Sample records for laser diffraction technology

  1. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit.

    PubMed

    Wang, Suo; Wang, Xing-Yuan; Li, Bo; Chen, Hua-Zhou; Wang, Yi-Lun; Dai, Lun; Oulton, Rupert F; Ma, Ren-Min

    2017-12-01

    Plasmonic nanolasers are a new class of amplifiers that generate coherent light well below the diffraction barrier bringing fundamentally new capabilities to biochemical sensing, super-resolution imaging, and on-chip optical communication. However, a debate about whether metals can enhance the performance of lasers has persisted due to the unavoidable fact that metallic absorption intrinsically scales with field confinement. Here, we report plasmonic nanolasers with extremely low thresholds on the order of 10 kW cm -2 at room temperature, which are comparable to those found in modern laser diodes. More importantly, we find unusual scaling laws allowing plasmonic lasers to be more compact and faster with lower threshold and power consumption than photonic lasers when the cavity size approaches or surpasses the diffraction limit. This clarifies the long-standing debate over the viability of metal confinement and feedback strategies in laser technology and identifies situations where plasmonic lasers can have clear practical advantage.

  2. Programmable diffractive optic for multi-beam processing: applications and limitations

    NASA Astrophysics Data System (ADS)

    Gretzki, Patrick; Gillner, Arnold

    2017-08-01

    In the field of laser ablation, especially in the field of micro-structuring, the current challenge is the improvement of productivity. While many applications, e.g. surface fictionalization and structuring, drilling and thin film ablation, use relatively low pulse energies, industrial laser sources provide considerably higher average powers and pulse energies. The main challenge consist of the effective energy distribution and depositions. There are essential two complementary approaches for the up-scaling of (ultra) short pulse laser processes: Higher repetition frequency or higher pulse energies. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper we pursuit the second approach by using diffractive optics for parallel processing. We will discuss, which technologies can be used and which applications will benefit from the multi-beam approach and which increase in productivity can be expected. Additionally we will show, which quality attributes can be used to rate the performance of a diffractive optic and and which limitations and restrictions this technology has.

  3. New Technology/Old Technology: Comparing Lunar Grain Size Distribution Data and Methods

    NASA Technical Reports Server (NTRS)

    Fruland, R. M.; Cooper, Bonnie L.; Gonzalexz, C. P.; McKay, David S.

    2011-01-01

    Laser diffraction technology generates reproducible grain size distributions and reveals new structures not apparent in old sieve data. The comparison of specific sieve fractions with the Microtrac distribution curve generated for those specific fractions shows a reasonable match for the mean of each fraction between the two techniques, giving us confidence that the large existing body of sieve data can be cross-correlated with new data based on laser diffraction. It is well-suited for lunar soils, which have as much as 25% of the material in the less than 20 micrometer fraction. The fines in this range are of particular interest because they may contain a record of important space weathering processes.

  4. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    NASA Astrophysics Data System (ADS)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  5. Diffractive beam shaping for enhanced laser polymer welding

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  6. Large MOEMS diffraction grating results providing an EC-QCL wavelength scan of 20%

    NASA Astrophysics Data System (ADS)

    Grahmann, Jan; Merten, André; Herrmann, Andreas; Ostendorf, Ralf; Bleh, Daniela; Drabe, Christian; Kamenz, Jörg

    2015-02-01

    Experimental results of a large scanning grating with a diameter of 5mm and 1 kHz scan frequency are discussed. An optical diffraction grating is fabricated on a mirror single crystal silicon plate to scan the first diffraction order in the MIR-wavelength range over a quantum cascade laser facet. Special emphasis is on the development of the grating technology module to integrate it with high accuracy and reproducibility into the IPMS AME75 process flow. The principle EC-QCL setup with the scanning grating is described and first measurement results concerning laser output power and tuning range are presented.

  7. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  8. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing

    NASA Astrophysics Data System (ADS)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.

    2017-09-01

    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  9. Multi-wavelength speckle reduction for laser pico-projectors using diffractive optics

    NASA Astrophysics Data System (ADS)

    Thomas, Weston H.

    Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser's stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a monochromatic diffractive diffuser may not optimal for color speckle contrast reduction. A simulation of the Hadamard diffusers is conducted to determine the optimum spacing between the two diffusers for polychromatic speckle reduction. Experimental measured results are presented using the optimal spacing of Hadamard diffusers for RGB color speckle reduction, showing 60% reduction in contrast.

  10. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  11. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    NASA Astrophysics Data System (ADS)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  12. High-energy laser weapons: technology overview

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew

    2004-09-01

    High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.

  13. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  14. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  15. [Nanobiophotonics: photon-associated nanobiotechnology for laser and personalized medicine].

    PubMed

    Zalesskiĭ, V N; Movchan, B A

    2013-01-01

    Analyzed are the literature in the field of development and use nanobiophotonic technologies for laser and personalized medicine. Arguably, the origins of nanobiophotonic are closely tied in the first experimental realization of near-field optics, which enabled optical imaging beyond the diffraction limit. The information about the gist of nanobiophotonics and other photon-associations technologies (photonics, nanophotonics, biophotonics, nanooptics, plasmonics, nanospectroscopy, laser and personalized medicine) is summarized. Nanobiophotonics is the use of light to image, probe and manipulate biological materials. The particular strength of nanobiophotonics is thet in ideal case it retains of the light for permits live cell sensing. The area of nanobiophotonics technologies is too broad to possible capture all aspects nano-analitic directions and biomedical research within the last years.

  16. Electro-Optic Diffraction Grating Tuned Laser.

    DTIC Science & Technology

    The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.

  17. Spatial filter with volume gratings for high-peak-power multistage laser amplifiers

    NASA Astrophysics Data System (ADS)

    Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li

    2010-08-01

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.

  18. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  19. Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.

    PubMed

    Klauss, André; Hille, Carsten

    2017-01-01

    The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.

  20. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    NASA Astrophysics Data System (ADS)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  1. Laser ablation caused by geometrically constrained illumination and inventive target design

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Zhakhovsky, V. V.; Khokhlov, V. A.

    2018-01-01

    Modern laser technologies use very sophisticated manipulations with (i) a photon cloud forming an irradiation beam and with (ii) disign of a target. E.g. high numerical aperture illumination at very small, diffraction limited conditions is employed for fabrication of the tiny solitary nanoformations on surface of specially prepared thin films deposited onto usually dielectric or semiconductor substrate. In the paper below we list such cases and consider an example with a free standing gold nanofilm modified by tightly focused femtosecond laser pulse.

  2. Feasibility of a 30-meter space based laser transmitter

    NASA Technical Reports Server (NTRS)

    Berggren, R. R.; Lenertz, G. E.

    1975-01-01

    A study was made of the application of large expandable mirror structures in future space missions to establish the feasibility and define the potential of high power laser systems for such applications as propulsion and power transmission. Application of these concepts requires a 30-meter diameter, diffraction limited mirror for transmission of the laser energy. Three concepts for the transmitter are presented. These concepts include consideration of continuous as well as segmented mirror surfaces and the major stow-deployment categories of inflatable, variable geometry and assembled-in-space structures. The mirror surface for each concept would be actively monitored and controlled to maintain diffraction limited performance at 10.6 microns during operation. The proposed mirror configurations are based on existing aerospace state-of-the-art technology. The assembled-in-space concept appears to be the most feasible, at this time.

  3. From Dye Laser Factory to Portable Semiconductor Laser: Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    d'Orgeville, C.; Fetzer, G.

    This presentation recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analysing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980's and 1990's. These experimental systems were turned into the first laser guide star facilities to equip medium-to-large diameter adaptive optics telescopes, opening a new era of LGS AO-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000's that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8-10m class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers will be deployed at two astronomical telescopes and at least one space debris tracking station this year. Although highly promising, these systems remain significantly expensive and they have yet to demonstrate high performance in the field. We are proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide the final solution to the problem of sodium laser guide star adaptive optics for all astronomy and space situational awareness applications.

  4. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness

    NASA Astrophysics Data System (ADS)

    d'Orgeville, Céline; Fetzer, Gregory J.

    2016-07-01

    This paper recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analyzing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980s and 1990s. These experimental systems were turned into the first laser guide star facilities to equip mediumto- large diameter adaptive optics telescopes, opening a new era of Laser Guide Star Adaptive Optics (LGS AO)-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000s that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8 to 10m-class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers are being or will soon be deployed at three astronomical telescopes and two space surveillance stations. These highly promising systems are still relatively large to install on telescopes and they remain significantly expensive to procure and maintain. We are thus proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide a definitive solution to the problem of sodium LGS AO laser sources for all astronomy and space situational awareness applications.

  5. The HALNA project: Diode-pumped solid-state laser for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.

    2006-06-01

    High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.

  6. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  7. Technological processes of grating light valve as diffractive spatial light modulator in laser phototypesetting system

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Geng, Yu; Hou, Changlun; Yang, Guoguang; Bai, Jian

    2008-11-01

    Grating Light Valve (GLV) is a kind of optics device based on Micro-Opto-Electro-Mechanical System (MOEMS) technology, utilizing diffraction principle to switch, attenuate and modulate light. In this paper, traditional GLV device's structure and its working principle are illuminated, and a kind of modified GLV structure is presented, with details introduction of the fabrication technology. The GLV structure includes single crystal silicon substrate, silicon dioxide isolating layer, aluminum layer of fixed ribbons and silicon nitride of movable ribbons. In the fabrication, lots of techniques are adopted, such as low-pressure chemical vapor deposition (LPCVD), photolithography, etching and evaporation. During the fabrication processes, Photolithography is a fundamental and fatal technology, which determines etching result and GLV quality. Some methods are proposed through repeated experiments, to improve etching result greatly and guide the practical application. This kind of GLV device can be made both small and inexpensively, and has been tested to show proper range of actuation under DC bias, with good performance. The GLV device also has merits such as low cost, simple technology, high fill ratio and low driving voltage. It can properly be well used and match the demands of high light power needed in laser phototypesetting system, as a high-speed, high-resolution light modulator.

  8. Laser-driven formation of a high-pressure phase in amorphous silica.

    PubMed

    Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y

    2003-12-01

    Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.

  9. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis, and the empirical results of this study, suggest that deployment of laser diffraction as a standard test procedure can provide reliable results, provided consistent sample preparation is used. PMID:28472043

  10. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  11. 50.4% slope efficiency thulium-doped large-mode-area fiber laser fabricated by powder technology.

    PubMed

    Darwich, Dia; Dauliat, Romain; Jamier, Raphaël; Benoit, Aurélien; Auguste, Jean-Louis; Grimm, Stephan; Kobelke, Jens; Schwuchow, Anka; Schuster, Kay; Roy, Philippe

    2016-01-15

    We report on a triple clad large-mode-area Tm-doped fiber laser with 18 μm core diameter manufactured for the first time by an alternative manufacturing process named REPUSIL. This reactive powder sinter material enables similar properties compared to conventional CVD-made fiber lasers, while offering the potential of producing larger and more uniform material. The fiber characterization in a laser configuration provides a slope efficiency of 47.7% at 20°C, and 50.4% at 0°C with 8 W output power, with a laser peak emission at 1970 nm. Finally, a beam quality near the diffraction-limit (M(x,y)2<1.1) is proved.

  12. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  13. Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2018-01-01

    Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.

  14. Micrometer-scale particle sizing by laser diffraction: critical impact of the imaginary component of refractive index.

    PubMed

    Beekman, Alice; Shan, Daxian; Ali, Alana; Dai, Weiguo; Ward-Smith, Stephen; Goldenberg, Merrill

    2005-04-01

    This study evaluated the effect of the imaginary component of the refractive index on laser diffraction particle size data for pharmaceutical samples. Excipient particles 1-5 microm in diameter (irregular morphology) were measured by laser diffraction. Optical parameters were obtained and verified based on comparison of calculated vs. actual particle volume fraction. Inappropriate imaginary components of the refractive index can lead to inaccurate results, including false peaks in the size distribution. For laser diffraction measurements, obtaining appropriate or "effective" imaginary components of the refractive index was not always straightforward. When the recommended criteria such as the concentration match and the fit of the scattering data gave similar results for very different calculated size distributions, a supplemental technique, microscopy with image analysis, was used to decide between the alternatives. Use of effective optical parameters produced a good match between laser diffraction data and microscopy/image analysis data. The imaginary component of the refractive index can have a major impact on particle size results calculated from laser diffraction data. When performed properly, laser diffraction and microscopy with image analysis can yield comparable results.

  15. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through headwind minimization. In addition to the airborne and space platforms, a coherent Doppler laser radar system in an unmanned aerial vehicle (UAV) could provide battlefield weather and target identification.

  16. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, D.

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less

  17. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  18. Techniques for determining partial size distribution of particulate matter: Laser diffraction versus electrical sensing zone

    USDA-ARS?s Scientific Manuscript database

    The study of health impacts, emission estimation of particulate matter (PM), and development of new control technologies require knowledge of PM characteristics. Among these PM characteristics, the particle size distribution (PSD) is perhaps the most important physical parameter governing particle b...

  19. A novel design for maskless direct laser writing nanolithography: Combination of diffractive optical element and nonlinear absorption inorganic resists

    NASA Astrophysics Data System (ADS)

    Zha, Yikun; Wei, Jingsong; Gan, Fuxi

    2013-09-01

    Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.

  20. Plasmonic colour generation

    NASA Astrophysics Data System (ADS)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.; Link, Stephan; Nordlander, Peter; Halas, Naomi J.; Mortensen, N. Asger

    2017-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk-hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.

  1. Photonics technology development for optical fuzing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.

    2005-07-01

    This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employmore » discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.« less

  2. Interferometer design and controls for pulse stacking in high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  3. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during the manufacturing process, and the same space-compatible DOE substrates (fused silica, sapphire) that are used on standard DOE s could be used for multiple- zone DOE s. DOEs are an elegant and cost-effective optical design option for spacebased laser altimeters that require multiple output laser beams. The use of multiple-zone DOEs would allow for the design and optimization of a laser altimeter instrument required to operate over a large range of target distances, such as those designed to both map and land on a planetary body. In addition to space-based laser altimeters, this technology could find applications in military or commercial unmanned aerial vehicles (UAVs) that fly at an altitude of several kilometers and need to land. It is also conceivable that variations of this approach could be used in land-based applications such as collision avoidance and robotic control of cars, trains, and ships.

  4. Single-pulse femtosecond laser fabrication of concave microlens- and micromirror arrays in chalcohalide glass

    NASA Astrophysics Data System (ADS)

    Kadan, Viktor; Blonskyi, Ivan; Shynkarenko, Yevhen; Rybak, Andriy; Calvez, Laurent; Mytsyk, Bohdan; Spotyuk, Oleh

    2017-11-01

    The diffraction-limited plano-concave microlens- and micromirror arrays were produced in chalcohalide glass of 65GeS2-25Ga2S3-10CsCl composition transparent from ∼0.5 to 11 μm. Only a single 200 fs laser pulse with 800 nm central wavelength is required to form microlens, which after metal coating becomes a concave micromirror. This process can serve as a basis for flexible technology to fabricate regular microlens and micromirror arrays for optotelecom applications, its performance being limited only by repetition rate of the laser pulses (typically 1000 microlenses per second).

  5. NASA Space Laser Technology

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  6. In situ x-ray surface diffraction chamber for pulsed laser ablation film growth studies

    NASA Astrophysics Data System (ADS)

    Tischler, J. Z.; Eres, G.; Lowndes, D. H.; Larson, B. C.; Yoon, M.; Chiang, T.-C.; Zschack, Paul

    2000-06-01

    Pulsed laser deposition is highly successful for growing complex films such as oxides for substrate buffer layers and HiTc oxide superconductors. A surface diffraction chamber has been constructed to study fundamental aspects of non-equilibrium film growth using pulsed laser deposition. Due to the pulsed nature of the ablating laser, the deposited atoms arrive on the substrate in short sub-millisecond pulses. Thus monitoring the surface x-ray diffraction following individual laser pulses (with resolution down to ˜1 ms) provides direct information on surface kinetics and the aggregation process during film growth. The chamber design, based upon a 2+2 surface diffraction geometry with the modifications necessary for laser ablation, is discussed, and initial measurements on homo-epitaxial growth of SrTiO3 are presented.

  7. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  8. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors

    NASA Astrophysics Data System (ADS)

    Thomas, Weston; Middlebrook, Christopher

    2014-12-01

    Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.

  9. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers.

    PubMed

    Chen, Xiao; Yan, Bin-bin; Song, Fei-jun; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal

    2012-10-20

    A digital micromirror device (DMD) is a kind of widely used spatial light modulator. We apply DMD as wavelength selector in tunable fiber lasers. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55 in. DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems.

  10. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  11. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  12. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE PAGES

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...

    2017-06-15

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  13. Design and fabrication of sub-wavelength anti-reflection grating

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong

    2018-01-01

    In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.

  14. Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall.

    PubMed

    Durán-Ramírez, Víctor M; Martínez-Ríos, Alejandro; Guerrero-Viramontes, J Ascención; Muñoz-Maciel, Jesús; Peña-Lecona, Francisco G; Selvas-Aguilar, Romeo; Anzueto-Sánchez, Gilberto

    2014-12-01

    A very simple method to obtain the refractive index of liquids by using a rectangular glass cell and a diffraction grating engraved by fs laser ablation on the inner face of one of the walls of the cell is presented. When a laser beam impinges normally on the diffraction grating, the diffraction orders are deviated when they pass through the cell filled with the liquid to be measured. By measuring the deviation of the diffraction orders, we can determine the refractive index of the liquid.

  15. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.

  16. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  17. Development of the multiwavelength monolithic integrated fiber optics terminal

    NASA Technical Reports Server (NTRS)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  18. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    NASA Astrophysics Data System (ADS)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  19. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    PubMed

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-04-12

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  20. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  1. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    PubMed Central

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  2. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE PAGES

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; ...

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  3. Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3

    DTIC Science & Technology

    1991-01-12

    84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power

  4. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings.

    PubMed

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-30

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  5. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    NASA Astrophysics Data System (ADS)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  6. 100J Pulsed Laser Shock Driver for Dynamic Compression Research

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sethian, J.; Bromage, J.; Fochs, S.; Broege, D.; Zuegel, J.; Roides, R.; Cuffney, R.; Brent, G.; Zweiback, J.; Currier, Z.; D'Amico, K.; Hawreliak, J.; Zhang, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Logos Technologies and the Laboratory for Laser Energetics (LLE, University of Rochester) - in partnership with Washington State University - have designed, built and deployed a one of a kind 100J pulsed UV (351 nm) laser system to perform real-time, x-ray diffraction and imaging experiments in laser-driven compression experiments at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory. The laser complements the other dynamic compression drivers at DCS. The laser system features beam smoothing for 2-d spatially uniform loading of samples and four, highly reproducible, temporal profiles (total pulse duration: 5-15 ns) to accommodate a wide variety of scientific needs. Other pulse shapes can be achieved as the experimental needs evolve. Timing of the laser pulse is highly precise (<200 ps) to allow accurate synchronization of the x-rays with the dynamic compression event. Details of the laser system, its operating parameters, and representative results will be presented. Work supported by DOE/NNSA.

  7. Diffraction Gratings for High-Intensity Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britten, J

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy havemore » further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.« less

  8. Large angle nonmechanical laser beam steering at 4.6 μm using a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Lindle, James Ryan; Watnik, Abbie T.

