Science.gov

Sample records for laser epithelial keratomileusis

  1. Long term results of no-alcohol laser epithelial keratomileusis and photorefractive keratectomy for myopia

    PubMed Central

    Spadea, Leopoldo; Verboschi, Francesca; De Rosa, Vittoria; Salomone, Mariella; Vingolo, Enzo Maria

    2015-01-01

    AIM To evaluate the long term clinical results of mechanical no-alcohol-assisted laser epithelial keratomileusis (LASEK) versus standard photorefractive keratectomy (PRK) for low-moderate myopia. METHODS Twenty-five eyes treated with LASEK and twenty-five eyes treated with PRK were evaluated with a mean follow-up duration of 60mo. Mechanical separation of the epithelium was performed with blunt spatula and without application of alcohol. Laser ablation was performed with the MEL-70 excimer laser. All patients were examined daily until epithelial closure; at 1, 3, 6, and 12mo, and every year subsequently. Main outcome measures were uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), manifest refraction, haze, efficacy and safety indexes. RESULTS Twenty-one eyes and 22 eyes completed follow-up of 60mo in LASEK and PRK group respectively. Manifest refraction at 60mo follow-up was -0.01 and 0.26 in LASEK and PRK group respectively. In the LASEK group mean UDVA and mean CDVA after 60mo were 20/22 and 20/20 respectively (P>0.01). In the PRK group mean UDVA and mean CDVA at 60mo follow-up were 20/20 and 20/20 after 60mo (P>0.01). The efficacy indexes were 0.87 and 0.95, and the safety indexes were 1.25 and 1.4 respectively for LASEK group and PRK group. CONCLUSION Both standard PRK and no-alcohol LASEK offer safe and effective correction of low-moderate myopia in the long term without any statistically significant difference between the two groups. PMID:26086011

  2. Mitomycin-C assisted photorefractive keratectomy in the treatment of buttonholed laser in situ keratomileusis flaps associated with epithelial ingrowth.

    PubMed

    Taneri, Suphi; Koch, Jörg M; Melki, Samir A; Azar, Dimitri T

    2005-10-01

    The prophylactic intraoperative use of mitomycin-C (MMC) to prevent haze and scarring after excimer laser surface ablation (phototherapeutic/photorefractive keratectomy [PTK/PRK]) in an eye with a previous laser in situ keratomileusis (LASIK) flap buttonhole with epithelial ingrowth is described. A well-centered buttonhole measuring 2.0 mm in diameter was cut within a thin LASIK flap in an amblyopic eye. Over the next 8 weeks, corneal haze and progressive epithelial ingrowth formed centrally. An early transepithelial PTK/PRK approach was chosen to manage the buttonhole together with the epithelial ingrowth and to treat ametropia before the onset of scarring. The approach included epithelial removal with PTK, application of MMC 0.02% for 1 minute, irrigation, a short waiting period to allow for diffusion, PRK correction of -4.0 diopters without nomogram adjustment, and bandage contact lens. A regimen of prednisolone acetate 1% and ofloxacin 0.03% 5 times a day for 1 week (steroid tapered) was prescribed. Epithelial ingrowth was removed successfully. Minimal haze formation was visible 2 weeks after the retreatment but did not reduce best spectacle-corrected visual acuity (BSCVA) and resolved within the next few weeks. After 6 weeks, uncorrected visual acuity was equal to BSCVA preoperatively (20/50). There was no evidence of recurrent epithelial ingrowth or central scarring after 24 months. Transepithelial PTK/PRK was effective in managing central epithelial ingrowth in a buttonholed LASIK flap. Prophylactic intraoperative use of MMC may reduce haze formation and corneal scarring in early treatments and may also prevent recurrent epithelial ingrowth. This approach may offer faster visual recovery and no risk for a repeated buttonhole creation compared with the widespread recutting a new flap after a couple of months. The optimal application time and concentration of MMC need to be established.

  3. Repositioning free laser in situ keratomileusis flaps.

    PubMed

    Todani, Amit; Al-Arfaj, Khalid; Melki, Samir A

    2010-02-01

    We describe a protocol for adequate repositioning of free laser in situ keratomileusis (LASIK) corneal flaps created by a Moria M2 microkeratome even in the absence of fiduciary marks. In an enucleated porcine globe, a free flap was created by initially placing a longitudinal incision at the proposed hinge site followed by activating the forward pass of the automated microkeratome. A protocol was devised based on placement of a positioning dot on the free flap before the flap is retrieved from the microkeratome head. Preplaced surgical landmarks were used as a guide to determine the correct alignment of the free flap. Adequate orientation of the free flap to the stromal bed was achieved in 9 porcine eyes using the positioning dot method. The technique is applicable to the Moria M2 microkeratome only and must be validated for other types of keratomes.

  4. Erlotinib-related keratopathy in a patient underwent laser in situ keratomileusis.

    PubMed

    Kau, Hui-Chuan; Tsai, Chieh-Chih

    2016-09-01

    Erlotinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor. Since there is a wide expression of the epidermal growth factor receptors in the epithelial tissues of ocular surface and adnexa, ocular adverse reactions may happen during systemic administration of erlotinib. Previously reported ocular adverse reactions of erlotinib include trichomegaly, periorbital rash, ectropion, blepharitis, persistent corneal epithelial defect, corneal ulcer and perforation. We report the first case of erlotinib-related keratopathy in a patient who had received laser in situ keratomileusis. The patient presented a special picture of flap striae related to erlotinib. Improvement of keratopathy after cessation of erlotinib was demonstrated. PMID:26340340

  5. Peripheral Ulcerative Keratitis following Laser in situ Keratomileusis

    PubMed Central

    Burkholder, Bryn M.; Kuo, Irene C.

    2016-01-01

    Purpose We report a case of a patient with a history of glomerulonephropathy, not disclosed prior to laser in situ keratomileusis (LASIK), who developed severe postoperative peripheral ulcerative keratitis (PUK) soon after surgery. Method Case report. Results Within a week of surgery, the patient, who had no blepharitis or ocular surface disease, also developed diffuse lamellar keratitis (DLK) that was not contiguous with the PUK. Microbiologic evaluation of the flap interface disclosed no organisms, and no epithelial ingrowth was found. Both PUK and DLK resolved with topical and oral steroid therapy, and the patient's induced refractive error improved over the 12 months following LASIK. Conclusions Necrotizing keratitis has been described after LASIK surgery in patients with or without autoimmune disease. However, to our knowledge, there has been no case of PUK following LASIK. As shown by our patient's clinical course and the typical association of PUK with systemic conditions, patients with a history of atypical postinfectious sequelae may require additional preoperative counseling, vigilant postoperative monitoring, and possibly additional intervention. Because patients do not always divulge medical details, especially if an extraocular site was involved or illness occurred many years prior, this case demonstrates the importance of performing a diligent history that excludes autoimmune disorders or atypical postinfectious sequelae prior to proceeding with keratorefractive intervention. PMID:26889153

  6. Bilateral Simultaneous Rhegmatogenous Retinal Detachment following Laser in situ Keratomileusis

    PubMed Central

    Yumusak, Erhan; Ornek, Kemal; Ozkal, Fatma

    2016-01-01

    A 21-year-old woman developed simultaneous rhegmatogenous retinal detachment after laser in situ keratomileusis (LASIK) in both eyes. She underwent pars plana vitrectomy surgery combined with endolaser photocoagulation and silicone oil tamponade in the right eye. A week later, pneumatic retinopexy was done in the left eye. As the retinal tear did not seal, 360° scleral buckling surgery was performed and retina was attached. Bilateral simultaneous rhegmatogenous retinal detachment after LASIK for correction of myopia can be a serious complication. Patients should be informed about the possibility of this complication. PMID:27462264

  7. Bilateral Simultaneous Rhegmatogenous Retinal Detachment following Laser in situ Keratomileusis.

    PubMed

    Yumusak, Erhan; Ornek, Kemal; Ozkal, Fatma

    2016-01-01

    A 21-year-old woman developed simultaneous rhegmatogenous retinal detachment after laser in situ keratomileusis (LASIK) in both eyes. She underwent pars plana vitrectomy surgery combined with endolaser photocoagulation and silicone oil tamponade in the right eye. A week later, pneumatic retinopexy was done in the left eye. As the retinal tear did not seal, 360° scleral buckling surgery was performed and retina was attached. Bilateral simultaneous rhegmatogenous retinal detachment after LASIK for correction of myopia can be a serious complication. Patients should be informed about the possibility of this complication. PMID:27462264

  8. Microcapillary sign of flap alignment in femtosecond laser-assisted in situ keratomileusis

    PubMed Central

    Fawzy, Fathy; Wahba, Sherine S; Fawzy, Nader

    2016-01-01

    We present an observational sign that ensures perfect alignment during femtosecond laser-assisted in situ keratomileusis (FS LASIK). Alignment is assured when a microsponge is used to dry the flap and the area of dryness exceeds the area of direct touch of the microsponge. The area might even reach the whole circumference of the flap at the first touch. This sign of alignment can be explained by microcapillary action. This sign was not elicited in flaps created by a microkeratome. PMID:27799731

  9. Comparison of efficacy, safety, and predictability of laser in situ keratomileusis using two laser suites

    PubMed Central

    Meidani, Alexandra; Tzavara, Chara

    2016-01-01

    Purpose The main aim of this study was to compare the efficacy, safety, and predictability of femtosecond laser-assisted in situ keratomileusis performed by two different laser suites in the treatment of myopia for up to 6 months. Methods In this two-site retrospective nonrandomized study, myopic eyes that underwent laser-assisted in situ keratomileusis using IntraLase FS 60 kHz formed group 1 and those using WaveLight FS200 femtosecond laser system formed group 2. Ablation was performed with Visx Star S4 IR and WaveLight EX500 Excimer lasers, respectively, in groups 1 and 2. Both groups were well matched for age, sex, and mean level of preoperative refractive spherical equivalent (MRSE). Uncorrected distance visual acuity, corrected distance visual acuity, and MRSE were evaluated preoperatively and at 1 week, 1 month, and 6 months after treatment. Results Fifty-six eyes of 28 patients were included in the study. At 6-month follow-up postop, 78.6% of eyes in group 1 and 92.8% of eyes in group 2 achieved an uncorrected distance visual acuity of 20/20 or better (P=0.252). 35.7% and 50% in group 1 and group 2, respectively, gained one line (P=0.179). No eye lost lines of corrected distance visual acuity. Twenty-five eyes in group 1 (92.7%) and 27 eyes in group 2 (96.3%) had MRSE within ±0.5 D in the 6-month follow-up (P>0.999). The mean efficacy index at 6 months was similar in group 1 and group 2 (mean 1.10±0.12 [standard deviation] vs 1.10±0.1) (P=0.799). The mean safety index was similar in group 1 and group 2 (mean 1.10±0.10 [standard deviation] vs 1.10±0.09) (P=0.407). Conclusion: The outcomes were excellent between the two laser suites. There were no significant differences at 6-month follow-up postop between the two laser systems.

  10. Comparison of efficacy, safety, and predictability of laser in situ keratomileusis using two laser suites

    PubMed Central

    Meidani, Alexandra; Tzavara, Chara

    2016-01-01

    Purpose The main aim of this study was to compare the efficacy, safety, and predictability of femtosecond laser-assisted in situ keratomileusis performed by two different laser suites in the treatment of myopia for up to 6 months. Methods In this two-site retrospective nonrandomized study, myopic eyes that underwent laser-assisted in situ keratomileusis using IntraLase FS 60 kHz formed group 1 and those using WaveLight FS200 femtosecond laser system formed group 2. Ablation was performed with Visx Star S4 IR and WaveLight EX500 Excimer lasers, respectively, in groups 1 and 2. Both groups were well matched for age, sex, and mean level of preoperative refractive spherical equivalent (MRSE). Uncorrected distance visual acuity, corrected distance visual acuity, and MRSE were evaluated preoperatively and at 1 week, 1 month, and 6 months after treatment. Results Fifty-six eyes of 28 patients were included in the study. At 6-month follow-up postop, 78.6% of eyes in group 1 and 92.8% of eyes in group 2 achieved an uncorrected distance visual acuity of 20/20 or better (P=0.252). 35.7% and 50% in group 1 and group 2, respectively, gained one line (P=0.179). No eye lost lines of corrected distance visual acuity. Twenty-five eyes in group 1 (92.7%) and 27 eyes in group 2 (96.3%) had MRSE within ±0.5 D in the 6-month follow-up (P>0.999). The mean efficacy index at 6 months was similar in group 1 and group 2 (mean 1.10±0.12 [standard deviation] vs 1.10±0.1) (P=0.799). The mean safety index was similar in group 1 and group 2 (mean 1.10±0.10 [standard deviation] vs 1.10±0.09) (P=0.407). Conclusion: The outcomes were excellent between the two laser suites. There were no significant differences at 6-month follow-up postop between the two laser systems. PMID:27601880

  11. Cyanoacrylate repair of laser in situ keratomileusis corneal flap perforation by a snake bite.

    PubMed

    Korn, Bobby S; Korn, Tommy S

    2005-11-01

    A 30-year-old man who had laser in situ keratomileusis (LASIK) for myopia 1 year earlier developed a corneal perforation in the left eye from a boa constrictor. The patient presented to the emergency room, and a small corneal perforation just outside the visual axis was diagnosed within the LASIK flap. Cyanoacrylate adhesive was used to close the corneal perforation. The patient went on to full visual recovery with an uncorrected visual acuity of 20/20. This is the first reported case of a penetrating corneal injury from a serpent in an eye that had LASIK. Cyanoacrylate may be used to repair small traumatic corneal perforations with a favorable visual outcome in eyes that have had LASIK.

  12. The Incidence of Central Serous Chorioretinopathy after Photorefractive Keratectomy and Laser In Situ Keratomileusis

    PubMed Central

    Moshirfar, Majid; Hsu, Maylon; Schulman, Julia; Armenia, Joseph; Sikder, Shameema; Hartnett, M. Elizabeth

    2012-01-01

    Purpose. To assess the incidence of central serous chorioretinopathy (CSCR) following laser in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK). Methods. A chart review was performed to identify all patients with CSCR and a previous history of LASIK or PRK. Results. Over the 6-year study period, 1 of 4,876 eyes which had LASIK or PRK at the Moran Eye Center was diagnosed with CSCR. One other patient was referred from an outside center, developed CSCR symptoms one month after PRK. Both patients were managed conservatively with a final visual acuity of 20/20 or better. All other patients presented 4 or more years after refractive surgery. Conclusions. We report the first 2 CSCR cases developing within one month after PRK. The low incidence argues against a causal association. Topical corticosteroids or anxiety may elevate cortisol levels presenting therapeutic challenges for the management of CSCR after PRK or LASIK. PMID:22518278

  13. High-speed Optical Coherence Tomography for Management after Laser in Situ Keratomileusis

    PubMed Central

    Avila, Mariana; Li, Yan; Song, Jonathan C.; Huang, David

    2007-01-01

    PURPOSE: To report applications of optical coherence tomography (OCT) in the management of laser in situ keratomileusis (LASIK) related problems. SETTING: Doheny Eye Institute and Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. METHODS: Five patients referred for LASIK-related problems were enrolled in a prospective observational study. Clinical examination, ultrasound (US) pachymetry, Placido ring slit-scanning corneal topography (Orbscan II, Bausch & Lomb), and high-speed corneal OCT were performed. RESULTS: In cases of regression and keratectasia, OCT provided thickness measurements of the cornea, flap, and posterior stromal bed. Locations of tissue loss and flap interface planes were identified in a case with a recut enhancement complication. The information was used to determine whether further laser ablation was safe, confirm keratectasia, and manage complications. Optical coherence tomography measurements of central corneal thickness agreed well with US pachymetry measurements (difference 6.4 mm G 11.7 [SD]) (P Z .026), while Orbscan significantly underestimated corneal thickness (-67.5 ± 72.5 μm) (P = .17). CONCLUSIONS: High-speed OCT provided noncontact imaging and measurement of LASIK anatomy. It was useful in monitoring LASIK results and evaluating complications. PMID:17081866

  14. Analysis of changes in crystalline lens thickness and its refractive power after laser in situ keratomileusis

    PubMed Central

    Wang, Liang; Guo, Hai-Ke; Zeng, Jing; Jin, Hai-Ying

    2012-01-01

    AIM To evaluate changes in the anterior chamber depth (ACD), crystalline lens thickness (LT) and its refractive power after laser in situ keratomileusis (LASIK). METHODS In all cases, the preoperative and postoperative central ACD which were measured with Pentacam, Orbscan, IOL-Master and A-scan ultrasonography, central corneal true net power which was measured with the Pentacam, Orbscan and IOL-Master, axial length (AL) which was measured with IOL-Master and LT which was measured with the A-scan ultrasonography were compared using the paired sample t test. Ocular refractive errors and lens refractive power at corneal plane were calculated and their correlations were also evaluated before and after LASIK. RESULTS At 1 week after LASIK, LT and crystalline lens refractive power at corneal plane (Dlens) which were associated with the IOL-Master and Pentacam increased significantly (P≤0.005), ACD decreased significantly (P≤0.001), but no significant increase was observed in the Dlens which was associated with the Orbscan (P=0.261). Significant correlations between the changes in the ocular refractive errors and Dlens which were associated with the Pentacam were observed at 1 week and 6 months after LASIK (P=0.028; P=0.001). CONCLUSION LT increased significantly after LASIK, and this might partially lead to ACD decrease, Dlens increase and a small quantity of myopic regression. PMID:22553764

  15. Corneal scarring from laser in situ keratomileusis after epikeratoplasty: clinical and histopathologic analysis.

    PubMed

    Khandelwal, Sumitra S; Randleman, J Bradley; Grossniklaus, Hans E

    2013-03-01

    A 47-year-old woman required penetrating keratoplasty in the right eye after developing delayed visually significant corneal scarring bilaterally after laser in situ keratomileusis (LASIK) in 1997 following epikeratoplasty in 1987. Spectral domain ocular coherence tomography of the left cornea showed a 100 μm lenticule with a LASIK flap posterior to the host Bowman layer at 250 μm. Histopathology and electron microscopy of the right corneal button showed a 120 μm lenticule with a LASIK flap within the lenticule at 100 μm. Clinically significant scarring was present within the LASIK flap interface, within the lenticule stroma, and within the area of the underlying host Bowman layer. There were keratocytes at the junction between the LASIK flap and lenticule stromal bed. Although epikeratoplasty is no longer practiced, post-epikeratoplasty patients may present for refractive surgical options and LASIK carries significant risks for corneal scarring in these individuals, especially when using flap-creating devices that may create thin LASIK flaps.

  16. Factors Influencing Intraocular Pressure Changes after Laser In Situ Keratomileusis with Flaps Created by Femtosecond Laser or Mechanical Microkeratome

    PubMed Central

    Lin, Meng-Yin; Chang, David C. K.; Shen, Yun-Dun; Lin, Yen-Kuang; Lin, Chang-Ping; Wang, I-Jong

    2016-01-01

    The aim of this study is to describe factors that influence the measured intraocular pressure (IOP) change and to develop a predictive model after myopic laser in situ keratomileusis (LASIK) with a femtosecond (FS) laser or a microkeratome (MK). We retrospectively reviewed preoperative, intraoperative, and 12-month postoperative medical records in 2485 eyes of 1309 patients who underwent LASIK with an FS laser or an MK for myopia and myopic astigmatism. Data were extracted, such as preoperative age, sex, IOP, manifest spherical equivalent (MSE), central corneal keratometry (CCK), central corneal thickness (CCT), and intended flap thickness and postoperative IOP (postIOP) at 1, 6 and 12 months. Linear mixed model (LMM) and multivariate linear regression (MLR) method were used for data analysis. In both models, the preoperative CCT and ablation depth had significant effects on predicting IOP changes in the FS and MK groups. The intended flap thickness was a significant predictor only in the FS laser group (P < .0001 in both models). In the FS group, LMM and MLR could respectively explain 47.00% and 18.91% of the variation of postoperative IOP underestimation (R2 = 0.47 and R2 = 0.1891). In the MK group, LMM and MLR could explain 37.79% and 19.13% of the variation of IOP underestimation (R2 = 0.3779 and 0.1913 respectively). The best-fit model for prediction of IOP changes was the LMM in LASIK with an FS laser. PMID:26824754

  17. Effects of laser in situ keratomileusis on mental health-related quality of life

    PubMed Central

    Tounaka-Fujii, Kaoru; Yuki, Kenya; Negishi, Kazuno; Toda, Ikuko; Abe, Takayuki; Kouyama, Keisuke; Tsubota, Kazuo

    2016-01-01

    Purpose The aims of our study were to investigate whether laser in situ keratomileusis (LASIK) improves health-related quality of life (HRQoL) and to identify factors that affect postoperative HRQoL. Materials and methods A total of 213 Japanese patients who underwent primary LASIK were analyzed in this study. The average age of patients was 35.0±9.4 years. The subjects were asked to answer questions regarding subjective quality of vision, satisfaction, and quality of life (using the Japanese version of 36-Item Short Form Health Survey Version 2) at three time points: before LASIK, 1 month after LASIK, and 6 months after LASIK. Longitudinal changes over 6 months in the outputs of mental component summary (MCS) score and the physical component summary (PCS) score from the 36-Item Short Form Health Survey Version 2 questionnaire were compared between time points using a linear mixed-effects model. Delta MCS and PCS were calculated by subtracting the postoperative score (1 month after LASIK) from the preoperative score. Preoperative and postoperative factors associated with a change in the MCS score or PCS score were evaluated via a linear regression model. Results The preoperative MCS score was 51.0±9.4 and increased to 52.0±9.8 and 51.5±9.6 at 1 month and 6 months after LASIK, respectively, and the trend for the change from baseline in MCS through 6 months was significant (P=0.03). PCS score did not change following LASIK. Delta MCS was significantly negatively associated with preoperative spherical equivalent, axial length, and postoperative quality of vision, after adjusting for potential confounding factors. Conclusion Mental HRQoL is not lost with LASIK, and LASIK may improve mental HRQoL. Preoperative axial length may predict postoperative mental HRQoL. PMID:27713617

  18. Accuracy of Corneal Power Measurements for Intraocular Lens Power Calculation after Myopic Laser In situ Keratomileusis

    PubMed Central

    Helaly, Hany A.; El-Hifnawy, Mohammad A. M.; Shaheen, Mohamed Shafik; Abou El-Kheir, Amr F.

    2016-01-01

    Purpose: To evaluate the accuracy of corneal power measurements for intraocular lens (IOL) power calculation after myopic laser in situ keratomileusis (LASIK). Methods: The study evaluated 45 eyes with a history of myopic LASIK. Corneal power was measured using manual keratometry, automated keratometry, optical biometry, and Scheimflug tomography. Different hypothetical IOL power calculation formulas were performed for each case. Results: The steepest mean K value was measured with manual keratometry (37.48 ± 2.86 D) followed by automated keratometry (37.31 ± 2.83 D) then optical biometry (37.06 ± 2.98 D) followed by Scheimflug tomography (36.55 ± 3.08). None of the K values generated by Scheimflug tomography were steeper than the measurements from the other 3 instruments. Using equivalent K reading (EKR) 4 mm with the Double-K SRK/T formula, the refractive outcome generated 97.8% of cases within ± 2 D, 80.0% of cases within ± 1 D, and 42.2% of cases within ± 0.5 D. The best combination of formulas was “Shammas-PL + Double-K SRK/T formula using EKR 4 mm.” Conclusion: Scheimflug tomography imaging using the Holladay EKR 4 mm improved the accuracy of IOL power calculation in post-LASIK eyes. The best option is a combination of formulas. We recommended the use the combined “Shammas-PL ± Double-K SRK/T formula using EKR 4 mm”h for optical outcomes. PMID:26957851

  19. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome. PMID:25954511

  20. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome.

  1. Effect of Myopic Defocus on Visual Acuity after Phakic Intraocular Lens Implantation and Wavefront-guided Laser in Situ Keratomileusis

    PubMed Central

    Kamiya, Kazutaka; Shimizu, Kimiya; Igarashi, Akihito; Kawamorita, Takushi

    2015-01-01

    This study aimed to investigate the effect of myopic defocus on visual acuity after phakic intraocular lens (IOL) implantation and wavefront-guided laser in situ keratomileusis (wfg-LASIK). Our prospective study comprised thirty eyes undergoing posterior chamber phakic IOL implantation and 30 eyes undergoing wfg-LASIK. We randomly measured visual acuity under myopic defocus after cycloplegic and non-cycloplegic correction. We also calculated the modulation transfer function by optical simulation and estimated visual acuity from Campbell & Green’s retinal threshold curve. Visual acuity in the phakic IOL group was significantly better than that in the wfg-LASIK group at myopic defocus levels of 0, –1, and –2 D (p < 0.001, p < 0.001, and p = 0.02, Mann-Whitney U-test), but not at a defocus of –3 D (p = 0.30). Similar results were also obtained in a cycloplegic condition. Decimal visual acuity values at a myopic defocus of 0, −1, −2, and -3 D by optical simulation were estimated to be 1.95, 1.21, 0.97, and 0.75 in the phakic IOL group, and 1.39, 1.11, 0.94, and 0.71 in the wfg-LASIK group, respectively. From clinical and optical viewpoints, phakic IOL implantation was superior to wfg-LASIK in terms of the postoperative visual performance, even in the presence of low to moderate myopic regression. PMID:25994984

  2. Long-term evaluation of eyes with central corneal thickness <400 μm following laser in situ keratomileusis

    PubMed Central

    Djodeyre, Mohammad Reza; Beltran, Jaime; Ortega-Usobiaga, Julio; Gonzalez-Lopez, Felix; Ruiz-Rizaldos, Ana Isabel; Baviera, Julio

    2016-01-01

    Purpose To study long-term refractive and visual outcomes of laser in situ keratomileusis (LASIK) in eyes with a postoperative thin central cornea. Methods In this retrospective observational case series, we studied 282 myopic eyes with a normal preoperative topographic pattern and postoperative thin corneas (<400 μm) that had at least 3 years of follow-up after LASIK in three private clinics. The main outcome measures were safety, efficacy, predictability, percent tissue altered, and complications. Results The mean postoperative central corneal thickness was 392.05 μm (range: 363.00–399.00 μm). After a mean follow-up of 6.89±2.35 years (standard deviation), the safety index was 1.17, the efficacy index was 0.94, and predictability (±1.00 diopter [D]) was 73.49. The mean residual stromal bed thickness was 317.34±13.75 μm (range: 275–356 μm), the mean flap thickness was 74.76±13.57 μm (range: 55–124 μm), and the mean percent tissue altered was 37.12%±3.62% (range: 27.25%–49.26%). No major complications were recorded. Conclusion LASIK with a resultant central cornea thickness <400 μm seems to be effective, safe, and predictable provided that preoperative topography is normal and the residual stromal bed thickness is >275 μm. PMID:27099459

  3. Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids

    SciTech Connect

    Talamo, J.H.; Gollamudi, S.; Green, W.R.; De La Cruz, Z.; Filatov, V.; Stark, W.J. )

    1991-08-01

    A 193-nm excimer laser system was used to create deep stromal ablations in seven New Zealand white rabbits and shallow ablations in three. Eyes were randomized for treatment with topical mitomycin C, steroids, and erythromycin; topical steroids and erythromycin; or topical erythromycin only. All treatment regimens were instituted twice daily for 14 days. All eyes reepithelialized normally within 3 to 5 days. During 10 weeks of follow-up, all eyes developed moderate reticular subepithelial haze without significant differences among treatment groups. Results of light, fluorescence, and electron microscopic examination showed anterior stromal scarring and markedly reduced new subepithelial collagen formation in the group treated with mitomycin C, corticosteroids, and erythromycin. Focal abnormalities of Descemet's membrane and endothelial abnormalities were present in all treatment groups. Combination therapy with topical steroids, mitomycin C, and erythromycin to control the corneal wound healing response after refractive laser surgery appears promising and warrants further study.

  4. Early Changes in Ocular Surface and Tear Inflammatory Mediators after Small-Incision Lenticule Extraction and Femtosecond Laser-Assisted Laser In Situ Keratomileusis

    PubMed Central

    Gao, Shaohui; Li, Saiqun; Liu, Liangping; Wang, Yong; Ding, Hui; Li, Lili; Zhong, Xingwu

    2014-01-01

    Purpose To characterize the early ocular-surface changes or tear inflammatory-mediators levels following small-incision lenticule extraction (ReLEx smile) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). Methods Forty-seven myopic subjects were recruited for this prospective study. Fifteen underwent ReLEx smile and thirty-two underwent FS-LASIK. Corneal fluorescein (FL) staining, tear break-up time (TBUT), Schirmer I test (SIT), ocular surface disease index (OSDI) and central corneal sensitivity were evaluated in all participants. Tears were collected and analyzed for interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF) and intercellular adhesion molecule-1 (ICAM-1) levels using multiplex magnetic beads. All measurements were preformed preoperatively and 1 day, 1 week, 1 month and 3 months postoperatively. Results FL scores in ReLEx smile group were lower than those of FS-LASIK group 1 week postoperatively (P = 0.010). Compared to the FS-LASIK group, longer TBUT were observed in ReLEx smile group 1 month (P = 0.029) and 3 months (P = 0.045) postoperatively. No significant differences were found in tear secretion for the two groups (P>0.05). OSDI scores were higher in FS-LASIK group 1 month after surgery (P = 0.020). Higher central corneal sensitivity was observed in ReLEx smile group 1 week, 1 month and 3 months (P<0.05) postoperatively. Compared to FS-LASIK group, lower and faster recovery of IL-6 and NGF levels in tears was observed in ReLEx smile group postoperatively (P<0.05). Tears TNF-α and ICAM-1 concentrations were not significantly different between the two groups at any follow-up time (P>0.05). Moreover, IL-6 and NGF levels correlated with ocular surface changes after ReLEx smile or FS-LASIK. Conclusions In the early postoperative period, ReLEx smile results in milder ocular surface changes than FS-LASIK. Furthermore, the tear inflammatory mediators IL-6 and NGF may play a crucial role

  5. Comparison of Intraocular Pressure before and after Laser In Situ Keratomileusis Refractive Surgery Measured with Perkins Tonometry, Noncontact Tonometry, and Transpalpebral Tonometry

    PubMed Central

    Cacho, Isabel; Sanchez-Naves, Juan; Batres, Laura; Pintor, Jesús; Carracedo, Gonzalo

    2015-01-01

    Purpose. To compare the intraocular pressure (IOP) before and after Laser In Situ Keratomileusis (LASIK), measured by Diaton, Perkins, and noncontact air pulse tonometers. Methods. Fifty-seven patients with a mean age of 34.88 were scheduled for myopia LASIK treatment. Spherical equivalent refraction (SER), corneal curvature (K), and central corneal thickness (CCT) and superior corneal thickness (SCT) were obtained before and after LASIK surgery. IOP values before and after surgery were measured using Diaton, Perkins, and noncontact air pulse tonometers. Results. The IOP values before and after LASIK surgery using Perkins tonometer and air tonometers were statistically significant (p < 0.05). However, no significant differences were found (p > 0.05) for IOP values measured with Diaton tonometer. CCT decreases significantly after surgery (p < 0.05) but no statistical differences were found in SCT (p = 0.08). Correlations between pre- and postsurgery were found for all tonometers used, with p = 0.001 and r = 0.434 for the air pulse tonometer, p = 0.008 and r = 0.355 for Perkins, and p < 0.001 and r = 0.637 for Diaton. Conclusion. Transpalpebral tonometry may be useful for measuring postsurgery IOP after myopic LASIK ablation because this technique is not influenced by the treatment. PMID:26167293

  6. Effect of femtosecond and microkeratome flaps creation on the cornea biomechanics during laser in situ keratomileusis: one year follow-up

    PubMed Central

    Sun, Qian; Deng, Zheng-Zheng; Zhou, Yue-Hua; Zhang, Jing; Peng, Xiao-Yan

    2016-01-01

    AIM To compare the corneal biomechanical outcomes at one year after laser in situ keratomileusis (LASIK) with the flaps created by Ziemer and Moria M2 microkeratome with 110 head and -20 blade. METHODS Totally 100 eyes of 50 consecutive patients were enrolled in this prospective study and divided into two groups for corneal flaps created by ZiemerFemto LDV and Moria M2 microkeratome with 110 head and -20 blade. Corneal biomechanical properties including cornea resistance factor (CRF) and cornea hysteresis (CH) were measured before and 1, 3, 6, 12mo after surgery by ocular response analyzer. Central cornea thickness and corneal flap thickness were measured by optical coherence tomography. RESULTS The ablation depth (P=0.693), residual corneal thickness (P=0.453), and postoperative corneal curvature (P=0.264) were not significant different between Ziemer group and Moria 110-20 group after surgery. The residual stromal bed thickness, corneal flap thickness, CH and CRF at 12mo after surgery were significant different between Ziemer group and Moria 110-20 group (P<0.01);Ziemer group gained better corneal biomechanical results. The CRF and CH increased gradually from 1 to 12mo after surgery in Ziemer group, increased from 1 to 6mo but decreased from 6 to 12mo in Moria 110-20 group. Both CRF and CH at one year after surgery increased with the increasing of residual cornea thickness; pre-LASIK CRF, CRF also increased with residual stromal bed thickness, while CH decreased with the increasing of pre-LASIK intraocular pressure and cornea flap thickness (P<0.01). CONCLUSION In one year follow-up, femtosecond laser can provide better cornea flaps with stable cornea biomechanics than mechanical microkeratome. PMID:27803856

  7. Wavefront-Guided Laser in Situ Keratomileusis (Lasik) versus Wavefront-Guided Photorefractive Keratectomy (Prk): A Prospective Randomized Eye-to-Eye Comparison (An American Ophthalmological Society Thesis)

    PubMed Central

    Manche, Edward E.; Haw, Weldon W.

