Geng, J.; Nlebedim, I. C.; Besser, M. F.; ...
2016-04-15
A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.
Net shaped high performance oxide ceramic parts by selective laser melting
NASA Astrophysics Data System (ADS)
Yves-Christian, Hagedorn; Jan, Wilkes; Wilhelm, Meiners; Konrad, Wissenbach; Reinhart, Poprawe
An additive manufacturing technique (AM) for ceramics, based on Al2O3-ZrO2 powder by means of Selective Laser Melting (SLM) is presented. Pure ceramic powder is completely melted by a laser beam yielding net-shaped specimens of almost 100% densities without any post-processing. Possible crack formation during the build-up process due to thermal stresses is prevented by a high-temperature preheating of above 1600 ∘C. Specimens with fine-grained nano-sized microstructures and flexural strengths of above 500 MPa are produced. The new technology allows for rapid freeform manufacture of complex net-shaped ceramics, thus, exploiting the outstanding mechanical and thermal properties for high-end medical and engineering disciplines.
Near Net Shape Rapid Manufacture & Repair by LENS(registered trademark)
2006-05-01
J. Vlcek, “Property Investigation of Laser Cladded , Laser Sintered and Electron Beam Sintered Ti 6Al 4V”, AVT-139 Specialists Meeting on Cost...manufactured from advanced materials such as titanium alloys, superalloys or special steels are critical to the performance of the armed forces...10 years, CAD driven, additive manufacturing technologies have been developed. The leading technology for defence applications is Laser Engineered
Marshall, Garrett J; Thompson, Scott M; Shamsaei, Nima
2016-06-01
An OPTOMEC Laser Engineered Net Shaping (LENS(™)) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti-6Al-4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.
Marshall, Garrett J.; Thompson, Scott M.; Shamsaei, Nima
2016-01-01
An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials. PMID:27054180
Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components
NASA Astrophysics Data System (ADS)
Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard
2014-09-01
The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.
Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao
2017-01-01
AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity. PMID:29120374
Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao
2017-11-09
AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.
Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification,more » which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. In conclusion, magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys.« less
Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.; ...
2018-02-21
Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification,more » which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. In conclusion, magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys.« less
Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.
Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping.
Razavi, Seyed Mohammad Javad; Bordonaro, Giancarlo G; Ferro, Paolo; Torgersen, Jan; Berto, Filippo
2018-02-12
The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength.
NASA Astrophysics Data System (ADS)
Lu, Z. L.; Li, D. C.; Lu, B. H.; Zhang, A. F.; Zhu, G. X.; Pi, G.
2010-05-01
Laser Engineered Net Shaping (LENS) is an advanced manufacturing technology, but it is difficult to control the depositing height (DH) of the prototype because there are many technology parameters influencing the forming process. The effect of main parameters (laser power, scanning speed and powder feeding rate) on the DH of single track is firstly analyzed, and then it shows that there is the complex nonlinear intrinsic relationship between them. In order to predict the DH, the back propagation (BP) based network improved with Adaptive learning rate and Momentum coefficient (AM) algorithm, and the least square support vector machine (LS-SVM) network are both adopted. The mapping relationship between above parameters and the DH is constructed according to training samples collected by LENS experiments, and then their generalization ability, function-approximating ability and real-time are contrastively investigated. The results show that although the predicted result by the BP-AM approximates the experimental result, above performance index of the LS-SVM are better than those of the BP-AM. Finally, high-definition thin-walled parts of AISI316L are successfully fabricated. Hence, the LS-SVM network is more suitable for the prediction of the DH.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1997-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1998-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
NASA Astrophysics Data System (ADS)
Xiong, Yuhong; Hofmeister, William H.; Smugeresky, John E.; Delplanque, Jean-Pierre; Schoenung, Julie M.
2012-01-01
An atypical "swirling" phenomenon observed during the laser deposition of tungsten carbide-cobalt cermets by laser engineered net shaping (LENS®) was studied using in-situ high-speed thermal imaging. To provide fundamental insight into this phenomenon, the thermal behavior of pure cobalt during LENS was also investigated for comparison. Several factors were considered as the possible source of the observed differences. Of those, phase difference, material emissivity, momentum transfer, and free surface disruption from the powder jets, and, to a lesser extent, Marangoni convection were identified as the relevant mechanisms.
2006-05-01
welding power sources are not totally efficient at converting power drawn from the wall into heat energy used for the welding process . TIG sources are...Powder bed + Laser • Wire + Laser • Wire + Electron Beam • Wire + TIG Each system has its own unique attributes in terms of process variables...relative economics of producing a near net shape by Additive Manufacturing (AM) processes compared with traditional machine from solid processes (MFS
Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping
Bordonaro, Giancarlo G.; Berto, Filippo
2018-01-01
The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength. PMID:29439510
NASA Astrophysics Data System (ADS)
Chandra, Shubham; Rao, Balkrishna C.
2017-06-01
The process of laser engineered net shaping (LENSTM) is an additive manufacturing technique that employs the coaxial flow of metallic powders with a high-power laser to form a melt pool and the subsequent deposition of the specimen on a substrate. Although research done over the past decade on the LENSTM processing of alloys of steel, titanium, nickel and other metallic materials typically reports superior mechanical properties in as-deposited specimens, when compared to the bulk material, there is anisotropy in the mechanical properties of the melt deposit. The current study involves the development of a numerical model of the LENSTM process, using the principles of computational fluid dynamics (CFD), and the subsequent prediction of the volume fraction of equiaxed grains to predict process parameters required for the deposition of workpieces with isotropy in their properties. The numerical simulation is carried out on ANSYS-Fluent, whose data on thermal gradient are used to determine the volume fraction of the equiaxed grains present in the deposited specimen. This study has been validated against earlier efforts on the experimental studies of LENSTM for alloys of nickel. Besides being applicable to the wider family of metals and alloys, the results of this study will also facilitate effective process design to improve both product quality and productivity.
NASA Astrophysics Data System (ADS)
Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo
2018-02-01
Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.
Material Gradients in Oxygen System Components Improve Safety
NASA Technical Reports Server (NTRS)
Forsyth, Bradley S.
2011-01-01
Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.
Additive Manufacturing of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Van Humbeeck, Jan
2018-04-01
Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.
Net shape processing of alnico magnets by additive manufacturing
White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah; ...
2017-06-07
Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, J.; Nlebedim, I. C.; Besser, M. F.
A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.
Marchini, Giovanni Scala; Rai, Aayushi; De, Shubha; Sarkissian, Carl; Monga, Manoj
2013-01-01
to test the effect of stone entrapment on laser lithotripsy efficiency. Spherical stone phantoms were created using the BegoStone® plaster. Lithotripsy of one stone (1.0 g) per test jar was performed with Ho:YAG laser (365 µm fiber; 1 minute/trial). Four laser settings were tested: I-0.8 J,8 Hz; II-0.2J,50 Hz; III-0.5 J,50 Hz; IV-1.5 J,40 Hz. Uro-Net (US Endoscopy) deployment was used in 3/9 trials. Post-treatment, stone fragments were strained though a 1mm sieve; after a 7-day drying period fragments and unfragmented stone were weighed. Uro-Net nylon mesh and wire frame resistance were tested (laser fired for 30s). All nets used were evaluated for functionality and strength (compared to 10 new nets). Student's T test was used to compare the studied parameters; significance was set at p < 0.05. Laser settings I and II caused less damage to the net overall; the mesh and wire frame had worst injuries with setting IV; setting III had an intermediate outcome; 42% of nets were rendered unusable and excluded from strength analysis. There was no difference in mean strength between used functional nets and non-used devices (8.05 vs. 7.45 lbs, respectively; p = 0.14). Setting IV was the most efficient for lithotripsy (1.9 ± 0.6 mg/s; p < 0.001) with or without net stabilization; setting III was superior to I and II only if a net was not used. Laser lithotripsy is not optimized by stone entrapment with a net retrieval device which may be damaged by high energy laser settings.
Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao
2017-01-01
As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718. PMID:28772702
Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao
2017-03-25
As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah
Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less
NASA Astrophysics Data System (ADS)
Zulkifli, A. Z.; Latiff, A. A.; Paul, M. C.; Yasin, M.; Ahmad, H.; Harun, S. W.
2016-12-01
In this paper, a dual-wavelength fiber laser (DWFL) using nano-engineered Thulium-doped fiber as a gain medium with a bent singlemode-multimode-singlemode fiber structure (SMS) is demonstrated. The SMS structure is packaged systematically using Cr-39 polymer plates to provide linear bending via applied load. Experimental results have proved that the bent SMS is capable to provide highly effective wavelength filter and wavelengths stabilizer by balancing the net cavity gain between the two wavelengths. The DWFL provides very narrow spacing of 0.9 nm, narrow 3 dB spectral linewidth of ∼0.07 nm and SNR of ∼42 dB. Based on stability test, very small mode hopping is observed at the two wavelengths having deviations of ±0 nm and ±0.04 nm respectively. In conjunction, the DWFL provides very stable relative wavelength spacing with a deviation of ±0.04 nm.
Quantitative characterization of porosity in stainless steel LENS powders and deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan, D.F.; Puskar, J.D.; Brooks, J.A.
2006-07-15
Laser Engineered Net Shaping (LENS) utilizes a laser beam to melt fine powders to produce three-dimensional engineering structures line by line and layer by layer. When building these structures, defects including lack-of-fusion (LOF) at interlayer boundaries and intralayer porosity are sometimes observed. LOF defects can be minimized by adjusting processing parameters, but the sources of intralayer porosity are less apparent. In this paper, the amount and size distributions of 17-4PH and 304L powders and pores within the powder were characterized in parallel with the intralayer porosity in LENS deposits fabricated from the same materials. Intralayer porosity increased with increased powdermore » porosity; but was not well correlated with deposition parameters. The results demonstrate the importance of careful characterization and specification of starting powders on the quality of the final LENS deposits.« less
Microstructure and corrosion behavior of laser processed NiTi alloy.
Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K
2015-12-01
Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.
Hot working behavior of selective laser melted and laser metal deposited Inconel 718
NASA Astrophysics Data System (ADS)
Bambach, Markus; Sizova, Irina
2018-05-01
The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.
Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration
NASA Astrophysics Data System (ADS)
Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen
2012-09-01
A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously considered inaccessible.
Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.
2013-01-01
Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.
Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attridge, Paul; Bajekal, Sanjay; Klecka, Michael
A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situmore » prognostics and diagnostics.« less
Łazińska, Magdalena; Durejko, Tomasz; Czujko, Tomasz; Bojar, Zbigniew
2018-05-14
The results of the fabrication of components made with Fe-30%Al-0.35%Zr-0.1%B alloy powder using the Laser Engineered Net Shaping (LENS TM ) system operated at different traverse feed rates are described in this paper. The temperature of the molten metal pool was recorded during this process. Depending on the assumed feed rate, the formation of Zr⁻based precipitates with various morphologies and distributions was observed in the structure of the investigated material. It was found that as the traverse speed increased, spheroidization, refinement, and a more homogeneous distribution of these precipitates occurred.
[Study on single-walled carbon nanotube thin film photoelectric device].
Xie, Wen-bin; Zhu, Yong; Gong, Tian-cheng; Chen, Yu-lin; Zhang, Jie
2015-01-01
The single-walled carbon nanotube film photoelectric device was invented, and it can generate net photocurrent under bias voltage when it is illuminated by the laser. The influences of bias voltage, laser power and illuminating position on the net photocurrent were investigated. The experimental results showed that when the center of the film was illuminated, the photocurrent increased with the applied bias, but tended to saturate as the laser power increased. As the voltage and the laser power reached 0. 2 V and 22. 7 mW respectively, the photocurrent reached 0. 24 µA. When the voltage was removed, the photocurrent varied with the laser illuminating position on the film and its value was distributed symmetrically about the center of the device. The photocurrent reached maximum and almost zero respectively when the laser illuminated on two ends and the center of the film. Analysis proposes that the net photocurrent can be generated due to internal photoelectric effect when the device is under voltage and the laser illuminates on the center of the film. It can be also generated due to photo-thermoelectric effect when the device is under no voltage and the laser illuminates on the film, and the relation between the net photocurrent and the illuminating position was derived according to the nature of thermoelectric power of single-walled carbon nanotubes with the established temperature model, which coincides with experimental result. Two effects are the reasons for the generation and variety of the net photocurrent and they superimpose to form the result of the net photocurrent when the device is under general conditions of voltage and laser illuminating position. The device has potential applications in the areas of photovoltaic device and optical sensor for its characteristic.
Investigation of the laser engineered net shaping process for nanostructured cermets
NASA Astrophysics Data System (ADS)
Xiong, Yuhong
Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder metallurgy technologies were compared. In addition, another cermet system, nanostructured titanium/tungsten carbide-nickel ((Ti,W)C-Ni) powder, prepared using high-energy ball milling process, was also deposited by the LENSRTM technology. Because of the near net shape feature of the LENSRTM process, special emphasis was also placed on its potential environmental and economic benefits by applying life cycle assessment (LCA) and technical cost modeling (TCM). Comparisons were conducted between the conventional powder metallurgy processes and the LENSRTM process.
Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.
Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil
2013-12-01
Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.
2015-12-01
hardening heat treatment were the controlling factors of the fatigue resistance, while testing directions have the least impact. Leuders et al. [16...radius. The microstructurally-small fatigue crack growth test was run under load control at constant stress ratio R=0.1 and a cyclic frequency of 20 Hz...not been thoroughly investigated. In this study, long fatigue crack growth tests were conducted at two stress ratios (R=0.1 and 0.8), using Ti-6Al
Solidification in direct metal deposition by LENS processing
NASA Astrophysics Data System (ADS)
Hofmeister, William; Griffith, Michelle
2001-09-01
Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.
Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects
NASA Astrophysics Data System (ADS)
Goutianos, Stergios
2017-07-01
Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts.
NASA Astrophysics Data System (ADS)
Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil
2018-03-01
The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.
NASA Astrophysics Data System (ADS)
Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil
2018-06-01
The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.
Laser Additive Manufacturing of Magnetic Materials
NASA Astrophysics Data System (ADS)
Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.
2017-03-01
While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.
2006-05-01
dies. This process uses a laser beam to melt a controlled amount of injected powder on a base plate to deposit the first layer and on previous passes...Consolidation” to build functional net-shape components directly from metallic powder in one step [1-3]. The laser consolidation is a one-step computer-aided...A focused laser beam is irradiated on the substrate to create a molten pool, while metallic powder is injected simultaneously into the pool. A
NASA Astrophysics Data System (ADS)
Knopp, Jonathan
Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.
Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.
Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan
2014-09-20
Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
Dissecting engineered cell types and enhancing cell fate conversion via CellNet
Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.
2014-01-01
SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792
NASA Astrophysics Data System (ADS)
Kim, S. H.
2017-05-01
We reason based on the concept of stationary plasma fluctuation that in the free-electron laser (FEL), the Coulomb force from the surrounding electrons and the Ampérian force arising from the beam current do not disrupt the density-deviation mode driven by the laser field in cooperation with the magnetic wiggler. We adopt the synchronization principle that in the state of a stationary plasma density-wave and laser wave, all electrons arriving at the same position can emit laser photons all together only at t = NT + t o , where N is an integer and T is the laser period. We find that in the FEL, the incident laser radiation acts as a dummy field in net stimulated radiation. Using these findings and noticing a previously-recognized concept that the radiation power from an electron is given by Δ E/T, where Δ E is the amplitude of the net work done by the electron during T [1], we derive the laser gain of a self-launched FEL. The thusly derived gain is in excellent agreement with the measured gain.
Study, optimization, and design of a laser heat engine. [for satellite applications
NASA Technical Reports Server (NTRS)
Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.
1978-01-01
Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.
Technology transfer in software engineering
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1989-01-01
The University of Houston-Clear Lake is the prime contractor for the AdaNET Research Project under the direction of NASA Johnson Space Center. AdaNET was established to promote the principles of software engineering to the software development industry. AdaNET will contain not only environments and tools, but also concepts, principles, models, standards, guidelines and practices. Initially, AdaNET will serve clients from the U.S. government and private industry who are working in software development. It will seek new clients from those who have not yet adopted the principles and practices of software engineering. Some of the goals of AdaNET are to become known as an objective, authoritative source of new software engineering information and parts, to provide easy access to information and parts, and to keep abreast of innovations in the field.
Engineering planetary lasers for interstellar communication. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sherwood, Brent
1988-01-01
Transmitting large amounts of data efficiently among neighboring stars will vitally support any eventual contact with extrasolar intelligence, whether alien or human. Laser carriers are particularly suitable for high-quality, targeted links. Space laser transmitter systems designed by this work, based on both demonstrated and imminent advanced space technology, could achieve reliable data transfer rates as high as 1 kb/s to matched receivers as far away as 25 pc, a distance including over 700 approximately solar-type stars. The centerpiece of this demonstration study is a fleet of automated spacecraft incorporating adaptive neural-net optical processing active structures, nuclear electric power plants, annular momentum control devices, and ion propulsion. Together the craft sustain, condition, modulate, and direct to stellar targets an infrared laser beam extracted from the natural mesospheric, solar-pumped, stimulated CO2 emission recently discovered at Venus. For a culture already supported by mature interplanetary industry, the cost of building planetary or high-power space laser systems for interstellar communication would be marginal, making such projects relevant for the next human century. Links using high-power lasers might support data transfer rates as high as optical frequencies could ever allow. A nanotechnological society such as we might become would inevitably use 10 to the 20th power b/yr transmission to promote its own evolutionary expansion out of the galaxy.
Sterling, Amanda J; Torries, Brian; Shamsaei, Nima; Thompson, Scott M
2016-03-01
Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti-6Al-4V specimens additively manufactured via Laser Engineered Net Shaping (LENS) - a Direct Laser Deposition (DLD) process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their 'as-built', annealed (below the beta transus temperature), or heat treated (above the beta transus temperature) condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti-6Al-4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated) [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty.
Sterling, Amanda J.; Torries, Brian; Shamsaei, Nima; Thompson, Scott M.
2016-01-01
Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti–6Al–4V specimens additively manufactured via Laser Engineered Net Shaping (LENS) – a Direct Laser Deposition (DLD) process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their ‘as-built’, annealed (below the beta transus temperature), or heat treated (above the beta transus temperature) condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti–6Al–4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated) [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty. PMID:26949728
Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design
NASA Technical Reports Server (NTRS)
O'Neal, Derek
2016-01-01
A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. The near-net shape DMLS parts have been delivered and final machining is underway. Fabrication of the traditionally manufactured hardware is also proceeding. Testing in liquid oxygen is planned for Q2 of FY2017. This topic explores the design of the turbopump along with fabrication and material testing of the DMLS hardware.
Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718
NASA Astrophysics Data System (ADS)
Johnson, Alex S.; Shao, Shuai; Shamsaei, Nima; Thompson, Scott M.; Bian, Linkan
2017-03-01
Inconel 718 is considered to be a superalloy with a series of superior properties such as high strength, creep resistance, and corrosion resistance at room and elevated temperatures. Additive manufacturing (AM) is particularly appealing to Inconel 718 because of its near-net-shape production capability for circumventing the poor machinability of this superalloy. Nevertheless, AM parts are prone to porosity, which is detrimental to their fatigue resistance. Thus, further understanding of their fatigue behavior is required before their widespread use in load-bearing applications. In this work, the microstructure and fatigue properties of AM Inconel 718, produced in a Laser Engineered Net Shaping (LENS™) system and heat treated with a standard heat treatment schedule, are evaluated at room temperature. Fully reversed strain controlled fatigue tests were performed on cylindrical specimens with straight gage sections at strain amplitudes ranging from 0.001 mm/mm to 0.01 mm/mm. The fracture surfaces of fatigue specimens were inspected with a scanning electron microscope. The results indicate that the employed heat treatment allowed the large, elongated grains and dendritic structure of the as-built material to break down into smaller, equiaxed grains, with some dendritic structures remaining between layers. The AM specimens were found to possess lower fatigue resistance than wrought Inconel 718, and this is primarily attributed to the presence of brittle metal-carbide/oxide inclusions or pores near their surface.
Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report
NASA Technical Reports Server (NTRS)
1977-01-01
Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.
NASA Astrophysics Data System (ADS)
Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.
2000-01-01
In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .
Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications
NASA Astrophysics Data System (ADS)
Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.
2018-06-01
This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.
Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications
NASA Astrophysics Data System (ADS)
Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.
2018-04-01
This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (H c > 10 kOe) can be achieved without any microstructural refinement.
Design and engineering of a man-made diffusive electron-transport protein.
Fry, Bryan A; Solomon, Lee A; Leslie Dutton, P; Moser, Christopher C
2016-05-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7×10(6) M(-1) s(-1) to 1.2×10(9) M(-1) s(-1) follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and -19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.
Small-scale heat detection using catalytic microengines irradiated by laser
NASA Astrophysics Data System (ADS)
Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng
2013-01-01
We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f
Design and engineering of a man-made diffusive electron-transport protein
Fry, Bryan A.; Solomon, Lee A.; Dutton, P. Leslie
2016-01-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7 × 106 M−1s−1 to 1.2 × 109 M−1s−1 follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and −19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. PMID:26423266
Mentornet - E-Mentoring for Women Students in Engineering and Science
NASA Astrophysics Data System (ADS)
Single, Peg Boyle; Muller, Carol B.; Cunningham, Christine M.; Single, Richard M.; Carlsen, William S.
MentorNet www.MentorNet.net;, the E-Mentoring Network for Diversity in Engineering and Science, addresses the underrepresentation of women in science, technology, engineering, and mathematics "STEM". MentorNet offers a multiinstitutional, structured, electronic mentoring "e-mentoring" program that pairs undergraduate and graduate students, primarily women, with professionals and supports them through e-mentoring relationships of specified lengths. The program evaluations established that over 90% of the participants would recommend MentorNet to a friend or colleague. The e-mentoring program allowed participants to establish satisfactory and beneficial e-mentoring relationships based on investments of approximately 20 minutes per week - in between more serious exchanges, email exchanges that included light-hearted social interactions and jokes were an important aspect of sustaining e-mentoring relationships. Participation in MentorNet increased the students' self-confidence in their f elds - desire to obtain work in industry, national laboratories, or national agencies; and intent to pursue careers in their fields. Three years of evaluation results support the need for and efficacy of the program.
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Mentoring, Women in Engineering and Related Sciences, and MentorNet
NASA Astrophysics Data System (ADS)
Dockter, J.; Muller, C.
2003-12-01
Mentoring is a frequently employed strategy for retention of women in engineering and science. The power of mentoring is sometimes poorly understood, and mentoring is not always effectively practiced, however. At its strongest, mentoring is understood as a powerful learning process, which assures the intergenerational transfer of knowledge and "know-how" on an ongoing basis throughout one's life. Mentoring helps make explicit the tacit knowledge of a discipline and its professional culture, which is especially important for underrepresented groups. MentorNet (www.MentorNet.net), the E-Mentoring Network for Women in Engineering and Science, is a nonprofit organization focused on furthering women's progress in scientific and technical fields through the use of a dynamic, technology-supported mentoring program. Since 1998, nearly 10,000 undergraduate and graduate women studying engineering and related sciences at more than 100 colleges and universities across the U.S., and in several other nations, have been matched in structured, one-on-one, email-based mentoring relationships with male and female scientific and technical professionals working in industry and government. This poster will describe the MentorNet program, and provide findings of annual program evaluations related to outcomes for participants with particular focus on women in the planetary and earth sciences. We also address the development of the partnership of approximately 100 organizations currently involved in MentorNet and the value each gains from its affiliation. MentorNet is an ongoing effort which supports the interests of all organizations and individuals working to advance women in engineering and related sciences.
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Practical internal combustion engine laser spark plug development
NASA Astrophysics Data System (ADS)
Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.
2007-09-01
Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
CellNet: Network Biology Applied to Stem Cell Engineering
Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793
NASA Technical Reports Server (NTRS)
Hughes, D. L.; Ray, R. J.; Walton, J. T.
1985-01-01
The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Retinal Detachment Vision Simulator
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Recommended Types of Sunglasses
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Eyeglasses for Vision Correction
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Central Serous Retinopathy Treatment
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Microvascular Cranial Nerve Palsy
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...
2017-06-06
Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less
Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.
Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less
The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass
NASA Astrophysics Data System (ADS)
Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.
2018-05-01
The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.
Trends in high power laser applications in civil engineering
NASA Astrophysics Data System (ADS)
Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori
2005-03-01
This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.
NASA Astrophysics Data System (ADS)
Latif, A. A.; Mohamad, H.; Abu Bakar, M. H.; Muhammad, F. D.; Mahdi, M. A.