    2018-02-01

    Large angle, nonmechanical beam steering is demonstrated at 4.62 μm using the digital light processing technology. A 42-deg steering range is demonstrated, limited by the field-of-view of the recollimating lens. The measured diffraction efficiency is 8.1% on-axis and falls-off with a sin2 dependence with the steering angle. However, within the 42-deg steering range, the power varied less than 25%. The profile of the steered laser beam is Gaussian with a divergence of 5.2 mrad. Multibeam, randomly addressable beam steering, is also demonstrated.

  9. Highly uniform parallel microfabrication using a large numerical aperture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn; Zhang, Chen-Chu

    In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallelmore » processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.« less

  10. Alignment of the writing beam with the diffractive structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system

    NASA Astrophysics Data System (ADS)

    Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-03-01

    A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.

  11. Inertial Confinement Fusion Quarterly Report January-March 1999, Volume 9, Number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atherton, J.

    1999-03-31

    This quarterly report covers the following topics: (1) Properties of and Manufacturing Methods for NIF Laser Glasses (J. H. Campbell)--The NIF amplifiers require 3380 Nd-doped laser glass slabs; continuous glass melting methods will be used for the first time to manufacture these slabs. The properties of the laser glasses are summarized and the novel continuous melting method is described. (2) Diffractive Optics for the NIF (J. A. Britten)--We have fabricated demonstration diffractive optics according to the NIF baseline design at full scale, via wet-chemical etching of patterns into fused silica. We have examined the effects of dip-coated sol-gel antireflection coatingsmore » on the performance of these optics, and have concluded that diffractive optics should remain uncoated to minimize laser-induced damage to downstream optics and to maximize environmental stability. We have also demonstrated the feasibility of combining all diffractive structures required by NIF, which vary over orders of magnitude in lateral and vertical scales, onto a single surface. (3) Producing KDP and DKDP Crystals for the NIF Laser (A. K. Burnham)--Rapid-growth KDP has overcome most of the hurdles for production of boules for NIF switch crystals and doublers, but some improvements in process reliability at the tripler's 3{omega} damage threshold are needed. The ability to meet KDP finishing specifications has been demonstrated, and the equipment for efficient NIF production is being built. (4) Engineering High-Damage-Threshold NIF Polarizers and Mirrors (C. J. Stolz)--High-fluence polarizer and mirror coatings for the NIF can be realized by engineering the coating process and design once the laser interaction with coating defects is understood. (5) Improved Antireflection Coatings for the NIF (P. K. Whitman)--We summarize our progress in developing antireflection coatings and applications processes for the NIF laser optics. We describe new materials and coating treatments to minimize the sensitivity of these porous sol-gel coatings to environmental humidity and organic contamination. (6) Developing Optics Finishing Technologies for the National Ignition Facility (T. G. Parham)--Fabrication of the 7500 meter-class lenses and flats for the NIF required extension of finishing technologies to meet cost and schedule targets. Developments at LLNL and our industrial partners are described for improved shaping, grinding, polishing, figuring, and metrology of large optics. (7) Laser-Damage Testing and Modeling Methods for Predicting the Performance of Large-Area NIF Optics (M. R. Kozlowski)--Laser damage to high-quality laser optics is limited by localized, defect-initiated processes. The damage performance of such materials is better described by statistical distributions than by discrete damage thresholds. The prediction of the damage performance of a Beamlet focus lens, based on new statistics-based damage data measurement and analysis techniques, is demonstrated. (8) Development of the NIF Target Chamber First Wall and Beam Dumps (A. K. Burnham)--NIF target designs and target chamber ablations are listed by a 1-nm/shot contamination rate of the final optics debris shield, as determined by transmittance and damage lifetime. This constraint forces a self-cleaning louvre design for the first wall and unconverted-light beam dumps. Nickel-free stainless steel is the cheapest and most practical material.« less

  12. DIFFRACTION SYNCHRONIZATION OF LASERS,

    DTIC Science & Technology

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  13. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    PubMed Central

    Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze

    2017-01-01

    Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652

  14. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  15. Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoping; Chen, Hong; Wang, Gui; Chen, Yongnan; Xing, Yazhe; Zhang, Chunhua; Dargusch, Matthew

    2017-04-01

    Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure.

  16. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less

  17. Acousto-Optic Beam Sampler, Part III: Diffraction Experiments at 10.6 micrometers.

    DTIC Science & Technology

    This report deals with the results of acousto - optic diffraction experiments in air at 10.6 micron. The laser used for the experiments was operated...fields. Detailed experiments were performed to investigate the dependence of the acousto - optic diffraction on incident laser power, acoustic drive voltage and angle of incidence.

  18. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  19. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    PubMed

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  20. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  1. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].

  2. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  3. Laser scattering induced holograms in lithium niobate. [observation of diffraction cones

    NASA Technical Reports Server (NTRS)

    Magnusson, R.; Gaylord, T. K.

    1974-01-01

    A 3.0-mm thick poled single crystal of lithium niobate doped with 0.1 mole% iron was exposed to a single beam and then to two intersecting beams of an argon ion laser operating at 515-nm wavelength. Laser scattering induced holograms were thus written and analyzed. The presence of diffraction cones was observed and is shown to result from the internally recorded interference pattern resulting from the interference of the original incident laser beam with light scattered from material inhomogeneities. This phenomenon is analyzed using Ewald sphere construction techniques which reveal the geometrical relationships existing for the diffraction cones.

  4. Technological advances in suspended-sediment surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Gray, John R.; Gartner, Jeffrey W.

    2009-04-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous suspended sediment data by instruments that require only periodic calibration for correlation to mean concentrations in river cross sections. Broad application of proven suspended sediment surrogate technologies has the potential to revolutionize fluvial sediment monitoring. Once applied, benefits could be enormous, providing for safer, more frequent and consistent, arguably more accurate, and ultimately less expensive sediment data for managing the world's sedimentary resources.

  5. Technological advances in suspended‐sediment surrogate monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric‐concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium‐to‐large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single‐frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous suspended sediment data by instruments that require only periodic calibration for correlation to mean concentrations in river cross sections. Broad application of proven suspended sediment surrogate technologies has the potential to revolutionize fluvial sediment monitoring. Once applied, benefits could be enormous, providing for safer, more frequent and consistent, arguably more accurate, and ultimately less expensive sediment data for managing the world's sedimentary resources.

  6. Structural and morphological approach of Co-Cr dental alloys processed by alternative manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Porojan, Sorin; Bîrdeanu, Mihaela; Savencu, Cristina; Porojan, Liliana

    2017-08-01

    The integration of digitalized processing technologies in traditional dental restorations manufacturing is an emerging application. The objective of this study was to identify the different structural and morphological characteristics of Co-Cr dental alloys processed by alternative manufacturing techniques in order to understand the influence of microstructure on restorations properties and their clinical behavior. Metallic specimens made of Co-Cr dental alloys were prepared using traditional casting (CST), and computerized milling (MIL), selective laser sintering (SLS) and selective laser melting (SLM). The structural information of the samples was obtained by X-ray diffraction, the morphology and the topography of the samples were investigated by Scanning Electron Microscopy and Atomic Force Microscope. Given that the microstructure was significantly different, further differences in the clinical behavior of prosthetic restorations manufactured using additive techniques are anticipated.

  7. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    PubMed Central

    He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.

    2016-01-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086

  8. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    DOE PAGES

    He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...

    2016-11-08

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less

  9. The effect of laser radiation on the diffraction of X-rays in crystals

    NASA Astrophysics Data System (ADS)

    Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.

    1988-10-01

    The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.

  10. Phase-locking of annular-combination CO2 laser

    NASA Astrophysics Data System (ADS)

    Qi, Tingxiang; Chen, Mei; Zhang, Rongzhu; Xiao, Qianyi

    2015-07-01

    A new annular-combination resonator structure adopting the external-injection phase-locking technology is presented theoretically for that the beam quality of stable annular resonator is not satisfying. The phase-locking principle and feasibility are characterized by energy density of injection beam and coupling coefficient. Based on the diffraction theory, output mode of the resonator with phase-locking is deduced and simulated. Results also confirm that injection beam have a good control effect on output mode. The intensity distributions of output beam are studied briefly and indicate that this new resonator which is adaptable to annular gain media can produce high-power laser beam with high quality.

  11. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  12. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  13. High-energy, 2µm laser transmitter for coherent wind LIDAR

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  14. Applications of high power lasers. [using reflection holograms for machining and surface treatment

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1979-01-01

    The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.

  15. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient parallel beam processing at 〈P〉  =  100 W. Hence, no permanent changes in SLM phase response characteristics have been detected. This research work will help to accelerate the use of liquid crystal spatial light modulators for both scientific and ultra high throughput laser-materials micro-structuring applications.

  16. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  17. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders

    NASA Astrophysics Data System (ADS)

    Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li

    2016-11-01

    Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.

  18. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  19. Diffraction of a Gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes

    NASA Astrophysics Data System (ADS)

    Zeylikovich, Iosif; Nikitin, Aleksandr

    2018-04-01

    The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.

  20. Starshade Prototype

    NASA Image and Video Library

    2016-08-09

    This image shows the bare bones of the first prototype starshade by NASA's Jet Propulsion Laboratory, Pasadena, California. The prototype was shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California in 2013. In order for the petals of the starshade to diffract starlight away from the camera of a space telescope, they must be deployed with accuracy once the starshade reaches space. The four petals pictured in the image are being measured for this positional accuracy with a laser. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. http://photojournal.jpl.nasa.gov/catalog/PIA20903

  1. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  2. Energy-resolved coherent diffraction from laser-driven electronic motion in atoms

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Starace, Anthony F.

    2017-10-01

    We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.

  3. Understanding Intense Laser Interactions with Solid Density Plasma

    DTIC Science & Technology

    2017-01-04

    obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter...with negligible pump-probe jitter being possible with future laser- wakefield-accelerator ultrafast-electron-diffraction schemes. Distribution

  4. Spectral characteristics of multimode semiconductor lasers with a high-order surface diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A

    2014-10-31

    We have studied the spectral characteristics of multimode semiconductor lasers with high-order surface diffraction gratings based on asymmetric separate-confinement heterostructures grown by metalorganic vapour phase epitaxy (λ = 1070 nm). Experimental data demonstrate that, in the temperature range ±50 °C, the laser emission spectrum is ∼5 Å in width and contains a fine structure of longitudinal and transverse modes. A high-order (m = 15) surface diffraction grating is shown to ensure a temperature stability of the lasing spectrum dλ/dT = 0.9 Å K{sup -1} in this temperature range. From analysis of the fine structure of the lasing spectrum, we havemore » evaluated the mode spacing and, thus, experimentally determined the effective length of the Bragg diffraction grating, which was ∼400 μm in our samples. (lasers)« less

  5. Polarization effects associated with thermal processing of HY-80 structural steel using high-power laser diode array

    NASA Astrophysics Data System (ADS)

    Wu, Sheldon S. Q.; Baker, Bradford W.; Rotter, Mark D.; Rubenchik, Alexander M.; Wiechec, Maxwell E.; Brown, Zachary M.; Beach, Raymond J.; Matthews, Manyalibo J.

    2017-12-01

    Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.

  6. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    PubMed Central

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-01-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885

  7. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  8. Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam

    NASA Astrophysics Data System (ADS)

    Emile, O.; Voisin, A.; Niemiec, R.; Viaris de Lesegno, B.; Pruvost, L.; Ropars, G.; Emile, J.; Brousseau, C.

    2013-03-01

    We report on the diffraction of non-zero Laguerre Gaussian laser beams by an opaque disk. We observe a tiny circular dark zone at the centre of the usual Arago-Poisson diffraction bright spot. For such non-diffracting dark hollow beams, we have measured diameters as small as 20 μm on distances of the order of ten metres, without focalization. Diameters depend on the diffracting object size and on the topological charge of the input Laguerre Gaussian beam. These results are in good agreement with theoretical considerations. Potential applications are then discussed.

  9. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  10. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    PubMed Central

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan

    2018-01-01

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379

  11. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation.

    PubMed

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng

    2018-04-06

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

  12. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  13. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  14. CD, DVD, and Blu-Ray Disc Diffraction with a Laser Ray Box

    ERIC Educational Resources Information Center

    DeWeerd, Alan J.

    2016-01-01

    A compact disc (CD) can be used as a diffraction grating, even though its track consists of a series of pits, not a continuous groove. Previous authors described how to measure the track spacing on a CD using an incident laser beam normal to the surface or one at an oblique angle. In both cases, the diffraction pattern was projected on a screen…

  15. Single photon energy dispersive x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signalmore » from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.« less

  16. Diffraction effect of the injected beam in axisymmetrical structural CO2 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Wang, Shijian; Fan, Qunchao

    2012-07-01

    Diffraction effect of the injected beam in axisymmetrical structural CO2 laser is studied based on the injection-locking principle. The light intensity of the injected beam at the plane where the holophotes lie is derived according to the Huygens-Fresnel diffraction integral equation. And then the main parameters which influence the diffraction light intensity are given. The calculated results indicate that the first-order diffraction signal will play an important role in the phase-locking when the zero-order diffraction cannot reach the folded cavities. The numerical examples are given to confirm the correctness of the results, and the comparisons between the theoretical and the experimental results are illustrated.

  17. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  18. Beamed energy for space craft propulsion - Conceptual status and development potential

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.; Frisbee, Robert H.

    1987-01-01

    This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.

  19. Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor.

    PubMed

    White, James D; Scholten, Robert E

    2012-11-01

    We describe a compact laser wavelength measuring instrument based on a small diffraction grating and a consumer-grade webcam. With just 1 pW of optical power, the instrument achieves absolute accuracy of 0.7 pm, sufficient to resolve individual hyperfine transitions of the rubidium absorption spectrum. Unlike interferometric wavemeters, the instrument clearly reveals multimode laser operation, making it particularly suitable for use with external cavity diode lasers and atom cooling and trapping experiments.

  20. The technology of grating laser Doppler velocimeter for measuring transverse velocity of objects

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Lu, Guangfeng; Fan, Zhenfang; Luo, Hui

    2014-12-01

    In order to lower production cost of Laser Doppler velocimeter (LDV) and simplify the system structure, a grating Doppler detection system has been designed. This LDV was carried out by differential measurement mode. Two beams of diffracted light from the grating are mixed, and the beat frequency will be detected by a detector when the grating is moving. Fundamentals also have been introduced and partial experiment results of this system are given out. The result indicates the experimental value is agreement with the theoretical value. Errors have been analyzed and the main factors affecting the accuracy were discussed. Upon inspection, the inexpensive and ease LDV is efficient to administer and feasible.

  1. Heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm

    NASA Astrophysics Data System (ADS)

    Babichev, A. V.; Gladyshev, A. G.; Filimonov, A. V.; Nevedomskii, V. N.; Kurochkin, A. S.; Kolodeznyi, E. S.; Sokolovskii, G. S.; Bugrov, V. E.; Karachinsky, L. Ya.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu.

    2017-07-01

    It is shown that molecular-beam-epitaxy technology can be used to fabricate heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm with an active region comprising 50 cascades based on a heterojunction of In0.53Ga0.47As/Al0.48In0.52As solid solutions. The optical emission is obtained using a quantum-cascade design operating on the principle of two-phonon resonance scattering. The properties of heterostructures were studied by the methods of X-ray diffraction and transmission electron microscopy, which showed their high quality with respect to the identical compositions and thicknesses of all 50 cascades. Stripe-geometry lasers made of these heterostructures exhibited lasing with a threshold current density below 1.6 kA/cm2 at a temperature of 78 K.

  2. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    PubMed

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.

  3. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  4. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  5. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  6. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  7. Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers

    NASA Astrophysics Data System (ADS)

    Sola, D.; Lavieja, C.; Orera, A.; Clemente, M. J.

    2018-07-01

    The inscription of diffractive elements in ophthalmic polymers and ocular tissues to induce refractive index changes is of great interest in the fields of Optics and Ophthalmology. In this work fabrication of linear periodic patterns in polydimethylsiloxane (PDMS) intraocular lenses by means of the direct laser interference patterning (DLIP) technique was studied. A Q-Switch Nd:YAG laser coupled to second and third harmonic modules emitting linearly polarized 4 ns pulses at 355 nm with 20 Hz repetition rate was used as the laser source. Laser processing parameters were modified to produce the linear patterns. Processed samples were characterized by means of optical confocal microscopy, Scanning Electron Microscopy SEM, Energy Dispersive X-ray Spectroscopy EDX, Attenuated Total Reflectance-Infrared Spectroscopy ATR-FTIR, and Raman Spectroscopy. Depending on the laser parameters both photo-thermal and photo-chemical damage were observed in the DLIP irradiated areas. Finally, diffractive techniques were used to characterize the diffraction gratings inscribed in the samples resulting in a refractive index change of 1.9 × 10-2 under illumination of a 632.8 nm He-Ne laser.

  8. Fabrication of amplitude-phase type diffractive optical elements in aluminium films

    NASA Astrophysics Data System (ADS)

    Fomchenkov, S. A.; Butt, M. A.

    2017-11-01

    In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.

  9. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    PubMed

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  10. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehm, S.; Rosenfeld, A.; Krueger, J.

    2013-02-04

    The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons.

  11. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  12. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  13. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.« less

  14. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  15. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  16. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.

    1996-01-01

    Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.

  17. Diffractive elements for generating microscale laser beam patterns: a Y2K problem

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Krueger, Sven; Wernicke, Guenther K.; Ferstl, Margit

    2000-03-01

    Lasers are widely used in industrial fabrication for engraving, cutting and many other purposes. However, material processing at very small scales is still a matter of concern. Advances in diffractive optics could provide for laser systems that could be used for engraving or cutting of micro-scale patterns at high speeds. In our paper we focus on the design of diffractive elements which can be used for this special application. It is a common desire in material processing to apply 'discrete' as well as 'continuous' beam patterns. Especially, the latter case is difficult to handle as typical micro-scale patterns are characterized by bad band-limitation properties, and as speckles can easily occur in beam patterns. It is shown in this paper that a standard iterative design method usually fails to obtain diffractive elements that generate diffraction patterns with acceptable quality. Insights gained from an analysis of the design problems are used to optimize the iterative design method. We demonstrate applicability and success of our approach by the design of diffractive phase elements that generate a discrete and a continuous 'Y2K' pattern.

  18. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  19. 50 Mb/s, 220-mW Laser-Array Transmitter

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.

    1992-01-01

    Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.

  20. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  1. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  2. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    PubMed Central

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-01-01

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519

  3. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Chakera, J. A.; Naik, P. A.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available formore » time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.« less

  4. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    PubMed

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  5. Low-Coherence light source design for ESPI in-plane displacement measurements

    NASA Astrophysics Data System (ADS)

    Heikkinen, J. J.; Schajer, G. S.

    2018-01-01

    The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.

  6. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE PAGES

    Kelly, B. G.; Loether, A.; Unruh, K. M.; ...

    2017-02-01

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  7. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B. G.; Loether, A.; Unruh, K. M.

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  8. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  9. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  10. Residual stress evaluation of components produced via direct metal laser sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  11. Residual stress evaluation of components produced via direct metal laser sintering

    DOE PAGES

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.; ...

    2018-03-22

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  12. Free-electron laser power beaming to satellites at China Lake, California

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.

    1994-05-01

    Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.