    2011-01-01

    Purpose To compare the safety and efficacy of wavefront-guided laser in situ keratomileusis (LASIK) vs photorefractive keratectomy (PRK) in a prospective randomized clinical trial. Methods A cohort of 68 eyes of 34 patients with −0.75 to −8.13 diopters (D) of myopia (spherical equivalent) were randomized to receive either wavefront-guided PRK or LASIK in the fellow eye using the VISX CustomVue laser. Patients were evaluated at 1 day, 1 week, and months 1, 3, 6, and 12. Results At 1 month, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), 5% and 25% contrast sensitivity, induction of higher-order aberrations (HOAs), and subjective symptoms of vision clarity, vision fluctuation, ghosting, and overall self-assessment of vision were worse (P<0.05) in the PRK group. By 3 months, these differences had resolved (P>0.05). At 1 year, mean spherical equivalent was reduced 94% to −0.27 ± 0.31 D in the LASIK group and reduced 96% to −0.17 ± 0.41 D in the PRK group. At 1 year, 91% of eyes were within ±0.50 D and 97 % were within ±1.0 D in the PRK group. At 1 year, 88% of eyes were within ±0.50 D and 97% were within ±1.0 D in the LASIK group. At 1 year, 97% of eyes in the PRK group and 94% of eyes in the LASIK group achieved an UCVA of 20/20 or better (P=0.72). Refractive stability was achieved in both PRK and LASIK groups after 1 month. There were no intraoperative or postoperative flap complications in the LASIK group. There were no instances of corneal haze in the PRK group. Conclusions Wavefront-guided LASIK and PRK are safe and effective at reducing myopia. At 1 month postoperatively, LASIK demonstrates an advantage over PRK in UCVA, BSCVA, low-contrast acuity, induction of total HOAs, and several subjective symptoms. At postoperative month 3, these differences between PRK and LASIK results had resolved. PMID:22253488

  8. A prospective comparison of phakic collamer lenses and wavefront-optimized laser-assisted in situ keratomileusis for correction of myopia

    PubMed Central

    Parkhurst, Gregory D

    2016-01-01

    Purpose The aim of this study was to evaluate and compare night vision and low-luminance contrast sensitivity (CS) in patients undergoing implantation of phakic collamer lenses or wavefront-optimized laser-assisted in situ keratomileusis (LASIK). Patients and methods This is a nonrandomized, prospective study, in which 48 military personnel were recruited. Rabin Super Vision Test was used to compare the visual acuity and CS of Visian implantable collamer lens (ICL) and LASIK groups under normal and low light conditions, using a filter for simulated vision through night vision goggles. Results Preoperative mean spherical equivalent was −6.10 D in the ICL group and −6.04 D in the LASIK group (P=0.863). Three months postoperatively, super vision acuity (SVa), super vision acuity with (low-luminance) goggles (SVaG), super vision contrast (SVc), and super vision contrast with (low luminance) goggles (SVcG) significantly improved in the ICL and LASIK groups (P<0.001). Mean improvement in SVaG at 3 months postoperatively was statistically significantly greater in the ICL group than in the LASIK group (mean change [logarithm of the minimum angle of resolution, LogMAR]: ICL =−0.134, LASIK =−0.085; P=0.032). Mean improvements in SVc and SVcG were also statistically significantly greater in the ICL group than in the LASIK group (SVc mean change [logarithm of the CS, LogCS]: ICL =0.356, LASIK =0.209; P=0.018 and SVcG mean change [LogCS]: ICL =0.390, LASIK =0.259; P=0.024). Mean improvement in SVa at 3 months was comparable in both groups (P=0.154). Conclusion Simulated night vision improved with both ICL implantation and wavefront-optimized LASIK, but improvements were significantly greater with ICLs. These differences may be important in a military setting and may also affect satisfaction with civilian vision correction. PMID:27418804

  9. Small Incision Lenticule Extraction (SMILE) versus Femtosecond Laser-Assisted In Situ Keratomileusis (FS-LASIK) for Myopia: A Systematic Review and Meta-Analysis

    PubMed Central

    Shen, Zeren; Shi, Keda; Yu, Yinhui; Yu, Xiaoning; Lin, Yuchen; Yao, Ke

    2016-01-01

    Purpose The goal of this study was to compare small incision lenticule extraction (SMILE) with femtosecond laser-assisted in situ keratomileusis (FS-LASIK) for treating myopia. Methods The CENTRAL, EMBASE, PubMed databases and a Chinese database (SinoMed) were searched in May of 2016. Twelve studies with 1,076 eyes, which included three randomized controlled trials (RCTs) and nine cohorts, met our inclusion criteria. The overall quality of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group framework. Data were extracted and analysed at three to six months postoperatively. Primary outcome measures included a loss of one or more lines of best spectacle corrected visual acuity (BSCVA), uncorrected visual acuity (UCVA) of 20/20 or better, mean logMAR UCVA, postoperative mean spherical equivalent (SE) and postoperative refraction within ±1.0 D of the target refraction. Secondary outcome measures included ocular surface disease index (OSDI), tear breakup time (TBUT) and Schirmer’s 1 test (S1T) as dry eye parameters, along with corneal sensitivity. Results The overall quality of evidence was considered to be low to very low. Pooled results revealed no significant differences between the two groups with regard to a loss of one or more lines in the BSCVA (OR 1.71; 95% CI: 0.81, 3.63; P = 0.16), UCVA of 20/20 or better (OR 0.71; 95% CI: 0.44, 1.15; P = 0.16), logMAR UCVA (MD 0.00; 95% CI: -0.03, 0.04; P = 0.87), postoperative refractive SE (MD -0.00; 95% CI: -0.05, 0.05; P = 0.97) or postoperative refraction within ±1.0 D of the target refraction (OR 0.78; 95% CI: 0.22, 2.77; P = 0.70) within six months postoperatively. The pooled analysis also indicated that the FS-LASIK group suffered more severely from dry eye symptoms (OSDI; MD -6.68; 95% CI: -11.76, -2.00; P = 0.006) and lower corneal sensitivity (MD 12.40; 95% CI: 10.23, 14.56; P < 0.00001) at six months postoperatively. Conclusions In conclusion

  10. Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group.

    PubMed Central

    Steinert, R F; Hersh, P S

    1998-01-01

    OBJECTIVE: Determine the outcomes of single-zone photorefractive keratectomy (SZPRK), aspherical photorefractive keratectomy (ASPRK), and laser in-situ keratomileusis (LASIK) for the correction of myopia between -6 and -12 diopters. DESIGN: Two simultaneous prospective, randomized, multi-center clinical trials. PARTICIPANTS: 286 first-treated eyes of 286 patients enrolled in one of two studies. In Study I, 134 eyes were randomized to SZPRK (58 eyes) or ASPRK (76 eyes). In Study II, 152 eyes were randomized to ASPRK (76 eyes) or to LASIK (76 eyes). INTERVENTION: All eyes received spherical one-pass excimer laser ablation as part of PRK or LASIK performed with the Summit Technologies Apex laser under an investigational device exemption, with attempted corrections between -6 and -12 diopters. MAIN OUTCOME MEASURES: Data on uncorrected and best spectacle-corrected visual acuity, predictability and stability of refraction, and complications were analyzed. Follow-up was 12 months. RESULTS: At 1 month postoperatively, more eyes in the LASIK group achieved 20/20 and 20/25 or better uncorrected visual acuity than PRK-treated eyes; at the 20/25 or better level, the difference was significant for LASIK (29/76 eyes, 38%) over SZPRK (10/58 eyes, 17%) (P = .0064). At all subsequent postoperative intervals, no difference was seen between treatment groups. Similarly, best corrected visual acuities were better for LASIK than all PRK eyes at 1 month postoperatively, and LASIK was better than SZPRK at 3 months follow-up (e.g., for 20/20 or better at 1 month, LASIK 50/76 eyes (66%) versus SZPRK 24/57 eyes (42%), P = .0066). PRK eyes had a mean loss of BCVA through 6 months, while LASIK eyes had a slight gain of mean BCVA through month 6; at 12 months, both ASPRK groups but not SZPRK continued to have a small mean loss of BCVA (e.g., compared to preoperative, mean BCVA at 12 months for SZPRK was + 0.3, LASIK was +.21, ASPRK I was -0.11, and ASPRK II -0.31 (SZPRK versus ASPRK II, P

  11. Femtosecond laser-assisted in situ keratomileusis multifocal ablation profile using a mini-monovision approach for presbyopic patients with hyperopia

    PubMed Central

    Vastardis, Iraklis; Pajic-Eggspühler, Brigitte; Müller, Jörg; Cvejic, Zeljka; Pajic, Bojan

    2016-01-01

    Purpose To report the visual outcomes of the femtosecond laser-assisted multifocal aspheric corneal ablation profile using a mini-monovision approach and to evaluate if corneal multifocality was effective, and to report the relative benefits of this approach. Patients and methods Bilateral femtosecond laser-assisted in situ keratomileusis using a multifocal aspheric corneal ablation profile was performed on 19 hyperopic patients (38 eyes). They were divided into two groups based on eye dominance: dominant eye (DE) group targeting emmetropia and the nondominant eye (NDE) group targeting −0.5 D slight myopia. The uncorrected distance visual acuity (UDVA), uncorrected intermediate visual acuity (UIVA), uncorrected near visual acuity (UNVA), and retreatment rates were reported from baseline to 6 months. Results The UNVA, UIVA, and UDVA improved significantly in both groups (Kruskal–Wallis test, DE and NDE: P<0.00001, P<0.000005, and P=0.00001, respectively). Corrected distance visual acuity (CDVA) baseline was better in both groups in comparison to UDVA at 6 months (Wilcoxon test, DE: P<0.001, 95% confidence interval (CI) of the median 0.0–0.0 LogMAR and 0.1000–0.1218 LogMAR and NDE: P=0.010, 95% CI of the median 0.0–0.0 LogMAR and 0.00–0.10 LogMAR). There was a significant loss of lines between CDVA baseline and UDVA at 6 months in both groups (DE group: 68% of eyes lost one line or more; NDE group: 58% of eyes lost one line or more). The corrected near visual acuity baseline compared to UNVA at 6 months was not statistically important (Wilcoxon test, DE: P=0.8125, 95% CI of the median 0.0–0.0 LogMAR and 0.0–0.0 LogMAR and NDE: P=0.82, 95% CI of the median 0.0–0.0 LogMAR and 0.0–0.0 LogMAR). The comparison among the UDVA, UIVA, and UNVA between the two groups at baseline and during all follow-ups was not statistically important. Two cases from the DE group were retreated (6%). Conclusion Use of this multifocal aspheric corneal ablation profile in

  12. Oral focal epithelial hyperplasia removed with CO2 laser.

    PubMed

    Luomanen, M

    1990-08-01

    A case of oral focal epithelial hyperplasia (FEH) treated with CO2 laser surgery is presented. Histological diagnosis is discussed. The association of human papillomavirus (HPV) type 32 with the lesions is demonstrated with DNA in situ hybridization technique. Laser surgery is suggested as a treatment of choice.

  13. Preliminary results of tracked laser-assisted in-situ keratomileusis (T-LASIK) for myopia and hyperopia using the autonomous technologies excimer laser system

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Nesburn, Anthony B.; Salz, James J.

    2000-06-01

    A study was undertaken to assess the safety and efficacy of LASIK with the LADARVision laser by Autonomous Technologies, (Orlando, FL). The study included four subsets: Spherical myopia -- up to -11.00D, spherical hyperopia -- up to +6.00D. Both myopic and hyperopic astigmatism could be corrected, up to 6.00D of astigmatism. A total of 105 patients participated. Sixty-six patients were myopic and 39 were hyperopic. The mean (+/- SD) age was 42.8 +/- 9.3 years for myopia and 53.2 +/- 9.9 years for hyperopia. At 3 months postop. Sixty-one myopic eyes were available for evaluation. Uncorrected visual acuity was 20/20 in 70% of eyes and 20/40 in 92.9% of all eyes. The refractive outcome was within +/- 0.50D in 73.8% of eyes and within +/- 1.00D in 96.7 of eyes. Thirty-eight hyperopic eyes were available. Uncorrected visual acuity was 20/20 in 42.1% of eyes and 20/40 in 88% of all eyes. The refractive outcome was within +/- 0.50D in 57.9% of eyes and within +/- 1.00D in 86.8% of eyes. Complications were not sight threatening and were discussed in detail. Lasik with the LADARVision laser appears to be safe and effective.

  14. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qin, Yejun; Zheng, Feng; Sun, Menghong; Shi, Daren

    2006-07-01

    A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis.

  15. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair

    PubMed Central

    Sperandio, Felipe F.; Simões, Alyne; Corrêa, Luciana; Aranha, Ana Cecília C.; Giudice, Fernanda S.; Hamblin, Michael R.; Sousa, Suzana C.O.M.

    2015-01-01

    Low-level laser therapy (LLLT) has been extensively employed to improve epithelial wound healing, though the exact response of epithelium maturation and stratification after LLLT is unknown. Thus, this study aimed to assess the in vitro growth and differentiation of keratinocytes (KCs) and in vivo wound healing response when treated with LLLT. Human KCs (HaCaT cells) showed an enhanced proliferation with all the employed laser energy densities (3, 6 and 12 J/cm2, 660nm, 100mW), together with an increased expression of Cyclin D1. Moreover, the immunoexpression of proteins related to epithelial proliferation and maturation (p63, CK10, CK14) all indicated a faster maturation of the migrating KCs in the LLLT-treated wounds. In that way, an improved epithelial healing was promoted by LLLT with the employed parameters; this improvement was confirmed by changes in the expression of several proteins related to epithelial proliferation and maturation. PMID:25411997

  16. In vitro inhibition of lens epithelial cell growth by continuous wave Nd:YAG laser

    SciTech Connect

    Miyake, K.; Iwata, S.; Ando, F.; Daikuzono, N.; Federman, J.L.

    1989-04-01

    Bovine lens epithelial cells were suspended in MEM medium and subjected to continuous wave, low power, pulsed neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation. The temperature of each suspension was maintained at 36 degrees C. Laser applications ranged from 1 to 10 watts and from 100 to 2000 seconds, but the total dose to each of the epithelial cell suspension was 2000 J. Six to thirty-nine percent of the cells were dead immediately after irradiation. Surviving cells, cultured for 15 days, showed decreased attachment and failed to grow. These preliminary results suggest that the Nd:YAG laser may be used during cataract surgery to prevent subsequent lens epithelial cell proliferation and the resulting vision reduction and glare.

  17. Laser treatment of primary ring-shaped epithelial iris cyst.

    PubMed Central

    Bron, A J; Wilson, C B; Hill, A R

    1984-01-01

    This is the first report of a ring-shaped, primary cyst of the iris pigment epithelium. The patient, a 28-year-old woman, presented with angle closure glaucoma. Ocular pressure was controlled medically, and the iris cyst was treated by argon laser photocoagulation. The derivation of the cyst, differential diagnosis, and mechanism of angle closure glaucoma are discussed. Images PMID:6542423

  18. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    Background The most important challenge of performing insitu transcriptional profiling of the human ocular surface epithelial regions is obtaining samples in sufficient amounts, without contamination from adjacent tissue, as the region of interest is microscopic and closely apposed to other tissues regions. We have effectively collected ocular surface (OS) epithelial tissue samples from the Limbal Epithelial Crypt (LEC), limbus, cornea and conjunctiva of post-mortem cadaver eyes with laser microdissection (LMD) technique for gene expression studies with spotted oligonucleotide microarrays and Gene 1.0 ST arrays. Methods Human donor eyes (4 pairs for spotted oligonucleotide microarrays, 3 pairs for Gene 1.0 ST arrays) consented for research were included in this study with due ethical approval of the Nottingham Research Ethics Committee. Eye retrieval was performed within 36 hours of post-mortem period. The dissected corneoscleral buttons were immersed in OCT media and frozen in liquid nitrogen and stored at −80°C till further use. Microscopic tissue sections of interest were taken on PALM slides and stained with Toluidine Blue for laser microdissection with PALM microbeam systems. Optimisation of the laser microdissection technique was crucial for efficient and cost effective sample collection. Results The starting concentration of RNA as stipulated by the protocol of microarray platforms was taken as the cut-off concentration of RNA samples in our studies. The area of LMD tissue processed for spotted oligonucleotide microarray study ranged from 86,253 μm2 in LEC to 392,887 μm2 in LEC stroma. The RNA concentration of the LMD samples ranged from 22 to 92 pg/μl. The recommended starting concentration of the RNA samples used for Gene 1.0 ST arrays was 6 ng/5 μl. To achieve the desired RNA concentration the area of ocular surface epithelial tissue sample processed for the Gene 1.0 ST array experiments was approximately 100,0000 μm2 to 130,0000 μm2. RNA

  19. Endobronchial laser ablation in the management of epithelial-myoepithelial carcinoma of the trachea.

    PubMed

    McCracken, David; Wieboldt, Jason; Sidhu, Pushpinder; McManus, Kieran

    2015-01-01

    A 52 year old, never smoker presented to hospital with progressive shortness of breath and significant stridor over a five month period. He also described the feeling of needing to cough but being unable to expectorate. CT Thorax demonstrated a mass lesion in the trachea just distal to the larynx which was then confirmed on rigid bronchoscopy. Subsequent histology confirmed an epithelial-myoepithelial carcinoma. Only a few case reports document these rare salivary gland tumours occurring in other locations such as the respiratory tract. After staging showed only local disease, the patient was managed with rigid bronchoscopy and laser ablation therapy. We present the first documented case to be treated with endobronchial laser ablation therapy with discussion of the incidence, presentation and characteristics of these tumours including the treatment options, as well as the use of laser ablation in the management of benign and malignant endobronchial lesions.

  20. Endobronchial laser ablation in the management of epithelial-myoepithelial carcinoma of the trachea

    PubMed Central

    McCracken, David; Wieboldt, Jason; Sidhu, Pushpinder; McManus, Kieran

    2015-01-01

    A 52 year old, never smoker presented to hospital with progressive shortness of breath and significant stridor over a five month period. He also described the feeling of needing to cough but being unable to expectorate. CT Thorax demonstrated a mass lesion in the trachea just distal to the larynx which was then confirmed on rigid bronchoscopy. Subsequent histology confirmed an epithelial-myoepithelial carcinoma. Only a few case reports document these rare salivary gland tumours occurring in other locations such as the respiratory tract. After staging showed only local disease, the patient was managed with rigid bronchoscopy and laser ablation therapy. We present the first documented case to be treated with endobronchial laser ablation therapy with discussion of the incidence, presentation and characteristics of these tumours including the treatment options, as well as the use of laser ablation in the management of benign and malignant endobronchial lesions. PMID:26744686

  1. In vitro effect of phototherapy with low-intensity laser on HSV-1 and epithelial cells

    NASA Astrophysics Data System (ADS)

    Eduardo, Fernanda P.; Mehnert, Dolores U.; Monezi, Telma A.; Zezell, Denise M.; Schubert, Mark M.; Eduardo, Carlos P.; Marques, Márcia M.

    2007-02-01

    The effects of phototherapy on herpes lesions have been clinically demonstrated by either preventing the lesion formation or speeding their repair. The aim of this in vitro study was analyze the effect of phototherapy on epithelial cells and HSV-1 in culture. Cultures of HSV-1 and epithelial cells (Vero cell line) were used. The irradiations were done using a GaAlAs laser (660 e 780 nm, 4.0 mm2). One, two and three irradiations with 6 h-intervals were done. The experimental groups were: Control: non-irradiated; 660 nm and 3 J/cm2 (2.8 sec); 660 nm and 5 J/cm2 (3.8 sec); 780 nm and 3 J/cm2 (1.9 sec), and 780 nm and 5 J/cm2 (2.5 sec). The HSV-1 cytopatic effect and the cell viability of irradiated cultures and controls were analyzed in four different conditions: irradiation of non-infected epithelial cells; epithelial cells irradiated prior infection; virus irradiated prior infection; irradiation of HSV infected cells. The mitochondrial activity and cytopathic effects were assessed. The number of irradiations influenced the cell growth positively and proportionally, except for the 660 nm/ 3 J/cm2 group. Any variation in cytopathic effects was observed amongst the experimental groups. The viability of infected cells prior irradiation was significantly higher than that of non-irradiated cultures when 2 irradiations were done. Under the experimental conditions of this study we concluded that phototherapy is capable of enhancing epithelial cell growth and prolonging cell viability of HSV-1 infected cells. Positive benefits of phototherapy could be resultant from prolongation of infected cells viability, corroborating with host defenses.

  2. Er,CR:YSGG lasers induce fewer dysplastic-like epithelial artefacts than CO2 lasers: an in vivo experimental study on oral mucosa.

    PubMed

    González-Mosquera, A; Seoane, J; García-Caballero, L; López-Jornet, P; García-Caballero, T; Varela-Centelles, P

    2012-09-01

    Our aim was to assess wounds made by lasers (CO(2) and Er,Cr:YSGG) for their epithelial architectural changes and width of damage. We allocated 60 Sprague-Dawley(®) rats into groups: glossectomy by CO(2) laser at 3 different wattages (n=10 in each); glossectomy by Er,Cr:YSGG laser at two different emissions (n=10 in each), and a control group (n=10). Histological examination assessed both prevalence and site of thermal artefacts for each group. Both lasers (CO(2) and Er,Cr:YSGG) caused the same type of cytological artefacts. The 3W Er,Cr:YSGG laser produced the fewest cytological artefacts/specimen, and was significantly different from the other experimental groups: 3W CO(2) laser (95% CI=0.8 to 1.0); the 6W CO(2) laser (95% CI=0.1 to 2.0) and the 10W CO(2) laser (95% CI=1.1 to 3.0). CO(2) lasers (3-10W) generate epithelial damage that can simulate dysplastic changes with cytological atypia that affects mainly the basal and suprabasal layers. Irradiation with Er,CR:YSGG laser (2-4W) produces significantly fewer cellular artefacts and less epithelial damage, which may be potentially useful for biopsy of oral mucosa.

  3. Focal epithelial hyperplasia in a human immuno-deficiency virus patient treated with laser surgery

    PubMed Central

    Galanakis, Alexandros; Palaia, Gaspare; Tenore, Gianluca; Vecchio, Alessandro Del; Romeo, Umberto

    2014-01-01

    Focal epithelial hyperplasia (FEH), or Heck’s disease, is a rare disease of the oral mucosa; it is mostly found in children or young adults who are immunosuppressed and who live in regions with low socioeconomic status. It is characterized by asymptomatic papules on the oral mucosa, gingiva, tongue, and lips. Healing can be spontaneous, and treatment is indicated if there are aesthetic or functional complications. Human papillomavirus, especially genotypes 13 and 32, has been associated with FEH and is detected in the majority of lesions. Histopathologically, FEH is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, and fusion and horizontal outgrowth of epithelial ridges. A 37-year-old male patient was referred to the Department of Oral and Maxillofacial Sciences at the Sapienza University of Rome, complaining of numerous exophytic lesions in his mouth. He stated that the lesions were not painful but he had experienced occasional bleeding after incidental masticatory trauma. He had received no previous treatment for the oral lesions. His medical history revealed that he was human immuno-deficiency virus positive and was a smoker with numerous, asymptomatic oral papules clinically and histologically corresponding to FEH. The labial and buccal mucosa were especially affected by lesions. Surgical treatment was performed using a 532-nm potassium titanyl phosphate laser (SmartLite, Deka, Florence, Italy) in continuous mode with a 300 μm fiber and power of 1.4 W (power density 1980.22 W/cm2). After anesthesia without vasoconstrictors, the lesions were tractioned with sutures or an Allis clamp and then completely excised. The lesions were preserved in 10% formalin for histological examination, which confirmed the clinical diagnosis of FEH. In this case, the laser allowed excellent control of bleeding, without postoperative sutures, and optimal wound healing. PMID:25032206

  4. Focal epithelial hyperplasia in a human immuno-deficiency virus patient treated with laser surgery.

    PubMed

    Galanakis, Alexandros; Palaia, Gaspare; Tenore, Gianluca; Vecchio, Alessandro Del; Romeo, Umberto

    2014-07-16

    Focal epithelial hyperplasia (FEH), or Heck's disease, is a rare disease of the oral mucosa; it is mostly found in children or young adults who are immunosuppressed and who live in regions with low socioeconomic status. It is characterized by asymptomatic papules on the oral mucosa, gingiva, tongue, and lips. Healing can be spontaneous, and treatment is indicated if there are aesthetic or functional complications. Human papillomavirus, especially genotypes 13 and 32, has been associated with FEH and is detected in the majority of lesions. Histopathologically, FEH is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, and fusion and horizontal outgrowth of epithelial ridges. A 37-year-old male patient was referred to the Department of Oral and Maxillofacial Sciences at the Sapienza University of Rome, complaining of numerous exophytic lesions in his mouth. He stated that the lesions were not painful but he had experienced occasional bleeding after incidental masticatory trauma. He had received no previous treatment for the oral lesions. His medical history revealed that he was human immuno-deficiency virus positive and was a smoker with numerous, asymptomatic oral papules clinically and histologically corresponding to FEH. The labial and buccal mucosa were especially affected by lesions. Surgical treatment was performed using a 532-nm potassium titanyl phosphate laser (SmartLite, Deka, Florence, Italy) in continuous mode with a 300 μm fiber and power of 1.4 W (power density 1980.22 W/cm(2)). After anesthesia without vasoconstrictors, the lesions were tractioned with sutures or an Allis clamp and then completely excised. The lesions were preserved in 10% formalin for histological examination, which confirmed the clinical diagnosis of FEH. In this case, the laser allowed excellent control of bleeding, without postoperative sutures, and optimal wound healing.

  5. Contact-free isolation of sperm and epithelial cells by laser microdissection and pressure catapulting.

    PubMed

    Seidl, Stephan; Burgemeister, Renate; Hausmann, Roland; Betz, Peter; Lederer, Thomas

    2005-06-01

    With the PALM MicroBeam system, precise laser microdissection of single cells from cell smears or tissue preparations is possible. Furthermore, this system uses a contact-free and therefore contamination-free laser pressure catapulting technique in which high energy generated by a focused laser pulse catapults single dissected cells into a collecting vessel. In this study, this technique was tested for forensic purposes with smear preparations from postcoital vaginal swabs, sperm swabs, and buccal cell swabs on different types of microscopic slides. Apart from super-frosted slides, cutting and catapulting of selected cells was possible in all cases. Subsequent polymerase chain reaction was performed using the genRES MPX-2 Amplification Kit. In the case of sperm cells stained with hematoxylin and eosin, fragments larger than approximately 200 bp could not be detected. Partial genetic profiles were obtained for DNA amounts originating from only two cell equivalents. Complete profiles, however, were observed with all preparations of a minimum of 10 epithelial cells, demonstrating a potential benefit of this technique for the contamination-free forensic analysis of extremely small specimens or mixed stains. PMID:25869953

  6. Contact-free isolation of sperm and epithelial cells by laser microdissection and pressure catapulting.

    PubMed

    Seidl, Stephan; Burgemeister, Renate; Hausmann, Roland; Betz, Peter; Lederer, Thomas

    2005-06-01

    With the PALM MicroBeam system, precise laser microdissection of single cells from cell smears or tissue preparations is possible. Furthermore, this system uses a contact-free and therefore contamination-free laser pressure catapulting technique in which high energy generated by a focused laser pulse catapults single dissected cells into a collecting vessel. In this study, this technique was tested for forensic purposes with smear preparations from postcoital vaginal swabs, sperm swabs, and buccal cell swabs on different types of microscopic slides. Apart from super-frosted slides, cutting and catapulting of selected cells was possible in all cases. Subsequent polymerase chain reaction was performed using the genRES MPX-2 Amplification Kit. In the case of sperm cells stained with hematoxylin and eosin, fragments larger than approximately 200 bp could not be detected. Partial genetic profiles were obtained for DNA amounts originating from only two cell equivalents. Complete profiles, however, were observed with all preparations of a minimum of 10 epithelial cells, demonstrating a potential benefit of this technique for the contamination-free forensic analysis of extremely small specimens or mixed stains.

  7. Damage thresholds for cultured retinal pigment epithelial cells exposed to lasers at 532 nm and 458 nm.

    PubMed

    Denton, Michael L; Foltz, Michael S; Schuster, Kurt J; Estlack, Larry E; Thomas, Robert J

    2007-01-01

    The determination of safe exposure levels for lasers has come from damage assessment experiments in live animals, which typically involve correlating visually identifiable damage with laser dosimetry. Studying basic mechanisms of laser damage in animal retinal systems often requires tissue sampling (animal sacrifice), making justification and animal availability problematic. We determined laser damage thresholds in cultured monolayers of a human retinal pigment epithelial (RPE) cell line. By varying exposure duration and laser wavelength, we identified conditions leading to damage by presumed photochemical or thermal mechanisms. A comparison with literature values for ocular damage thresholds validates the in vitro model. The in vitro system described will facilitate molecular and cellular approaches for understanding laser-tissue interaction.

  8. The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review.

    PubMed

    Fekrazad, Reza; Naghdi, Nafiseh; Nokhbatolfoghahaei, Hanieh; Bagheri, Hossein

    2016-01-01

    Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser's wavelength and nanoparticle's properties more animal studies and clinical trials are required as a lack of perfect studies. PMID:27330701

  9. The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review.

    PubMed

    Fekrazad, Reza; Naghdi, Nafiseh; Nokhbatolfoghahaei, Hanieh; Bagheri, Hossein

    2016-01-01

    Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser's wavelength and nanoparticle's properties more animal studies and clinical trials are required as a lack of perfect studies.

  10. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    NASA Astrophysics Data System (ADS)

    Basso, F. G.; Pansani, T. N.; Turrioni, A. P. S.; Kurachi, C.; Bagnato, V. S.; Hebling, J.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.

  11. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.

    PubMed

    El-Sayed, Ivan H; Huang, Xiaohua; El-Sayed, Mostafa A

    2006-07-28

    Efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest their use as selective photothermal agents in molecular cancer cell targeting. Two oral squamous carcinoma cell lines (HSC 313 and HOC 3 Clone 8) and one benign epithelial cell line (HaCaT) were incubated with anti-epithelial growth factor receptor (EGFR) antibody conjugated gold nanoparticles and then exposed to continuous visible argon ion laser at 514nm. It is found that the malignant cells require less than half the laser energy to be killed than the benign cells after incubation with anti-EGFR antibody conjugated Au nanoparticles. No photothermal destruction is observed for all types of cells in the absence of nanoparticles at four times energy required to kill the malignant cells with anti-EGFR/Au conjugates bonded. Au nanoparticles thus offer a novel class of selective photothermal agents using a CW laser at low powers. The potential of using this selective technique in molecularly targeted photothermal therapy in vivo is discussed. PMID:16198049

  12. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells.

    PubMed

    Ejiri, Kenichiro; Aoki, Akira; Yamaguchi, Yoko; Ohshima, Mitsuhiro; Izumi, Yuichi

    2014-07-01

    In periodontal therapy, the use of low-level diode lasers has recently been considered to improve wound healing of the gingival tissue. However, its effects on human gingival epithelial cells (HGECs) remain unknown. The aim of the present study was to examine whether high-frequency low-level diode laser irradiation stimulates key cell responses in wound healing, proliferation and migration, in primary cultured HGECs in vitro. HGECs were derived from seven independent gingival tissue specimens. Cultured HGECs were exposed to a single session of high-frequency (30 kHz) low-level diode laser irradiation with various irradiation time periods (fluence 5.7-56.7 J/cm(2)). After 20-24 h, cell proliferation was evaluated by WST-8 assay and [(3)H]thymidine incorporation assay, and cell migration was monitored by in vitro wound healing assay. Further, phosphorylation of the mitogen-activated protein kinase (MAPK) pathways after irradiation was investigated by Western blotting. The high-frequency low-level irradiation significantly increased cell proliferation and [(3)H]thymidine incorporation at various irradiation time periods. Migration of the irradiated cells was significantly accelerated compared with the nonirradiated control. Further, the low-level diode laser irradiation induced phosphorylation of MAPK/extracellular signal-regulated protein kinase (ERK) at 5, 15, 60, and 120 min after irradiation. Stress-activated protein kinases/c-Jun N-terminal kinase and p38 MAPK remained un-phosphorylated. The results show that high-frequency low-level diode laser irradiation promotes HGEC proliferation and migration in association with the activation of MAPK/ERK, suggesting that laser irradiation may accelerate gingival wound healing.