2016-02-01
We have proposed and demonstrated a carbon nanotube-based mode-locked erbium-doped fiber laser with switchable wavelength in the C-band wavelength region by varying the net gain cross section of erbium. The carbon nanotube is coated on a tapered fiber to form the saturable absorber for the purpose of mode-locking by exploiting the concept of evanescent field interaction on the tapered fiber with the carbon nanotube in a ring cavity configuration. The propagation loss is adjusted by inducing macrobend losses of the optical fiber in the cavity through a fiber spooling technique. Since the spooling radius can be gradually adjusted to achieve continuous tuning of attenuation, this passive tuning approach can be an alternative to optical tunable attenuator, with freedom of external device integration into the laser cavity. Based on this alteration, the net gain cross section of the laser system can be tailored to three different lasing wavelength ranges; 1533, 1560 nm and both (1533 and 1560 nm) with the minimum pulse duration of 734 fs. The proposed design is simple and stable with high beam quality and good reliability for multiple applications.
Contact Lenses for Vision Correction
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Contact Lens-Related Eye Infections
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Sun, UV Radiation and Your Eyes
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Recognizing and Treating Eye Injuries
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Nearsightedness Linked to Years in School
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Botulinum Toxin (Botox) for Facial Wrinkles
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Non-Proliferative Diabetic Retinopathy Vision Simulator
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Eye Health in Sports and Recreation
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Testing Children for Color Blindness
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
What Is Age-Related Macular Degeneration?
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4
2006-05-01
UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method.
Nechayev, Sergey; Reusswig, Philip D; Baldo, Marc A; Rotschild, Carmel
2016-12-07
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd 3+ :YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method
Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel
2016-01-01
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers. PMID:27924844
Study, optimization, and design of a laser heat engine
NASA Technical Reports Server (NTRS)
1978-01-01
Laser heat engine concepts, proposed for satellite applications, were analyzed to determine which engine concepts best meet the requirements of high efficiency (50 percent or better) continuous operation in space. The best laser heat engine for a near-term experimental demonstration, selected on the basis of high overall operating efficiency, high power-to-weight characteristics, and availability of the required technology, is an Otto/Diesel cycle piston engine using a diamond window to admit CO2 laser radiation. The technology with the greatest promise of scaling to megawatt power levels in the long term is the energy exchanger/gas turbine combination.
Laser-induced breakdown ignition in a gas fed two-stroke engine
NASA Astrophysics Data System (ADS)
Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.
2018-01-01
Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.
Foundation of the American Academy of Ophthalmology
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Four Fantastic Foods to Keep Your Eyes Healthy
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Retinal Detachment: Torn or Detached Retina Diagnosis
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Retinal Detachment: Torn or Detached Retina Treatment
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Amblyopia: What Is the Cause of Lazy Eye?
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
What Is a Pinguecula and a Pterygium?
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
CO2 laser-driven Stirling engine. [space power applications
NASA Technical Reports Server (NTRS)
Lee, G.; Perry, R. L.; Carney, B.
1978-01-01
A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.
Space electric power design study. [laser energy conversion
NASA Technical Reports Server (NTRS)
Martini, W. R.
1976-01-01
The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.
Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.
Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian
2015-12-28
Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.
Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide
NASA Astrophysics Data System (ADS)
Ayiriveetil, Arunbabu; Varma, G. Sreevidya; Chaturvedi, Abhishek; Sabapathy, Tamilarasan; Ramamurty, Upadrasta; Asokan, Sundarrajan
2017-04-01
Multi-scan waveguides have been inscribed in GeS2 glass sample with different pulse energies and translation speeds. Mechanical and structural changes on GeS2 binary glass in response to irradiation to 1047 nm femto-second laser pulses have been investigated. The optical characterization of these waveguides has been done at 1550 nm of laser wavelength and the material response to laser exposure is characterized by both nanoindentation studies and micro-Raman spectroscopy. Nanoindentation investigations show a decrease in hardness (H) and elastic modulus (E) upon laser irradiation. The change in E and H are found to be varying with the translational speed, pulse energy and hence the net-fluence at the sample. These changes are correlated with variations in the Raman response of photo-exposed glass which is interpreted in terms of structural modifications made by the laser inscriptions to the glassy network. The mechanical behavior and local structural changes on waveguide writing is found to be dependent on net-fluence and it is correlated with the preparation conditions like melt temperature and cooling rate.
Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azer Yalin; Bryan Willson
Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies andmore » approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.« less
Wu, Yaobin; Wang, Ling; Guo, Baolin; Ma, Peter X
2017-06-27
Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.
IOL Implants: Lens Replacement and Cataract Surgery (Intraocular Lenses)
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
People with Increased Risk of Eye Damage from UV Light
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Study Finds a Connection between Glaucoma and Sleep Apnea
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
CellNet: network biology applied to stem cell engineering.
Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J
2014-08-14
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.
A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, D. L.
To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and exploredmore » in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm 2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling), and hence the engine load, was varied between 0.8, 0.9, and 1.0. The test laser was constructed with a 30% output coupler, 32% Q-switch initial transmission, and a 0.5% Nd concentration rod all pumped by approximately 1000 Watts of optical power. The test laser single mode output pulse had an energy of approximately 23 mJ, with a pulsewidth of approximately 10 ns, and an M2 value of 6.55. This output produced focal intensity of approximately 270 GW/cm 2 with the modified on-engine optical arrangement. The commercial laser had similar output parameters and both laser systems operated the engine with similar results. Due to the shortening of the focal length of the on-engine optical setup both laser systems produced a spark well within the optical transfer cavity of the laser optics to spark plug adaptor. This shrouded spark led to a very long ignition delay and retarded combustion timing for all three values of equivalence ratio. This was evidenced by the in-cylinder pressure traces and the HRR waveforms. The emissions data indicate that both lasers produced very similar combustion. The ignition delay caused by the shrouded spark cause most of the combustion to happen after TDC which lead to poor combustion that produced high levels of CO and THC. The novelty of this work lies in the combination of the laser parameters to create a single high peak power laser output pulse for use as a spark ignition source. Similar configurations have been investigated in the literature but for different applications such as multiple output pulse trains for various industrial and communications applications. Another point of novelty is the investigation of the laser medium concentration on the output characteristics of a passively Q-switched laser system. This work has shown that lowering the Neodymium concentration in the active media within a passively Q-switched laser produces higher output energy values. This is significant because an actively Q-switched laser shows the opposite affect when the active ion concentration is varied.« less
Low-Cost, Net-Shape Ceramic Radial Turbine Program
1985-05-01
PROGRAM ELEMENT. PROJECT. TASK Garrett Turbine Engine Company AE OKUI UBR 111 South 34th Street, P.O. Box 2517 Phoenix, Arizona 85010 %I. CONTROLLING...processing iterations. Program management and materials characterization were conducted at Garrett Turbine Engine Company (GTEC), test bar and rotor...automotive gas turbine engine rotor development efforts at ACC. xvii PREFACE This is the final technical report of the Low-Cost, Net- Shape Ceramic
Laser ignition of engines: a realistic option!
NASA Astrophysics Data System (ADS)
Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.
2006-01-01
Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.
Photography of photograph (original print located at Engineering Management Building, ...
Photography of photograph (original print located at Engineering Management Building, Naval Shipyard, Long Beach). U.S. Naval Air Station San Pedro Photograph, May 7, 1945, Photograph #9374. NET PIER, FACING NORTHEAST - Roosevelt Base, Net Pier, Corner of Richardson Avenue & Idaho Street, Long Beach, Los Angeles County, CA
Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications
Meng, F.; Chaudhary, R. P.; Gandha, K.; ...
2018-04-23
Here, this work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu) 5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure andmore » phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu) 5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.« less
Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, F.; Chaudhary, R. P.; Gandha, K.
Here, this work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu) 5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure andmore » phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu) 5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.« less
Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions
NASA Astrophysics Data System (ADS)
Rolchigo, Matthew R.; Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian; Collins, Peter C.; LeSar, Richard
2017-07-01
Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper.
In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.
Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita
2017-01-01
Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.
In vivo response of laser processed porous titanium implants for load-bearing implants
Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita
2016-01-01
Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009
Laser beam propagation through a full scale aircraft turboprop engine exhaust
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert
2010-10-01
The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.
Exercise and Drinking May Play a Role in Vision Impairment Risk
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Choosing Wisely When It Comes to Eye Care: Antibiotics for Pink Eye
... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...
Detection on vehicle vibration induced by the engine shaking based on the laser triangulation
NASA Astrophysics Data System (ADS)
Chen, Wenxue; Yang, Biwu; Ni, Zhibin; Hu, Xinhan; Han, Tieqiang; Hu, Yaocheng; Zhang, Wu; Wang, Yunfeng
2017-10-01
The magnitude of engine shaking is chosen to evaluate the vehicle performance. The engine shaking is evaluated by the vehicle vibration. Based on the laser triangulation, the vehicle vibration is measured by detecting the distance variation between the bodywork and road surface. The results represent the magnitude of engine shaking. The principle and configuration of the laser triangulation is also introduced in this paper.
Net-Shape HIP Powder Metallurgy Components for Rocket Engines
NASA Technical Reports Server (NTRS)
Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve
2005-01-01
True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.
Laser ignition - Spark plug development and application in reciprocating engines
NASA Astrophysics Data System (ADS)
Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria
2018-03-01
Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.
New Class of Excimer-Pumped Atomic Lasers (XPALS)
2017-01-27
quantum efficiency greater thnn one, has been demonstrated. We believe this laser to represent a breakthrough in laser technology because the system...navy.mil Prepared by J. G. Eden and A. E. Mironov Laboratory For Optical Physics and Engineering Department of Electrical and Computer Engineering...viability of an atomic laser having a quantum efficiency greater than one. We believe this laser to represent a breakthrough in laser technology
Barriobero-Vila, Pere; Gussone, Joachim; Haubrich, Jan; Sandlöbes, Stefanie; Da Silva, Julio Cesar; Cloetens, Peter; Schell, Norbert; Requena, Guillermo
2017-03-07
Selective laser melting is a promising powder-bed-based additive manufacturing technique for titanium alloys: near net-shaped metallic components can be produced with high resource-efficiency and cost savings [...].
Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V
1943-01-01
This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.
Off-Axis and Angular Impulse Measurements on a Lightcraft Engine
NASA Astrophysics Data System (ADS)
Libeau, Michael; Myrabo, Leik
2005-04-01
A laser pulse into a Lightcraft engine applies three linear impulses and three angular impulses to the vehicle that depend on the engine's position and orientation with respect to the laser beam. The magnitudes on this impulsive reaction determine the vehicle's autonomous beam-riding characteristics. The impulsive reaction applied to the laser Lightcraft is examined and a device capable of measuring the reaction is designed and tested. Previous work has examined only the linear impulse acting in the thrust direction but the new apparatus, termed the Angular Impulse Measuring Device (AIMD), experimentally measures the dominant side impulse and dominant pitching angular impulse generated by the engine after a laser-strike. Recent tests of an 11/10 scale Model 200 Lightcraft were conducted using a 10KW Army laser at White Sands Missile Range. The resulting measurements are presented as a function of laser beam position.
Net Photorefractive Gain In Gallium Arsenide
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi; Cheng, Li-Jen
1990-01-01
Prerequisite includes applied electric field. Electric field applied to GaAs crystal in which two infrared beams interfere. Depending on quality of sample and experimental conditions, net photorefractive gain obtained. Results offer possibility of new developments in real-time optical processing of signals by use of near-infrared lasers of low power.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Nanjing University of Posts and Communications, Nanjing 210003; Popa, D., E-mail: dp387@cam.ac.uk
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Shipboard Measurements of 0.6328 Micrometer Laser Beam Extinction in the Marine Boundary Layer
1976-06-01
hdl.handle.net/10945/17938 Downloaded from NPS Archive: Calhoun SHIPBOARD MEASUREMENTS OF 0.6328 MICROMETER LASER BEAM EXTINCTION IN THE MARINE BOUNDARY LAYER P...W. Parish NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS SHIPBOARD MEASUREMENTS OF 0.6328 MICROMETER LASER BEAM EXTINCTION IN THE MARINE...CLASSIFICATION OF THIS PtkGE(Wh»n Dmta Enffd) Shipboard Measurements of 0.6328 Micrometer Laser Beam Extinction in the Marine Boundary Layer by P. W
Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718
NASA Astrophysics Data System (ADS)
Petrat, Torsten; Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael
Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.
Numerical and Engine Cycle Analyses of a Pulse Laser Ramjet Vehicle
NASA Astrophysics Data System (ADS)
Katsurayama, Hiroshi; Komurasaki, Kimiya; Momozawa, Ai; Arakawa, Yoshihiro
A preliminary feasibility study of a laser ramjet SSTO has been conducted using engine cycle analysis. Although a large amount of laser energy is lost due to chemically frozen flow at high altitudes, the laser ramjet SSTO was found to be feasible with 100 MW laser power for 100 kg vehicle mass and 1 m2 vehicle cross-section area. Obtained momentum coupling coefficient, Cm, was validated by means of CFD. As a result, the engine cycle analysis was under-estimating Cm. This would be because of the strong unsteady energy input in the actual heating process and the spatially localized pressure on the afterbody.
NASA Technical Reports Server (NTRS)
Digman, R. Michael
1988-01-01
The goal of AdaNET is to transfer existing and emerging software engineering technology from the Federal government to the private sector. The views and perspectives of the current project participants on long and short term goals for AdaNET; organizational structure; resources and returns; summary of identified AdaNET services; and the summary of the organizational model currently under discussion are presented.
1984-04-01
axis laser gyro sensor assembly (1, 24) in a single Zerodur structure using interleaved laser paths to reduce net size/weight. If advances in mirror ...laser gyros, special design considerations - associated with mechanically dithered laaer gyros, the state-of-the-art in magnetic mirror and...from the lasing action of a helium-noon gas discharge within the optical cavity. The reflecting surfaces are die- lectric mirrors designed to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shihua; Wu Fengmin
2006-12-15
K. P. Singh [Phys. Rev. E 69, 056410 (2004)] put forward a scheme of vacuum laser acceleration in a static magnetic field. We point out that one of the assumptions used in their model does not stand on a solid physical ground and that it seriously influences electrons to obtain net energy gains from the laser field.
A Conceptual Design of Omni-Directional Receiving Dual-Beam Laser Engine
NASA Astrophysics Data System (ADS)
Tang, Zhiping; Zhang, Qinghong
2010-05-01
The laser engine design is one of the key issues for laser propulsion technology. A concept of Omni-Directional Receiving Dual-Beam Laser Engine (ODLE) together with its configuration design is proposed in this paper. The ODLE is noted for its features as follows: First, the optical system is completely separated from the thrust system, the incident laser beams are reflected into the thrust chamber by the optics only twice, so the beam energy loss is small. Second, the optical system can be adjusted in all direction to track the incident laser beams, ensuring its wide applications in various kinds of launching trajectories. Third, the adoption of the dual-beam single-or double-engine configuration can reduce 50% of the power requirement for each laser, and a smooth laser relay can be carried out if needed during the launching process. The paper has proposed 2 launch plans into the LEO with the ODLE: the plane trajectory and the conic spiral trajectory. The simulated results indicate that the transmission distance of laser beams for the conic spiral trajectory is far less than that of the plane trajectory. As a result, it can reduce significantly the divergence and energy loss of laser beams, and is also of advantage for the measurement and control operation during the launch process.
Web Services Integration on the Fly
2008-12-01
NETBEANS 6.1 AND VERSION CONTROL............................................28 1. NetBeans Integrated Development Environment (IDE) ................28 2...Forward and Reverse Engineering...................................................28 3. Implementation using NetBeans ...29 4. Subversion (SVN) for Version Control in NetBeans ......................29 O. PROTÉGÉ AUTHORING TOOL FOR SEMANTIC WEB
We conducted a probability-based sampling of Lake Superior in 2006 and compared the zooplankton biomass estimate with laser optical plankton counter (LOPC) predictions. The net survey consisted of 52 sites stratified across three depth zones (0-30, 30-150, >150 m). The LOPC tow...
Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber
NASA Astrophysics Data System (ADS)
Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.
2008-05-01
The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.
Web Feet Guide to Search Engines: Finding It on the Net.
ERIC Educational Resources Information Center
Web Feet, 2001
2001-01-01
This guide to search engines for the World Wide Web discusses selecting the right search engine; interpreting search results; major search engines; online tutorials and guides; search engines for kids; specialized search tools for various subjects; and other specialized engines and gateways. (LRW)
Hao, Liang
2014-01-01
In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879
Aiello, Lloyd Paul; Beck, Roy W; Bressler, Neil M.; Browning, David J.; Chalam, KV; Davis, Matthew; Ferris, Frederick L; Glassman, Adam; Maturi, Raj; Stockdale, Cynthia R.; Topping, Trexler
2011-01-01
Objective Describe the underlying principles used to develop a web-based algorithm that incorporated intravitreal anti-vascular endothelial growth factor (anti-VEGF) treatment for diabetic macular edema (DME) in a Diabetic Retinopathy Clinical Research Network (DRCR.net) randomized clinical trial. Design Discussion of treatment protocol for DME. Participants Subjects with vision loss from DME involving the center of the macula. Methods The DRCR.net created an algorithm incorporating anti-VEGF injections in a comparative effectiveness randomized clinical trial evaluating intravitreal ranibizumab with prompt or deferred (≥24 weeks) focal/grid laser in eyes with vision loss from center-involved DME. Results confirmed that intravitreal ranibizumab with prompt or deferred laser provides superior visual acuity outcomes, compared with prompt laser alone through at least 2 years. Duplication of this algorithm may not be practical for clinical practice. In order to share their opinion on how ophthalmologists might emulate the study protocol, participating DRCR.net investigators developed guidelines based on the algorithm's underlying rationale. Main Outcome Measures Clinical guidelines based on a DRCR.net protocol. Results The treatment protocol required real time feedback from a web-based data entry system for intravitreal injections, focal/grid laser, and follow-up intervals. Guidance from this system indicated whether treatment was required or given at investigator discretion and when follow-up should be scheduled. Clinical treatment guidelines, based on the underlying clinical rationale of the DRCR.net protocol, include repeating treatment monthly as long as there is improvement in edema compared with the previous month, or until the retina is no longer thickened. If thickening recurs or worsens after discontinuing treatment, treatment is resumed. Conclusions Duplication of the approach used in the DRCR.net randomized clinical trial to treat DME involving the center of the macula with intravitreal ranibizumab may not be practical in clinical practice, but likely can be emulated based on an understanding of the underlying rationale for the study protocol. Inherent differences between a web-based treatment algorithm and a clinical approach may lead to differences in outcomes that are impossible to predict. The closer the clinical approach is to the algorithm used in the study, the more likely the outcomes will be similar to those published. PMID:22136692
Aiello, Lloyd Paul; Beck, Roy W; Bressler, Neil M; Browning, David J; Chalam, K V; Davis, Matthew; Ferris, Frederick L; Glassman, Adam R; Maturi, Raj K; Stockdale, Cynthia R; Topping, Trexler M
2011-12-01
To describe the underlying principles used to develop a web-based algorithm that incorporated intravitreal anti-vascular endothelial growth factor (anti-VEGF) treatment for diabetic macular edema (DME) in a Diabetic Retinopathy Clinical Research Network (DRCR.net) randomized clinical trial. Discussion of treatment protocol for DME. Subjects with vision loss resulting from DME involving the center of the macula. The DRCR.net created an algorithm incorporating anti-VEGF injections in a comparative effectiveness randomized clinical trial evaluating intravitreal ranibizumab with prompt or deferred (≥24 weeks) focal/grid laser treatment in eyes with vision loss resulting from center-involved DME. Results confirmed that intravitreal ranibizumab with prompt or deferred laser provides superior visual acuity outcomes compared with prompt laser alone through at least 2 years. Duplication of this algorithm may not be practical for clinical practice. To share their opinion on how ophthalmologists might emulate the study protocol, participating DRCR.net investigators developed guidelines based on the algorithm's underlying rationale. Clinical guidelines based on a DRCR.net protocol. The treatment protocol required real-time feedback from a web-based data entry system for intravitreal injections, focal/grid laser treatment, and follow-up intervals. Guidance from this system indicated whether treatment was required or given at investigator discretion and when follow-up should be scheduled. Clinical treatment guidelines, based on the underlying clinical rationale of the DRCR.net protocol, include repeating treatment monthly as long as there is improvement in edema compared with the previous month or until the retina is no longer thickened. If thickening recurs or worsens after discontinuing treatment, treatment is resumed. Duplication of the approach used in the DRCR.net randomized clinical trial to treat DME involving the center of the macula with intravitreal ranibizumab may not be practical in clinical practice, but likely can be emulated based on an understanding of the underlying rationale for the study protocol. Inherent differences between a web-based treatment algorithm and a clinical approach may lead to differences in outcomes that are impossible to predict. The closer the clinical approach is to the algorithm used in the study, the more likely the outcomes will be similar to those published. Proprietary or commercial disclosure may be found after the references. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Practical Design and Applications of Ultrafast Semiconductor Disk Lasers
NASA Astrophysics Data System (ADS)
Baker, Caleb W.
Vertical External Cavity Surface Emitting Lasers (VECSELs) have become well established in recent years for their design flexibility and promising power scalability. Recent efforts in VECSEL development have focused heavily on expanding the medium into the ultrafast regime of modelocked operation. Presented in this thesis is a detailed discussion regarding the development of ultrafast VECSEL devices. Achievements in continuous wave (CW) operation will be highlighted, followed by several chapters detailing the engineering challenges and design solutions which enable modelocked operation of VECSELs in the ultrafast regime, including the design of the saturable absorbers used to enforce modelocking, management of the net group delay dispersion (GDD) inside the cavity, and the design of the active region to support pulse durations on the order of 100 fs. Work involving specific applications - VECSELs emitting on multiple wavelengths simultaneously and the use of VECSEL seed oscillators for amplification and spectral broadening - will also be presented. Key experimental results will include a novel multi-fold cavity design that produced record-setting peak powers of 6.3 kW from a modelocked VECSEL, an octave-spanning supercontinuum with an average power of 2 W generated using a VECSEL seed and a 2-stage Yb fiber amplifier, and two separate experiments where a VECSEL was made to emit on multiple wavelengths simultaneously in modelocked and highly stable CW operation, respectively. Further, many diagnostic and characterization measurements will be presented, most notably the in-situ probing of a VECSEL gain medium during stable modelocked operation with temporal resolution on the order of 100 fs, but also including characterization of the relaxation rates in different saturable absorber designs and the effectiveness of different methods for managing the net GDD of a device.
`Googling' Terrorists: Are Northern Irish Terrorists Visible on Internet Search Engines?
NASA Astrophysics Data System (ADS)
Reilly, P.
In this chapter, the analysis suggests that Northern Irish terrorists are not visible on Web search engines when net users employ conventional Internet search techniques. Editors of mass media organisations traditionally have had the ability to decide whether a terrorist atrocity is `newsworthy,' controlling the `oxygen' supply that sustains all forms of terrorism. This process, also known as `gatekeeping,' is often influenced by the norms of social responsibility, or alternatively, with regard to the interests of the advertisers and corporate sponsors that sustain mass media organisations. The analysis presented in this chapter suggests that Internet search engines can also be characterised as `gatekeepers,' albeit without the ability to shape the content of Websites before it reaches net users. Instead, Internet search engines give priority retrieval to certain Websites within their directory, pointing net users towards these Websites rather than others on the Internet. Net users are more likely to click on links to the more `visible' Websites on Internet search engine directories, these sites invariably being the highest `ranked' in response to a particular search query. A number of factors including the design of the Website and the number of links to external sites determine the `visibility' of a Website on Internet search engines. The study suggests that Northern Irish terrorists and their sympathisers are unlikely to achieve a greater degree of `visibility' online than they enjoy in the conventional mass media through the perpetration of atrocities. Although these groups may have a greater degree of freedom on the Internet to publicise their ideologies, they are still likely to be speaking to the converted or members of the press. Although it is easier to locate Northern Irish terrorist organisations on Internet search engines by linking in via ideology, ideological description searches, such as `Irish Republican' and `Ulster Loyalist,' are more likely to generate links pointing towards the sites of research institutes and independent media organisations than sites sympathetic to Northern Irish terrorist organisations. The chapter argues that Northern Irish terrorists are only visible on search engines if net users select the correct search terms.
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.