  13. Free-electron laser power beaming to satellites at China Lake, California

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.

    1994-05-01

    Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.

  14. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    PubMed Central

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  15. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.

    PubMed

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-13

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  16. Extracting conformational structure information of benzene molecules via laser-induced electron diffraction

    DOE PAGES

    Ito, Yuta; Wang, Chuncheng; Le, Anh-Thu; ...

    2016-05-01

    Here, we have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatialmore » resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-A°ngstrom spatial and few-ten femtosecond temporal resolutions.« less

  17. Diffraction effects in mechanically chopped laser pulses

    NASA Astrophysics Data System (ADS)

    Gambhir, Samridhi; Singh, Mandip

    2018-06-01

    A mechanical beam chopper consists of a rotating disc of regularly spaced wide slits which allow light to pass through them. A continuous light beam, after passing through the rotating disc, is switched-on and switched-off periodically, and a series of optical pulses are produced. The intensity of each pulse is expected to rise and fall smoothly with time. However, a careful study has revealed that the edges of mechanically chopped laser light pulses consist of periodic intensity undulations which can be detected with a photo detector. In this paper, it is shown that the intensity undulations in mechanically chopped laser pulses are produced by diffraction of light from the rotating disc, and a detailed explanation is given of the intensity undulations in mechanically chopped laser pulses. An experiment presented in this paper provides an efficient method to capture a one dimensional diffraction profile of light from a straight sharp-edge in the time domain. In addition, the experiment accurately measures wavelengths of three different laser beams from the undulations in mechanically chopped laser light pulses.

  18. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  19. Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu; Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334

    2015-01-15

    We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systemsmore » compared to the bandwidth currently available to temporally smoothed glass-based laser systems.« less

  20. Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device.

    PubMed

    Heath, Daniel J; Grant-Jacob, James A; Feinaeugle, Matthias; Mills, Ben; Eason, Robert W

    2017-08-01

    We present the use of digital micromirror devices as variable illumination masks for pitch-splitting multiple exposures to laser machine the surfaces of materials. Ultrafast laser pulses of length 150 fs and 800 nm central wavelength were used for the sequential machining of contiguous patterns on the surface of samples in order to build up complex structures with sub-diffraction limit features. Machined patterns of tens to hundreds of micrometers in lateral dimensions with feature separations as low as 270 nm were produced in electroless nickel on an optical setup diffraction limited to 727 nm, showing a reduction factor below the Abbe diffraction limit of ∼2.7×. This was compared to similar patterns in a photoresist optimized for two-photon absorption, which showed a reduction factor of only 2×, demonstrating that multiple exposures via ablation can produce a greater resolution enhancement than via two-photon polymerization.

  1. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less

  2. Material processing with fiber based ultrafast pulse delivery

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Stockburger, R.; Führa, B.; Zoller, S.; Thum, S.; Moosmann, J.; Maier, D.; Kanal, F.; Russ, S.; Kaiser, E.; Budnicki, A.; Sutter, D. H.; Pricking, S.; Killi, A.

    2018-02-01

    We report on TRUMPF's ultrafast laser systems equipped with industrialized hollow core fiber laser light cables. Beam guidance in general by means of optical fibers, e.g. for multi kilowatt cw laser systems, has become an integral part of laser-based material processing. One advantage of fiber delivery, among others, is the mechanical separation between laser and processing head. An equally important benefit is given by the fact that the fiber end acts as an opto-mechanical fix-point close to successive optical elements in the processing head. Components like lenses, diffractive optical elements etc. can thus be designed towards higher efficiency which results in better material processing. These aspects gain increasing significance when the laser system operates in fundamental mode which is usually the case for ultrafast lasers. Through the last years beam guidance of ultrafast laser pulses by means of hollow core fiber technology established very rapidly. The combination of TRUMPF's long-term stable ultrafast laser sources, passive fiber coupling, connector and packaging forms a flexible and powerful system for laser based material processing well suited for an industrial environment. In this article we demonstrate common material processing applications with ultrafast lasers realized with TRUMPF's hollow core fiber delivery. The experimental results are contrasted and evaluated against conventional free space propagation in order to illustrate the performance of flexible ultrafast beam delivery.

  3. In-situ monitoring of ? phase transformation in Ti-6Al-6V-2Sn using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Hinterlechner, Irina; Barriobero-Vila, Pere; Reitinger, Bernhard; Fromherz, Thomas; Requena, Guillermo; Burgholzer, Peter

    2018-04-01

    Titanium is of great interest for metal processing industries due to its superior material properties, but it is also quite expensive. Therefore, a detailed knowledge of ? phase transformation and consequential the distribution of ? and ? phase in titanium alloys is crucial for their material properties and as a consequence for further processing steps. Measuring the ultrasonic velocity and attenuation by laser ultrasonics technology (LUS) as a non-destructive and non-contact technique, it is possible to qualitatively monitor in-situ the phase transformation during heating the sample from room temperature up to ?. We validate LUS methodology against high energy X-ray diffraction as well as against conventional metallurgic measurements and get excellent agreement between the results of these methods.

  4. Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David

    2017-03-01

    Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.

  5. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  6. Diffraction-controlled backscattering threshold and application to Raman gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less

  7. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  8. Mask-free, vacuum-free fabrication of high-conductivity metallic nanowire by spatially shaped ultrafast laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Li, Xiaowei; Qu, Lianti; Lu, Yongfeng; Jiang, Lan

    2017-03-01

    Metal nanowire fabrication has drawn tremendous attention in recent years due to its wide application in electronics, optoelectronics, and plasmonics. However, conventional laser fabrication technologies are limited by diffraction limit thus the fabrication resolution cannot meet the increasingly high demand of modern devices. Herein we report on a novel method for high-resolution high-quality metal nanowire fabrication by using Hermite-Gaussian beam to ablate metal thin film. The nanowire is formed due to the intensity valley in the center of the laser beam while the surrounding film is ablated. Arbitrary nanowire can be generated on the substrate by dynamically adjusting the orientation of the intensity valley. This method shows obvious advantages compared to conventional methods. First, the minimum nanowire has a width of 60 nm (≍1/13 of the laser wavelength), which is much smaller than the diffraction limit. The high resolution is achieved by combining the ultrashort nature of the femtosecond laser and the low thermal conductivity of the thin film. In addition, the fabricated nanowires have good inside qualities. No inner nanopores and particle intervals are generated inside the nanowire, thus endowing the nanowire with good electronic characteristics: the conductivity of the nanowires is as high as 1.2×107 S/m (≍1/4 of buck material), and the maximum current density is up to 1.66×108 A/m2. Last, the nanowire has a good adhesion to the substrates, which can withstand ultrasonic bath for a long time. These advantages make our method a good approach for high-resolution high-quality nanowire fabrication as a complementary method to conventional lithography methods.

  9. A novel DWDM method to design a 100-kW Laser

    NASA Astrophysics Data System (ADS)

    Basu, Santanu

    2010-02-01

    In this paper, I will present the design analysis of a novel concept that may be used to generate a diffraction-limited beam from an aperture so that as much as 450 kW of laser power can be efficiently deposited on a diffraction-limited spot at a range. The laser beam will be comprised of many closely spaced wavelength channels as in a DWDM. The technique relies on the ability of an angular dispersion amplifier to multiplex a large number of high power narrow frequency lasers, wavelengths of which may be as close as 0.4 nm.

  10. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  11. X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.

    2016-07-25

    Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less

  12. Experimental study of discrete diffraction behavior in a coherent atomic system

    NASA Astrophysics Data System (ADS)

    Yuan, Jinpeng; Li, Yihong; Li, Shaohua; Li, Changyong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang

    2017-12-01

    Discrete diffraction behavior was experimentally studied in a coherent rubidium 5S 1/2  -  5P 3/2  -  5D 5/2 cascade system. An optical lattice was established by the interference of two coupling lasers corresponding to 5P 3/2  -  5D 5/2 transition with a small angle. The distinct discrete diffraction patterns were observed in vapor when the probe laser corresponding to the 5S 1/2  -  5P 3/2 transition propagated through the optical lattice. The optimized pertinent experimental parameters such as vapor temperature, two-photon detuning, coupling laser intensity and probe laser intensity are obtained. The experimental results are well analyzed utilizing the density-matrix theory. This system provides a new approach to investigate non-Hermitian physics and discrete solitons.

  13. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  14. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  15. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  16. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  17. Volume gratings and welding of glass/plastic by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru

    2018-01-01

    Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.

  18. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.

  19. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  20. Optical computing, optical memory, and SBIRs at Foster-Miller

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less

  2. All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates.

    PubMed

    Serak, Svetlana V; Hakobyan, Rafael S; Nersisyan, Sarik R; Tabiryan, Nelson V; White, Timothy J; Bunning, Timothy J; Steeves, Diane M; Kimball, Brian R

    2012-02-27

    Pairs of cycloidal diffractive waveplates can be used to doubly diffract or collinearly propagate laser radiation of the appropriate wavelength. The use of a dynamic phase retarder placed in between the pair can be utilized to switch between the two optical states. We present results from the implementation of an azo-based retarder whose optical properties can be modulated using light itself. We show fast and efficient switching between the two states for both CW and single nanosecond laser pulses of green radiation. Contrasts greater than 100:1 were achieved. The temporal response as a function of light intensity is presented and the optical switching is shown to be polarization independent.

  3. Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology

    NASA Astrophysics Data System (ADS)

    Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.

    1997-07-01

    Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.

  4. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  5. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.

    PubMed

    Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V

    2006-01-01

    Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.

  6. High-efficiency volume holograms recording on acrylamide and N,N‧methylene-bis-acrylamide photopolymer with pulsed laser

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Ortuño, M.; García, C.; Neipp, C.; Beléndez, A.; Pascual, I.

    2005-11-01

    In order to achieve a better understanding of the mechanisms of hologram formation and higher diffraction efficiencies in volume gratings stored in acrylamide based photopolymers, a crosslinker (N,N'methylene-bis-acrylamide) has been incorporated in the photopolymer to record holograms by pulsed laser exposure. The presence of this component increases the polymerization rate and refractive index modulation. The recording was performed using a holographic copying process. The original was a grating of 1000?lines/mm processed using silver halide sensitized gelatin. First, the effect of the pulse fluence was investigated. When the pulse fluence was optimized, the results obtained using the new composition of material were compared with those using the composition without a crosslinker. Using a pulsed laser at 532?nm the photopolymer without crosslinker presented diffraction efficiencies slightly less than 60%. On the other hand, when the crosslinker was introduced in the photopolymer composition, the diffraction efficiencies achieved were higher than 85%. The non-linearity of the material's response was also studied comparing the energetic sensitivity, diffraction efficiencies and index modulation of gratings recorded with pulsed and continuous laser exposure. This study was performed fitting the angular scan of each grating using Kogelnik's theory.

  7. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wu, Amanda S.; Brown, Donald W.; Kumar, Mukul; Gallegos, Gilbert F.; King, Wayne E.

    2014-12-01

    Additive manufacturing (AM) technology provides unique opportunities for producing net-shape geometries at the macroscale through microscale processing. This level of control presents inherent trade-offs necessitating the establishment of quality controls aimed at minimizing undesirable properties, such as porosity and residual stresses. Here, we perform a parametric study into the effects of laser scanning pattern, power, speed, and build direction in powder bed fusion AM on residual stress. In an effort to better understand the factors influencing macroscale residual stresses, a destructive surface residual stress measurement technique (digital image correlation in conjunction with build plate removal and sectioning) has been coupled with a nondestructive volumetric evaluation method ( i.e., neutron diffraction). Good agreement between the two measurement techniques is observed. Furthermore, a reduction in residual stress is obtained by decreasing scan island size, increasing island to wall rotation to 45 deg, and increasing applied energy per unit length (laser power/speed). Neutron diffraction measurements reveal that, while in-plane residual stresses are affected by scan island rotation, axial residual stresses are unchanged. We attribute this in-plane behavior to misalignment between the greatest thermal stresses (scan direction) and largest part dimension.

  8. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR

    NASA Astrophysics Data System (ADS)

    Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud

    2017-02-01

    Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.

  9. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  10. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  11. Two-Dimensional Light Diffraction from an EPROM Chip

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2018-01-01

    In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…

  12. Optical design considerations when imaging the fundus with an adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  13. Nano-optical information storage induced by the nonlinear saturable absorption effect

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Liu, Shuang; Geng, Yongyou; Wang, Yang; Li, Xiaoyi; Wu, Yiqun; Dun, Aihuan

    2011-08-01

    Nano-optical information storage is very important in meeting information technology requirements. However, obtaining nanometric optical information recording marks by the traditional optical method is difficult due to diffraction limit restrictions. In the current work, the nonlinear saturable absorption effect is used to generate a subwavelength optical spot and to induce nano-optical information recording and readout. Experimental results indicate that information marks below 100 nm are successfully recorded and read out by a high-density digital versatile disk dynamic testing system with a laser wavelength of 405 nm and a numerical aperture of 0.65. The minimum marks of 60 nm are realized, which is only about 1/12 of the diffraction-limited theoretical focusing spot. This physical scheme is very useful in promoting the development of optical information storage in the nanoscale field.

  14. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  15. Watts-level, short all-fiber laser at 1.5 µm with a large core and diffraction-limited output via intracavity spatial-mode filtering

    NASA Astrophysics Data System (ADS)

    Polynkin, Alexander; Polynkin, Pavel; Schülzgen, Axel; Mansuripur, Masud; Peyghambarian, N.

    2005-02-01

    We report over 2 W of single spatial-mode output power at 1.5 µm from an 8-cm-long, large-core phosphate fiber laser. The fiber has a numerical aperture of simeq 0.17 and a 25-µm-wide core, heavily doped with 1% Er+3 and 8% Yb+3. The laser utilizes a scalable evanescent-field-based pumping scheme and can be pumped by as many as eight individual multimode pigtailed diode laser sources at a wavelength of 975 nm. Nearly diffraction-limited laser output with a beam quality factor M^2 simeq 1.1 is achieved by use of a simple intracavity all-fiber spatial-mode filter. Both spectrally broadband and narrowband operation of the laser are demonstrated.

  16. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  17. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  18. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  19. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  20. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  1. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  2. Laser induced Bi diffusion in As40S60 thin films and the optical properties change probed by FTIR and XPS

    NASA Astrophysics Data System (ADS)

    Naik, Ramakanta; Sahoo, Pragyan Paramita; Sripan, C.; Ganesan, R.

    2016-12-01

    Amorphous chalcogenide semiconducting materials are playing a pivotal role in modern technology. Such type of materials are very sensitive to electromagnetic radiations which is useful for infrared optics. In the present report, Bi doped in As40S60 thin films (As40S60, Bi06As40S54) of 800 nm thickness were prepared by thermal evaporation method. The Bi06As40S54 thin film is subjected to laser irradiation for photo induced study. The X-ray diffraction study reveals no structural change due to laser irradiation. The optical parameters are affected by both Bi addition and laser irradiation which brings a change in the transmitivity and absorption coefficient. The indirect optical band gap is found to be increased by 0.08 eV with laser irradiation with the decrease in disorderness. The Tauc parameter and Urbach energy which measures the degree of disorderness changes with Bi doping and irradiation. The refractive index is modified by the illumination process which is useful for optical applications. The optical property change is well supported by the X-ray photoelectron core level spectra.

  3. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  4. Overview of selected surrogate technologies for continuous suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, J.R.; Gartner, J.W.

    2006-01-01

    Surrogate technologies for inferring selected characteristics of suspended sediments in surface waters are being tested by the U.S. Geological Survey and several partners with the ultimate goal of augmenting or replacing traditional monitoring methods. Optical properties of water such as turbidity and optical backscatter are the most commonly used surrogates for suspended-sediment concentration, but use of other techniques such as those based on acoustic backscatter, laser diffraction, digital photo-optic, and pressure-difference principles is increasing for concentration and, in some cases, particle-size distribution and flux determinations. The potential benefits of these technologies include acquisition of automated, continuous, quantifiably accurate data obtained with increased safety and at less expense. When suspended-sediment surrogate data meet consensus accuracy criteria and appropriate sediment-record computation techniques are applied, these technologies have the potential to revolutionize the way fluvial-sediment data are collected, analyzed, and disseminated.

  5. Diffraction Revisited: Position of Diffraction Spots upon Rotation of a Transmission Grating

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2005-01-01

    Diffraction gratings are often used in the laboratory to determine the wavelength of laser light. What happens to the spots on the screen if the grating is rotated in this set-up? The answer is nontrivial and instructive.

  6. Recent advance to 3 × 10(-5) rad near diffraction-limited beam divergence of dye laser with transverse-discharge flash-lamp pumping.

    PubMed

    Trusov, K K

    1994-02-20

    A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.

  7. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  8. Time-resolved study of SrTiO3 homoepitaxial pulsed-laser deposition using surface x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Eres, G.; Tischler, J. Z.; Yoon, M.; Larson, B. C.; Rouleau, C. M.; Lowndes, D. H.; Zschack, P.

    2002-05-01

    Homoepitaxy of SrTiO3 by pulsed-laser deposition has been studied using in situ time-resolved surface x-ray diffraction in the temperature range of 310 °C to 780 °C. Using a two-detector configuration, surface x-ray diffraction intensities were monitored simultaneously at the (0 0 1/2) specular and the (0 1 1/2) off-specular truncation rod positions. Abrupt intensity changes in both the specular and off-specular rods after laser pulses indicated prompt crystallization into SrTiO3 layers followed by slower intra- and interlayer surface rearrangements on time scales of seconds. Specular rod intensity oscillations indicated layer-by-layer growth, while off-specular rod intensity measurements suggested the presence of transient in-plane lattice distortions for depositions above 600 °C.

  9. Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Fattahi, Hanieh

    2016-10-01

    This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 ?m to more than 10 ?m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.

  10. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    NASA Astrophysics Data System (ADS)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  11. Integrated high-order surface diffraction gratings for diode lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A

    2015-12-31

    High-order surface diffraction gratings acting as a distributed Bragg reflector (DBR) in mesa stripe semiconductor lasers (λ = 1030 nm) have been studied theoretically and experimentally. Higher order interfering radiation modes (IRMs), which propagate off the plane of the waveguide, have been shown to have a crucial effect on the reflection and transmission spectra of the DBR. The decrease in the reflectivity of the DBR in response to the increase in the diffraction efficiency of these modes may reach 80% and more. According to theoretical analysis results, the intensity of the higher order IRMs is determined by the geometry ofmore » the DBR groove profile. Experimental data demonstrate that the noncavity modes are responsible for parasitic light leakage losses in the laser cavity. It has been shown that, in the case of nonoptimal geometry of the grating groove profile, the overall external differential quantum efficiency of the parasitic laser emission may exceed 45%, which is more than half of the laser output power. The optimal geometry of the DBR groove profile is trapezoidal, with the smallest possible lower base. Experimental evidence has been presented that this geometry considerably reduces the power of the higher order IRMs and minimises the parasitic light leakage loss. (lasers)« less

  12. Ring-Gaussian laser pulse filamentation in a self-induced diffraction waveguide

    NASA Astrophysics Data System (ADS)

    Geints, Yu E.; Zemlyanov, A. A.