  13. Laser-capture microdissection of oropharyngeal epithelium indicates restriction of Epstein-Barr virus receptor/CD21 mRNA to tonsil epithelial cells

    PubMed Central

    Jiang, Ru; Gu, Xin; Nathan, Cherie-Ann; Hutt-Fletcher, Lindsey

    2008-01-01

    Background: Epstein-Barr virus colonizes the oropharynx of a majority of individuals. It infects B lymphocytes and epithelial cells and can contribute to the development of both lymphoid and epithelial tumors. The virus uses CD21 for attachment to B cells which constitutively express the protein. Infection of epithelial cells in vitro is also more efficient if CD21 is available. However, its potential contribution to infection in vivo has been difficult to evaluate as discrepant results with antibodies have made it difficult to determine which, if any, epithelial cells in the oropharynx express CD21. Methods: To reevaluate CD21 expression by an alternative method, epithelial cells were isolated by laser-capture microdissection from formalin-fixed sections of tissues from various parts of the oropharynx and mRNA was amplified with primers specific for the exons of CD21 which code for the Epstein-Barr virus binding site. Results: CD21 mRNA was expressed in tonsil epithelium, but not in epithelium from buccal mucosa, uvula, soft palate or tongue. Conclusions: CD21 does not contribute to infection of most normal epithelial tissues in the oropharynx, but may contribute to infection of epithelial cells in the tonsil, where virus has been demonstrated in healthy carriers. PMID:18710421

  14. Fluorescence and laser photon counting: measurements of epithelial [Ca2+]i or [Na+]i with ciliary beat frequency.

    PubMed

    Mao, H; Wong, L B

    1998-01-01

    We describe a system we developed that enabled simultaneous measurements of either epithelial calcium ion concentration ([Ca2+]i) or sodium ion concentration ([Na+]i) with the ciliary beat frequency (CBF) in native ciliated epithelia using either Fura-2 (AM) or SBFI (AM) ratiometric fluorescence photon counting along with nonstationary laser light scattering. Studies were performed using native epithelial tissues obtained from ovine tracheae. The dynamic range of the laser light-scattering system was determined by a simulated light "beating" experiment. The nonstationary CBF was demonstrated by the time-frequency analysis of the raw photon count sequences of backscattered heterodyne photons from cultured and native epithelia. Calibrations of calcium and sodium ion concentrations were performed using the respective Fura-2 and SBFI impermanent salts as well as in native epithelia. The cumulative responses of 10(-6), 10(-5), and 10(-4) M nifedipine on [Ca2+]i together with the CBF as well as the cumulative responses of 10(-5), 10(-4), and 10(-3) M amiloride on [Na+]i together with the CBF were also determined. Nifedipine decreased [Ca2+]i but had no effect on CBF. Amiloride decreased [Na+]i and CBF. Stimulation of CBF corresponded with either an increase of [Na+]i or an increase of [Ca2+]i. Decreases of [Na+]i or substantial decreases of [Ca2+]i were associated with decreases in the CBF. These data demonstrate the utility of this system for investigating the regulatory mechanisms of intracellular ions dynamics and the CBF in native epithelia. PMID:9662158

  15. Irradiation with a low-level diode laser induces the developmental endothelial locus-1 gene and reduces proinflammatory cytokines in epithelial cells.

    PubMed

    Fujimura, Takeki; Mitani, Akio; Fukuda, Mitsuo; Mogi, Makio; Osawa, Kazuhiro; Takahashi, Shinko; Aino, Makoto; Iwamura, Yuki; Miyajima, Shinichi; Yamamoto, Hiromitsu; Noguchi, Toshihide

    2014-05-01

    We demonstrated previously that low-level diode laser irradiation with an indocyanine green-loaded nanosphere coated with chitosan (ICG-Nano/c) had an antimicrobial effect, and thus could be used for periodontal antimicrobial photodynamic therapy (aPDT). Since little is known about the effects of aPDT on periodontal tissue, we here investigated the effect of low-level laser irradiation, with and without ICG-Nano/c, on cultured epithelial cells. Human oral epithelial cells were irradiated in a repeated pulse mode (duty cycle, 10 %; pulse width, 100 ms; peak power output, 5 W). The expression of the developmental endothelial locus 1 (Del-1), interleukin-6 (IL-6), IL-8, and the intercellular adhesion molecule-1 (ICAM-1) were evaluated in Ca9-22 cells stimulated by laser irradiation and Escherichia coli-derived lipopolysaccharide (LPS). A wound healing assay was carried out on SCC-25 cells irradiated by diode laser with or without ICG-Nano/c. The mRNA expression of Del-1, which is known to have anti-inflammatory activity, was significantly upregulated by laser irradiation (p < 0.01). Concurrently, LPS-induced IL-6 and IL-8 expression was significantly suppressed in the LPS + laser group (p < 0.01). ICAM-1 expression was significantly higher in the LPS + laser group than in the LPS only or control groups. Finally, compared with the control, the migration of epithelial cells was significantly increased by diode laser irradiation with or without ICG-Nano/c. These results suggest that, in addition to its antimicrobial effect, low-level diode laser irradiation, with or without ICG-Nano/c, can suppress excessive inflammatory responses via a mechanism involving Del-1, and assists in wound healing.

  16. Laser capture microdissection and multiplex-tandem PCR analysis of proximal tubular epithelial cell signaling in human kidney disease.

    PubMed

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J; Zuryn, Steven; Roper, Kathrein E; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate "real time" gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.

  17. Oral focal epithelial hyperplasia.

    PubMed

    Bassioukas, K; Danielides, V; Georgiou, I; Photos, E; Zagorianakou, P; Skevas, A

    2000-01-01

    Focal epithelial hyperplasia (FEH) or Heck disease, is a rare viral infection of the oral mucosa caused by HPV 13 or HPV 32. In Caucasians there have been only a few cases reported. We present the first case in Greece in a young Caucasian girl in which HPV 13 was detected with PCR analysis. The patient was successfully treated with CO2 laser.

  18. Laser Photocoagulation Induces Transduction of Retinal Pigment Epithelial Cells by Intravitreally Administered Adeno-Associated Viral Vectors.

    PubMed

    Lee, Si Hyung; Kong, Yoon Jin; Lyu, Jungmook; Lee, Heuiran; Park, Keerang; Park, Tae Kwann

    2015-10-01

    Retinal transduction by intravitreally administered adeno-associated viral (AAV) vector is previously known to be extremely limited to the neural retina except AAV2 capsid type. Recently, we showed that prior laser photocoagulation enhances retinal transduction of intravitreally administered AAV vectors, including the outer retina and retinal pigment epithelium (RPE). Here, by performing short-pulse laser pretreatment on the mouse retina, we demonstrate RPE cells transduced by three different capsid types of AAV vectors, AAV2, AAV5, and AAV8, using RPE wholemounts. For all capsid types, laser pretreatment effectively induced the transduction of RPE cells in and around the laser site.

  19. Collection of Epithelial Cells from Rodent Mammary Gland Via Laser Capture Microdissection Yielding High-Quality RNA Suitable for Microarray Analysis

    PubMed Central

    2010-01-01

    Laser capture microdissection (LCM) enables collection of cell populations highly enriched for specific cell types that have the potential of yielding critical information about physiological and pathophysiological processes. One use of cells collected by LCM is for gene expression profiling. Samples intended for transcript analyses should be of the highest quality possible. RNA degradation is an ever-present concern in molecular biological assays, and LCM is no exception. This paper identifies issues related to preparation, collection, and processing in a lipid-rich tissue, rodent mammary gland, in which the epithelial to stromal cell ratio is low and the stromal component is primarily adipocytes, a situation that presents numerous technical challenges for high-quality RNA isolation. Our goal was to improve the procedure so that a greater probe set present call rate would be obtained when isolated RNA was evaluated using Affymetrix microarrays. The results showed that the quality of RNA isolated from epithelial cells of both mammary gland and mammary adenocarcinomas was high with a probe set present call rate of 65% and a high signal-to-noise ratio. PMID:21406068

  20. Changes in F-actin organization induced by hard metal particle exposure in rat pulmonary epithelial cells using laser scanning confocal microscopy.

    PubMed

    Antonini, J M; Starks, K; Roberts, J R; Millecchia, L; Yang, H M; Rao, K M

    2000-01-01

    Chronic inhalation of hard metal (WC-Co) particles causes alveolitis and the eventual development of pulmonary fibrosis. The initial inflammatory response includes a change in the alveolar epithelial cell-capillary barrier, which has been shown to be regulated by the state of assembly and organization of the actin cytoskeletal network. The objective of this study was to evaluate the effect WC-Co particles have on F-actin organization of lung epithelial cells in an in vitro culture system. Rat lung epithelial (L2) cells were exposed to 5, 25, and 100 microg/mL of WC-Co particles, as well as the individual components (Co and WC) of the hard metal mixture particles for 24 h. The effect on F-actin organization was visualized by laser scanning confocal microscopy (LSCM) following Bodipy-Phallacidin staining. Minimal changes in the F-actin microfilaments of L2 cells were observed by LSCM after exposure to WC and WC-Co at 5 and 25 microg/mL, while at 100 microg/mL, there was a noticeable disruption in the uniform distribution of L2 cell F-actin microfilaments. After exposure to Co, a dose-dependent change in the F-actin organization of the L2 cells was observed. Little change in F-actin assembly was observed after treatment with 5 microg/mL of Co (the concentration equivalent to the 5% amount of Co commonly present in 100 microg/mL of the WC-Co sample mixture). However, at 100 microg/mL of Co, the microfilaments aggregated into homogeneous masses within the cells, and a significant loss in the organization of L2 F-actin was observed. These dramatic alterations in F-actin organization seen after exposure to the higher doses of Co were attributed to an increase in L2 cell injury as measured by lactate dehydrogenase and trypan blue exclusion. We conclude the pulmonary response evoked in the lung by inhalation of high levels of WC-Co particles is unlikely due to alterations in the F-actin microfilaments of lung-epithelial cells. PMID:10900403

  1. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  2. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    PubMed Central

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  3. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  4. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  5. Use of laser capture microdissection for the assessment of equine lamellar basal epithelial cell signalling in the early stages of laminitis

    PubMed Central

    Leise, B. S.; Watts, M.; Roy, S.; Yilmaz, S.; Alder, H.; Belknap, J. K.

    2016-01-01

    Summary Reason for performing study Dysadhesion of the laminar basal epithelial cells (LBEC) from the underlying dermis is the central event leading to structural failure in equine laminitis. Although many studies of sepsis-related laminitis have reported multiple events occurring throughout the lamellar tissue, there is minimal information regarding signalling events occurring specifically in the LBEC. Objectives To determine the signalling events in the LBECs during the early stages of carbohydrate induced laminitis. Study Design Experimental study. Methods Eight horses were given an overload of carbohydrate (corn starch mixture, CHO) via nasogastric tube. Prior to administration of CHO, lamellar biopsies were taken from the left fore foot (CON). Biopsies were taken from the left hind foot at the onset of fever (DEV) and from the right fore foot at the onset of lameness (OG1). Laminar basal epithelial cells (LBECs) were isolated from cryosections using a LCM microscope. Next generation sequencing (RNA-Seq) was used to identify transcripts expressed in the LBECs for each time point and bioinformatic analysis was performed with thresholds for between group comparisons set at a greater than 2-fold change and p-value ≤0.05. Results Forty genes (22 increased/18 decreased) were significantly different from DEV time vs. CON and 107 genes (57 increased/50 decreased) were significantly different from OG1 time vs. CON. Significant increases in inflammatory genes were present in addition to significantly altered expression of genes related to extracellular matrix composition, stability and turnover. Conclusions Inflammatory response and extracellular matrix regulation signalling was strongly represented at the DEV and OG1 times. These results indicate that the LBEC is not only a casualty but also an active participant in lamellar events leading to structural failure of the digital lamellae in equine laminitis. PMID:24750316

  6. Exposing human retinal pigmented epithelial cells to red light in vitro elicits an adaptive response to a subsequent 2-μm laser challenge

    NASA Astrophysics Data System (ADS)

    Schuster, K. J.; Estlack, L. E.; Wigle, J. C.

    2013-03-01

    The objective of this study was to elucidate cellular mechanisms of protection against laser-induced thermal killing utilizing an in vitro retina model. When exposed to a 1-sec pulse of 2-μm laser radiation 24 hr after illuminating hTERT-RPE cells with red light (preconditioning), the cells are more resistant to thermal challenge than unilluminated controls (adaptive response). Results of efforts to understand the physiology of this effect led us to two genes: Vascular Endothelial Growth Factor C (VEGF-C) and Micro RNA 146a (miR-146a). Transfecting wild type (WT) cells with siRNA for VEGF-C and miR-146a mRNA resulted in knockdown strains (VEGF-C(KD) and miR- 146a(-)) with 10% and 30% (respectively) of the constitutive levels expressed in the WT cells. To induce gene expression, WT or KD cells were preconditioned with 1.44 to 5.40 J/cm2, using irradiances between 0.40 and 1.60 mW/cm2 of either 671-nm (diode) or 637-nm (laser) radiation. Probit analysis was used to calculate threshold damage irradiance, expressed as ED50, between 10 and 100 W/cm2 for the 2-μm laser pulse. In the WT cells there is a significant increase in ED50 (p 0.05) with the maximum response occurring at 2.88 J/cm2 in the preconditioned cells. Neither KD cell strain showed a significant increase in the ED50, although some data suggest the response may just be decreased in the knockdown cells instead of absent. So far the response does not appear to be dependent upon either wavelength (637 vs. 671 nm) or coherence (laser vs. LED), but there is an irradiance dependence.

  7. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system.

    PubMed

    Tang, Tao; Gminski, Richard; Könczöl, Mathias; Modest, Christoph; Armbruster, Benedikt; Mersch-Sundermann, Volker

    2012-03-01

    Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P < 0.001), thus providing evidence for genotoxicity. As yet, differences in biological activity cannot be explained on the basis of the specific emission characteristics of the different printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity.

  8. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  9. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-10-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage.

  10. Translocations in epithelial cancers

    PubMed Central

    Chad Brenner, J.; Chinnaiyan, Arul M.

    2009-01-01

    Genomic translocations leading to the expression of chimeric transcripts characterize several hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked to essential molecular events in hematologic malignancies, the identification and characterization of recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions that drive several epithelial cancers and the recent technological advances that increase the speed and reliability of recurrent gene fusion discovery are explored. PMID:19406209

  11. The evolution of corneal and refractive surgery with the femtosecond laser.

    PubMed

    Aristeidou, Antonis; Taniguchi, Elise V; Tsatsos, Michael; Muller, Rodrigo; McAlinden, Colm; Pineda, Roberto; Paschalis, Eleftherios I

    2015-01-01

    The use of femtosecond lasers has created an evolution in modern corneal and refractive surgery. With accuracy, safety, and repeatability, eye surgeons can utilize the femtosecond laser in almost all anterior refractive procedures; laser in situ keratomileusis (LASIK), small incision lenticule extraction (SMILE), penetrating keratoplasty (PKP), insertion of intracorneal ring segments, anterior and posterior lamellar keratoplasty (Deep anterior lamellar keratoplasty (DALK) and Descemet's stripping endothelial keratoplasty (DSEK)), insertion of corneal inlays and cataract surgery. As the technology matures, it will push surgical limits and open new avenues for ophthalmic intervention in areas not yet explored. As we witness the transition from femto-LASIK to femto-cataract surgery it becomes obvious that this innovation is here to stay. This article presents some of the most relevant advances of femtosecond lasers to modern corneal and refractive surgery. PMID:26605365

  12. Focal epithelial hyperplasia - an update.

    PubMed

    Said, Ahmed K; Leao, Jair C; Fedele, Stefano; Porter, Stephen R

    2013-07-01

    Focal epithelial hyperplasia (FEH) is an asymptomatic benign mucosal disease, which is mostly observed in specific groups in certain geographical regions. FEH is usually a disease of childhood and adolescence and is generally associated with people who live in poverty and of low socioeconomic status. Clinically, FEH is typically characterized by multiple, painless, soft, sessile papules, plaques or nodules, which may coalesce to give rise to larger lesions. Human papillomavirus (HPV), especially genotypes 13 and 32, have been associated and detected in the majority of FEH lesions. The clinical examination and social history often allow diagnosis, but histopathological examination of lesional tissue is usually required to confirm the exact diagnosis. FEH sometimes resolves spontaneously however, treatment is often indicated as a consequence of aesthetic effects or any interference with occlusion. There remains no specific therapy for FEH, although surgical removal, laser excision or possibly topical antiviral agents may be of benefit. There remains no evidence that FEH is potentially malignant.

  13. Bovine myocardial epithelial inclusions.

    PubMed

    Baker, D C; Schmidt, S P; Langheinrich, K A; Cannon, L; Smart, R A

    1993-01-01

    Light microscopic, histochemical, immunohistochemical, and ultrastructural methods were used to examine myocardial epithelial masses in the hearts of ten cattle. The tissues consisted of paraffin-embedded or formalin-fixed samples from eight hearts that were being inspected in slaughter houses and from two hearts from calves that died of septicemia. The ages of the cattle ranged from 4 days to 12 years; the breeds were unspecified for all but one Hereford female and the two Holstein calves; and there were three males, four females, and three steers. The masses in these cases were compared with similar appearing lesions found in other animal species. The lesions in the bovine hearts were single to multiple, well circumscribed, found in the left ventricle wall, and composed of squamous to cuboidal epithelial cells that formed tubular, ductular, and acinar structures with lumens that were void or filled with amorphous protein globules. Electron microscopic examination revealed epithelial cells that had sparse apical microvilli, tight apical intercellular junctions, perinuclear bundles of filaments, and rare cilia. Almost half of the bovine epithelial masses (4/9) had occasional diastase-resistant periodic acid-Schiff-positive granules in their cytoplasm, and few had hyaluronidase-resistant alcian blue-positive granules (2/9) or colloidal iron-positive granules (1/9). All myocardial masses had abundant collagen surrounding the tubular and acinar structures, and 2/9 had elastin fibers as well. None of the myocardial masses had Churukian-Schenk or Fontana Masson's silver staining granules in epithelial cells. Immunohistochemically, all bovine myocardial tumors stained positively for cytokeratin (8/8), and occasional masses stained positively for vimentin (3/8) or carcinoembryonic antigen (3/8). None of the masses stained positively for desmin. The myocardial epithelial tumors most likely represent endodermal rests of tissue misplaced during organogenesis.

  14. Autokeratomileusis Laser

    NASA Astrophysics Data System (ADS)

    Kern, Seymour P.

    1987-03-01

    Refractive defects such as myopia, hyperopia, and astigmatism may be corrected by laser milling of the cornea. An apparatus combining automatic refraction/keratometry and an excimer type laser for precision reshaping of corneal surfaces has been developed for testing. When electronically linked to a refractometer or keratometer or holographic imaging device, the laser is capable of rapidly milling or ablating corneal surfaces to preselected dioptric power shapes without the surgical errors characteristic of radial keratotomy, cryokeratomileusis or epikeratophakia. The excimer laser simultaneously generates a synthetic Bowman's like layer or corneal condensate which appears to support re-epithelialization of the corneal surface. An electronic feedback arrangement between the measuring instrument and the laser enables real time control of the ablative milling process for precise refractive changes in the low to very high dioptric ranges. One of numerous options is the use of a rotating aperture wheel with reflective portions providing rapid alternate ablation/measurement interfaced to both laser and measurement instrumentation. The need for the eye to be fixated is eliminated or minimized. In addition to reshaping corneal surfaces, the laser milling apparatus may also be used in the process of milling both synthetic and natural corneal inlays for lamellar transplants.

  15. A comparative study of epithelial hyperplasia after PRK: Summit versus VISX in the same patient.

    PubMed

    Hamberg-Nyström, H; Gauthier, C A; Holden, B A; Epstein, D; Fagerholm, P; Tengroth, B

    1996-06-01

    Epithelial hyperplasia has been found to occur after photorefractive keratectomy in eyes treated with small (5 mm or less) ablation zone diameters with the Summit laser, but not with large zones (6 mm) with the VISX laser (Gauthier et al. 1995a). The aim of this study was to further investigate the effect of surgical parameters on epithelial hyperplasia by comparing eyes treated with the same zone diameter but two different lasers. We examined 11 subjects who had photorefractive keratectomy for myopia performed with 5 mm ablation zones with the Summit excimer laser in one eye and the VISX 20/20 laser in the fellow eye an average of 21 months previously. Epithelial thickness and corneal topography were measured. The mean epithelial thickness was not statistically different (p = 0.083) between the eyes treated with the Summit (66 +/- 12 microns) and VISX (60 +/- 14 microns) lasers. Postoperative corneal dioptric power showed a similar profile between the two eyes at the edge of the zone, with the VISX-treated corneas being more shallow centrally. There was a trend towards greater epithelial thickness with deeper ablations. This study supports the hypothesis that epithelial hyperplasia is dependent on ablation zone diameter and ablation depth. PMID:8828716

  16. Late traumatic flap displacement after laser in situ keratomileuisis.

    PubMed

    Franklin, Quentin J; Tanzer, David J

    2004-04-01

    Laser in situ keratomileusis (LASIK) has become the community standard in corneal refractive surgery and is being performed by surgeons in the Army, Navy, and Air Force. LASIK differs from photorefractive keratectomy (PRK) in that a partial-thickness corneal flap is created in the LASIK procedure before removing a microscopic amount of corneal tissue, whereas no flap creation is required in PRK. The benefits of LASIK include minimal discomfort after surgery, as well as a much faster return of visual function. PRK involves a surface ablation and therefore heals differently, involving more discomfort and a slower return of functional vision. LASIK flap integrity is a concern to anyone undergoing the procedure, as well as for those making recommendations on the best form of refractive surgery for military personnel. A case report and a review of the literature are presented on the identification and management of LASIK flap trauma.

  17. Angiomyolipoma With Epithelial Cysts.

    PubMed

    LeRoy, Michael A; Rao, Priya

    2016-06-01

    Angiomyolipoma with epithelial cysts is a rare mesenchymal tumor of the kidney that enters in the differential diagnosis of adult cystic renal neoplasms. These tumors demonstrate a slight female predominance and can present either incidentally or with symptoms, commonly flank pain and hematuria. Unlike conventional angiomyolipoma, this variant is characterized grossly by both solid and cystic areas, and histologically by the presence of single or multiple cysts lined by epithelial cells, a subepithelial "cambium-like" layer of small stromal cells with a prominent capillary vasculature, and a thick exterior wall composed of poorly formed fascicles of smooth muscle and thick-walled dysplastic blood vessels. Tumors show a distinct immunohistochemical profile and are often reactive for melanocytic markers (HMB-45 and Melan-A), as well as estrogen receptor and progesterone receptor. These tumors have an indolent clinical course, with no reports of progression or metastasis in reported cases thus far.

  18. Oral focal epithelial hyperplasia.

    PubMed

    López-Jornet, Pía; Camacho-Alonso, Fabio; Berdugo, Lucero

    2010-01-01

    Focal epithelial hyperplasia (FEH) is a benign, asymptomatic disease. It appears as papules, principally on the lower lip, although it can also be found on the retro-commissural mucosa and tongue and, less frequently, on the upper lip, gingiva and palate. FEH is caused by human papillomavirus subtype 13 or 32. The condition occurs in many populations and ethnic groups. We present the clinical case of a 31-year-old male with lesions that clinically and histologically corresponded to FEH.

  19. Emergence of an Apical Epithelial Cell Surface In Vivo.

    PubMed

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B

    2016-01-11

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological, and laser-dissection experiments with theoretical modeling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis.

  20. [Focal epithelial hyperplasia].

    PubMed

    Delgado, Yolanda; Torrelo, Antonio; Colmenero, Isabel; Zambrano, Antonio

    2005-12-01

    Focal epithelial hyperplasia (FEH) is a benign proliferation of the oral mucosa with well defined clinical and histological characteristics. It has been associated with infection of the oral mucosa by types 13 and 32 of the human papillomavirus (HPV), and to a lesser extent, with other types. Its clinical course is variable, although it usually persists for months or years; cases with spontaneous resolution have been described, as have others with prolonged persistence. We present the case of an Ecuadorian boy whose visit was motivated by lesions in the oral mucosa consistent with a diagnosis of FEH, which were confirmed in the histological study, and in which HPV type 13 DNA was identified.

  1. [Focal epithelial hyperplasia].

    PubMed

    Carlino, P; Di Felice, R; Fiore-Donno, G; Samson, J

    1991-05-01

    Five cases of "focal epithelial hyperplasia" (FEH) of the oral mucosa observed in Switzerland are reported. The patients were of Turkish and North African extraction. The lesions of FEH were multiple, painless, located at various sites of the oral mucosa including the tongue in the form of either soft papules or hard nodules. Evidence of a human papilloma virus origin was ascertained. Among the 1067 cases reported in the literature and reviewed for this study, this condition has been described to occur among American Indians, Eskimos and North African, also in Israeli and European cases the disorder was often reported in individuals of Turkish or North African extraction.

  2. Embryological pigment epithelial dystrophies.

    PubMed

    François, J

    1976-01-01

    The embryological pigment epithelial dystrophies may be due, although rather rarely, to chemical factors, such as antibiotics and thalidomide, to ionizing radiation and to infectious factors, syphilis or viral infections, such as mumps, measles, varicella, or cytomegalovirus. The most frequent and the most typical dystrophy is, nevertheless, the rubella epitheliopathy with its widespread scattered black pigment deposits, found predominantly in the posterior pole, and its unaffected visual functions. The macular dystrophy associated with deaf-mutism is also often due to a maternal rubella infection.

  3. Simple Epithelial Keratins.

    PubMed

    Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M

    2016-01-01

    Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized.

  4. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  5. Retinal pigment epithelial cell proliferation

    PubMed Central

    Temple, Sally

    2015-01-01

    The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration. PMID:26041390

  6. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  7. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells.

    PubMed

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na(+) channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  8. Integrins and epithelial cell polarity

    PubMed Central

    Lee, Jessica L.; Streuli, Charles H.

    2014-01-01

    ABSTRACT Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell–matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical–basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). PMID:24994933

  9. NME genes in epithelial morphogenesis

    PubMed Central

    2012-01-01

    The NME family of genes encodes highly conserved multifunctional proteins that have been shown to participate in nucleic acid metabolism, energy homeostasis, cell signaling, and cancer progression. Some family members, particularly isoforms 1 and 2, have attracted extensive interests because of their potential anti-metastasis activity. Unfortunately, there have been few consensus mechanistic explanations for this critical function because of the numerous molecular functions ascribed to these proteins, including nucleoside diphosphate kinase, protein kinase, nuclease, transcription factor, growth factor, among others. In addition, different studies showed contradictory prognostic correlations between NME expression levels and tumor progression in clinical samples. Thus, analyses using pliable in vivo systems have become critical for unraveling at least some aspects of the complex functions of this family of genes. Recent works using the Drosophila genetic system have suggested a role for NME in regulating epithelial cell motility and morphogenesis, which has also been demonstrated in mammalian epithelial cell culture. This function is mediated by promoting internalization of growth factor receptors in motile epithelial cells, and the adherens junction components such as E-cadherin and β-catenin in epithelia that form the tissue linings. Interestingly, NME genes in epithelial cells appear to function in a defined range of expression levels. Either down-regulation or over-expression can perturb epithelial integrity, resulting in different aspects of epithelial abnormality. Such biphasic functions provide a plausible explanation for the documented anti-metastatic activity and the suspected oncogenic function. This review summarizes these recent findings and discusses their implications. PMID:21336542

  10. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  11. Epithelial Thickness After Hyperopic LASIK: Three-dimensional Display With Artemis Very High-frequency Digital Ultrasound

    PubMed Central

    Reinstein, Dan Z.; Archer, Timothy J.; Gobbe, Marine; Silverman, Ronald H.; Coleman, D. Jackson

    2015-01-01

    PURPOSE To characterize the epithelial thickness profile in a population of eyes after LASIK for hyperopia or hyperopic astigmatism. METHODS The epithelial thickness profile was measured in vivo by Artemis very high-frequency (VHF) digital ultrasound scanning (ArcScan Inc) across the central 10-mm diameter of the cornea on 65 eyes at least 3 months after hyperopic LASIK using a 7-mm ablation zone with the MEL 80 excimer laser (Carl Zeiss Meditec). Maps of the average, standard deviation, minimum, maximum, and range of epithelial thickness were plotted. The cross-sectional hemi-meridional epithelial thickness profile was calculated using annular averaging. Linear regression analysis was performed to evaluate correlations between epithelial thickness, spherical equivalent refraction treated, and maximum simulated keratometry. RESULTS The mean thinnest epithelial thickness was 39.7±5.6 μm and the mean thickest epithelial thickness was 89.3±14.6 μm. The average epithelial thickness profile showed an epithelial doughnut pattern characterized by localized central thinning within the 4-mm diameter zone surrounded by an annulus of thick epithelium, with the thickest epithelium at the 3.4-mm radius. The epithelium was on average 10-μm thicker temporally than nasally at the 3.4-mm radius. Central epithelium was thinner and paracentral epithelium was thicker for higher hyperopic corrections and steeper maximum simulated keratometry. CONCLUSIONS Three-dimensional high-resolution ultrasound mapping of epithelial thickness profile after LASIK for hyperopia demonstrated thinner epithelium centrally and thicker epithelium paracentrally. Presumably, the paracentral epithelial thickening compensated in part for the stromal tissue removed by the hyperopic ablation, whereas the central epithelial thinning compensated for the localized increase in corneal curvature. PMID:19928697

  12. Gastrointestinal epithelial neoplasia: Vienna revisited.

    PubMed

    Dixon, M F

    2002-07-01

    International consensus meetings in Padova and Vienna have attempted to rationalise the grading and classification of gastrointestinal epithelial neoplasia (GEN). With its minor adjustments, the Vienna classification of GEN seeks to be more closely in tune with patient management and it is hoped that it is not seen as fiddling around with terms but as a genuine contribution to patient care.

  13. Endomicroscopy imaging of epithelial structures using tissue autofluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.

    2011-04-01

    We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.

  14. MicroRNAs and Epithelial Immunity

    PubMed Central

    Liu, Jun; Drescher, Kristen M.; Chen, Xian-Ming

    2009-01-01

    MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology. PMID:19811319

  15. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  16. Progress Towards Drosophila Epithelial Cell Culture

    PubMed Central

    Simcox, Amanda

    2015-01-01

    Drosophila epithelial research is at the forefront of the field; however, there are no well-characterized epithelial cell lines that could provide a complementary in vitro model for studies conducted in vivo. Here, a protocol is described that produces epithelial cell lines. The method uses genetic manipulation of oncogenes or tumor suppressors to induce embryonic primary culture cells to rapidly progress to permanent cell lines. It is, however, a general method and the type of cells that comprise a given line is not controlled experimentally. Indeed, only a small fraction of the lines produced are epithelial in character. For this reason, additional work needs to be done to develop a more robust epithelial cell-specific protocol. It is expected that Drosophila epithelial cell lines will have great utility for in vitro analysis of epithelial biology, particularly high-throughput analyses such as RNAi screens. PMID:23097097

  17. Emergence of an Apical Epithelial Cell Surface In Vivo.

    PubMed

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B

    2016-01-11

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological, and laser-dissection experiments with theoretical modeling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  18. Epithelial and stromal-specific immune pathway activation in the murine endometrium post-coitum.