NASA Astrophysics Data System (ADS)
Li, Lu; Lv, Ruidong; Liu, Sicong; Wang, Xi; Wang, Yonggang; Chen, Zhendong; Wang, Jiang
2018-05-01
This report demonstrates a stable Q-switched Er-doped fiber laser with MoS2 (WS2)-based saturable absorber (SA) in the net normal dispersion regime. The SA is obtained by mixing MoS2 (WS2) nanosheets with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form MoS2 (WS2)/PVA film. The modulation depth values for MoS2/PVA and WS2/PVA are measured to be 2.7% and 2.1% respectively. Employing the MoS2 (WS2)/PVA film in the Er-doped fiber laser cavity, stable Q-switching operation is achieved with central wavelength of 1560 nm. The shortest pulse durations of the two Q-switched fiber lasers are, respectively, 3.97 and 3.71 µs, and their maximum single pulse energies are measured to be 131.52 and 126.96 nJ. The experimental results clearly show that MoS2 (WS2) is a promising nonlinear material, and that improvements in Q-switching performance due to two SAs in the net normal dispersion regime might be helpful in the design of fiber lasers.
The Microstructure Evolution of a Fe₃Al Alloy during the LENS Process.
Karczewski, Krzysztof; Durejko, Tomasz; Czujko, Tomasz
2018-03-07
A Fe₃Al intermetallic alloy has been successfully prepared by the laser-engineered net shaping (LENS) process. The applied process parameters were selected to provide various cooling rates during the solidification of the laser-melted material. The macro- and microstructure and the micro- and macrotexture of Fe₃Al samples were investigated. The influence of the cooling rate on grain morphology and texture is discussed. For the applied cooling rate range of 0.64 × 10⁴ K/s-2.6 × 10⁴ K/s, the structure is characterized by the presence of columnar grains for which the growth is directed upwards from the substrate. The intensity of the microtexture varies with the height of the sample and the cooling rate. The intensity of the texture increases with the decrease in the cooling rate. The samples that were obtained with low and medium cooling rates are characterized by the well-developed <100> and <111> macrotextures. The Fe₃Al alloy that was produced with a high cooling rate did not show a specific texture, which is reflected in the fairly uniform distribution of the normalized density intensity. Only a very weak texture with a <100> type component was observed.
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.
2002-01-01
The improvement in weld quality by the friction stir welding (FSW) process invented by TWI of Cambridge, England, patented in 1991, has prompted investigation of this process for advanced structural materials including Al metal matrix composite (Al-MMC) materials. Such materials can have high specific stiffness and other potential beneficial properties for the extreme environments in space. Developments of discontinuous reinforced Al-MMCs have found potential space applications and the future for such applications is quite promising. The space industry has recognized advantages of the FSW process over conventional welding processes such as the absence of a melt zone, reduced distortion, elimination of the need for shielding gases, and ease of automation. The process has been well proven for aluminum alloys, and work is being carried out for ferrous materials, magnesium alloys and copper alloys. Development work in the FSW welding process for joining of Al-MMCs is relatively recent and some of this and related work can be found in referenced research publications. NASA engineers have undertaken to spear head this research development work for FSW process investigation of Al-MMCs. Some of the reported related work has pointed out the difficulty in fusion welding of particulate reinforced MMCs where liquid Al will react with SiC to precipitate aluminum carbide (Al4C3). Advantages of no such reaction and no need for joint preparation for the FSW process is anticipated in the welding of Al-MMCs. The FSW process has been best described as a combination of extrusion and forging of metals. This is carried out as the pin tool rotates and is slowly plunged into the bond line of the joint as the pin tool's shoulder is in intimate contact with the work piece. The material is friction-stirred into a quality weld. Al-MMCs, 4 in. x 12 in. plates of 0.25 in. (6.35mm) thickness, procured from MMCC, Inc. were butt welded using FSW process at Marshall Space Flight Center (MSFC) using prior set of operating conditions. Weld quality was evaluated using radiography and standard metallography techniques. Another aspect of the MMCs centered around the use of the laser engineered net shaping (LENS) processing of selected Narloy-Z composites. Such an approach has been earlier studied for fabrication of stainless steels. In the present study, attempts were made to fabricate straight cylindrical specimens using LENS process of Narloy-Z and Narloy-Z with 20 vol. % Al2O3 MMCs using the direct metal deposition Optomec LENS-750 system.
Vector dissipative solitons in graphene mode locked fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Han; Tang, Dingyuan; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping
2010-09-01
Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.
Dark pulse generation in fiber lasers incorporating carbon nanotubes.
Liu, H H; Chow, K K
2014-12-01
We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanas'ev, Yurii V; Zavestovskaya, I N; Zvorykin, V D
A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-powermore » lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889. (chronicle)« less
NASA Astrophysics Data System (ADS)
Landsfeld, M. F.; Hegewisch, K.; Daudert, B.; Morton, C.; Husak, G. J.; Friedrichs, M.; Funk, C. C.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.
2016-12-01
The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence-based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The network of FEWS NET analysts and scientists require flexible, interactive tools to aid in their monitoring and research efforts. Because they often work in bandwidth-limited regions, lightweight Internet tools and services that bypass the need for downloading massive datasets are preferred for their work. To support food security analysis FEWS NET developed a custom interface for the Google Earth Engine (GEE). GEE is a platform developed by Google to support scientific analysis of environmental data in their cloud computing environment. This platform allows scientists and independent researchers to mine massive collections of environmental data, leveraging Google's vast computational resources for purposes of detecting changes and monitoring the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). CHIRPS precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. In this talk we introduce the FEWS Engine interface. We present an application that highlights the utility of FEWS Engine for forecasting the upcoming seasonal precipitation of southern Africa. Specifically, the current state of ENSO is assessed and used to identify similar historical seasons. The FEWS Engine compositing tool is used to examine rainfall and other environmental data for these analog seasons. The application illustrates the unique benefits of using FEWS Engine for on-the-fly food security scenario development.
DOT National Transportation Integrated Search
1975-08-01
This report outlines the engineering requirements for an Airborne Laser Remote Sensor for Oil Detection and Classification System. Detailed engineering requirements are given for the major units of the system. Technical considerations pertinent to a ...
Army Net Zero Prove Out. Net Zero Energy Best Practices
2014-11-18
energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy
Inverse Faraday Effect Revisited
NASA Astrophysics Data System (ADS)
Mendonça, J. T.; Ali, S.; Davies, J. R.
2010-11-01
The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).
NASA Astrophysics Data System (ADS)
Grachev, Gennadii N.; Tishchenko, V. N.; Apollonov, V. V.; Gulidov, A. I.; Smirnov, A. L.; Sobolev, A. V.; Zimin, M. I.
2007-07-01
An optical pulsating discharge produced by repetitively pulses laser radiation (with a pulse repetition rate of up to 100 kHz) is studied in a cylindrical tube simulating the reflector of a laser engine. The pressure of shock waves and the propulsion produced by them are measured. The discharge produced the stationary propulsion ~1 N kW-1.
NASA Astrophysics Data System (ADS)
Done, Bogdan
2017-10-01
Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.
LD side-pumped Nd:YAG Q-switched laser without water cooling
NASA Astrophysics Data System (ADS)
Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu
2009-07-01
A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10-12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than +/-1. 7 %.
Electron acceleration by a focused laser pulse in a static magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shihua; Wu Fengmin; Zhao Xianghao
2007-12-15
The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.
Computational fluid dynamics: An engineering tool?
NASA Astrophysics Data System (ADS)
Anderson, J. D., Jr.
1982-06-01
Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.
A real time neural net estimator of fatigue life
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1990-01-01
A neural net architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the Intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopump blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines. This neural net estimator of fatigue life is seen as the enabling technology to achieve component life prognosis, and therefore would be an important part of life extending control for reusable rocket engines.
The Design and Realization of Net Testing System on Campus Network
ERIC Educational Resources Information Center
Ren, Zhanying; Liu, Shijie
2005-01-01
According to the requirement of modern teaching theory and technology, based on software engineering, database theory, the technique of net information security and system integration, a net testing system on local network was designed and realized. The system benefits for dividing of testing & teaching and settles the problems of random…
Optical properties of biomimetic probes engineered from erythrocytes
NASA Astrophysics Data System (ADS)
Burns, Joshua M.; Saager, Rolf; Majaron, Boris; Jia, Wangcun; Anvari, Bahman
2017-01-01
Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 μm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 μM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (μ a) and reduced scattering (μ s‧) coefficients of these NETs. For a given NETs diameter, values of μ a increased over the approximate spectral band of 630-860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of μ a when using ICG concentrations of 10 and 20 μM, and showed increased values of μ s‧ as compared to nano-sized NETs. Spectral profiles of μ s‧ for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.
Comparison of experimental models for predicting laser-tissue interaction from 3.8-micron lasers
NASA Astrophysics Data System (ADS)
Williams, Piper C. M.; Winston, Golda C. H.; Randolph, Don Q.; Neal, Thomas A.; Eurell, Thomas E.; Johnson, Thomas E.
2004-07-01
The purpose of this study was to evaluate the laser-tissue interactions of engineered human skin and in-vivo pig skin following exposure to a single 3.8 micron laser light pulse. The goal of the study was to determine if these tissues shared common histologic features following laser exposure that might prove useful in developing in-vitro and in-vivo experimental models to predict the bioeffects of human laser exposure. The minimum exposure required to produce gross morphologic changes following a four microsecond, pulsed skin exposure for both models was determined. Histology was used to compare the cellular responses of the experimental models following laser exposure. Eighteen engineered skin equivalents (in-vitro model), were exposed to 3.8 micron laser light and the tissue responses compared to equivalent exposures made on five Yorkshire pigs (in-vivo model). Representative biopsies of pig skin were taken for histologic evaluation from various body locations immediately, one hour, and 24 hours following exposure. The pattern of epithelial changes seen following in-vitro laser exposure of the engineered human skin and in-vivo exposure of pig skin indicated a common histologic response for this particular combination of laser parameters.
Design Considerations For A Clinical XeC1 Excimer Laser Angioplasty System
NASA Astrophysics Data System (ADS)
Laudenslager, James B.; Goldenberg, Tsvi; Naghieh, Harry R.; Pham, Andrew A.; Narciso, Hugh L.; Tranis, Art; Pacala, Thomas J.
1989-09-01
Laser ablation and removal of intravascular plaque has long been a goal of physicians and physicists as an alternative treatment for coronary and peripheral artery disease. Early application of cw free light beam visible and infrared lasers such as argon ion or Nd:YAG lasers for this application were plagued by thermal side effects of the ablation process. Specifically, imprecise control of the boundary tissue injury produced by the deep penetration depth of the laser beam gave rise to early reclosure of the vessel due to the thermal nature of the ablation process. Pulsed ultraviolet laser free beam ablation of atherosclerotic plaque, however, does not produce thermal effects, cuts tissue precisely leaving a smooth wall and can ablate hard calcific lesions. We have chosen to develop a XeC1 excimer laser-fiberoptic delivery system for the clinical application of laser angioplasty based on achieving the desired therapeutic results for a laser revascularization procedure. Four major engineering design issues must be considered in order to produce a successful clinical laser angioplasty product. These engineering issues are: 1) Functional clinical engineering, 2) Regulatory design issues, 3) Hospital facility and user requirements, and 4) Economic issues for the manufacturer, the hospital and the patient.
Experimental Investigation of Airbreathing Laser Propulsion Engines: CO2TEA vs. EDL
NASA Astrophysics Data System (ADS)
Mori, Koichi; Sasoh, Akihiro; Myrabo, Leik N.
2005-04-01
Single pulse laboratory experiments were carried out with a high-power CO2 Transversely-Exited Atmospheric (TEA) laser using parabolic laser propulsion (LP) engines of historic interest: 1) an original Pirri/ AERL bell engine, and 2) a scaled-up 11-cm diameter version with identical geometry. The objective was to quantify the effects of pulse duration upon the impulse coupling coefficient performance — with pulse energy as the parametric variable. Performance data from the TEA laser are contrasted with former results derived from AVCO Everett Research Laboratory and PLVTS CO2 electron discharge lasers (EDL). The `short-pulse' 2-microsecond TEA laser tests generated results that were distinctively different from that of the `long-pulse' EDL sources. The TC-300 TEA laser employed an unstable resonator to deliver up to 380 joules, and the square output beam measured 15-cm on a side, with a hollow 8-cm center. A standard ballistic pendulum was employed to measure the performance.
Laser Engineered Graphene Paper for Mass Spectrometry Imaging
Qian, Kun; Zhou, Liang; Liu, Jian; Yang, Jie; Xu, Hongyi; Yu, Meihua; Nouwens, Amanda; Zou, Jin; Monteiro, Michael J.; Yu, Chengzhong
2013-01-01
A pulsed laser engineering approach is developed to prepare novel functional graphene paper with graphitic nanospheres homogeneously decorated on the surface and the superior performance of engineered paper is revealed in matrix-free mass spectrometry (MS) detection and imaging. We demonstrate that the stability of graphene paper under intense irradiation can be dramatically increased through a designed laser engineering process by forming densely packed graphitic nanospheres on the paper surface. Moreover, the surface hydrophobicity is enhanced and electric conductivity is improved. The engineered graphene paper can image the invisible micro-patterns of trace amount molecules and increases the detection limit towards diverse molecules by over two orders of magnitude compared to the pristine graphene paper and commercial products in MS analysis. PMID:23475267
Low Dimensional Modeling of Zero-Net Mass-Flux Actuators
2004-07-01
centerline deflection of the diaphragm is measured using a laser displacement sensor (Micro-Epsilon Model ILD2000-10). Both signals are acquired phase...the flowfield emanating from the ZNMF orifice are acquired using Laser Doppler Anemometry (LDA), the details of which are listed in Table 1. The...synthetic jet actuator is mounted to a three-axis traverse with sub-micron spatial resolution. The 488 and 514.5 nm lines of an argon-ion laser are
NASA Astrophysics Data System (ADS)
Johnson, Kyle L.; Rodgers, Theron M.; Underwood, Olivia D.; Madison, Jonathan D.; Ford, Kurtis R.; Whetten, Shaun R.; Dagel, Daryl J.; Bishop, Joseph E.
2018-05-01
Additive manufacturing enables the production of previously unachievable designs in conjunction with time and cost savings. However, spatially and temporally fluctuating thermal histories can lead to residual stress states and microstructural variations that challenge conventional assumptions used to predict part performance. Numerical simulations offer a viable way to explore the root causes of these characteristics, and can provide insight into methods of controlling them. Here, the thermal history of a 304L stainless steel cylinder produced using the Laser Engineered Net Shape process is simulated using finite element analysis (FEA). The resultant thermal history is coupled to both a solid mechanics FEA simulation to predict residual stress and a kinetic Monte Carlo model to predict the three-dimensional grain structure evolution. Experimental EBSD measurements of grain structure and in-process infrared thermal data are compared to the predictions.
NASA Astrophysics Data System (ADS)
Johnson, Kyle L.; Rodgers, Theron M.; Underwood, Olivia D.; Madison, Jonathan D.; Ford, Kurtis R.; Whetten, Shaun R.; Dagel, Daryl J.; Bishop, Joseph E.
2017-12-01
Additive manufacturing enables the production of previously unachievable designs in conjunction with time and cost savings. However, spatially and temporally fluctuating thermal histories can lead to residual stress states and microstructural variations that challenge conventional assumptions used to predict part performance. Numerical simulations offer a viable way to explore the root causes of these characteristics, and can provide insight into methods of controlling them. Here, the thermal history of a 304L stainless steel cylinder produced using the Laser Engineered Net Shape process is simulated using finite element analysis (FEA). The resultant thermal history is coupled to both a solid mechanics FEA simulation to predict residual stress and a kinetic Monte Carlo model to predict the three-dimensional grain structure evolution. Experimental EBSD measurements of grain structure and in-process infrared thermal data are compared to the predictions.
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
280 GHz dark soliton fiber laser.
Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y
2014-06-15
We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280 GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.
Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.
2001-01-01
Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.
Joshi, Sachin; Olsen, Daniel B; Dumitrescu, Cosmin; Puzinauskas, Paulius V; Yalin, Azer P
2009-05-01
In this contribution we present the first demonstration of simultaneous use of laser sparks for engine ignition and laser-induced breakdown spectroscopy (LIBS) measurements of in-cylinder equivalence ratios. A 1064 nm neodynium yttrium aluminum garnet (Nd:YAG) laser beam is used with an optical spark plug to ignite a single cylinder natural gas engine. The optical emission from the combustion initiating laser spark is collected through the optical spark plug and cycle-by-cycle spectra are analyzed for H(alpha)(656 nm), O(777 nm), and N(742 nm, 744 nm, and 746 nm) neutral atomic lines. The line area ratios of H(alpha)/O(777), H(alpha)/N(746), and H(alpha)/N(tot) (where N(tot) is the sum of areas of the aforementioned N lines) are correlated with equivalence ratios measured by a wide band universal exhaust gas oxygen (UEGO) sensor. Experiments are performed for input laser energy levels of 21 mJ and 26 mJ, compression ratios of 9 and 11, and equivalence ratios between 0.6 and 0.95. The results show a linear correlation (R(2) > 0.99) of line intensity ratio with equivalence ratio, thereby suggesting an engine diagnostic method for cylinder resolved equivalence ratio measurements.
Engine performance analysis and optimization of a dual-mode scramjet with varied inlet conditions
NASA Astrophysics Data System (ADS)
Tian, Lu; Chen, Li-Hong; Chen, Qiang; Zhong, Feng-Quan; Chang, Xin-Yu
2016-02-01
A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a kerosene-fueled parameterized dual-mode scramjet at a crucial flight Mach number of 6 were investigated by using a modified quasi-one-dimensional method and simulated annealing strategy. Engine structure and heat release distributions, affecting the engine thrust, were chosen as analytical parameters for varied inlet conditions (isolator entrance Mach number: 1.5-3.5). Results show that different optimal heat release distributions and structural conditions can be obtained at five different inlet conditions. The highest net thrust of the parameterized dual-mode engine can be achieved by a subsonic combustion mode at an isolator entrance Mach number of 2.5. Additionally, the effects of heat release and scramjet structure on net thrust have been discussed. The present results and the developed analytical method can provide guidance for the design and optimization of high-performance dual-mode scramjets.
Near-Net Shape Powder Metallurgy Rhenium Thruster
NASA Technical Reports Server (NTRS)
Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian
2001-01-01
This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.
NASA Astrophysics Data System (ADS)
Battaile, Corbett; Owen, Steven; Moore, Nathan
2017-06-01
The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.
Design Tools for Zero-Net Mass-Flux Separation Control Devices
2004-12-01
experimental data. Most of the experimental studies employed either Hot Wire Anemometry (HWA), Particle Image Velocimetry (PIV) or Laser Doppler...To61 View traverse Y Z z to procdspor X * ’ probe I,it, I from laser Sbellows synthetic PMTs extender jet,,, olor i 200 mm 2 ", separator micro...measured using a laser displacement sensor Micro-Epsilon Model ILD2000-10. The sensitivity is 1 V/mm, with a full-scale range of 10 mm and a resolution of
Initial experiments with a laser driven Stirling engine
NASA Technical Reports Server (NTRS)
Byer, R. L.
1976-01-01
Operation of a Beale free piston Stirling engine with a 40-W CO2 laser is described. Advantages of such a system include: closed-cycle operation, long life, inexpensive construction, and size scalability to 100 MW.
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
NASA Astrophysics Data System (ADS)
Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.
2017-09-01
Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh
2004-01-01
The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.
Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering
NASA Astrophysics Data System (ADS)
Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor
2018-04-01
Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.
Use of CellNetAnalyzer in biotechnology and metabolic engineering.
von Kamp, Axel; Thiele, Sven; Hädicke, Oliver; Klamt, Steffen
2017-11-10
Mathematical models of the cellular metabolism have become an essential tool for the optimization of biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the used microorganisms and to find suitable genetic modifications maximizing the production performance. In particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based operations or via a graphical user interface with embedded network visualizations. Herein we will present key functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain design. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser
NASA Astrophysics Data System (ADS)
Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai
2016-10-01
Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.
Laser engines operating by resonance absorption.
Garbuny, M; Pechersky, M J
1976-05-01
The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.
Low quantum defect laser performance
NASA Astrophysics Data System (ADS)
Bowman, Steven R.
2017-01-01
Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.
NASA Astrophysics Data System (ADS)
Samidjan, Istiyanto; Rachmawati, Diana
2018-02-01
One solution is to utilize engineering technology cultivation floating cage net polka dot grouper (ducker grouper), which is given artificial feed enriched with phytase enzymes. The objectives of this study was to examine the use of technology engineering floating net on ducker grouper on artificial feed that is enriched with different dose phytase enzymes to accelerate growth and survival. The research method used ducker grouper fish size 15,5 ± 0,5 cm in the net cages unit (1 m x 1 m x 1 m), 250 fish per cage, using 12 cages. Each net-cages was made of polyethylens netting, mesh size 12.5 mm. with complete randomized design (CRD) 4 treatment and 3 replication were feed Artificial enriched of phytase enzyme with the doses of A (0 FTU · kg-1 diet), B (200 FTU · kg-1 diet), C (500 FTU · kg-1 diet), and D (800 FTU · kg-1 diet) phytase enzyme. Feed was given 2 times a day in the morning and afternoon with 5% biomass per day. Data includes the growth of absolute weight polka dot grouper, FCR, and survival rate analyzed variety and Test Tukey.The result of the research showed that the difference of artificial feeding enriched phytase enzyme significantly (P <0,05) to growth, food conversion ratio (FCR), survival rete of polka dot grouper. The best treatment at C (500 mg / kg of feed) increase growth of absolute weight of 128.75 g, 1.75 (FCR), and a survival rate of 93.5%.
Caro-Rojas, Rosa Angela; Eslava-Schmalbach, Javier H
2005-01-01
To compare the information obtained from the Medline database using Internet commercial search engines with that obtained from a compact disc (Medline-CD). An agreement study was carried out based on 101 clinical scenarios provided by specialists in internal medicine, pharmacy, gynaecology-obstetrics, surgery and paediatrics. 175 search strategies were employed using the connector AND plus text within quotation marks. The search was limited to 1991-1999. Internet search-engines were selected by common criteria. Identical search strategies were independently applied to and masked from Internet search engines, as well as the Medline-CD. 3,488 articles were obtained using 129 search strategies. Agreement with the Medline-CD was 54% for PubMed, 57% for Gateway, 54% for Medscape and 65% for BioMedNet. The highest agreement rate for a given speciality (paediatrics) was 78.1% for BioMedNet, having greater -/- than +/+ agreement. Even though free access to Medline has encouraged the boom and growth of evidence-based medicine, these results must be considered within the context of which search engine was selected for doing the searches. The Internet search engines studied showed a poor agreement with the Medline-CD, the rate of agreement differing according to speciality, thus significantly affecting searches and their reproducibility. Software designed for conducting Medline database searches, including the Medline-CD, must be standardised and validated.
Perspective of laser-induced plasma ignition of hydrocarbon fuel in Scramjet engine
NASA Astrophysics Data System (ADS)
Yang, Leichao; Li, Xiaohui; Liang, Jianhan; Yu, Xin; Li, Xipeng
2016-01-01
Laser-induced plasma ignition of an ethylene fuelled cavity was successfully conducted in a model scramjet engine combustor. The ethylene was injected 10mm upstream of cavity flameholder from 3 orifices 60 degree inclined relative to freestream direction. The 1064nm laser beam, from a Q-switched Nd:YAG laser source running at 3Hz and 200mJ per pulse, was focused into cavity for ignition. High speed photography was used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation were all recorded and ensuing stable supersonic combustion was established in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upwards as the entrainment of circulation flow in cavity. The flame is then stretched from leading edge to trailing edge to fully fill the entire cavity. Eventually, a stable combustion is achieved roughly 900μs after the laser pulse. The results show promising potentials for practical application. The perspective of laser-induced plasma ignition of hydrocarbon fuel in scramjet engine is outlined.
Experimental Investigation into Beam-Riding Physics of Lightcraft Engines: Progress Report
NASA Astrophysics Data System (ADS)
Kenoyer, David A.; Myrabo, Leik N.; Notaro, Samuel J.; Bragulla, Paul W.
2010-05-01
A twin Lumonics K922M pulsed TFA CO2 laser system (pulse duration of approximately 200 ns FWHM spike with 1 us tail) was employed to experimentally measure beam-riding behavior of Type ♯200 lightcraft engines, using the Angular Impulse Measurement Device (AIMD). Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam angular and lateral offset from the vehicle axis of symmetry; b) laser pulse energy 12 to 36 joules); c) pulse duration (100 ns and 1 μs); and d) engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (CM) of 135 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 μs duration) results indicated 15-30 N-s/MJ—an improvement of 4.5x to 9x. Maximum axial CM performance with the K922M is li1ely to be 4x to 7x larger than lateral CM values, but must await confirmation in upcoming tests.