    2017-10-01

    Self-action in air of a high-power femtosecond laser pulse with the spatial form of a ring-Gaussian beam (‘dressed’ beam) is studied theoretically. Pulse self-focusing and filamentation is analyzed in detail through the numerical solution of the spectral propagation equation, taking into account medium optical nonlinearity and plasma generation. Pulse propagation dynamics and energy fluxes inside the beam are visualized by means of averaged diffraction ray tracing. We clearly show that, in terms of diffraction optics, the outer ring forms a specific nonmaterial diffractive waveguide, favoring long-range self-channeling of the central part of a beam by delivering optical energy to a filament. The spatial robustness and stability of such diffractive waveguides strongly depends on the energy stored in the ring, as well as on its position relative to the beam axis. The striking advantage of such ‘dressed’ beams is their reduced angular divergence during plasma-free (post-filamentation) evolution.

  13. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  14. Fluids and their Effect on Measurements on Lunar Soil Particle size Distribution

    NASA Technical Reports Server (NTRS)

    Cooper, B. L.; McKay, D. S.; Wallace, W. T.; Gonzalex, C. P.

    2011-01-01

    From the late 1960s until now, lunar soil particle size distributions have typically been determined by sieving sometimes dry, and at other times with fluids such as water or Freon. Laser diffraction instruments allow rapid assessment of particle size distribution, and eventually may replace sieve measurements. However, when measuring lunar soils with laser diffraction instruments, care must be taken in choosing a carrier fluid that is compatible with lunar material. Distilled water is the fluid of choice for laser diffraction measurements of substances when there is no concern about adverse effects of water on the material being measured. When we began our analyses of lunar soils using laser diffraction, our first measurements were made with distilled water. Although the medians that we measured were comparable to earlier sieve data, the means tended to be significantly larger than expected. The effect of water vapor on lunar soil has been studied extensively. The particles interact strongly with water vapor, and subsequent adsorptions of nitrogen showed that the specific surface area increased as much as threefold after exposure to moisture. It was observed that significant porosity had been generated by this exposure to water vapor. The possibility of other physical changes in the surfaces of the grains was not studied.

  15. Effect of Nd:YAG laser capsulotomy on refraction in multifocal apodized diffractive pseudophakia.

    PubMed

    Vrijman, Violette; van der Linden, Jan Willem; Nieuwendaal, Carla P; van der Meulen, Ivanka J E; Mourits, Maarten P; Lapid-Gortzak, Ruth

    2012-08-01

    To evaluate the effect on refraction of neodymium:YAG (Nd:YAG) laser posterior capsulotomy for posterior capsule opacification (PCO), and to evaluate the correlation between automated and subjective refraction in multifocal apodized diffractive pseudophakia. A retrospective study of 75 pseudophakic eyes (50 patients) with multifocal apodized diffractive pseudophakia, treated for PCO with Nd:YAG laser posterior capsulotomy, was performed. Pre- and postintervention values of refractive and visual parameters were compared. The outcomes of autorefraction and subjective refraction were also compared. Uncorrected and corrected distance visual acuity improved significantly after Nd:YAG capsulotomy (P<.001). No significant changes were noted in defocus equivalent, astigmatic power vectors J(0) and J(45), and overall blurring strength in subjective refraction and autorefraction. Spherical equivalent changed significantly in autorefraction (P=.008), but not in subjective refraction. Autorefraction and subjective refraction were highly correlated in spherical equivalent, defocus equivalent, and blurring strength (r(2)>0.59). In approximately 7% of eyes, a change of more than 0.50 diopters in spherical equivalent in subjective refraction occurred. In most cases, Nd:YAG laser capsulotomy in patients with multifocal pseudophakia did not result in a change in refraction. However, 7% of eyes experienced a significant change in subjective refraction. Autorefraction correlated well with subjective refraction in apodized diffractive multifocal IOLs. Copyright 2012, SLACK Incorporated.

  16. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    PubMed

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Reflective diffractive beam splitter for laser interferometers.

    PubMed

    Fahr, Stephan; Clausnitzer, Tina; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2007-08-20

    The first realization of a reflective 50/50 beam splitter based on a dielectric diffraction grating suitable for high-power laser interferometers is reported. The beam splitter is designed to operate at a wavelength of 1064 nm and in s polarization. To minimize the performance degradation of the device that is due to fabrication fluctuations, during the design process special attention was paid to achieve high fabrication tolerances especially of groove width and depth. Applying this beam splitter to high-power laser interferometers, such as future gravitational wave detectors, will avoid critical thermal lensing effects and allow for the free choice of substrate materials.

  18. Dynamic correction of the laser beam coordinate in fabrication of large-sized diffractive elements for testing aspherical mirrors

    NASA Astrophysics Data System (ADS)

    Shimansky, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-05-01

    This paper presents a method of improving the accuracy of a circular laser system in fabrication of large-diameter diffractive optical elements by means of a polar coordinate system and the results of their use. An algorithm for correcting positioning errors of a circular laser writing system developed at the Institute of Automation and Electrometry, SB RAS, is proposed and tested. Highprecision synthesized holograms fabricated by this method and the results of using these elements for testing the 6.5 m diameter aspheric mirror of the James Webb space telescope (JWST) are described..

  19. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

  20. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  1. Monolithic hybrid optics for focusing ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-03-01

    Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.

  2. A Simple Diffraction Experiment Using Banana Stem as a Natural Grating

    ERIC Educational Resources Information Center

    Aji, Mahardika Prasetya; Karunawan, Jotti; Chasanah, Widyastuti Rochimatun; Nursuhud, Puji Iman; Wiguna, Pradita Ajeng; Sulhadi

    2017-01-01

    A simple diffraction experiment was designed using banana stem as natural grating. Coherent beams of lasers with wavelengths of 632.8 nm and 532 nm that pass through banana stem produce periodic diffraction patterns on a screen. The diffraction experiments were able to measure the distances between the slit of the banana stem, i.e. d = (28.76 ±…

  3. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  4. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  5. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.

    PubMed

    Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R

    2008-09-29

    We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.

  6. Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2014-03-01

    We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.

  7. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  8. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vectormore » influencing LIPSS formation on bulk surfaces.« less

  9. Diffraction properties of opaque disks outside and inside a laser cavity

    NASA Astrophysics Data System (ADS)

    de Saint Denis, Renaud; Passilly, Nicolas; Fromager, Michael; Cagniot, Emmanuel; Ait-Ameur, Kamel

    2008-02-01

    Diffraction of symmetrical Laguerre-Gauss TEMp0 beams incident on an opaque disk known as a stop is considered. The near- and far-field patterns are studied. Thanks to zero-field occluding, conversion from TEM10 beam to dark hollow beam can be achieved with better efficiency than from a TEM00 beam. It is shown that the fundamental mode of a laser cavity including a diaphragm and a stop can be TEM00- or TEM10-like in shape depending on their size. This result is interpreted from the new divergence hierarchy, which characterises the diffracted TEMp0 beams emerging from the stop.

  10. Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.

    2014-01-01

    In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.

  11. Inquiry with Laser Printer Diffraction Gratings

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.

    2007-01-01

    The pages of "The Physics Teacher" have featured several clever designs for homemade diffraction gratings using a variety of materials--cloth, lithographic film, wire, compact discs, parts of aerosol spray cans, and pseudoliquids and pseudosolids. A different and inexpensive method I use to make low-resolution diffraction gratings takes advantage…

  12. Crystallographic data processing for free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show thatmore » the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.« less

  13. Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a {\\chi^{(2)}} photonic lattice with hexagonal domains

    NASA Astrophysics Data System (ADS)

    Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.

    2018-04-01

    The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.

  14. Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan,S.; Garboczi, E.; Fowler, D.

    Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leadingmore » method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.« less

  15. Development and beyond: Strategy for long-term maintenance of an online laser diffraction particle size method in a spray drying manufacturing process.

    PubMed

    Medendorp, Joseph; Bric, John; Connelly, Greg; Tolton, Kelly; Warman, Martin

    2015-08-10

    The purpose of this manuscript is to present the intended use and long-term maintenance strategy of an online laser diffraction particle size method used for process control in a spray drying process. A Malvern Insitec was used for online particle size measurements and a Malvern Mastersizer was used for offline particle size measurements. The two methods were developed in parallel with the Mastersizer serving as the reference method. Despite extensive method development across a range of particle sizes, the two instruments demonstrated different sensitivities to material and process changes over the product lifecycle. This paper will describe the procedure used to ensure consistent alignment of the two methods, thus allowing for continued use of online real-time laser diffraction as a surrogate for the offline system over the product lifecycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Hybrid Modes in Long Wavelength Free Electron Lasers

    DTIC Science & Technology

    2010-12-01

    response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and...diffraction along one axis, allowing free space diffraction along the other axis. We continue the analysis of the relativistic electron beam, co-propagating...control diffraction along one axis, allowing free space diffraction along the other axis. We continue the analysis of the relativistic electron beam, co

  17. Diffraction of a Gaussian Beam by a Spherical Obstacle

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Hovenac, Edward A.

    1993-01-01

    The Kirchhoff integral for diffraction in the near-forward direction is derived from the exact solution of the electromagnetic boundary value problem of a focused Gaussian laser beam incident on a spherical particle. The diffracted intensity in the vicinity of the particle is computed and the way in which the features of the diffraction pattern depend on the width of the Gaussian beam is commented on.

  18. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE PAGES

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...

    2017-09-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  19. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  20. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Lowell; Department of Earth Sciences, Montana State University, Bozeman, Montana 59717; Kanitpanyacharoen, Waruntorn

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate andmore » optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.« less

  1. Method of calculating retroreflector-array transfer functions. [laser range finders

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1978-01-01

    Techniques and equations used in calculating the transfer functions to relate the observed return laser pulses to the center of mass of the Lageos satellite retroflector array, and for most of the retroreflector-equipped satellites now in orbit are described. The methods derived include the effects of coherent interference, diffraction, polarization, and dihedral-angle offsets. Particular emphasis is given to deriving expressions for the diffraction pattern and active reflecting area of various cube-corner designs.

  2. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  3. Structure determination of molecules in an alignment laser field by femtosecond photoelectron diffraction using an X-ray free-electron laser

    PubMed Central

    Minemoto, Shinichirou; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Nakajima, Kyo; Niki, Kaori; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yoshida, Shintaro; Yagishita, Akira

    2016-01-01

    We have successfully determined the internuclear distance of I2 molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I2 molecules in an alignment Nd:YAG laser field of 6 × 1011 W/cm2 is elongated by from 0.18 to 0.30 Å “in average” relatively to the equilibrium internuclear distance of 2.666 Å. Thus, the present experiment constitutes a critical step towards the goal of femtosecond imaging of chemical reactions and opens a new direction for the study of ultrafast chemical reaction in the gas phase. PMID:27934891

  4. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  5. Measuring Slit Width and Separation in a Diffraction Experiment

    ERIC Educational Resources Information Center

    Gan, K. K.; Law, A. T.

    2009-01-01

    We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…

  6. Laser drive development for the APS Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert

    2013-06-01

    The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  8. Laser-deposited thin films of biocompatible ceramic

    NASA Astrophysics Data System (ADS)

    Jelinek, Miroslav; Olsan, V.; Jastrabik, Lubomir; Dostalova, Tatjana; Himmlova, Lucia; Kadlec, Jaromir; Pospichal, M.; Simeckova, M.; Fotakis, Costas

    1995-03-01

    Thin films of biocompatible materials such as hydroxylapatite (HA) - Ca10 (PO4)6(OH)2 were deposited by laser ablation technique. The films of HA were created on Ti substrates by KrF laser. The layers were deposited in vacuum, in pure H2O vapors (pressure 2 X 10-3 mbar - 2 X 10-1 mbar), and in Ar/H2O vapor mixture. Influence of laser energy density ET (3 Jcm-2, 13 Jcm-2) and substrate temperature Tg (500 degree(s)C - 760 degree(s)C) on the film parameters was studied. Two different technological processes were used for HA target preparation. Films and targets were characterized by Rutherford backscattering analysis (RBS), particle induced x-ray emission (PIXE), x-ray diffraction (XRD), scanning electron microscopy (SEM) and by Knoop microhardness and scratch test. The best crystalline HA films were reached in the mixture of Ar/H2O. Higher Tg had to be used for such deposition. Higher Tg was also preferable from the point of film microhardness. Adhesion of films to the substrates in the range of tens of Newtons was measured. The preliminary results of in vitro experiments of films biotolerance and resorbability are also presented.

  9. Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique

    NASA Astrophysics Data System (ADS)

    Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi

    2018-05-01

    Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.

  10. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  11. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  12. Collimation testing using slit Fresnel diffraction

    NASA Astrophysics Data System (ADS)

    Luo, Xiaohe; Hui, Mei; Wang, Shanshan; Hou, Yinlong; Zhou, Siyu; Zhu, Qiudong

    2018-03-01

    A simple collimation testing method based on slit Fresnel diffraction is proposed. The method needs only a CMOS and a slit with no requirement in dimensional accuracy. The light beam to be tested diffracts across the slit and forms a Fresnel diffraction pattern received by CMOS. After analysis, the defocusing amount and the distance between the primary peak point and secondary peak point of diffraction pattern fulfill an expression relationship and then the defocusing amount can be deduced from the expression. The method is applied to both the coherent beam and partially coherent beam, and these two beams are emitted from a laser and light-emitting diode (LED) with a spectrum width of about 50 nm in this paper. Simulations show that the wide spectrum of LED has the effect of smooth filtering to provide higher accuracy. Experiments show that the LED with a spectrum width of about 50 nm has a lower limitation error than the laser and can achieve up to 58.1601 μm with focal length 200 mm and slit width 15 mm.

  13. Low-threshold, CW, all-solid-state Ti:Al2O3 laser

    NASA Technical Reports Server (NTRS)

    Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.

    1991-01-01

    A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.

  14. Laser Doppler velocity measurement without directional ambiguity by using frequency shifted incident beams

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.

    1970-01-01

    Laser Doppler heterodyning system for velocity measurements without directional ambiguity, employing incident beams of different frequencies through rotating diffraction grating or Bragg cell application

  15. The dynamics of soil aggregate breakdown in water in response to landuse as measured with laser diffraction technique

    NASA Astrophysics Data System (ADS)

    Oyedele, D. J.; Pini, R.; Sparvoli, E.; Scatena, M.

    2012-04-01

    The Mastersizer 2000G (Malvern Instruments) Diffraction Instrument was used to assess and quantify the breakdown of soil aggregates and compute wet aggregate stability indices. The study was aimed at evolving a novel rapid method of determining soil aggregate stability. Bulk surface (0-15 cm) soil samples were collected under 5 different land uses in the Teaching and Resrach Farm of Obafemi Awolowo University, Ile-Ife, Nigeria. About 0.5g of the soils aggregates (0.5 -1 mm diameter) were evaluated in the laser diffractometer with the stirrer operated at 500 rpm and the pump at 1800 rpm. The different size aggregates and particles of sand silt and clay were quantified periodically. Water stable aggregates greater than 250 µm (WSA>250), water stable aggregates less than 250 µm (WSA<250), water dispersible clay index (WDI), and mean volume diameter (MVD) among others were computed from the laser diffraction data. The values were compared with the classical Yoder wet sieving technique. The WSA>250 was significantly higher on the soils under Forest (FR), Cacao (CC), Teak (TK) and Oil Palm (OP) plantations, while it was significantly lowest under no-tillage (NT) and continuous cultivation (CT). The pasture (PD) was not significantly different from either the cultivated and the non-cultivated soils. Conversely, the WSA<250 and water dispersible clay index was highest in the cultivated soils (CT and NT) and lowest in the non-cultivated soils (FR, TK, CC and OP) while the PD was in-between. The MVD also followed a similar trend as the WSA>250. The wet sieving water stable aggregates index (WSI>250) was significantly correlated with WSA>250 (r = 0.75), MVD (r = 0.75), WDI (r = -0.68) and WSA<250 (r = - 0.73). All the laser diffraction measured aggregation indices were significantly correlated with the organic matter contents of the soils. Thus the laser diffraction promises a rapid and comprehensive method of evaluation of soil aggregate stability.

  16. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.

    PubMed

    Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R

    2017-11-27

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

  17. A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Wang, Jun; Dong, Xiucheng

    2013-02-01

    In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.

  18. On the nature of laser polariton tracks in soap films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Startsev, Aleksandr V; Stoilov, Yurii Yu

    2004-06-30

    The results of the study of narrow laser tracks in soap films with the divergence below the diffraction-limited value are presented, and the mechanism of formation of narrow channels (spatial polariton solitons) based on laser dielectrophoresis in films is proposed. (nonlinear optical phenomena)

  19. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  20. Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.

    2017-12-01

    We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less

  2. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    NASA Astrophysics Data System (ADS)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  3. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  4. High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser

    NASA Astrophysics Data System (ADS)

    Gallego, Sergi; Ortuno, Manuel; Garcia, Celia; Neipp, Cristian; Belendez, Augusto; Pascual, Inmaculada V.

    2004-09-01

    In order to achieve higher diffraction efficiencies of the volume gratings stored in acrylamide based photopolymer, we introduce in the photopolymer a crosslinker (N,N'methylene-bis-acrylamide). The presence of this component increase the rate polymerization and the modulation of refraction index. The recording was performed using a holographic copying process. The original was a grating of 1000 lines/mm processed using silver halide sensitized gelatine, with diffraction efficiency around 50 % for a reconstruction wavelength of 532 nm. The main beam was split in two secondary beams by the original grating, with an intensity ratio 1:1. The results obtained using the new composition of material are compared with the composition without crosslinker. In the other hand the no linearity of the material's response is also studied comparing the energetic sensitivity, diffraction efficiencies and index modulation of gratings recorded with pulsed and continuous laser. This study is realized fitting the angular scan of each grating using Kogelnik's theory. The gratings are recorded with wavelength of 532 nm when pulsed exposure is used and with wavelength of 514 nm when continues exposure is used. Using pulsed laser at 532 nm the photopolymer without crosslinker presents the diffraction efficiencies lightly smaller than 60%. In the other hand when the crosslinker has been introduced in photopolymer composition, the diffraction efficiencies achieves are higher than 85 %.

  5. Verification of the Uncertainty Principle by Using Diffraction of Light Waves

    ERIC Educational Resources Information Center

    Nikolic, D.; Nesic, Lj

    2011-01-01

    We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the…

  6. Miniature lasers: Is metal a friend or foe?

    NASA Astrophysics Data System (ADS)

    Noginov, Mikhail A.; Khurgin, Jacob B.

    2018-02-01

    A thorough study comparing the performance of more than a hundred photonic and plasmonic lasers concludes that the latter are advantageous when their cavity volumes are close to the diffraction limit.

  7. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  8. Parallel processing of embossing dies with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald

    2018-02-01

    Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.

  9. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  10. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    NASA Astrophysics Data System (ADS)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  11. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-01-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  12. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    PubMed Central

    Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.

    2017-01-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713

  13. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  14. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  15. Two-dimensional optimization of free electron laser designs

    DOEpatents

    Prosnitz, Donald; Haas, Roger A.

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  16. Industrial integration of high coherence tunable VECSEL in the NIR and MIR

    NASA Astrophysics Data System (ADS)

    Denet, Stéphane; Chomet, Baptiste; Lecocq, Vincent; Ferrières, Laurence; Myara, Mikhaël.; Cerutti, Laurent; Sagnes, Isabelle; Garnache, Arnaud

    2016-03-01

    Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8- 1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency micro-chip, intracavity element free, patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high coherence with a low divergence diffraction limited TEM00 beam, class A dynamics with Relative Intensity Noise as low as -140dB/Hz and at shot noise level above 200MHz RF frequency (up to 160GHz), free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), linear polarization (50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence wavelength tunability performances and integration.