    PubMed

    Field, S L; Cummings, M; Orsi, N M

    2015-08-01

    The endometrium is a dynamic tissue, demonstrating cyclical growth/remodelling in preparation for implantation. In mice, seminal constituents trigger mechanisms to prepare the endometrium, a process dubbed 'seminal priming' that modifies immune system components and mediates endometrial remodelling in preparation for pregnancy. An array of cytokines has been reported to mediate this interaction, although much of the literature relates to in vitro studies on isolated endometrial epithelial cells. This study measured changes in immune-related gene expression in endometrial epithelial and stromal cells in vivo following natural mating. CD1 mice were naturally mated and sacrificed over the first 4 days post-coitum (n=3 each day). Endometrial epithelial and stromal compartments were isolated by laser capture microdissection. Labelled cRNA was generated and hybridised to genome-wide expression microarrays. Pathway analysis identified several immune-related pathways active within epithelial and stromal compartments, in particular relating to cytokine networks, matrix metalloproteinases and prostaglandin synthesis. Cluster analysis demonstrated that the expression of factors involved in immunomodulation/endometrial remodelling differed between the epithelial and stromal compartments in a temporal fashion. This study is the first to examine the disparate responses of the endometrial epithelial and stromal compartments to seminal plasma in vivo in mice, and demonstrates the complexity of the interactions between these two compartments needed to create a permissive environment for implantation. PMID:26015594

  19. Comparison of self-reported quality of vision outcomes after myopic LASIK with two femtosecond lasers: a prospective, eye-to-eye study

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2016-01-01

    Purpose To compare self-reported quality of vision (QoV) outcomes after myopic LASIK (laser-assisted in situ keratomileusis) with two femtosecond lasers. Design Prospective, randomized, eye-to-eye study. Methods Consecutive myopic patients were treated with wavefront-guided LASIK bilaterally. Eyes were randomized according to ocular dominance. The flap of one eye was made with the IntraLase FS 60 kHz femtosecond laser with a conventional 70° side-cut, and the flap of the fellow eye was made with the IntraLase iFS 150 kHz femtosecond laser with an inverted 130° side-cut. Patients completed the validated, Rasch-tested, linear-scaled 30-item QoV questionnaire preoperatively and at Months 1, 3, 6, and 12. Results The study enrolled 120 fellow eyes in 60 patients. None of the measured QoV parameters exhibited statistically significant differences between the groups preoperatively or at any postoperative time point. Conclusion Creating LASIK flaps with an inverted side-cut using a 150 kHz femtosecond laser and with a conventional 70° side-cut using a 60 kHz femtosecond laser resulted in no significant differences in self-reported QoV assessed by the QoV questionnaire.

  20. Comparison of self-reported quality of vision outcomes after myopic LASIK with two femtosecond lasers: a prospective, eye-to-eye study

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2016-01-01

    Purpose To compare self-reported quality of vision (QoV) outcomes after myopic LASIK (laser-assisted in situ keratomileusis) with two femtosecond lasers. Design Prospective, randomized, eye-to-eye study. Methods Consecutive myopic patients were treated with wavefront-guided LASIK bilaterally. Eyes were randomized according to ocular dominance. The flap of one eye was made with the IntraLase FS 60 kHz femtosecond laser with a conventional 70° side-cut, and the flap of the fellow eye was made with the IntraLase iFS 150 kHz femtosecond laser with an inverted 130° side-cut. Patients completed the validated, Rasch-tested, linear-scaled 30-item QoV questionnaire preoperatively and at Months 1, 3, 6, and 12. Results The study enrolled 120 fellow eyes in 60 patients. None of the measured QoV parameters exhibited statistically significant differences between the groups preoperatively or at any postoperative time point. Conclusion Creating LASIK flaps with an inverted side-cut using a 150 kHz femtosecond laser and with a conventional 70° side-cut using a 60 kHz femtosecond laser resulted in no significant differences in self-reported QoV assessed by the QoV questionnaire. PMID:27621589

  1. Vertex Models of Epithelial Morphogenesis

    PubMed Central

    Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.

    2014-01-01

    The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108

  2. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of

  3. Epithelial cells and Von Gierke's disease.

    PubMed

    Negishi, H; Benke, P J

    1977-08-01

    Epithelial cells and not fibroblasts from human liver and amniotic fluid contain inducible glucose-6-phosphatase (G-6-Pase) activity. The diagnosis of Von Gierke's disease has been made in a patient with hepatomegaly utilizing cultured epithelial cells grown from a liver biopsy. G-6-Pase activity in epithelial cells from this patient could not be induced by dibutyryl cyclic AMP and theophylline. This is the first use of epithelial cells for diagnosis of a metabolic disease. G-6-Pase activity in cloned epithelial cells from amniotic fluid increases 2- to 3-fold after 24-hr exposure to dibutyryl cyclic AMP and theophylline. The prenatal diagnosis of Von Gierke's disease may be possible in a laboratory experienced with these techniques if epithelial cell growth is obtained from amniotic fluid. PMID:196249

  4. Secretory component: a glandular epithelial cell marker.

    PubMed Central

    Harris, J. P.; South, M. A.

    1981-01-01

    Secretory component (SC) has been demonstrated to be produced by both normal and malignantly transformed glandular epithelial cells. By an indirect immunofluorescent technique, this study surveys tumors of varied cellular origin in order to determine the reliability of SC as a marker for tumor cells derived from glandular epithelium. Both primary and metastatic tumors of glandular epithelial origin demonstrated SC fluorescence, while nonglandular epithelial tumors did not. This observation was extended to live single-cell preparations, which demonstrated intense cell-surface fluorescence only when glandular epithelial tumors cells were examined. Additionally, fixed, cytocentrifuged, single-cell preparations of glandular epithelial tumors demonstrated cytoplasmic SC fluorescence. When breast carcinoma was examined, all cases demonstrated SC, regardless of the degree of differentiation. This assay appears to have useful clinical application in that the finding of SC provides indication of the glandular epithelial origin of a malignantly transformed cell. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:6271014

  5. Healthcare and a holiday: the risks of LASIK tourism.

    PubMed

    Lockington, David; Johnson, Richard; Patel, Dipika V; McGhee, Charles N J

    2014-07-01

    Medical tourism is the practice of travelling overseas for surgery. We describe a patient with low myopia who underwent laser in situ keratomileusis (LASIK) while on holiday in India. She presented to local hospital eye services six weeks post-LASIK with discomfort and reduced vision. She reported three previous LASIK flap lifts in the right eye. Clinical assessment, optical coherence tomography and confocal microscopy demonstrated moderate epithelial ingrowth and reduced visual acuity. Epithelial ingrowth after LASIK may be associated with visual impairment and management is determined by location, magnitude and effect on vision. LASIK tourism may mean patients are less well-informed of risks and lose continuity of professional care.

  6. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  7. Focal epithelial hyperplasia: Heck disease.

    PubMed

    Cohen, P R; Hebert, A A; Adler-Storthz, K

    1993-09-01

    Two sisters of Mexican ancestry had focal epithelial hyperplasia (FEH). The lesions on the oral mucosa of the older child were initially misinterpreted as representing sexual abuse. Microscopic evaluation of a hematoxylin and eosin-stained section from a lower lip papule demonstrated the histologic features of FEH. Although human papillomavirus (HPV) type 13 and HPV32 have been most consistently present in FEH lesions, types 6, 11, 13, and 32 were not detected in the paraffin-embedded tissue specimen of our patient using an in situ hybridization technique. The lesions persisted or recurred during management using destructive modalities; subsequently, they completely resolved spontaneously.

  8. Focal epithelial hyperplasia in Sweden.

    PubMed

    Axéll, T; Hammarström, L; Larsson, A

    1981-01-01

    A prevalence of 0.11% of focal epithelial hyperplasia (FEH) was found among 20,333 adult Swedes. There was no sex difference, the lesion was most prevalent in age groups above 45 years and the lesion was most frequent on the tongue. The frequency of FEH in 15,132 consecutive routine biopsies was 0.26%. Four FEH-cells were ultrastructurally examined. They exhibited a clear cytoplasm with scattered ribosomes, a peripheral condensation of tonofilaments, a central aggregation of chromatin clumps with loss of nuclear membrane and an accumulation of desmosome fragments. No viral particles could be identified in these FEH-cells.

  9. Undulation Instability of Epithelial Tissues

    NASA Astrophysics Data System (ADS)

    Basan, Markus; Joanny, Jean-François; Prost, Jacques; Risler, Thomas

    2011-04-01

    Treating the epithelium as an incompressible fluid adjacent to a viscoelastic stroma, we find a novel hydrodynamic instability that leads to the formation of protrusions of the epithelium into the stroma. This instability is a candidate for epithelial fingering observed in vivo. It occurs for sufficiently large viscosity, cell-division rate and thickness of the dividing region in the epithelium. Our work provides physical insight into a potential mechanism by which interfaces between epithelia and stromas undulate and potentially by which tissue dysplasia leads to cancerous invasion.

  10. Wound healing after laser surgery: an experimental study.

    PubMed

    Cochrane, J P; Beacon, J P; Creasey, G H; Russell, R C

    1980-10-01

    Healing after carbon dioxide laser incisions has been assessed in three animal experiments. Nine incisions in pig skin were found to be significantly weaker after 7 days than similar incisions made with a scalpel, but stronger than those made with a cutting diathermy. Laser excision of skin discs in pigs provided a satisfactory base to take split-skin grafts, but graft take around the edges was less complete than after scalpel excisions. Division and anasto mosis of the colon of 75 rats showed that the laser produced anastomoses that were as strong after 7 days as those produced by scalpel or diathermy division, but the laser did not produce the narrowing of the lumen that occurred with diathermy. It is concluded that if epithelial surfaces are particularly thick and slow to cut with the laser than thermal damage will impair healing, but that in general epithelial surfaces need not be avoided in laser surgery.

  11. Understanding lasers

    SciTech Connect

    Gibilisco, S.

    1989-01-01

    Covering all different types of laser applications-Gibilisco offers an overview of this fascinating phenomenon of light. Here he describes what lasers are and how they work and examines in detail the different kinds of lasers in use today. Topics of particular interest include: the way lasers work; the different kinds of lasers; infrared, ultraviolet and x-ray lasers; use of lasers in industry and manufacturing; use of lasers for long-distance communications; fiberoptic communications; the way laser shows work; the reality of Star Wars; lasers in surgical and medical applications; and holography and the future of laser technology.

  12. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635). PMID:27562284

  13. Epithelial Dysplasia in Oral Cavity

    PubMed Central

    Shirani, Samaneh; Kargahi, Neda; Razavi, Sayed Mohammad; Homayoni, Solmaz

    2014-01-01

    Among oral lesions, we encounter a series of malignant epithelial lesions that go through clinical and histopathologic processes in order to be diagnosed. Identifying these processes along with the etiology knowledge of these lesions is very important in prevention and early treatments. Dysplasia is the step preceding the formation of squamous cell carcinoma in lesions which have the potential to undergo dysplasia. Identification of etiological factors, clinical and histopathologic methods has been the topic of many articles. This article, reviews various articles presenting oral cavity dysplasia, new clinical methods of identifying lesions, and the immunohistochemical research which proposes various markers for providing more precise identification of such lesions. This article also briefly analyzes new treatment methods such as tissue engineering. PMID:25242838

  14. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    PubMed

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-01

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line. PMID:27267063

  15. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition

    PubMed Central

    Muir, Amanda B.; Dods, Kara; Noah, Yuli; Toltzis, Sarit; Chandramouleeswaran, Prasanna Modayur; Lee, Anna; Benitez, Alain; Bedenbaugh, Adam; Falk, Gary W.; Wells, Rebecca G.; Nakagawa, Hiroshi; Wang, Mei-Lun

    2015-01-01

    Background and Aims Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that leads to esophageal fibrosis and stricture. We have recently shown that in EoE, esophageal epithelial cells undergo an epithelial to mesenchymal transition (EMT), characterized by gain of mesenchymal markers and loss of epithelial gene expression. Whether epithelial cells exposed to profibrotic cytokines can also acquire the functional characteristics of activated myofibroblasts, including migration, contraction, and extracellular matrix deposition, is relevant to our understanding and treatment of EoE-associated fibrogenesis. In the current study, we characterize cell migration, contraction, and collagen production by esophageal epithelial cells that have undergone cytokine-induced EMT in vitro. Methods and Results Stimulation of human non-transformed immortalized esophageal epithelial cells (EPC2-hTERT) with profibrotic cytokines TNFα, TGFβ, and IL1β for three weeks led to acquisition of mesenchymal αSMA and vimentin, and loss of epithelial E-cadherin expression. Upon removal of the profibrotic stimulus, epithelial characteristics were partially rescued. TGFβ stimulation had a robust effect upon epithelial collagen production. Surprisingly, TNFα stimulation had the most potent effect upon cell migration and contraction, exceeding the effects of the prototypical profibrotic cytokine TGFβ. IL1β stimulation alone had minimal effect upon esophageal epithelial migration, contraction, and collagen production. Conclusions Esophageal epithelial cells that have undergone EMT acquire functional characteristics of activated myofibroblasts in vitro. Profibrotic cytokines exert differential effects upon esophageal epithelial cells, underscoring complexities of fibrogenesis in EoE, and implicating esophageal epithelial cells as effector cells in EoE-associated fibrogenesis. PMID:25183431

  16. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  17. Effect of laser polarization and pulse energy on therapeutic, femtosecond laser-induced second harmonic generation in corneal tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Ilev, Ilko K.

    2016-03-01

    Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (e.g. cataract surgery), and keratoplasty (cornea transplant), now employ therapeutic infrared femtosecond lasers (FSLs) for their extreme precision, low energy delivered into tissue and advanced ablation characteristics. Although the widely exploited applications of FSLs in medical therapeutics offer significant benefits, FSLs must generate very high intensities in order to achieve optical breakdown, the predominant tissue ablative mechanism, which can also stimulate nonlinear optical effects such as harmonic generation, an effect that generates coherent visible and UV light in the case of second- (SHG) and third-harmonic generation (THG), respectively. In order to improve the understanding of HG in corneal tissue, the effect of FSL polarization and pulse energy were investigated. FSL stimulated SHG intensity in corneal tissue was measured as the laser polarization was rotated 360 degrees. Further, the pulse energy at the SHG wavelength were measured for single FSL pulses as the pulse energy at the fundamental wavelength was varied through a range of clinically relevant values. The results of this study revealed SHG intensity oscillated with laser polarization, having a variation greater than 20%. This relationship seems to due to the intrinsic anisotropy of collagen fibril hyperpolarizability, not related to tissue birefringence. SHG pulse energy measurements showed an increase in SHG pulse energy with increasing FSL pulse energy, however conversion efficiency decreased. This may be related to the dynamic relationship between optical breakdown leading to tissue destruction and HG evolution.

  18. General Information about Ovarian Epithelial Cancer

    MedlinePlus

    ... Primary Peritoneal Cancer Treatment (PDQ®)–Patient Version General Information About Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  19. Respiratory epithelial cysts of the orbit.

    PubMed

    Goh, Rachel L Z; Hardy, Thomas G; Williams, Richard A; McNab, Alan A

    2016-10-01

    To describe post-traumatic and congenital respiratory epithelial cysts in the orbit, which are rare lesions with only 5 and 13 published cases, respectively. We reviewed all cases of respiratory epithelial cysts diagnosed at three institutions (two tertiary referral hospitals, one private clinic) between 1995 and 2015. We describe 10 cases of post-traumatic respiratory epithelial cyst (age range 23 - 82), presenting a mean of 17.4 years after their original trauma; and 3 congenital cases (age range 17-34). All but one case underwent surgical excision of the cyst and its lining, along with any surgical implant within the cyst. Two were recurrent after incomplete excision. Three presented with acute infection within the cyst. Respiratory epithelial orbital cysts are probably commoner than the paucity of published reports would suggest. Post-traumatic cysts often present many years after trauma, and may become secondarily infected. Complete surgical removal is recommended to prevent future recurrence. PMID:27468088

  20. [Gingivo-epithelial attachment in dental alloimplants].

    PubMed

    Ermenc, B

    1989-01-01

    In this article the structure of gingivo-epithelial tissue and survey of research about its attachment to the tooth neck are presented. Some further research themes in this important and delicate field of stomatologic implantology are also discussed.

  1. Respiratory epithelial cysts of the orbit.

    PubMed

    Goh, Rachel L Z; Hardy, Thomas G; Williams, Richard A; McNab, Alan A

    2016-10-01

    To describe post-traumatic and congenital respiratory epithelial cysts in the orbit, which are rare lesions with only 5 and 13 published cases, respectively. We reviewed all cases of respiratory epithelial cysts diagnosed at three institutions (two tertiary referral hospitals, one private clinic) between 1995 and 2015. We describe 10 cases of post-traumatic respiratory epithelial cyst (age range 23 - 82), presenting a mean of 17.4 years after their original trauma; and 3 congenital cases (age range 17-34). All but one case underwent surgical excision of the cyst and its lining, along with any surgical implant within the cyst. Two were recurrent after incomplete excision. Three presented with acute infection within the cyst. Respiratory epithelial orbital cysts are probably commoner than the paucity of published reports would suggest. Post-traumatic cysts often present many years after trauma, and may become secondarily infected. Complete surgical removal is recommended to prevent future recurrence.

  2. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  3. Clara epithelial cell depletion in the lung.

    PubMed

    Sonar, Sanchaita S; Dudda, Jan C

    2013-01-01

    The bronchial epithelium has been increasingly recognized as an important immunomodulatory compartment in asthma and other lung diseases. Clara cells, which comprise the nonciliated secretory epithelial cells, are an important epithelial cell type with functions in the regulation of lung homeostasis and inflammation. Using naphthalene, Clara cells can be depleted within 24 h and regenerate by 1 month, hence, providing an easy method to study the impact of Clara cells on lung inflammation.

  4. An uncommon focal epithelial hyperplasia manifestation.

    PubMed

    dos Santos-Pinto, Lourdes; Giro, Elisa Maria Aparecida; Pansani, Cyneu Aguiar; Ferrari, Junia; Massucato, Elaine Maria Sgavioli; Spolidório, Luis Carlos

    2009-01-01

    Focal epithelial hyperplasia is a rare, contagious disease associated with infection of the oral mucosa by human papillomavirus types 13 or 32, characterized by multiple soft papules of the same color as the adjacent normal mucosa. It mainly affects the lower lip, buccal mucosa, and tongue. The purpose of this case report was to describe a rare verrucal lesion located in the upper gingiva that was clinically and histologically consistent with focal epithelial hyperplasia. PMID:19941767

  5. Transcriptome Analysis of Epithelial and Stromal Contributions to Mammogenesis in Three Week Prepartum Cows

    PubMed Central

    Casey, Theresa; Dover, Heather; Liesman, James; DeVries, Lindsey; Kiupel, Matti; VandeHaar, Michael; Plaut, Karen

    2011-01-01

    Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17). Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathways Analysis (IPA) showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production. PMID:21829467

  6. Forces driving epithelial wound healing

    PubMed Central

    Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2015-01-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and “purse-string” contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. PMID:27340423

  7. A histological study of rabbit corneas after transepithelial corneal crosslinking using partial epithelial photoablation or ethanol treatment

    PubMed Central

    Ozmen, Mehmet Cuneyt; Hondur, Ahmet; Yilmaz, Guldal; Bilgihan, Kamil; Hasanreisoglu, Berati

    2014-01-01

    AIM To evaluate the histological changes after transepithelial corneal crosslinking (CXL) using partial thickness excimer laser ablation or epithelial ethanol application in an experimental rabbit study. METHODS Right eyes of twenty-four rabbits were studied. Four eyes received total epithelial debridement (group I). Four eyes received partial thickness epithelial ablation with excimer laser (group II). Twelve eyes were treated with different durations (30s and 60s) and concentrations (18% to 48%) of ethanol (group III). Riboflavin was applied for 30min intervals along with topical proparacaine drops with benzalkonium chloride, and 370 nm irradiation was performed for 30min, while riboflavin was instilled every 3min. Four eyes (group IV) received 48% ethanol for 30s without riboflavin and irradiation. Eyes were collected after 24h and examined histologically. RESULTS All eyes in group I showed keratocyte loss in the superficial 300 µ of corneal storma. In group II, 1-4 layers of epithelium were preserved and no keratocyte loss occurred. In group III, CXL after treatment with ethanol up to 24% concentration and up to 60s revealed no keratocyte loss. CXL after treatment with 48% and higher ethanol concentrations yielded keratocyte loss in the superficial 200 µ to 300 µ of cornea. CONCLUSION Incomplete excimer laser ablation of the epithelium or treatment with ethanol up to 24% concentration and up to 60s duration yielded no stromal keratocyte loss. To get the same histological appearance seen in epithelial debridement group, partial thickness excimer laser epithelial ablation or ethanol application is not adequate for transepithelial CXL. PMID:25540746

  8. How do polymeric micelles cross epithelial barriers?

    PubMed

    Pepić, Ivan; Lovrić, Jasmina; Filipović-Grčić, Jelena

    2013-09-27

    Non-parenteral delivery of drugs using nanotechnology-based delivery systems is a promising non-invasive way to achieve effective local or systemic drug delivery. The efficacy of drugs administered non-parenterally is limited by their ability to cross biological barriers, and epithelial tissues particularly present challenges. Polymeric micelles can achieve transepithelial drug delivery because of their ability to be internalized into cells and/or cross epithelial barriers, thereby delivering drugs either locally or systematically following non-parenteral administration. This review discusses the particular characteristics of various epithelial barriers and assesses their potential as non-parenteral routes of delivery. The material characteristics of polymeric micelles (e.g., size, surface charge, and surface decoration) and of unimers dissociated from polymeric micelles determine their interactions (non-specific and/or specific) with mucus and epithelial cells as well as their intracellular fate. This paper outlines the mechanisms governing the major modes of internalization of polymeric micelles into epithelial cells, with an emphasis on specific recent examples of the transport of drug-loaded polymeric micelles across epithelial barriers.

  9. Wound healing of intestinal epithelial cells

    PubMed Central

    Iizuka, Masahiro; Konno, Shiho

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events; restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing. PMID:21633524

  10. Comparison of corneal flaps created by Wavelight FS200 and Intralase FS60 femtosecond lasers

    PubMed Central

    Liu, Qian; Zhou, Yue-Hua; Zhang, Jing; Zheng, Yan; Zhai, Chang-Bin; Liu, Jing

    2016-01-01

    AIM To assess and compare the morphology of corneal flaps created by the Wavelight FS200 and Intralase FS60 femtosecond lasers in laser in situ keratomileusis (LASIK). METHODS Four hundred eyes of 200 patients were enrolled in this study and divided into Wavelight FS200 groups (200 eyes) and Intralase FS60 groups (200 eyes). Fourier-domain optical coherence tomography (RTVue OCT) was used to measure the corneal flap thickness of 36 specified measurements on each flap one week after surgery. Results were used to analyze the regularity, uniformity and accuracy of the two types of LASIK flaps. RESULTS The mean thickness of corneal flap and central flap was 105.71±4.72 µm and 105.39±4.50 µm in Wavelight FS200 group and 109.78±11.42 µm and 109.15 ±11.59 µm in Intralase FS60 group, respectively. The flaps made with the Wavelight FS200 femtosecond laser were thinner than those created by the Intralase FS60 femtosecond laser (P=0.000). Corneal flaps in the 2 groups were uniform and regular, showing an almost planar configuration. But the Wavelight FS200 group has more predictability and uniformity of flap creation. The mean deviation between achieved and attempted flap thickness was smaller in the Wavelight FS200 group than that in the Intralase FS60 group, which were 5.18±3.71 µm and 8.68±7.42 µm respectively. The deviation of more than 20 µm was 0.2% measurements in Wavelight FS200 group and 8.29% measurements in Intralase FS60 group. CONCLUSION The morphologies of flaps created by Wavelight FS200 are more uniform and thinner than those created by Intralase FS60. PMID:27500109

  11. Intestinal epithelial dysplasia (tufting enteropathy).

    PubMed

    Goulet, Olivier; Salomon, Julie; Ruemmele, Frank; de Serres, Natacha Patey-Mariaud; Brousse, Nicole

    2007-01-01

    Intestinal epithelial dysplasia (IED), also known as tufting enteropathy, is a congenital enteropathy presenting with early-onset severe intractable diarrhea causing sometimes irreversible intestinal failure. To date, no epidemiological data are available, however, the prevalence can be estimated at around 1/50,000-100,000 live births in Western Europe. The prevalence seems higher in areas with high degree of consanguinity and in patients of Arabic origin. Infants develop within the first days after birth a watery diarrhea persistent in spite of bowel rest and parenteral nutrition. Some infants are reported to have associated choanal rectal or esophageal atresia. IED is thought to be related to abnormal enterocytes development and/or differentiation. Nonspecific punctuated keratitis was reported in more than 60% of patients. Histology shows various degree of villous atrophy, with low or without mononuclear cell infiltration of the lamina propria but specific histological abnormalities involving the epithelium with disorganization of surface enterocytes with focal crowding, resembling tufts. Several associated specific features were reported, including abnormal deposition of laminin and heparan sulfate proteoglycan (HSPG) in the basement membrane, increased expression of desmoglein and ultrastructural changes in the desmosomes, and abnormal distribution of alpha2beta1 integrin adhesion molecules. One model of transgenic mice in which the gene encoding the transcription factor Elf3 is disrupted have morphologic features resembling IED. Parental consanguinity and/or affected siblings suggest an autosomal recessive transmission but the causative gene(s) have not been yet identified making prenatal diagnosis unavailable. Some infants have a milder phenotype than others but in most patients, the severity of the intestinal malabsorption even with enteral feeding make them totally dependent on daily long-term parenteral nutrition with a subsequent risk of complications

  12. Epithelial Ovarian Cancer Experimental Models

    PubMed Central

    Lengyel, E; Burdette, JE; Kenny, HA; Matei, D; Pilrose, J; Haluska, P.; Nephew, KP; Hales, DB; Stack, MS

    2014-01-01

    Epithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase, and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge and many approaches used to study other solid tumors (lung, colon, and breast, for example) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment. This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients, and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis, and chemoresistance. As these new approaches more accurately recapitulate the complex tumor microenvironment, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge. PMID:23934194

  13. The secretome of alginate-encapsulated limbal epithelial stem cells modulates corneal epithelial cell proliferation.

    PubMed

    Wright, Bernice; Hopkinson, Andrew; Leyland, Martin; Connon, Che J

    2013-01-01

    Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (P≤0.05) their growth. As secreted protein acidic and rich in cysteine was previously reported to attenuate proliferation of epithelial cells, this protein may be responsible, at least in part, for inhibition of corneal epithelial cell proliferation. We conclude that limbal epithelial stem cells encapsulated in alginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins.

  14. Assessment of chimerism in epithelial cancers in transplanted patients.

    PubMed

    Leboeuf, Christophe; Ratajczak, Philippe; Vérine, Jérôme; Elbouchtaoui, Morad; Plassa, François; Legrès, Luc; Ferreira, Irmine; Sandid, Wissam; Varna, Mariana; Bousquet, Guilhem; Verneuil, Laurence; Janin, Anne

    2014-01-01

    Cancer is now the most severe complication in the long term in transplant recipients. As most solid-organ or hematopoietic stem-cell transplantations are allogeneic, chimerism studies can be performed on cancers occurring in recipients. We summarize here the different methods used to study chimerism in cancers developing in allogeneic-transplant recipients, analyze their respective advantages and report the main results obtained from these studies. Chimerism analyses of cancers in transplant recipients require methods suited to tissue samples. In the case of gender-mismatched transplantation, the XY chromosomes can be explored using fluorescent in situ hybridization on whole-tissue sections or Y-sequence-specific PCR after the laser microdissection of tumor cells. For cancers occurring after gender-matched transplantation, laser microdissection of tumor cells enables studies of microsatellite markers and high-resolution melting analysis of mitochondrial DNA on genes with marked polymorphism, provided these are different in the donor and the recipient. The results of different studies address the cancers that develop in both recipients and in transplants. The presence of chimeric cells in these two types of cancer implies an exchange of progenitor/stem-cells between transplant and recipient, and the plasticity of these progenitor/stem-cells contributes to epithelial cancers. The presence of chimeric cells in concomitant cancers and preneoplastic lesions implies that the oncogenesis of these cancers progresses through a multistep process.

  15. Scrib is Required for Epithelial Cell Identity and Prevents Epithelial To Mesenchymal Transition in the Mouse

    PubMed Central

    Yamben, Idella F.; Rachel, Rivka A.; Shatadal, Shalini; Copeland, Neal G.; Jenkins, Nancy A.; Warming, Soren; Griep, Anne E.

    2013-01-01

    The integrity and function of epithelial tissues depends on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling. PMID:24095903

  16. Refractive and Aberration Outcomes after Customized Photorefractive Keratectomy in Comparison with Customized Femtosecond Laser

    PubMed Central

    Sajjadi, Valleh; Ghoreishi, Mohammad; Jafarzadehpour, Ebrahim

    2015-01-01

    To compare the refractive and visual outcomes and higher order aberrations in patients with low to moderate myopia who underwent customized photorefractive keratectomy (PRK) or femtosecond laser in situ keratomileusis (Femto-LASIK) this research performed. This study includes data of 120 consecutive eyes of 60 patients with myopia between -3.00 D and -7.00 D with or without astigmatism in two surgery groups: PRK and Femto-LASIK. Refractive, visual, and aberration outcomes of the two methods of surgery were compared after 6 months of follow-up. After six months of follow-up, sphere and cylinder were found significantly decreased and there was no statistically significant difference between the two groups. The mean of uncorrected distance visual acuity in LogMar format for the PRK and Femto-LASIK groups was -0.03±0.07 and -0.01±0.08, respectively, which was not significantly different between the two groups. Higher orders and spherical aberrations increased in both groups significantly, while total aberrations decreased in both groups. After surgery, no differences were observed between the two groups in the amount of aberrations. In conclusion, Both PRK and Femto-LASIK are effective and safe in correcting myopia. In this study PRK induced more spherical and higher order aberrations than Femto-LASIK. PMID:27800501

  17. Epithelial fusion during neural tube morphogenesis

    PubMed Central

    Pai, Yun-Jin; Abdullah, N.L.; Mohd.-Zin, S.W.; Mohammed, R. S.; Rolo, Ana; Greene, Nicholas D.E.; Abdul-Aziz, Noraishah M.; Copp, Andrew J.

    2013-01-01

    Adhesion and fusion of epithelial sheets marks the completion of many morphogenetic events during embryogenesis. Neural tube closure involves an epithelial fusion sequence in which the apposing neural folds adhere initially via cellular protrusions, proceed to a more stable union, and subsequently undergo remodelling of the epithelial structures to yield a separate neural tube roof plate and overlying non-neural ectoderm. Cellular protrusions comprise lamellipodia and filopodia, and studies in several different systems emphasise the critical role of RhoGTPases in their regulation. How epithelia establish initial adhesion is poorly understood but, in neurulation, may involve interactions between EphA receptors and their ephrinA ligands. Epithelial remodelling is spatially and temporally correlated with apoptosis in the dorsal neural tube midline, but experimental inhibition of this cell death does not prevent fusion and remodelling. A variety of molecular signalling systems have been implicated in the late events of morphogenesis, but genetic redundancy, for example among the integrins and laminins, makes identification of the critical players challenging. An improved understanding of epithelial fusion can provide insights into normal developmental processes, and may also indicate the mode of origin of clinically important birth defects. PMID:22945349

  18. Epithelial repair mechanisms in the lung

    PubMed Central

    Crosby, Lynn M.

    2010-01-01

    The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-α, KGF, HGF), chemokines (MCP-1), interleukins (IL-1β, IL-2, IL-4, IL-13), and prostaglandins (PGE2), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-β and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes. PMID:20363851

  19. Scattering attenuation microscopy of oral epithelial dysplasia

    NASA Astrophysics Data System (ADS)

    Tomlins, Pete H.; Adegun, Oluyori; Hagi-Pavli, Eleni; Piper, Kim; Bader, Dan; Fortune, Farida

    2010-11-01

    We present a new method for quantitative visualization of premalignant oral epithelium called scattering attenuation microscopy (SAM). Using low-coherence interferometry, SAM projects measurements of epithelial optical attenuation onto an image of the tissue surface as a color map. The measured attenuation is dominated by optical scattering that provides a metric of the severity of oral epithelial dysplasia (OED). Scattering is sensitive to the changes in size and distribution of nuclear material that are characteristic of OED, a condition recognized by the occurrence of basal-cell-like features throughout the epithelial depth. SAM measures the axial intensity change of light backscattered from epithelial tissue. Scattering measurements are obtained from sequential axial scans of a 3-D tissue volume and displayed as a 2-D SAM image. A novel segmentation method is used to confine scattering measurement to epithelial tissue. This is applied to oral biopsy samples obtained from 19 patients. Our results show that imaging of tissue scattering can be used to discriminate between different dysplastic severities and furthermore presents a powerful tool for identifying the most representative tissue site for biopsy.

  20. Human glomerular epithelial cell proteoglycans

    SciTech Connect

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M. )

    1990-04-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate.

  1. Laser-assisted hair transplantation: histologic comparison between holmium:YAG and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chu, Eugene A.; Rabinov, C. Rose; Wong, Brian J.; Krugman, Mark E.

    1999-06-01

    The histological effects of flash-scanned CO2 (λ=10.6μm) and pulsed Holmium:YAG (Ho:YAG, λ=2.12μm) lasers were evaluated in human scalp following the creation of hair transplant recipient channels. Ho:YAG laser irradiation created larger zones of thermal injury adjacent to the laser channels than irradiation with the CO2 laser device. When the two lasers created recipient sites of nearly equal depth, the Holmium:YAG laser caused a larger region of lateral thermal damage (589.30μm) than the CO2 laser (118.07μm). In addition, Holmium:YAG irradiated specimens exhibited fractures or discontinuities beyond the region of clear thermal injury. This shearing effect is consistent with the photoacoustic mechanism of ablation associated with pulsed mid-IR laser irradiation. In contrast, channels created with the CO2 exhibited minimal epithelial disruption and significantly less lateral thermal damage. While the Holmium:YAG laser is a useful tool for ablation soft tissue with minimal char in select applications (sinus surgery, arthroscopic surgery), this study suggests that the use of the CO2 laser for the creation of transplantation recipient channels result in significantly less lateral thermal injury for the laser parameters employed.