NASA Technical Reports Server (NTRS)
Mckay, Charles
1991-01-01
This is the configuration management Plan for the AdaNet Repository Based Software Engineering (RBSE) contract. This document establishes the requirements and activities needed to ensure that the products developed for the AdaNet RBSE contract are accurately identified, that proposed changes to the product are systematically evaluated and controlled, that the status of all change activity is known at all times, and that the product achieves its functional performance requirements and is accurately documented.
3D laser scanning in civil engineering - measurements of volume of earth masses
NASA Astrophysics Data System (ADS)
Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.
2018-03-01
Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering
Role of laser beam radiance in different ceramic processing: A two wavelengths comparison
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Lawrence, Jonathan
2013-12-01
Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.
Modeling of wastewater treatment system of car parks from petroleum products
NASA Astrophysics Data System (ADS)
Savdur, S. N.; Stepanova, Yu V.; Kodolova, I. A.; Fesina, E. L.
2018-05-01
The paper discusses the technological complex of wastewater treatment of car parks from petroleum products. Based on the review of the main modeling methods of discrete-continuous chemical and engineering processes, it substantiates expediency of using the theory of Petri nets (PN) for modeling the process of wastewater treatment of car parks from petroleum products. It is proposed to use a modification of Petri nets which is focused on modeling and analysis of discrete-continuous chemical and engineering processes by prioritizing transitions, timing marks in positions and transitions. A model in the form of modified Petri nets (MPN) is designed. A software package to control the process for wastewater treatment is designed by means of SCADA TRACE MODE.
Assessing the engineering performance of affordable net-zero energy housing
NASA Astrophysics Data System (ADS)
Wallpe, Jordan P.
The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses. Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon comparison, off-the-shelf engineering systems such as super-efficient HVAC units, heat pump hot water heaters, and properly designed photovoltaic arrays can affordably enable a house to become net-zero. These important and applicable technologies realized from the Solar Decathlon will reduce the 22 percent of all energy consumed through the residential sector in the United States. In conclusion, affordable net-zero energy buildings can be built today with commitment from design professionals, manufacturers, and home owners.
Antenna coupled photonic wire lasers
Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...
2015-06-22
Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less
Towards manipulating relativistic laser pulses with micro-tube plasma lenses
Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.
2016-01-01
Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥1023 Wcm−2 could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities. PMID:26979657
Applications of spaceborne laser ranger on EOS
NASA Technical Reports Server (NTRS)
Degnan, John J.; Cohen, Steven C.
1988-01-01
An account is given of the design concept and potential applications in science and engineering of the spaceborne laser ranging and altimeter apparatus employed by the Geodynamics Laser Ranging System; this is scheduled for 1997 launch as part of the multiple-satellite Earth Observing System. In the retrograding mode for geodynamics, the system will use a Nd:YAG laser's green and UV output for distance determination to ground retroreflectors. Engineering applications encompass land management and long-term ground stability studies relevant to nuclear power plant, pipeline, and aqueduct locations.
NASA Astrophysics Data System (ADS)
Matei, A.; Schou, J.; Canulescu, S.; Zamfirescu, M.; Albu, C.; Mitu, B.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Dinescu, M.
2013-08-01
Synthesized N,N'-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by covering the structures with two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation technique. The functionalized structures were tested in mouse fibroblasts culture and the cells morphology, proliferation, and attachment were analyzed.
Application of laser anemometry in turbine engine research
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.
1983-01-01
The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work.
Application of laser anemometry in turbine engine research
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.
1982-01-01
The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work.
Near infrared laser irradiation induces NETosis via oxidative stress and autophagy.
Mario, Migliario; Stelvio, Tonello; Vincenzo, Rochetti; Manuela, Rizzi; Filippo, Renò
2018-06-02
NETosis is a novel immune defense strategy in which neutrophil activation results in the formation of extracellular DNA/protein network which is able to kill microbial populations. NETosis can be induced in vitro by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA). Due to the importance of NETosis in different physiological and pathological processes, photobiostimulation effect on this neutrophil activation mechanism has been investigated. Human granulocytes, isolated from venous blood of healthy donors, were stimulated with a diode laser emitting at 980 nm with an energy intensity ranging from 0 to 75 joules. After 3 h of laser stimulation, granulocytes were fixed and colored with crystal violet in order to assess the NETosis morphology while extracellular DNA produced has been quantified using Sytox Green fluorescent dye. To evaluate ROS production and autophagy role in photobiostimulation-induced NETosis, granulocytes were pre-treated with ROS scavengers (vitamin C, sodium pyruvate, L-NAME, sodium azide), and an autophagy inhibitor (wortmannin). Laser stimulation induced an energy-dependent neutrophil extracellular trap (NET) production in human granulocytes starting from 50-J laser intensity. ROS scavengers and the autophagy inhibitor were able to abrogate both morphological features of NETosis and extracellular DNA production without modifying the basal level of NETosis. Photobiostimulation induced an increase in NET production due to an increase in ROS levels and autophagy activation.
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
Preliminary design of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.
NASA Astrophysics Data System (ADS)
Single, Peg Boyle; Muller, Carol B.; Cunningham, Christine M.; Single, Richard M.
In this article, we report on electronic discussion lists (e-lists) sponsored by MentorNet, the National Electronic Industrial Mentoring Network for Women in Engineering and Science. Using the Internet, the MentorNet program connects students in engineering and science with mentors working in industry. These e-lists are a feature of MentorNet's larger electronic mentoring program and were sponsored to foster the establishment of community among women engineering and science students and men and women professionals in those fields. This research supports the hypothesis that electronic communications can be used to develop community among engineering and science students and professionals and identifies factors influencing the emergence of electronic communities (e-communities). The e-lists that emerged into self-sustaining e-communities were focused on topic-based themes, such as balancing personal and work life, issues pertaining to women in engineering and science, and job searching. These e-communities were perceived to be safe places, embraced a diversity of opinions and experiences, and sanctioned personal and meaningful postings on the part of the participants. The e-communities maintained three to four simultaneous threaded discussions and were sustained by professionals who served as facilitators by seeding the e-lists with discussion topics. The e-lists were sponsored to provide women students participating in MentorNet with access to groups of technical and scientific professionals. In addition to providing benefits to the students, the e-lists also provided the professionals with opportunities to engage in peer mentoring with other, mostly female, technical and scientific professionals. We discuss the implications of our findings for developing e-communities and for serving the needs of women in technical and scientific fields.
Laser engineering of microbial systems
NASA Astrophysics Data System (ADS)
Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.
2018-06-01
A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.
Opening Up Architectures of Software-Intensive Systems: A First Prototype Implementation
2007-11-01
9 4.1.2 Sequence Diagram Viewer NetBeans Module .................................. 11 4.1.3 Limitations of Static Analysis...Viewer NetBeans module [18]. Note that there exist other tools which can statically reverse engineer sequence diagrams such as Borland Together [19...and the NetBeans UML Modeling module [20]. The reason those are not presented in this document is because their functionalities are very similar
Tiwari, Arjun Prasad; Joshi, Mahesh Kumar; Kim, Jeong In; Unnithan, Afeesh Rajan; Lee, Joshua; Park, Chan Hee; Kim, Cheol Sang
2016-08-15
We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure. Various processing factors such as applied voltage, feeding rate, and distance between nozzle tip and collector were found responsible for the formation and distribution of the nano-nets throughout the nanofibrous mesh. Field emission electron microscopy (FE-SEM) confirmed that the nano-nets were composed of interlinked nanowires with an ultrathin diameter (10-30nm). When compared with a pure PCL membrane, the membrane containing nano-nets was shown to have better support for cellular activities as determined by cell viability and attachment assays. These results revealed that the blending of albumin, a hydrophilic biomolecule, with PCL, a hydrophobic polymer, proves to be an outstanding approach to developing membranes with controlled spider-web-like nano-nets for tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…
Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization
NASA Astrophysics Data System (ADS)
Dumitrache, Ciprian
Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition ( 20% lower), extension of the lean limit ( 15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.
Non-Hermitian engineering of single mode two dimensional laser arrays
Teimourpour, Mohammad H.; Ge, Li; Christodoulides, Demetrios N.; El-Ganainy, Ramy
2016-01-01
A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and lossy pseudo-isospectral chains of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays. PMID:27698355
Laser controlled flame stabilization
Early, James W.; Thomas, Matthew E.
2001-01-01
A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.
Status of Real-Time Laser Based Ion Engine Diagnostics at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Williams, George J., Jr.
2001-01-01
The development status of laser based erosion diagnostics for ion engines at the NASA Glenn Research Center is discussed. The diagnostics are being developed to enhance component life-prediction capabilities. A direct measurement of the erosion product density using laser induced fluorescence (LIF) is described. Erosion diagnostics based upon evaluation of the ion dynamics are also under development, and the basic approach is presented. The planned implementation of the diagnostics is discussed.
Managing the replacement cycle of laser inventory.
Davis, C E
1992-01-01
Medical lasers are quickly moving into the replacement phase of technology management. Barnes Hospital (St. Louis, MO) is using its laser team to define a process of planned laser replacement using the experience gained from traditional medical equipment replacement cycles, quality improvement principles and tools, and other formalized interdisciplinary teams. The process described in this paper has six basic steps: (1) A decision is made to request a replacement laser. (2) An appropriation request form is completed and submitted with the clinical and/or technical justifications. (3) Those requests initiated outside of the Clinical Engineering Department are reviewed by the Clinical Engineer/Medical Laser Safety Officer (CE/MLSO). (4) The CE/MLSO presents the requests to the hospital Laser Committee, and (5) then to the Laser Users' Group. (6) Finally, an Expenditure Authorization Committee reviews all capital expense requests, including those for replacement lasers, and allocates funds for the next fiscal year. This paper illustrates and evaluates the process, using an example from the review process for 1993 equipment purchases at Barnes Hospital.
Luminescent solar concentrators utilizing stimulated emission.
Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander
2016-03-21
Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.
Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions
1974-10-01
apparatus underwent significant changes as the final engineering design evolved. Section Ill describes the tests which were conducted with the...2- I , U~ - - SECTION II EXPERIMENTAL APPARATUS As noted in the Introduction to this report, the conceptual design of the experimental laser Raman...overlap in the measurement volume of Interest, The details Wf thisl opýýlp &I engineering design trod@. off have been proviouuly replorted toy Munrio
NASA Technical Reports Server (NTRS)
2004-01-01
I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.
NASA Astrophysics Data System (ADS)
Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.
2017-04-01
We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.
NASA Astrophysics Data System (ADS)
Kottman, Michael; Zhang, Shenjia; McGuffin-Cawley, James; Denney, Paul; Narayanan, Badri K.
2015-03-01
The laser hot wire process has gained considerable interest for additive manufacturing applications, leveraging its high deposition rate, low dilution, thermal stability, and general metallurgical control including the ability to introduce and preserve desired meta-stable phases. Recent advancements in closed-loop process control and laser technology have increased productivity, process stability, and control of deposit metallurgy. The laser hot wire process has shown success in several applications: repairing and rejuvenating casting dies, depositing a variety of alloys including abrasion wear-resistant overlays with solid and tubular wires, and producing low-dilution (<5%) nickel alloy overlays for corrosion applications. The feasibility of fabricating titanium buildups is being assessed for aerospace applications.
LIS Professionals as Knowledge Engineers.
ERIC Educational Resources Information Center
Poulter, Alan; And Others
1994-01-01
Considers the role of library and information science professionals as knowledge engineers. Highlights include knowledge acquisition, including personal experience, interviews, protocol analysis, observation, multidimensional sorting, printed sources, and machine learning; knowledge representation, including production rules and semantic nets;…
Navigating the Net for Grant Money.
ERIC Educational Resources Information Center
Schnitzer, Denise K.
1996-01-01
The Internet offers educators a wealth of grant resources and information on securing funds for projects. The first step is finding a funding source whose goals match those of the desired project's. Certain Net search engines have excellent capabilities. Grantsweb has accessible, organized links to federal and nonfederal grants sources. Other…
The United States Environmental Protection Agency is developing a Computer
Aided Process Engineering (CAPE) software tool for the metal finishing
industry that helps users design efficient metal finishing processes that
are less polluting to the environment. Metal finish...
75 FR 56491 - Technical Amendments for Marine Spark-Ignition Engines and Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... portable fuel tanks to these new requirements, manufacturers working together on systems integration...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hai D.
2017-03-02
SimEngine provides the core functionalities and components that are key to the development of discrete event simulation tools. These include events, activities, event queues, random number generators, and basic result tracking classes. SimEngine was designed for high performance, integrates seamlessly into any Microsoft .Net development environment, and provides a flexible API for simulation developers.
Bandgap engineering of InGaAsP/InP laser structure by photo-absorption-induced point defects
NASA Astrophysics Data System (ADS)
Kaleem, Mohammad; Nazir, Sajid; Saqib, Nazar Abbas
2016-03-01
Integration of photonic components on the same photonic wafer permits future optical communication systems to be dense and advanced performance. This enables very fast information handling between photonic active components interconnected through passive optical low loss channels. We demonstrate the UV-Laser based Quantum Well Intermixing (QWI) procedure to engineer the band-gap of compressively strained InGaAsP/InP Quantum Well (QW) laser material. We achieved around 135nm of blue-shift by simply applying excimer laser (λ= 248nm). The under observation laser processed material also exhibits higher photoluminescence (PL) intensity. Encouraging experimental results indicate that this simple technique has the potential to produce photonic integrated devices and circuits.
Experimental Investigation of Axial and Beam-Riding Propulsive Physics with TEA CO{sub 2} laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenoyer, D. A.; Salvador, I.; Myrabo, L. N.
2010-10-08
A twin Lumonics K922M pulsed TEA CO{sub 2} laser system (pulse duration of approximately 100 ns FWHM spike, with optional 1 {mu}s tail, depending upon laser gas mix) was employed to experimentally measure both axial thrust and beam-riding behavior of Type no. 200 lightcraft engines, using a ballistic pendulum and Angular Impulse Measurement Device (AIMD, respectively. Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the vehicle axis of symmetry; b) laser pulse energy ({approx}12 to 40 joules); c) pulse duration (100 ns, and 1 {mu}s); and d)more » engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (C{sub M}) of 75 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 {mu}s duration) results reached only 15 N-s/MJ--an improvement of 5x. Maximum axial C{sub M} performance with the K922M reached 225 N-s/MJ, or about {approx}3x larger than the lateral C{sub M} values. These axial C{sub M} results are sharply higher than the 120 N/MW previously reported for long pulse (e.g., 10-18 {mu}s)CO{sub 2} electric discharge lasers.« less
Engineering model for ultrafast laser microprocessing
NASA Astrophysics Data System (ADS)
Audouard, E.; Mottay, E.
2016-03-01
Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.
High-Temperature Oxidation of Fe3Al Intermetallic Alloy Prepared by Additive Manufacturing LENS
Łyszkowski, Radosław
2015-01-01
The isothermal oxidation of Fe-28Al-5Cr (at%) intermetallic alloy microalloyed with Zr and B (<0.08 at%) in air atmosphere, in the temperature range of 1000 to 1200 °C, was studied. The investigation was carried out on the thin-walled (<1 mm) elements prepared by Laser Engineered Net Shaping (LENS) from alloy powder of a given composition. Characterization of the specimens, after the oxidation, was conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM, with back-scatter detector (BSE) and energy-dispersive X-ray spectroscopy (EDS) attachments). The investigation has shown, that the oxidized samples were covered with a thin, homogeneous α-Al2O3 oxide layers. The intensity of their growth indicates that the material lost its resistance to oxidation at 1200 °C. Structural analysis of the thin-walled components’ has not shown intensification of the oxidation process at the joints of additive layers. PMID:28788014
Quasi-Isentropic Compression of Wrought and Additively Manufactures 304L Stainless Steel
NASA Astrophysics Data System (ADS)
Specht, Paul; Brown, Justin; Wise, Jack; Furnish, Michael; Adams, David
2017-06-01
The thermodynamic and constitutive responses of both additively manufactured (AM) and traditional wrought processed 304L stainless steel (SS) were investigated through quasi-isentropic compression to peak stresses near 1Mbar using Sandia National Laboratories' Z machine. The AM 304L SS samples were made with a laser engineered net shaping (LENS™) technique. Compared to traditional wrought processed 304L SS, the AM samples were highly textured with larger grain sizes (i.e.near 1mm) and residual stresses (> 100 MPa). Interferometric measurements of interface velocities enabled inference of the quasi-isentropes for each fabrication type of 304L SS. Release from peak stress provided flow strength measurements of the wrought and AM 304L SS. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved For Unclassified Unlimited Release SAND2017-2040A.
Stratified charge rotary engine - Internal flow studies at the MSU engine research laboratory
NASA Technical Reports Server (NTRS)
Hamady, F.; Kosterman, J.; Chouinard, E.; Somerton, C.; Schock, H.; Chun, K.; Hicks, Y.
1989-01-01
High-speed visualization and laser Doppler velocimetry (LDV) systems consisting of a 40-watt copper vapor laser, mirrors, cylindrical lenses, a high speed camera, a synchronization timing system, and a particle generator were developed for the study of the fuel spray-air mixing flow characteristics within the combustion chamber of a motored rotary engine. The laser beam is focused down to a sheet approximately 1 mm thick, passing through the combustion chamber and illuminates smoke particles entrained in the intake air. The light scattered off the particles is recorded by a high speed rotating prism camera. Movies are made showing the air flow within the combustion chamber. The results of a movie showing the development of a high-speed (100 Hz) high-pressure (68.94 MPa, 10,000 psi) fuel jet are also discussed. The visualization system is synchronized so that a pulse generated by the camera triggers the laser's thyratron.
Educational Effect of Online Lecture using Streaming Technology
NASA Astrophysics Data System (ADS)
Akiyama, Hidenori; Teramoto, Akemi; Kozono, Kazutake
A conventional lecture on Laser Engineering had been done in a lecture room till 1999. A content using on-demand streaming method was made for an online lecture of Laser Engineering in 2000. The figures and equations used on the conventional lecture and the voice recorded for the online lecture were converted to the real media. Then an online lecture has been provided to students by using a Helix Universal Server. The trial of the online lecture was done only for the students who wanted to take the online lecture course in 2000. The online lectures have been recognized as the credits for graduation by the change of a law since 2001. About 100 students have registered the online lecture of Laser Engineering every year since 2001. Here, three years' questionnaire surveys of the online lecture are summarized, and results of examinations on the conventional lecture for two years and on the online lecture for three years are compared. It is recognized for the lecture of Laser Engineering that the educational effect of the online lecture is comparable to or better than that of the conventional lecture.
Solar power satellite system definition study. Volume 1: Executive summary, phase 3
NASA Technical Reports Server (NTRS)
1980-01-01
Results of a three phase study of the Solar Power Satellite System are summarized. Various options and alternate systems were considered and the following conclusions were reached: antenna mounted solid state transmitters are potentially as cost effective as the klystron approach, althrough limited to 2500 megawatts net output; the free electron laser and optical diode laser appear most promising for laser power transmission; ground antenna siting need not be restricted to below 35 degrees of latitude; and nonrecurring cost reductions attainable by using a smaller Heavy Lift Launch Vehicle are highly attractive.
NASA Astrophysics Data System (ADS)
Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.
2017-12-01
Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.
Engine flow visualization using a copper vapor laser
NASA Technical Reports Server (NTRS)
Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.
1987-01-01
A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.
Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide
Yi, Longqing; Pukhov, Alexander; Shen, Baifei
2016-01-01
Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications. PMID:27320197
Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori
2011-05-09
A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America
2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions
NASA Astrophysics Data System (ADS)
Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.
2011-11-01
Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.
Quantitative petri net model of gene regulated metabolic networks in the cell.
Chen, Ming; Hofestädt, Ralf
2011-01-01
A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.
NASA Astrophysics Data System (ADS)
Zisis, G.; Martinez-Jimenez, G.; Franz, Y.; Healy, N.; Masaud, T. M.; Chong, H. M. H.; Soergel, E.; Peacock, A. C.; Mailis, S.
2017-08-01
We report laser-induced poling inhibition and direct poling in lithium niobate crystals (LiNbO3), covered with an amorphous silicon (a-Si) light-absorbing layer, using a visible (488 nm) continuous wave laser source. Our results show that the use of the a-Si overlayer produces deeper poling inhibited domains with minimum surface damage, as compared to previously reported UV laser writing experiments on uncoated crystals, thus increasing the applicability of this method in the production of ferroelectric domain engineered structures for nonlinear optical applications. The characteristics of the poling inhibited domains were investigated using differential etching and piezoresponse force microscopy.
A new method for incoherent combining of far-field laser beams based on multiple faculae recognition
NASA Astrophysics Data System (ADS)
Ye, Demao; Li, Sichao; Yan, Zhihui; Zhang, Zenan; Liu, Yuan
2018-03-01
Compared to coherent beam combining, incoherent beam combining can complete the output of high power laser beam with high efficiency, simple structure, low cost and high thermal damage resistance, and it is easy to realize in engineering. Higher target power is achieved by incoherent beam combination which using technology of multi-channel optical path correction. However, each channel forms a spot in the far field respectively, which cannot form higher laser power density with low overlap ratio of faculae. In order to improve the combat effectiveness of the system, it is necessary to overlap different faculae that improve the target energy density. Hence, a novel method for incoherent combining of far-field laser beams is present. The method compromises piezoelectric ceramic technology and evaluation algorithm of faculae coincidence degree which based on high precision multi-channel optical path correction. The results show that the faculae recognition algorithm is low-latency(less than 10ms), which can meet the needs of practical engineering. Furthermore, the real time focusing ability of far field faculae is improved which was beneficial to the engineering of high-energy laser weapon or other laser jamming systems.
WaveNet: A Web-Based Metocean Data Access, Processing, and Analysis Tool. Part 3 - CDIP Database
2014-06-01
and Analysis Tool; Part 3 – CDIP Database by Zeki Demirbilek, Lihwa Lin, and Derek Wilson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) describes coupling of the Coastal Data Information Program ( CDIP ) database to WaveNet, the first module of MetOcnDat (Meteorological...provides a step-by-step procedure to access, process, and analyze wave and wind data from the CDIP database. BACKGROUND: WaveNet addresses a basic
Event-driven management algorithm of an Engineering documents circulation system
NASA Astrophysics Data System (ADS)
Kuzenkov, V.; Zebzeev, A.; Gromakov, E.
2015-04-01
Development methodology of an engineering documents circulation system in the design company is reviewed. Discrete event-driven automatic models using description algorithms of project management is offered. Petri net use for dynamic design of projects is offered.
Modulated error diffusion CGHs for neural nets
NASA Astrophysics Data System (ADS)
Vermeulen, Pieter J. E.; Casasent, David P.
1990-05-01
New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).
Project LOCOST: Laser or Chemical Hybrid Orbital Space Transport
NASA Technical Reports Server (NTRS)
Dixon, Alan; Kost, Alicia; Lampshire, Gregory; Larsen, Rob; Monahan, Bob; Wright, Geoff
1990-01-01
A potential mission in the late 1990s is the servicing of spacecraft assets located in GEO. The Geosynchronous Operations Support Center (GeoShack) will be supported by a space transfer vehicle based at the Space Station (SS). The vehicle will transport cargo between the SS and the GeoShack. A proposed unmanned, laser or chemical hybrid orbital space transfer vehicle (LOCOST) can be used to efficiently transfer cargo between the two orbits. A preliminary design shows that an unmanned, laser/chemical hybrid vehicle results in the fuel savings needed while still providing fast trip times. The LOCOST vehicle receives a 12 MW laser beam from one Earth orbiting, solar pumped, iodide Laser Power Station (LPS). Two Energy Relay Units (ERU) provide laser beam support during periods of line-of-sight blockage by the Earth. The baseline mission specifies a 13 day round trip transfer time. The ship's configuration consist of an optical train, one hydrogen laser engine, two chemical engines, a 18 m by 29 m box truss, a mission-flexible payload module, and propellant tanks. Overall vehicle dry mass is 8,000 kg. Outbound cargo mass is 20,000 kg, and inbound cargo mass is 6,000 kg. The baseline mission needs 93,000 kg of propellants to complete the scenario. Fully fueled, outbound mission mass is 121,000 kg. A regeneratively cooled, single plasma, laser engine design producing a maximum of 768 N of thrust is utilized along with two traditional chemical engines. The payload module is designed to hold 40,000 kg of cargo, though the baseline mission specifies less. A proposed design of a laser/chemical hybrid vehicle provides a trip time and propellant efficient means to transport cargo from the SS to a GeoShack. Its unique, hybrid propulsion system provides safety through redundancy, allows baseline missions to be efficiently executed, while still allowing for the possibility of larger cargo transfers.
