MS instrument equipped with a 355 nm laser. In a certain case of a 6-amidopyrene derivative, a molecular ion peak [M]+• and a characteristic fragment ion peak [M–42]+• were detected in an amount of only 10 fmol. The latter peak, corresponding to the 6-aminopyrene fragment, might be generated in situ by the removal of ketene (CH2=C=O) from the parent molecule. A photoaffinity amidopyrene derivative of an antitumor macrolide aplyronine A (ApA–PaP) was synthesized, which showed potent cytotoxicity and actin-depolymerizing activity. In an LDI MS analysis of the MeOH- and water-adducts of ApA–PaP, oxime N–O bonds as well as amidopyrene N-acetyl moieties were preferentially cleaved, and their internal structures were confirmed by MS/MS analysis. Amidopyrene moiety might enhance fragmentation and stabilize the cleaved fragments by intramolecular or intermolecular weak interactions including hydrogen bonding. Our chemical probe methods might contribute to a detailed analysis of binding modes between various ligands and target biomacromolecules that include multiple and weak interactions. PMID:26667050

  6. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    SciTech Connect

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu; Nikolau, Basil J.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-17

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. The LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.

  7. 6-Amidopyrene as a label-assisted laser desorption/ionization (LA-LDI) enhancing tag: development of photoaffinity pyrene derivative

    NASA Astrophysics Data System (ADS)

    Yoneda, Kozo; Hu, Yaping; Kita, Masaki; Kigoshi, Hideo

    2015-12-01

    Pyrene-conjugated compounds are detected by label-assisted laser desorption/ionization mass spectrometry (LA-LDI MS) without matrixes. We found that 6-amidopyrene derivatives were highly detectable by the LDI MS instrument equipped with a 355 nm laser. In a certain case of a 6-amidopyrene derivative, a molecular ion peak [M]+• and a characteristic fragment ion peak [M-42]+• were detected in an amount of only 10 fmol. The latter peak, corresponding to the 6-aminopyrene fragment, might be generated in situ by the removal of ketene (CH2=C=O) from the parent molecule. A photoaffinity amidopyrene derivative of an antitumor macrolide aplyronine A (ApA-PaP) was synthesized, which showed potent cytotoxicity and actin-depolymerizing activity. In an LDI MS analysis of the MeOH- and water-adducts of ApA-PaP, oxime N-O bonds as well as amidopyrene N-acetyl moieties were preferentially cleaved, and their internal structures were confirmed by MS/MS analysis. Amidopyrene moiety might enhance fragmentation and stabilize the cleaved fragments by intramolecular or intermolecular weak interactions including hydrogen bonding. Our chemical probe methods might contribute to a detailed analysis of binding modes between various ligands and target biomacromolecules that include multiple and weak interactions.

  8. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Brinkworth, Craig S; Pigott, Eloise J; Bourne, David J

    2009-02-15

    Ricin is a highly toxic protein from the seeds of the castor bean plant. Crude extracts from castor beans are toxic by several routes, and there is international concern about the use of these extracts by terrorist organizations. Lethality in aerosolized form has spurred the development of methods for the rapid detection of this protein from air samples that is critical in determining the illicit use of this material. Matrix-assisted laser desorption ionization (MALDI) mass measurement with an automated laser firing sequence was used to detect intact ricin from solutions containing less than 4 microg/mL of ricin in the presence of other endogenous seed proteins. This sensitivity was attained with the addition of 0.01% Tween 80 to the extracts that greatly enhanced the ricin signal. Importantly, this treatment substantially reduces the interference from the castor bean seed storage proteins. Commonly the ricin signal can be completely obscured by the oligomers of seed storage proteins, and this treatment reveals the ricin molecular ion, allowing the analyst to make a judgment as to the ricin content of the extract. This method provides for sensitive and rapid identification of intact ricin from aqueous samples with little sample preparation and is amenable to automatic acquisition.

  9. Improved procedure for dendrimer-based mass calibration in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry.

    PubMed

    Gross, Jürgen H

    2016-08-01

    A procedure is described that results in a substantial increase in signal intensity and in improved accuracy of positive-ion mass calibration when using commercially available kits of monodisperse dendrimers (SpheriCal(®)) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The peak intensities are amplified by an admixture of 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix to the kits comprising of 9-nitroanthracene matrix, sodium trifluoroacetate, and four dendrimers. Boosted ion formation then permits lower laser fluence to be used and thus yields enhanced mass resolution. Further, the number of reference peaks is doubled by doping the sample preparation with cesium ions. This results in four [M+Cs](+) ion signals in addition to four [M+Na](+) ion signals provided by the standard kit. Overall, the modified procedure notably reduces the consumption of the expensive calibration standard kits, while it increases mass resolution and enables the use of an advanced calibration algorithm requiring at least six reference peaks. Graphical abstract A dendrimer-based mass calibration for MALDI-TOF-MS can be improved by adding a DCTB matrix and doping the sample preparation with Cs(+) ions. Having eight rather than just four reference peaks reduces the average mass error of the calibration curve about fivefold. PMID:27317254

  10. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer.

    PubMed

    Doroshenko, V M; Cotter, R J

    1996-01-01

    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  11. Electron stimulated desorption of the metallic substrate at monolayer coverage: Sensitive detection via 193 nm laser photoionization of neutral aluminum desorbed from CH3O/Al(111)

    NASA Astrophysics Data System (ADS)

    Young, C. E.; Whitten, J. E.; Pellin, M. J.; Gruen, D. M.; Jones, P. L.

    A fortuitous overlap between the gain profile of the 193 nm ArF excimer laser and the Al autoionizing transition (sup 2)S(sub 1/2) (512753/cm) yields to the left (sup 2)P(sup 0)J has been exploited in the direct observation of substrate metal atoms in an electron simulated desorption (ESD) process from the monolayer adsorbate system CH3O/Al(111). The identity of the mass 27 photoion was established as Al(+) by (1) isotopic substitution of C-13 in the methanol employed for methoxy formation, and (2) tunable laser scans utilizing the DJ-2 (J = 3/2, 5/2) intermediate levels at approximately 32436/cm and a 248 nm ionization step. An ESD yield of approximately x 10(exp -6) Al atoms/(electron at 1 keV) was established by comparison with a sputtering experiment in the same apparatus. Velocity distributions measured for the desorbed Al species showed some differences in comparison with methoxy velocity data: a slightly lower peak velocity and a significantly less prominent high-velocity component.

  12. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R(2) > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis. Graphical Abstract ᅟ.

  13. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.

  14. Vertical profile measurements of lower troposphere ionisation

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Nicoll, K. A.; Aplin, K. L.

    2014-11-01

    Vertical soundings of the atmospheric ion production rate have been obtained from Geiger counters integrated with conventional meteorological radiosondes. In launches made from Reading (UK) during 2013-2014, the Regener-Pfotzer ionisation maximum was at an altitude equivalent to a pressure of (63.1±2.4) hPa, or, expressed in terms of the local air density, (0.101±0.005) kg m-3. The measured ionisation profiles have been evaluated against the Usoskin-Kovaltsov model and, separately, surface neutron monitor data from Oulu. Model ionisation rates agree well with the observed cosmic ray ionisation below 20 km altitude. Above 10 km, the measured ionisation rates also correlate well with simultaneous neutron monitor data, although, consistently with previous work, measured variability at the ionisation maximum is greater than that found by the neutron monitor. However, in the lower atmosphere (below 5 km altitude), agreement between the measurements and simultaneous neutron monitor data is poor. For studies of transient lower atmosphere phenomena associated with cosmic ray ionisation, this indicates the need for in situ ionisation measurements and improved lower atmosphere parameterisations.

  15. Matrix assisted laser desorption ionization time-of-flight mass spectrometry: Velocity measurements using orthogonal and axial injection and applications to characterization of wheat proteins

    NASA Astrophysics Data System (ADS)

    Dworschak, Ragnar G.

    velocities of matrix and analyte ions for more normal laser incidence, and for single crystals parallel to the sample surface compared to polycrystalline surfaces, suggesting the orientation of the crystal face with respect to the incident laser direction plays a role in the desorption process. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) was used to analyse the protein composition in several common and durum wheat varieties. Mass spectra were obtained directly from crude and partially purified wheat gliadin and reduced glutenin subunit fractions. Mass spectra of the gliadins and the low molecular weight glutenin subunits show a complex pattern of proteins in the 30--40 kDa range. The observed gliadin patterns showed some promise for variety identification. The mass spectra of the high molecular weight glutenin subunits are much simpler and the complete high molecular weight subunit profile can be determined directly from a single mass spectrum. This may prove particularly useful in wheat breeding programs for rapid identification of lines containing subunits associated with superior quality.

  16. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  17. Comparison of the accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry with that of other commercial identification systems for identifying Staphylococcus saprophyticus in urine.

    PubMed

    Lee, Tai-Fen; Lee, Hao; Chen, Chung-Ming; Du, Shin-Hei; Cheng, Ya-Chih; Hsu, Chen-Ching; Chung, Meng-Yu; Teng, Shih-Hua; Teng, Lee-Jene; Hsueh, Po-Ren

    2013-05-01

    Among 30 urinary isolates of Staphylococcus saprophyticus identified by sequencing methods, the rate of accurate identification was 100% for Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), 86.7% for the Phoenix PID and Vitek 2 GP systems, 93.3% for the MicroScan GP33 system, and 46.7% for the BBL CHROMagar Orientation system.

  18. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment.

  19. Clinical and Microbiological Features of a Cystic Fibrosis Patient Chronically Colonized with Pandoraea sputorum Identified by Combining 16S rRNA Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fernández-Olmos, A.; Morosini, M. I.; Lamas, A.; García-Castillo, M.; García-García, L.; Máiz, L.

    2012-01-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  20. Ultra-fast analysis of anatoxin-A using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry: validation and resolution from phenylalanine.

    PubMed

    Lemoine, Pascal; Roy-Lachapelle, Audrey; Prévost, Michèle; Tremblay, Patrice; Solliec, Morgan; Sauvé, Sébastien

    2013-01-01

    A novel approach for the analysis of the cyanobacterial toxin, anatoxin-a (ANA-a), in an environmentally relevant matrix, using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry (LDTD-APCI-MS/MS) is presented. The ultra-fast analysis time (15 s/sample) provided by the LDTD-APCI interface is strengthened by its ability to remove interference from phenylalanine (PHE), an isobaric interference in ANA-a analysis by MS/MS. Thus the LDTD-APCI interface avoids the time consuming steps of derivatization, chromatographic separation or solid-phase extraction prior to analysis. Method development and instrumental parameter optimizations were focused toward signal enhancement of ANA-a, and signal removal of a PHE interference as high as 500 μg/L. External calibration in a complex matrix gave detection and quantification limit values of 1 and 3 μg/L respectively, as well as good linearity (R(2) > 0.999) over nearly two orders of magnitude. Internal calibration with clomiphene (CLO) is possible and method performance was similar to that obtained by external calibration. This work demonstrated the utility of the LDTD-APCI source for ultra-fast detection and quantification of ANA-a in environmental aqueous matrices, and confirmed its ability to suppress the interference of PHE without sample preparation or chromatographic separation.