  2. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    SciTech Connect

    Larin, K V; Tuchin, V V

    2008-06-30

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  3. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  4. Epithelial-Mesenchymal Transition and Breast Cancer

    PubMed Central

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2016-01-01

    Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT) in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs) and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges. PMID:26821054

  5. Gap geometry dictates epithelial closure efficiency

    PubMed Central

    Ravasio, Andrea; Cheddadi, Ibrahim; Chen, Tianchi; Pereira, Telmo; Ong, Hui Ting; Bertocchi, Cristina; Brugues, Agusti; Jacinto, Antonio; Kabla, Alexandre J.; Toyama, Yusuke; Trepat, Xavier; Gov, Nir; Neves de Almeida, Luís; Ladoux, Benoit

    2015-01-01

    Closure of wounds and gaps in tissues is fundamental for the correct development and physiology of multicellular organisms and, when misregulated, may lead to inflammation and tumorigenesis. To re-establish tissue integrity, epithelial cells exhibit coordinated motion into the void by active crawling on the substrate and by constricting a supracellular actomyosin cable. Coexistence of these two mechanisms strongly depends on the environment. However, the nature of their coupling remains elusive because of the complexity of the overall process. Here we demonstrate that epithelial gap geometry in both in vitro and in vivo regulates these collective mechanisms. In addition, the mechanical coupling between actomyosin cable contraction and cell crawling acts as a large-scale regulator to control the dynamics of gap closure. Finally, our computational modelling clarifies the respective roles of the two mechanisms during this process, providing a robust and universal mechanism to explain how epithelial tissues restore their integrity. PMID:26158873

  6. Gap geometry dictates epithelial closure efficiency.

    PubMed

    Ravasio, Andrea; Cheddadi, Ibrahim; Chen, Tianchi; Pereira, Telmo; Ong, Hui Ting; Bertocchi, Cristina; Brugues, Agusti; Jacinto, Antonio; Kabla, Alexandre J; Toyama, Yusuke; Trepat, Xavier; Gov, Nir; Neves de Almeida, Luís; Ladoux, Benoit

    2015-07-09

    Closure of wounds and gaps in tissues is fundamental for the correct development and physiology of multicellular organisms and, when misregulated, may lead to inflammation and tumorigenesis. To re-establish tissue integrity, epithelial cells exhibit coordinated motion into the void by active crawling on the substrate and by constricting a supracellular actomyosin cable. Coexistence of these two mechanisms strongly depends on the environment. However, the nature of their coupling remains elusive because of the complexity of the overall process. Here we demonstrate that epithelial gap geometry in both in vitro and in vivo regulates these collective mechanisms. In addition, the mechanical coupling between actomyosin cable contraction and cell crawling acts as a large-scale regulator to control the dynamics of gap closure. Finally, our computational modelling clarifies the respective roles of the two mechanisms during this process, providing a robust and universal mechanism to explain how epithelial tissues restore their integrity.

  7. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  8. Biomarkers for epithelial-mesenchymal transitions

    PubMed Central

    Zeisberg, Michael; Neilson, Eric G.

    2009-01-01

    Somatic cells that change from one mature phenotype to another exhibit the property of plasticity. It is increasingly clear that epithelial and endothelial cells enjoy some of this plasticity, which is easily demonstrated by studying the process of epithelial-mesenchymal transition (EMT). Published reports from the literature typically rely on ad hoc criteria for determining EMT events; consequently, there is some uncertainty as to whether the same process occurs under different experimental conditions. As we discuss in this Personal Perspective, we believe that context and various changes in plasticity biomarkers can help identify at least three types of EMT and that using a collection of criteria for EMT increases the likelihood that everyone is studying the same phenomenon — namely, the transition of epithelial and endothelial cells to a motile phenotype. PMID:19487819

  9. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    PubMed Central

    Geisler, Florian; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection. PMID:27355965

  10. Clinical Use of Laser-Microtextured Abutments: A Case Series.

    PubMed

    Shapoff, Cary A; Babushkin, Jeffrey A; Wohl, David J

    2016-01-01

    This article discusses the clinical use of laser-microtextured abutments on dental implant restorations. Four cases are presented, each using one of the four commercially available laser-microtextured abutment styles. Numerous preclinical and clinical studies have shown the positive effects of laser microtexturing on the implant platform in limiting crestal bone loss and benefiting soft tissue stability. Other histologic studies of laser microtexturing on the implant abutment have demonstrated the ability of this specific feature to block epithelial downgrowth and provide a functional connective tissue attachment to the abutment surface. Other abutment designs, styles, and materials have only demonstrated a soft tissue seal with epithelial adhesion and a circular ring of connective tissue fibers around the abutment without direct contact. This article presents clinical and radiographic case examples from a private practice perspective on the longterm successful use of microtextured abutments with respect to crestal bone levels, exceptional soft tissue health, and stability with minimal sulcular depth. PMID:27560683

  11. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  12. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration.

    PubMed

    Le Guen, Ludovic; Marchal, Stéphane; Faure, Sandrine; de Santa Barbara, Pascal

    2015-10-01

    The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration. PMID:26126787

  13. Physiology of Epithelial Chloride and Fluid Secretion

    PubMed Central

    Frizzell, Raymond A.; Hanrahan, John W.

    2012-01-01

    Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes. PMID:22675668

  14. Extensive Focal Epithelial Hyperplasia: A Case Report.

    PubMed

    Mansouri, Zahra; Bakhtiari, Sedigheh; Noormohamadi, Robab

    2015-01-01

    Focal epithelial hyperplasia (FEH) or Heck's disease is a rare viral infection of the oral mucosa caused by human papilloma virus especially subtypes 13 or 32. The frequency of this disease varies widely from one geographic region and ethnic groups to another. This paper reports an Iranian case of extensive focal epithelial hyperplasia. A 35-year-old man with FEH is described, in whom the lesions had persisted for more than 25 years. The lesion was diagnosed according to both clinical and histopathological features. Dental practitioner should be aware of these types of lesions and histopathological examination together and a careful clinical observation should be carried out for a definitive diagnosis.

  15. The combined epithelial odontogenic tumour in Malaysians.

    PubMed

    Siar, C H; Ng, K H

    1991-04-01

    The combined epithelial odontogenic tumour represents a hybrid lesion comprising primarily areas of adenomatoid odontogenic tumour intermixed with foci of calcifying epithelial odontogenic tumour. Five such cases retrieved from the files of the Division of Stomatology, Institute for Medical Research, Kuala Lumpur, and four others from the existing literature were analysed. A mean age of 18.8 years, a female preponderance (66.7%) with a male to female ratio of 1:2 and predilection for the mandible (55.6%) were observed. All cases were treated by conservative surgery and the lack of recurrence confirmed the innocuous nature of this lesion.

  16. Respiratory epithelial cells orchestrate pulmonary innate immunity

    PubMed Central

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and ‘instruct’ the professional immune system to protect the lungs from infection and injury. PMID:25521682

  17. Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells

    PubMed Central

    1994-01-01

    Synaptophysin is a major transmembrane glycoprotein of a type of small vesicle with an electron-translucent content (SET vesicles), including the approximately 50-nm presynaptic vesicles in neuronal cells, and of similar, somewhat larger (< or = approximately 90 nm) vesicles (SLMV) in neuroendocrine (NE) cells. When certain epithelial non-NE cells, such as human hepatocellular carcinoma PLC cells, were cDNA transfected to synthesize synaptophysin, the new molecules appeared in specific SET vesicles. As this was in contrast to other reports that only NE cells were able to sort synaptophysin away from other plasma membrane proteins into presynaptic- or SLMV-type vesicles, we have further characterized the vesicles containing synaptophysin in transfected PLC cells. Using fractionation and immunoisolation techniques, we have separated different kinds of vesicles, and we have identified a distinct type of synaptophysin-rich, small (30-90-nm) vesicle that contains little, if any, protein of the constitutive secretory pathway marker hepatitis B surface antigen, of the fluid phase endocytosis marker HRP, and of the plasma membrane recycling endosomal marker transferrin receptor. In addition, we have found variously sized vesicles that contained both synaptophysin and transferrin receptor. A corresponding result was also obtained by direct visualization, using double-label immunofluorescence microscopy for the endocytotic markers and synaptophysin in confocal laser scan microscopy and in double- immunogold label electron microscopy. We conclude that diverse non-NE cells of epithelial nature are able to enrich the "foreign" molecule synaptophysin in a category of SET vesicles that are morphologically indistinguishable from SLMV of NE cells, including one type of vesicle in which synaptophysin is sorted away from endosomal marker proteins. Possible mechanisms of this sorting are discussed. PMID:7798314

  18. Visual outcomes of topography-guided excimer laser surgery for treatment of patients with irregular astigmatism.

    PubMed

    Ghoreishi, Mohammad; Naderi Beni, Afsaneh; Naderi Beni, Zahra

    2014-01-01

    The aim of this study was to evaluate the efficacy, safety, and predictability of topography-guided treatments to enhance refractive status following other corneal surgical procedures. In a prospective case series study, 28 consecutive eyes of 26 patients with irregular astigmatism after radial keratotomy, corneal transplant, small hyperopic and myopic excimer laser optical zones, and corneal scars were operated. Laser-assisted in situ keratomileusis (LASIK) (n = 8) and photorefractive keratectomy (PRK) (n = 20) were performed using the ALLEGRETTO WAVE excimer laser and topography-guided customized ablation treatment software. Preoperative and postoperative uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), manifest and cycloplegic refraction, and corneal topography with asphericity were analyzed in 12 months follow-up. Uncorrected visual acuity (UCVA) changed from 0.2 ± 0.2 or (20/100 ± 20/100) to 0.51 ± 0.31 or (20/40 ± 20/60) in the LASIK group (P = 0.01) and from 0.34 ± 0.16 or (20/60 ± 20/120) to 0.5 ± 0.23 or (20/40 ± 20/80) in the PRK group (P = 0.01). Refractive cylinder decreased from -3.2 ± 0.84 diopters (D) to -2.06 ± 0.42 D in the LASIK group (P = 0.07) and from -2.25 ± 0.39 D to -1.5 ± 0.23 D in the PRK group (P = 0.008). Best corrected visual acuity did not change significantly in either group. Topography-guided treatment is effective in correcting the irregular astigmatism after refractive surgery. Topography-guided PRK can significantly reduce irregular astigmatism and increase the UCVA and BCVA.

  19. [Gastric epithelial polyps (part two)].

    PubMed

    Espejo Romero, Luis Hernán; Navarrete Siancas, Jesús

    2004-01-01

    The following is a statistical report regarding gastric polyps: Frequency determined through endoscopic examinations was 3.6%. The terms hyperplastic polyps and adenomas were used for the classification of epithelial polyps, considering the suprafoveal hyperplasias within the hyperplastic polyps, provided they were elevated lesions. Out of 2,283 polyps, 1,959 were hyperplastic (86%) and 324 were adenomas (14%). When analyzing 780 polyps, 86 (11%) were found to have the Nakamura III category. With regard to topography, in an examination of 2253 polyps, hyperplastic polyps were located as follows: 325 (17%) in the antrum, 1402 (73%) in the body and 202 (10%) in the fundus. Adenomas had a different distribution: 212 (65%) in the antrum, 100 (31%) in the body and 12 (4%) in the fundus. Out of 371 hyperplastic polyps examined, 49% were pediculate and 51% were sessile; on the contrary, 86 % of adenomas were sessile. The average age was 66.2 years in adenoma carriers, 58.5 in those having hyperplastic polyps, and 57.4 for suprafoveal hyperplasias. In 287 adenomas, 94.1% of carriers were over 40 years old. Out of 92 adenomas examined, 21.7% evidenced adenoma metaplasia and 72.8% evidenced metaplasia in adjacent areas. Only 5.5% had no metaplasia. In 105 hyperplastic polyps studied, intestinal metaplasia was found: 16.7% in the polyp and 60% in adjacent areas. No metaplasia was found in the remaining 23.3%. Average size of the adenomas was 14 mm and of hyperplastic polyps, 11 mm. A total of 195 adenomas were smaller than 10 mm. The percentage of malignization in 288 adenomas examined was closely related to their size: 214 (66%) smaller than 20 mm, had a malignization percentage of 7%; 74 (34%) larger than 20 mm, had 51% malignization, and 86.2% malignization was found in adenomas of over 40 mm. Global malignization percentage of adenomas was 18%. However, when adenomas with high grade dysplasia in the 4.1 category of the Viena classification (non-invasive high grade

  20. CO2 laser biopsies of oral mucosa: an immunocytological and histological comparative study

    NASA Astrophysics Data System (ADS)

    Vitale, Marina C.; Botticelli, Annibale R.; Zaffe, Davide; Martignone, Alessandra; Cisternino, Aurelia; Vezzoni, Franco; Scarpelli, Francesco

    2001-04-01

    The relationship between bioptic technique and tissue preservation has been studied in 18 oral biopsies of young patients obtained by electro surgery or CO2 laser surgery. Biopsies were formalin fixed, paraffin embedded and histologically, histochemically and immunocytochemically treated. All the biopsies show inflammatory cell infiltration, epithelial spongiosis, trichocariosis, supra basal small blisters, and epithelial clefts with lamina detaching from the corium. Histochemistry shows both the presence of edema and acid mucopolysaccharides inside the corium, and variable glycogen content in epithelial cells. Trichocariotic cells show a positive MiB1/Ki67 expression, when they are present. Nevertheless, laser biopsies show a lower amount of basophilic fibrous tissue and of bc12 bodies detection, connected with a higher amount of glycogen, Cytokeratin and MiB1/Ki67 expression in epithelial cells, compared to bovie biopsies. The result show a higher degree of damages in particular at the epithelial level, in electro surgery biopsies rather than laser biopsies. The best epithelial and corium preservation showed by laser biopsies suggest a chance of reversible condition, which can lead to a complete recovery due to its higher capability of restoring tissues.

  1. Laser Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dopant level analysis is important to the laser system designer because it allows him to model the laser's performance. It also allows the end user to determine what went wrong when a laser fails to perform as expected. Under a Small Business Innovation Research (SBIR) contract, Scientific Materials Corporation has developed a process for producing uniform laser rods in which the amount of water trapped in the crystal during growth is reduced. This research led to the formation of a subsidiary company, Montana Analytical Services, which conducts analysis of laser rods for dopant ion concentrations. This is a significant advance in laser technology.

  2. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  3. Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity.

    PubMed

    Iglesias-Bartolome, Ramiro; Callejas-Valera, Juan Luis; Gutkind, J Silvio

    2013-04-01

    The squamous epithelium covering the skin and oral mucosa relies on epithelial stem cells for tissue renewal. Dynamic changes in DNA methylation, histone methylation and acetylation, and higher order chromatin structure are required to preserve their self-renewal capacity while orchestrating the timely execution of cell differentiation programs. This complex network of epigenetic modifications shapes the epithelial stem cell identity and fate. Pathological alterations can be perceived by aberrant chromatin sensors, such as the INK4/ARF locus, which initiate tumor suppressive cell senescence programs, and can often result in epithelial stem cell exhaustion. Unveiling the mechanisms controlling the epigenome in epithelial stem cells may help protect against the loss of their tissue regenerative capacity, thereby preventing premature aging without increasing cancer risk. PMID:23434069

  4. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling.

    PubMed

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. PMID:27431614

  5. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  6. Iris pigment epithelial cysts in a newborn

    PubMed Central

    Zargar, Shabnam; Prendiville, Kevin John; Martinez, Eladio

    2016-01-01

    Purpose: We report a case of iris pigment epithelial cysts in a newborn and discuss the importance of an accurate diagnosis for prevention of amblyopia. Methods: We describe a case of an abnormal red reflex seen on a newborn exam. Results: A full-term female born via normal spontaneous vaginal delivery without any complications was seen in the newborn nursery. She was noted to have an abnormal eye exam. Pupils were large with circular dark excrescences of the iris pigment epithelium. She was referred to a pediatric ophthalmologist where she was noted to fixate and follow faces. No afferent pupillary defect was seen. OD red reflex was normal whereas OS red reflex was blocked mostly by dark excrescences. A 2–3 mm dark brown lesion was seen in the OD iris and a 3–5 mm dark brown lesion was seen in the OS iris, consistent with a pupillary iris pigment epithelial cyst. Central visual axis was clear OU. Glaucoma was not present and patching was not performed. Observations and clinical photographs were recommended with follow-up in three months. Conclusion: Iris pigment epithelial cysts are uncommonly seen in children. The primary care provider first seeing a newborn must be aware of lesions obscuring a red reflex with appropriate follow-up. Follow-up in three months with IOP measurements is recommended. Iris pigment epithelial cysts in children may be a cause of amblyopia, thus prompt evaluation is important for prognostic purposes and the prevention of amblyopia. PMID:27625966

  7. The buffer capacity of airway epithelial secretions

    PubMed Central

    Kim, Dusik; Liao, Jie; Hanrahan, John W.

    2014-01-01

    The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO−3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO−3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO−3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions. PMID:24917822

  8. Maintaining epithelial stemness with p63.

    PubMed

    Melino, Gerry; Memmi, Elisa Maria; Pelicci, Pier Giuseppe; Bernassola, Francesca

    2015-07-28

    In stratified epithelial and glandular tissues, homeostasis relies on the self-renewing capacity of stem cells, which are within the basal layer. The p53 family member p63 is an indispensable transcription factor for epithelial morphogenesis and stemness. A splice variant of the transcription factor p63 that lacks an amino-terminal domain, ΔNp63, is selectively found in the basal compartments of several ectoderm-derived tissues such as stratified and glandular epithelia, in which it is required for the replenishment of stem cells. Thus far, the transcriptional programs downstream of p63 in stemness regulation remain incompletely defined. Unveiling the molecular basis of stem cell self-renewal may be relevant in understanding how this process may contribute to cancer development. In this review, we specifically highlight experimental investigations, which suggest that p63 is a marker of normal epithelial stem cells and describe p63 transcriptional targets that may be involved in stemness regulation. Finally, we discuss relevant findings implicating p63 in epithelial cancer stem cell biology. PMID:26221054

  9. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion

  10. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  11. Protons sensitize epithelial cells to mesenchymal transition.

    PubMed

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M; Pluth, Janice M; Cucinotta, Francis A

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  12. [Epithelial-mesenchymal transition in cancer progression].

    PubMed

    Gos, Monika; Miłoszewska, Joanna; Przybyszewska, Małgorzata

    2009-01-01

    According to recently published data, the epithelial-mesenchymal transition--a process important for embryonic development, may be involved in many pathological processes such as wound healing, tissue fibrosis or cancer progression. The EMT process in cell is driven by growth factors (EGF, PDGF, HGF) or other signaling proteins such as TGF-beta, sonic hedgehog (Shh), Wnt/beta-catenin and extracellular matrix (ECM) components that may stimulate cellular growth and migration. During cancer progression, the EMT process is necessary to the conversion of benign tumor to aggressive and highly invasive cancer. This is due to complex changes in cancer cells and their microenvironment that lead to dissolution of intracellular junctions and their detachment from basolateral membrane, and changes in the interactions between cancer cells and ECM. The loss of adhesion is accompanied by molecular and morphologic changes in cancer cells that are essential for the phenotypic change from epithelial to mesenchymal one, and the acquirement of higher migration and invasion potential. During the colonization of distant sites, a reverse process mesenchymal-epithelial transition (MET) takes place and metastatic cancer cells again acquire the epithelial phenotype. The EMT in cancer progression is not only specific for cancer cells. It has been suggested that also cells within tumor microenvironment e.g. cancer associated fibroblasts (CAF) are generated in part from normal epithelial cells in EMT process. The understanding of the role of EMT and MET processes in cancer progression and their relationship with cancer stem cells, cancer associated fibroblasts and other stroma cells might lead to the discovery of new, targeted cancer therapies.

  13. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  14. Epithelial-mesenchymal transition in malignant mesothelioma.

    PubMed

    Fassina, Ambrogio; Cappellesso, Rocco; Guzzardo, Vincenza; Dalla Via, Lisa; Piccolo, Stefano; Ventura, Laura; Fassan, Matteo

    2012-01-01

    Epithelial-mesenchymal transition is a physiopathological process by which epithelial cells acquire mesenchymal shape and properties. Malignant mesothelioma is histologically characterized by the concomitant presence of epithelioid and sarcomatoid features, the latter being associated to worse prognosis, thus suggesting a role of epithelial-mesenchymal transition in this dual phenotype. We studied 109 malignant mesotheliomas (58 epithelioid, 26 sarcomatoid, and 25 biphasic) by immunohistochemistry and qRT-PCR analysis, and demonstrated a substantial switch from epithelial markers (E-cadherin, β-catenin, and cytokeratins 5/6) to mesenchymal markers (N-cadherin, vimentin, α-smooth muscle actin, Snail, Slug, Twist, ZEB1, ZEB2, S100A4, MMP2, and MMP9) through epithelioid to biphasic and sarcomatoid histotypes. In agreement with these findings, the ectopic expression of miR-205 (a repressor of ZEB1 and ZEB2 expression) in MeT-5A (mesothelial cell line), H2452 (an epithelioid malignant mesothelioma cell line) and MSTO-211H (a biphasic malignant mesothelioma cell line) not only induced a significant reduction of ZEB1 and ZEB2 and a consequent up-regulation of E-cadherin gene expression, but also inhibited migration and invasion. Moreover, miR-205 was significantly down-regulated in biphasic and sarcomatoid histotypes (qRT-PCR and in situ hybridization analyses). Collectively, our findings indicate that epithelial-mesenchymal transition has a significant part in the morphological features of malignant mesothelioma. In particular, miR-205 down-regulation correlated significantly with both a mesenchymal phenotype and a more aggressive behavior.

  15. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  16. Human odontogenic epithelial cells derived from epithelial rests of Malassez possess stem cell properties.

    PubMed

    Tsunematsu, Takaaki; Fujiwara, Natsumi; Yoshida, Maki; Takayama, Yukihiro; Kujiraoka, Satoko; Qi, Guangying; Kitagawa, Masae; Kondo, Tomoyuki; Yamada, Akiko; Arakaki, Rieko; Miyauchi, Mutsumi; Ogawa, Ikuko; Abiko, Yoshihiro; Nikawa, Hiroki; Murakami, Shinya; Takata, Takashi; Ishimaru, Naozumi; Kudo, Yasusei

    2016-10-01

    Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of the Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. ERM cells are unique epithelial cells that remain in periodontal tissues throughout adult life. They have a functional role in the repair/regeneration of cement or enamel. Here, we isolated odontogenic epithelial cells from ERM in the periodontal ligament, and the cells were spontaneously immortalized. Immortalized odontogenic epithelial (iOdE) cells had the ability to form spheroids and expressed stem cell-related genes. Interestingly, iOdE cells underwent osteogenic differentiation, as demonstrated by the mineralization activity in vitro in mineralization-inducing media and formation of calcification foci in iOdE cells transplanted into immunocompromised mice. These findings suggest that a cell population with features similar to stem cells exists in ERM and that this cell population has a differentiation capacity for producing calcifications in a particular microenvironment. In summary, iOdE cells will provide a convenient cell source for tissue engineering and experimental models to investigate tooth growth, differentiation, and tumorigenesis. PMID:27479086

  17. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  18. Two-photon fluorescence imaging and femtosecond laser microsurgery to study drosophila dorsal closure

    NASA Astrophysics Data System (ADS)

    Thayil K. N., Anisha; Pereira, Andrea; Mathew, Manoj; Artigas, David; Martín Blanco, Enrique; Loza-Alvarez, Pablo

    2008-02-01

    Dorsal closure is a key morphogenic process that occurs at the last stages of Drosophila melanogaster embryogenesis. It involves a well coordinated rearrangement and movement of tissues that resemble epithelial wound healing in mammals. The cell dynamics and intracellular signaling pathways that accompany hole closure are expected to be similar during would healing providing a model system to study epithelial healing. Here we demonstrate the use of two-photon fluorescence microscope together with femtosecond laser ablation to examine the epithelial wound healing during embryonic dorsal closure. By using tightly focused NIR femtosecond pulses of subnanojoule energy we are able to produce highly confined microsurgery on the epithelial cells of a developing embryo. We observed that drosophila epidermis heals from the laser wounds with increased activity of actin near the wound edges.

  19. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  20. Growth inhibition of Candida by human oral epithelial cells.

    PubMed

    Steele, C; Leigh, J; Swoboda, R; Fidel, P L

    2000-11-01

    Oropharyngeal candidiasis (OPC) caused by Candida albicans is a significant problem in human immunodeficiency virus (HIV)-infected persons. Recognizing the paucity of information on innate and/or adaptive mucosal host defenses against C. albicans, we recently reported that human and nonhuman primate and mouse vaginal epithelial cells inhibit the growth of C. albicans in vitro. In the present study, oral epithelial cells collected from saliva of healthy volunteers and a purified oral epithelial cell line were found to inhibit blastoconidia and/or hyphal growth of several Candida species. Cell contact was a strict requirement for the epithelial cell anti-Candida activity; neither saliva nor culture supernatants alone inhibited Candida growth, and addition of saliva to the coculture did not modulate the epithelial cell activity. Finally, epithelial cell anti-Candida activity was significantly lower in HIV-infected persons with OPC. Together, these results suggest that oral epithelial cells may play a role in innate resistance against OPC.

  1. Cutaneous lasers.

    PubMed

    Fedok, Fred G; Garritano, Frank; Portela, Antonio

    2013-02-01

    There has been a remarkable development and evolution of laser technology, leading to adaptation of lasers for medical use and the treatment of skin problems and disorders. Many treatments that required incisional surgery and other invasive methods are now preferentially treated with a laser. Although laser advances have resulted in the availability of some amazing tools, they require the clinical skill and judgment of the clinician for their optimal use. This article provides a clinically oriented overview of many of the lasers valuable in facial plastic surgery. Basic science, clinical adaptations, and patient management topics are covered.

  2. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  3. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  4. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  5. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  6. Expression analysis of Matrix Metalloproteinase-9 in epithelialized and non-epithelialized apical periodontitis lesions

    PubMed Central

    Carneiro, Everdan; Menezes, Renato; Garlet, Gustavo Pompermaier; Garcia, Roberto Brandão; Bramante, Clóvis Monteiro; Figueira, Rita; Sogayar, Mari; Granjeiro, José Mauro

    2009-01-01

    OBJECTIVE To determine the expression of matrix metalloproteinase-9 (MMP-9) in apical periodontitis lesions. STUDY DESIGN Nineteen epithelialized and eighteen non-epithelialized apical periodontitis lesions were collected after periapical surgery. After histological processing, serial sectioning, H&E staining and microscopic analysis, 10 epithelialized and 10 non-epithelialized lesions were selected for immunohistochemical analysis for MMP-9 and CD 68. At least 1/3 of each specimen was frozen at −70°C for further mRNA isolation and reverse transcription into cDNA for Real-Time-PCR procedures. The relative expression of a target gene was determined in comparison with reference genes (GAPDH, HPRT, β-actin and BCRP). RESULTS Polymorphonuclear neutrophils, macrophages and lymphocytes were stained for MMP-9 in both types of lesions, and when present, epithelial cells were also stained. The number and the ratio of MMP-9+/total cells were greater in non-epithelialized than epithelialized lesions (p=0.0001) and showed a positive correlation to CD68+/total cells (p=0.045). No significant differences were observed for MMP-9 mRNA expression between ephithelized and non-ephithelized lesions. However, when compared to healthy periapical ligaments, both types of lesions presented increased MMP-9 expression (p<0.0001). CONCLUSION The present data suggest the participation of several inflammatory cells, mainlly CD68+ cells, in the MMP-9 expression in apical periodontitis lesions. MMP-9 could be actively enroled in the ECM degradation in apical periodontitis lesions. PMID:18926740

  7. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis.

    PubMed

    Khosravi, Farhad; Michel, Vera; Galuska, Christina E; Bhushan, Sudhanshu; Christian, Philipp; Schuppe, Hans-Christian; Pilatz, Adrian; Galuska, Sebastian P; Meinhardt, Andreas

    2016-08-19

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis. PMID:27339898

  8. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    PubMed

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm.

  9. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier.

    PubMed

    Lehmann, Andrea D; Daum, Nicole; Bur, Michael; Lehr, Claus-Michael; Gehr, Peter; Rothen-Rutishauser, Barbara M

    2011-04-01

    A triple cell co-culture model was recently established by the authors, consisting of either A549 or 16HBE14o- epithelial cells, human blood monocyte-derived macrophages and dendritic cells, which offers the possibility to study the interaction of xenobiotics with those cells. The 16HBE14o- containing co-culture model mimics the airway epithelial barrier, whereas the A549 co-cultures mimic the alveolar type II-like epithelial barrier. The goal of the present work was to establish a new triple cell co-culture model composed of primary alveolar type I-like cells isolated from human lung biopsies (hAEpC) representing a more realistic alveolar epithelial barrier wall, since type I epithelial cells cover >93% of the alveolar surface. Monocultures of A549 and 16HBE14o- were morphologically and functionally compared with the hAEpC using laser scanning microscopy, as well as transmission electron microscopy, and by determining the epithelial integrity. The triple cell co-cultures were characterized using the same methods. It could be shown that the epithelial integrity of hAEpC (mean ± SD, 1180 ± 188 Ω cm(2)) was higher than in A549 (172 ± 59 Ω cm(2)) but similar to 16HBE14o- cells (1469 ± 156 Ω cm(2)). The triple cell co-culture model with hAEpC (1113 ± 30 Ω cm(2)) showed the highest integrity compared to the ones with A549 (93 ± 14 Ω cm(2)) and 16HBE14o- (558 ± 267 Ω cm(2)). The tight junction protein zonula occludens-1 in hAEpC and 16HBE14o- were more regularly expressed but not in A549. The epithelial alveolar model with hAEpC combined with two immune cells (i.e. macrophages and dendritic cells) will offer a novel and more realistic cell co-culture system to study possible cell interactions of inhaled xenobiotics and their toxic potential on the human alveolar type I epithelial wall.

  10. Autophagic and apoptotic cell death in amniotic epithelial cells.

    PubMed

    Shen, Z-Y; Li, E-M; Lu, S-Q; Shen, J; Cai, Y-M; Wu, Y-E; Zheng, R-M; Tan, L-J; Xu, L-Y

    2008-11-01

    The aim of this paper is to determine if autophagic cell death is associated with apoptosis and whether it participates in the process of term amniotic rupture. Forty pieces of fresh term amnions, including twenty from a position near the margin of the placentas and twenty from the margin of the naturally ruptured part of the placentas in term gestation were collected, respectively. The amnions were examined by scanning electron microscopy (SEM) and amniotic epithelial (AE) cells were examined by transmission electron microscopy (TEM). Autophagic and apoptotic cell death (PCD) were assayed by laser scanning confocal microscopy (LSCM) or flow cytometry using monodansylcadaverin (MDC) and propidium iodide (PI) stain. BCL(2) and BAX were examined by immunoblotting. Under SEM the amniotic epithelia appeared normal in the position near the placenta. They had an atrophied appearance in the margin of their natural broken parts. In the AE cells PCD was divided into three subtypes by TEM: autophagic cell death with positive stains of MDC and PI; apoptotic cell death; and the mixed type. Quantitative detection showed that there were more death cells, including autophagic and apoptotic, in the AE cells near the ruptured parts than near the placentas. An increased expression of BAX and a decreased expression of BCL(2) protein in the AE cells near the broken margin were observed. Apoptotic and autophagic cell death by the intrinsic pathway are the basic event in the AE cell and they are involved in the cause of membrane rupture of the human amnion in term gestation.

  11. Growth of corneal epithelial cells over in situ therapeutic contact lens after simple limbal epithelial transplantation (SLET)

    PubMed Central

    Bhalekar, Swapnil; Sangwan, Virender S; Basu, Sayan

    2013-01-01

    An 11-year-old boy underwent simple limbal epithelial transplantation (SLET) from the healthy right eye to his left eye for total limbal stem cell deficiency. One month later, corneal surface epithelialised and whitish plaques overlying the transplants were seen inferiorly. Those plaques were adherent to the surface of the contact lens and underlying corneal surface had smooth elevations. Similar findings were noted in a 23-year man following cyanoacrylate glue application for corneal perforation. On histological and immunohistochemical analysis, cells lining the contact lenses were identified as corneal epithelial cells. These cases illustrate epithelial cell growth on the contact lens and epithelial hyperplasia on corresponding surface of the cornea. Exorbitant proliferation of the epithelial cells may be owing to young age; therefore, early contact lens removal after SLET in young age, can possibly avoid epithelial hyperplasia. This also reiterates the possibility of using contact lens as a scaffold to grow epithelial cells. PMID:23814196

  12. Retinal pigment epithelial change and partial lipodystrophy.

    PubMed Central

    Davis, T. M.; Holdright, D. R.; Schulenberg, W. E.; Turner, R. C.; Joplin, G. F.