Chemical Laser Facility Study. Volume III. Cost Analysis.
Chemical Laser Test Facility. The design criteria for the architectural and engineering design of the facility are presented in Volume I and the design requirements for the Laser Test System are presented in Volume II.
The Initial Inflammatory Response to Bioactive Implants Is Characterized by NETosis
Stoiber, Walter; Hannig, Matthias; Klappacher, Michaela; Hartl, Dominik
2015-01-01
Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration. PMID:25798949
NASA Astrophysics Data System (ADS)
Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris
2015-07-01
In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.
AXISYMMETRIC, THROTTLEABLE NON-GIMBALLED ROCKET ENGINE
NASA Technical Reports Server (NTRS)
Sackheim, Robert L. (Inventor); Hutt, John J. (Inventor); Anderson, William E. (Inventor); Dressler, Gordon A. (Inventor)
2005-01-01
A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.
Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices
NASA Astrophysics Data System (ADS)
Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai
2018-04-01
Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.
Passively mode-locked soliton femtosecond pulses employing graphene saturable absorber
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Muhammad, F. D.; Latif, A. A.; Abu Bakar, M. H.; Yusoff, Z.; Mahdi, M. A.
2017-09-01
We demonstrate a passively mode-locked fiber laser incorporating graphene thin film (GTF) as saturable absorber (SA). The SA is fabricated by sandwiching the GTF between two single mode fiber ferrules through a fiber adaptor. The transmission loss at 1560 nm and non-linear saturation absorption modulation depth for GTF-SA are 0.8 dB and 2.90%, respectively. An erbium-doped fiber laser cavity is constructed to verify the functionality of GTF-SA and is designed to have net anomalous dispersion. It generates large spectral width of 4.99 nm with pulse repetition rate of 9.655 MHz and pulse width of 670 fs. Net anomalous dispersion and time bandwidth product higher than the sech2 transform-limited pulse validate the experimental result. In short, we demonstrate high performance GTF-SA that is able to generate ultrafast pulse duration in femtosecond range effortlessly with simple and green SA fabrication procedures.
Engineering Technology Education: Bibliography 1989.
ERIC Educational Resources Information Center
Dyrud, Marilyn A., Comp.
1990-01-01
Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…
The New Tools of the Trade: 48 Essential Net Resources for Librarians.
ERIC Educational Resources Information Center
Todaro, Julie
1996-01-01
Describes 48 Web sites, listservs, and search engines for librarians serving children and youth in the following categories: professional topics; networking opportunities; literature; libraries; the "Net"; education and general resources; and resources on children and youth. Lists 11 ways to use the internet as a source of professional…
www.teld.net: Online Courseware Engine for Teaching by Examples and Learning by Doing.
ERIC Educational Resources Information Center
Huang, G. Q.; Shen, B.; Mak, K. L.
2001-01-01
Describes TELD (Teaching by Examples and Learning by Doing), a Web-based online courseware engine for higher education. Topics include problem-based learning; project-based learning; case methods; TELD as a Web server; course materials; TELD as a search engine; and TELD as an online virtual classroom for electronic delivery of electronic…
Development scenario for laser fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.
1976-03-30
This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the earlymore » 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power.« less
Characterization of quantum well laser diodes for application within the AMRDEC HWIL facilities
NASA Astrophysics Data System (ADS)
Saylor, Daniel A.; Bender, Matt; Cantey, Thomas M.; Beasley, D. B.; Buford, Jim A.
2004-08-01
The U.S. Army's Research, Development, and Engineering Command's (RDECOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) provides Hardware-in-the-Loop (HWIL) test support to numerous tactical and theatre missile programs. Critical to the successful execution of these tests is the state-of-the-art technologies employed in the visible and infrared scene projector systems. This paper describes the results of characterizations tests performed on new mid-wave infrared (MWIR) quantum well laser diodes recently provided to AMRDEC by the Naval Research Labs and Sarnoff Industries. These lasers provide a +10X imrovement in MWIR output over the previous technology of lead-salt laser diodes. Performance data on output power, linearity, and solid-angle coverage are presented. A discussion of the laser packages is also provided.
A simple approach to industrial laser safety.
Lewandowski, Michael A; Hinz, Michael W
2005-02-01
Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.
Synthesis and evaluation of rare-earth doped glasses and crystals for optical refrigeration
NASA Astrophysics Data System (ADS)
Patterson, Wendy
This research focused on developing and characterizing rare-earth doped, solid-state materials for laser cooling. In particular, the work targeted the optimization of the lasercooling efficiency in Yb3+ and Tm3+ doped fluorides. The first instance of laser-induced cooling in a Tm3+-doped crystal, BaY2F8 was reported. Cooling by 3 degrees Kelvin below ambient temperature was obtained in a single-pass pump geometry at lambda = 1855 nm. Protocols were developed for materials synthesis and purification which can be applied to each component of ZBLANI:Yb 3+/Tm3+ (ZrF4 -- BaF2 -- LaF3 -- AlF3 -- NaF -- InF3: YbF3/TmF3) glass to enable a material with significantly reduced transition-metal impurities. A method for OH- impurity removal and ultra-drying of the metal fluorides was also improved upon. Several characterization tools were used to quantitatively and qualitatively verify purity, including inductively-coupled plasma mass spectrometry (ICP-MS). Here we found a more than 600-fold reduction in transition-metal impurities in a ZrCl2O solution. A non-contact spectroscopic technique for the measurement of laser-induced temperature changes in solids was developed. Two-band differential luminescence thermometry (TBDLT) achieved a sensitivity of ˜7 mK and enabled precise measurement of the zero-crossing temperature and net quantum efficiency. Several Yb3+-doped ZBLANI glasses fabricated from precursors of varying purity and by different processes were analyzed in detail by TBDLT. Laser-induced cooling was observed at room temperature for several of the materials. A net quantum efficiency of 97.39+/-0.01% at 238 K was found for the best ZBLANI:1%Yb 3+ laser-cooling sample produced from purified metal-fluoride precursors, and proved competitive with the best commercially procured material. The TBDLT technique enabled rapid and sensitive benchmarking of laser-cooling materials and provided critical feedback to the development and optimization of high-performance optical cryocooler materials. Also presented is an efficient and numerically stable method to calculate time-dependent, laser-induced temperature distributions in solids, including a detailed description of the computational procedure and its implementation. The model accurately predicted the zero-crossing temperature, the net quantum efficiency, and the functional shape of the transients, based on input parameters such as luminescence spectra, dopant concentration, pump properties, and several well-characterized material properties.
Helminth.net: expansions to Nematode.net and an introduction to Trematode.net
Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka
2015-01-01
Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426
Development of laser technology in Poland: 2016
NASA Astrophysics Data System (ADS)
Jankiewicz, Zdzisław; Jabczyński, Jan K.; Romaniuk, Ryszard S.
2016-12-01
The paper is an introduction to the volume of proceedings and a concise digest of works presented during the XIth National Symposium on Laser Technology (SLT2016) [1]. The Symposium is organized since 1984 every three years [2-8]. SLT2016 was organized by the Institute of Optoelectronics, Military University of Technology (IO, WAT) [9], Warsaw, with cooperation of Warsaw University of Technology (WUT) [10], in Jastarnia on 27-30 September 2016. Symposium Proceedings are traditionally published by SPIE [11-19]. The meeting has gathered around 150 participants who presented around 120 research and technical papers. The Symposium, organized every 3 years is a good portrait of laser technology and laser applications development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. The SLT also presents the current technical projects under realization by the national research, development and industrial teams. Topical tracks of the Symposium, traditionally divided to two large areas - sources and applications, were: laser sources in near and medium infrared, picosecond and femtosecond lasers, optical fiber lasers and amplifiers, semiconductor lasers, high power and high energy lasers and their applications, new materials and components for laser technology, applications of laser technology in measurements, metrology and science, military applications of laser technology, laser applications in environment protection and remote detection of trace substances, laser applications in medicine and biomedical engineering, laser applications in industry, technologies and material engineering.
Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole
2018-02-01
The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.
Spatial and temporal laser pulse design for material processing on ultrafast scales
NASA Astrophysics Data System (ADS)
Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.
2014-01-01
The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.
ShakeNet: a portable wireless sensor network for instrumenting large civil structures
Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert
2015-08-03
We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; ...
2016-02-01
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Laser-induced incandescence measurements in a fired diesel engine at 3 kHz
NASA Astrophysics Data System (ADS)
Boxx, I. G.; Heinold, O.; Geigle, K. P.
2015-01-01
Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.
Laser-Induced Plasma Chemistry of the Explosive RDX with Various Metals
2011-07-18
U.S. Army Research, Development and Engineering Command Laser-induced plasma chemistry of the explosive RDX with various metals Jennifer L...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Laser-induced plasma chemistry of the explosive RDX with...followed by laser-induced plasma chemistry Time-resolved emission spectra Laser Parameters Laser pulse energy dependence Single vs. double pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schröder, Florian A. Y. N.; Cole, Jacqueline M.; Waddell, Paul G.
2015-02-03
The re-functionalization of a series of four well-known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye-sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC-active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a step-wise approach. Firstly, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1); Oxazine 170 (2); Nile Blue Amore » (3), Oxazine 750 (4). These reveal structure-property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D-π-A) and intramolecular charge transfer. Secondly, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I-/I3- and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co-sensitizers for DSC applications.« less
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2001-01-01
Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.
The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V)
Shin, T.; Lim, D.; Kim, Y. S.; Kim, S. C.; Jo, W. L.
2018-01-01
Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1. PMID:29922456
Software reuse issues affecting AdaNET
NASA Technical Reports Server (NTRS)
Mcbride, John G.
1989-01-01
The AdaNet program is reviewing its long-term goals and strategies. A significant concern is whether current AdaNet plans adequately address the major strategic issues of software reuse technology. The major reuse issues of providing AdaNet services that should be addressed as part of future AdaNet development are identified and reviewed. Before significant development proceeds, a plan should be developed to resolve the aforementioned issues. This plan should also specify a detailed approach to develop AdaNet. A three phased strategy is recommended. The first phase would consist of requirements analysis and produce an AdaNet system requirements specification. It would consider the requirements of AdaNet in terms of mission needs, commercial realities, and administrative policies affecting development, and the experience of AdaNet and other projects promoting the transfer software engineering technology. Specifically, requirements analysis would be performed to better understand the requirements for AdaNet functions. The second phase would provide a detailed design of the system. The AdaNet should be designed with emphasis on the use of existing technology readily available to the AdaNet program. A number of reuse products are available upon which AdaNet could be based. This would significantly reduce the risk and cost of providing an AdaNet system. Once a design was developed, implementation would proceed in the third phase.
Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin
The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.
Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength.
Kim, Chur; Bae, Sangho; Kieu, Khanh; Kim, Jungwon
2013-11-04
We demonstrate a 490-attosecond timing jitter (integration bandwidth: 10 kHz - 39.4 MHz) optical pulse train from a 78.7-MHz repetition rate, all-fiber soliton Er laser mode-locked by a fiber tapered carbon nanotube saturable absorber (ft-CNT-SA). To achieve this jitter performance, we searched for a net cavity dispersion condition where the Gordon-Haus jitter is minimized while maintaining stable soliton mode-locking. Our result shows that optical pulse trains with well below a femtosecond timing jitter can be generated from a self-starting and robust all-fiber laser operating at telecom wavelength.
Second NASA Conference on Laser Energy Conversion
NASA Technical Reports Server (NTRS)
Billman, K. W. (Editor)
1976-01-01
The possible transmission of high power laser beams over long distances and their conversion to thrust, electricity, or other useful forms of energy is considered. Specific topics discussed include: laser induced chemistry; developments in photovoltaics, including modification of the Schottky barrier devices and generation of high voltage emf'sby laser radiation of piezoelectric ceramics; the thermo electronic laser energy converter and the laser plasmadynamics converters; harmonic conversion of infrared laser radiation in molecular gases; and photon engines.
Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel
2012-01-01
Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
Grey, Ralph E; Brightwell, Virginia L; Barson, Zelmar; NACA
1950-01-01
An altitude-chamber investigation of British Rolls-Royce Nene II turbojet engine was conducted over range of altitudes from sea level to 65,000 feet and ram pressure ratios from 1.10 to 3.50, using an 18.00-inch-diameter jet nozzle. The 18.00-inch-diameter jet nozzle gave slightly lower values of net-thrust specific fuel consumption than either the 18.41- or the standard 18.75-inch-diameter jet nozzles at high flight speeds. At low flight speeds, the 18.41-inch-diameter jet nozzle gave the lowest value of net-thrust specific fuel consumption.
Surfactant-assisted atomic-level engineering of spin valves
NASA Astrophysics Data System (ADS)
Chopra, Harsh Deep; Yang, David X.; Chen, P. J.; Egelhoff, W. F.
2002-03-01
Surfactant Ag is successfully used to atomically engineer interfaces and nanostructure in NiO-Co-Cu-based bottom spin valves. At a Cu spacer thickness of 1.5 nm, a strong net ferromagnetic (or positive) coupling >13.92 kA/m (>175 Oe) between NiO-pinned and ``free'' Co layers leads to a negligible ``giant'' magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, the net ferromagnetic coupling could be reduced by a factor of 2 or more in spin valves deposited in the presence of ~1-3 ML of surfactant Ag, and such samples exhibit more than an order of magnitude increase in GMR (8.5-13 %). Based on transmission electron microscopy (TEM), a large contribution to net ferromagnetic coupling in Ag-free samples could be directly attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy and TEM studies show that surfactant Ag floats out to the surface during deposition of successive Co and Cu overlayers, leaving behind smooth interfaces and continuous layers that are less prone to intermixing and pinholes. The use of surfactants in the present study also illustrates their potential use in atomic engineering of magnetoelectronics devices and other multilayer systems.
2005 8th Annual Systems Engineering Conference. Volume 4, Thursday
2005-10-27
requirements, allocation , and utilization statistics Operations Decisions Acquisition Decisions Resource Management — Integrated Requirements/ Allocation ...Quality Improvement Consultants, Inc. “Automated Software Testing Increases Test Quality and Coverage Resulting in Improved Software Reliability.”, Mr...Steven Ligon, SAIC The Return of Discipline, Ms. Jacqueline Townsend, Air Force Materiel Command Track 4 - Net Centric Operations: Testing Net-Centric
2014-06-01
and Coastal Data Information Program ( CDIP ). This User’s Guide includes step-by-step instructions for accessing the GLOS/GLCFS database via WaveNet...access, processing and analysis tool; part 3 – CDIP database. ERDC/CHL CHETN-xx-14. Vicksburg, MS: U.S. Army Engineer Research and Development Center
1968-01-01
which forms a conducting medium between the electrodes of a dry cell , storage cell , or electrolytic capacitor. ELECTROMAGNETIC FIELD - A mlagnetic...Dry cel batteries. (2) Vehicular batteries. (3) Hand generators. (4) Gas engine generators. (5) Wet cell batteries. 2-5. NETTING TWO RADIO SETS: To net...1600 meters Power output .. .. .. ..... ..... ..... 5watt Power source. .. .. .. ..... ...... ... dry cell battery flA-270/U Battery lift
2017-01-01
ER D C/ CR RE L TR -1 7- 2 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Geophysical Survey of McMurdo Ice Shelf...Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops...ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Engineering for Polar Operations, Logistics, and Research (EPOLAR
Code of Federal Regulations, 2011 CFR
2011-10-01
... VALUE ENGINEERING 48.001 Definitions. As used in this subpart— Acquisition savings means savings resulting from the application of a value engineering change proposal (VECP) to contracts awarded by the...) Instant contract savings, that are the net cost reductions on the contract under which the VECP is...
Ignition study of a petrol/CNG single cylinder engine
NASA Astrophysics Data System (ADS)
Khan, N.; Saleem, Z.; Mirza, A. A.
2005-11-01
Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.
Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.
Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes
2017-03-01
Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.
NASA Astrophysics Data System (ADS)
Nagy, M.; Behúlová, M.
2017-11-01
Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.
Extending the performance of KrF laser for microlithography by using novel F2 control technology
NASA Astrophysics Data System (ADS)
Zambon, Paolo; Gong, Mengxiong; Carlesi, Jason; Padmabandu, Gunasiri G.; Binder, Mike; Swanson, Ken; Das, Palash P.
2000-07-01
Exposure tools for 248nm lithography have reached a level of maturity comparable to those based on i-line. With this increase in maturity, there is a concomitant requirement for greater flexibility from the laser by the process engineers. Usually, these requirements pertain to energy, spectral width and repetition rate. By utilizing a combination of laser parameters, the process engineers are often able to optimize throughput, reduce cost-of-operation or achieve greater process margin. Hitherto, such flexibility of laser operation was possible only via significant changes to various laser modules. During our investigation, we found that the key measure of the laser that impacts the aforementioned parameters is its F2 concentration. By monitoring and controlling its slope efficiency, the laser's F2 concentration may be precisely controlled. Thus a laser may tune to operate under specifications as diverse as 7mJ, (Delta) (lambda) FWHM < 0.3 pm and 10mJ, (Delta) (lambda) FWHM < 0.6pm and still meet the host of requirements necessary for lithography. We discus this new F2 control technique and highlight some laser performance parameters.
NASA Technical Reports Server (NTRS)
1976-01-01
The design, fabrication tests, and engineering model components of a 10.6 mum wideband transceiver system are reported. The effort emphasized the transmitter subsystem, including the development of the laser, the modulator driver, and included productization of both the transmitter and local oscillator lasers. The transmitter subsystem is functionally compatible with the receiver engineering model terminal, and has undergone high data rate communication system testing against that terminal.
Airborne Visible Laser Optical Communications (AVLOC) experiment
NASA Technical Reports Server (NTRS)
1974-01-01
A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, T. P., E-mail: tongpu@nudt.edu.cn; Shao, F. Q.; Zou, D. B.
By using two-dimensional particle-in-cell simulations, we propose a scheme for strong coupling of a petawatt laser with an opening gold cone filled with near-critical-density plasmas. When relevant parameters are properly chosen, most laser energy can be fully deposited inside the cone with only 10% leaving the tip opening. Due to the asymmetric ponderomotive acceleration by the strongly decayed laser pulse, high-energy-density electrons with net laser energy gain are accumulated inside the cone, which then stream out of the tip opening continuously, like a jet. The jet electrons are fully relativistic, with speeds around 0.98−0.998 c and densities at 10{sup 20}/cm{sup 3}more » level. The jet can keep for a long time over 200 fs, which may have diverse applications in practice.« less
NASA Astrophysics Data System (ADS)
Shao, L.; Cline, D.; Ding, X.; Ho, Y. K.; Kong, Q.; Xu, J. J.; Pogorelsky, I.; Yakimenko, V.; Kusche, K.
2013-02-01
This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15 MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.
2003-09-17
NASA Dryden project engineer Dave Bushman carefully aims the optics of a laser device at a solar cell panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.
Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P
2015-02-10
A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well as the first documented application of diode-laser absorption for high-speed gas dynamics measurements in the turbocharger inlet and EGR cooler exit of a diesel engine.
UltraNet Target Parameters. Chapter 1
NASA Technical Reports Server (NTRS)
Kislitzin, Katherine T.; Blaylock, Bruce T. (Technical Monitor)
1992-01-01
The UltraNet is a high speed network capable of rates up to one gigabit per second. It is a hub based network with four optical fiber links connecting each hub. Each link can carry up to 256 megabits of data, and the hub backplane is capable of one gigabit aggregate throughput. Host connections to the hub may be fiber, coax, or channel based. Bus based machines have adapter boards that connect to transceivers in the hub, while channel based machines use a personality module in the hub. One way that the UltraNet achieves its high transfer rates is by off-loading the protocol processing from the hosts to special purpose protocol engines in the UltraNet hubs. In addition, every hub has a PC connected to it by StarLAN for network management purposes. Although there is hub resident and PC resident UltraNet software, this document treats only the host resident UltraNet software.
Snoopy--a unifying Petri net framework to investigate biomolecular networks.
Rohr, Christian; Marwan, Wolfgang; Heiner, Monika
2010-04-01
To investigate biomolecular networks, Snoopy provides a unifying Petri net framework comprising a family of related Petri net classes. Models can be hierarchically structured, allowing for the mastering of larger networks. To move easily between the qualitative, stochastic and continuous modelling paradigms, models can be converted into each other. We get models sharing structure, but specialized by their kinetic information. The analysis and iterative reverse engineering of biomolecular networks is supported by the simultaneous use of several Petri net classes, while the graphical user interface adapts dynamically to the active one. Built-in animation and simulation are complemented by exports to various analysis tools. Snoopy facilitates the addition of new Petri net classes thanks to its generic design. Our tool with Petri net samples is available free of charge for non-commercial use at http://www-dssz.informatik.tu-cottbus.de/snoopy.html; supported operating systems: Mac OS X, Windows and Linux (selected distributions).
Extracellular entrapment and degradation of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Farrera, Consol; Bhattacharya, Kunal; Lazzaretto, Beatrice; Andón, Fernando T.; Hultenby, Kjell; Kotchey, Gregg P.; Star, Alexander; Fadeel, Bengt
2014-05-01
Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials. Electronic supplementary information (ESI) available: Suppl. Fig. 1 - length distribution of SWCNTs; suppl. Fig. 2 - characterization of pristine vs. oxidized SWCNTs; suppl. Fig. 3 - endotoxin evaluation; suppl. Fig. 4 - NET characterization; suppl. Fig. 5 - UV-Vis/NIR analysis of biodegradation of oxidized SWCNTs; suppl. Fig. 6 - cytotoxicity of partially degraded SWCNTs. See DOI: 10.1039/c3nr06047k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nancy; Yee, J.; Zheng, B.
We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. Our study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. This study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS processmore » control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. Our current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.« less
Yang, Nancy; Yee, J.; Zheng, B.; ...
2016-12-08
We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. Our study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. This study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS processmore » control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. Our current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.« less
Ergonomics of medical lasers: operator's viewpoint
NASA Astrophysics Data System (ADS)
Rogers, David W.; Jobes, H. M.; Hinshaw, J. Raymond; Lanzafame, Raymond J.
1992-06-01
Lasers are instruments that may enhance the surgeons ability to perform surgery. Many medical lasers sit unused. Lack of use is associated with 'user unfriendliness'. Nurses and surgeons often cite factors such as complexity, location, and types of controls, and content of displays. Other factors such as culture-ethnology and its relationship to command words and symbols, affect understandability of controls, displays and user friendliness. Laser designers and engineers must analyze the interaction between laser users and products. They must fully understand the training limitations and unique working environments (surgical specialty) of operators. Laser design and operation must coincide with specific needs and expectations of the nurses and physicians. Poor design and engineering compromises results in non use of expensive instrumentation, products which are ineffective for clinical use, and could potentially increase the risk of possible injury to patients and staff. This paper discusses the design and operation of medical laser systems. The advantages and disadvantages of several laser systems will be presented. User interfaces for controls - color, function, touch activation, labels and size, sound cues, laser activation, type and amount of feedback information during operation; design of storage for accessories, and need for features such as pulsing, and milliwatts will be discussed. We will present what we consider to be an ideal laser system.
KM3NeT tower data acquisition and data transport electronics
NASA Astrophysics Data System (ADS)
Nicolau, C. A.; Ameli, F.; Biagioni, A.; Capone, A.; Frezza, O.; Lonardo, A.; Masullo, R.; Mollo, C. M.; Orlando, A.; Simeone, F.; Vicini, P.
2016-04-01
In the framework of the KM3Net European project, the production stage of a large volume underwater neutrino telescope has started. The forthcoming installation includes 8 towers and 24 strings, that will be installed 100 km off-shore Capo Passero (Italy) at 3500 m depth. The KM3NeT tower, whose layout is strongly based on the NEMO Phase-2 prototype tower deployed in March 2013, has been re-engineered and partially re-designed in order to optimize production costs, power consumption, and usability. This contribution gives a description of the main electronics, including front-end, data transport and clock distribution system, of the KM3NeT tower detection unit.
A systematic petri net approach for multiple-scale modeling and simulation of biochemical processes.