  17. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  18. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  19. Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?

    PubMed Central

    Garcia-Medina, Jose Javier; del Rio-Vellosillo, Monica; Santos-Bueso, Enrique

    2015-01-01

    The visual outcome obtained after cataract removal may progressively decline because of posterior capsular opacification (PCO). This condition can be treated by creating an opening in the posterior lens capsule by Nd:YAG laser capsulotomy. PCO optical imperfections cause several light reflection, refraction, and diffraction phenomena, which may interfere with the functional and structural tests performed in different ocular locations for the diagnosis and follow-up of ocular disease, like macular and optic nerve diseases. Some parameters measured by visual field examinations, scanning laser polarimetry, and optical coherence tomography (OCT) have changed after PCO removal. Imaging quality also changes following capsulotomy. Consequently, the results of ancillary tests in pseudophakic eyes for studying ocular diseases like glaucoma or maculopathies should be correlated with other clinical examinations, for example, slit-lamp biomicroscopy or funduscopy. If PCO is clinically significant, a new baseline should be set for future comparisons following capsulotomy when using automated perimetry and scanning laser polarimetry. To perform OCT in the presence of PCO, reliable examinations (considering signal strength) apparently guarantee that measurements are not influenced by PCO. PMID:26167499

  20. Ground-based deep-space LADAR for satellite detection: A parametric study

    NASA Astrophysics Data System (ADS)

    Davey, Kevin F.

    1989-12-01

    The minimum performance requirements are determined of a ground based infrared LADAR designed to detect deep space satellites, and a candidate sensor design is presented based on current technology. The research examines LADAR techniques and detection methods to determine the optimum LADAR configuration, and then assesses the effects of atmospheric transmission, background radiance, and turbulence across the infrared region to find the optimum laser wavelengths. Diffraction theory is then used in a parametric analysis of the transmitted laser beam and received signal, using a Cassegrainian telescope design and heterodyne detection. The effects of beam truncation and obscuration, heterodyne misalignment, off-boresight detection, and image-pixel geometry are also included in the analysis. The derived equations are then used to assess the feasibility of several candidate designs under a wide range of detection conditions including daylight operation through cirrus. The results show that successful detection is theoretically possible under most conditions by transmitting a high power frequency modulated pulse train from an isotopic 13CO2 laser radiating at 11.17 micrometers, and utilizing post-detection integration and pulse compression techniques.

  1. Design and characteristic analysis of shaping optics for optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, D.; Latham, W. P.; Kar, A.

    2005-08-01

    Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. The refractive axicon system has been designed to generating a collimated annular beam. In this article, calculations of intensity distributions produced by this refractive system are made by evaluating the Kirchhoff-Fresnel diffraction. It is shown that the refractive system is able to transform a Gaussian beam into a full Gaussian annular beam. The base angle of the axicon lens, input laser beam diameter and intensity profiles are found to be important factors for the axcion refractive system. Their effects on the annular beam profiles are analyzed based on the numerical solutions of the diffraction patterns.

  2. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  3. Lasers with intra-cavity phase elements

    NASA Astrophysics Data System (ADS)

    Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor

    2018-02-01

    Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.

  4. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  5. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  6. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    PubMed Central

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  7. Molecular Switch for Sub-Diffraction Laser Lithography by Photoenol Intermediate-State Cis-Trans Isomerization.

    PubMed

    Mueller, Patrick; Zieger, Markus M; Richter, Benjamin; Quick, Alexander S; Fischer, Joachim; Mueller, Jonathan B; Zhou, Lu; Nienhaus, Gerd Ulrich; Bastmeyer, Martin; Barner-Kowollik, Christopher; Wegener, Martin

    2017-06-27

    Recent developments in stimulated-emission depletion (STED) microscopy have led to a step change in the achievable resolution and allowed breaking the diffraction limit by large factors. The core principle is based on a reversible molecular switch, allowing for light-triggered activation and deactivation in combination with a laser focus that incorporates a point or line of zero intensity. In the past years, the concept has been transferred from microscopy to maskless laser lithography, namely direct laser writing (DLW), in order to overcome the diffraction limit for optical lithography. Herein, we propose and experimentally introduce a system that realizes such a molecular switch for lithography. Specifically, the population of intermediate-state photoenol isomers of α-methyl benzaldehydes generated by two-photon absorption at 700 nm fundamental wavelength can be reversibly depleted by simultaneous irradiation at 440 nm, suppressing the subsequent Diels-Alder cycloaddition reaction which constitutes the chemical core of the writing process. We demonstrate the potential of the proposed mechanism for STED-inspired DLW by covalently functionalizing the surface of glass substrates via the photoenol-driven STED-inspired process exploiting reversible photoenol activation with a polymerization initiator. Subsequently, macromolecules are grown from the functionalized areas and the spatially coded glass slides are characterized by atomic-force microscopy. Our approach allows lines with a full-width-at-half-maximum of down to 60 nm and line gratings with a lateral resolution of 100 nm to be written, both surpassing the diffraction limit.

  8. Prediction of the light scattering patterns from bacteria colonies by a time-resolved reaction-diffusion model and the scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2009-05-01

    In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.

  9. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized to see the effects on melt-quenching, cladding/alloying (using the pre-placed powder technique), and cutting. Key parameters such laser power, pulse repetition frequency, process speed, and shield gas flow and the observed process characteristics such as plasma formation during laser/material interaction, have been reported for all experimental runs. Preliminary materials characterization of select samples was carried out using various microscopy, diffraction, spectroscopy and microhardness test methods, and reported. Select nitridation results of Ti-6AI-4V using nitrogen assist gas indicated the successful formation of hard titanium nitrides with much higher hardness (2180 kg/sq mm). A cost-effective and simple powder delivery system has been successfully fabricated for the further experimentation in Phase H.

  10. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  11. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  12. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    NASA Astrophysics Data System (ADS)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  13. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong

    2018-06-01

    A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.

  14. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  15. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  16. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    PubMed Central

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-01-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems. PMID:27659203

  17. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-23

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the "diffract and destroy" approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  18. Method and apparatus for reducing diffraction-induced damage in high power laser amplifier systems

    DOEpatents

    Campillo, Anthony J.; Newnam, Brian E.; Shapiro, Stanley L.; Terrell, Jr., N. James

    1976-01-01

    Self-focusing damage caused by diffraction in laser amplifier systems may be minimized by appropriately tailoring the input optical beam profile by passing the beam through an aperture having a uniform high optical transmission within a particular radius r.sub.o and a transmission which drops gradually to a low value at greater radii. Apertures having the desired transmission characteristics may readily be manufactured by exposing high resolution photographic films and plates to a diffuse, disk-shaped light source and mask arrangement.

  19. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

    PubMed

    Ekeberg, Tomas; Svenda, Martin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; Claverie, Jean-Michel; Hantke, Max; Jönsson, Olof; Nettelblad, Carl; van der Schot, Gijs; Liang, Mengning; DePonte, Daniel P; Barty, Anton; Seibert, M Marvin; Iwan, Bianca; Andersson, Inger; Loh, N Duane; Martin, Andrew V; Chapman, Henry; Bostedt, Christoph; Bozek, John D; Ferguson, Ken R; Krzywinski, Jacek; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Kimmel, Nils; Hajdu, Janos

    2015-03-06

    We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.

  20. Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.

    2017-01-01

    The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.

  1. Theory of time-resolved x-ray photoelectron diffraction from transient conformational molecules

    NASA Astrophysics Data System (ADS)

    Tsuru, Shota; Sako, Tokuei; Fujikawa, Takashi; Yagishita, Akira

    2017-04-01

    We formulate x-ray photoelectron diffraction (XPD) from molecules undergoing photochemical reactions induced by optical laser pulses, and then apply the formula to the simulation of time-dependent XPD profiles from both dissociating I2 molecules and bending C S2 molecules. The dependence of nuclear wave-packet motions on the intensity and shape of the optical laser pulses is examined. As a result, the XPD simulations based on such nuclear wave-packet calculations are observed to exhibit characteristic features, which are compared with the XPD profiles due to classical trajectories of nuclear motions. The present study provides a methodology toward creating "molecular movies" of ultrafast photochemical reactions by means of femtosecond XPD with x-ray free-electron lasers.

  2. Laser diode combining for free space optical communication

    NASA Technical Reports Server (NTRS)

    Mecherle, G. Stephen

    1986-01-01

    The maximization of photon delivery to a distant collector in free space optical communications systems calls for a laser diode-combining technique employing wavelength and/or polarization as the bases of its operation. Design considerations for such a combiner encompass high throughput efficiency, diffraction-limited angular divergence, and reasonable volume constraints. Combiners are presently found to require a generalized Strehl ratio concept which includes relative source misalignment; diffraction grating combiners may have a limited number of laser sources which can meet spectral requirements. Methods for the incorporation of a combiner into a communication system are compared. Power combining is concluded to be the best tradeoff of performance and complexity for all systems, except those that are severely limited by either background radiation or component bandwidth.

  3. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  4. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE PAGES

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...

    2017-02-13

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  5. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  6. Sub-diffraction Laser Synthesis of Silicon Nanowires

    PubMed Central

    Mitchell, James I.; Zhou, Nan; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan

    2014-01-01

    We demonstrate synthesis of silicon nanowires of tens of nanometers via laser induced chemical vapor deposition. These nanowires with diameters as small as 60 nm are produced by the interference between incident laser radiation and surface scattered radiation within a diffraction limited spot, which causes spatially confined, periodic heating needed for high resolution chemical vapor deposition. By controlling the intensity and polarization direction of the incident radiation, multiple parallel nanowires can be simultaneously synthesized. The nanowires are produced on a dielectric substrate with controlled diameter, length, orientation, and the possibility of in-situ doping, and therefore are ready for device fabrication. Our method offers rapid one-step fabrication of nano-materials and devices unobtainable with previous CVD methods. PMID:24469704

  7. Multipurpose end-station for coherent diffraction imaging and scattering at FERMI@Elettra free-electron laser facility.

    PubMed

    Capotondi, Flavio; Pedersoli, Emanuele; Bencivenga, Filippo; Manfredda, Michele; Mahne, Nicola; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco; Demidovich, Alexander; Nikolov, Ivaylo; Danailov, Miltcho; Masciovecchio, Claudio; Kiskinova, Maya

    2015-05-01

    The Diffraction and Projection Imaging (DiProI) beamline at FERMI, the Elettra free-electron laser (FEL), hosts a multi-purpose station that has been opened to users since the end of 2012. This paper describes the core capabilities of the station, designed to make use of the unique features of the FERMI-FEL for performing a wide range of static and dynamic scattering experiments. The various schemes for time-resolved experiments, employing both soft X-ray FEL and seed laser IR radiation are presented by using selected recent results. The ongoing upgrade is adding a reflection geometry setup for scattering experiments, expanding the application fields by providing both high lateral and depth resolution.

  8. Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluckiger, L.; Rupp, D.; Adolph, M.

    The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less

  9. Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals

    DOE PAGES

    Fluckiger, L.; Rupp, D.; Adolph, M.; ...

    2016-04-13

    The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less

  10. Coherent communication link using diode-pumped lasers

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Wallace, Richard W.

    1989-01-01

    Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.

  11. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove.

    PubMed

    Kafka, K R P; Austin, D R; Li, H; Yi, A Y; Cheng, J; Chowdhury, E A

    2015-07-27

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.

  12. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Weina; Jiang, Lan; Li, Xiaowei, E-mail: lixiaowei@bit.edu.cn

    We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence ofmore » the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.« less

  13. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  14. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  15. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  16. 8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser

    DOE PAGES

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...

    2017-11-13

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  17. 3.1 W narrowband blue external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  18. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  19. Impacts of excimer laser annealing on Ge epilayer on Si

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  20. Dynamic molecular structure retrieval from low-energy laser-induced electron diffraction spectra

    NASA Astrophysics Data System (ADS)

    Vu, Dinh-Duy T.; Phan, Ngoc-Loan T.; Hoang, Van-Hung; Le, Van-Hoang

    2017-12-01

    A recently developed quantitative rescattering theory showed that a laser-free elastic cross section can be separated from laser-induced electron diffraction (LIED) spectra. Based upon this idea, Blaga et al investigated the possibility of reconstructing molecular structure from LIED spectra (2012 Nature 483 7388). In the above study, an independent atoms model (IAM) was used to interpret high-energy electron-molecule collisions induced by a mid-infrared laser. Our research aims to extend the application range of this structural retrieval method to low-energy spectra induced by more common near-infrared laser sources. The IAM is insufficient in this case, so we switch to a more comprehensive model—the multiple scattering (MS) theory. From the original version concerning only neutral targets, we upgrade the model so that it is compatible with electron-ion collisions at low energy. With available LIED experiment data of CO2 and O2, the upgraded MS is shown to be greatly effective as a tool for molecular imaging from spectra induced by a near-infrared laser. The captured image is at about 2 fs after the ionization, shorter than the period 4-6 fs by using the mid-infrared laser in Blaga’s experiment.

  1. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    PubMed Central

    Vanacore, Giovanni M.; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H.

    2017-01-01

    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible. PMID:28852685

  2. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  3. High-intensity fibre laser design for micro-machining applications

    NASA Astrophysics Data System (ADS)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  4. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  5. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;

  6. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  7. Laser fabrication of diffractive optical elements based on detour-phase computer-generated holograms for two-dimensional Airy beams.

    PubMed

    Călin, Bogdan-Ştefăniţă; Preda, Liliana; Jipa, Florin; Zamfirescu, Marian

    2018-02-20

    We have designed, fabricated, and tested an amplitude diffractive optical element for generation of two-dimensional (2D) Airy beams. The design is based on a detour-phase computer-generated hologram. Using laser ablation of metallic films, we obtained a 2  mm×2  mm diffractive optical element with a pixel of 5  μm×5  μm and demonstrated a fast, cheap, and reliable fabrication process. This device can modulate 2D Airy beams or it can be used as a UV lithography mask to fabricate a series of phase holograms for higher energy efficiency. Tests according to the premise and an analysis of the transverse profile and propagation are presented.

  8. Femtosecond laser fabrication of sub-diffraction nanoripples on wet Al surface in multi-filamentation regime: High optical harmonics effects?

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2014-02-01

    Relief ripples with sub-diffraction periods (≈λlas/3, λlas/4) were produced on a aluminum surface immersed in water and irradiated in a multi-filamentation regime by focused 744 nm femtosecond laser pulses with highly supercritical, multi-GW peak powers. For the VUV (8.5 eV) surface plasmon resonance on the wet aluminum surface, such small-scale surface nanogratings can be produced by high - second and third - optical harmonics, coming to the surface from the optical filaments in the water layer. Then, the sub-diffraction surface ripples may appear through interference of their transverse electric fields with the longitudinal electric fields of their counterparts, scattered on the surface roughness and appeared as the corresponding high-energy, high-wavenumber surface polaritons.

  9. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.

  10. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    USGS Publications Warehouse

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  11. Design and fabrication of an elliptical micro-lens array with grating for laser safety

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.

    2015-10-01

    With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.

  12. History of Laser Weapon Research

    DTIC Science & Technology

    2012-01-01

    designed to damage, disable, or destroy targets with little or no collateral damage. Airborne Laser (ABL) (CO2) Chemical Oxygen The ABL C-130H aircraft ...mirrors. Weapons systems based on lasers and “ray guns,” long a staple of science fiction, have captured the imagination of people everywhere. But...waves (millimeters to centimeters), with wavelengths 10,000 times longer than lasers. Diffraction of any electromagnetic radia- tion beam is based

  13. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; Kalainathan, S.

    2012-03-01

    Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm 2 and 32 pulses/mm 2. Residual stress evaluation based on X-ray diffraction sin 2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.

  14. Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies.

    PubMed

    Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C

    2017-07-13

    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.

  15. Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2017-02-01

    Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)

  16. Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.

    2017-08-01

    Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the roll direction using a laser-based technique. Simultaneous x-ray illumination of both gratings with an SPO module demonstrated that we can exceed Arcus grating-to-grating alignment requirements without x rays.

  17. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  18. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract.

    PubMed

    Bai, Wei; Spivak, David A

    2014-02-17

    The detection of viruses is of interest for a number of fields including biomedicine, environmental science, and biosecurity. Of particular interest are methods that do not require expensive equipment or trained personnel, especially if the results can be read by the naked eye. A new "double imprinting" method was developed whereby a virus-bioimprinted hydrogel is further micromolded into a diffraction grating sensor by using imprint-lithography techniques to give a "Molecularly Imprinted Polymer Gel Laser Diffraction Sensor" (MIP-GLaDiS). A simple laser transmission apparatus was used to measure diffraction, and the system can read by the naked eye to detect the Apple Stem Pitting Virus (ASPV) at concentrations as low as 10 ng mL(-1), thus setting the limit of detection of these hydrogels as low as other antigen-binding methods such as ELISA or fluorescence-tag systems. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE PAGES

    Popp, David; Loh, N. Duane; Zorgati, Habiba; ...

    2017-06-02

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  20. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popp, David; Loh, N. Duane; Zorgati, Habiba

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  1. Double diffraction in an atomic gravimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malossi, N.; Bodart, Q.; Merlet, S.

    2010-01-15

    We demonstrate the realization of a scheme for cold-atom gravimetry based on the recently demonstrated use of double-diffraction beam splitters [T. Leveque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, Phys. Rev. Lett. 103, 080405 (2009)], where the use of two retro-reflected Raman beams allows symmetric diffraction in +-(Planck constant/2pi)k{sub eff} momenta. Although in principle restricted to the case of zero Doppler shift, for which the two pairs of Raman beams are simultaneously resonant, such diffraction pulses can remain efficient on atoms with nonzero velocity, such as in a gravimeter, when the frequency of one of themore » two Raman laser sources is modulated. Such pulses are used to realize an interferometer insensitive to laser phase noise and some of the dominant systematics. This approach reduces the technical requirements and would allow the realization of a simple atomic gravimeter. A sensitivity of 1.2x10{sup -7}g per shot is demonstrated.« less

  2. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam

    PubMed Central

    Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.

    2014-01-01

    It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092

  3. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun

    2013-04-15

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residualmore » hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ► It is a new process for the forming of GH909 alloy via laser welding. ► The forming mechanism of laser welding defects in GH909 has been studied. ► It may be a means to improve the efficiency of aircraft engine production.« less

  4. Open data set of live cyanobacterial cells imaged using an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max F.; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  5. Optical diffraction interpretation: an alternative to interferometers

    NASA Astrophysics Data System (ADS)

    Bouillet, S.; Audo, F.; Fréville, S.; Eupherte, L.; Rouyer, C.; Daurios, J.

    2015-08-01

    The Laser MégaJoule (LMJ) is a French high power laser project that requires thousands of large optical components. The wavefront performances of all those optics are critical to achieve the desired focal spot shape and to limit the hot spots that could damage the components. Fizeau interferometers and interferometric microscopes are the most commonly used tools to cover the whole range of interesting spatial frequencies. Anyway, in some particular cases like diffractive and/or coated and/or aspheric optics, an interferometric set-up becomes very expensive with the need to build a costly reference component or a specific to-the-wavelength designed interferometer. Despite the increasing spatial resolution of Fizeau interferometers, it may even not be enough, if you are trying to access the highest spatial frequencies of a transmitted wavefront for instance. The method we developed is based upon laser beam diffraction intermediate field measurements and their interpretation with a Fourier analysis and the Talbot effect theory. We demonstrated in previous papers that it is a credible alternative to classical methods. In this paper we go further by analyzing main error sources and discussing main practical difficulties.