    1988-01-01

    Cuticular drusen and retinal pigment epithelial changes were found incidentally in a 27 year old Lebanese woman during assessment of partial lipodystrophy. Her vision was normal despite involvement of both maculae. The patient had hypocomplementaemia, but serum C3 nephritic factor was absent and renal function was normal. She had impaired glucose tolerance and a continuous infusion of glucose with model assessment (CIGMA) test revealed low normal tissue insulin sensitivity and high normal pancreatic beta cell function. Mild fasting hypertriglyceridaemia (2.0 mmol/l) may have been secondary to impaired insulin sensitivity. Endocrine function was otherwise normal apart from a completely absent growth hormone response to adequate hypoglycaemia. The simultaneous occurrence of partial lipodystrophy and retinal pigmentary epithelial and basement membrane changes appears to be a newly recognized syndrome. Images Figure 1 Figure 2 PMID:3255937

  13. Epithelial Proliferation on Curved Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Cruz, Ricardo; Fragkopoulos, Alexandros; Marquez, Samantha; Garcia, Andres; Fernandez-Nieves, Alberto

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. In strongly interacting epithelial cells, cells coordinate their behavior to respond to mechanical constraints in 2D. Local differences in tissue tension has also been shown to impact cell reproduction within an epithelial-cell sheet. Much less is known about how cells respond to out-of-plane curvatures. Here, we describe the proliferation of MDCK on toroidal hydrogel substrates, which unlike spheres or planes, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus, allowing us to quantify the relation between substrate curvature and cell proliferation.

  14. Extensive Focal Epithelial Hyperplasia: A Case Report

    PubMed Central

    Mansouri, Zahra; Bakhtiari, Sedigheh; Noormohamadi, Robab

    2015-01-01

    Focal epithelial hyperplasia (FEH) or Heck’s disease is a rare viral infection of the oral mucosa caused by human papilloma virus especially subtypes 13 or 32. The frequency of this disease varies widely from one geographic region and ethnic groups to another. This paper reports an Iranian case of extensive focal epithelial hyperplasia. A 35-year-old man with FEH is described, in whom the lesions had persisted for more than 25 years. The lesion was diagnosed according to both clinical and histopathological features. Dental practitioner should be aware of these types of lesions and histopathological examination together and a careful clinical observation should be carried out for a definitive diagnosis. PMID:26351501

  15. Ontogeny of Intestinal Epithelial Innate Immune Responses

    PubMed Central

    Hornef, Mathias W.; Fulde, Marcus

    2014-01-01

    Emerging evidence indicates that processes during postnatal development might significantly influence the establishment of mucosal host-microbial homeostasis. Developmental and adaptive immunological processes but also environmental and microbial exposure early after birth might thus affect disease susceptibility and health during adult life. The present review aims at summarizing the current understanding of the intestinal epithelial innate immune system and its developmental and adaptive changes after birth. PMID:25346729

  16. [Focal epithelial hyperplasia in lepromatous leprosy].

    PubMed

    Jacyk, W; Lechner, W

    1983-10-15

    Focal epithelial hyperplasia Heck (FEH) is most likely caused by human papilloma virus. It mainly occurs in children and young people showing no associated diseases. For the first time, we describe a case of FEH in a patient with lepromatous leprosy who due to persistent erythema nodosum leprosum has been treated with a lang-term glucocorticoid therapy. The question of the competence of lepromatous patients in resisting certain viral infections arises.

  17. Focal epithelial hyperplasia in a Turkish family.

    PubMed

    Gökahmetoğlu, Selma; Ferahbaş, Ayten; Canöz, Özlem

    2014-12-01

    Focal epithelial hyperplasia (FEH) is a benign proliferative condition that is more frequently found in children of certain ethnic groups. Human papillomavirus (HPV) 13 and 32 genotypes has been consistently detected in these lesions. In this study a daughter, mother and father had FEH, and HPV 13 was shown by sequence analysis in the lesions of these patients. Cryotherapy was applied to the lesions and the lesions improved, but did not recover properly. In conclusion, HPV genotyping should be performed in FEH cases.

  18. Extensive focal epithelial hyperplasia: case report.

    PubMed

    Durso, Braz Campos; Pinto, José Marcelo Vargas; Jorge, Jacks; de Almeida, Oslei Paes

    2005-11-01

    Focal epithelial hyperplasia (FEH) is a rare benign lesion caused by human papillomavirus subtype 13 or 32. The condition occurs in numerous populations and ethnic groups. A higher incidence in close communities and among family members indicates infectious pathogenesis. A 21-year-old woman with FEH is described, in whom the lesions had persisted for 10 years. A literature review is also presented, with emphasis on manifestations in the oral mucosa and histopathological features.

  19. Fibro-epithelial hyperplasia mimicking mucocele.

    PubMed

    Jain, K; Singh, B D; Dubey, A; Avinash, A

    2014-01-01

    The effects of chronic local irritation have been seen commonly in the form of fibroma or mucocele in children. We report a ten year old girl with the chief complaint of swelling in the lower right region of labial mucosa which was diagnosed clinically as mucocele and histologically as fibro-epithelial hyperplasia. Surgical excision was done under local anesthesia with no post-operative complication. PMID:25552222

  20. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  1. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport.

    PubMed

    Marunaka, Yoshinori

    2014-01-01

    Epithelial Na(+) transport participates in control of various body functions and conditions: e.g., homeostasis of body fluid content influencing blood pressure, control of amounts of fluids covering the apical surface of alveolar epithelial cells at appropriate levels for normal gas exchange, and prevention of bacterial/viral infection. Epithelial Na(+) transport via the transcellular pathway is mediated by the entry step of Na(+) across the apical membrane via Epithelial Na(+) Channel (ENaC) located at the apical membrane, and the extrusion step of Na(+) across the basolateral membrane via the Na(+),K(+)-ATPase located at the basolateral membrane. The rate-limiting step of the epithelial Na(+) transport via the transcellular pathway is generally recognized to be the entry step of Na(+) across the apical membrane via ENaC. Thus, up-/down-regulation of ENaC essentially participates in regulatory systems of blood pressure and normal gas exchange. Amount of ENaC-mediated Na(+) transport is determined by the number of ENaCs located at the apical membrane, activity (open probability) of individual ENaC located at the apical membrane, single channel conductance of ENaC located at the apical membrane, and driving force for the Na(+) entry via ENaCs across the apical membrane. In the present review article, I discuss the characteristics of ENaC and how these factors are regulated.

  2. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update

    PubMed Central

    Gurzu, Simona; Turdean, Sabin; Kovecsi, Attila; Contac, Anca Otilia; Jung, Ioan

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis (type 1 EMT), wound healing and/or fibrosis (type 2 EMT) and malignant tumors (type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition (MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelial-to-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail. PMID:25984514

  3. Epithelial cysts of the spleen: a minireview.

    PubMed

    Ingle, Sachin B; Hinge Ingle, Chitra R; Patrike, Swapna

    2014-10-14

    Primary splenic epithelial cyst is an unusual event in everyday surgical practice with about 800 cases reported until date in the English literature. Splenic cysts may be parasitic or non-parasitic in origin. Nonparasitic cysts are either primary or secondary. Primary cysts are also called true, congenital, epidermoid or epithelial cysts. Primary splenic cysts account for 10% of all benign non-parasitic splenic cysts and are the most frequent type of splenic cysts in children. Usually, splenic cysts are asymptomatic and can be found incidentally during imaging techniques or on laparotomy. The symptoms are related to the size of cysts. When they assume large sizes, they may present with fullness in the left abdomen, local or referred pain, symptoms due to compression of adjacent structures (like nausea, vomiting, flatulence, diarrhoea) or rarely thrombocytopenia, and occasionally complications such as infection, rupture and/or haemorrhage. The preoperative diagnosis of primary splenic cysts can be ascertained by ultrasonography (USG), computed tomography or magnetic resonance imaging, although the wide use of USG today has led to an increase in the incidence of splenic cysts by 1%. However, careful histopathological evaluation along with immunostaining for presence of epithelial lining is mandatory to arrive at the diagnosis. The treatment has changed drastically from total splenectomy in the past to splenic preservation methods recently.

  4. Mayo Clinic experience with epithelial ovarian cancer.

    PubMed

    Decker, D G

    1983-08-01

    Clinical investigation of epithelial ovarian cancer must involve the precise definition of the lesion, careful application of new techniques, the objective evaluation of such techniques, the comparison of results in a randomized fashion with prior forms of therapy, careful pathological evaluation of the tumour, and the evaluation of toxicity to the patient. The interdisciplinary team approach to the treatment of epithelial ovarian cancer and the development of randomized, prospective trials are essential. Utilizing these two elements, a better integration of surgery, chemotherapy and radiation therapy can be accomplished. Of great importance is the evaluation of response patterns by an observer who is skilled in pelvic examinations and familiar with the natural history of epithelial ovarian cancer. The increasingly important role of surgery in the treatment of this cancer is now more clearly defined. The psychological effects of chemotherapy as well as the response patterns to chemotherapy must be evaluated. During the past 20 years, considerable progress has been made in prolonging the useful, functional life of the patient. The ultimate cure is still a matter for the future and is predicated on more effective combinations of potent chemotherapeutic combinations and a clearer definition of the role of radiation therapy.

  5. Protein complexes that control renal epithelial polarity

    PubMed Central

    Pieczynski, Jay

    2011-01-01

    Establishment of epithelial apicobasal polarity is crucial for proper kidney development and function. In recent years, there have been important advances in our understanding of the factors that mediate the initiation of apicobasal polarization. Key among these are the polarity complexes that are evolutionarily conserved from simple organisms to humans. Three of these complexes are discussed in this review: the Crumbs complex, the Par complex, and the Scribble complex. The apical Crumbs complex consists of three proteins, Crumbs, PALS1, and PATJ, whereas the apical Par complex consists of Par-3, Par-6, and atypical protein kinase C. The lateral Scribble complex consists of Scribble, discs large, and lethal giant larvae. These complexes modulate kinase and small G protein activity such that the apical and basolateral complexes signal antagonistically, leading to the segregation of the apical and basolateral membranes. The polarity complexes also serve as scaffolds to direct and retain proteins at the apical membrane, the basolateral membrane, or the intervening tight junction. There is plasticity in apicobasal polarity, and this is best seen in the processes of epithelial-to-mesenchymal transition and the converse mesenchymal-to-epithelial transition. These transitions are important in kidney disease as well as kidney development, and modulation of the polarity complexes are critical for these transitions. PMID:21228104

  6. Gasotransmitters: novel regulators of epithelial na(+) transport?

    PubMed

    Althaus, Mike

    2012-01-01

    The vectorial transport of Na(+) across epithelia is crucial for the maintenance of Na(+) and water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na(+) transport processes are associated with various human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na(+) transport is essential. Novel regulatory signaling molecules are gasotransmitters. There are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). These molecules are endogenously produced in mammalian cells by specific enzymes and have been shown to regulate various physiological processes. There is a growing body of evidence which indicates that gasotransmitters may also regulate Na(+) transport across epithelia. This review will summarize the available data concerning NO, CO, and H(2)S dependent regulation of epithelial Na(+) transport processes and will discuss whether or not these mediators can be considered as true physiological regulators of epithelial Na(+) transport biology.

  7. Replication of cultured lung epithelial cells

    SciTech Connect

    Guzowski, D.; Bienkowski, R.

    1986-03-05

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to (/sup 3/H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems.

  8. Histopathology of laser skin resurfacing

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.; Baldwin, Bonnie; Chi, Eric; Ellard, Jeff; Schwartz, Jon A.

    1997-05-01

    Pulsed carbon-dioxide laser skin resurfacing is a purportedly 'non-thermal' procedure enjoying wide application as a cosmetic treatment for skin wrinkles. Treatment success has been based on clinical assessments of skin smoothness. Skin lesions (1 cm2) created by one, two or three superimposed carbon-dioxide laser passes were placed on the backs of 28 'fuzzy' Harlan Sprague Dawley rats. The variable laser irradiation parameters included measured energies ranging from 112 to 387/pulse with pulse widths of 65 and 125 microseconds and a repetition rate of 8 Hz. The square, flat laser beam measured 3 mm2 at the focal point. The lesions were collected from 0 to 10 days after treatment for qualitative and quantitative histopathology. Thermal damage and treatment effect tended to increase in severity and, to a lesser extent, depth with increased delivery parameters. In acute lesions, the vacuolated and fragmented, desiccated and thermally coagulated epidermis was partially removed exposing the underlying thermally coagulated dermal collagen and cells. Epidermal and dermal necrosis and slough occurred between 24 to 72 hours after treatment. Epithelial regeneration originated from the adnexa and the lesion edges. Dermal fibrous scar formation began at 5 days below the regenerated epidermis and became more prominent at 7 and 10 days.

  9. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  10. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  11. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells

    PubMed Central

    2014-01-01

    Background Epithelial-mesenchymal transition (EMT) has been proposed as a mechanism in the progression of airway diseases and cancer. Here, we explored the role of acetylcholine (ACh) and the pathway involved in the process of EMT, as well as the effects of mAChRs antagonist. Methods Human lung epithelial cells were stimulated with carbachol, an analogue of ACh, and epithelial and mesenchymal marker proteins were evaluated using western blot and immunofluorescence analyses. Results Decreased E-cadherin expression and increased vimentin and α-SMA expression induced by TGF-β1 in alveolar epithelial cell (A549) were significantly abrogated by the non-selective mAChR antagonist atropine and enhanced by the acetylcholinesterase inhibitor physostigmine. An EMT event also occurred in response to physostigmine alone. Furthermore, ChAT express and ACh release by A549 cells were enhanced by TGF-β1. Interestingly, ACh analogue carbachol also induced EMT in A549 cells as well as in bronchial epithelial cells (16HBE) in a time- and concentration-dependent manner, the induction of carbachol was abrogated by selective antagonist of M1 (pirenzepine) and M3 (4-DAMP) mAChRs, but not by M2 (methoctramine) antagonist. Moreover, carbachol induced TGF-β1 production from A549 cells concomitantly with the EMT process. Carbachol-induced EMT occurred through phosphorylation of Smad2/3 and ERK, which was inhibited by pirenzepine and 4-DAMP. Conclusions Our findings for the first time indicated that mAChR activation, perhaps via M1 and M3 mAChR, induced lung epithelial cells to undergo EMT and provided insights into novel therapeutic strategies for airway diseases in which lung remodeling occurs. PMID:24678619

  12. Biocavity Lasers

    SciTech Connect

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  13. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  14. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  15. Preliminary observations on the effects in vivo and in vitro of low dose laser on the epithelia of the bladder, trachea and tongue of the mouse

    SciTech Connect

    Mok, Y.C.; Pang, K.M.; Au, C.Y.; Yew, D.T.

    1988-03-01

    The effects of low dose CW laser were studied by in vivo and in vitro systems. The experimental tissues that were used included bladders, tracheas and tongues as experimental tissues. Buddings (round surface projections) from the transitional epithelium of bladder were frequently observed 3 days after laser treatment in both in vivo and in vitro systems. The trachea and tongue were less affected. In both the in vivo and in vitro systems, some epithelial cells of the trachea showed decreased microvilli and cilia 3 days after treatment whereas the epithelial cells of the tongue revealed no response to laser treatment in both systems. Low dose laser, however, appeared to promote the rate of healing of experimental tongue ulcer: healing was about 1 day earlier in the laser treated than non-treated animals and vessel infiltration and epithelialization were detected earlier in the treated.

  16. Epithelial Anion Transport as Modulator of Chemokine Signaling.

    PubMed

    Schnúr, Andrea; Hegyi, Péter; Rousseau, Simon; Lukacs, Gergely L; Veit, Guido

    2016-01-01

    The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases. PMID:27382190

  17. Epithelial Anion Transport as Modulator of Chemokine Signaling

    PubMed Central

    Schnúr, Andrea; Hegyi, Péter; Rousseau, Simon; Lukacs, Gergely L.; Veit, Guido

    2016-01-01

    The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases. PMID:27382190

  18. Cisplatin and Flavopiridol in Treating Patients With Advanced Ovarian Epithelial Cancer or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-05-06

    Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  19. Corneal epithelial and neuronal interactions: role in wound healing.

    PubMed

    Kowtharapu, Bhavani S; Stahnke, Thomas; Wree, Andreas; Guthoff, Rudolf F; Stachs, Oliver

    2014-08-01

    Impaired corneal innervation and sensitivity are the main causes of corneal neurotrophic keratopathy which simultaneously also leads to poor epithelial wound healing. Restoration of the diminished communication between the corneal epithelium and trigeminal nerve is indispensable for the proper functioning of the epithelium. The present study aims to investigate corneal epithelial and trigeminal neuron interactions to shed light on corneal wound healing during neurotrophic keratopathy. Mouse trigeminal neurons and corneal epithelial cells were cultured according to standard methods. To study the effect of corneal epithelial cells on trigeminal neurons as well as the effect of trigeminal neurons on corneal epithelial cells during wound healing, conditioned media from the cultures of pure trigeminal neurons (CNM) and corneal epithelial cells (CEM) were collected freshly and applied on the other cell type. Neurite outgrowth assay and RT-PCR analysis using primers specific for substance P (SP), Map1a, Map1b were performed on trigeminal neurons in the presence of CEM. We observed an increase in the neurite outgrowth in the presence of CEM and also in co-culture with corneal epithelial cells. Increase in the expression of SP mRNA and a decrease in the expression of Map1b mRNA was observed in the presence of CEM. We also observed the presence of epithelial-to-mesenchymal transition (EMT)-like phenomenon during wound healing using a scratch assay in primary corneal epithelial cultures. This system was further employed to study the effect of CNM on corneal epithelial cells in the context of wound healing to find the effect of trigeminal neurons on epithelial cells. RT-PCR analysis of Pax6 expression in corneal epithelial cell cultures with scratch served as a positive control. Further, we also show the expression of bone morphogenetic protein 7 (BMP7) mRNA in corneal epithelial cells which is decreased gradually along with Pax6 mRNA when cultured together in the presence of

  20. [Research progress of corneal epithelial basal cells and basement membrane].

    PubMed

    Qu, J H; Sun, X G

    2016-09-11

    The cylinder cells at the bottom of corneal epithelial cells are basal cells. Their cytoplasm contains keratin intermediate filament which is important in secretion of basement membrane. Corneal epithelial dysfunction due to diabetes or ocular surgery is intimately related with basal cell abnormality. Corneal epithelial basement membrane is a highly specific extracellular matrix which is made up of lamina lucida and lamina densa. It plays an extremely important role in renewal and restoration. Many ocular abnormalities and diseases have been described to relate to the corneal epithelial basement membrane, such as traumatic recurrent corneal erosion, corneal dystrophy and keratoconus. (Chin J Ophthalmol, 2016, 52: 703-707). PMID:27647251

  1. Interaction with epithelial cells modifies airway macrophage response to ozone.

    PubMed

    Bauer, Rebecca N; Müller, Loretta; Brighton, Luisa E; Duncan, Kelly E; Jaspers, Ilona

    2015-03-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.

  2. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    PubMed Central

    Bauer, Rebecca N.; Müller, Loretta; Brighton, Luisa E.; Duncan, Kelly E.

    2015-01-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell–Mac coculture model to investigate how epithelial cell–derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell–Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell–derived signals are important determinants of Mac immunophenotype and response to O3. PMID:25054807

  3. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  4. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  5. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  6. Laser Therapy

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  7. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  8. Quantitative analysis of injury-induced anterior subcapsular cataract in the mouse: a model of lens epithelial cells proliferation and epithelial-mesenchymal transition

    PubMed Central

    Xiao, Wei; Chen, Xiaoyun; Li, Weihua; Ye, Shaobi; Wang, Wencong; Luo, Lixia; Liu, Yizhi

    2015-01-01

    The mouse lens capsular injury model has been widely used in investigating the mechanisms of anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), and evaluating the efficacy of antifibrotic compounds. Nevertheless, there is no available protocol to quantitatively assess the treatment outcomes. Our aim is to describe a new method that can successfully quantify the wound and epithelial-mesenchymal transition (EMT) markers expression in vivo. In this model, lens anterior capsule was punctured with a hypodermic needle, which triggered lens epithelial cells (LECs) proliferation and EMT rapidly. Immunofluorescent staining of injured lens anterior capsule whole-mounts revealed the formation of ASC and high expression of EMT markers in the subcapsular plaques. A series of sectional images of lens capsule were acquired from laser scanning confocal microscopy (LSCM) three-dimensional (3D) scanning. Using LSCM Image Browser software, we can not only obtain high resolution stereo images to present the spatial structures of ASC, but also quantify the subcapsular plaques and EMT markers distribution sucessfully. Moreover, we also demonstrated that histone deacetylases (HDACs) inhibitor TSA significantly prevented injury-induced ASC using this method. Therefore, the present research provides a useful tool to study ASC and PCO biology as well as the efficacy of new therapies. PMID:25666271

  9. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

    NASA Astrophysics Data System (ADS)

    Nasrollahi, Samila; Pathak, Amit

    2016-01-01

    Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells.

  10. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  11. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity

    PubMed Central

    Tsao, Po-Nien; Matsuoka, Chisa; Wei, Shu-Chen; Sato, Atsuyasu; Sato, Susumu; Hasegawa, Koichi; Chen, Hung-kuan; Ling, Thai-Yen; Mori, Munemasa; Cardoso, Wellington V.; Morimoto, Mitsuru

    2016-01-01

    Abnormal enlargement of the alveolar spaces is a hallmark of conditions such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. Notch signaling is crucial for differentiation and regeneration and repair of the airway epithelium. However, how Notch influences the alveolar compartment and integrates this process with airway development remains little understood. Here we report a prominent role of Notch signaling in the epithelial–mesenchymal interactions that lead to alveolar formation in the developing lung. We found that alveolar type II cells are major sites of Notch2 activation and show by Notch2-specific epithelial deletion (Notch2cNull) a unique contribution of this receptor to alveologenesis. Epithelial Notch2 was required for type II cell induction of the PDGF-A ligand and subsequent paracrine activation of PDGF receptor-α signaling in alveolar myofibroblast progenitors. Moreover, Notch2 was crucial in maintaining the integrity of the epithelial and smooth muscle layers of the distal conducting airways. Our data suggest that epithelial Notch signaling regulates multiple aspects of postnatal development in the distal lung and may represent a potential target for intervention in pulmonary diseases. PMID:27364009

  12. Tyrosine kinase gene rearrangements in epithelial malignancies.

    PubMed

    Shaw, Alice T; Hsu, Peggy P; Awad, Mark M; Engelman, Jeffrey A

    2013-11-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as 'druggable' targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours.

  13. Tyrosine kinase gene rearrangements in epithelial malignancies

    PubMed Central

    Shaw, Alice T.; Hsu, Peggy P.; Awad, Mark M.; Engelman, Jeffrey A.

    2014-01-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as ‘druggable’ targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours. PMID:24132104

  14. Epithelial barrier and oral bacterial infection.

    PubMed

    Groeger, Sabine E; Meyle, Joerg

    2015-10-01

    The oral epithelial barrier separates the host from the environment and provides the first line of defense against pathogens, exogenous substances and mechanical stress. It consists of underlying connective tissue and a stratified keratinized epithelium with a basement membrane, whose cells undergo terminal differentiation resulting in the formation of a mechanically resistant surface. Gingival keratinocytes are connected by various transmembrane proteins, such as tight junctions, adherens junctions and gap junctions, each of which has a specialized structure and specific functions. Periodontal pathogens are able to induce inflammatory responses that lead to attachment loss and periodontal destruction. A number of studies have demonstrated that the characteristics of pathogenic oral bacteria influence the expression and structural integrity of different cell-cell junctions. Tissue destruction can be mediated by host cells following stimulation with cytokines and bacterial products. Keratinocytes, the main cell type in gingival epithelial tissues, express a variety of proinflammatory cytokines and chemokines, including interleukin-1alpha, interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha. Furthermore, the inflammatory mediators that may be secreted by oral keratinocytes are vascular endothelial growth factor, prostaglandin E2 , interleukin-1 receptor antagonist and chemokine (C-C motif) ligand 2. The protein family of matrix metalloproteinases is able to degrade all types of extracellular matrix protein, and can process a number of bioactive molecules. Matrix metalloproteinase activities under inflammatory conditions are mostly deregulated and often increased, and those mainly relevant in periodontal disease are matrix metalloproteinases 1, 2, 3, 8, 9, 13 and 24. Viral infection may also influence the epithelial barrier. Studies show that the expression of HIV proteins in the mucosal epithelium is correlated with the disruption of

  15. Active Tensile Modulus of an Epithelial Monolayer

    NASA Astrophysics Data System (ADS)

    Vincent, Romaric; Bazellières, Elsa; Pérez-González, Carlos; Uroz, Marina; Serra-Picamal, Xavier; Trepat, Xavier

    2015-12-01

    A general trait of cell monolayers is their ability to exert contractile stresses on their surroundings. The scaling laws that link such contractile stresses with the size and geometry of constituent cells remain largely unknown. In this Letter, we show that the active tension of an epithelial monolayer scales linearly with the size of the constituent cells, a surprisingly simple relationship. The slope of this relationship defines an active tensile modulus, which depends on the concentration of myosin and spans more than 2 orders of magnitude across cell types and molecular perturbations.

  16. Intrinsic gating mechanisms of epithelial sodium channels.

    PubMed

    Ji, Hong-Long; Fuller, Catherine M; Benos, Dale J

    2002-08-01

    The hypothesis that there is a highly conserved, positively charged region distal to the second transmembrane domain in alpha-ENaC (epithelial sodium channel) that acts as a putative receptor site for the negatively charged COOH-terminal beta- and gamma-ENaC tails was tested in mutagenesis experiments. After expression in Xenopus oocytes, alpha-ENaC constructs in which positively charged arginine residues were converted into negatively charged glutamic acids could not be inhibited by blocking peptides. These observations provide insight into the gating machinery of ENaC. PMID:12107075

  17. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  18. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy.

  19. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  20. Use of the carbon dioxide laser in guided tissue regeneration wound healing in the beagle dog

    NASA Astrophysics Data System (ADS)

    Rossmann, Jeffrey A.; Parlar, Ates; Abdel-Ghaffar, Khaled A.; El-Khouli, Amr M.; Israel, Michael

    1996-04-01

    The concept of guided tissue regeneration (GTR) allowing cells from the periodontal ligament and alveolar bone to repopulate the treated root surface has shown the ability to obtain periodontal new attachment. Healing studies have also shown that conventional GTR therapy still does not exclude all the epithelium. This epithelial proliferation apically interferes with the establishment of the new connective tissue attachment to the root surface. The objective of this research study was to examine whether controlled de-epithelialization with the carbon dioxide laser during the healing phase after periodontal surgery, would retard the apical migration of the epithelium and thereby enhance the results obtained through guided tissue regeneration. Eight beagle dogs were used, the experimental side received de-epithelialization with the CO2 laser in conjunction with flap reflection and surgically created buccal osseous defects. Selected defects on each side were treated with ePTFE periodontal membranes. The laser de-epithelialization was repeated every 10 days until removal of the membranes. The control side received the same surgical treatment without laser application. This experimental design allowed histologic study of the new attachment obtained in defects treated with flap debridement with or without laser de-epithelialization and with or without ePTFE membranes. A statistical analysis was performed on the histometric data from 48 teeth in the 8 dogs after 4 months of healing. The results showed significant amounts of new attachment obtained from all four treatment modalities with no statistically significant differences for any one treatment. However, the trend towards enhanced regeneration with the combined treatment of laser and membrane vs. membrane alone or debridement alone was evident. The histologic analysis revealed a significant amount of newly formed `fat cementum' seen only on the laser treated teeth. This feature was the most remarkable finding of the

  1. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression

    PubMed Central

    Maglennon, Gareth Adam; McIntosh, Pauline; Doorbar, John

    2011-01-01

    Rabbit oral papillomavirus (ROPV) causes benign and spontaneously regressing oral lesions in rabbits, and is a useful model of disease associated with low-risk human papillomavirus types. Here we have adapted the ROPV system to study papillomavirus latency. Following lesion regression, ROPV DNA persists at the majority of regressed sites at levels substantially lower than those found in productive papillomas. Spliced viral transcripts were also detected. ROPV persistence in the absence of disease could be demonstrated for a year following infection and lesion-regression. This was not associated with completion of the virus life-cycle or new virion production, indicating that ROPV persists in a latent state. Using novel laser capture microdissection techniques, we could show that the site of latency is a subset of basal epithelial cells at sites of previous experimental infection. We hypothesize that these cells are epithelial stem cells and that reactivation of latency may be a source of recurrent disease. PMID:21492895

  2. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  3. Carbon dioxide laser turbinectomy versus submucosal diathermy of hypertrophied turbinates. Histopathological prospective study

    NASA Astrophysics Data System (ADS)

    Mohamed Bofares, Khalid

    2010-05-01

    Aim: To assess suspected turbinate mucosal distractive changes of CO2 laser partial turbinectomy as compared to submucosal diathermy technique of hypertrophied inferior turbinates and thus risk of appearance of mucosal atrophic changes. Introduction: CO2 laser turbinotomy or turbinectomy has become an established well documented line of treatment of hypertrophied inferior turbinates not responding to medical treatment. Although there have been several reports discussing the clinical aspects of laser turbinectomy, but exact pathological changes that take place following laser application to the turbinate have not been described completely and clearly. For this reason this study was conducted to confirm these possible histopathological changes and compared with those following submucosal diathermy technique. Patients and methods: Twenty patients with chronic hypertrophied inferior turbinates and presenting mainly with nasal obstruction, ten out of them were subjected to CO2 laser turbinectomy while other half underwent to submucosal diathermy technique. Tiny biopsies were taken immediately after surgery (within one week after surgery ), as well as 4-6 weeks later and processed for further histopathological evaluation. Results: By 100%, the all patients of two groups showed areas of epithelial loss were observed immediately after both techniques. 4-6 weeks after laser application 60% of patients showed normal epithelial areas as compared to second group where 20% of patients who showed normal epithelial picture. Conclusion: CO2 laser turbinectomy can be considered as more preservative technique for nasal mucosa as well as the function of the nose as compared to submucosal diathermy technique.

  4. Modeling continuum of epithelial mesenchymal transition plasticity.

    PubMed

    Mandal, Mousumi; Ghosh, Biswajoy; Anura, Anji; Mitra, Pabitra; Pathak, Tanmaya; Chatterjee, Jyotirmoy

    2016-02-01

    Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum. PMID:26762753

  5. Nuclear microscopy of rat colon epithelial cells

    NASA Astrophysics Data System (ADS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  6. Epithelial NAIPs protect against colonic tumorigenesis.

    PubMed

    Allam, Ramanjaneyulu; Maillard, Michel H; Tardivel, Aubry; Chennupati, Vijaykumar; Bega, Hristina; Yu, Chi Wang; Velin, Dominique; Schneider, Pascal; Maslowski, Kendle M

    2015-03-01

    NLR family apoptosis inhibitory proteins (NAIPs) belong to both the Nod-like receptor (NLR) and the inhibitor of apoptosis (IAP) families. NAIPs are known to form an inflammasome with NLRC4, but other in vivo functions remain unexplored. Using mice deficient for all NAIP paralogs (Naip1-6(Δ/Δ)), we show that NAIPs are key regulators of colorectal tumorigenesis. Naip1-6(Δ/Δ) mice developed increased colorectal tumors, in an epithelial-intrinsic manner, in a model of colitis-associated cancer. Increased tumorigenesis, however, was not driven by an exacerbated inflammatory response. Instead, Naip1-6(Δ/Δ) mice were protected from severe colitis and displayed increased antiapoptotic and proliferation-related gene expression. Naip1-6(Δ/Δ) mice also displayed increased tumorigenesis in an inflammation-independent model of colorectal cancer. Moreover, Naip1-6(Δ/Δ) mice, but not Nlrc4-null mice, displayed hyper-activation of STAT3 and failed to activate p53 18 h after carcinogen exposure. This suggests that NAIPs protect against tumor initiation in the colon by promoting the removal of carcinogen-elicited epithelium, likely in a NLRC4 inflammasome-independent manner. Collectively, we demonstrate a novel epithelial-intrinsic function of NAIPs in protecting the colonic epithelium against tumorigenesis. PMID:25732303

  7. Epithelial Transport in Inflammatory Bowel Diseases

    PubMed Central

    Ghishan, Fayez K.; Kiela, Pawel R.