Chen, Ming; Hu, Minjie; Hofestädt, Ralf
2011-06-01
A method to exploit hybrid Petri nets for modeling and simulating biochemical processes in a systematic way was introduced. Both molecular biology and biochemical engineering aspects are manipulated. With discrete and continuous elements, the hybrid Petri nets can easily handle biochemical factors such as metabolites concentration and kinetic behaviors. It is possible to translate both molecular biological behavior and biochemical processes workflow into hybrid Petri nets in a natural manner. As an example, penicillin production bioprocess is modeled to illustrate the concepts of the methodology. Results of the dynamic of production parameters in the bioprocess were simulated and observed diagrammatically. Current problems and post-genomic perspectives were also discussed.
Al-Kattan, Ahmed; Nirwan, Viraj P; Popov, Anton; Ryabchikov, Yury V; Tselikov, Gleb; Sentis, Marc; Fahmi, Amir; Kabashin, Andrei V
2018-05-24
Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.
Status and summary of laser energy conversion. [for space power transmission systems
NASA Technical Reports Server (NTRS)
Lee, G.
1978-01-01
This paper presents a survey of the status of laser energy converters. Since the inception of these devices in the early 1970's, significant advances have been made in understanding the basic conversion processes. Numerous theoretical and experimental studies have indicated that laser energy can be converted at wavelengths from the ultraviolet to the far-infrared. These converters can be classified into five general categories: photovoltaics, heat engines, thermoelectronic, optical diode, and photochemical. The conversion can be directly into electricity (such as the photovoltaic, thermoelectronic, and optical diode) or it can go through an intermediate stage of conversion to mechanical energy, as in the heat engines. The photochemical converters result in storable energy such as hydrogen. Projected conversion efficiencies range from about 30% for the photochemical to nearly 75% for the heat engines.
THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses
NASA Astrophysics Data System (ADS)
Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.
2018-03-01
We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.
Hypersonic Inlet for a Laser Powered Propulsion System
NASA Astrophysics Data System (ADS)
Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave
2011-11-01
Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.
Onouchi, Takanori; Shiogama, Kazuya; Mizutani, Yasuyoshi; Takaki, Takashi; Tsutsumi, Yutaka
2016-01-01
Neutrophil extracellular traps (NETs) released from dead neutrophils at the site of inflammation represent webs of neutrophilic DNA stretches dotted with granule-derived antimicrobial proteins, including lactoferrin, and play important roles in innate immunity against microbial infection. We have shown the coexistence of NETs and fibrin meshwork in varied fibrinopurulent inflammatory lesions at both light and electron microscopic levels. In the present study, correlative light and electron microscopy (CLEM) employing confocal laser scanning microscopy and scanning electron microscopy was performed to bridge light and electron microscopic images of NETs and fibrin fibrils in formalin-fixed, paraffin-embedded, autopsied lung sections of legionnaire’s pneumonia. Lactoferrin immunoreactivity and 4'-6-diamidino-2-phenylindole (DAPI) reactivity were used as markers of NETs, and fibrin was probed by fibrinogen gamma chain. Of note is that NETs light microscopically represented as lactoferrin and DAPI-colocalized dots, 2.5 μm in diameter. CLEM gave super-resolution images of NETs and fibrin fibrils: “Dotted” NETs were ultrastructurally composed of fine filaments and masses of 58 nm-sized globular materials. A fibrin fibril consisted of clusters of smooth-surfaced filaments. NETs filaments (26 nm in diameter) were significantly thinner than fibrin filaments (295 nm in diameter). Of note is that CLEM was applicable to formalin-fixed, paraffin-embedded sections of autopsy material. PMID:27917008
Assessment of Attack Reconnaissance Helicopter (ARH) Machining, Cutting and Drilling Operations
2006-09-29
Date: June 20, 2006 Name Organization Email Jim Corwin Consultant JCAI/Army corwinj@att.net Cindy Fenny Process Engineer Bell / Process Engineering...bellhelicopter.textron.com Cindy Fenny Process Eng 817-280-2549 cfenny@bellhelicopter.textron.com Max Trull Process Eng 817-280-2678 mtrull@bellhelicopter.textron.com Ron
STEM: Science Technology Engineering Mathematics. State-Level Analysis
ERIC Educational Resources Information Center
Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle
2011-01-01
The science, technology, engineering, and mathematics (STEM) state-level analysis provides policymakers, educators, state government officials, and others with details on the projections of STEM jobs through 2018. This report delivers a state-by-state snapshot of the demand for STEM jobs, including: (1) The number of forecast net new and…
Searchers Net Treasure in Monterey.
ERIC Educational Resources Information Center
McDermott, Irene E.
1999-01-01
Reports on Web keyword searching, metadata, Dublin Core, Extensible Markup Language (XML), metasearch engines (metasearch engines search several Web indexes and/or directories and/or Usenet and/or specific Web sites), and the Year 2000 (Y2K) dilemma, all topics discussed at the second annual Internet Librarian Conference sponsored by Information…
NASA Astrophysics Data System (ADS)
Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.
2017-10-01
Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.
Prechamber equipped laser ignition for improved performance in natural gas engines
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...
2017-04-25
Lean-burn operation of stationary natural gas engines offers lower NO x emissions and improved efficiency. A proven pathway to extend lean-burn operation has been to use laser ignition instead of standard spark ignition. However, under lean conditions, flame speed reduces thereby offsetting any efficiency gains resulting from the higher ratio of specific heats, γ. The reduced flame speeds, in turn, can be compensated with the use of a prechamber to result in volumetric ignition, and thereby lead to faster combustion. In this study, the optimal geometry of PCLI was identified through several tests in a single-cylinder engine as a compromisemore » between autoignition, NO x and soot formation within the prechamber. Subsequently, tests were conducted in a single-cylinder natural gas engine comparing the performance of three ignition systems: standard electrical spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI). Out of the three, the performance of PCLI was far superior compared to the other two. Efficiency gain of 2.1% points could be achieved while complying with EPA regulation (BSNO x < 1.34 kW-hr) and the industry standard for ignition stability (COV_IMEP < 5%). Finally, test results and data analysis are presented identifying the combustion mechanisms leading to the improved performance.« less
Electro-optic modulator material
Adams, John J.; Ebbers, Chris A.
2005-02-22
An electro-optic device for use with a laser beam. A crystal has a first face and a second face. Means are provided for applying a voltage across the crystal to obtain a net phase retardation on the polarization of the laser beam when the laser beam is passed through the crystal. In one embodiment the crystal is composed of a compound having the chemical formula ReAe40(BO3)3 where: RE consists of one or more of the following elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and two other elements Y and Sc; and where Ae is from the list of Ca, Sr, or Ba.
Development of compact excimer lasers for remote sensing
NASA Technical Reports Server (NTRS)
Laudenslager, J. B.; Mcdermid, I. S.; Pacala, T. J.
1983-01-01
The capabilities of excimer lasers for remote sensing applications are illustrated in a discussion of the development of a compact tunable XeCl excimer laser for the detection of atmospheric OH radicals. Following a brief review of the operating principles and advantages of excimer lasers, measurements of the wavelength dependence of the net small signal gain coefficient of a discharge excited XeCl laser are presented which demonstrate the overlap of several absorption lines of the A-X(0,0) transition of OH near 308 nm with the wavelengths of the XeCl laser. A range of continuous narrow bandwidth tunability of from 307.6 to 308.4 nm with only a 30 percent variation in output is reported for an XeCl laser used as a double-pass amplifier for a frequency-doubled dye laser, and measurements demonstrating the detection of laser-induced fluorescence from OH in a methane-oxygen flame are also noted. The design of an oscillator-amplifier excimer system comprising a corona-preionized, transverse-discharge oscillator and amplifier is then presented. Output energies of 12-15 mJ have been achieved in the regions where injection locking was established, with energies of 8-10 mJ elsewhere.
NASA Astrophysics Data System (ADS)
Harrison, Paul M.; Ellwi, Samir
2009-02-01
Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.
Out of the Lab...Into the Real World
NASA Technical Reports Server (NTRS)
1999-01-01
Big Sky Laser Technologies of Bozeman, MT is a developer of compact, ruggedized commercial and developmental laser systems, including small medical lasers and Lidars used in NASA tracking applications. Company engineers developing new laser products determined that NASA technology for detection and control of prelasing in a Q-switched laser would be of value to them in at least two of their product lines. Big Sky Laser's CFR-800 unit is based on NASA technology to which they obtained a non-exclusive patent.
USA Science and Engineering Festival 2014
2014-04-25
An attendee of the USA Science and Engineering Festival is measured by a laser at the NASA Stage. A NASA Staff member describes the Ice, Cloud, and land Elevation Satellite (ICESat) mission, which operated from 2003-2009, and pioneered the use of laser altimeters in space to study the elevation of the Earth's surface and its changes. ICESat-2 is a follow-on mission to continue the ICESat observations and is scheduled to launch in 2017. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
DOE Center of Excellence in Medical Laser Applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, S.L.
1998-01-01
An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland, OR, Houston, TX, and Galveston, TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several newmore » video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulation of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, S.L.
1998-01-01
An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several newmore » video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.« less
NASA Technical Reports Server (NTRS)
Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James
2003-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, M. Parans; Sridharan, Niyanth; List, Fred A.
The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd 2Fe 14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets ismore » significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd 2Fe 17B x solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd 2Fe 14B phase during fabrication.« less
NASA Astrophysics Data System (ADS)
Jahanianl, Nahid; Aram, Majid; Morshedian, Nader; Mehramiz, Ahmad
2018-03-01
In this report, the distribution of and deviation in the electric field were investigated in the active medium of a TE CO2 laser. The variation in the electric field is due to injection of net electron and proton charges as a plasma generator. The charged-particles beam density is assumed to be Gaussian. The electric potential and electric field distribution were simulated by solving Poisson’s equation using the SOR numerical method. The minimum deviation of the electric field obtained was about 2.2% and 6% for the electrons and protons beams, respectively, for a charged-particles beam-density of 106 cm-3. This result was obtained for a system geometry ensuring a mean-free-path of the particles beam of 15 mm. It was also found that the field deviation increases for a the mean-free-path smaller than that or larger than 25 mm. Moreover, the electric field deviation decreases when the electrons beam density exceeds 106 cm-3.
Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan
2015-08-01
A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
1990-01-01
The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.
Neural net controller for inlet pressure control of rocket engine testing
NASA Technical Reports Server (NTRS)
Trevino, Luis C.
1994-01-01
Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.
Whetzel, Patricia L.; Grethe, Jeffrey S.; Banks, Davis E.; Martone, Maryann E.
2015-01-01
The NIDDK Information Network (dkNET; http://dknet.org) was launched to serve the needs of basic and clinical investigators in metabolic, digestive and kidney disease by facilitating access to research resources that advance the mission of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). By research resources, we mean the multitude of data, software tools, materials, services, projects and organizations available to researchers in the public domain. Most of these are accessed via web-accessible databases or web portals, each developed, designed and maintained by numerous different projects, organizations and individuals. While many of the large government funded databases, maintained by agencies such as European Bioinformatics Institute and the National Center for Biotechnology Information, are well known to researchers, many more that have been developed by and for the biomedical research community are unknown or underutilized. At least part of the problem is the nature of dynamic databases, which are considered part of the “hidden” web, that is, content that is not easily accessed by search engines. dkNET was created specifically to address the challenge of connecting researchers to research resources via these types of community databases and web portals. dkNET functions as a “search engine for data”, searching across millions of database records contained in hundreds of biomedical databases developed and maintained by independent projects around the world. A primary focus of dkNET are centers and projects specifically created to provide high quality data and resources to NIDDK researchers. Through the novel data ingest process used in dkNET, additional data sources can easily be incorporated, allowing it to scale with the growth of digital data and the needs of the dkNET community. Here, we provide an overview of the dkNET portal and its functions. We show how dkNET can be used to address a variety of use cases that involve searching for research resources. PMID:26393351
2001-09-01
replication) -- all from Visual Basic and VBA . In fact, we found that the SQL Server engine actually had a plethora of options, most formidable of...2002, the new SQL Server 2000 database engine, and Microsoft Visual Basic.NET. This thesis describes our use of the Spiral Development Model to...versions of Microsoft products? Specifically, the pending release of Microsoft Office 2002, the new SQL Server 2000 database engine, and Microsoft
2017-08-01
ER D C TR -1 7- 9 ERDC 6.1 Geospatial Research and Engineering (GRE) and ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE Spectral Assessment of...The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC...published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. ERDC 6.1 Geospatial Research and Engineering (GRE) and
Vascular tissue engineering by computer-aided laser micromachining.
Doraiswamy, Anand; Narayan, Roger J
2010-04-28
Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.
Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)
NASA Technical Reports Server (NTRS)
Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.
1985-01-01
A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.
High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.
Fu, Xing; Kutz, J Nathan
2013-03-11
We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.
Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold
NASA Astrophysics Data System (ADS)
Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils
2016-06-01
Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.
Properties of open-cell porous metals and alloys for orthopaedic applications.
Lewis, Gladius
2013-10-01
One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.
2012-09-07
Average Procurement Unit Cost CMDS Cruise Missile Defense Systems CPD Capability Production Document EMD Engineering and Manufacturing...Defense for Acquisition, Technology and Logistics also determined that continuing test and evaluation of the two JLENS Engineering and Manufacturing...Program (Category ID) that was established in January 1996 and, during the audit, was in the Engineering and Manufacturing Development (EMD) phase of
Engineering Light: Quantum Cascade Lasers
Claire Gmachl
2017-12-09
Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.
A Modern and Interactive Approach to Learning Laser and Optical Communications.
ERIC Educational Resources Information Center
Minasian, Robert; Alameh, Kamal
2002-01-01
Discusses challenges in teaching lasers and optical communications to engineers, including the prohibitive cost of laboratory experiments, and describes the development of a computer-based photonics simulation experiment module which provides students with an understanding and visualization of how lasers can be modulated in telecommunications.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D T; Gates, E; Max, C
2002-10-17
The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.
Combinatorial pulse position modulation for power-efficient free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven
1993-01-01
A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.
Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser.
Krzempek, Karol; Sotor, Jaroslaw; Abramski, Krzysztof
2016-11-01
The first demonstration of a compact all-fiber figure-9 double-clad erbium-ytterbium laser working in the dissipative soliton resonance (DSR) regime is presented. Mode-locking was achieved using a nonlinear amplifying loop (NALM) resonator configuration. The laser was assembled with an additional 475 m long spool of SMF28 fiber in the NALM loop in order to obtain large net-anomalous cavity dispersion (-10.4 ps2), and therefore ensure that DSR would be the dominant mode-locking mechanism. At maximum pump power (4.78 W) the laser generated rectangular-shaped pulses with 455 ns duration and an average power of 950 mW, which at a repetition frequency of 412 kHz corresponds to a record energy of 2.3 μJ per pulse.
Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.; ...
2016-09-28
Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.
Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less
NASA Astrophysics Data System (ADS)
Torries, Brian; Shamsaei, Nima
2017-12-01
The effects of different cooling rates, as achieved by varying the interlayer time interval, on the fatigue behavior of additively manufactured Ti-6Al-4V specimens were investigated and modeled via a microstructure-sensitive fatigue model. Comparisons are made between two sets of specimens fabricated via Laser Engineered Net Shaping (LENS™), with variance in interlayer time interval accomplished by depositing either one or two specimens per print operation. Fully reversed, strain-controlled fatigue tests were conducted, with fractography following specimen failure. A microstructure-sensitive fatigue model was calibrated to model the fatigue behavior of both sets of specimens and was found to be capable of correctly predicting the longer fatigue lives of the single-built specimens and the reduced scatter of the double-built specimens; all data points fell within the predicted upper and lower bounds of fatigue life. The time interval effects and the ability to be modeled are important to consider when producing test specimens that are smaller than the production part (i.e., property-performance relationships).
Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, Clinton J.; Smugeresky, John E.; Jew, Michael
2006-11-01
The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping{trademark}(LENS{reg_sign}) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performedmore » with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A.« less
Accelerating Industrial Adoption of Metal Additive Manufacturing Technology
NASA Astrophysics Data System (ADS)
Vartanian, Kenneth; McDonald, Tom
2016-03-01
While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
Laser vibrometry exploitation for vehicle identification
NASA Astrophysics Data System (ADS)
Nolan, Adam; Lingg, Andrew; Goley, Steve; Sigmund, Kevin; Kangas, Scott
2014-06-01
Vibration signatures sensed from distant vehicles using laser vibrometry systems provide valuable information that may be used to help identify key vehicle features such as engine type, engine speed, and number of cylinders. Through the use of physics models of the vibration phenomenology, features are chosen to support classification algorithms. Various individual exploitation algorithms were developed using these models to classify vibration signatures into engine type (piston vs. turbine), engine configuration (Inline 4 vs. Inline 6 vs. V6 vs. V8 vs. V12) and vehicle type. The results of these algorithms will be presented for an 8 class problem. Finally, the benefits of using a factor graph representation to link these independent algorithms together will be presented which constructs a classification hierarchy for the vibration exploitation problem.
Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu
2015-01-01
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article. PMID:27877783
Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu
2015-06-01
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.
Laser and optics activities at CREOL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickley, C.M.
1995-06-01
CREOL is an interdisciplinary institute with a mission to foster and support research and education in the optical and laser sciences and engineering. CREOL`s principal members are its 21-strong faculty. The faculty are encouraged and supported in developing, maintaining, and expanding innovative and sponsored research programs, especially ones that are coupled to industry`s needs. The CREOL Director and Assistant Director, through empowerment by the CREOL faculty, coordinate and oversee the interactive, interdisciplinary projects of the faculty, the 85 graduate students and the 39 research staff. CREOL integrates these research efforts with the general educational mission and goals of the university,more » develops comprehensive course work in the optical and laser sciences and engineering, provides guidance and instruction to graduate students, administers MS and PhD programs, and provides facilities, funds, and administrative support to assist the faculty in carrying out CREOL`s mission and obtaining financial support for the research projects. CREOL`s specific areas of research activity include the following: IR systems; nonlinear optics; crystal growth; nonlinear integrated optics; new solid-state lasers; tunable far-infrared lasers; thin-film optics; theory; semiconductor lasers; x-ray/optical scattering; laser-induced damage; free-electron lasers; solid-state spectroscopy; x-ray sources and applications; laser propagation; laser processing of materials; optical design; optical limiting/sensor protection; diffractive optics; quantum well optoelectronics; dense plasmas/high-field physics; laser radar and remote sensing; diode-based lasers; and glass science.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... safety, chemical process safety, fire safety, emergency management, environmental protection... the transportation of SNM of low strategic significance, human factors engineering, and electrical...
40 CFR 1039.730 - What ABT reports must I send to EPA?
Code of Federal Regulations, 2011 CFR
2011-07-01
... additional information: (1) Show that your net balance of emission credits from all your participating engine... the buyer and any brokers. (ii) A copy of any contracts related to the trade. (iii) The engine families that generated emission credits for the trade, including the number of emission credits from each...
NASA Technical Reports Server (NTRS)
1990-01-01
Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.
Erythrocyte-derived optical nano-vesicles as theranostic agents
NASA Astrophysics Data System (ADS)
Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman
2015-07-01
We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).
Local precision nets for monitoring movements of faults and large engineering structures
NASA Technical Reports Server (NTRS)
Henneberg, H. G.
1978-01-01
Along Bocono Fault were installed local high precision geodetic nets to observe the possible horizontal crustal deformations and movements. In the fault area there are few big structures which are also included in the mentioned investigation. In the near future, measurements shall be extended to other sites of Bocono Fault and also to the El Pilar Fault. In the same way and by similar methods high precision geodetic nets are applied in Venezuela to observe the behavior of big structures, as bridges and large dams and of earth surface deformations due to industrial activities.
Design and implementation of a 38 kW dish-Stirling concentrated solar power system
NASA Astrophysics Data System (ADS)
Yan, J.; Peng, Y. D.; Cheng, Z. R.; Liu, F. M.; Tang, X. H.
2017-11-01
Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway for converting solar energy into electricity at high efficiency. In this study, a rated power 38 kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray tracing method and then the 204 m2 parabolic dish concentrator system (diameter is 17.70 m and focal length is 9.49 m) with single concentrator plus single pillar supporting has been designed and built. A water-cooled disc target and an absorber imitation device were adopted to test the tracking performance of the dish concentrator system, homogeneity of the focal spot and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the focal position of the dish concentrator and then the net output power date of the 38 kW DS-CSP system was tested. The absorber overheating problem on the DS-CSP system performance was discussed when the DS-CSP system was installed in different locations. The testing result shows that this system achieved the net output power of 38 kW and solar-to-electricity efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m2. The net output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up to the maximum of 761 W/m2. The net output power of the 38 kW DS-CSP system has a linear function relationship with the DNI. The fitting function is Net power output=0.1003×DNI-36.129, where DNI is at the range of 460∼761 W/m2. This function could be used to predict the amount of the 38 kW DS-CSP system annual generation power.
NASA Astrophysics Data System (ADS)
Ishihara, Miya; Sato, Masato; Kaneshiro, Nagatoshi; Mitani, Genya; Nagai, Toshihiro; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto
2007-02-01
There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and characterizations of engineered tissue. Regenerative medicine involving the articular cartilage in particular requires measurement of viscoelastic properties and characterization of the extracellular matrix, which plays a major role in articular cartilage. To meet this demand, we previously proposed a noninvasive method for determination of the viscoelasticity using laser-induced thermoelastic wave (1,2). We also proposed a method for characterization of the extracellular matrix using time-resolved autofluorescence spectroscopy, which could be performed simultaneously with laser-induced thermoelastic wave measurement(3). The purpose of this study was to verify the usefulness and limitation of these methods for evaluation of actual engineered cartilage. 3rd Q-SW Nd:YAG laser pulses, which are delivered through optical fiber, were used for the light source. Laser-induced thermoelastic waves were detected by a sensor consisting of a piezoelectric transducer, which was designed for use in arthroscopy(4). The time-resolved fluorescence spectroscopy was measured by a photonic multichannel analyzer with 4ch digital signal generator. Various tissue-engineered cartilages were developed as samples. Only a limited range of sample thickness could be measured, however, the measured viscoelastic parameters had a positive correlation with culture time, that is, the degree of formation of extracellular matrix(5,6). There were significant differences in the fluorescent parameters among the phenotypic expressions of cartilage because chondrocyte produces specific extracellular matrix as in collagen types depending on its phenotype.
Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator
NASA Astrophysics Data System (ADS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
2006-05-01
Optimized laser launch trajectories have been developed for a 1.4 m diameter, 120 kg (empty mass) Lightcraft Technology Demonstrator (LTD). The lightcraft's combined-cycle airbreathing/rocket engine is designed for single-stage-to-orbit flights with a mass ratio of 2 propelled by a 100 MW class ground-based laser built on a 3 km mountain peak. Once in orbit, the vehicle becomes an autonomous micro-satellite. Two types of trajectories were simulated with the SORT (Simulation and Optimization of Rocket Trajectories) software package: a) direct GBL boost to orbit, and b) GBL boost aided by laser relay satellite. Several new subroutines were constructed for SORT to input engine performance (as a function of Mach number and altitude), vehicle aerodynamics, guidance algorithms, and mass history. A new guidance/steering option required the lightcraft to always point at the GBL or laser relay satellite. SORT iterates on trajectory parameters to optimize vehicle performance, achieve a desired criteria, or constrain the solution to avoid some specific limit. The predicted laser-boost performance for the LTD is undoubtedly revolutionary, and SORT simulations have helped to define this new frontier.
Gasdynamic lasers and photon machines.
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Hertzberg, A.
1973-01-01
The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.
Laser ignition of liquid petroleum gas at elevated pressures
NASA Astrophysics Data System (ADS)
Loktionov, E.; Pasechnikov, N.; Telekh, V.
2017-11-01
Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.
Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues
Munarin, Fabiola; Kaiser, Nicholas J.; Kim, Tae Yun; Choi, Bum-Rak
2017-01-01
Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all. PMID:28457187
Stereoscopic construction and practice of optoelectronic technology textbook
NASA Astrophysics Data System (ADS)
Zhou, Zigang; Zhang, Jinlong; Wang, Huili; Yang, Yongjia; Han, Yanling
2017-08-01
It is a professional degree course textbook for the Nation-class Specialty—Optoelectronic Information Science and Engineering, and it is also an engineering practice textbook for the cultivation of photoelectric excellent engineers. The book seeks to comprehensively introduce the theoretical and applied basis of optoelectronic technology, and it's closely linked to the current development of optoelectronic industry frontier and made up of following core contents, including the laser source, the light's transmission, modulation, detection, imaging and display. At the same time, it also embodies the features of the source of laser, the transmission of the waveguide, the electronic means and the optical processing methods.