  1. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry

    PubMed Central

    2010-01-01

    Background The use of molecular biology-based methods for species identification and establishing phylogenetic relationships has supplanted traditional methods relying on morphological characteristics. While PCR-based methods are now the commonly accepted gold standards for these types of analysis, relatively high costs, time-consuming assay development or the need for a priori information about species-specific sequences constitute major limitations. In the present study, we explored the possibility to differentiate between 13 different species from the genus Drosophila via a molecular proteomic approach. Results After establishing a simple protein extraction procedure and performing matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) with intact proteins and peptides, we could show that most of the species investigated reproducibly yielded mass spectra that were adequate for species classification. Furthermore, a dendrogram generated by cluster analysis of total protein patterns agrees reasonably well with established phylogenetic relationships. Conclusion Considering the intra- and interspecies similarities and differences between spectra obtained for specimens of closely related Drosophila species, we estimate that species typing of insects and possibly other multicellular organisms by intact protein profiling (IPP) can be established successfully for species that diverged from a common ancestor about 3 million years ago. PMID:20374617

  2. Combining Capillary Electrophoresis Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Stable Isotopic Labeling Techniques for Comparative Crustacean Peptidomics

    PubMed Central

    Wang, Junhua; Zhang, Yuzhuo; Xiang, Feng; Zhang, Zichuan; Li, Lingjun

    2010-01-01

    Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides. PMID:20334868

  3. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fangous, Marie-Sarah; Mougari, Faiza; Gouriou, Stéphanie; Calvez, Elodie; Raskine, Laurent; Cambau, Emmanuelle; Payan, Christopher; Héry-Arnaud, Geneviève

    2014-09-01

    Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs. PMID:25009048

  4. Evaluation of Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes

    PubMed Central

    Buckwalter, S. P.; Olson, S. L.; Connelly, B. J.; Lucas, B. C.; Rodning, A. A.; Walchak, R. C.; Deml, S. M.; Wohlfiel, S. L.

    2015-01-01

    The value of matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed. PMID:26637381

  5. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  6. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures.

  7. A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Hong, Sun Pyo; Ji, Seung Il; Rhee, Hwanseok; Shin, Soo Kyeong; Hwang, Sun Young; Lee, Seung Hwan; Lee, Soong Deok; Oh, Heung-Bum; Yoo, Wangdon; Kim, Soo-Ok

    2008-01-01

    Background We describe the development of a novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-based single nucleotide polymorphism (SNP) scoring strategy, termed Restriction Fragment Mass Polymorphism (RFMP) that is suitable for genotyping variations in a simple, accurate, and high-throughput manner. The assay is based on polymerase chain reaction (PCR) amplification and mass measurement of oligonucleotides containing a polymorphic base, to which a typeIIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products leads to excision of oligonucleotide fragments representing base variation of the polymorphic site whose masses were determined by MALDI-TOF MS. Results The assay represents an improvement over previous methods because it relies on the direct mass determination of PCR products rather than on an indirect analysis, where a base-extended or fluorescent report tag is interpreted. The RFMP strategy is simple and straightforward, requiring one restriction digestion reaction following target amplification in a single vessel. With this technology, genotypes are generated with a high call rate (99.6%) and high accuracy (99.8%) as determined by independent sequencing. Conclusion The simplicity, accuracy and amenability to high-throughput screening analysis should make the RFMP assay suitable for large-scale genotype association study as well as clinical genotyping in laboratories. PMID:18538037

  8. Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed Central

    Gorman, J. J.; Ferguson, B. L.; Speelman, D.; Mills, J.

    1997-01-01

    The attachment protein or G protein of the A2 strain of human respiratory syncytial virus (RSV) was digested with trypsin and the resultant peptides separated by reverse-phase high-performance liquid chromatography (HPLC). One tryptic peptide produced a mass by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) corresponding to residues 152-187 with the four Cys residues of the ectodomain (residues 173, 176, 182, and 186) in disulfide linkage and absence of glycosylation. Sub-digestion of this tryptic peptide with pepsin and thermolysin produced peptides consistent with disulfide bonds between Cys173 and Cys186 and between Cys176 and Cys182. Analysis of ions produced by post-source decay of a peptic peptide during MALDI-TOF-MS revealed fragmentation of peptide bonds with minimal fission of an inter-chain disulfide bond. Ions produced by this unprecedented MALDI-induced post-source fragmentation corroborated the existence of the disulfide arrangement deduced from mass analysis of proteolysis products. These findings indicate that the ectodomain of the G protein has a non-glycosylated subdomain containing a "cystine noose." PMID:9194191

  9. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Hack, Christopher A; Benner, W Henry

    2002-01-01

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (DE MALDI-TOFMS) spectra is presented. The method involves fitting a parabola to a plot of Delta(m) vs. mass data where Delta(m) is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to the alpha-cyano-4-hydroxycinnamic acid (alphaCHCA) matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.

  10. Glycine Identification in Natural Jarosites Using Laser-Desorption Fourier Transform Mass Spectrometry: Implications for the search for life on Mars

    SciTech Connect

    J. Michelle Kotler; Nancy W. Hinman; Beizhan Yan; Daphne L. Stoner; Jill R. Scott

    2008-04-01

    The jarosite group minerals have received increasing attention since the discovery of jarosite by the Mars Exploration Rover-Opportunity on the Martian surface. The mineral group has the ability to incorporate foreign ions in its structure leading to investigations regarding its use as an indicator of aqueous and/or biological activity on Earth and Mars. The use of laser desorption Fourier transform mass spectrometry has revealed the presence of organic matter in several jarosite samples from various worldwide locations. One of the organic cluster ions has been attributed to glycine based on results from combinations of glycine with synthetic jarosite and K2SO4. The ability to observe these organic signatures in jarosite samples with an “in situ” instrumental technique, such as employed in this study, furthers the goals of planetary geologists to determine whether signs of life (e.g., the presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples.

  11. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of lysozyme contained in hen egg white.

    PubMed

    Smolira, Anna; Hałas, Stanisław

    2016-01-01

    As a natural antibacterial peptide, lysozyme (LZ) is widely used in medicine and the food industry. Despite many years of research on this compound, its new antibacterial properties are still to be determined. The primary aim of this work is to demonstrate the application of the matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometric analysis of LZ directly in hen egg white samples without extraction thereof. The egg white samples were kept over 10 weeks at room temperature and measured every week. The resulting positive and negative ion mass spectra were then compared to determine the intensity of the LZ mass peak. Storage of the egg white for over 10 weeks did not influence the LZ mass peak intensity (both positive and negative). It can be concluded that the LZ concentration in the egg white samples did not vary with time. The effect of the matrix/sample ratio on LZ detection was also examined, and it was found to be different in the case of positive and negative ionization. The mass peaks of LZ oligomeric forms were observed in all mass spectra, so the MALDI method could be used in subsequent studies. PMID:26863071

  12. Sample-first preparation: a method for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of cyclic oligosaccharides.

    PubMed

    Wu, Hsin-Pin; Su, Chih-Lin; Chang, Hui-Chiu; Tseng, Wei-Lung

    2007-08-15

    A new sample preparation method for the analysis of cyclic oligosaccharides in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is presented. We call this new technique "sample first method", in which a sample is deposited first and then bare gold nanoparticles (AuNPs), which serve as the SALDI matrixes, are added to the top of the sample layer. The use of the sample first method offers significant advantages for improving shot-to-shot reproducibility, enhancing the ionization efficiency of the analyte, and reducing sample preparation time as compared to the dried-droplet method, wherein samples and bare AuNPs are mixed and dried together. The relative standard deviation (RSD) values of the signal intensity as calculated from 65 sample spots was 25% when the sample first methods were applied to the analysis of beta-cyclodextrin. The results were more homogeneous as compared to the outcome using dried-droplet preparation of AuNPs (RSD=66%) and 2,5-dihydroxybenzoic acid (RSD=209%). We also found out that the optimal concentration of AuNP for ionization efficiency is 7.4 nM (4.52x10(12) particles/mL) while the lowest detectable concentration of cyclic oligosaccharides through this approach is 0.25 microM. Except for the cyclic oligosaccharide, the proposed method was also applied to the analyses of other biological samples, including neutral carbohydrate and steroid, aminothiols, and peptides as well as proteins.

  13. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak.

    PubMed

    Griffin, Paul M; Price, Gareth R; Schooneveldt, Jacqueline M; Schlebusch, Sanmarié; Tilse, Martyn H; Urbanski, Tess; Hamilton, Brett; Venter, Deon

    2012-09-01

    The control of vancomycin-resistant enterococci (VRE) has become an increasing burden on health care resources since their discovery over 20 years ago. Current techniques employed for their detection include time-consuming and laborious phenotypic methods or molecular methods requiring costly equipment and consumables and highly trained staff. An accurate, rapid diagnostic test has the ability to greatly reduce the spread of this organism, which has the ability to colonize patients for long periods, potentially even lifelong. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a technology with the ability to identify organisms in seconds and has shown promise in the identification of other forms of antimicrobial resistance in other organisms. Here we show that MALDI-TOF MS is capable of rapidly and accurately identifying vanB-positive Enterococcus faecium VRE from susceptible isolates. Internal validation of the optimal model generated produced a sensitivity of 92.4% and a specificity of 85.2%. Prospective validation results, following incorporation into the routine laboratory work flow, demonstrated a greater sensitivity and specificity at 96.7% and 98.1%, respectively. In addition, the utilization of MALDI-TOF MS to determine the relatedness of isolates contributing to an outbreak is also demonstrated.

  14. Quantification of Saccharides in Honey Samples Through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Using HgTe Nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung

    2014-07-01

    Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.

  15. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS)

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria Cristina; Rodighiero, Isabella; Buttrini, Mirko; Montecchini, Sara; Vasile Simone, Rosita; Medici, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2016-01-01

    In this study matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), a reliable identification method for the diagnosis of bacterial and fungal infections, is presented as an innovative tool to investigate the protein profile of cell cultures infected by the most common viruses causing respiratory tract infections in humans. MALDI-TOF MS was applied to the identification of influenza A and B viruses, adenovirus C species, parainfluenza virus types 1, 2 and 3, respiratory syncytial virus, echovirus, cytomegalovirus and metapneumovirus. In this study MALDI-TOF MS was proposed as a model to be applied to the identification of cultivable respiratory viruses using cell culture as a viral proteins enrichment method to the proteome profiling of virus infected and uninfected cell cultures. The reference virus strains and 58 viruses identified from respiratory samples of subjects with respiratory diseases positive for one of the above mentioned viral agents by cell culture were used for the in vitro infection of suitable cell cultures. The isolated viral particles, concentrated by ultracentrifugation, were used for subsequent protein extraction and their spectra profiles were generated by MALDI-TOF MS analysis. The newly created library allowed us to discriminate between uninfected and respiratory virus infected cell cultures. PMID:27786297

  16. Disposable polymeric high-density nanovial arrays for matrix assisted laser desorption/ionization-time of flight-mass spectrometry: I. Microstructure development and manufacturing.