  6. Open data set of live cyanobacterial cells imaged using an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max F; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N Duane; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  7. Open data set of live cyanobacterial cells imaged using an X-ray laser

    PubMed Central

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R.N.C.; Hantke, Max F.; DePonte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S.D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-01-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences. PMID:27479514

  8. The continuous reinvention of diffractive optics

    NASA Astrophysics Data System (ADS)

    Kress, Bernard C.

    2004-02-01

    We show in this paper how the field of diffractive optics has moved during these past twenty years from academic research to main stream industry and consumer electronics. We analyze the main driving forces, the various enabling technologies and techniques for both design, fabrication and mass production of diffractive optics, and the successive markets in which this technology has been able to provide economically viable solutions to specific industrials needs. More specifically, we will see how niche applications making use of special features of diffractive optics seem to survive the applications involving the same diffractives, issued from the successive main technology driven investment bubbles.

  9. Combining Two-Photon Polymerisation and Photoreduction to Enable the Manufacture of Metamaterials at the Nanosale

    DTIC Science & Technology

    2016-01-13

    the laser beam spot. High-intensity laser irradiation expends the ions quickly in the vicinity of laser beam spot, and the resulting lack of metal...only in a narrow band within the laser beam profile, feature sizes can be below the diffraction limit of light. The mechanism of two-photon...femtosecond laser beam is focused into a photo-reactive resin containing a mixture of monomer and metal salt. A photoinitiator is excited by the

  10. Laser spot dynamics.

    PubMed

    Postan, A

    1987-03-01

    The dynamics of a pulsed laser spot covering an optical aperture of a receiver is analyzed. This analysis includes the influence of diffraction, jitter, atmospheric absorption and scattering, and atmospheric turbulence. A simple expression for the probability of response of the receiver illuminated by the laser spot is derived. It is found that this probability would not always increase as the laser beam divergence decreases. Moreover, this probability has an optimum (maximum) with respect to the laser beam divergence or rather with respect to the diameter of the transmitting optics.

  11. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures into fused and semi-fused PTFE materials and compounds for use in UV Reactors. The materials unique attributes provide an unusual but effective hybrid element, by combining Lambertian diffusion and spectral reflective attributes. This paper will provide examples of the applications where this technology could be applied and typical constructions. An overview of UV sources commonly used in water treatment, including high power UV lasers and solid state UV light sources will be discussed. The paper will summarize how beam shaping elements produced in PTFE materials would provide further benefits to the emerging water disinfection or treatment market.

  12. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  13. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  14. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael

    2014-02-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.

  15. Formation of 2D bright spatial solitons in lithium niobate with photovoltaic response and incoherent background

    NASA Astrophysics Data System (ADS)

    Pustozerov, A.; Shandarov, V.

    2017-12-01

    The influence of incoherent background illumination produced by light-emitting diodes (LED's) of different average wavelengths and laser diode emitting in blue region of visible on diffraction characteristics of narrow coherent light beams of He-Ne laser due to refractive index changes of Fe-doped lithium niobate sample are studied. It has been experimentally demonstrated that nonlinear diffraction of red beams with wavelength 633 nm and diameters on full width of half maximum (FWHM) near to 15 μm may be totally compensated using background light with average wavelengths 450 - 465 nm. To provide the necessary intensity of incoherent background, the combinations of spherical and cylindrical concave lenses with blue LED and laser diode module without focusing its beam have been used.

  16. Calibration of X-ray spectrometers for opacity experiments at the Orion laser facility (invited).

    PubMed

    Bentley, C; Allan, P; Brent, K; Bruce, N; Hoarty, D; Meadowcroft, A; Percival, J; Opie, C

    2016-11-01

    Accurately calibrated and characterised x-ray diagnostics are a key requirement in the fielding of experiments on the Orion laser where absolute measurements of x-ray emission are used to underpin the validity of models of emissivity and opacity. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. The ability to undertake diffraction crystal calibrations supports the successful outcome of these Orion experiments. This paper details the design and commissioning of a system to undertake these calibrations in the energy range 2.0 keV to approximately 8.5 keV. Improvements to the design are detailed which will extend the commissioned range of energies to below 1 keV.

  17. UV solid state laser ablation of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a smooth optical surface on the intraocular lens with no irregularities, observed with other wavelengths.

  18. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    PubMed

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  19. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  20. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellis, Nathaniel K.; Marcy, Geoffrey W., E-mail: Nate.tellis@gmail.com

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detectionmore » thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.« less

  1. Power amplification for petawatt Ti: Sapphire lasers: New strategies for high fluence pumping

    NASA Astrophysics Data System (ADS)

    Canova, F.; Chambaret, J.-P.

    2006-06-01

    One of the major bottlenecks when we pump large Ti:Sapphire crystals, to reach Petawatt level laser amplification, is the careful control of the spatial energy distribution of Nd:Glass pump lasers. Commercially available nanosecond Nd:Glass and Nd:YAG lasers exhibit poor spatial profile quality especially in the near and in the intermediate field, which can lead to local hot spots, responsible of damages in crystals, and parasitic transverse lasing enhancement, strongly dependent on the profile of the pump beam . For these reasons, it is mandatory to keep the pump beam intensity profile as flat as possible on the pumped crystal. To guarantee the best pumping conditions we are investigating the combined use of DOE (diffractive optical elements) and optical smoothing techniques. In parallel we are starting a study on laser induced damages mechanisms in crystal. With DOE and microlens arrays we plan to guarantee to the beam a supergaussian shape. Simulation and first experiments with both optical systems show that a flat top spatial profile with less than 10% fluctuations and a 8th order supergaussian is possible with the present technology.Optical smoothing will keep the beam free of hot spots. We especially focused on the smoothing techniques involving optical fibers. This is the first time to our knowledge that this technique is applied to the pumping beams for Ti:Sapphire systems. A deep study of laser-crystal interaction will allow us to fully understand the damages created by hot spots. The knowledge of the phenomena involved in laser damages on Ti:Sapphire is mandatory to control the pumping processes and thresholds. In conclusion, mixing the advantages of these different approaches to overcome this bottleneck will allow us to amplify in a safety way femtosecond laser beams to the Petawatt level using Ti:Sapphire crystals.

  2. Series production of next-generation guide-star lasers at TOPTICA and MPBC

    NASA Astrophysics Data System (ADS)

    Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Rehme, Paul; Wei, Daoping; Karpov, Vladimir; Ernstberger, Bernhard; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2014-07-01

    Large telescopes equipped with adaptive optics require high power 589-nm continuous-wave sources with emission linewidths of ~5 MHz. These guide-star lasers should be highly reliable and simple to operate and maintain for many years at the top of a mountain facility. After delivery of the first 20-W systems to our lead customer ESO, TOPTICA and MPBC have begun series production of next-generation sodium guide-star lasers. The chosen approach is based on ESO's patented narrow-band Raman fiber amplifier (RFA) technology [1]. A master oscillator signal from a TOPTICA 50-mW, 1178-nm diode laser, with stabilized emission frequency and linewidth of ~ 1 MHz, is amplified in an MPBC polarization-maintaining (PM) RFA pumped by a high-power 1120-nm PM fiber laser. With efficient stimulated Brillouin scattering suppression, an unprecedented 40 W of narrow-band RFA output has been obtained. This is spatially mode-matched into a patented resonant-cavity frequency doubler providing also the repumper light [2]. With a diffraction-limited output beam and doubling efficiencies < 80%, all ESO design goals have been easily fulfilled. Together with a wall-plug efficiency of < 3%, including all system controls, and a cooling liquid flow of only 5 l/min, the modular, turn-key, maintenance-free and compact system design allows a direct integration with a launch telescope. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for ground-based optical telescopes. Here we present a comparison of test results of the first batch of laser systems, demonstrating the reproducibility of excellent optical characteristics.

  3. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  4. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  5. Fluorescent holograms with albumin-acrylamide

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    We describe fluorescent holograms were made with photosensitive films of albumin (protein) quail, used as modified matrices. Albumin is mixed with acrylamide and eosin Y. Therefore, prepare a photosensitive emulsion and solid hydrated with the ability to phase transmission holograms and volume (VPH). Eosin Y is a fluorescent agent that acts as a photo-sensitizing dye which stimulates the polymerization of acrylamide. To record the interference pattern produced by two waves superimposed on the modified matrix, we use a He-Cd laser. To reconstruct the diffraction pattern is observed with He- Ne laser, λ = 632.8nm, the material is self-developing properties. Measure the diffraction efficiency of the diffracted orders (η[-1, +1]) as a function of exposure energy. We work with various thicknesses and measure the variation of the refractive index using the coupled wave theory of Kogelnik, the holographic gratings meet Bragg condition.

  6. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  7. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  8. Single slit interference made easy with a strand of hair and a laser

    NASA Astrophysics Data System (ADS)

    Messer, Rebecca

    2018-01-01

    Students can easily measure the width of a strand of their own hair with a monochromatic light source such as a laser. This inexpensive activity engages students in an application of single slit diffraction using Babinet's principle.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Yuta; Wang, Chuncheng; Le, Anh-Thu

    Here, we have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatialmore » resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-A°ngstrom spatial and few-ten femtosecond temporal resolutions.« less

  10. In situ measurement of the rheological properties and agglomeration on cementitious pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Hong; Yim, Hong Jae, E-mail: yimhj@knu.ac.kr; Ferron, Raissa Douglas

    2016-07-15

    Various factors influence the rheology of cementitious pastes, with the most important being the mixing protocol, mixture proportions, and mixture composition. This study investigated the influence of ground-granulated blast-furnace slag, on the rheological behavior of cementitious pastes. In tandem with the rheological measurements, fresh state microstructural measurements were conducted using three different techniques: A coupled stroboscope-rheometer, a coupled laser backscattering-rheometer, and a conventional laser diffraction technique. Laser diffraction and the coupled stroboscope-rheometer were not good measures of the in situ state of flocculation of a sample. Rather, only the laser backscattering technique allowed for in situ measurement on a highlymore » concentrated suspension (cementitious paste). Using the coupled laser backscattering-rheometer technique, a link between the particle system and rheological behavior was determined through a modeling approach that takes into account agglomeration properties. A higher degree of agglomeration was seen in the ordinary Portland cement paste than pastes containing the slag and this was related to the degree of capillary pressure in the paste systems.« less

  11. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.

    X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factorsmore » from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  12. SmartStretch™ technology: V. the impact of SmartStretch™ technology on beef topsides (m. semimembranosus) meat quality traits under commercial processing conditions.

    PubMed

    Toohey, E S; van de Ven, R; Thompson, J M; Geesink, G H; Hopkins, D L

    2012-09-01

    This study evaluated the effect of SmartStretch™ technology and ageing on meat quality traits of hot-boned beef m. semimembranosus from cull cows. The technology uses a flexible rubber sleeve surrounded by inflatable bladders that are housed within an airtight chamber. The sleeve is expanded allowing the meat to be inserted. Air is then pumped into the inflatable bladders causing the meat to be compressed by force and ejected into packaging. No significant treatment effect (P>0.05) on shear force was found although ageing did significantly reduce shear force (P<0.001). There was a significantly greater (P<0.05) cook loss at 14 days, but less (P<0.05) thaw loss and purge with 0 day cook loss unaffected (P>0.05). Sarcomere length examined by both laser diffraction and a filar micrometre method was significantly increased (P<0.05) following the treatment although a proportion of individual myofibrils appeared to have short and long sarcomeres. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Broadband polarization gratings for efficient liquid crystal display, beam steering, spectropolarimetry, and Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Oh, Chulwoo

    Efficient control of light polarization is essential in any optical systems where polarized light is used or polarization information is of interest. In addition to intensity and wavelength, polarization of light gives a very useful/powerful tool to control light itself and observe many interesting optical phenomena in nature and applications. Most available light sources, however, produce unpolarized or weakly polarized light except some of fancy lasers. Therefore, efficient polarization control/generation is important to improve/advance existing or emerging technologies utilizing polarized light. It is also true that polarization can be used to control another properties of light (i.e., intensity, direction). We have introduced and demonstrated achromatic polarization gratings (PGs) as broadband polarizing beam splitters performing ˜100% theoretical efficiency over a wide spectral range. The novel design of achromatic PGs and their effective fabrication method will be presented. Experimental demonstration will show that practically 100% efficient diffraction is achieved by achromatic PGs embodied as thin liquid crystal (LC) layers patterned by holographic photoalignment techniques. Non-ideal diffraction behaviors of the PGs also have been investigated beyond the paraxial limitations via numerical analysis based on the finite-difference time-domain method. We, first, study the effect of the grating regime for this special type of anisotropic diffraction gratings with the minimum assumptions. Optical properties of the PGs at oblique incidence angles and in a finite pixel are numerically predicted and confirmed by experiments. Design and fabrication of small-period PGs are discussed to show how to achieve high diffraction efficiency and large diffraction angles at the same time. Three key innovative technologies utilizing the unique diffraction properties of the PGs have been introduced and experimentally demonstrated. The first application for light-efficient LC displays is the polymer-PG display, which allows an immediate brightness improvement (up to a factor of two) of conventional LC displays by replacing absorbing polarizers with achromatic PGs as thin, transmissive polymer films. We demonstrate the first proof-of-concept prototype projector based on the polymer-PG display and we also discuss optical design considerations and challenges toward a viable solution for our ultrabright pico-projector applications of the polymer-PG display. Second, two novel beam steering concepts based on the PG diffraction have been proposed. The polarization-sensitive diffraction of the PGs provides very attractive beam steering operations with ultra-high efficiency over wide steering angles by all-thin-plate electro-optical systems. We developed a non-mechanical, wide-angle beam steering system using stacked PGs and LC waveplates, and we also demonstrated a continuous beam steering using two rotating PGs, named the Risley grating as a thin-plate version of the Risley prism. The third PG application is in imaging and non-imaging spectropolarimetry. We have shown a snapshot, hyperspectral, full-Stokes polarimeter using inline PGs and quarter-waveplates. The use of PGs as a new polarimetric element for astronomical instruments in the mid-wave IR wavelengths also has been proposed to overcome current limitations of existing IR polarimeters. In the last part of this Dissertation, we introduce a polarization-type Fresnel zone plates (P-FZPs), comprising of spatially distributed linear birefringence or concentric PG (CPG) patterns. Effective fabrication methods of P-FZPs have been developed using polarization holography based on the Michelson interferometer and photoalignment of LC materials. We demonstrated high-quality P-FZPs, which exhibit ideal Fresnel-type lens effects, formed as both LC polymer films and electro-optical LC devices. We also discuss the polarization-selective lens properties of the P-FZPs as well as their electro-optical switching. In summary, we have explored the fundamental diffraction behavior of the polarization gratings and their applications in advanced optics and photonics. The achromatic designs of the PGs allow their broadband diffraction operation over a wide range of spectrum, which increases the applicability of the PGs with a great extent. Three novel technologies that directly benefit from the distinct diffraction properties of the PGs have been developed. In addition, a new diffractive lens element operating solely on light polarization has been introduced and experimentally demonstrated. We conclude this Dissertation with our suggestions of a number of potential innovations and advances in technologies that can be enabled by polarization gratings and related technologies.

  14. UV-laser-based longitudinal illuminated diffuser (LID) incorporating diffractive and Lambertian reflectance for the disinfection of beverages

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing results.

  15. Optimization of the Optical Microelements Using High-Performance Computer Systems

    NASA Astrophysics Data System (ADS)

    Khonina, S. N.; Savelyev, D. A.

    2015-01-01

    We present a numerical analysis of the laser beam diffraction by a two-zone binary microlens for different focal lengths. Characteristics and features of diffraction of the Gaussian beam and the (0,1) Gauss-Laguerre mode with linear and circular polarizations by the considered element are studied.

  16. Titanium dioxide thin films deposited by pulsed laser deposition and integration in radio frequency devices: Study of structure, optical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Orlianges, Jean-Christophe; Crunteanu, Aurelian; Pothier, Arnaud; Merle-Mejean, Therese; Blondy, Pierre; Champeaux, Corinne

    2012-12-01

    Titanium dioxide presents a wide range of technological application possibilities due to its dielectric, electrochemical, photocatalytic and optical properties. The three TiO2 allotropic forms: anatase, rutile and brookite are also interesting, since they exhibit different properties, stabilities and growth modes. For instance, rutile has a high dielectric permittivity, of particular interest for the integration as dielectric in components such as microelectromechanical systems (MEMS) for radio frequency (RF) devices. In this study, titanium dioxide thin films are deposited by pulsed laser deposition. Characterizations by Raman spectroscopy and X-ray diffraction show the evolution of the structural properties. Thin films optical properties are investigated using spectroscopic ellipsometry and transmission measurements from UV to IR range. Co-planar waveguide (CPW) devices are fabricated based on these films. Their performances are measured in the RF domain and compared to simulation, leading to relative permittivity values in the range 30-120, showing the potentialities of the deposited material for capacitive switches applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, M. Parans; Sridharan, Niyanth; List, Fred A.

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd 2Fe 14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets ismore » significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd 2Fe 17B x solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd 2Fe 14B phase during fabrication.« less

  18. Laboratory Directed Research and Development Program: Annual report to the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogeka, G.J.; Romano, A.J.

    1994-12-01

    Project program summaries are presented for: effect of bacterial spore protein on mutagenesis; cellular toxicity of coaine and cocaethylene; calcinfication in marine alga (global carbon cycling); advanced permanent magnet materials; a high flux neutron source; genetics of drug addiction; microdialysis; analysis of powder diffraction data; accelerator technology; nucleic acids and proteins and their interactions, by small-angle XRD; enhancement of microplanar beam radiation therapy of gliosarcoma; relaxographic and functional MRI; low-temperature infrared laser absorption spectroscopy; photodesorption of H{sub 2}; helical magnet for RHIC; novel microporous solids; chemistry and physics of stratospheric aerosols (ozone depletion); rf source for linear colliders; resonance Ramanmore » detection of VOCs; synthesis of plant fatty acids with unusual double bond positions; outer surface proteins of the Lyme disease spirochete; multiwire proportional chambers for collider muons; self-organized criticality; PCR-SSCP detection of genetic changes at single cell level; proton facility for cancer therapy; and visible free-electron laser experiment.« less

  19. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.

    PubMed

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-09-26

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin² ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.

  20. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

    PubMed Central

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-01-01

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920

  1. Toward biomaterial-based implantable photonic devices

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun

    2017-03-01

    Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  2. Grating enhanced solid-state laser amplifiers

    DOEpatents

    Erlandson, Alvin C.; Britten, Jerald A.