Use Of Lasers In Seam Welding Of Engine Parts For Cars
NASA Astrophysics Data System (ADS)
Luttke, A.
1986-11-01
The decision in favour of active research into laser technology was taken in our company in 1978. In the following years we started with the setting-up of a laser laboratory charged with the task of performing basic manufacturing technology experiments in order to examine the ap-plications of laser technology for cutting, welding, hardening, remelting and secondary alloys. The first laboratory-laser - a 2,5 kW fast axial flow CO2 laser - is connected with a CNC-controlled workpiece manipulation unit, which is designed in such a way that workpieces from the smallest component of a car gearbox up to crankcases for commercial vehicles can be manipulated at speeds considered theoretically feasible for laser machining. The use of the laser beam for cutting, hardening and welding tasks has been under investigation in our company, in this laboratory for some 6 years. Laser cutting is now no longer a question of development, but is instead standard practice and is already used in various sec-tions of our production division for pilot-series manufacturing and for small batches. Laser hardening has, in our opinion, great possibilities for tasks which, for distortion and accessibility reasons, cannot be satisfactorily performed using present-day processes, for instance induction hardening. However, a great deal of development work is still necessary before economically reasonable and quality-assured production installation can be undertaken. Laser-welding is now used in series-production in our company for two engine components. More details are given below.
Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P
2016-04-01
The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.
Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter
NASA Technical Reports Server (NTRS)
1993-01-01
Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.
Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter
NASA Technical Reports Server (NTRS)
1993-01-01
Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing for a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.
Army Information Technology Procurement: A Business Process Analysis
2015-03-27
unrestricted access to the Land War Net when necessary. The Corps of Engineers has IT systems floating next to a dam this week, and next week it will...time available to complete the research; 9 limited access to stakeholders, and SMEs; limited authority to implement business process improvement...Reservists, National Guard, and Medical Corps all maintain their own independent networks, but require unrestricted access to the Land War Net when
NASA Astrophysics Data System (ADS)
Nahmias, Yaakov Koby
Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our approach has the advantage of retaining the natural heterotypic cell-cell interaction and spatial arrangement of native tissue, which is important for proper tissue function.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Microsoft Office; Windows MediaPlayer or RealPlayer.
The Ten Outstanding Engineering Achievements of the Past 50 Years.
ERIC Educational Resources Information Center
Hightower, George
1984-01-01
Describes the outstanding achievement in each of 10 major engineering categories. These categories include synthetic fibers, nuclear energy, computers, solid state electronics, jet aircraft, biomedical engineering, lasers, communications satellites, the United States space program, and automation and control systems. (JN)
Early, James W.; Lester, Charles S.
2003-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser.
Zhang, H; Tang, D Y; Zhao, L M; Tam, H Y
2008-10-15
We report on the experimental observation of induced solitons in a passively mode-locked fiber ring laser with a birefringence cavity. Owing to the cross coupling between the two orthogonal polarization components of the laser, it was found that if a soliton was formed along one cavity polarization axis, a weak soliton was also induced along the orthogonal polarization axis, and depending on the net cavity birefringence, the induced soliton could have either the same or different center wavelengths to that of the inducing soliton. Moreover, the induced soliton always had the same group velocity as that of the inducing soliton. They formed a vector soliton in the cavity. Numerical simulations confirmed the experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumenyuk, Regina; Okhotnikov, Oleg G.; Golant, Konstantin
2011-05-09
The experimental evidence of laser transition type in bismuth-doped silica fibers operating at different spectral bands is presented. Spectrally resolved transient (relaxation) oscillations studied for a Bi-doped fiber laser at room and liquid-nitrogen temperatures allow to identify the three- and four-level energy bands. 1.18 {mu}m short-wavelength band is found to be a three-level system at room temperature with highly populated terminal energy level of laser transition. The depopulation of ground level by cooling the fiber down to liquid-nitrogen temperature changes the transition to four-level type. Four-level energy transition distinguished at 1.32 {mu}m exhibits the net gain at room temperature.
OptoRadio: a method of wireless communication using orthogonal M-ary PSK (OMPSK) modulation
NASA Astrophysics Data System (ADS)
Gaire, Sunil Kumar; Faruque, Saleh; Ahamed, Md. Maruf
2016-09-01
Laser based radio communication system, i.e. OptoRadio, using Orthogonal M-ary PSK Modulation scheme is presented in this paper. In this scheme, when a block of data needs to be transmitted, the corresponding block of biorthogonal code is transmitted by means of multi-phase shift keying. At the receiver, two photo diodes are cross coupled. The effect is that the net output power due to ambient light is close to zero. The laser signal is then transmitted only into one of the receivers. With all other signals being cancelled out, the laser signal is an overwhelmingly dominant signal. The detailed design, bit error correction capabilities, and bandwidth efficiency are presented to illustrate the concept.
Visible high-power laser sources for today and beyond
NASA Astrophysics Data System (ADS)
Smolka, Gregory L.
1995-04-01
The diversity and proliferation of 'real-world' laser applications continues to put increasing demand on laser technology. New system constraints, often dictated by the operation environment, stretch the capabilities of conventional laboratory lasers. As the applications proliferate, so too do the users. Today's laser user is often not a laser engineer, but rather views the laser simply as a tool to help him perform his job. For lasers to reach their true market potential, laser designers must respond to these user-mandated requirements with simple, compact, rugged devices. Traditional commercial lasers are far too large, bulky and complex for many of these new applications. Design techniques for shrinking, simplifying the ruggedizing solid-state lasers for today's applications will be discussed.
Diagnosis of Plasma States in X-Ray Laser Experiments
1992-10-01
J e AD-A256 909 FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER DTIC 4 OCT 2 6 1992’ DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS by Yang ...0619-92 HUMAN TRANSLATION FASTC-ID(RS)T-0619-92 8 October 1992 DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS By: Yang Shangjin, Cai Yuqin, Chunyu... Yang Shangjin, Cai Yuqin, and Chunyu Shutai China Academy of Engineering Physics Abstract At an LF-12 laser installation, an Nd glass laser of
High repetition rate Petawatt lasers
NASA Astrophysics Data System (ADS)
Roso, Luis
2018-01-01
Petawatt lasers are now available in a number of facilities around the world and are becoming a very useful tool in physics and engineering. Some of such lasers are able -or will be able soon- to fire at high repetition rates (one shot per second or more). Experiments at such repetition rates have certain peculiarities that are to be briefly exposed here, based on the author's experience with the Salamanca VEGA-3 laser. VEGA-3 is a 30 fs PW laser, firing one shot per second.
NASA Astrophysics Data System (ADS)
Görgl, Richard; Brandstätter, Elmar
2017-01-01
The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.
Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F
2018-05-01
Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Morales-Vidal, Marta; Boj, Pedro G.; Villalvilla, José M.; Quintana, José A.; Yan, Qifan; Lin, Nai-Ti; Zhu, Xiaozhang; Ruangsupapichat, Nopporn; Casado, Juan; Tsuji, Hayato; Nakamura, Eiichi; Díaz-García, María A.
2015-01-01
Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all these properties simultaneously at the level required for applications by demonstrating amplified spontaneous emission and distributed feedback laser devices. A series of six compounds, with the repeating unit from 1 to 6, doped into polystyrene films undergo amplified spontaneous emission from 385 to 585 nm with remarkably low threshold and high net gain coefficients, as well as high photostability. The fabricated lasers show narrow linewidth (<0.13 nm) single mode emission at very low thresholds (0.7 kW cm−2), long operational lifetimes (>105 pump pulses for oligomers with three to six repeating units) and wavelength tunability across the visible spectrum (408–591 nm). PMID:26416643
NASA Astrophysics Data System (ADS)
Mertens, Anne; Contrepois, Quentin; Dormal, Thierry; Lemaire, Olivier; Lecomte-Beckers, Jacqueline
2012-07-01
In this study, samples of alloy Ti-6Al-4V have been processed by Selective Laser Melting (SLM) and by Laser Cladding (LC), two layer-by-layer near-net-shape processes allowing for economic production of complex parts. The resulting microstructures have been characterised in details, so as to allow for a better understanding of the solidification process and of the subsequent phase transformations taking place upon cooling for both techniques. On the one hand, a new “MesoClad” laser with a maximum power of 300 W has been used successfully to produce thin wall samples by LC. On the other hand, the influence of processing parameters on the mechanical properties was investigated by means of uniaxial tensile testing performed on samples produced by SLM with different orientations with respect to the direction of mechanical solicitation. A strong anisotropy in mechanical behaviour was thus interpreted in relations with the microstructures and processing conditions.
Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines
NASA Astrophysics Data System (ADS)
Xiang, He Wan; Xiong, Li Zhi
1988-01-01
The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.
NASA Astrophysics Data System (ADS)
Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng
2018-02-01
Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.
Spot size dependence of laser accelerated protons in thin multi-ion foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tung-Chang, E-mail: tcliu@umd.edu; Shao, Xi; Liu, Chuan-Sheng
2014-06-15
We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, amore » laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.« less
Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Cha, Yong-Ho; Jeong, Do-Young; Yeom, Dong-Il
2014-09-22
We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.
Some recent studies on laser cladding and dissimilar welding
NASA Astrophysics Data System (ADS)
Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.
2006-01-01
Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.
Solid-state semiconductor optical cryocooler based on CdS nanobelts.
Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua
2014-08-13
We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.
Experimental evaluation of the effect of inlet distortion on compressor blade vibrations
NASA Technical Reports Server (NTRS)
Lubomski, J. F.
1979-01-01
Compressor rotor strain gage data from an engine test conducted with an inlet screen distortion were reduced and analyzed. These data are compared to data obtained from the same engine without inlet pressure distortion to determine the net effect of the distortion on the vibratory response of the compressor blades. The results obtained are presented.
Methanol decomposition bottoming cycle for IC engines
NASA Technical Reports Server (NTRS)
Purohit, G.; Houseman, J.
1979-01-01
This paper presents the concept of methanol decomposition using engine exhaust heat, and examines its potential for use in the operation of passenger cars, diesel trucks, and diesel-electric locomotives. Energy economy improvements of 10-20% are calculated over the representative driving cycles without a net loss in power. Some reductions in exhaust emissions are also projected.
NASA Astrophysics Data System (ADS)
Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman
2018-02-01
Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.
Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine
2005-10-21
We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.
Trend of laser research developments in global level
NASA Astrophysics Data System (ADS)
Golnabi, H.; Mahdieh, M. H.
2006-03-01
An up-to-date progress of the international laser research and development is given in this article. The number of scientific publications and filed patents are considered as a figure of merit and based on these numbers the growth pace and important aspects are investigated. We have used the Science Finder Scholar search engine, which indexes more than 4000 journals, in different languages, and represents most significant published materials in laser science and engineering. The growth of the laser and related fields are described in terms of resulting scientific publications for the period of 1990-2003. The share of top nations in scientific publications, and in particular laser publications in terms of their gross domestic product (GDP) is presented. It is noted that the four countries including the USA, Japan, Germany and China have a laser publication contribution of 58.9% while the rest of the world including 189 countries contribute 41.1%. However, for the case of patent, which is a more important factor, these four countries hold a share of 90.1% while the remaining nations have a small share of 9.9%. The USA heads all the nations in the number of scientific publications, citations, and laser publications, however, in terms of accepted laser patents Japan shows a big lead. Scientific scopes of the laser systems are presented and some requirements to be met in each field are described. The key points in this field of research, which might be helpful in the future development of the laser technology are discussed.
Pulse Shape Correlation for Laser Detection and Ranging (LADAR)
2010-03-01
with the incoming measured laser pulse [3]. All of these shapes are symmetric. Siegman and Liu’s findings indicate that the pulse is seldom symmetric...of Engineering, Air Force Institute of Technology (AETC), Wright Pat- terson AFB, OH, March 2007. 10. Siegman , Anthony E. Lasers . University Science...Pulse Shape Correlation for Laser Detection and Ranging (LADAR) THESIS Brian T. Deas, Major, USAF AFIT/GE/ENG/10-07 DEPARTMENT OF THE AIR FORCE AIR
Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry
2007-06-01
AIR VEHICLE WING USING 3-D LASER VIBROMETRY THESIS Leo L. Mendoza Jr., ENS, USN AFIT/GAE/ENY/07-J13 DEPARTMENT OF THE AIR FORCE AIR ...3-D LASER VIBROMETRY THESIS Presented to the Faculty Department of Aeronautical and Astronautical Engineering Air Force...DISTRIBUTION UNLIMITED AFIT/GAE/ENY/07-J13 DAMAGE CONSIDERATIONS OF A FLEXIBLE MICRO AIR VEHICLE WING USING 3-D LASER VIBROMETRY
Work production of quantum rotor engines
NASA Astrophysics Data System (ADS)
Seah, Stella; Nimmrichter, Stefan; Scarani, Valerio
2018-04-01
We study the mechanical performance of quantum rotor heat engines in terms of common notions of work using two prototypical models: a mill driven by the heat flow from a hot to a cold mode, and a piston driven by the alternate heating and cooling of a single working mode. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation, and we compare them to the energy output for the case of an external dissipative load and for externally driven engine cycles. Our results connect work definitions from both physical and information-theoretical perspectives. In particular, we find that apart from signatures of angular momentum quantization, the ergotropy is consistent with the intuitive notion of work in the form of net directed motion. It also agrees with the energy output to an external load or agent under optimal conditions. This sets forth a consistent thermodynamical description of rotating quantum motors, flywheels, and clocks.
Airborne platform effects on lasers and warning sensors
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Eisele, Christian; Seiffer, Dirk; Sjöqvist, Lars; Togna, Fabio; Velluet, Marie-Thérèse
2017-10-01
Airborne platform effects on lasers and warning sensors (ALWS) has been a European collaborative research project to investigate the effects of platform-related turbulence on optical countermeasure systems, especially missile approach warning systems (MAWS) and directed infrared countermeasures (DIRCM). Field trials have been carried out to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft with engines running on the ground. In addition different methods for modelling the effects have been investigated. In the helicopter trials significant beam wander, scintillations and beam broadening were experienced by narrow divergence laser beams when passing through the down-wash of the hot engine exhaust gases. The measured effects considerably exceed the effects of atmospheric turbulence. Extraction of turbulence parameters for modelling of DIRCM-relevant scenarios show that in most cases the reduction of jamming power and distortion of jamming waveform can be expected to be small. The reduction of effects of turbulence is mainly related to the larger beam divergence and shorter Rayleigh length of DIRCM lasers compared to the experimental probe beams. Measurements using the turboprop platform confirm that tolerable effects on laser beam properties are found when the laser beam passes through the exhaust 15 m behind the outlet where the exhaust gases are starting to cool down. Modelling efforts have shown that time-resolved computational fluid dynamics (CFD) calculations can be used to study properties of beam propagation in engine exhaust-related turbulence. Because of computational cost and the problem of validating the CFD results the use for system performance simulations is however difficult. The hot exhaust gases emitted from aircraft engines create extreme optical turbulence in a local region. The effects on countermeasure system performance depend both on the system parameters and on the threat characteristics. With present-day DIRCM systems, the effects of even severe turbulence are often tolerable.
EMERGING TECHNOLOGY PROJECT BULLETIN: LASER INDUCED PHOTOCHEMICAL OXIDATIVE DESTRUCTION
The process developed by Energy and Environmental Engineering, Incorporated, is designed to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an Excimer laser. The photochemical reactor can destroy low to moderate concentrations...
Dispersion engineering of mode-locked fibre lasers
NASA Astrophysics Data System (ADS)
Woodward, R. I.
2018-03-01
Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.
Localized emission from laser-irradiated defects in 2D hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Hou, Songyan; Danang Birowosuto, Muhammad; Umar, Saleem; Ange Anicet, Maurice; Yingjie Tay, Roland; Coquet, Philippe; Tay, Beng Kang; Wang, Hong; Teo, Edwin Hang Tong
2018-01-01
Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for photonics device due to its large bandgap and flexibility in nanophotonic circuits. Here, we report bright and localized luminescent centres can be engineered in hBN monolayers and flakes using laser irradiation. The transition from hBN to cBN emerges in laser irradiated hBN large monolayers while is absent in processed hBN flakes. Remarkably, the colour centres in hBN flakes exhibit room temperature cleaner single photon emissions with g 2(0) ranging from 0.20 to 0.42, a narrower line width of 1.4 nm and higher brightness compared with monolayers. Our results pave the way to engineering deterministic defects in hBN induced by laser pulse and show great prospect for application of defects in hBN used as nano-size light source in photonics.
Fluidic actuators for active flow control on airframe
NASA Astrophysics Data System (ADS)
Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.
2016-04-01
One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.
Deckard, Gloria J; Borkowski, Nancy; Diaz, Deisell; Sanchez, Carlos; Boisette, Serge A
2010-01-01
Designated primary care clinics largely serve low-income and uninsured patients who present a disproportionate number of chronic illnesses and face great difficulty in obtaining the medical care they need, particularly the access to specialty physicians. With limited capacity for providing specialty care, these primary care clinics generally refer patients to safety net hospitals' specialty ambulatory care clinics. A large public safety net health system successfully improved the effectiveness and efficiency of the specialty clinic referral process through application of Lean Six Sigma, an advanced process-improvement methodology and set of tools driven by statistics and engineering concepts.
Andy Hardin with 3-D printed engine part
2015-06-22
ANDY HARDIN, A PROPULSION ENGINEER AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, SHOWS A 3-D PRINTED ROCKET PART MADE WITH A SELECTIVE LASER MELTING MACHINE. PARTS FOR THE SPACE LAUNCH SYSTEM'S RS-25 ROCKET ENGINE ARE BEING MADE WITH THE MACHINE IN THE BACKGROUND
NASA Astrophysics Data System (ADS)
Stolow, Albert
We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of polyatomic molecules, including high harmonic generation (HHG). We discuss an experimental method, Channel-Resolved Above Threshold Ionization (CRATI), which directly unveils the electronic channels participating in the attosecond molecular strong field ionization response [10]. This work was supported by the National Research Council of Canada and the Natural Sciences & Engineering Research Council.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyang; Qi, Huan
2014-04-01
A turbine blade made of single-crystal superalloys has been commonly used in gas turbine and aero engines. As an effective repair technology, laser powder deposition has been implemented to restore the worn turbine blade tips with a near-net shape capability and highly controllable solidified microstructure. Successful blade repair technology for single-crystal alloys requires a continuous epitaxial grain growth in the same direction of the crystalline orientation of the substrate material to the newly deposited layers. This work presents a three-dimensional numerical model to simulate the transport phenomena for a multilayer coaxial laser powder deposition process. Nickel-based single-crystal superalloy Rene N5 powder is deposited on a directional solidified substrate made of nickel-based directional-solidified alloy GTD 111 to verify the simulation results. The effects of processing parameters including laser power, scanning speed, and powder feeding rate on the resultant temperature field, fluid velocity field, molten pool geometric sizes, and the successive layer remelting ratios are studied. Numerical simulation results show that the maximum temperature of molten pool increases over layers due to the reduced heat dissipation capacity of the deposited geometry, which results in an increased molten pool size and fluid flow velocity at the successive deposited layer. The deposited bead geometry agrees well between the simulation and the experimental results. A large part of the first deposition layer, up to 85 pct of bead height, can be remelted during the deposition of the second layer. The increase of scanning speed decreases the ratio of G/ V (temperature gradient/solidification velocity), leading to an increased height ratio of the misoriented grain near the top surface of the previous deposited layer. It is shown that the processing parameters used in the simulation and experiment can produce a remelting ratio R larger than the misoriented grain height ratio S, which enables remelting of all the misoriented grains and guarantees a continuous growth of the substrate directional-solidified crystalline orientation during the multilayer deposition of single-crystal alloys.
A real time neural net estimator of fatigue life
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1990-01-01
A neural network architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopumps blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high-frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines.
Design study of a laser-cooled infrared sensor
Hehlen, Markus Peter; Boncher, William Lawrence; Love, Steven Paul
2015-03-10
The performance of a solid-state optical refrigerator is the result of a complex interplay of numerous optical and thermal parameters. We present a first preliminary study of an optical cryocooler using ray-tracing techniques. A numerical optimization identified a non-resonant cavity with astigmatism. This geometry offered more efficient pump absorption by the YLF:10%Yb laser-cooling crystal compared to non-resonant cavities without astigmatism that have been pursued experimentally so far. Ray tracing simulations indicate that ~80% of the incident pump light can absorbed for temperatures down to ~100 K. Calculations of heat loads, cooling power, and net payload heat lift are presented. Theymore » show that it is possible to cool a payload to a range of 90–100 K while producing a net payload heat lift of 80 mW and 300 mW when pumping a YLF:10%Yb crystal with 20 W and 50 W at 1020 nm, respectively. This performance is suited to cool HgCdTe infrared detectors that are used for sensing in the 8–12 μm atmospheric window. While the detector noise would be ~6× greater at 100 K than at 77 K, the laser refrigerator would introduce no vibrations and thus eliminate sources of microphonic noise that are limiting the performance of current systems.« less
NASA Astrophysics Data System (ADS)
Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie
2008-04-01
We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.
Structural strengthening of rocket nozzle extension by means of laser metal deposition
NASA Astrophysics Data System (ADS)
Honoré, M.; Brox, L.; Hallberg, M.
2012-03-01
Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.
Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, J; Abbott, R; Fratoni, M
The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine designmore » with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.« less
Zhang, Lu; Hong, Xuezhi; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Schatz, Richard; Guo, Changjian; Zhang, Junwei; Nordwall, Fredrik; Engenhardt, Klaus M; Westergren, Urban; Popov, Sergei; Jacobsen, Gunnar; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-01-15
We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.
Engineering equations for characterizing non-linear laser intensity propagation in air with loss.
Karr, Thomas; Stotts, Larry B; Tellez, Jason A; Schmidt, Jason D; Mansell, Justin D
2018-02-19
The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.
Novel engineered compound semiconductor heterostructures for advanced electronics applications
NASA Astrophysics Data System (ADS)
Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.
1992-06-01
To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.
Education and training for technicians in photonics-enabled technologies
NASA Astrophysics Data System (ADS)
Hull, Daniel M.; Hull, Darrell M.
2005-10-01
Within a few years after lasers were first made operational in 1960, it became apparent that rapid growth in the applications of this new technology in industry, health care, and other fields would require a new generation of technicians in laser/optics engineering. Technicians are the men and women who work alongside scientists and engineers in bringing their ideas, designs, and processes to fruition. In America, most highly qualified technicians are graduates of associate of applied science (AAS) programs in community and technical colleges (two-year postsecondary institutions). Curricula and educational programs designed to prepare technicians in laser/electro-optics technology (LEOT) emerged in the 1970s; today there are over 15 LEOT programs in the United States producing over 100 LEOT graduates each year.
Scanned-wavelength diode laser sensors for harsh environments
NASA Astrophysics Data System (ADS)
Jeffries, Jay B.; Sanders, Scott T.; Zhou, Xin; Ma, Lin; Mattison, Daniel W.; Hanson, Ronald K.
2002-09-01
Diode laser absorption offers the possibility of high-speed, robust, and rugged sensors for a wide variety of practical applications. Pressure broadening complicates absorption measurements of gas temperature and species concentrations in high-pressure, high-temperature practical environments. More agile wavelength scanning can enable measurements of temperature and species concentrations in flames and engines as demonstrated by example measurements using wavelength scanning of a single DFB in laboratory flames or a vertical cavity surface emitting laser (VCSEL) in a pulse detonation engine environment. Although the blending of multiple transitions by pressure broadening complicates the atmospheric pressure spectrum of C2H4 fuel, a scanned wavelength strategy enables quantitative measurement of fuel/oxidizer stoichiometry. Wavelength-agile scanning techniques enable high-speed measurements in these harsh environments.
Multi-GeV electron-positron beam generation from laser-electron scattering.
Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan
2018-03-16
The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.