    PubMed

    Marko-Varga, G; Ekstrom, S; Heildin, G; Nilsson, J; Laureli, T

    2001-10-01

    In order to meet the expected enormous demand for mass spectrometry (MS) throughput as a result of the current efforts to completely map the human proteome, this paper presents a new concept for low-cost high-throughput protein identification by matrix assisted laser desorption/ionization-time of flight-(MALDI-TOF)-MS peptide mapping using disposable polymeric high-density nanovial MALDI target plates. By means of microfabrication technology precision engineered nanovial arrays are fabricated in polymer substrates such as polymethylmethacrylate (PMMA) and polycarbonate (PC). The target plate fabrication processes investigated were precision micromilling, cold embossing and injection moulding (work in progress). Nanovial dimensions were 300, 400 or 500 microm. Typical array densities were 165 nanovials/cm2, which corresponds to 3,300 vials on a full Applied Biosystems MALDI target plate. Obtained MALDI data displayed equal mass resolution, accuracy, signal intensity for peptide standards as compared to high-density silicon nanovial arrays previously reported by our group [7], as well as conventional stainless steel or gold targets. PMID:11700729

  17. Effects of Solid-Medium Type on Routine Identification of Bacterial Isolates by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Anderson, Neil W.; Buchan, Blake W.; Riebe, Katherine M.; Parsons, Lauren N.; Gnacinski, Stacy

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for the identification of bacteria. Factors that may alter protein profiles, including growth conditions and presence of exogenous substances, could hinder identification. Bacterial isolates identified by conventional methods were grown on various media and identified using the MALDI Biotyper (Bruker Daltonics, Billerica, MA) using a direct smear method and an acid extraction method. Specimens included 23 Pseudomonas isolates grown on blood agar, Pseudocel (CET), and MacConkey agar (MAC); 20 Staphylococcus isolates grown on blood agar, colistin-nalidixic acid agar (CNA), and mannitol salt agar (MSA); and 25 enteric isolates grown on blood agar, xylose lysine deoxycholate agar (XLD), Hektoen enteric agar (HE), salmonella-shigella agar (SS), and MAC. For Pseudomonas spp., the identification rate to genus using the direct method was 83% from blood, 78% from MAC, and 94% from CET. For Staphylococcus isolates, the identification rate to genus using the direct method was 95% from blood, 75% from CNA, and 95% from MSA. For enteric isolates, the identification rate to genus using the direct method was 100% from blood, 100% from MAC, 100% from XLD, 92% from HE, and 87% from SS. Extraction enhanced identification rates. The direct method of MALDI-TOF analysis of bacteria from selective and differential media yields identifications of varied confidence. Notably, Staphylococci spp. from CNA exhibit low identification rates. Extraction enhances identification rates and is recommended for colonies from this medium. PMID:22162546

  18. Study of human neutrophil peptides in saliva by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Yang, Ming-Hui; Lo, Li-Hua; Chen, Yi-Hsuan; Shiea, Jentaie; Wu, Pei-Chang; Tyan, Yu-Chang; Jong, Yuh-Jyh

    2009-10-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is used to rapidly characterize the human neutrophil peptides - HNP 1, 2, and 3 - in saliva. The saliva excreted from the parotid and sublingual/submandibular glands of 70 individuals were collected and examined using MALDI-TOF. The MALDI approach requires no sample pretreatment other than mixing the saliva-absorbing material with the matrix and drying under ambient conditions. Tissue paper was the best material for collecting the saliva samples because of its strong texture and high absorbance, and sinapinic acid was the best MALDI matrix for the analysis of the HNPs. HNPs were detected in almost all the samples collected from the parotid glands, with no obvious differences among age or gender. In contrast, the distribution of the HNPs in the samples collected from the sublingual/submandibular glands was age-dependent: no HNPs were detected for those collected from individuals younger than 30, but the HNPs were present in all of the samples collected from those older than 60 years. The increased probability of detecting saliva HNPs with age suggests that HNPs may function as a biomarker for aging.

  19. Classification Algorithm for Subspecies Identification within the Mycobacterium abscessus Species, Based on Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fangous, Marie-Sarah; Mougari, Faiza; Gouriou, Stéphanie; Calvez, Elodie; Raskine, Laurent; Cambau, Emmanuelle; Payan, Christopher

    2014-01-01

    Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs. PMID:25009048

  20. Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting.

    PubMed

    Tannu, Nilesh S; Wu, Jian; Rao, Vamshi K; Gadgil, Himanshu S; Pabst, Michael J; Gerling, Ivan C; Raghow, Rajendra

    2004-04-15

    We compared trysin-digested protein samples desalted by ZipTip(C18) reverse-phase microcolumns with on-plate washing of peptides deposited either on paraffin-coated plates (PCP), Teflon-based AnchorChip plates, or stainless steel plates, before analysis by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Trypsinized bovine serum albumin and ovalbumin and 16 protein spots extracted from silver-stained two-dimensional gels of murine C(2)C(12) myoblasts or human leukocytes, prepared by the above two methods, were subjected to MALDI on PCP, AnchorChip plates, or uncoated stainless steel plates. Although most peptide mass peaks were identical regardless of the method of desalting and concentrating of protein samples, samples washed and concentrated by the PCP-based method had peptide peaks that were not seen in the samples prepared using the ZipTip(C18) columns. The mass spectra of peptides desalted and washed on uncoated stainless steel MALDI plates were consistently inferior due to loss of peptides. Some peptides of large molecular masses were apparently lost from samples desalted by ZipTip(C18) microcolumns, thus diminishing the quality of the fingerprint needed for protein identification. We demonstrate that the method of washing of protein samples on paraffin-coated plates provides an easy, reproducible, inexpensive, and high-throughput alternative to ZipTip(C18)-based purification of protein prior to MALDI-TOF-MS analysis.

  1. Turnaround time of positive blood cultures after the introduction of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Angeletti, Silvia; Dicuonzo, Giordano; D'Agostino, Alfio; Avola, Alessandra; Crea, Francesca; Palazzo, Carlo; Dedej, Etleva; De Florio, Lucia

    2015-07-01

    A comparative evaluation of the turnaround time (TAT) of positive blood culture before and after matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) introduction in the laboratory routine was performed. A total of 643 positive blood cultures, of which 310 before and 333 after MALDI-TOF technique introduction, were collected. In the post MALDI-TOF period, blood culture median TAT decreased from 73.53 hours to 71.73 for Gram-positive, from 64.09 hours to 63.59 for Gram-negative and from 115.7 hours to 47.62 for anaerobes. MALDI-TOF significantly decreased the TAT of anaerobes, for which antimicrobial susceptibility test is not routinely performed. Furthermore, the major advantage of MALDI-TOF introduction was the decrease of the time for pathogen identification (TID) independently from the species with an improvement of 93% for Gram-positive, 86% for Gram-negative and 95% for anaerobes. In addition, high species-level identification rates and cost savings than conventional methods were achieved after MALDI-TOF introduction.

  2. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    PubMed

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties.

  3. Measuring Drug Metabolism Kinetics and Drug-Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry.

    PubMed

    Anderson, Lyndsey L; Berns, Eric J; Bugga, Pradeep; George, Alfred L; Mrksich, Milan

    2016-09-01

    The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods. PMID:27467208

  4. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring.

    PubMed

    Kooijman, Pieter C; Kok, Sander J; Weusten, Jos J A M; Honing, Maarten

    2016-05-01

    Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, "gut-feeling" or "good enough" is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way.

  5. Utilization of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for structural studies related to biology and disease

    NASA Astrophysics Data System (ADS)

    Costello, Catherine E.; Helin, Jari; Ngoka, Lambert C. M.

    1996-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), because of its high sensitivity and relatively straightforward requirements for sample preparation, is contributing to the solution of structural problems in biology and to the development of therapeutic approaches through increased understanding of pharmacology and enhanced capabilities for quality control of pharmaceuticals. We are using a reflectron TOF- MS for the determination of molecular weights of individual compounds and the components of mixtures that are naturally occurring or are generated through enzymic digests, and employing the post-source decay mode to elucidate structural details. To maximize the sensitivity and information content of the spectra, varied matrices, derivative, and stepwise degradation procedures are being explored. Present studies include investigations of oligosaccharides, neutral glycolipids, gangliosides, glycoproteins, neuropeptides and proteins. Rules for fragmentation are being developed with model compounds and used for the structural elucidation of unknowns. When adequate sample amounts are available, the results are compared with low- and high-energy collision-induced decomposition spectra obtained with tandem MS in order to provide a data base for the correlation of spectral features and guidance in selection of approaches for scarce biological samples. Current projects include biophysical studies of glycoplipids, glycoproteins and oligosaccharides and investigations of the substance P receptor, transthyretin genetic variants and cisplatin-DNA interactions.

  6. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    SciTech Connect

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Among those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.

  7. Effect of the reducing-terminal substituents on the high energy collision-induced dissociation matrix-assisted laser desorption/ionization mass spectra of oligosaccharides.

    PubMed

    Küster, B; Naven, T J; Harvey, D J

    1996-01-01

    High-energy collision-induced dissociation (CID) matrix-assisted laser desorption/ionization mass spectra of N-linked oligosaccharides bearing different, commonly encountered, reducing terminal modifications (hydroxyl, 2-aminobenzamide, asparagine and a tetrapeptide) were recorded on a magnetic sector instrument equipped with an orthogonal-acceleration time-of-flight (OA-TOF) analyser. All the compounds formed abundant molecular (MNa+) and fragment ions, the latter corresponding to glycosidic and cross-ring cleavages as well as to internal fragment ions, all of which provided much insight into the oligosaccharide structure. The nature of the modification considerably influenced the CID behaviour. The strongest and most complete series of glycosidic cleavage ions (mainly Y and B--Domon and Costello nomenclature) was formed by the underivatized oligosaccharide whereas most cross-ring fragment ions, diagnostic of linkage, were found in the spectra of the glycopeptides. A-type cross-ring cleavage ions were particularly abundant in the spectrum of the asparagine derivative. Reductive amination using 2-aminobenzamide resulted in an opened reducing-terminal sugar ring and suppression of the cross-ring fragment ions carrying information associated with that ring. This information was present in the spectra of the free carbohydrate and the peptide derivatives. PMID:8914337

  8. Matrix-assisted laser desorption ionization-time of flight mass spectrometry based identification of Edwardsiella ictaluri isolated from Vietnamese striped catfish (Pangasius hypothalamus)

    PubMed Central

    Nhu, Truong Quynh; Park, Seong Bin; Kim, Si Won; Lee, Jung Seok; Im, Se Pyeong; Lazarte, Jassy Mary S.; Seo, Jong Pyo; Lee, Woo-Jai; Kim, Jae Sung

    2016-01-01

    Edwardsiella (E.) ictaluri is a major bacterial pathogen that affects commercially farmed striped catfish (Pangasius hypothalamus) in Vietnam. In a previous study, 19 strains of E. ictaluri collected from striped catfish were biochemically identified with an API-20E system. Here, the same 19 strains were used to assess the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS; applied using a MALDI Biotyper) to conduct rapid, easy and accurate identification of E. ictaluri. MALDI-TOF MS could directly detect the specific peptide patterns of cultured E. ictaluri colonies with high (> 2.0, indicating species-level identification) scores. MALDI Biotyper 3.0 software revealed that all of the strains examined in this study possessed highly similar peptide peak patterns. In addition, electrophoresis (SDS-PAGE) and subsequent immuno-blotting using a specific chicken antibody (IgY) against E. ictaluri revealed that the isolates had highly similar protein profiles and antigenic banding profiles. The results of this study suggest that E. ictaluri isolated from striped catfish in Vietnam have homologous protein compositions. This is important, because it indicates that MALDI-TOF MS analysis could potentially outperform the conventional methods of identifying E. ictaluri. PMID:26726022

  9. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  10. Effects of Varied pH, Growth Rate and Temperature using Controlled fermentation and Batch culture on Matrix Assisted Laser Desorption/Ionization Whole Cell Protein Fingerprints.