    2014-01-01

    The epithelium of the gastrointestinal tract is one of the most versatile tissues in the organism, responsible for providing a tight barrier between dietary and bacterial antigens and the mucosal and systemic immune system, while maintaining efficient digestive and absorptive processes to ensure adequate nutrient and energy supply. Inflammatory Bowel Diseases (IBD; Crohn’s disease and ulcerative colitis) are associated with a breakdown of both functions, which in some cases are clearly interrelated. In this updated literature review, we focus on the effects of intestinal inflammation and the associated immune mediators on selected aspects of the transepithelial transport of macro- and micronutrients. The mechanisms responsible for nutritional deficiencies are not always clear and could be related to decreased intake, malabsorption and excess losses. We summarize the known causes of nutrient deficiencies and the mechanism of IBD-associated diarrhea. We also overview the consequences of impaired epithelial transport, which infrequently transcend its primary purpose to affect the gut microbial ecology and epithelial integrity. While some of those regulatory mechanisms are relatively well established, more work needs to be done to determine how inflammatory cytokines can alter the transport process of nutrients across the gastrointestinal and renal epithelia. PMID:24691115

  8. Epigenetic biomarkers in epithelial ovarian cancer.

    PubMed

    Gloss, Brian S; Samimi, Goli

    2014-01-28

    Ovarian cancer is the most lethal gynecological malignancy and the 5th leading cause of cancer death in women. Women with ovarian cancer are typically diagnosed at late stage, when the cancer has spread into the peritoneal cavity and complete surgical removal is difficult. The 5-year survival time for patients diagnosed at this stage is 30%, in contrast to a 5-year survival of 90% for patients diagnosed at early stage. Cancer screening and early detection have the potential to greatly decrease the mortality and morbidity from cancer. The emerging field of epigenetics offers a valuable opportunity to identify cancer-specific DNA methylation changes that can be used in the clinic to improve early-stage diagnosis and better predict response in treated patients. To date, numerous DNA methylation aberrations have been identified in epithelial ovarian cancer; here we review some candidate genes and pathways with potential clinical utility as biomarkers for diagnosis and/or prognosis. It has become clear that even with the great promise of DNA methylation biomarkers in epithelial ovarian cancer, the identification of highly specific, sensitive and robust panels of markers and the standardization of analysis techniques are still required in order to improve detection, treatment and thus patient outcome.

  9. Ouabain modulates ciliogenesis in epithelial cells

    PubMed Central

    Larre, Isabel; Castillo, Aida; Flores-Maldonado, Catalina; Contreras, Ruben G.; Galvan, Ivan; Muñoz-Estrada, Jesus; Cereijido, Marcelino

    2011-01-01

    The exchange of substances between higher organisms and the environment occurs across transporting epithelia whose basic features are tight junctions (TJs) that seal the intercellular space, and polarity, which enables cells to transport substances vectorially. In a previous study, we demonstrated that 10 nM ouabain modulates TJs, and we now show that it controls polarity as well. We gauge polarity through the development of a cilium at the apical domain of Madin-Darby canine kidney cells (MDCK, epithelial dog kidney). Ouabain accelerates ciliogenesis in an ERK1/2-dependent manner. Claudin-2, a molecule responsible for the Na+ and H2O permeability of the TJs, is also present at the cilium, as it colocalizes and coprecipitates with acetylated α-tubulin. Ouabain modulates claudin-2 localization at the cilium through ERK1/2. Comparing wild-type and ouabain-resistant MDCK cells, we show that ouabain acts through Na+,K+-ATPase. Taken together, our previous and present results support the possibility that ouabain constitutes a hormone that modulates the transporting epithelial phenotype, thereby playing a crucial role in metazoan life. PMID:22143774

  10. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    PubMed Central

    Lokody, Isabel B.; Francis, Jeffrey C.; Gardiner, Jennifer R.; Erler, Janine T.; Swain, Amanda

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ. PMID:26076167

  11. LASIK eye surgery

    MedlinePlus

    Laser-Assisted In Situ Keratomileusis; Laser vision correction; Nearsightedness - Lasik; Myopia - Lasik ... For clear vision, the eye's cornea and lens must bend (refract) light rays properly. This allows images to be focused on ...

  12. Automatic detection of spermatozoa for laser capture microdissection.

    PubMed

    Vandewoestyne, Mado; Van Hoofstat, David; Van Nieuwerburgh, Filip; Deforce, Dieter

    2009-03-01

    In sexual assault crimes, differential extraction of spermatozoa from vaginal swab smears is often ineffective, especially when only a few spermatozoa are present in an overwhelming amount of epithelial cells. Laser capture microdissection (LCM) enables the precise separation of spermatozoa and epithelial cells. However, standard sperm-staining techniques are non-specific and rely on sperm morphology for identification. Moreover, manual screening of the microscope slides is time-consuming and labor-intensive. Here, we describe an automated screening method to detect spermatozoa stained with Sperm HY-LITER. Different ratios of spermatozoa and epithelial cells were used to assess the automatic detection method. In addition, real postcoital samples were also screened. Detected spermatozoa were isolated using LCM and DNA analysis was performed. Robust DNA profiles without allelic dropout could be obtained from as little as 30 spermatozoa recovered from postcoital samples, showing that the staining had no significant influence on DNA recovery.

  13. Laser goniometer

    DOEpatents

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  14. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  15. Eikenella corrodens adherence to human buccal epithelial cells.

    PubMed Central

    Yamazaki, Y; Ebisu, S; Okada, H

    1981-01-01

    The mechanism of Eikenella corrodens adherence to human buccal epithelial cells in vitro was studied. Initial experiments to determine the optimal conditions for adherence of E. corrodens to buccal epithelial cells showed that adherence was dependent on time, temperature, bacterial concentration, and pH. Different strains of E. corrodens varied in their ability to adhere, and strain 1073 showed the greatest ability in adherence. Strain 1073 was selected for studies of adherence mechanisms. Trypsin treatment or heating (100 degrees C, 10 min) of the bacterial cells abolished their capacity to adhere to buccal epithelial cells. Treatment of buccal epithelial cells with trypsin also abolished adherence of E. corrodens 1073, whereas neuraminidase treatment of buccal epithelial cells enhanced the adherence. The adherence was inhibited by ethylenediaminetetraacetic acid and restored by adding Ca2+. The adherence was remarkably inhibited by sugars containing D-galactose and n-acetyl-D-galactosamine. Treatment of neuraminidase-treated epithelial cells with sodium metaperiodate or alpha- and beta-galactosidase did not decrease the adherence. These data suggest that adherence of E. corrodens 1073 to human buccal epithelial cells may require the interaction of lectin-like proteins on the bacterial surface with galactose-like receptors on the surface of epithelial cells. PMID:6260661

  16. Epithelial expression of keratinocytes growth factor in oral precancer lesions

    PubMed Central

    Jimson, Sudha; Murali, S.; Zunt, Susan L.; Goldblatt, Lawrence I.; Srinivasan, Mythily

    2016-01-01

    Background: Keratinocyte growth factor (KGF) is a potent epithelial mitogen that acts by binding the KGF receptors (KGFRs) expressed on epithelial cells and regulates proliferation and differentiation. The objective of this study was to investigate the expression of KGF in the epithelium in oral precancer. Materials and Methods: Archival tissues of oral submucous fibrosis (SMF) and leukoplakia were assessed for epithelial KGF expression by immunohistochemistry and real-time quantitative polymerase chain reaction. Results: KGF was predominantly expressed in the basal and parabasal cells in the epithelium of SMF tissues. KGF transcript in the epithelial cells increased with increasing severity of epithelial dysplasia in oral leukoplakia. Conclusion: Although widely reported as a product secreted by the mesenchymal cells, our data suggest that the KGF is also expressed in oral epithelial cells much like the expression in ovarian epithelial cells. Based on the localization of KGF in cells at the epithelial mesenchymal junction and that of the reported presence of KGFR in oral keratinocytes, a potential mechanism involving paracrine and autocrine interactions of KGF and KGFR in early stages of oral precancer is postulated. PMID:27274338

  17. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    PubMed

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  18. Stratifying risk of recurrence in stage II colorectal cancer using deregulated stromal and epithelial microRNAs.

    PubMed

    Bullock, Marc D; Pickard, Karen; Mitter, Richard; Sayan, A Emre; Primrose, John N; Ivan, Cristina; Calin, George A; Thomas, Gareth J; Packham, Graham K; Mirnezami, Alex H

    2015-03-30

    MicroRNAs (miRNAs) enable colonic epithelial cells to acquire malignant characteristics and metastatic capabilities. Recently, cancer relevant miRNAs deregulated during disease progression have also been identified in tumor-associated stroma.By combining laser-microdissection (LMD) with high-throughput screening and high-sensitivity quantitation techniques, miRNA expression in colorectal cancer (CRC) specimens and paired normal colonic tissue was independently characterized in stromal and epithelial tissue compartments. Notably, deregulation of the key oncogene miR-21 was identified exclusively as a stromal phenomenon and miR-106a, an epithelial phenomenon in the malignant state.MiRNAs identified in this study successfully distinguished CRC from normal tissue and metastatic from non-metastatic tumor specimens. Furthermore, in a separate cohort of 50 consecutive patients with CRC, stromal miR-21 and miR-556 and epithelial miR-106a expression predicted short disease free survival (DFS) and overall survival (OS) in stage II disease: miR-21 (DFS: HR = 2.68, p = 0.015; OS: HR = 2.47, p = 0.029); miR-556 (DFS: HR = 2.60, p = 0.018); miR-106a (DFS: HR = 2.91, p = 0.008; OS: HR = 2.25, p = 0.049); combined (All High vs. All Low. DFS: HR = 5.83, p = 0.002; OS: HR = 4.13, p = 0.007).These data support the notion that stromal as well as epithelial miRNAs play important roles during disease progression, and that mapping patterns of deregulated gene expression to the appropriate tumor strata may be a valuable aid to therapeutic decision making in CRC. PMID:25788261

  19. Particles induce apical plasma membrane enlargement in epithelial lung cell line depending on particle surface area dose

    PubMed Central

    Brandenberger, Christina; Rothen-Rutishauser, Barbara; Blank, Fabian; Gehr, Peter; Mühlfeld, Christian

    2009-01-01

    Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM. PMID:19284624

  20. Denileukin Diftitox Used in Treating Patients With Advanced Refractory Ovarian Cancer, Primary Peritoneal Carcinoma, or Epithelial Fallopian Tube Cancer

    ClinicalTrials.gov

    2016-05-02

    Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  1. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  2. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  3. Inhibition of corneal epithelial cell migration by cadmium and mercury

    SciTech Connect

    Ubels, J.L.; Osgood, T.B. Medical Coll. of Wisconsin, Milwaukee )

    1991-02-01

    In a previous comparative study of corneal healing in fish, the authors observed that corneal epithelial healing occurs very rapidly in vivo in the marine teleost Myoxocephalus octodecimspinosus (longhorn sculpin) with a 6-mm diameter wound on the mammalian cornea. This rapid healing which permits prompt restoration of the epithelial barrier is apparently an adaptation to the large ionic and osmotic gradients between the environment and the intraocular fluids of the fish. These observations suggested that epithelial healing in the sculpin cornea might be useful model in aquatic biomedical toxicology if an in vitro method for measurement of healing rates could be developed. In this report the authors demonstrate that sculpin eyes maintained in short-term organ culture have a rapid corneal epithelial healing response and that this model can be used to demonstrate the toxic effects of heavy metals on epithelial cell migration.

  4. Laser barometer

    SciTech Connect

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  5. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  6. Monocyte interaction accelerates HCl-induced lung epithelial remodeling

    PubMed Central

    2014-01-01

    Background Acute respiratory distress syndrome (ARDS) is characterized by overwhelming inflammatory responses and lung remodeling. We hypothesized that leukocyte infiltration during the inflammatory response modulates epithelial remodeling through a mechanism of epithelial-mesenchymal transition (EMT). Methods Human lung epithelial cells were treated for 30 min with hydrochloric acid (HCl). Human monocytes were then cocultured with the epithelial cells for up to 48 h, in the presence or absence of blocking peptides against lymphocyte function-associated antigen-1 (LFA-1), or tyrphostin A9, a specific inhibitor for platelet-derived growth factor (PDGF) receptor tyrosine kinase. Results Exposure of lung epithelial cells to HCl resulted in increased expression of intercellular adhesion molecule-1 (ICAM-1) and production of interleukin (IL)-8 at 24 h. The expression of the epithelial markers E-cadherin decreased while the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) increased at 24 h and remained high at 48 h. The addition of monocytes augmented the profiles of lower expression of epithelial markers and higher mesenchymal markers accompanied by increased collagen deposition. This EMT profile was associated with an enhanced production of IL-8 and PDGF. Treatment of the lung epithelial cells with the LAF-1 blocking peptides CD11a237–246 or/and CD18112–122 suppressed monocyte adhesion, production of IL-8, PDGF and hydroxyproline as well as EMT markers. Treatment with tyrphostin A9 prevented the EMT profile shift induced by HCl stimulation. Conclusions The interaction between epithelial cells and monocytes enhanced epithelial remodelling after initial injury through EMT signalling that is associated with the release of soluble mediators, including IL-8 and PDGF. PMID:25108547

  7. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  8. The physiological expression of scavenger receptor SR-B1 in canine endometrial and placental epithelial cells and its potential involvement in pathogenesis of pyometra.

    PubMed

    Gabriel, C; Becher-Deichsel, A; Hlavaty, J; Mair, G; Walter, I

    2016-06-01

    Pyometra, the purulent inflammation of the uterus, is a common uterine disease of bitches that has potentially life-threatening consequences. The opportunistic bacterial infection of the uterus often progresses into the serious systemic inflammatory response syndrome. In a previous study, we characterized epithelial foam cells in the canine endometrial surface occurring in metestrus, and we regularly observed pronounced epithelial foam-cell formations in pyometra-affected uteri. Therefore, it was assumed that the mechanism behind lipid droplet accumulation in surface epithelial cells might even increase bacterial binding capacity and promote pyometra development. Lipid droplet accumulation in epithelial cells is accomplished via specialized lipid receptors called scavenger receptors (SR). Scavenger receptor class B type 1 (SR-B1) is an important receptor for lipid accumulation in diverse cell types, but it is also a strong binding partner for bacteria, and thereby enhances bacterial adhesion and clinical signs of systemic inflammatory response syndrome. In the present study, after the isolation of metestrous surface epithelial cells from canine uteri by laser capture microdissection, SR-B1 was identified at the messenger RNA (mRNA) level by quantitative real time polymerase chain reaction and also at the protein level by means of immunohistochemistry. In pyometra-affected uteri, SR-B1 mRNA expression was higher than that in the healthy control samples, and SR-B1 protein was expressed in the surface and crypt epithelial cells. Furthermore, to understand the physiological role of SR-B1 expression in the metestrus surface epithelial cells, we investigated its expression in the epithelial cells of the glandular chambers of canine placenta in different stages of gestation because these cells are also characterized by lipid droplet accumulation. SR-B1 was present in the placental epithelial cells of the glandular chambers from 25 to 30 and 45 to 50 days of gestation

  9. Laser bronchoscopy.

    PubMed

    Duhamel, D R; Harrell, J H

    2001-11-01

    Because the lung cancer epidemic shows no signs of abating, little doubt exists that the need for interventional bronchoscopists will persist for many years to come. The Nd:YAG laser and the rigid bronchoscope remain crucial weapons in the fight against lung cancer. With more than 4000 published interventions pertaining to it, this combination is ideal for treating central airways obstruction. The safety and efficacy of laser bronchoscopy has been well established, and the reported incidence of complications is impressively low. If complications were to arise, a skilled bronchoscopist can manage them easily by using the beneficial attributes of the rigid bronchoscope. Many complications can be avoided by implementing the established safety procedures and techniques. A solid understanding of laser physics and tissue interactions is a necessity to anyone performing laser surgery. The team approach, relying on communication among the bronchoscopist, anesthesiologist, laser technician, and nurses, leads to a safer and more successful procedure. It is important to remember, however, that this is typically a palliative procedure, and therefore the focus should be on alleviating symptoms and improving quality of life. Unfortunately, because not every patient is a candidate for laser bronchoscopy, there are specific characteristics of endobronchial lesions that make them more or less amenable to resection. Each year a promising new technology is being developed, such as argon plasma coagulation, cryotherapy, and endobronchial electrosurgery. Although it is unclear what role these technologies will have, prospective controlled studies must be done to help clarify this question. The future may lay in combining these various technologies along with Nd:YAG laser bronchoscopy to maximize the therapeutic, palliative, and possibly even curative effect. As the experience of the medical community with Nd:YAG laser bronchoscopy continues to grow and as more health-care professionals

  10. Laser Technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.

  11. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  12. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  13. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  14. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  15. Laser optomechanics.

    PubMed

    Yang, Weijian; Gerke, Stephen Adair; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  16. Use of a microsecond Er:YAG laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed CO2 laser.

    PubMed

    Böttcher, Arne; Jowett, Nathan; Kucher, Stanislav; Reimer, Rudolph; Schumacher, Udo; Knecht, Rainald; Wöllmer, Wolfgang; Münscher, Adrian; Dalchow, Carsten V

    2014-05-01

    Despite causing significant thermocoagulative insult, use of the carbon dioxide (CO2) laser is considered gold standard in surgery for early stage larynx carcinoma. Limited attention has been paid to the use of the erbium:yttrium-aluminium-garnet (Er:YAG) laser in laryngeal surgery as a means to reduce thermal tissue injury. The objective of this study is to compare the extent of thermal injury and precision of vocal fold incisions made using microsecond Er:YAG and superpulsed CO2 lasers. In the optics laboratory ex vivo porcine vocal folds were incised using Er:YAG and CO2 lasers. Lateral epithelial and subepithelial thermal damage zones and cutting gap widths were histologically determined. Environmental scanning electron microscopy (ESEM) images were examined for signs of carbonization. Temperature rise during Er:YAG laser incisions was determined using infrared thermography (IRT). In comparison to the CO2 laser, Er:YAG laser incisions showed significantly decreased epithelial (236.44 μm) and subepithelial (72.91 μm) damage zones (p < 0.001). Cutting gaps were significantly narrower for CO2 (878.72 μm) compared to Er:YAG (1090.78 μm; p = 0.027) laser. ESEM revealed intact collagen fibres along Er:YAG laser cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 laser incisions. IRT demonstrated absolute temperature rise below 70 °C for Er:YAG laser incisions. This study has demonstrated significantly reduced lateral thermal damage zones with wider basal cutting gaps for vocal fold incisions made using Er:YAG laser in comparison to those made using CO2 laser.

  17. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    PubMed Central

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  18. Reversible Femtosecond Laser-Assisted Myopia Correction: A Non-Human Primate Study of Lenticule Re-Implantation after Refractive Lenticule Extraction

    PubMed Central

    Chaurasia, Shyam S.; Lee, Wing S.; Tan, Donald T.; Mehta, Jodhbir S.

    2013-01-01

    LASIK (laser-assisted in situ keratomileusis) is a common laser refractive procedure for myopia and astigmatism, involving permanent removal of anterior corneal stromal tissue by excimer ablation beneath a hinged flap. Correction of refractive error is achieved by the resulting change in the curvature of the cornea and is limited by central corneal thickness, as a thin residual stromal bed may result in biomechanical instability of the cornea. A recently developed alternative to LASIK called Refractive Lenticule Extraction (ReLEx) utilizes solely a femtosecond laser (FSL) to incise an intrastromal refractive lenticule (RL), which results in reshaping the corneal curvature and correcting the myopia and/or astigmatism. As the RL is extracted intact in the ReLEx, we hypothesized that it could be cryopreserved and re-implanted at a later date to restore corneal stromal volume, in the event of keratectasia, making ReLEx a potentially reversible procedure, unlike LASIK. In this study, we re-implanted cryopreserved RLs in a non-human primate model of ReLEx. Mild intrastromal haze, noted during the first 2 weeks after re-implantation, subsided after 8 weeks. Refractive parameters including corneal thickness, anterior curvature and refractive error indices were restored to near pre-operative values after the re-implantation. Immunohistochemistry revealed no myofibroblast formation or abnormal collagen type I expression after 8 weeks, and a significant attenuation of fibronectin and tenascin expression from week 8 to 16 after re-implantation. In addition, keratocyte re-population could be found along the implanted RL interfaces. Our findings suggest that RL cryopreservation and re-implantation after ReLEx appears feasible, suggesting the possibility of potential reversibility of the procedure, and possible future uses of RLs in treating other corneal disorders and refractive errors. PMID:23826194

  19. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    PubMed

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  20. Radical-Containing Ultrafine Particulate Matter Initiates Epithelial-to-Mesenchymal Transitions in Airway Epithelial Cells

    PubMed Central

    Thevenot, Paul T.; Saravia, Jordy; Jin, Nili; Giaimo, Joseph D.; Chustz, Regina E.; Mahne, Sarah; Kelley, Matthew A.; Hebert, Valeria Y.; Dellinger, Barry; Dugas, Tammy R.; DeMayo, Francesco J.

    2013-01-01

    Environmentally persistent free radicals (EPFRs) in combustion-generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm2) caused substantial necrosis. At low doses (20 μg/cm2), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α–smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air–liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. PMID:23087054

  1. Sparfloxacin-associated corneal epithelial toxicity

    PubMed Central

    Agarwal, Aniruddha Kishandutt; Ram, Jagat; Singh, Ramandeep

    2014-01-01

    Sparfloxacin is a broad-spectrum fluoroquinolone antibiotic commonly used for various bacterial corneal infections. Topical use of fluoroquinolones is considered to be safe leading to their widespread use. Common indications include blepharitis, conjunctivitis and corneal ulcers. However, unsupervised prolonged use is associated with deposition of crystalline material in the epithelial and anterior stromal layers of the cornea. These may be associated with significant visual symptoms including diminution of vision and glare/photophobia. We present a case of a 40-year-old man who was treated with topical 0.3% sparfloxacin unsupervised for a long time. The patient developed significant visual impairment due to diffuse epitheliopathy. Cessation of the drug was slowly followed by reversal of manifestations and normalisation of corneal morphology. PMID:25239984

  2. Focal epithelial hyperplasia of the oral mucosa.

    PubMed

    Morency, R; Laliberte, H; Delamarre, R

    1982-02-01

    Focal epithelial hyperplasia (FEH) of the oral mucosa has been reported mainly among American Indians, Eskimos, and south Africans. Our investigation is the first among Canadian Indians and combines an epidemiological study of FEH in a Cree Indian population living in Fort Georges. P.Q., and a description of its histologic and ultrastructural features. The sample consists of 150 individuals divided into six age groups. The prevalence rate for all groups is 18.6%. Clinically the lesions are nodular, sessile, and tend to merge with the adjoining mucosa upon stretching. Histologically the hyperplasia is limited to the epithelium. E.M. shows papova-virus-like particles. Otolaryngologists' awareness of this lesion could possibly lead to its recognition on a larger scale.

  3. Analyzing epithelial and endothelial kisses in Merida

    PubMed Central

    Nusrat, Asma; Quiros, Miguel; González-Mariscal, Lorenza

    2013-01-01

    Last November a group of principal investigators, postdoctoral fellows and PhD students from around the world got together in the city of Merida in Southeastern Mexico in a State of the Art meeting on the “Molecular structure and function of the apical junctional complex in epithelial and endothelia.” They analyzed diverse tissue barriers including those in the gastrointestinal tract, the blood brain barrier, blood neural and blood retinal barriers. The talks revealed exciting new findings in the field, novel technical approaches and unpublished data and highlighted the importance of studying junctional complexes to better understand several pathogenesis and to develop therapeutic approaches that can be utilized for drug delivery. This meeting report has the purpose of highlighting the results and advances discussed by the speakers at the Merida Meeting.

  4. Sparfloxacin-associated corneal epithelial toxicity.

    PubMed

    Agarwal, Aniruddha Kishandutt; Ram, Jagat; Singh, Ramandeep

    2014-01-01

    Sparfloxacin is a broad-spectrum fluoroquinolone antibiotic commonly used for various bacterial corneal infections. Topical use of fluoroquinolones is considered to be safe leading to their widespread use. Common indications include blepharitis, conjunctivitis and corneal ulcers. However, unsupervised prolonged use is associated with deposition of crystalline material in the epithelial and anterior stromal layers of the cornea. These may be associated with significant visual symptoms including diminution of vision and glare/photophobia. We present a case of a 40-year-old man who was treated with topical 0.3% sparfloxacin unsupervised for a long time. The patient developed significant visual impairment due to diffuse epitheliopathy. Cessation of the drug was slowly followed by reversal of manifestations and normalisation of corneal morphology. PMID:25239984

  5. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  6. SGK1 regulation of epithelial sodium transport.

    PubMed

    Pearce, David

    2003-01-01

    Epithelial ion transport is regulated in vertebrates by a variety of hormonal and non-hormonal factors, including mineralocorticoids, insulin, and osmotic shock. SGK1 has been established as an important convergence point for multiple regulators of Na+transport. Unlike most serine-threonine kinases, SGK1 is under dual control: protein levels are controlled through effects on its gene transcription, while its activity is dependent on phosphatidylinositol-3-kinase (PI3K) activity. Aldosterone is the most notable regulator of SGK1 protein level in ion transporting epithelia, while insulin and other activators of the of PI3K are key regulators of its activity. Activated SGK1 regulates a variety of ion transporters, the best characterized of which is the epithelial sodium channel (ENaC). The apical targeting of ENaC is controlled by the ubiquitin ligase, Nedd4-2, and SGK1 acts, at least in part, through phosphorylation-dependent inhibition of Nedd4-2. This effect of SGK1 requires physical associations of Nedd4-2 with both SGK1 and ENaC. Moreover, direct physical association between SGK1 and ENaC may also be implicated in the formation of a tertiary complex. Osmotic shock is likely the most important non-hormonal regulator of SGK1 expression, and surprisingly, SGK1 expression can be induced by hypotonic or hypertonic stress in a cell-type dependent fashion. The SGK family represents an ancient arm of the serine-threonine kinase family, present in all eukaryotes that have been examined, including yeast. SGK1 appears to have been implicated in membrane trafficking and possibly in the control of ion transport and cell volume in early single cell eukaryotes. In metazoan epithelia, it seems likely that SGK1 was adapted to the regulation of ion transport in response to hormonal and osmotic signals. PMID:12649598

  7. Cell density determines epithelial migration in culture.

    PubMed Central

    Rosen, P; Misfeldt, D S

    1980-01-01

    The dog kidney epithelial cell line (MDCK) has been shown to exhibit a density-correlated inhibition of growth at approxmately 6.6 X 10(5) cells per cm2. When a confluent monolayer at its maximal density was wounded by removal of a wide swath of cells, migration of the cell sheet into the denuded area occurred. Precise measurements of the rate of migration for 5 day showed that the cells accelerated at a uniform rate of 0.24 micrometer . hr-2 and, by extrapolation, possessed an apparent initial velocity of 2.8 micrometer . hr-1 at the time of wounding. The apparent initial velocity was considered to be the result of a brief (< 10 hr) and rapid acceleration dependent on cell density. To verify this, wounds were made at different densities below the maximum. In these experiments, the cells did not migrate until a "threshold" density of 2.0 X 10(5) cells per cm2 was reached regardless of the density at the time of wounding. At the threshold density, the cell sheet began to accelerate at the previously measured rate (0.24 micrometer . hr-2). Any increase in density by cell division was balanced by cell migration, so that the same threshold density was maintained by the migrating cells. Each migrating cell sustained the movement of the cell sheet at a constant rate of acceleration. It is proposed that an acceleration is, in general, characteristic of the vectorial movement of an epithelial cell sheet. Images PMID:6933523

  8. Epithelial topography for repetitive tooth formation

    PubMed Central

    Gaete, Marcia; Fons, Juan Manuel; Popa, Elena Mădălina; Chatzeli, Lemonia; Tucker, Abigail S.

    2015-01-01

    ABSTRACT During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells. PMID:26538639

  9. Characterization of glomerular epithelial cell matrix receptors.

    PubMed Central

    Adler, S.

    1992-01-01

    Integrin matrix receptors on glomerular epithelial cells (GEC) may play an important role in adhesion of GEC to the glomerular basement membrane (GBM) and in the maintenance of normal glomerular permeability. Therefore, the author determined the types of matrix receptors present on cultured rat GEC and examined their interactions with several components of the extracellular matrix. Beta 1 integrin matrix receptors were detected on all three glomerular cell types in rat kidney in vivo and at areas of cell-cell contact on cultured GEC. Glomerular epithelial cell adhesion to types I and IV collagen was slightly greater than to laminin and fibronectin. Adhesion to fibronectin was significantly inhibited by a synthetic peptide containing the RGD adhesion sequence. Immunoprecipitation of lysates of surface-iodinated GEC showed the presence of alpha 3 beta 1 integrin. Chromatography of lysates on immobilized collagen showed alpha 3 beta 1 integrin and a 70- to 75-kd protein band as the collagen receptors on GEC. Chromatography on the 120-kd cell-binding fragment of fibronectin disclosed only alpha 3 beta 1 as a specific fibronectin receptor. Antibody to the beta 1 integrin chain inhibited adhesion to laminin and collagen. These studies demonstrate that in vitro, as in vivo, GEC appear to express only alpha 3 beta 1 integrin. Furthermore, this matrix receptor is capable of mediating GEC adhesion to collagen, fibronectin, and laminin, components of the GBM, and presumably plays a similar role in promoting GEC adhesion to GBM in vivo. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1325740

  10. A comparison of epithelial-to-mesenchymal transition and re-epithelialization

    PubMed Central

    Leopold, Philip L.; Vincent, Jan; Wang, Hongjun

    2012-01-01

    Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT. PMID:22863788

  11. Cytokeratins mediate epithelial innate defense through their antimicrobial properties

    PubMed Central

    Tam, Connie; Mun, James J.; Evans, David J.; Fleiszig, Suzanne M.J.

    2012-01-01

    Epithelial cells express antimicrobial proteins in response to invading pathogens, although little is known regarding epithelial defense mechanisms during healthy conditions. Here we report that epithelial cytokeratins have innate defense properties because they constitutively produce cytoprotective antimicrobial peptides. Glycine-rich C-terminal fragments derived from human cytokeratin 6A were identified in bactericidal lysate fractions of human corneal epithelial cells. Structural analysis revealed that these keratin-derived antimicrobial peptides (KDAMPs) exhibited coil structures with low α-helical content. Synthetic analogs of these KDAMPS showed rapid bactericidal activity against multiple pathogens and protected epithelial cells against bacterial virulence mechanisms, while a scrambled peptide showed no bactericidal activity. However, the bactericidal activity of a specific KDAMP was somewhat reduced by glycine-alanine substitutions. KDAMP activity involved bacterial binding and permeabilization, but the activity was unaffected by peptide charge or physiological salt concentration. Knockdown of cytokeratin 6A markedly reduced the bactericidal activity of epithelial cell lysates in vitro and increased the susceptibility of murine corneas to bacterial adherence in vivo. These data suggest that epithelial cytokeratins function as endogenous antimicrobial peptides in the host defense against infection and that keratin-derived antimicrobials may serve as effective therapeutic agents. PMID:23006328

  12. Technical note: Isolation and characterization of porcine mammary epithelial cells.

    PubMed

    Dahanayaka, S; Rezaei, R; Porter, W W; Johnson, G A; Burghardt, R C; Bazer, F W; Hou, Y Q; Wu, Z L; Wu, G

    2015-11-01

    Within the mammary gland, functional synthesis of milk is performed by its epithelial (alveolar) cells. The availability of a stable mammary epithelial cell line is essential for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of lactation. Therefore, porcine mammary epithelial cells (PMEC) were isolated from mammary glands of a 9-mo-old nonpregnant and nonlactating gilt and cultured to establish a nonimmortalized cell line. These cells were characterized by expression of cytokeratin-18 (an intermediate filament specific for epithelial cells), β-casein (a specific marker for mammary epithelial cells), and α-lactalbumin. In culture, the PMEC doubled in number every 24 h and maintained a cobblestone morphology, typical for cultured epithelial cells, for at least 15 passages. Addition of 0.2 to 2 μg/mL prolactin to culture medium for 3 d induced the production of β-casein and α-lactalbumin by PMEC in a dose-dependent manner. Thus, we have successfully developed a useful PMEC line for future studies of cellular and molecular regulation of milk synthesis by mammary epithelial cells of the sow. PMID:26641038

  13. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    PubMed

    Knodler, Leigh A; Nair, Vinod; Steele-Mortimer, Olivia

    2014-01-01

    Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  14. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  15. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  16. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  17. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  18. Laser physics and laser-tissue interaction.

    PubMed

    Welch, A J; Torres, J H; Cheong, W F

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications.