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  3. Improved performance of the laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, J R; Avicola, K; Bauman, B J

    1999-07-20

    Results of experiments with the laser guide star adaptive optics system on the 3-meter Shane telescope at Lick Observatory have demonstrated a factor of 4 performance improvement over previous results. Stellar images recorded at a wavelength of 2 {micro}m were corrected to over 40% of the theoretical diffraction-limited peak intensity. For the previous two years, this sodium-layer laser guide star system has corrected stellar images at this wavelength to {approx}10% of the theoretical peak intensity limit. After a campaign to improve the beam quality of the laser system, and to improve calibration accuracy and stability of the adaptive optics systemmore » using new techniques for phase retrieval and phase-shifting diffraction interferometry, the system performance has been substantially increased. The next step will be to use the Lick system for astronomical science observations, and to demonstrate this level of performance with the new system being installed on the 10-meter Keck II telescope.« less

  4. Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS).

    PubMed

    He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M; Xu, Xianfan

    2016-10-10

    Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility.

  5. Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS)

    PubMed Central

    He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan

    2016-01-01

    Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility. PMID:27721428

  6. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: A new cell for X-ray absorption spectroscopy study under high pressure

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Rong; Che, Rong-Zheng; Liu, Jing; Du, Yong-Hua; Zhou, Ying-Li; Hu, Tian-Dou

    2009-08-01

    X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.

  7. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  8. Comparative measurements using different particle size instruments

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    This paper discusses the measurement and comparison of particle size and velocity measurements in sprays. The general nature of sprays and the development of standard, consistent research sprays are described. The instruments considered in this paper are: pulsed laser photography, holography, television, and cinematography; laser anemometry and interferometry using visibility, peak amplitude, and intensity ratioing; and laser diffraction. Calibration is by graticule, reticle, powders with known size distributions in liquid cells, monosize sprays, and, eventually, standard sprays. Statistical analyses including spatial and temporal long-time averaging as well as high-frequency response time histories with conditional sampling are examined. Previous attempts at comparing instruments, the making of simultaneous or consecutive measurements with similar types and different types of imaging, interferometric, and diffraction instruments are reviewed. A program of calibration and experiments for comparing and assessing different instruments is presented.

  9. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  10. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE PAGES

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; ...

    2015-07-17

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  11. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areasmore » including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  12. Quantitative locomotion study of freely swimming micro-organisms using laser diffraction.

    PubMed

    Magnes, Jenny; Susman, Kathleen; Eells, Rebecca

    2012-10-25

    Soil and aquatic microscopic organisms live and behave in a complex three-dimensional environment. Most studies of microscopic organism behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field.(1) We present a novel analytical approach that provides real-time analysis of freely swimming C. elegans in a cuvette without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through the cuvette. We measure oscillation frequencies for freely swimming nematodes. Analysis of the far-field diffraction patterns reveals clues about the waveforms of the nematodes. Diffraction is the process of light bending around an object. In this case light is diffracted by the organisms. The light waves interfere and can form a diffraction pattern. A far-field, or Fraunhofer, diffraction pattern is formed if the screen-to-object distance is much larger than the diffracting object. In this case, the diffraction pattern can be calculated (modeled) using a Fourier transform.(2) C. elegans are free-living soil-dwelling nematodes that navigate in three dimensions. They move both on a solid matrix like soil or agar in a sinusoidal locomotory pattern called crawling and in liquid in a different pattern called swimming.(3) The roles played by sensory information provided by mechanosensory, chemosensory, and thermosensory cells that govern plastic changes in locomotory patterns and switches in patterns are only beginning to be elucidated.(4) We describe an optical approach to measuring nematode locomotion in three dimensions that does not require a microscope and will enable us to begin to explore the complexities of nematode locomotion under different conditions.

  13. Mask fabrication and its applications to extreme ultra-violet diffractive optics

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Chun

    Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist materials.

  14. Laser-To-Fibre Couplers In Optical Recording Applications

    NASA Astrophysics Data System (ADS)

    Ophey, W. G.; Benschop, J. P. H.

    1988-02-01

    In optical recording, the use of single-mode fibres can considerably increase the coupling efficiency of the laser light into the light path. Important here is the performance of the laser-to-fibre coupler used. A mathematical treatment of different kinds of laser-to-fibre couplers is presented using scalar diffraction theory in order to obtain the field incident on the front end of the fibre. In this case the coupling efficiency of a laser-to-fibre coupler, using an aberrated light source (astigmatism) with an asymmetric far-field pattern, can easily be calculated.

  15. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Tischler, J. Z.; Eres, Gyula; Larson, B. C.; Rouleau, Christopher M.; Zschack, P.; Lowndes, Douglas H.

    2006-06-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  16. Development of laser technology in Poland: 2016

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Zdzisław; Jabczyński, Jan K.; Romaniuk, Ryszard S.

    2016-12-01

    The paper is an introduction to the volume of proceedings and a concise digest of works presented during the XIth National Symposium on Laser Technology (SLT2016) [1]. The Symposium is organized since 1984 every three years [2-8]. SLT2016 was organized by the Institute of Optoelectronics, Military University of Technology (IO, WAT) [9], Warsaw, with cooperation of Warsaw University of Technology (WUT) [10], in Jastarnia on 27-30 September 2016. Symposium Proceedings are traditionally published by SPIE [11-19]. The meeting has gathered around 150 participants who presented around 120 research and technical papers. The Symposium, organized every 3 years is a good portrait of laser technology and laser applications development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. The SLT also presents the current technical projects under realization by the national research, development and industrial teams. Topical tracks of the Symposium, traditionally divided to two large areas - sources and applications, were: laser sources in near and medium infrared, picosecond and femtosecond lasers, optical fiber lasers and amplifiers, semiconductor lasers, high power and high energy lasers and their applications, new materials and components for laser technology, applications of laser technology in measurements, metrology and science, military applications of laser technology, laser applications in environment protection and remote detection of trace substances, laser applications in medicine and biomedical engineering, laser applications in industry, technologies and material engineering.

  17. Research of beam conditioning technologies on SG-III laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Yuan, Haoyu; Li, Ping; Tian, Xiaocheng; Wang, Jianjun; Dong, Jun; Zhang, Ying; Yuan, Qiang; Wang, Yuancheng; Zhou, Wei; Peng, Zhitao; Wang, Fang; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Zhang, Xiaomin

    2014-12-01

    Multi-FM SSD and CPP was experimentally studied in high fluence and will be equipped on all the beams of SG-III laser facility. The output spectrum of the cascade phase modulators are stable and the residual amplitude modulation is small. FM-to-AM effect caused by free-space propagation after using smoothing by spectral dispersion is theoretically analyzed. Results indicate inserting a dispersion grating in places with larger beam aperture could alleviate the FM-to- AM effect, suggesting minimizing free-space propagation and adopting image relay. Experiments taken on SG-III laser facility indicate when the number of color cycles (Nc) adopts 1, imposing of SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spot using Multi-FM SSD and CPP drops to 0.26, comparing to 0.84 only using CPP. The experiments solve some key technical problems using SSD and CPP on SG-III laser facility, and provide a flexible platform for laser-plasma interaction experiments. Combined beam smoothing and polarization smoothing are also analyzed. Simulation results indicate through adjusting dispersion directions of one-dimensional SSD beams in a quad, two-dimensional SSD could be obtained. The near field and far field properties of beams using polarization smoothing were also studied, including birefringent wedge and polarization control plate (PCP). By using PCP, cylindrical vector beams could be obtained. New solutions will be provided to solve the LPI problem encountered in indirect drive laser fusion.

  18. Femtosecond X-ray Diffraction: Applications for Laser-Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wark, Justin S.

    2009-09-10

    Over the past few years short pulse x-ray diffraction at the nanosecond and picosecond level has become an established technique in many high-power laser laboratories for interrogating the lattice response of laser-perturbed and shocked matter, and is now finding applications in diagnosing the state of crystalline materials subject to quasi-isentropic compression. We review some of the previous results obtained in this area, for example the direct observation of coherent phonons, the first direct confirmation of the alpha-epsilon transition in shocked iron, and recent measurements indicating that the strength of matter can be measured at shock pressures exceeding a Mbar. Themore » majority of sources used to date have been laser-plasma based, with some work being performed using 3{sup rd} generation synchrotron sources. However, the development of 4{sup th} generation x-ray free-electron lasers, such as LCLS, afford many new opportunities, with pulse lengths in the femtosecond regime. The extremely low divergence and monochromatic nature of the LCLS beam make it well suited to study compressed polycrystalline matter, especially samples with small grain sizes. At extremely short pulse lengths, such that the pulse is shorter than an x-ray extinction depth traversal time, the diffraction process itself becomes time-dependent, and in certain cases the full wave-field solution will be required, particularly if the matter itself is being rapidly perturbed, as will occur if the intense x-ray radiation is used to create warm dense matter, as in recent experiments on FLASH at DESY.« less

  19. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  20. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  1. Time-domain Brillouin scattering assisted by diffraction gratings

    NASA Astrophysics Data System (ADS)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  2. Neutron diffraction studies of laser welding residual stresses

    NASA Astrophysics Data System (ADS)

    Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.

    2016-01-01

    The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.

  3. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  4. Phase retrieval for crystalline specimens

    NASA Astrophysics Data System (ADS)

    Arnal, Romain A.; Millane, Rick P.

    2017-09-01

    The recent availability of ultra-bright and ultra-short X-rays pulses from new sources called x-ray free-electron lasers (XFELs) has introduced a new paradigm in X-ray crystallography. Called "diffraction-before-destruction," this paradigm addresses the main problems that plague crystallography using synchrotron sources. However, the phase problem of coherent diffraction imaging remains: one has to retrieve the phase of the measured diffraction amplitude in order to reconstruct the object. Fibrous and membrane proteins that crystallize in 1D and 2D crystals can now potentially be used for data collection with free-electron lasers. The crystallographic phase problem with such crystalline specimens is eased as the Fourier amplitude can be sampled more finely than at the Bragg sampling along one or two directions. Here we characterise uniqueness of the phase problem for different types of crystalline specimen. Simulated ab initio phase retrieval using iterative projection algorithms for 2D crystals is presented.

  5. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  6. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source

    PubMed Central

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-01-01

    Abstract. In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses. PMID:26158049

  7. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    PubMed

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  8. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source.

    PubMed

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-10-01

    In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.

  9. AFRL Advanced Electric Lasers Branch - Construction and Upgrade of a 50-watt Facility-Class Sodium Guidestar Pump Laser

    NASA Astrophysics Data System (ADS)

    Bronder, T.; Miller, H.; Stohs, J.; Lu, C.; Baker, J.; Lucero, A.

    The development of a reliable and effective laser source for pumping mesospheric sodium to generate an artificial guidestar has been well documented. From the early achievements with 589nm high-power dye lasers at the Keck and Lick observatories to the ground-breaking 50W CW FASOR (Frequency Addition Source of Optical Radiation) Guidestar at the Air Forces Starfire Optical Range (SOR), there has been intense interest in this technology from both the academic and military communities. Beginning in the fall of 2008, the Air Force Research Laboratorys Advanced Electric Lasers Branch began a project to build, test, verify and deliver an upgraded version of the SOR FASOR for use at the AF Maui Optical Station (AMOS) in the summer of 2010. This FASOR will be similar in design to the existing SOR device and produce 50W of diffraction limited, linearly polarized narrow linewidth 589nm light by combining the output of two injection-locked Nd:YAG ring lasers (operating at 1064nm and 1319nm) using resonant sum-frequency generation in a lithium triborate crystal (LBO). The upgraded features will include modularized sub-components, embedded control electronics, and a simplified cooling system. The first portion of this upgrade project is to reconstruct the current SOR FASOR components and include improved methods of regulating the gain modules of the two injection lasers. In parallel with this effort, the technical plans for the modularization and re-packaging of the FASOR will be finalized and coordinated with the staff at Maui. This presentation will summarize the result of these efforts to date and provide updates on the AMOS FASOR status. Additionally, plans for "next-generation" FASOR upgrades for both SOR and AMOS will also be discussed.

  10. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  11. Focusing metasurface quantum-cascade laser with a near diffraction-limited beam

    DOE PAGES

    Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; ...

    2016-10-17

    A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M 2 beam parameter as low as 1.3 and brightness of 1.86 × 10 6 Wsr –1m –2. As a result, this work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.

  12. Experimental study of the acrylamide photopolymer with a pulsed laser

    NASA Astrophysics Data System (ADS)

    García, C.; Pascual, I.; Costela, A.; García-Moreno, I.; Fimia, A.; Sastre, R.

    2001-02-01

    We have demonstrated that holograms may be recorded in polyvinyl alcohol/acrylamide photopolymer dry films using pulsed laser exposure with a pulse length of 8 ns. We also studied the effect of the pulse fluency together with the number of pulses necessary to obtain maximum diffraction efficiency. The recording was performed using a holographic copying process. The original was a grating of 1000 lines/mm processed using silver halide sensitized gelatin. Diffraction efficiencies of 55% were obtained with sensitivities similar to those reached with the same material and cw exposure, without the need for pre-processing or final processing of the gratings.

  13. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    NASA Astrophysics Data System (ADS)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  14. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  15. Tm:germanate Fiber Laser: Tuning And Q-switching

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J.; DeYoung, R. J.; Jiang, Shibin

    2007-01-01

    A Tm:germanate fiber laser produced >0.25 mJ/pulse in a 45 ns pulse. It is capable of producing multiple Q-switched pulses from a single p ump pulse. With the addition of a diffraction grating, Tm:germanate f iber lasers produced a wide, but length dependent, tuning range. By s electing the fiber length, the tuning range extends from 1.88 to 2.04 ?m. These traits make Tm:germanate lasers suitable for remote sensin g of water vapor.

  16. Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part

    NASA Astrophysics Data System (ADS)

    Marya, Manuel; Singh, Virendra; Marya, Surendar; Hascoet, Jean Yves

    2015-08-01

    Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today's AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.

  17. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal orientations and a large number of different samples. To analyse the results, an innovative method was developed in which the apparently complex ring-closing reaction is distilled down to a small number of basic rotations. Immediately following photoexcitation, sub-picosecond structural changes associated with the formation of the intermediate are observed. The rotation of the thiophene rings is identified as the key motion. Subsequently, on the few picosecond time scale, the time-resolved diffraction patterns are observed to converge towards those associated with the closed-ring photoproduct. The formation of the closed-ring molecule is thus unambiguously witnessed.

  18. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg

    We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.

  20. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin.

    PubMed

    Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E

    2017-09-26

    Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT LASER TOUCH AND TECHNOLOGIES, LLC LASER TOUCH MODEL LT-B512

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...

  2. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  3. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewster, Aaron S.; Sawaya, Michael R.; University of California, Los Angeles, CA 90095-1570

    2015-02-01

    Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data setmore » from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less

  4. Precision sizing of moving large particles using diffraction splitting of Doppler lines

    NASA Astrophysics Data System (ADS)

    Kononenko, Vadim L.

    1999-02-01

    It is shown, that the Doppler line from a single large particle moving with a constant velocity through a finite- width laser beam, undergoes a doublet-type splitting under specific observation conditions. A general requirement is that particle size 2a is not negligibly small, compared with beam diameter 2w$0. Three optical mechanisms of line splitting are considered. The first one is based on nonsymmetric diffraction of a bounded laser beam by a moving particle. The second arises from the transient geometry of diffraction. The third mechanism, of photometric nature, originates from specific time variation of total illuminance of moving particles when 2a>Lambda, the interference fringe spacing in the measuring volume. The diffraction splitting is observed when a detector is placed near one of diffraction minima corresponding to either of probing beams, and 2a equals (n0.5)Lambda for n equals 1,2. The photometric splitting is observed with an image-forming optics, when 2a equals n(Lambda) . That gives the possibility of distant particles sizing based on the Doppler line splitting phenomenon. A general theory of line splitting is developed, and used to explain the experimental observations quantitatively. The influence of the scattering angels and observation angle on the line splitting characteristics is studied analytically and numerically.

  5. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.

    PubMed

    Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  6. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  7. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE PAGES

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  8. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO.

    PubMed

    Bauer, Sondes; Lazarev, Sergey; Molinari, Alan; Breitenstein, Andreas; Leufke, Philipp; Kruk, Robert; Hahn, Horst; Baumbach, Tilo

    2014-03-01

    A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X-ray reflectivity, in situ two-dimensional reciprocal space mapping of symmetric X-ray diffraction and acquisition of time-resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two-dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time-resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.

  9. Three & Four Product Surface-Wave Acousto-Optic Time Integrating Correlators.

    DTIC Science & Technology

    four product correlated signals. A laser beam is split and shaped into first and second sheet beams. The first beam is directed to a first acousto - optic medium...where it is doubly diffracted by first and second signals. The second beam is directed to a second acousto - optic medium which is spatially...rotated 90 degs relative to the first acousto - optic medium where the second sheet beam is either singly diffracted by a third signal or doubly diffracted

  10. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  11. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, J.P., E-mail: jp.oliveira@campus.fct.unl

    Although laser welding is probably the most used joining technique for NiTi shape memory alloys there is still a lack of understanding about the effects of laser welding parameters on the microstructural induced changes: in both the heat affected and fusion zones martensite may be present, while the base material is fully austenitic. Synchrotron X-ray diffraction was used for fine probing laser welded NiTi joints. Through Rietveld refinement the martensite and austenite phase fractions were determined and it was observed that the martensite content increases towards the weld centreline. This is related to a change of the local transformation temperaturesmore » on these regions, which occurs due to compositional variation in those regions. The martensite phase fraction in the thermally affected regions may have significant implications on functional properties on these joints. - Highlights: •Synchrotron X-ray diffraction was used for fine probing of the microstructure in laser welded NiTi joints. •Rietveld refinement allowed to determine the content of martensite along the heat affected and fusion zones. •The martensite content increases from the base material towards the weld centreline.« less

  12. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    PubMed

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  13. Fast wavelength tuning techniques for external cavity lasers

    DOEpatents

    Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX

    2011-01-11

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  14. Intergranular stress study of TC11 titanium alloy after laser shock peening by synchrotron-based high-energy X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.

    2018-05-01

    The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.

  15. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction

    PubMed Central

    Sokolowski-Tinten, K.; Shen, X.; Zheng, Q.; Chase, T.; Coffee, R.; Jerman, M.; Li, R. K.; Ligges, M.; Makasyuk, I.; Mo, M.; Reid, A. H.; Rethfeld, B.; Vecchione, T.; Weathersby, S. P.; Dürr, H. A.; Wang, X. J.

    2017-01-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. PMID:28795080

  16. Measurement of erythrocyte deformability by two laser diffraction methods.

    PubMed

    Wang, X; Zhao, H; Zhuang, F Y; Stoltz, J F

    1999-01-01

    The aim of this work is to study the deformability of red blood cells (RBC) by two laser diffraction methods: the Laser-assisted Optical Rotational Cell Analyser (LORCA, Mechatronics, Amsterdam, Netherlands) and a Shear Stress Diffractometer (RHEODYN SSD, Myrenne, Roetgen, Germany). Experiments were carried out on 46 healthy human subjects. The elongation index EI of normal and hardened RBCs (obtained by heating blood at 49 degrees C or by incubating RBCs in solutions of diamide) was measured. The results showed that the standard deviations of the experimental data for normal RBCs were relatively small, especially at high shear stresses (more than 3.0 Pa), but higher than those reported before. Some correlations between the results given by the two instruments were also found. It should be noted that for hardened RBCs, the standard deviations of the measurements were important compared with the mean values in the two instruments.

  17. Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study

    NASA Astrophysics Data System (ADS)

    Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.

    2017-11-01

    The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.

  18. Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.

    2017-10-01

    As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.