    SciTech Connect

    Wunschel, David S.; Hill, Eric A.; Mclean, Jeffrey S.; Jarman, Kristin H.; Gorby, Yuri A.; Valentine, Nancy B.; Wahl, Karen L.

    2005-09-01

    Rapid identification of microorganisms using matrix assisted laser desorption/ionization (MALDI) is a rapidly growing area of research due to the minimal sample preparation, speed of analysis and broad applicability of the technique. This approach relies on protein markers to identify microorganisms. Therefore, variations in culture conditions that affect protein expression may limit the ability of MALDI-MS to correctly identify an organism. We have expanded our efforts to investigate the effects of culture conditions on MALDI-MS protein signatures to examine the effects of pH, growth rate and temperature. Continuous cultures maintained in bioreactors were used to maintain specific growth rates and pH for E. coli HB 101. Despite measurable morphological differences between growth conditions, the MALDI-MS data associated each culture with the appropriate library entry (E. coli HB 101 generated using batch culture on a LB media), independent of pH or growth rate. The lone exception was for a biofilm sample collected from one of the reactors which had no appreciable degree of association with the correct library entry. Within the data set for planktonic organisms, variations in growth rate created the largest variation between fingerprints. The effect of varying growth temperature on Y. enterocolitica was also examined. While the anticipated effects on phenotype were observed, the MALDI-MS technique provided the proper identification.

  11. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Yifei; Liu, Yingyi; Ma, Qingwei; Song, Yeqing; Zhang, Qian; Wang, Xiaoyan; Chen, Feng

    2014-01-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.

  12. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Ferroni, Agnès; Suarez, Stéphanie; Beretti, Jean-Luc; Dauphin, Brunhilde; Bille, Emmanuelle; Meyer, Julie; Bougnoux, Marie-Elisabeth; Alanio, Alexandre; Berche, Patrick; Nassif, Xavier

    2010-05-01

    Delays in the identification of microorganisms are a barrier to the establishment of adequate empirical antibiotic therapy of bacteremia. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) allows the identification of microorganisms directly from colonies within minutes. In this study, we have adapted and tested this technology for use with blood culture broths, thus allowing identification in less than 30 min once the blood culture is detected as positive. Our method is based on the selective recovery of bacteria by adding a detergent that solubilizes blood cells but not microbial membranes. Microorganisms are then extracted by centrifugation and analyzed by MALDI-TOF-MS. This strategy was first tested by inoculating various bacterial and fungal species into negative blood culture bottles. We then tested positive patient blood or fluid samples grown in blood culture bottles, and the results obtained by MALDI-TOF-MS were compared with those obtained using conventional strategies. Three hundred twelve spiked bottles and 434 positive cultures from patients were analyzed. Among monomicrobial fluids, MALDI-TOF-MS allowed a reliable identification at the species, group, and genus/family level in 91%, 5%, and 2% of cases, respectively, in 20 min. In only 2% of these samples, MALDI-TOF MS did not yield any result. When blood cultures were multibacterial, identification was improved by using specific databases based on the Gram staining results. MALDI-TOF-MS is currently the fastest technique to accurately identify microorganisms grown in positive blood culture broths.

  13. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E

    2014-07-01

    In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours.

  14. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  15. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  16. Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

    PubMed Central

    Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.-S.; Leflèche, A.; Badell, E.; Guiso, N.; Leclercq, A.; Le Monnier, A.; Lecuit, M.; Rodriguez-Nava, V.; Bergeron, E.; Raymond, J.; Vimont, S.; Bille, E.; Carbonnelle, E.; Guet-Revillet, H.; Lécuyer, H.; Beretti, J.-L.; Vay, C.; Berche, P.; Ferroni, A.; Nassif, X.

    2012-01-01

    Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry. PMID:22692743

  17. Fragmentation processes of hydrogen-deficient peptide radicals in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2012-04-01

    The mechanism of in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) has been described. The MALDI-ISD with an oxidizing matrix is initiated by hydrogen abstraction from peptides to matrix molecules, leading to hydrogen-deficient peptide radicals. Subsequently, the C(α)-C and C(α)-H bonds are cleaved, forming the a•/x fragment pair and [M-2H], respectively. Those reactions competitively occur during MALDI-ISD processes. Our results suggest that the C(α)-H bond cleavage to form [M-2H] was induced by collisions between hydrogen-deficient peptide radicals and matrix molecules in the MALDI plume. In contrast, the C(α)-C bond cleavages occur via a unimolecular dissociation process and independently of the collision rate in the MALDI plume. The formation mechanism of the a-, b-, and d-series fragments are also described. We report 2,5-bis(2-hydroxyethoxy)-7,7,8,8-tetracyanoquinodimethane (bisHE-TCNQ), being known as an organic semiconductor and an electron acceptor, as a novel suitable matrix for the MALDI-ISD of peptides via hydrogen abstraction.

  18. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  19. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase.

    PubMed

    Jiang, Wei; Murashko, Ekaterina A; Dubrovskii, Yaroslav A; Podolskaya, Ekaterina P; Babakov, Vladimir N; Mikler, John; Nachon, Florian; Masson, Patrick; Schopfer, Lawrence M; Lockridge, Oksana

    2013-08-15

    Exposure to nerve agents or organophosphorus (OP) pesticides can have life-threatening effects. Human plasma butyrylcholinesterase (BChE) inactivates these poisons by binding them to Ser198. After hours or days, these OP adducts acquire a negative charge by dealkylation in a process called aging. Our goal was to develop a method for enriching the aged adduct to facilitate detection of exposure. Human BChE inhibited by OP toxicants was incubated for 4 days to 6 years. Peptides produced by digestion with pepsin were enriched by binding to titanium oxide (TiO2) and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It was found that with two exceptions, all aged OP adducts in peptide FGES198AGAAS were enriched by binding to Titansphere tips. Cresyl saligenin phosphate yielded two types of aged adduct, cresylphosphate and phosphate, but only the phosphate adduct bound to Titansphere. The nerve agent VR yielded no aged adduct, supporting crystal structure findings that the VR adduct on BChE does not age. The irreversible nature of aged OP adducts was demonstrated by the finding that after 6 years at room temperature in sterile pH 7.0 buffer, the adducts were still detectable. It was concluded that TiO2 microcolumns can be used to enrich aged OP-modified BChE peptide.

  20. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  1. Probing chain-end functionalization reactions in living anionic polymerization via matrix-assisted laser desorption ionization time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Arnould, Mark A.; Polce, Michael J.; Quirk, Roderic P.; Wesdemiotis, Chrys

    2004-11-01

    Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is applied to examine the products arising upon the preparation of chain-end functional polymers via living anionic polymerization techniques. Both post-polymerization functionalizations as well as the use of functionalized initiators are investigated. MALDI-TOF MS is shown to be a sensitive probe for the qualitative analysis of the major and minor oligomers from novel functionalization reactions whose mechanisms are not yet well established. The method is particularly valuable for the identification of the end groups of the minor, and often unexpected, distributions that may be undetectable by other analytical means. Complete characterization of all oligomers generated during functionalization reactions provides an essential tool to the synthetic chemist for understanding the corresponding mechanisms. This insight is necessary for selecting alternative routes or making modifications to the reaction conditions. It is demonstrated that MALDI-TOF MS can convey quantitative information about the yields of the chain-end groups introduced during functionalization. From the cases presented it is evident that post-polymerization reactions allow for better control of chain-end functionality and molecular weight than functionalization with the limited number of currently available protected functionalized initiators.

  2. Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Boyu; Zhang, Hong; Myers, Brittany K; Elupula, Ravinder; Jayawickramarajah, Janarthanan; Grayson, Scott M

    2014-03-13

    End groups play a critical role in macromolecular coupling reactions for building complex polymer architectures, yet their identity and purity can be difficult to ascertain using traditional analytical technique. Recent advances in mass spectrometry techniques have made matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry a rapid and powerful tool for providing detailed information about the identity and purity of homopolymer end groups. In this work, MALDI-TOF mass spectrometry was used to study end groups of linear polyethylene glycols. In particular, the identifications of alcohol, amine and thiol end groups are investigated because these nucleophilic moieties are among the most common within biological and synthetic macromolecules. Through comparative characterization of alcohol, amine, and thiol end groups, the exact identification of these end groups could be confirmed by selective and quantitative modification. The precision of this technique enables the unambiguous differentiation of primary amino groups relative to hydroxyl groups, which differ by only 1 mass unit. In addition, the quantitative conversion of various polyethylene glycol end groups using highly efficient coupling reactions such as the thiol-ene and azide-alkyne click reactions can be confirmed using MALDI-TOF mass spectrometry.

  3. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  4. Biomarkers probed in saliva by surface plasmon resonance imaging coupled to matrix-assisted laser desorption/ionization mass spectrometry in array format.

    PubMed

    Musso, Johana; Buchmann, William; Gonnet, Florence; Jarroux, Nathalie; Bellon, Sophie; Frydman, Chiraz; Brunet, Didier-Luc; Daniel, Regis

    2015-02-01

    Detection of protein biomarkers is of major interest in proteomics. This work reports the analysis of protein biomarkers directly from a biological fluid, human saliva, by surface plasmon resonance imaging coupled to mass spectrometry (SPRi-MS), using a functionalized biochip in an array format enabling multiplex SPR-MS analysis. The SPR biochip presented a gold surface functionalized by a self-assembled monolayer of short poly(ethylene oxide) chains carrying an N-hydroxysuccinimide end-group for the immobilization of antibodies. The experiments were accomplished without any sample pre-purification or spiking with the targeted biomarkers. SPRi monitoring of the interactions, immune capture from the biochip surface, and finally on-chip matrix-assisted laser desorption/ionization-MS structural identification of two protein biomarkers, salivary α-amylase and lysozyme, were successively achieved directly from saliva at the femtomole level. For lysozyme, the on-chip MS identification was completed by a proteomic analysis based on an on-chip proteolysis procedure and a peptide mass fingerprint. PMID:25524230

  5. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections.