USSR Report, Electronics and Electrical Engineering, No. 102
1983-04-29
S. IAbstract] The laser probing method is applied to measurement of absorption , transmission, and reflection coefficients, also insertion losses...electronic clock. The method of measurements is based on absorption of monochromatic radiation from the lasers, the latter being tuned to the fine...Acoustic-Wave Transducer by Laser Probing Method (A. B. Voroshnin, G. S. Felinskiy; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA, Dec 82
Multidisciplinary model-based-engineering for laser weapon systems: recent progress
NASA Astrophysics Data System (ADS)
Coy, Steve; Panthaki, Malcolm
2013-09-01
We are working to develop a comprehensive, integrated software framework and toolset to support model-based engineering (MBE) of laser weapons systems. MBE has been identified by the Office of the Director, Defense Science and Engineering as one of four potentially "game-changing" technologies that could bring about revolutionary advances across the entire DoD research and development and procurement cycle. To be effective, however, MBE requires robust underlying modeling and simulation technologies capable of modeling all the pertinent systems, subsystems, components, effects, and interactions at any level of fidelity that may be required in order to support crucial design decisions at any point in the system development lifecycle. Very often the greatest technical challenges are posed by systems involving interactions that cut across two or more distinct scientific or engineering domains; even in cases where there are excellent tools available for modeling each individual domain, generally none of these domain-specific tools can be used to model the cross-domain interactions. In the case of laser weapons systems R&D these tools need to be able to support modeling of systems involving combined interactions among structures, thermal, and optical effects, including both ray optics and wave optics, controls, atmospheric effects, target interaction, computational fluid dynamics, and spatiotemporal interactions between lasing light and the laser gain medium. To address this problem we are working to extend Comet™, to add the addition modeling and simulation capabilities required for this particular application area. In this paper we will describe our progress to date.
Transition in Gas Turbine Engine Control System Architecture: Modular, Distributed, Embedded
2009-08-01
Design + Development + Certification + Procurement + Life Cycle Cost = Net Savings for our Customers Approved for Public Release 16 Economic ...Supporting Small Quantity Electronics Need Broadly Applicable High Temperature Electronics Supply Base Approved for Public Release 17 Economic ...rc ec ures Approved for Public Release 18 Economic Drivers for New FADEC Designs FADEC Implementation Time Pacing Engine Development Issues • FADEC
CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 9, September 2007
2007-09-01
underlying application framework, e.g., Java Enter- prise Edition or .NET. This increases the risk that consumer Web services not based on the same...weaknesses and vulnera- bilities that are targeted by attackers and malicious code. For example, Apache Axis 2 enables a Java devel- oper to simply...load his/her Java objects into the Axis SOAP engine. At runtime, it is the SOAP engine that determines which incoming SOAP request messages should be
Subjective Mapping of Dust Emission Sources by Using MODIS Imagery: Reproducibility Assessment
2017-05-31
ER D C/ CR RE L TR -1 7- 8 ERDC 6.2 Geospatial Research and Engineering (GRE) ARTEMIS STO-R DUST-CLOUD Subjective Mapping of Dust...N. Sinclair and Sandra L. Jones May 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and...library at http://acwc.sdp.sirsi.net/client/default. ERDC 6.2 Geospatial Research and Engineering (GRE) ARTEMIS STO-R DUST-CLOUD ERDC/CRREL TR-17-8
Design and Calibration of an Electrodynamic Driver for the Space Thermoacoustic Refrigerator
1989-06-01
University, 1982 Submitted in partial fulfillment of the requirements for the degree of MAST£et OF SCIENCE IN ENGINEERING ACOUSTICS from the NAVAL...A5oustickAcademic Committee Gordon E. Schacher Dean of Science and Engineering ii ABSTRACT The objective of the STAR project is to test and space qualify a...definition of the subject matter to the study of heat engines in which a net 1 heat transport in some gaseous medium is related to the acoustic
Safety approaches for high power modular laser operation
NASA Astrophysics Data System (ADS)
Handren, R. T.
1993-03-01
Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.
Power blue and green laser diodes and their applications
NASA Astrophysics Data System (ADS)
Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver
2013-03-01
InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.
The ContiNet of the International Continence Society.
Lim, P H; Fonda, D
1997-01-01
This is an account of the International Continence Society's ContiNet--the web server linking up continence organisations worldwide with provision to upload or download vast data stores of information on continence via e-mail, FTP, mailing lists, and special tools to seek information using "search engines." Special communication devices using internet voice/phone mail and real-time "text" or "voice" chats permit conversation globally over normal phone lines linked to the Net at local telephone rates. Special features of ContiNet include announcements of upcoming conventions, information for professionals and laypeople, and the capability to conduct research via the net and conduct consultations and discussions via newsgroups. In-built devices requiring special IDs and passwords permit privacy and security for users. Simple instructions are provided on how to get your PC up and running and get connected to fellow members of ICS, link up with national continence societies, or simply surf for professional enrichment and leisure. With the advent of advanced multimedia capabilities, the current poor quality videoconferencing on the Net will be replaced by excellent videophones by 1998.
2001-03-01
tungsten thin wall nozzle liner removed from reusable mandrel. b) W and Re rocket, nozzle inserts (2 inserts per mandrel) for Air Force. Rhenium PPI...compares the fabrication time for the VPS nozzles with equivalent carbon / carbon composite (C/C) and forged tungsten materials. Table 5: Comparison of...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1181 TITLE: Low Cost, Net Shape Fabrication of Rhenium and High
Progress in net shape fabrication of alpha SiC turbine components
NASA Technical Reports Server (NTRS)
Storm, R. S.; Naum, R. G.
1983-01-01
The development status of component technology in an automotive gas turbine Ceramic Applications in Turbine Engines program is discussed, with attention to such materials and processes having a low cost, net shape fabrication potential as sintered alpha-SiC that has been fashioned by means of injection molding, slip casting, and isostatic pressing. The gas turbine elements produced include a gasifier turbine rotor, a turbine wheel, a connecting duct, a combustor baffle, and a transition duct.
Mission Driven Scene Understanding: Candidate Model Training and Validation
2016-09-01
driven scene understanding. One of the candidate engines that we are evaluating is a convolutional neural network (CNN) program installed on a Windows 10...Theano-AlexNet6,7) installed on a Windows 10 notebook computer. To the best of our knowledge, an implementation of the open-source, Python-based...AlexNet CNN on a Windows notebook computer has not been previously reported. In this report, we present progress toward the proof-of-principle testing
NASA Astrophysics Data System (ADS)
Roder, Paden Bernard
Laser tweezers and optical trapping has provided scientists and engineers a unique way to study the wealth of phenomena that materials exhibit at the micro- and nanoscale, much of which remains mysterious. Of particular interest is the interplay between light absorption and subsequent heat generation of laser-irradiated materials, especially due to recent interest in developing nanoscale materials for use as agents for photothermal cancer treatments. An introduction to optical trapping physics and laser tweezers are given in Chapter 1 and 2 of this thesis, respectively. The remaining chapters, summarized below, describe the theoretical basis of laser heating of one-dimensional nanostructures and experiments in which optically-trapped nanostructures are studied using techniques developed for a laser tweezer. In Chapter 3, we delve into the fundamentals of laser heating of one-dimensional materials by developing an analytical model of pulsed laser heating of uniform and tapered supported nanowires and compare calculations with experimental data to comment on the effects that the material's physical, optical, and thermal parameters have on its heating and cooling rates. We then consider closed-form analytical solutions for the temperature rise within infinite circular cylinders with nanometer-scale diameters irradiated at right angles by TM-polarized continuous-wave laser sources, which allows for analysis of laser-heated nanowires in a solvated environment. The infinite nanowire analysis will then be extended to the optical heating of laser-irradiated finite nanowires in the framework of a laser tweezer, which enables predictive capabilities and direct comparison with laser trapping experiments. An effective method for determining optically-trapped particle temperatures as well as the temperature gradient in the surrounding medium will be discussed in Chapter 4. By combining laser tweezer calibration techniques, forward-scattered light power spectrum analysis, and hot Brownian motion theory, we attempt to measure realistic temperatures at the surface of an optically-trapped particle while properly accounting for inhomogeneous temperature fields generated by the optical trap. In Chapter 5, this technique is then applied to measure the temperature of engineered gold- and silicon-implanted silicon nanowires to rigorously study the effect ion implantation has on silicon nanowire photothermal efficiencies. Silicon nanowire photothermal efficiencies are shown to drastically increase by implanting with gold ions and cause superheating of water of over 200 C at the trap site, suggesting potential application as agents for photothermal cancer therapies. Chapter 6 describes the hydrothermal synthesis and optical trapping of engineered YLF nanoparticles doped with Yb(III) ions. Laser tweezer experiments using the developed temperature extraction techniques and hot Brownian motion analysis show the first observation of particles undergoing recently hypothesized cold Brownian motion and local laser refrigeration in a condensed phase via anti-Stokes photoluminescence. Furthermore, YLF nanoparticles codoped with Er(III) and Yb(III) ions are also developed and their intense visible upconversion of the NIR trapping laser is used to monitor its internal lattice temperature using ratiometric thermography. The results suggest the potential of these materials to investigate kinetics and temperature sensitivity of basic cellular processes, or to act as simultaneous theranostic-hypothermia agents to identify and treat cancerous tissues. Finally, Chapter 7 presents a summary of the salient conclusions of the reported studies. The chapter concludes with a short discussion of my personal experience with being a member of a new research group and setting up the Pauzauskie laboratory.
NASA Astrophysics Data System (ADS)
Johnson, Bart; Atia, Walid; Kuznetsov, Mark; Cook, Christopher; Goldberg, Brian; Wells, Bill; Larson, Noble; McKenzie, Eric; Melendez, Carlos; Mallon, Ed; Woo, Seungbum; Murdza, Randal; Whitney, Peter; Flanders, Dale
A 1060 nm OEM laser "engine", manufactured by Axsun Technologies, is described. It consists of a swept laser and control electronics coupled with a balanced receiver, k-clock, and a 550 MS/s data acquisition board. The laser's passive mode-locking behavior induced by the rapid wavelength sweep is discussed. As they pass though the gain medium, each pulse is shifted to longer wavelength due to the rise in refractive index associated with gain depletion. New, longer wavelengths, are thus created by nonlinear means rather than by building up anew from spontaneous emission. This nonlinear mechanism enables low noise operation and fast sweep rates. The so-called "coherence revival" phenomenon associated with interference between neighboring mode-locked pulses, is discussed. Typical laser and system data is shown, including k-clock frequency, trigger waveform, pulsed and average output powers and RIN. Receiver and DAQ board noise performance is quantified. The laser RIN is estimated to be lower than -150 dB/Hz. A typical shot-noise-limited sensitivity of 103 dB is achieved for 1.9 mW sample power. The engine is designed for ophthalmic imaging and retinal images from prototype commercial systems are presented.
Engineering Technology Education: Bibliography, 1988.
ERIC Educational Resources Information Center
Dyrud, Marilyn A.
1989-01-01
Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…
Constant speed control of four-stroke micro internal combustion swing engine
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun
2015-09-01
The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.
Highly Efficient Nd:yag Lasers for Free-space Optical Communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
A highly efficient Nd:YAG laser end-pumped by semiconductor lasers as a possible free-space optical communications source is discussed. Because this concept affords high pumping densities, a long absorption length, and excellent mode-matching characteristics, it is estimated that electrical-to-optical efficiencies greater than 5% could be achieved. Several engineering aspects such as resonator size and configuration, pump collecting optics, and thermal effects are also discussed. Finally, possible methods for combining laser-diode pumps to achieve higher output powers are illustrated.
1990-12-01
3,4]. This work allowed us to view the ultrashort ( - 100 fs) pulses . While this laser was being temporal characteristics of the absorption spectrum...regions of high intensity in single water drop- lets (a = 60 Ant) following excita- tion by a single 7-ns, 532-nn laser pulse . Resonant 532-nm laser ...electronic properties of cluster ions of ion beam and the laser pulse , any desired mass range for simple metals (alkali metals). Our earlier efforts
Remote Sensing of Turbine Engine Gases.
1981-09-30
Institute by lasers operating in the infrared compared to the visible and of Technology. Lexington, M A 0217 3. UV region. 00l8.9197/81/0900-1917S00.75 0...mini-TEA lasers used in both single- and dual- laser consists of a UV -preionized discharge between Rogowski laser DIAL systems, and a study has been...described previously [10]. The discharge is thyratron system. This research has led to a better understanding of triggered and may operate at a pulse
Reliability Parts Derating Guidelines
1982-06-01
226-30, October 1974. 66 I, 26. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser Engineering and...Vol. R-23, No. 4, 226-30, October 1974. 28. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser...opnatien ot deg C, mounted on a 4-inach square 0.250~ inch thick al~loy alum~nusi panel.. This mounting technique should be L~ ken into cunoidur~tiou
Holographic flow diagnostics for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
1992-01-01
Summarized here are the results of an effort to produce holograms of the exhaust from the Space Shuttle Main Engine (SSME) being tested on a test stand at the Marshall Space Flight Center (MSFC). The effort took place from December 1990 to January 1992, during which seven trips were made from MetroLaser to MSFC. A brief outline of each trip is given. Due to the suspension of the SSME program in Huntsville and unexpected complications in resolving safety issues, the proposed holography system was not operated until November 1991. A NASA 100 mW Argon laser was installed in the holography system for an October engine test while these safety issues were being resolved. A video camera shadowgraph was made during this test, which was shut down prematurely after 20 seconds. System problems precluded successful operation of the holography system until the January 1992 engine test. No hologram resulted during this test due to heavy fog conditions around the engine.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
Laser-activated remote phosphor light engine for projection applications
NASA Astrophysics Data System (ADS)
Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich
2015-09-01
Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.
Laser direct writing of micro- and nano-scale medical devices
Gittard, Shaun D; Narayan, Roger J
2010-01-01
Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557
Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces
NASA Astrophysics Data System (ADS)
Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga
2015-05-01
In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.
Flow Control about an Airborne Laser Turret
1982-06-01
that houses the laser telescope• Afterbody f=airing and f•iselage boundary layer suction were employed with porous material added when necessary to...Thesis Advisor Chairman, D partment of Aeronautics Dean of Scienci arnd Engineering 3 ABSTRACT This thesis project is the latest in a series of...that houses the laser telescope. Afterbody fairing and fuselage boundary layer suction were employed with porous material added when necessary to
NASA Technical Reports Server (NTRS)
Messitt, Don G.; Myrabo, Leik N.
1991-01-01
Rensselaer Polytechnic Institute has been developing a transatmospheric 'Lightcraft' technology which uses beamed laser energy to propel advanced shuttle craft to orbit. In the past several years, Rensselaer students have analyzed the unique combined-cycle Lightcraft engine, designed a small unmanned Lightcraft Technology Demonstrator, and conceptualized larger manned Lightcraft - to name just a few of the interrelated design projects. The 1990-91 class carried out preliminary and detailed design efforts for a one-person 'Mercury' Lightcraft, using computer-aided design and finite-element structural modeling techniques. In addition, they began construction of a 2.6 m-diameter, full-scale engineering prototype mockup. The mockup will be equipped with three robotic legs that 'kneel' for passenger entry and exit. More importantly, the articulated tripod gear is crucial for accurately pointing at, and tracking the laser relay mirrors, a maneuver that must be performed just prior to liftoff. Also accomplished were further design improvements on a 6-inch-diameter Lightcraft model (for testing in RPI's hypersonic tunnel), and new laser propulsion experiments. The resultant experimental data will be used to calibrate Computational Fluid Dynamic (CFD) codes and analytical laser propulsion models that can simulate vehicle/engine flight conditions along a transatmospheric boost trajectory. These efforts will enable the prediction of distributed aerodynamic and thruster loads over the entire full-scale spacecraft.
On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise
NASA Technical Reports Server (NTRS)
McAninch, Gerry L.; Shepherd, Kevin P.
2011-01-01
The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.
National Wetlands Mitigation Action Plan
On December 26, 2002, EPA and the Corps of Engineers announced the release of a comprehensive, interagency National Wetlands Mitigation Action Plan to further achievement of the goal of no net loss of wetlands.
From quantum heat engines to laser cooling: Floquet theory beyond the Born–Markov approximation
NASA Astrophysics Data System (ADS)
Restrepo, Sebastian; Cerrillo, Javier; Strasberg, Philipp; Schaller, Gernot
2018-05-01
We combine the formalisms of Floquet theory and full counting statistics with a Markovian embedding strategy to access the dynamics and thermodynamics of a periodically driven thermal machine beyond the conventional Born–Markov approximation. The working medium is a two-level system and we drive the tunneling as well as the coupling to one bath with the same period. We identify four different operating regimes of our machine which include a heat engine and a refrigerator. As the coupling strength with one bath is increased, the refrigerator regime disappears, the heat engine regime narrows and their efficiency and coefficient of performance decrease. Furthermore, our model can reproduce the setup of laser cooling of trapped ions in a specific parameter limit.
Optical diagnostics integrated with laser spark delivery system
Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO
2008-09-02
A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.
Fiber laser coupled optical spark delivery system
Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO
2008-03-04
A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.
Development of a laser-based sensor to measure true road surface deflection.
DOT National Transportation Integrated Search
2017-04-01
The high-speed measurement of accurate pavement surface deflections under a moving wheel at a networklevel : still remains a challenge in pavement engineering. This goal cannot be accomplished with stationary deflectionmeasuring : devices. Engineers ...
Rapid deceleration mode evaluation
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Nobbs, Steven G.; Orme, John S.
1995-01-01
Aircraft with flight capability above 1.4 normally have an RPM lockup or similar feature to prevent inlet buzz that would occur at low engine airflows. This RPM lockup has the effect of holding the engine thrust level at the intermediate power (maximum non-afterburning). For aircraft such as military fighters or supersonic transports, the need exists to be able to rapidly slow from supersonic to subsonic speeds. For example, a supersonic transport that experiences a cabin decompression needs to be able to slow/descend rapidly, and this requirement may size the cabin environmental control system. For a fighter, there may be a desire to slow/descend rapidly, and while doing so to minimize fuel usage and engine exhaust temperature. Both of these needs can be aided by achieving the minimum possible overall net propulsive force. As the intermediate power thrust levels of engines increase, it becomes even more difficult to slow rapidly from supersonic speeds. Therefore, a mode of the performance seeking control (PSC) system to minimize overall propulsion system thrust has been developed and tested. The rapid deceleration mode reduces the engine airflow consistent with avoiding inlet buzz. The engine controls are trimmed to minimize the thrust produced by this reduced airflow, and moves the inlet geometry to degrade the inlet performance. As in the case of the other PSC modes, the best overall performance (in this case the least net propulsive force) requires an integrated optimization of inlet, engine, and nozzle variables. This paper presents the predicted and measured results for the supersonic minimum thrust mode, including the overall effects on aircraft deceleration.
EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning.
K.M. Reynolds
2006-01-01
EMDS 3.0 is implemented as an ArcMap® extension and integrates the logic engine of NetWeaver® to perform landscape evaluations, and the decision modeling engine of Criterium DecisionPlus® for evaluating management priorities. Key features of the system's evaluation component include abilities to (1) reason about large, abstract, multifaceted ecosystem management...
NASA Astrophysics Data System (ADS)
Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron
2015-12-01
Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing.
Laser rapid forming technology of high-performance dense metal components with complex structure
NASA Astrophysics Data System (ADS)
Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin
2005-01-01
Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.
Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron
2015-01-01
Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing.
NASA Astrophysics Data System (ADS)
Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Słonina, M.; Litwicki, M.; Sybilska, A.; Rogowska, B.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Hełminiak, K.; Borek, R.; Chodosiewicz, P.; Chimicz, A.
We present an update on the preparation of our assets that consists of a robotic network of eight optical telescopes and a laser ranging station for regular services in the SST domain. We report the development of new optical assets that include a double telescope system, Panoptes-1AB, and a new astrograph on our Solaris-3 telescope at the Siding Spring Observatory, Australia. Progress in the software development necessary for smooth SST operation includes a web based portal and an XML Azure Queue scheduling for the network giving easy access to our sensors. Astrometry24.net our new prototype cloud service for fast astrometry, streak detection and measurement with precision and performance results is also described. In the laser domain, for more than a year, Space Research Centre Borowiec laser station has regularly tracked space debris cooperative and uncooperative targets. The efforts of the stations’ staff have been focused on the tracking of typical rocket bodies from the LEO regime. Additionally, a second independent laser system fully dedicated to SST activities is under development. It will allow for an increased pace of operation of our consortium in the global SST laser domain.
Cheng, Huihui; Wang, Wenlong; Zhou, Yi; Qiao, Tian; Lin, Wei; Xu, Shanhui; Yang, Zhongmin
2017-10-30
A passively mode-locked Yb 3+ -doped fiber laser with a fundamental repetition rate of 5 GHz and wavelength tunable performance is demonstrated. A piece of heavily Yb 3+ -doped phosphate fiber with a high net gain coefficient of 5.7 dB/cm, in conjunction with a fiber mirror by directly coating the SiO 2 /Ta 2 O 5 dielectric films on a fiber ferrule is exploited for shortening the laser cavity to 2 cm. The mode-locked oscillator has a peak wavelength of 1058.7 nm, pulse duration of 2.6 ps, and the repetition rate signal has a high signal-to-noise ratio of 90 dB. Moreover, the wavelength of the oscillator is found to be continuously tuned from 1056.7 to 1060.9 nm by increasing the temperature of the laser cavity. Simultaneously, the repetition rate correspondingly decreases from 4.945874 to 4.945496 GHz. Furthermore, the long-term stability of the mode-locked operation in the ultrashort laser cavity is realized by exploiting temperature controls. This is, to the best of our knowledge, the highest fundamental pulse repetition rate for 1-μm mode-locked fiber lasers.
Thermoelectronic laser energy conversion for power transmission in space
NASA Technical Reports Server (NTRS)
Britt, E. J.; Yuen, C.
1977-01-01
Long distance transmission of power in space by means of laser beams is an attractive concept because of the very narrow beam divergence. Such a system requires efficient means to both generate the laser beam and to convert the light energy in the beam into useful electric output at the receiver. A plasma-type device known as a Thermo-Electronic Laser Energy Converter (TELEC) has been studied as a method of converting a 10.6 micron CO2 laser beam into electric power. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes with different areas. Since more electrons are collected by the larger electrode there is a net transport of current, and an EMF is generated in the external circuit. The smaller electrode functions as an electron emitter to provide continuity of the current. Waste heat is rejected from the large electrode. A design for a TELEC system with an input 1 MW laser beam was developed as part of the study. The calculated performance of the system showed an overall efficiency of about 42%.
NASA Astrophysics Data System (ADS)
Bock, Katherine J.
This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third-order dispersion contribution from the diffraction gratings inside the laser cavity was studied, as it was also considered to be an energy-limiting factor. No significant effect was found as a result of third-order dispersion; however, a region of operation was observed where two different pulse regimes were found at the same values of net cavity group velocity dispersion. Results verify the main idea and indicate that a long length of low-doped gain fiber is preferable to a shorter, more highly doped one. The low-doped fiber in an otherwise equivalent cavity allows the nonlinear phase shift to grow at a slower rate, which results in the pulse achieving a higher peak power before reaching the nonlinear phase shift threshold at which optical wave breaking occurs. For a range of net cavity group velocity dispersion values, the final result is that the low doped fiber generates pulses of approximately twice the value of energy of the highly-doped gain fiber. Two techniques of mode-locking cavities were investigated to achieve this result. The first cavity used NPE mode-locking which masked the results, and the second used a SESAM for mode-locking which gave clear results supporting the hypothesis.
NASA Astrophysics Data System (ADS)
Kuang, Zheng; Lyon, Elliott; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff
2017-03-01
We report on a study into multi-location laser ignition (LI) with a Spatial Light Modulator (SLM), to improve the performance of a single cylinder automotive gasoline engine. Three questions are addressed: i/ How to deliver a multi-beam diffracted pattern into an engine cylinder, through a small opening, while avoiding clipping? ii/ How much incident energy can a SLM handle (optical damage threshold) and how many simultaneous beam foci could thus be created? ; iii/ Would the multi-location sparks created be sufficiently intense and stable to ignite an engine and, if so, what would be their effect on engine performance compared to single-location LI? Answers to these questions were determined as follows. Multi-beam diffracted patterns were created by applying computer generated holograms (CGHs) to the SLM. An optical system for the SLM was developed via modelling in ZEMAX, to cleanly deliver the multi-beam patterns into the combustion chamber without clipping. Optical damage experiments were carried out on Liquid Crystal on Silicon (LCoS) samples provided by the SLM manufacturer and the maximum safe pulse energy to avoid SLM damage found to be 60 mJ. Working within this limit, analysis of the multi-location laser induced sparks showed that diffracting into three identical beams gave slightly insufficient energy to guarantee 100% sparking, so subsequent engine experiments used 2 equal energy beams laterally spaced by 4 mm. The results showed that dual-location LI gave more stable combustion and higher engine power output than single-location LI, for increasingly lean air-fuel mixtures. The paper concludes by a discussion of how these results may be exploited.