  19. Low temperature laser molecular beam epitaxy and characterization of AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Tyagi, Prashant; Ch., Ramesh; Kushvaha, S. S.; Kumar, M. Senthil

    2017-05-01

    We have grown AlGaN (0001) epitaxial layers on sapphire (0001) by using laser molecular beam epitaxy (LMBE) technique. The growth was carried out using laser ablation of AlxGa1-x liquid metal alloy under r.f. nitrogen plasma ambient. Before epilayer growth, the sapphire nitradation was performed at 700 °C using r.f nitrogen plasma followed by AlGaN layer growth. The in-situ reflection high energy electron diffraction (RHEED) was employed to monitor the substrate nitridation and AlGaN epitaxial growth. High resolution x-ray diffraction showed wurtzite hexagonal growth of AlGaN layer along c-axis. An absorption bandgap of 3.97 eV is obtained for the grown AlGaN layer indicating an Al composition of more than 20 %. Using ellipsometry, a refractive index (n) value of about 2.19 is obtained in the visible region.

  20. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  1. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  2. Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.

    PubMed

    Tegze, Miklós; Bortel, Gábor

    2016-07-01

    The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.

  3. Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror.

    PubMed

    Ojima, Yasukuni; Nawata, Kouji; Omatsu, Takashige

    2005-10-31

    We have produced a high beam quality pico-second laser based on a continuous-wave diode pumped Nd:YVO4 slab amplifier with a photorefractive phase conjugate mirror. 12.8W diffraction-limited output with a pulse width of 8.7ps was obtained.

  4. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  5. Tensile behavior of laser treated Fe-Si-B metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treatedmore » metallic glass foils.« less

  6. Multipass laser amplification with near-field far-field optical separation

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  7. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  8. Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.

    2014-08-01

    We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.

  9. Theory of Self-Phase Modulation and Spectral Broadening

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.; Yang, Guo-Zhen

    Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

  10. Direct laser writing of topographic features in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing beam. By controlling the translation speed and the position of the sample, predefined extended structures, such as diffractive optical elements (blazed gratings, Dammann generators, Fresnel zone plates) can be produced with resolution of ~1μm. Below-the-surface patterning is achieved due to a selective etching of laser-written structures in hydrofluoric acid. Similar selective etching technique was developed for undoped borosilicate glasses by exposure to intense visible and UV radiation.

  11. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  12. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    NASA Astrophysics Data System (ADS)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  13. Time Resolved X-ray Surface Diffraction Study of Surface Transport During Pulsed Laser Deposition of SrTiO_3

    NASA Astrophysics Data System (ADS)

    Tischler, J. Z.; Larson, B. C.; Eres, Gyula; Rouleau, D. H.; Lowndes, D. H.; Zschack, P.

    2003-03-01

    Time-resolved, phin-situ, surface x-ray diffraction measurements at the UNICAT beamline at the Advanced Photon Source were used to study the early stages of growth during pulsed laser deposition of SrTiO_3. Crystal truncation rod (CTR) intensity oscillations observed at anti-Bragg positions indicated layer by layer growth in the broad temperature range of 350^oC to 850^oC. The structure of the CTR intensities between laser pulses shows two time scales, a prompt (< 1 msec) response when the laser ablation plume arrives at the substrate followed by a slower ( ˜1-10 sec) intensity response. The fast time scale is attributed to a prompt ˜μ s transfer of newly arrived species to a lower level, and the slower to material transfer delayed by the evolution of small islands. We present analyses of the CTR intensties in terms of the fraction of the deposited material that promptly changes level and the kinetics of the delayed transfer as a function of surface coverage.

  14. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  15. Nonlinear photothermal Mid-Infrared Microspectroscopy with Superresolution

    NASA Astrophysics Data System (ADS)

    Erramilli, Shyamsunder; Mertiri, Alket; Liu, Hui; Totachawattana, Atcha; Hong, Mi; Sander, Michelle

    2015-03-01

    We describe a nonlinear method for breaking the diffraction limit in mid-infrared microscopy using nonlinear photothermal microspectroscopy. A Quantum Cascade Laser (QCL) tuned to an infrared active vibrational molecular normal mode is used as the pump laser. A low-phase noise Erbium-doped fiber (EDFL) laser is used as the probe. When the incident intensity of the mid-infrared pump laser is increased past a critical threshold, a nanobubble is nucleated, strongly modulating the scatter of the probe beam, in agreement with prior work. Remarkably, we have also found that the photothermal spectral signature of the mid-infrared absorption bifurcates and is strongly narrowed, consistent with an effective ``mean-field'' theory of the observed pitchfork bifurcation. This ultrasharp narrowing can be exploited to obtain mid-infrared images with a resolution that breaks the diffraction limit, without the need of mechanical scanning near-field probes. The method provides a powerful new tool for hyperspectral label-free mid-infrared imaging and characterization of biological tissues and materials science and engineering. We thank our collaborators H. Altug, L. D. Ziegler, J. Mertz, for their advice and generous loan of equipment.

  16. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  17. The linac coherent light source single particle imaging road map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, A.; Barty, A.; Bostedt, C.

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  18. Coherent diffractive imaging using randomly coded masks

    DOE PAGES

    Seaberg, Matthew H.; d'Aspremont, Alexandre; Turner, Joshua J.

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. As a result, the experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-raymore » synchrotron and even free electron laser experiments.« less

  19. Coherent diffractive imaging using randomly coded masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025; D'Aspremont, Alexandre

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even freemore » electron laser experiments.« less

  20. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-01

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  1. A Prospective Split-Face Study of the Picosecond Alexandrite Laser With Specialized Lens Array for Facial Photoaging in Chinese.

    PubMed

    Ge, Yiping; Guo, Lifang; Wu, Qiuju; Zhang, Mengli; Zeng, Rong; Lin, Tong

    2016-11-01

    A 755nm picosecond alexandrite laser with a diffractive lens array has been reported for the treatment of acne scar and photoaging with clinical ef cacy. In this study, we evaluated the application of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging in Chinese. Ten subjects with moderate facial photoaging were enrolled in a prospective, evaluator-blinded, open-label, and split-face trial to assess the ef cacy and safety of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging. Each subject received a series of four treatment sessions on the right side of the face at two-week intervals. The left side of the face served as the control side. Blinded evaluation of baseline, pre-treatment, and two-month follow-up visit was performed by two independent dermatologists on a 5-point global photoaging scale (GPS) and a 6/8-point Asian photographic scale (APS). Adverse events and discomfort associated with the treatment were also assessed. Signi cant improvement in photoaged tissue was observed on the treated side of the face, with a mean GPS score decrease from 2.67 to 1.44 at the two-month follow-up visit. A greater improvement in wrinkles was observed (2.78 vs 1.89; P less than 0.05) when com- pared to the improvement in pigmentation (2.67 vs 2.11; P less than 0.05). No changes were observed on the control side. Treatment results improved gradually throughout the treatment program and continued to the two-month follow up. In addition, skin tightening was perceived in all subjects, and shallower nasolabial folds were observed in 60% of the subjects on the treated side of face. Moderate pain and transient erythema were observed as the two main discomforts associated with the treatment. The 755nm picosecond alexandrite laser with a diffractive lens array is efficacious and safe for rejuvenation of photodamaged facial tissue in Chinese. J Drugs Dermatol. 2016;15(11):1390-1396..

  2. A study of the effect of lithium oxide on the spectral properties of potassium-aluminoborate glass activated by chromium ions

    NASA Astrophysics Data System (ADS)

    Babkina, A. N.; Gorbachev, A. D.; Zyryanova, K. S.; Nikonorov, N. V.; Nuryev, R. K.; Stepanov, S. A.

    2017-09-01

    The results of designing and studying of potassium-aluminoborate glass activated by chromium and lithium ions are discussed. Changes in the absorption and luminescence spectra of glass after the isothermal treatment are demonstrated. X-ray diffraction data showed the presence of Li(Al7B4O17) and Cr2O3 nanocrystals with an average size of 20 and 15 nm, respectively. Analysis of the luminescence spectra showed that the Cr3+ ions are in a crystalline environment. The luminescence quantum yield was 20-50%, which indicates the prospects for using such materials as a basis for fiber amplifiers in information transmission systems and laser biomedical technologies.

  3. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  4. Incoherent beam combining based on the momentum SPGD algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng

    2018-05-01

    Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.

  5. Dynamic diffraction effects and coherent breathing oscillations in ultrafast electron diffraction in layered 1T-TaSeTe

    PubMed Central

    Wei, Linlin; Sun, Shuaishuai; Guo, Cong; Li, Zhongwen; Sun, Kai; Liu, Yu; Lu, Wenjian; Sun, Yuping; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-01-01

    Anisotropic lattice movements due to the difference between intralayer and interlayer bonding are observed in the layered transition-metal dichalcogenide 1T-TaSeTe following femtosecond laser pulse excitation. Our ultrafast electron diffraction investigations using 4D-transmission electron microscopy (4D-TEM) clearly reveal that the intensity of Bragg reflection spots often changes remarkably due to the dynamic diffraction effects and anisotropic lattice movement. Importantly, the temporal diffracted intensity from a specific crystallographic plane depends on the deviation parameter s, which is commonly used in the theoretical study of diffraction intensity. Herein, we report on lattice thermalization and structural oscillations in layered 1T-TaSeTe, analyzed by dynamic diffraction theory. Ultrafast alterations of satellite spots arising from the charge density wave in the present system are also briefly discussed. PMID:28470025

  6. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  7. The trickle before the torrent-diffraction data from X-ray lasers.

    PubMed

    Maia, Filipe R N C; Hajdu, Janos

    2016-08-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day.

  8. Electron acceleration by a focused laser pulse in a static magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin; Zhao Xianghao

    2007-12-15

    The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.

  9. Laser fresnel distance measuring system and method

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Lehner, David L. (Inventor); Smalley, Larry L. (Inventor); Smith, legal representative, Molly C. (Inventor); Sanders, Alvin J. (Inventor); Earl, Dennis Duncan (Inventor); Allison, Stephen W. (Inventor); Smith, Kelly L. (Inventor)

    2008-01-01

    A method and system for determining range to a target are provided. A beam of electromagnetic energy is transmitted through an aperture in an opaque screen such that a portion of the beam passes through the aperture to generate a region of diffraction that varies as a function of distance from the aperture. An imaging system is focused on a target plane in the region of diffraction with the generated image being compared to known diffraction patterns. Each known diffraction pattern has a unique value associated therewith that is indicative of a distance from the aperture. A match between the generated image and at least one of the known diffraction patterns is indicative of a distance between the aperture and target plane.

  10. Erbium Laser Technology vs Traditional Drilling for Caries Removal: A Systematic Review with Meta-Analysis.

    PubMed

    Tao, Siying; Li, Lan; Yuan, He; Tao, Sibei; Cheng, Yiming; He, Libang; Li, Jiyao

    2017-12-01

    The study aimed to assess the efficacy of erbium laser technology compared with traditional drilling for caries removal. A systematic search was conducted through Medline via PubMed, Embase, Cochrane databases, CNKI till December 2016. Randomised controlled trials, quasi-randomized controlled trials, or controlled clinical trials with data comparing the efficacy of erbium laser technology versus traditional drilling for caries removal were included. Fourteen studies were selected in our meta-analysis. Erbium laser technology showed an increased time when removing caries compared with drilling (mean difference: 3.48, 95% confidence interval: 1.90-5.06, P < .0001). However, erbium laser technology reduced the requirement for local anesthesia (risk ratio: 0.28, 95% confidence interval: 0.13-0.62, P = .002). Erbium laser technology was also not significantly different to traditional drilling with regard to restoration loss, pulpal vitality, and postoperative sensitivity. Erbium laser technology showed an increased time for cavity preparation compared with traditional drilling. However, erbium laser technology reduced the requirement for local anesthesia. There was no significant difference between erbium laser technology and traditional drilling regarding restoration loss, pulpal vitality, and postoperative sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Laser application in neurosurgery

    PubMed Central

    Belykh, Evgenii; Yagmurlu, Kaan; Martirosyan, Nikolay L.; Lei, Ting; Izadyyazdanabadi, Mohammadhassan; Malik, Kashif M.; Byvaltsev, Vadim A.; Nakaji, Peter; Preul, Mark C.

    2017-01-01

    Background: Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. Methods: We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. Results: Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. Conclusion: Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science. PMID:29204309

  12. Using the ISS as a testbed to prepare for the next generation of space-based telescopes

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Sparks, William B.; Liu, Fengchuan; Ess, Kim; Green, Joseph; Carpenter, Kenneth G.; Thronson, Harley; Goullioud, Renaud

    2012-09-01

    The infrastructure available on the ISS provides a unique opportunity to develop the technologies necessary to assemble large space telescopes. Assembling telescopes in space is a game-changing approach to space astronomy. Using the ISS as a testbed enables a concentration of resources on reducing the technical risks associated with integrating the technologies, such as laser metrology and wavefront sensing and control (WFS&C), with the robotic assembly of major components including very light-weight primary and secondary mirrors and the alignment of the optical elements to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems such as the Special Purpose Dexterous Manipulator (SPDM), or by the ISS Flight Crew, allows for future experimentation as well as repair if necessary. In 2015, first light will be obtained by the Optical Testbed and Integration on ISS eXperiment (OpTIIX), a small 1.5-meter optical telescope assembled on the ISS. The primary objectives of OpTIIX include demonstrating telescope assembly technologies and end-to-end optical system technologies that will advance future large optical telescopes.

  13. Diffraction smoothing aperture for an optical beam

    DOEpatents

    Judd, O'Dean P.; Suydam, Bergen R.

    1976-01-01

    The disclosure is directed to an aperture for an optical beam having an irregular periphery or having perturbations imposed upon the periphery to decrease the diffraction effect caused by the beam passing through the aperture. Such apertures are particularly useful with high power solid state laser systems in that they minimize the problem of self-focusing which frequently destroys expensive components in such systems.

  14. Frequency characteristics of standing-wave acoustooptic modulators

    NASA Astrophysics Data System (ADS)

    Apolonskii, A. A.; Shchebetov, S. D.

    1991-10-01

    Experimental data are presented on the performance of wide-aperture standing-wave acoustooptic modulators used as laser mode lockers. In particular, attention is given to the acoustooptic and electrical frequency characteristics of the modulators. The existence of a large effective diffraction frequency region below the fundamental frequency is demonstrated. Individual frequency regions of effective diffraction do not correspond to the even and odd harmonics.

  15. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  16. Inkjet-printed vertically emitting solid-state organic lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhibik, Oussama; Chénais, Sébastien; Forget, Sébastien

    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically emitting thin-film organic lasers and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 μJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several μm thicknesses are realized, thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficientmore » of 0.66 cm{sup −1} at 550–680 nm. Standard laser dyes like Pyrromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size “printed pixels” of 50 mm{sup 2} present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50 μm × 50 μm AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost, and can be used as fully disposable items. This work opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated.« less

  17. Continuous wavelength tunable laser source with optimum positioning of pivot axis for grating

    DOEpatents

    Pushkarsky, Michael; Amone, David F.

    2010-06-08

    A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B). As provided herein, the diffraction grating (30) can be pivoted about the unique pivot axis (33) to move the diffraction grating (30) relative to the gain media (16) to continuously tune the lasing frequency of the external cavity (32) and the wavelength of the output light (12) so that the output light (12) is mode hop free.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  19. [Clinical Results of Diffractive Multifocal Intraocular Lens Implantation after Laser In Situ Keratomileusis].

    PubMed

    Yoshino, Mami; Minami, Keiichiro; Hirasawa, Manabu; Oki, Shinichi; Bissen-Miyajima, Hiroko

    2015-09-01

    To evaluate the visual performance in eyes with diffractive intraocular lenses (IOLs) after laser in situ keratomileusis (LASIK). This single-center retrospective study evaluated eyes that had diffractive multifocal IOL implantation after previous LASIK or not treated with LASIK (controls). The outcomes' measures were the visual acuities (VAs) at distance and near, spherical equivalent (SE) and contrast sensitivity at one month postoperatively. The study evaluated 40 eyes of 33 patients. The mean uncorrected logMAR VAs were -0.05 ± 0.13/0.00 ± 0.14 (LASIK group/control group) at distance and 0.10 ± 0.13/0.16 ± 0.18 at near. There was no statistically significant difference between the 2 groups at the VAs. The SE of the LASIK group was -0.06 ± 0.39 D, significantly lower than the control group (0.22 ± 0.45 D) (p < 0.05). The contrast sensitivity of the LASIK group at high spatial frequency was lower than the control group (p < 0.05). After LASIK, the diffractive multifocal IOL provided good uncorrected distance and near VAs. However, decrease in contrast sensitivity should be considered.

  20. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8 to 415 μm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 data sets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-2012 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38-69,264 km2). An unrealistically low computed effective density (mass SSC/volumetric SSC) of 1.24 g/mL (95% confidence interval: 1.05-1.45 g/mL) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over two orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/mL (range: 2.56-2.87 g/mL, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  1. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Matthias; Carlson, David B.; Hunter, Mark

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less

  2. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  3. Influence of fundamental mode fill factor on disk laser output power and laser beam quality

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen

    2017-11-01

    An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.

  4. RESTORATION OF ATMOSPHERICALLY DEGRADED IMAGES. VOLUME 3.

    DTIC Science & Technology

    AERIAL CAMERAS, LASERS, ILLUMINATION, TRACKING CAMERAS, DIFFRACTION, PHOTOGRAPHIC GRAIN, DENSITY, DENSITOMETERS, MATHEMATICAL ANALYSIS, OPTICAL SCANNING, SYSTEMS ENGINEERING, TURBULENCE, OPTICAL PROPERTIES, SATELLITE TRACKING SYSTEMS.

  5. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  6. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  7. The potential of diffraction grating for spatial applications

    NASA Astrophysics Data System (ADS)

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  8. A Survey of Laser Lightning Rod Techniques

    DTIC Science & Technology

    1991-08-21

    impossibility of the LLR concept. 4 REFERENCES 1. Hagen, 1969: "Diffraction-limited high irradiance Nd- glass laser system, J. Appl. Phys., 40, 511-516. 2. Greig...study", Air Force Flight Dynamics Laboratory,, Technical Report AFFDL-TR-78-60. AD A063 847. 8. Schubert, C.N., Jr. and J.R. Lippert , 1979...pp. 132-135. 9. Lippert , J.R.,1978: "Laser-Induced Lightning Concept Exper- iment", Air Force Flight Dynamics Laboratory, Technical Report AFFDL-TR

  9. Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Abdul-Hamed, Ryam S.

    2017-12-01

    Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.

  10. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  11. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  12. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  13. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  14. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  15. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  16. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  17. Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution.

    PubMed

    Huang, Chi-Feng; Liang, Keng S; Hsu, Tsui-Ling; Lee, Tsung-Tse; Chen, Yi-Yun; Yang, Shun-Min; Chen, Hsiang-Hsin; Huang, Shih-Hsin; Chang, Wei-Hau; Lee, Ting-Kuo; Chen, Peilin; Peng, Kuei-En; Chen, Chien-Chun; Shi, Cheng-Zhi; Hu, Yu-Fang; Margaritondo, Giorgio; Ishikawa, Tetsuya; Wong, Chi-Huey; Hwu, Y

    2018-02-08

    Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.

  18. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  19. Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers

    DTIC Science & Technology

    2011-03-07

    plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in

  20. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimminau, G; Nagler, B; Higginbotham, A

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

Top