    PubMed

    Ghosh, A K; Paul, S; Sood, P; Rudramurthy, S M; Rajbanshi, A; Jillwin, T J; Chakrabarti, A

    2015-04-01

    Few studies have systematically standardised and evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of yeasts from bloodstream infections. This is rapidly becoming pertinent for early identification of yeasts and appropriate antifungal therapy. We used 354 yeast strains identified by polymerase chain reaction (PCR) sequencing for standardisation and 367 blind clinical strains for validation of our MALDI-TOF MS protocols. We also evaluated different sample preparation methods and found the on-plate formic acid extraction method as most cost- and time-efficient. The MALDI-TOF assay correctly identified 98.9% of PCR-sequenced yeasts. Novel main spectrum projections (MSP) were developed for Candida auris, C. viswanathii and Kodamaea ohmeri, which were missing from the Bruker MALDI-TOF MS database. Spectral cut-offs computed by receiver operating characteristics (ROC) analysis showed 99.4% to 100% accuracy at a log score of ≥ 1.70 for C. tropicalis, C. parapsilosis, C. pelliculosa, C. orthopsilosis, C. albicans, C. rugosa, C. guilliermondii, C. lipolytica, C. metapsilosis, C. nivariensis. The differences in the species-specific scores of our standardisation and blind validation strains were not statistically significant, implying the optimal performance of our test protocol. The MSPs of the three new species also were validated. We conclude that MALDI-TOF MS is a rapid, accurate and reliable tool for identification of bloodstream yeasts. With proper standardisation, validation and regular database expansion, its efficiency can be further enhanced.

  6. Dithranol as a matrix for matrix assisted laser desorption/ionization imaging on a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2013-11-26

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.

  7. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate).

    PubMed

    Rizzarelli, Paola; Puglisi, Concetto; Montaudo, Giorgio

    2006-01-01

    Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) was employed to analyze four poly(butylene adipate) (PBAd) oligomers and to investigate their fragmentation pathways as a continuation of our work on the MALDI-TOF/TOF-MS/MS study of synthetic polymers. MALDI-TOF/TOF-MS/MS analysis was performed on oligomers terminated by carboxyl and hydroxyl groups, methyl adipate and hydroxyl groups, dihydroxyl groups, and dicarboxyl groups. The sodium adducts of these oligomers were selected as precursor ions. Different end groups do not influence the fragmentation of sodiated polyester oligomers and similar series of product ions were observed in all the MALDI-TOF/TOF-MS/MS spectra. According to the structures of the most abundant product ions identified in the present work, three fragmentation pathways have been proposed to occur most frequently in PBAd: beta-hydrogen-transfer rearrangement, leading to the selective cleavage of the --O--CH(2)-- bonds; --CH(2)--CH(2)-- (beta--beta) bond cleavage in the adipate moiety; and ester bond scission.

  8. Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution mass spectrometry: optimization for a laser diode thermal desorption method.

    PubMed

    Munoz, Gabriel; Vo Duy, Sung; Budzinski, Hélène; Labadie, Pierre; Liu, Jinxia; Sauvé, Sébastien

    2015-06-30

    An alternative analysis technique for the quantitation of 15 poly- and perfluoroalkyl substances (PFASs) in water matrices is reported. Analysis time between each sample was reduced to less than 20s, all target molecules being analyzed in a single run with the use of laser diode thermal desorption atmospheric pressure chemical ionization (LDTD/APCI) coupled with high resolution accurate mass (HRMS) orbitrap mass spectrometry. LDTD optimal settings were investigated using either one-factor-at-a-time or experimental design methodologies, while orbitrap parameters were optimized simultaneously by means of a Box-Behnken design. Following selection of an adequate sample concentration and purification procedure based on solid-phase extraction and graphite clean-up, the method was validated in an influent wastewater matrix. Environmentally significant limits of detection were reported (0.3-4ngL(-1) in wastewater and 0.03-0.2ngL(-1) in surface water) and out of the 15 target analytes, 11 showed excellent accuracies (±20% of the target values) and recovery rates (75-125%). The method was successfully applied to a selection of environmental samples, including wastewater samples in 7 locations across Canada, as well as surface and tap water samples from the Montreal region, providing insights into the degree of PFAS contamination in this area. PMID:26041525

  9. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    PubMed

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  10. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  11. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies.

  12. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  13. Influences of Proline and Cysteine Residues on Fragment Yield in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Smargiasso, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2014-06-01

    Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/ w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.

  14. Method for Detection and Quantitation of Fathead Minnow Vitellogenin (Vtg) by Liquid Chromatography and Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry

    SciTech Connect

    Wunschel, David S.; Schultz, Irv R.; Skillman, Ann D.; Wahl, Karen L.

    2005-03-11

    Vitellogenin (Vtg) is a well recognized biomarker of estrogen exposure in many species, particularly fish. This large protein shares a high degree of sequence homology across a large number of species. Quantitative measurement is currently done using antibody-based assays. These assays frequently require purification of Vtg and antibody production from each species because there is poor cross reactivity between antibodies for different fish. Therefore, complementary methods of measuring Vtg are desirable. Mass spectrometric (MS) analysis coupled to database searching offers the promise of a general method for protein identification. In this study we used the well characterized Vtg from rainbow trout (O. mykiss) to evaluate the analytical parameters for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of the intact and tryptic digested protein. An analytical scale HPLC separation combined with MALDI-MS was used to measure and confirm the identity of Vtg from the plasma of an important species for regulatory agencies, fathead minnow (Pimephales promelas). The small volume requirement of this method (< 10 uL) was found to be compatible with the plasma volume obtained from a few minnows. A semi quantitative measurement of Vtg from minnows exposed to estradiol was achieved, which was similar to previously obtained ELISA data.

  15. Age estimation of museum wool textiles from Ovis aries using deamidation rates utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Araki, Naoko; Moini, Mehdi

    2011-11-30

    Cultural heritage contains a large number of precious proteinaceous specimens, such as wool and silk textiles, leather objects, paper, paint, coatings, binders (and associated adhesives), etc. To minimize the degradation of and to preserve these artifacts, it is desirable to understand the fundamental factors that cause their degradation, to identify the deterioration markers that determine their degradation stage and their age, and to use technologies that can provide this information rapidly while consuming a minimal amount of sample. There are several forces that cause protein degradation, including amino acid racemization, protein deamidation, and protein truncation. The purpose of this paper is to study protein deamidation using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for high-throughput dating of museums wool specimens. For proof of concept, several well-dated sheep's wool textiles from museum collections were analyzed. For wool samples aged from the present to ~400 years ago, the deamidation of two asparagine-containing peptides obtained from the tryptic digest of sheep wool were found to behave linearly in time, indicating that they could act as a potential biomarker of aging for wool samples.

  16. Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis.

    PubMed

    Zhuo, Hui-Qin; Huang, Lin; Feng, Li-Jian; Huang, He-Qing

    2008-07-15

    A novel protocol for rapid and high-quality sample preparation prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed by coating bare stainless steel plates with one of three adhesives: mineral oil, glycerol, or Vaseline. The advantages of these three adhesive coats are that they take little time to both prepare and wipe away, hold the matrices to prevent them from flying from the support, reduce the background matrix, and affect neither the resolution of the peptide peaks nor the accuracy of their determined molecular masses. Consequently, the signal intensity, detection limit, and tolerance of the analytes to contaminants on the three adhesive-coated plates are improved. In the two strategies of on-plate desalting and concentration of the peptide mixture, all three adhesives reduced the loss of peptides, especially in the case of larger molecular mass peptides. The microscope and stereomicroscope images of the deposited droplets showed that after dropping onto the adhesive coats, the droplets formed a reduced spot size, were more homogeneous, and showed sticky crystallization. Therefore, this is an easy-to-use, reproducible, highly sensitive, tolerant (to salts), and high-throughput method of peptide sample preparation for MALDI-TOF MS analysis.

  17. Assessment of suitability of magnetic beads for purification of rat plasma in proteomic analyses by matrix-assisted laser desorption ionization-time-of-flight MS.

    PubMed

    Mohottalage, Susantha; Vincent, Renaud; Kumarathasan, Prem

    2009-01-01

    Plasma is a complex matrix and has to be clarified or fractionated to obtain informative MS data. Although there are a number of prefractionation methods to clean up complex biological matrixes before proteomic analysis, these methods require large sample volumes and are costly and time-consuming. Alternatively, recently introduced magnetic beads (MB) appear to be attractive in overcoming these difficulties. Therefore, we were interested in investigating the applicability of MB in the clarification of rat plasma samples for proteome analyses. For this purpose, we used complementary supports, such as hydrophobic interaction chromatography-based MB (MB-C18) and weak cation-exchange chromatography-based MB (MB-WCX). MB-based fractionated samples were either spotted directly or underwent tryptic digestion before matrix-assisted laser desorption ionization (MALDI) spotting. Samples from both MB separation techniques gave clean and well-resolved MALDI-time-of-flight MS spectra in the low molecular mass range of 1-10 kDa with alpha-cyano-4-hydroxycinnamic acid as the matrix. Both techniques gave approximately 300 analyte peaks in this mass range. Our results showed that both MB-based separation procedures gave complementary mass spectral information. This approach provided information on the identity of a number of less-abundant and more-abundant proteins in plasma. Our findings suggest that this MB-based proteomic approach can be valuable in conducting faster screening of plasma samples for protein profiling.

  18. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists.

    PubMed

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  19. Direct identification of trypanosomatids by matrix-assisted laser desorption ionization-time of flight mass spectrometry (DIT MALDI-TOF MS).

    PubMed

    Avila, C C; Almeida, F G; Palmisano, G

    2016-08-01

    Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI-TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI-TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI-TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software-assisted identification at the strain level. Overall, this study shows the importance of MALDI-TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry-based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27659938

  20. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria

    PubMed Central

    Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources. PMID:27442502

  1. Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Le, Cuong H.; Han, Jun; Borchers, Christoph H.

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  2. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources. PMID:27442502

  3. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J; Boekhout, Teun

    2013-08-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories.

  4. Optimization of the score cutoff value for routine identification of Staphylococcus species by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    PubMed

    Han, Huan Wen; Chang, Hsien Chang; Hunag, Ay Huei; Chang, Tsung Chain

    2015-12-01

    Staphylococcus species are important pathogens. We evaluated 2 score cutoffs (2.0 and 1.7) and the replicate number (a single or a duplicate test) on the identification of staphylococci using the Bruker matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A collection of 440 clinical isolates (11 species) and 144 reference strains (36 species) was evaluated. For clinical isolates using a cutoff of 2.0 and duplicate tests, the rates of species, genus, and unreliable identifications were 93.4%, 5.7%, and 0.9% respectively, while the respective values were 99.3%, 0.2%, and 0.5% when the cutoff was 1.7. The species identification rates were significantly higher (P<0.01) when a cutoff of 1.7 or a duplicate test was used. Similar results were obtained for reference strains. In conclusion, a cutoff of 1.7 and duplicate tests are recommended for identification of staphylococci using MALDI-TOF MS.

  5. Quantitation of lysergic acid diethylamide in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.

    PubMed

    Cui, Meng; McCooeye, Margaret A; Fraser, Catharine; Mester, Zoltán

    2004-12-01

    A quantitative method was developed for analysis of lysergic acid diethylamide (LSD) in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry (AP MALDI-ITMS). Following solid-phase extraction of LSD from urine samples, extracts were analyzed by AP MALDI-ITMS. The identity of LSD was confirmed by fragmentation of the [M + H](+) ion using tandem mass spectrometry. The quantification of LSD was achieved using stable-isotope-labeled LSD (LSD-d(3)) as the internal standard. The [M + H](+) ion fragmented to produce a dominant fragment ion, which was used for a selected reaction monitoring (SRM) method for quantitative analysis of LSD. SRM was compared with selected ion monitoring and produced a wider linear range and lower limit of quantification. For SRM analysis of samples of LSD spiked in urine, the calibration curve was linear in the range of 1-100 ng/mL with a coefficient of determination, r(2), of 0.9917. This assay was used to determine LSD in urine samples and the AP MALDI-MS results were comparable to the HPLC/ ESI-MS results.

  6. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  7. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    USGS Publications Warehouse

    Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.

    2001-01-01

    A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.

  8. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  9. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    PubMed

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  10. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  11. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging.

    PubMed

    Bai, Hangrui; Wang, Shujuan; Liu, Jianjun; Gao, Dan; Jiang, Yuyang; Liu, Hongxia; Cai, Zongwei

    2016-07-15

    The root of Panax ginseng C.A. Mey. (P. ginseng) is one of the most popular traditional Chinese medicines, with ginsenosides as its main bioactive components. Because different ginsenosides have varied pharmacological effects, extraction and separation of ginsenosides are usually required for the investigation of pharmacological effects of different ginsenosides. However, the contents of ginsenosides vary with the ages and tissues of P. ginseng root. In this research, an efficient method to explore the distribution of ginsenosides and differentiate P. ginseng roots with different ages was developed based on matrix assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI). After a simple sample preparation, there were 18 peaks corresponding to 31 ginsenosides with distinct localization in the mass range of m/z 700-1400 identified by MALDI-TOF-MSI and MALDI-TOF-MS/MS. All the three types of ginsenosides were successfully detected and visualized in images, which could be correlated with anatomical features. The P. ginseng at the ages of 2, 4 and 6 could be differentiated finely through the principal component analysis of data collected from the cork based on the ion images but not data from the whole tissue. The experimental result implies that the established method for the direct analysis of metabolites in plant tissues has high potential for the rapid identification of metabolites and analysis of their localizations in medicinal herbs. Furthermore, this technique also provides valuable information for the component-specific extraction and pharmacological research of herbs.

  12. Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Cozzolino, R; Passalacqua, S; Salemi, S; Garozzo, D

    2002-09-01

    A rapid and accurate method to identify bovine and ewe milk adulteration of fresh water buffalo mozzarella cheese by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described. The differentiation among mozzarella made from water buffalo milk and from mixtures of less expensive bovine and, more recently, ewe milk with water buffalo milk is achieved using whey proteins, alpha-lactalbumin and beta-lactoglobulins as molecular markers. It is worth noting that the method proposed here is, to our knowledge, the first strategy able to characterize possible fraudulent additions of ewe milk in samples of water buffalo milk devoted to the production of water buffalo mozzarella cheese. In addition, a linear relationship was found between the relative response of the molecular ion and the abundance of the analysed whey proteins. This demonstrates that this approach can be used to determine the amount of bovine or ovine milk added to water buffalo milk employed for mozzarella cheese production. Furthermore, this method also appears suitable for the analysis of ewe cheese. Hence these findings open the way to a new field for mass spectrometry in the evaluation of possible fraudulence in dairy industry production.

  13. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria.

    PubMed

    Ilina, Elena N; Borovskaya, Alexandra D; Malakhova, Maja M; Vereshchagin, Vladimir A; Kubanova, Anna A; Kruglov, Alexander N; Svistunova, Tatyana S; Gazarian, Anaida O; Maier, Thomas; Kostrzewa, Markus; Govorun, Vadim M

    2009-01-01

    The present study investigates the suitability of direct bacterial profiling as a tool for the identification and subtyping of pathogenic Neisseria. The genus Neisseria includes two human pathogens, Neisseria meningitidis and Neisseria gonorrhoeae, as well as several nonpathogenic Neisseria species. Here, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling protocol was optimized using a laboratory strain of E. coli DH5alpha to guarantee high quality and reproducible results. Subsequently, mass spectra for both laboratory and clinical strains of N. gonorrhoeae, N. meningitidis, and several nonpathogenic Neisseria species were collected. Significant interspecies differences but little intraspecies diversity were revealed by means of a visual inspection and bioinformatics examination using the MALDI BioTyper software. Cluster analysis successfully separated mass spectra collected from three groups that corresponded to N. gonorrhoeae, N. meningitidis, and nonpathogenic Neisseria isolates. Requiring only one bacterial colony for testing and using a fast and easy measuring protocol, this approach represents a powerful tool for the rapid identification of pathogenic Neisseria and can be adopted for other microorganisms.

  14. The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system

    PubMed Central

    Zhou, Chunmei; Huang, Shenglei; Shan, Yuzhang; Ye, Xiangru

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed as a new-type soft ionization mass spectrometry in the recent year. Increasing number of clinical microbiological laboratories consider it as an innovate approach for bacterial identification. Methods A total of 876 clinical strains, comprising 52 species in 27 genus, were obtained from Fudan University Affiliated Zhongshan Hospital. We compared the identification accuracy of the Vitek MS system (bioMerieux, Marcy l’Etoile) to other conventional methods for bacterial identification. 16S rRNA gene sequencing was performed as a reference identification method in cases of discrepant results. Results The Vitek MS system consistently produced accurate results within minutes of loading, while conventional methods required several hours to produce identification results. Among the 876 isolates, the overall performance of Vitek MS was significantly better than the conventional method both for correct species identification (830, 94.7% vs. 746, 85.2%, respectively, P=0.000). Conclusions Compared to traditional identification methods, MALDI-TOF MS is a rapid, accurate and economical technique to enhance the clinical value of microorganism identification. PMID:24822117

  15. Qualitative and quantitative DNA and RNA analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ding, Chunming

    2006-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gives extremely precise reading of mass-to-charge ratios (two analytes differ by 1 Da can be distinguished) and provides high sensitivity (less than 1 fmole of a DNA oligonucleotide can be detected), allowing DNA quantifications with single base specificity and single DNA molecule sensitivity (coupled with polymerase chain reaction [PCR]). To quantify a DNA sequence of interest, a competitive synthetic (60-80 bases) oligonucleotide standard with an artificial single base mutation in the middle is introduced, and these two virtually identical sequences are co-amplified by PCR. A third primer (extension primer) is designed to anneal to the region immediately upstream of the mutation site. Depending on the specific mutation introduced and the ddNTP/dNTP mixtures used, either one or two bases are added to the extension primer to produce two extension products from the two templates. Last, the two extension products are detected and quantified by high-throughput MALDI-TOF MS. In addition, with an improved primer extension method called single allele base extension reaction (SABER), rare mutant DNA can be robustly detected even when normal DNA is present at 50-fold or more than the DNA mutants.

  16. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    PubMed

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. PMID:24549193

  17. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  18. Colloidal Graphite-Assisted Laser Desorption/Ionization MS and MSn of Small Molecules. 2. Direct Profiling and MS Imaging of Small Metabolites from Fruits

    SciTech Connect

    Hui Zhang; Sangwon Cha; Edward S. Yeung

    2007-09-01

    Due to a high background in the low-mass region, conventional MALDI is not as useful for detecting small molecules (molecular masses <500 Da) as it is for large ones. Also, spatial inhomogeneity that is inherent to crystalline matrixes can degrade resolution in imaging mass spectrometry (IMS). In this study, colloidal graphite was investigated as an alternative matrix for laser desorption/ionization (GALDI) in IMS. We demonstrate its advantages over conventional MALDI in the detection of small molecules such as organic acids, flavonoids, and oligosaccharides. GALDI provides good sensitivity for such small molecules. The detection limit of fatty acids and flavonoids in the negative-ion mode are in the low-femtomole range. Molecules were detected directly and identified by comparing the MS and MS/MS spectra with those of standards. Various fruits were chosen to evaluate the practical utility of GALDI since many types of small molecules are present in them. Distribution of these small molecules in the fruit was investigated by using IMS and IMS/MS.

  19. Humic acids as both matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and adsorbent for magnetic solid phase extraction.

    PubMed

    Zhao, Qin; Xu, Jing; Yin, Jia; Feng, Yu-Qi

    2015-08-19

    In the present study, humic acids (HAs) were applied as both a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and an adsorbent of magnetic solid phase extraction (MSPE) for the first time. As natural macromolecule compounds, HAs are inherently highly functionalized and contain laser energy absorbing-transferring aromatic structures. This special molecular structure made HAs a good candidate for use as a MALDI matrix in small molecule analysis. At the same time, due to its good adsorption ability, HAs was prepared as MSPE adsorbent via a simple co-mixing method, in which the commercially available HAs were directly mixed with Fe3O4 magnetic nanoparticles (MNPs) in a mortar and grinded evenly and completely. In this process, MNPs were physically wrapped and adhered to tiny HAs leading to the formation of magnetic HAs (MHAs). To verify the bi-function of the MHAs, Rhodamine B (RdB) was chosen as model compound. Our results show that the combination of MHAs-based MSPE and MALDI-TOF-MS can provide a rapid and sensitive method for the determination of RdB in chili oil. The whole analytical procedure could be completed within 30 min for simultaneous determination of more than 20 samples, and the limit of quantitation for RdB was found to be 0.02 μg/g. The recoveries in chili oil were in the range 73.8-81.5% with the RSDs less than 21.3% (intraday) and 20.3% (interday). The proposed strategy has potential applications for high-throughput analysis of small molecules in complex samples. PMID:26343436

  20. Humic acids as both matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and adsorbent for magnetic solid phase extraction.

    PubMed

    Zhao, Qin; Xu, Jing; Yin, Jia; Feng, Yu-Qi

    2015-08-19

    In the present study, humic acids (HAs) were applied as both a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and an adsorbent of magnetic solid phase extraction (MSPE) for the first time. As natural macromolecule compounds, HAs are inherently highly functionalized and contain laser energy absorbing-transferring aromatic structures. This special molecular structure made HAs a good candidate for use as a MALDI matrix in small molecule analysis. At the same time, due to its good adsorption ability, HAs was prepared as MSPE adsorbent via a simple co-mixing method, in which the commercially available HAs were directly mixed with Fe3O4 magnetic nanoparticles (MNPs) in a mortar and grinded evenly and completely. In this process, MNPs were physically wrapped and adhered to tiny HAs leading to the formation of magnetic HAs (MHAs). To verify the bi-function of the MHAs, Rhodamine B (RdB) was chosen as model compound. Our results show that the combination of MHAs-based MSPE and MALDI-TOF-MS can provide a rapid and sensitive method for the determination of RdB in chili oil. The whole analytical procedure could be completed within 30 min for simultaneous determination of more than 20 samples, and the limit of quantitation for RdB was found to be 0.02 μg/g. The recoveries in chili oil were in the range 73.8-81.5% with the RSDs less than 21.3% (intraday) and 20.3% (interday). The proposed strategy has potential applications for high-throughput analysis of small molecules in complex samples.

  1. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method.

    PubMed

    Vera, César Costa; Trimborn, Achim; Hinz, Klaus-Peter; Spengler, Bernhard

    2005-01-01

    The delayed ion extraction method has been used to study characteristics of the initial velocity distributions of positive and negative ions produced simultaneously by laser desorption/ionization (LDI) from non-impacted single aerosol polymeric particles, using a bipolar time-of-flight (TOF) instrument (LAMPAS 2). Due to the geometry of the setup and the characteristics of the ablation process, only the projections of the velocities on the axis of the mass spectrometer can be directly studied. Additionally, since the mean initial velocity under these conditions should be close to zero, it was necessary to extend the method by taking into account higher order contributions of the velocity distribution. Theoretical expressions for these higher order terms are presented and discussed. The bipolar characteristics of the instrument permit evaluation and treatment of a possible instrumental artifact caused by small inclinations of the ionizing laser with respect to the ideal incidence direction. Results of a number of experiments are presented and discussed in relation to the theoretical expressions presented, and to possible ablation scenarios. Evidence pointing out that, under our experimental conditions, only partial ablation of the latex particles occurs was obtained. The variance of the distribution of the projection of the initial velocities can be directly estimated from these results. By assuming that the total initial velocities of the ions are developed completely according to a single-temperature adiabatic expansion mechanism, temperatures of approximately 50 K/Da can be assigned to the ion clouds from the variance estimations. If a two-temperature model is used, a radial temperature of about 100 K/Da results. These values are in reasonable agreement with results for polymer ablation from the literature.

  2. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  3. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  4. Gas phase ultraviolet and infrared spectroscopy on a partial peptide of β2-adrenoceptor SIVSF-NH2 by a laser desorption supersonic jet technique.

    PubMed

    Ishiuchi, Shun-Ichi; Yamada, Kohei; Oba, Hikari; Wako, Hiromichi; Fujii, Masaaki

    2016-08-17

    Laser desorption supersonic jet laser spectroscopy has been applied to a penta-peptide, Ser-Ile-Val-Ser-Phe-NH2 (SIVSF-NH2), which is a partial sequence of a binding site in a β2-adrenaline receptor protein. By comparing the resonance enhanced multiphoton ionization spectrum with the ultraviolet-ultraviolet hole burning (HB) spectrum, it is concluded that only a single conformer exists. The infrared (IR) spectrum of the X-H stretching region, measured by IR dip spectroscopy, shows that all of the OH and NH groups form hydrogen bonds. The structure of SIVSF-NH2 is assigned by the combination of a force field calculation (CONFLEX) and quantum chemical calculations both in S0 and S1. Over 20 000 stable conformations, given by CONFLEX, are classified into 6987 groups and 1068 groups in which all of the NH and OH bonds are hydrogen-bonded are selected. The most stable structure in each group was geometrically optimized by density functional theory (DFT) calculations, and theoretical IR spectra were calculated for the conformers for which the energies are within 10 kJ mol(-1) of the most stable one. It has been found that the most stable and the secondmost stable conformers well-reproduce the observed IR spectrum. The vibrational frequencies in S1 were also calculated for these two conformers. According to the reproduction of the vibrational frequencies in the HB spectrum, the structure of SIVSF-NH2 is assigned to the most stable conformer, which forms a hydrogen-bonded structure corresponding to a compact, distorted version of the beta hairpin of peptides and proteins. PMID:27498750

  5. Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry.

    PubMed

    Kuo, Tsung-Rong; Wang, Di-Yan; Chiu, Yu-Chen; Yeh, Yun-Chieh; Chen, Wei-Ting; Chen, Ching-Hui; Chen, Chun-Wei; Chang, Huan-Cheng; Hu, Cho-Chun; Chen, Chia-Chun

    2014-01-27

    This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N(-1) ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications.

  6. Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance.

    PubMed

    Solouki, T; Marto, J A; White, F M; Guan, S; Marshall, A G

    1995-11-15

    Significantly improved sensitivity for analysis of biomolecules by MALDI FT-ICR mass spectrometry is achieved by (i) microscope-monitored sample deposition onto a small indentation on the probe tip and (ii) multiple remeasurement of ions from a single laser shot. A simple modification to the solids probe tip allows for microdeposition of a few amols of analyte onto small indentation spots previously aligned with the laser beam. Ion multiple remeasurement of the same ion packet enhances the signal-to-noise ratio and thus extends the achievable FT-ICR MS detection limit. We demonstrate that FT-ICR can be used to detect parent and structurally significant fragment ions of peptides and phospholipids at low amol amounts. Positive ion mass spectra for approximately 90 amol of a mixture of angiotensin II and bradykinin, approximately 40 amol of dipalmitoylglycerophosphatidylcholine, and approximately 8 amol of substance P constitute the lowest reported detection limits to date for FT-ICR mass analysis of MALDI-generated ions.

  7. High-sensitivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using laser desorption/laser ionization/time-of-flight mass spectrometry: An approach to studying the soot inception process in low-pressure flames

    SciTech Connect

    Faccinetto, Alessandro; Desgroux, Pascale; Therssen, Eric; Ziskind, Michael; Focsa, Cristian

    2011-02-15

    Species adsorbed at the surfaces of soot particles sampled at different locations in a low-pressure methane flame have been analyzed. The analysis method is laser desorption/laser ionization/time-of-flight mass spectrometry (LD/LI/TOF-MS) applied to soot particles deposited on a filter after probe extraction in the flame. In order to fully characterize the experimental apparatus, a strategy of systematic investigations has been adopted, beginning with the study of less complex systems constituted by model soot (standard polycyclic aromatic hydrocarbons, PAHs, adsorbed on black carbon), and then natural soot sampled from a literature reference ethylene flame. This characterization allowed a good understanding of the analytical response of PAHs to the desorption and ionization processes and the definition of the optimal experimental conditions. The soot PAH content was then investigated on a low-pressure methane/oxygen/nitrogen premixed flat flame ({phi} = 2.32) as a function of the sampling height above the burner (HAB). The obtained mass spectra are reproducible, fragment-free, well resolved in the analyzed m/z range and they are characterized by an excellent signal-to-noise ratio. They all feature regular peak sequences, where each signal peak has been assigned to the most stable high-temperature-formed PAHs. The structure of the mass spectra depends on the sampling HAB into the flame, i.e., on the reaction time. An original contribution to the data interpretation comes from the development of a new sampling method that makes it possible to infer hypotheses about the PAH partition between the gas phase and the soot particles. This method highlights the presence of high-mass PAHs in the soot nucleation zone, and it suggests the importance of heterogeneous reactions occurring between flame PAHs and soot particles. (author)

  8. Detection of Biosignatures using Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Implications for the Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Richardson, C. D.; Kotler, J. M.; Hinman, N. W.; Scott, J. R.

    2008-12-01

    Detection of bio/organic signatures, defined as an organic structure produced by living organisms or derived from other biogenic organic compounds, is essential to investigating the origin and distribution of extant or extinct life in the solar system. In conjunction with mineralogical, inorganic, and isotopic data, the detection and identification of bio/organic signatures can assist in linking biochemical and geochemical processes. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a proven method of obtaining bio/organic signatures from a range of geological materials. Sulfate salts were studied because they are found on Mars and Jovian satellites. The goal here was to determine (1) which combinations of bio/organic compounds and sulfate salts produced distinctive spectral signatures, and (2) the detection limit of the method. In these experiments, thenardite (Na2SO4) was mixed with stearic acid to determine the detection limit of GALDI-FTICR-MS, previously estimated to be 3 ppt, which corresponds to approximately 7 zeptomoles (10-21) per laser shot. All spectra were collected with little to no sample preparation and were acquired using a single laser shot. Unlike conventional analytical practices, the signal-to-noise ratio increased as the concentration of bio/organic compounds decreased relative to the mineral host. In combination with thenardite, aromatic amino acids were observed to undergo simple cation attachment ([M+Na]+) due to the π-bonded aromatic ring. Subsequent cation substitution of the carboxyl group led to formation of peaks representing double cation attachment ([M-H+Na]Na+). Spectra from naturally occurring thenardite and jarosite (XFe3(OH)6(SO4)2) revealed the presence of high mass cluster ions; analysis of their isotopic distribution suggested the presence of bio/organic compounds. High mass cluster ions, both organic and inorganic, readily

  9. Structure and Composition of Air-Plane Soots and Surrogates Analyzed by Raman Spectroscopy and Laser/Ions Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ortega, Ismael; Chazallon, Bertrand; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier; Salm, François; Delhaye, David; Gaffié, Daniel; Yon, Jérôme

    2015-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. An aircraft exhaust plume contains species emitted by the engines, species formed in the plume from the emitted species and atmospheric species that become entrained into the plume. The majority of emitted species (gases and soot particles) are produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Emissions of soot particles by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied since many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. Most likely one of the reasons behind these discrepancies resides in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g. with respect to fuel or combustion techniques. In this work, we use Raman microscopy (266, 514 and 785 nm excitation) and ablation techniques (SIMS, Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particles produced from air-plane at different engine regimes simulating a landing and taking-off (LTO) cycle. First, the spectral parameters of the first-order Raman band of various soot samples, collected from three different sources in the frame of the MERMOSE project (http://mermose.onera.fr/): PowerJet SaM-146 turbofan (four engine regimes), CAST generator (propane fuel, four different global equivalence ratios), and Kerosene laboratory flame

  10. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  11. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry.

  12. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. PMID:27590549

  13. Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Duriez, Elodie; Fenaille, François; Tabet, Jean-Claude; Lamourette, Patricia; Hilaire, Didier; Becher, François; Ezan, Eric

    2008-09-01

    Ricin, the toxin component of Ricinus communis is considered as a potential chemical weapon. Several complementary techniques are required to confirm its presence in environmental samples. Here, we report a method combining immunocapture and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the accurate detection of different species of R. communis. Liquid environmental samples were applied to magnetic particles coated with a monoclonal antibody directed against the B-chain of the toxin. After acidic elution, tryptic peptides of the A- and B-chains were obtained by accelerated digestion with trypsin in the presence of acetonitrile. Of the 20 peptides observed by MALDI-TOF MS, three were chosen for detection ( m/ z 1013.6, m/ z 1310.6 and m/ z 1728.9, which correspond to peptides 161-LEQLAGNLR-169, 150-YTFAFGGNYDR-160, and 233-SAPDPSVITLENSWGR-248, respectively). Their selection was based on several parameters such as detection sensitivity, specificity toward ricin forms and absence of isotopic overlap with unrelated peptides. To increase assay reproducibility, stable isotope-labeled peptides were incorporated during the sample preparation phase. The final assay has a limit of detection estimated at approximately 50 ng/mL ( approximately 0.8 nM) of ricin in buffer. No interference was observed when the assay was applied to ricin-spiked milk samples. In addition, several varieties of R. communis or from different geographical origins were also shown to be detectable. The present assay provides a new tool with a total analytical time of approximately 5 h, which is particularly relevant in the context of a bioterrorist incident. PMID:18651759

  14. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  15. Correlated matrix-assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptide-coded random bead-arrays

    PubMed Central

    Lim, Mark J; Liu, Ziying; Braunschweiger, Karen I; Awad, Amany; Rothschild, Kenneth J

    2013-01-01

    RATIONALE Rapidly performing global proteomic screens is an important goal in the post-genomic era. Correlated matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and fluorescent imaging of photocleavable peptide-coded random bead-arrays was evaluated as a critical step in a new method for proteomic screening that combines many of the advantages of MS with fluorescence-based microarrays. METHODS Small peptide-coded model bead libraries containing up to 20 different bead species were constructed by attaching peptides to 30–34 µm diameter glass, agarose or TentaGel® beads using photocleavable biotin or a custom-designed photocleavable linker. The peptide-coded bead libraries were randomly arrayed into custom gold-coated micro-well plates with 45 µm diameter wells and subjected to fluorescence and MALDI mass spectrometric imaging (MALDI-MSI). RESULTS Photocleavable mass-tags from individual beads in these libraries were spatially localized as ∼65 µm spots using MALDI-MSI with high sensitivity and mass resolution. Fluorescently tagged beads were identified and correlated with their matching photocleavable mass-tags by comparing the fluorescence and MALDI-MS images of the same bead-array. Post-translational modification of the peptide Kemptide was also detected on individual beads in a photocleavable peptide-coded bead-array by MALDI-MSI alone, after exposure of the beads to protein kinase A (PKA). CONCLUSIONS Correlated MALDI-MS and fluorescent imaging of photocleavable peptide-coded random bead-arrays can provide a basis for performing global proteomic screening. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24285390

  16. Comparison of the Microflex LT and Vitek MS Systems for Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Busson, Laurent; Wybo, Ingrid; El Haj, Rachid Ait; Dediste, Anne; Vandenberg, Olivier

    2012-01-01

    This study compared the performance of three matrix-assisted laser desorption ionization–time of flight mass spectrometry systems: Microflex LT (Bruker Daltonics, Bremen, Germany), Vitek MS RUO (Axima Assurance-Saramis database; bioMérieux, Marcy l'Etoile, France), and Vitek MS IVD (bioMérieux). A total of 1,129 isolates, including 1,003 routine isolates, 73 anaerobes, and 53 bacterial enteropathogens, were tested on the Microflex LT and Axima Assurance devices. The spectra were analyzed using three databases: Biotyper (Bruker Daltonics), Saramis, and Vitek MS (bioMérieux). Among the routine isolates requiring identification to the species level (n = 986), 92.7% and 93.2% were correctly identified by the Biotyper and Vitek MS databases, respectively. The Vitek MS database is more specific for the identification of Streptococcus viridans. For the anaerobes, the Biotyper database often identified Fusobacterium isolates to only the genus level, which is of low clinical significance, whereas 20% of the Bacteroides species were not identified or were misidentified by the Vitek MS database. For the enteropathogens, the poor discrimination between Escherichia coli and Shigella explains the high proportion of unidentified organisms. In contrast to the Biotyper database, the Vitek MS database properly discriminated all of the Salmonella entrica serovar Typhi isolates (n = 5). The performance of the Saramis database was globally poorer. In conclusion, for routine procedures, the Microflex LT and Vitek-MS systems are equally good choices in terms of analytical efficiency. Other factors, including price, work flow, and lab activity, will affect the choice of a system. PMID:22322345

  17. 4-Chloro-α-cyanocinnamic acid is an efficient soft matrix for cyanocobalamin detection in foodstuffs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS).

    PubMed

    Calvano, Cosima Damiana; Ventura, Giovanni; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-09-01

    4-Chloro-α-cyanocinnamic acid (ClCCA) is a very useful matrix able to give the protonated adduct [M+H](+) of intact cyanocobalamin (CNCbl) as the base peak (m/z 1355.58) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The only fragment observed is [M-CN + H](+•) formed through the facile (•) CN neutral loss reflecting the fairly low Co-C bond energy. All other investigated proton transfer matrices, including α-cyano-4-hydroxycinnamic acid, para-nitroaniline and 2,5-dihydroxybenzoic acid, give rise to a complete decyanation of CNCbl with concomitant formation of [M-CN + H](+•) , [M-CN + Na](+•) and [M-CN + K](+•) adducts at m/z 1329.57, 1351.55 and 1367.51, respectively. Depending on the matrix used, a variable degree of fragmentation involving the α-side axial ligand was observed. A plausible explanation of the specific behaviour of 4-chloro-α-cyanocinnamic acid as a soft matrix is discussed. Tandem mass spectra of both [M + H](+) and [M-CN + H](+•) ions were obtained and product ions successfully assigned. The possibility of detecting the protonated adduct of intact CNCbl was exploited in foodstuff samples such as cow milk and hen egg yolk by MALDI tandem MS upon sample extraction. We believe that our data provide strong basis for the application of MALDI tandem MS in the qualitative analysis of natural CNCbl, including fish, liver and meat samples. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27468135

  18. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Coello, Andreu; Fernández-Rivas, Gema; Rivaya, Belén; Hidalgo, Jessica; Quesada, María Dolores; Ausina, Vicente

    2016-01-01

    Early diagnosis of urinary tract infections (UTIs) is essential to avoid inadequate or unnecessary empirical antibiotic therapy. Microbiological confirmation takes 24 to 48 h. The use of screening methods, such as cytometry and automated microscopic analysis of urine sediment, allows the rapid prediction of negative samples. In addition, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a widely established technique in clinical microbiology laboratories used to identify microorganisms. We evaluated the ability of MALDI-TOF MS to identify microorganisms from direct urine samples and the predictive value of automated analyzers for the identification of microorganisms in urine by MALDI-TOF MS. A total of 451 urine samples from patients with suspected UTIs were first analyzed using the Sysmex UF-1000i flow cytometer, an automatic sediment analyzer with microscopy (SediMax), culture, and then processed by MALDI-TOF MS with a simple triple-centrifuged procedure to obtain a pellet that was washed and centrifuged and finally applied directly to the MALDI-TOF MS plate. The organisms in 336 samples were correctly identified, mainly those with Gram-negative bacteria (86.10%). No microorganisms were misidentified, and no Candida spp. were correctly identified. Regarding the data from autoanalyzers, the best bacteriuria cutoffs were 1,000 and 200 U/μl for UF-1000i and SediMax, respectively. It was concluded that the combination of a urine screening method and MALDI-TOF MS provided a reliable identification from urine samples, especially in those containing Gram-negative bacteria. PMID:26818668

  19. Analysis of methicillin-resistant Staphylococcus aureus major clonal lineages by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Zhang, Tingting; Ding, Jinya; Rao, Xiancai; Yu, Jingbo; Chu, Meiling; Ren, Wei; Wang, Lu; Xue, Wencheng

    2015-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen associated with nosocomial infections in many countries. Multilocus sequence typing (MLST) is one of the genetic typing methods used to type MRSA with a high discriminatory power, however, it is labor-intensive, timely, and costly. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled with ClinProTools is a potential tool to discover biomarker peaks and to generate a classification model based on highly sophisticated mathematical algorithms to discriminate clonal lineages. We investigated the performance of MALDI-TOF MS for discriminating 154 MRSA-ST239, 72 MRSA-ST5, 30 MRSA-ST59, 14 MRSA-ST45, and 20 MRSA-OST (other clonal lineages). Our results indicate that the model construction and validation have good potency to discriminate ST45 from other lineages with a sensitivity and a specificity of both 100%, and a sensitivity of 95.80% and a specificity of 94.62% to identify ST239. For Biotyper classification, the sensitivity and specificity were more than of 90% for ST239, ST59 and ST45, whereas only 81.94% sensitivity for ST5. By single-peak analysis, the peaks m/z 4808 and 9614 can correctly discriminate ST45 a sensitivity and a specificity of both 100%; the peak m/z 6554 can also discriminate ST239 with a sensitivity of 91.9% and a specificity of 85.4%. In conclusion, MALDI-TOF MS coupled with ClinProTools has a high detection performance for MRSA typing with obvious advantages of being rapid, highly accurate, and being a low cost in comparison with MLST.

  20. Performances of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Rapid Identification of Bacteria in Routine Clinical Microbiology

    PubMed Central

    Grare, Marion; Prere, Marie-Françoise; Segonds, Christine; Marty, Nicole; Oswald, Eric

    2012-01-01

    Rapid and cost-effective matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based systems will replace conventional phenotypic methods for routine identification of bacteria. We report here the first evaluation of the new MALDI-TOF MS-based Vitek MS system in a large clinical microbiology laboratory. This system uses an original spectrum classifier algorithm and a specific database designed for the identification of clinically relevant species. We have tested 767 routine clinical isolates representative of 50 genera and 124 species. Vitek MS-based identifications were performed by means of a single deposit on a MALDI disposable target without any prior extraction step and compared with reference identifications obtained mainly with the VITEK2 phenotypic system; if the identifications were discordant, molecular techniques provided reference identifications. The Vitek MS system provided 96.2% correct identifications to the species level (86.7%), to the genus level (8.2%), or within a range of species belonging to different genera (1.3%). Conversely, 1.3% of isolates were misidentified and 2.5% were unidentified, partly because the species was not included in the database; a second deposit provided a successful identification for 0.8% of isolates unidentified with the first deposit. The Vitek MS system is a simple, convenient, and accurate method for routine bacterial identification with a single deposit, considering the high bacterial diversity studied and as evidenced by the low prevalence of species without correct identification. In addition to a second deposit in uncommon cases, expanding the spectral database is expected to further enhance performances. PMID:22593596