  19. Global analysis of the human gastric epithelial transcriptome altered by Helicobacter pylori eradication in vivo

    PubMed Central

    Resnick, M B; Sabo, E; Meitner, P A; Kim, S S; Cho, Y; Kim, H K; Tavares, R; Moss, S F

    2006-01-01

    Objective The transcriptional profile of gastric epithelial cell lines cocultured with Helicobacter pylori and the global gene expression of whole gastric mucosa has been described previously. We aimed to overcome limitations of previous studies by determining the effects of H pylori eradication on the transcriptome of purified human gastric epithelium using each patient as their own control. Design Laser capture microdissection (LCM) was used to extract mRNA from paraffin‐embedded antral epithelium from 10 patients with peptic ulcer disease, before and after H pylori eradication. mRNA was reverse transcribed and applied on to Affymetrix cDNA microarray chips customised for formalin‐fixed tissue. Differentially expressed genes were identified and a subset validated by real‐time polymerase chain reaction (PCR). Results A total of 13 817 transcripts decreased and 9680 increased after H pylori eradication. Applying cut‐off criteria (p<0.02, fold‐change threshold 2.5) reduced the sample to 98 differentially expressed genes. Genes detected included those previously implicated in H pylori pathophysiology such as interleukin 8, chemokine ligand 3, β defensin and somatostatin, as well as novel genes such as GDDR (TFIZ1), chemokine receptors 7 and 8, and gastrokine. Conclusions LCM of archival specimens has enabled the identification of gastric epithelial genes whose expression is considerably altered after H pylori eradication. This study has confirmed the presence of genes previously implicated in the pathogenesis of H pylori, as well as highlighted novel candidates for further investigation. PMID:16641130

  20. Physical characterization and profiling of airway epithelial derived exosomes using light scattering

    PubMed Central

    Kesimer, Mehmet; Gupta, Richa

    2015-01-01

    Exosomes and other extracellular vesicles have been gaining interest during the last decade due to their emerging role in biology and, disease pathogenesis and their biomarker potential. Almost all published research related to exosomes and other extracellular vesicles include some form of physical characterization. Therefore, these vesicles should be precisely profiled and characterized physically before studying their biological role as intercellular messengers, biomarkers or therapeutic tools. Using a combination of light scattering techniques, including dynamic light scattering (DLS) and multi-angle laser light scattering combined with size exclusion separation (SEC-MALLS), we physically characterized and compared distinct extracellular vesicles derived from the apical secretions of two different cultured airway epithelial cells. The results indicated that epithelial cells release vesicles with distinct physical properties and sizes. Human primary tracheobronchial cell culture (HTBE) derived vesicles have a hydrodynamic radius (Rh) of approximately 340 nm while their radius of gyration (Rg) is approximately 200 nm. Electron microscopy analysis, however, revealed that their spherical component is 40-100 nm in size, and they carry filamentous, entangled membrane mucins on their surface that increases their overall radius. The mucin decoration on the surface defines their size and charge as measured using light scattering techniques. Their surface properties mirror the properties of the cells from which they are derived. This may provide a unique tool for researchers to elucidate the unanswered questions in normal airway biology and innate and adaptive defense, including the remodeling of airways during inflammation, tumorigenesis and metastasis. PMID:25823850

  1. Physical characterization and profiling of airway epithelial derived exosomes using light scattering.

    PubMed

    Kesimer, Mehmet; Gupta, Richa

    2015-10-01

    Exosomes and other extracellular vesicles have been gaining interest during the last decade due to their emerging role in biology and, disease pathogenesis and their biomarker potential. Almost all published research related to exosomes and other extracellular vesicles include some form of physical characterization. Therefore, these vesicles should be precisely profiled and characterized physically before studying their biological role as intercellular messengers, biomarkers or therapeutic tools. Using a combination of light scattering techniques, including dynamic light scattering (DLS) and multi-angle laser light scattering combined with size exclusion separation (SEC-MALLS), we physically characterized and compared distinct extracellular vesicles derived from the apical secretions of two different cultured airway epithelial cells. The results indicated that epithelial cells release vesicles with distinct physical properties and sizes. Human primary tracheobronchial cell culture (HTBE) derived vesicles have a hydrodynamic radius (Rh) of approximately 340 nm while their radius of gyration (Rg) is approximately 200 nm. Electron microscopy analysis, however, revealed that their spherical component is 40-100 nm in size, and they carry filamentous, entangled membrane mucins on their surface that increases their overall radius. The mucin decoration on the surface defines their size and charge as measured using light scattering techniques. Their surface properties mirror the properties of the cells from which they are derived. This may provide a unique tool for researchers to elucidate the unanswered questions in normal airway biology and innate and adaptive defense, including the remodeling of airways during inflammation, tumorigenesis and metastasis. PMID:25823850

  2. Mitotic cell rounding and epithelial thinning regulate lumen growth and shape.

    PubMed

    Hoijman, Esteban; Rubbini, Davide; Colombelli, Julien; Alsina, Berta

    2015-06-16

    Many organ functions rely on epithelial cavities with particular shapes. Morphogenetic anomalies in these cavities lead to kidney, brain or inner ear diseases. Despite their relevance, the mechanisms regulating lumen dimensions are poorly understood. Here, we perform live imaging of zebrafish inner ear development and quantitatively analyse the dynamics of lumen growth in 3D. Using genetic, chemical and mechanical interferences, we identify two new morphogenetic mechanisms underlying anisotropic lumen growth. The first mechanism involves thinning of the epithelium as the cells change their shape and lose fluids in concert with expansion of the cavity, suggesting an intra-organ fluid redistribution process. In the second mechanism, revealed by laser microsurgery experiments, mitotic rounding cells apicobasally contract the epithelium and mechanically contribute to expansion of the lumen. Since these mechanisms are axis specific, they not only regulate lumen growth but also the shape of the cavity.

  3. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches.

    PubMed

    Giannakis, Marios; Stappenbeck, Thaddeus S; Mills, Jason C; Leip, Douglas G; Lovett, Michael; Clifton, Sandra W; Ippolito, Joseph E; Glasscock, Jarret I; Arumugam, Manimozhiyan; Brent, Michael R; Gordon, Jeffrey I

    2006-04-21

    We have sequenced 36,641 expressed sequence tags from laser capture microdissected adult mouse gastric and small intestinal epithelial progenitors, obtaining 4031 and 3324 unique transcripts, respectively. Using Gene Ontology (GO) terms, each data set was compared with cDNA libraries from intact adult stomach and small intestine. Genes in GO categories enriched in progenitors were filtered against genes in GO categories represented in hematopoietic, neural, and embryonic stem cell transcriptomes and mapped onto transcription factor networks, plus canonical signal transduction and metabolic pathways. Wnt/beta-catenin, phosphoinositide-3/Akt kinase, insulin-like growth factor-1, vascular endothelial growth factor, integrin, and gamma-aminobutyric acid receptor signaling cascades, plus glycerolipid, fatty acid, and amino acid metabolic pathways are among those prominently represented in adult gut progenitors. The results reveal shared as well as distinctive features of adult gut stem cells when compared with other stem cell populations.

  4. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells.

    PubMed

    Han, Meng; Bindewald-Wittich, Almut; Holz, Frank G; Giese, Guenter; Niemz, Markolf H; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F

    2006-01-01

    Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.

  5. Mitotic cell rounding and epithelial thinning regulate lumen growth and shape.

    PubMed

    Hoijman, Esteban; Rubbini, Davide; Colombelli, Julien; Alsina, Berta

    2015-01-01

    Many organ functions rely on epithelial cavities with particular shapes. Morphogenetic anomalies in these cavities lead to kidney, brain or inner ear diseases. Despite their relevance, the mechanisms regulating lumen dimensions are poorly understood. Here, we perform live imaging of zebrafish inner ear development and quantitatively analyse the dynamics of lumen growth in 3D. Using genetic, chemical and mechanical interferences, we identify two new morphogenetic mechanisms underlying anisotropic lumen growth. The first mechanism involves thinning of the epithelium as the cells change their shape and lose fluids in concert with expansion of the cavity, suggesting an intra-organ fluid redistribution process. In the second mechanism, revealed by laser microsurgery experiments, mitotic rounding cells apicobasally contract the epithelium and mechanically contribute to expansion of the lumen. Since these mechanisms are axis specific, they not only regulate lumen growth but also the shape of the cavity. PMID:26077034

  6. Genetics and epithelial cell dysfunction in cystic fibrosis

    SciTech Connect

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  7. Isolation and characterization of cutaneous epithelial stem cells

    PubMed Central

    Jensen, Uffe B.; Ghazizadeh, Soosan; Owens, David M.

    2014-01-01

    SUMMARY During homeostasis, adult mammalian skin turnover is maintained by a number of multipotent and unipotent epithelial progenitors located either in the epidermis, hair follicle or sebaceous gland. Recent work has illustrated that these various progenitor populations reside in regionalized niches and are phenotypically distinct from one another. This degree of heterogeneity within the progenitor cell landscape in the cutaneous epithelium complicates our ability to target, purify and manipulate cutaneous epithelial stem cell subpopulations in adult skin. The techniques outlined in this chapter describe basic procedures for the isolation and purification of murine epithelial progenitors and assessing their capacity for ex vivo propagation. PMID:23483387

  8. Probing the luminal microenvironment of reconstituted epithelial microtissues.

    PubMed

    Cerchiari, Alec E; Samy, Karen E; Todhunter, Michael E; Schlesinger, Erica; Henise, Jeff; Rieken, Christopher; Gartner, Zev J; Desai, Tejal A

    2016-01-01

    Polymeric microparticles can serve as carriers or sensors to instruct or characterize tissue biology. However, incorporating microparticles into tissues for in vitro assays remains a challenge. We exploit three-dimensional cell-patterning technologies and directed epithelial self-organization to deliver microparticles to the lumen of reconstituted human intestinal microtissues. We also develop a novel pH-sensitive microsensor that can measure the luminal pH of reconstituted epithelial microtissues. These studies offer a novel approach for investigating luminal microenvironments and drug-delivery across epithelial barriers. PMID:27619235

  9. Probing the luminal microenvironment of reconstituted epithelial microtissues

    PubMed Central

    Cerchiari, Alec E.; Samy, Karen E.; Todhunter, Michael E.; Schlesinger, Erica; Henise, Jeff; Rieken, Christopher; Gartner, Zev J.; Desai, Tejal A.

    2016-01-01

    Polymeric microparticles can serve as carriers or sensors to instruct or characterize tissue biology. However, incorporating microparticles into tissues for in vitro assays remains a challenge. We exploit three-dimensional cell-patterning technologies and directed epithelial self-organization to deliver microparticles to the lumen of reconstituted human intestinal microtissues. We also develop a novel pH-sensitive microsensor that can measure the luminal pH of reconstituted epithelial microtissues. These studies offer a novel approach for investigating luminal microenvironments and drug-delivery across epithelial barriers. PMID:27619235

  10. Depth sensitive oblique polarized reflectance spectroscopy of oral epithelial tissue

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria K.; Lam, Sylvia; Poh, Catherine; Sokolov, Konstantin

    2014-05-01

    Identifying depth-dependent alterations associated with epithelial cancerous lesions can be challenging in the oral cavity where variable epithelial thicknesses and troublesome keratin growths are prominent. Spectroscopic methods with enhanced depth resolution would immensely aid in isolating optical properties associated with malignant transformation. Combining multiple beveled fibers, oblique collection geometry, and polarization gating, oblique polarized reflectance spectroscopy (OPRS) achieves depth sensitive detection. We report promising results from a clinical trial of patients with oral lesions suspected of dysplasia or carcinoma demonstrating the potential of OPRS for the analysis of morphological and architectural changes in the context of multilayer, epithelial oral tissue.

  11. Epithelial and pancreatic choristoma in bovine lymph nodes.

    PubMed

    Quesada, O; Suárez-Bonnet, A; Andrada, M; Fernández, A; de los Monteros, A Espinosa

    2010-01-01

    Lymph nodes from 186 cows were evaluated as part of a bovine tuberculosis eradication programme. The mediastinal lymph nodes of 13 animals contained atypical structures. In 12 cases (6.45%) these consisted of multiple epithelial structures and, in one case, of pancreatic-like tissue. Immunohistochemistry (IHC) revealed that the epithelial structures were consistent with respiratory epithelium and with ectopic pancreatic tissue, respectively. To the best of our knowledge these are the first histological and immunohistochemical descriptions of epithelial and pancreatic choristomas in bovine lymph nodes.

  12. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  13. Header For Laser Diode

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1990-01-01

    Header designed to contain laser diode. Output combined incoherently with outputs of other laser diodes in grating laser-beam combiner in optical communication system. Provides electrical connections to laser diode, cooling to thermally stabilize laser operation, and optomechanical adjustments that steer and focus laser beam. Range of adjustments provides for correction of worst-case decentering and defocusing of laser beam encountered with laser diodes. Mechanical configuration made simple to promote stability and keep cost low.

  14. Effects of visible or IR Laser light on the progression of chemo-induced oral dysplasia: In vivo study on the hamster cheek pouch model

    NASA Astrophysics Data System (ADS)

    Monteiro, Juliana S. D. C.; Aciole, Gilberth T. d. S.; Cangussu, Maria Cristina T.; Santos, Jean N. d.; Barbosa Pinheiro, Antonio L.

    2009-02-01

    Oral Epithelial dysplasia may be a white, red or mixed patch that may affect several sites of the mouth. Chemo-induced precancerous lesions are standard model to study cancer on the oral cavity. The use of Laser photobiomodulation on the oral care is a standard procedure these days and it is known that it proliferative effects on both cells and tissues depending on dose, wavelengths and other parameters. The aim of this study was to assess the effect of laser light on the evolution of chemo-induced epithelial dysplasia on the hamster cheek pouch model. Sixteen animals were divided into four groups: Control (n=8), Laser λ660nm (n=4), and Laser λ790nm (n=4). DMBA induction was carried out three times a week. All animals presented epithelial dysplasia seven days after first induction. When appropriate, laser (λ660nm or λ790nm, 30/40mW, Φ ~ 3mm, 4J/cm2) was used at 48 h interval during two weeks. Chemo-induction continued during all experimental period (6 weeks). Following animal death, specimens were taken, routinely process to wax, cut and stained with H.E. Slides were analyzed under light microscopy by an oral pathologist using WHO (2005) criteria for epithelial dysplasia. At the end of the experiment, 100% of control specimens showed mild epithelial dysplasia. On laser irradiated animals, 75% of the specimens showed mild epithelial dysplasia and 25% showed moderate ones extending beyond the medium third of the epithelium. It was concluded that the use of both wavelength and a dose of 4J/cm2 may increase the severity of oral epithelial dysplasia.

  15. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  16. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  17. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  18. Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation

    PubMed Central

    Ivanov, Andrei I.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II–dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia. PMID:20581053

  19. Sarcoma with true epithelial differentiation secondary to irradiated glioblastoma

    PubMed Central

    Pimentel, J.; Marques, J.; Pereira, P.; Roque, L.; Martins, C.; Campos, A.

    2011-01-01

    Glioblastoma multiforme rarely shows true, immunohistochemically confirmed, epithelial differentiation. Furthermore, radiotherapy may induce cerebral sarcomatous tumors, and postsurgery glioblastoma irradiation may give rise to secondary gliosarcomas. We report a case of a 48-year-old male operated on a primary glioblastoma, followed by radiotherapy. A local recurrence occurred 23 months later that was operated too, and a second diagnosis of a fibrosarcoma with true epithelial differentiation was made. Primary systemic neoplasms were largely excluded. The patient died shortly after, and postmortem showed another cerebral dural-attached mass corresponding to a sarcoma without epithelial differentiation, and leptomeningeal seeding composed of malignant epithelial elements only. Cytogenetics, however, disclosed the second tumor to be similar to the primary one.

  20. Methionine restriction fundamentally supports health by tightening epithelial barriers.

    PubMed

    Mullin, James M; Skrovanek, Sonja M; Ramalingam, Arivudainambi; DiGuilio, Katherine M; Valenzano, Mary C

    2016-01-01

    Dietary methionine restriction (MR) has been found to affect one of the most primary tissue-level functions of an organism: the efficiency with which the epithelial linings of major organs separate the fluid compartments that they border. This process, epithelial barrier function, is basic for proper function of all organs, including the lung, liver, gastrointestinal tract, reproductive tract, blood-brain barrier, and kidney. Specifically, MR has been found to modify the protein composition of tight junctional complexes surrounding individual epithelial cells in a manner that renders the complexes less leaky. This has been observed in both a renal epithelial cell culture model and in gastrointestinal tissue. In both cases, MR increased the transepithelial electrical resistance across the epithelium, while decreasing passive leak of small nonelectrolytes. However, the specific target protein modifications involved were unique to each case. Overall, this provides an example of the primary level on which MR functions to modify, and improve, an organism.

  1. Eph/ephrin signaling in epithelial development and homeostasis

    PubMed Central

    Miao, Hui; Wang, Bingcheng

    2011-01-01

    Eph receptors and ephrin ligands are widely expressed during embryonic development with well-defined functions in directing neuronal and vascular network formation. Over the last decade, evidence has mounted that Ephs and ephrins are also actively involved in prenatal and postnatal development of epithelial tissues. Their functions beyond developmental settings are starting to be recognized as well. The diverse functions of Eph/ephrin are largely related to the complementary expression pattern of the Eph receptors and corresponding ephrin ligands that are expressed in adjacent compartments, although overlapping expression pattern also exists in epithelial tissue. The interconnection between Ephs or ephrins and classical cell junctional molecules suggests they may function coordinately in maintaining epithelial structural integrity and homeostasis. This review will highlight cellular and molecular evidence in current literature that support a role of Eph/ephrin systems in regulating epithelial cell development and physiology. PMID:18761422

  2. Control of epithelial ion transport by Cl- and PDZ proteins.

    PubMed

    Schreiber, R; Boucherot, A; Mürle, B; Sun, J; Kunzelmann, K

    2004-05-15

    Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl- for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+ / H+ -exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca(2+) -dependent Cl- secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl- and that stimulation by secretagogues enhances the intracellular Cl- concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellular Cl- during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl- secretion. PMID:15383919

  3. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance

    PubMed Central

    Yu, Yong; Geng, Xiao-Rui; Yang, Gui; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2013-01-01

    Background and aims Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. Methods Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. Results The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. Conclusions Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa. PMID:23840363

  4. Angiomyolipoma with epithelial cysts: mimic of renal cell carcinoma.

    PubMed

    Rosenkrantz, Andrew B; Hecht, Elizabeth M; Taneja, Samir S; Melamed, Jonathan

    2010-01-01

    Angiomyolipoma with epithelial cysts (AMLEC) is a rare variant of angiomyolipoma with minimal fat that contains epithelial-lined cysts and may mimic a cystic renal cell carcinoma. While 17 cases have been described in the pathology literature since this entity was first described in 2006, the radiologic appearance was not demonstrated in any of these cases. We report the CT and MRI appearance of AMLEC found incidentally in a patient with lupus nephritis.

  5. Photodynamic therapy in the treatment of epithelial potentially malignant disorders of the mouth: advantages and disadvantages

    NASA Astrophysics Data System (ADS)

    Gaimari, G.; Russo, C.; Palaia, G.; Tenore, G.; Del Vecchio, A.; Romeo, U.

    2016-03-01

    Introduction: Leukoplakia is a potentially malignant epithelial lesion with carcinomatous percentages transformation comprehended between 1% and 7% for the homogeneous forms and from 4% to 15% for the non-homogeneous ones. Their removal can be performed by scalpel or laser surgery (excision or vaporization). Photodynamic therapy (PDT) is a bloodless treatment option, based on the involvement of three elements: light, photosensitizer and oxygen. When the molecules of the photosensitizer are activated by a low power laser, energy is transferred to molecular oxygen creating highly reactive radicals of oxygen, that have a cytotoxic effect on target cells. Aim of the study: According to several studies in Literature, it has been decided to evaluate through an initial clinical trial, the efficacy of PDT using topical aminolevulinic acid (5-ALA) activated by a laser diode (λ = 635 nm) to treat potentially oral malignant lesions and to illustrate the advantages and disadvantages derived from the use of this technique. Materials and Methods: Five patients, affected by oral leukoplakia (OL) and oral verrucous leukoplakia (OVL) on the mucosal cheeks, labial commissure, fornix and retromolar areas, have been treated using the PDT. Irradiation time with Diode laser: 1000s. Irradiation mode: Scanning. 5 cycles of 3 minute + final cycle of 100 seconds. Each cycle has been interrupted by pauses of 3 minutes. Results and conclusion: PDT results to be effective in the treatment of OL, especially on OVL. In fact, OVL, due to its irregularity, has got an area of increased retention for the gel that is more difficult to be removed by salivary flow. This could explain the better results obtained in this case rather than in those ones of OL. Furthermore, the advantages have been represented by: less invasivity, high sensitivity for altered tissues, minimal scar tissue, less side effects and no pain during and after operation. In contrast to this, the disadvantages were: longer treatment

  6. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

  7. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    PubMed

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  8. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  9. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  10. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  11. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  12. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers.

    PubMed

    Sabbah, Michèle; Emami, Shahin; Redeuilh, Gérard; Julien, Sylvia; Prévost, Grégoire; Zimber, Amazia; Ouelaa, Radia; Bracke, Marc; De Wever, Olivier; Gespach, Christian

    2008-01-01

    The mechanisms involved in the epithelial to mesenchymal transition (EMT) are integrated in concert with master developmental and oncogenic pathways regulating in tumor growth, angiogenesis, metastasis, as well as the reprogrammation of specific gene repertoires ascribed to both epithelial and mesenchymal cells. Consequently, it is not unexpected that EMT has profound impacts on the neoplastic progression, patient survival, as well as the resistance of cancers to therapeutics (taxol, vincristine, oxaliplatin, EGF-R targeted therapy and radiotherapy), independent of the "classical" resistance mechanisms linked to genotoxic drugs. New therapeutic combinations using genotoxic agents and/or EMT signaling inhibitors are therefore expected to circumvent the chemotherapeutic resistance of cancers characterized by transient or sustained EMT signatures. Thus, targeting critical orchestrators at the convergence of several EMT pathways, such as the transcription pathways NF-kappaB, AKT/mTOR axis, MAPK, beta-catenin, PKC and the AP-1/SMAD factors provide a realistic strategy to control EMT and the progression of human epithelial cancers. Several inhibitors targeting these signaling platforms are already tested in preclinical and clinical oncology. In addition, upstream EMT signaling pathways induced by receptor and nonreceptor tyrosine kinases (e.g. EGF-R, IGF-R, VEGF-R, integrins/FAK, Src) and G-protein-coupled receptors (GPCR) constitute practical options under preclinical research, clinical trials or are currently used in the clinic for cancer treatment: e.g. small molecule inhibitors (Iressa: targeting selectively the EGF-R; CP-751,871, AMG479, NVP-AEW541, BMS-536924, PQIP, AG1024: IGF-R; AZD2171, ZD6474: VEGF-R; AZD0530, BMS-354825, SKI606: Src; BIM-46174: GPCR; rapamycin, CCI-779, RAD-001: mTOR) and humanized function blocking antibodies (Herceptin: ErbB2; Avastin: VEGF-A; Erbitux: EGF-R; Abegrin: alphavbeta3 integrins). We can assume that silencing RNA and adenovirus

  13. Sunitinib Malate in Treating Patients With Recurrent Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2015-01-15

    Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  14. Isolated Epithelial Cells of the Toad Bladder

    PubMed Central

    Gatzy, J. T.; Berndt, W. O.

    1968-01-01

    Epithelial cells of the toad bladder were disaggregated with EDTA, trypsin, hyaluronidase, or collagenase and were then scraped free of the underlying connective tissue. In most experiments EDTA was complexed with a divalent cation before the tissue was scraped. QOO2, sucrose and inulin spaces, and electrolytes of the isolated cells were measured. Cells disaggregated by collagenase or hyaluronidase consumed O2 at a rate of 4 µl hr-1 dry wt-1. QOO2 was increased 50% by ADH (100 U/liter) or by cyclic 3',5'-AMP (10 mM/liter). Na+-free Ringer's depressed the QOO2 by 40%. The QOO2 of cells prepared by trypsin treatment or by two EDTA methods was depressed by Na+-free Ringer's but was stimulated relatively little by ADH. Two other EDTA protocols produced cells that did not respond to Na+ lack or ADH. The intracellular Na+ and K+ concentrations of collagenase-disaggregated cells were 32 and 117 mEq/kg cell H2O, respectively. Cation concentrations of hyaluronidase cells were similar, but cells that did not respond to ADH had higher intracellular Na+ concentrations. Cells unresponsive to ADH and Na+ lack had high sucrose spaces and low transcellular membrane gradients of Na+, K+, and Cl-. The results suggest that trypsin and EDTA disaggregation damage the active Na+ transport system of the isolated cell. Certain EDTA techniques may also produce a general increase in permeability. Collagenase and hyaluronidase cells appear to function normally. PMID:4300150

  15. Stochastic Terminal Dynamics in Epithelial Cell Intercalation

    NASA Astrophysics Data System (ADS)

    Eule, Stephan; Metzger, Jakob; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Grosshans, Joerg; Wolf, Fred

    2015-03-01

    We found that the constriction of epithelial cell contacts during intercalation in germ band extension in Drosophila embryos follows intriguingly simple quantitative laws. The mean contact length < L > follows < L > (t) ~(T - t) α , where T is the finite collapse time; the time dependent variance of contact length is proportional to the square of the mean; finally the time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations suggest that the dynamics of contact collapse can be captured by a stochastic differential equation analytically tractable in small noise approximation. Here, we present such a model, providing an effective description of the non-equilibrium statistical mechanics of contact collapse. All model parameters are fixed by measurements of time dependent mean and variance of contact lengths. The model predicts the contact length covariance function that we obtain in closed form. The contact length covariance function closely matches experimental observations suggesting that the model well captures the dynamics of contact collapse.

  16. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION

    PubMed Central

    Loewenstein, Werner R.; Kanno, Yoshinobu

    1964-01-01

    Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10-4 mho/cm2), the junctional membrane surface is highly permeable. In fact, it introduces no substantial restriction to ion flow beyond that in the cytoplasm; the resistance through a chain of cells (150 Ω cm) is only slightly greater than in extruded cytoplasm (100 Ω cm). The diffusion resistance along the intercellular space to the exterior, on the other hand, is very high. Here, there exists an ion barrier of, at least, 104Ω cm2. As a result, small ions and fluorescein move rather freely from one cell to the next, but do not leak appreciably through the intercellular space to the exterior. The organ here, rather than the single cell, appears to be the unit of ion environment. The possible underlying structural aspects are discussed. PMID:14206423

  17. Anthrax Toxin Entry into Polarized Epithelial Cells

    PubMed Central

    Beauregard, Kathryn E.; Wimer-Mackin, Susan; Collier, R. John; Lencer, Wayne I.

    1999-01-01

    We examined the entry of anthrax edema toxin (EdTx) into polarized human T84 epithelial cells using cyclic AMP-regulated Cl− secretion as an index of toxin entry. EdTx is a binary A/B toxin which self assembles at the cell surface from anthrax edema factor and protective antigen (PA). PA binds to cell surface receptors and delivers EF, an adenylate cyclase, to the cytosol. EdTx elicited a strong Cl− secretory response when it was applied to the basolateral surface of T84 cells but no response when it was applied to the apical surface. PA alone had no effect when it was applied to either surface. T84 cells exposed basolaterally bound at least 30-fold-more PA than did T84 cells exposed apically, indicating that the PA receptor is largely or completely restricted to the basolateral membrane of these cells. The PA receptor did not fractionate with detergent-insoluble caveola-like membranes as cholera toxin receptors do. These findings have implications regarding the nature of the PA receptor and confirm the view that EdTx and CT coopt fundamentally different subcellular systems to enter the cell and cause disease. PMID:10338515

  18. Intracellular Na+ regulates epithelial Na+ channel maturation.

    PubMed

    Heidrich, Elisa; Carattino, Marcelo D; Hughey, Rebecca P; Pilewski, Joseph M; Kleyman, Thomas R; Myerburg, Mike M

    2015-05-01

    Epithelial Na(+) channel (ENaC) function is regulated by the intracellular Na(+) concentration ([Na(+)]i) through a process known as Na(+) feedback inhibition. Although this process is known to decrease the expression of proteolytically processed active channels on the cell surface, it is unknown how [Na(+)]i alters ENaC cleavage. We show here that [Na(+)]i regulates the posttranslational processing of ENaC subunits during channel biogenesis. At times when [Na(+)]i is low, ENaC subunits develop mature N-glycans and are processed by proteases. Conversely, glycan maturation and sensitivity to proteolysis are reduced when [Na(+)]i is relatively high. Surface channels with immature N-glycans were not processed by endogenous channel activating proteases, nor were they sensitive to cleavage by exogenous trypsin. Biotin chase experiments revealed that the immature surface channels were not converted into mature cleaved channels following a reduction in [Na(+)]i. The hypothesis that [Na(+)]i regulates ENaC maturation within the biosynthetic pathways is further supported by the finding that Brefeldin A prevented the accumulation of processed surface channels following a reduction in [Na(+)]i. Therefore, increased [Na(+)]i interferes with ENaC N-glycan maturation and prevents the channel from entering a state that allows proteolytic processing. PMID:25767115

  19. Boundary crossing in epithelial wound healing

    PubMed Central

    Fong, Eileen; Tzlil, Shelly; Tirrell, David A.

    2010-01-01

    The processes of wound healing and collective cell migration have been studied for decades. Intensive research has been devoted to understanding the mechanisms involved in wound healing, but the role of cell-substrate interactions is still not thoroughly understood. Here we probe the role of cell-substrate interactions by examining in vitro the healing of monolayers of human corneal epithelial (HCE) cells cultured on artificial extracellular matrix (aECM) proteins. We find that the rate of wound healing is dependent on the concentration of fibronectin-derived (RGD) cell-adhesion ligands in the aECM substrate. The wound closure rate varies nearly sixfold on the substrates examined, despite the fact that the rates of migration and proliferation of individual cells show little sensitivity to the RGD concentration (which varies 40-fold). To explain this apparent contradiction, we study collective migration by means of a dynamic Monte Carlo simulation. The cells in the simulation spread, retract, and proliferate with probabilities obtained from a simple phenomenological model. The results indicate that the overall wound closure rate is determined primarily by the rate at which cells cross the boundary between the aECM protein and the matrix deposited under the cell sheet. PMID:20974917

  20. Ouabain modulates epithelial cell tight junction

    PubMed Central

    Larre, Isabel; Lazaro, Amparo; Contreras, Ruben G.; Balda, Maria S.; Matter, Karl; Flores-Maldonado, Catalina; Ponce, Arturo; Flores-Benitez, David; Rincon-Heredia, Ruth; Padilla-Benavides, Teresita; Castillo, Aída; Shoshani, Liora; Cereijido, Marcelino

    2010-01-01

    Epithelial cells treated with high concentrations of ouabain (e.g., 1 μM) retrieve molecules involved in cell contacts from the plasma membrane and detach from one another and their substrates. On the basis of this observation, we suggested that ouabain might also modulate cell contacts at low, nontoxic levels (10 or 50 nM). To test this possibility, we analyzed its effect on a particular type of cell–cell contact: the tight junction (TJ). We demonstrate that at concentrations that neither inhibit K+ pumping nor disturb the K+ balance of the cell, ouabain modulates the degree of sealing of the TJ as measured by transepithelial electrical resistance (TER) and the flux of neutral 3 kDa dextran (JDEX). This modulation is accompanied by changes in the levels and distribution patterns of claudins 1, 2, and 4. Interestingly, changes in TER, JDEX, and claudins behavior are mediated through signal pathways containing ERK1/2 and c-Src, which have distinct effects on each physiological parameter and claudin type. These observations support the theory that at low concentrations, ouabain acts as a modulator of cell–cell contacts. PMID:20534449

  1. Epithelial Sodium and Chloride Channels and Asthma

    PubMed Central

    Wang, Wen; Ji, Hong-Long

    2015-01-01

    Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. PMID:26265620

  2. Epithelial sodium channel modulates platelet collagen activation.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Benítez-Cardoza, Claudia; Ortega, Arturo

    2014-03-01

    Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation.

  3. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  4. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.

  5. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  6. Crystal violet staining to quantify Candida adhesion to epithelial cells.

    PubMed

    Negri, M; Gonçalves, V; Silva, S; Henriques, M; Azeredo, J; Oliveira, R

    2010-01-01

    In vitro studies of adhesion capability are essential to characterise the virulence of Candida species. However, the assessment of adhesion by traditional methods is time-consuming. The aim of the present study is the development of a simple methodology using crystal violet staining to quantify in vitro adhesion of different Candida species to epithelial cells. The experiments are performed using Candida albicans (ATCC 90028), C. glabrata (ATCC 2001), C. parapsilosis (ATCC 22019) and C. tropicalis (ATCC 750). A human urinary bladder epithelial cell line (TCC-SUP) is used. Yeast and epithelial cells were stained with crystal violet, epithelial cells were then destained using intermediate washing, and the dye in the yeast cells was extracted with acetic acid. The method was validated for the different Candida reference species by comparison with traditional microscope observation and enumeration. The method was then used to assess Candida adhesion to epithelial cells and also to silicone. For all Candida spp. high correlation values (r2= 0.9724-0.9997) between the number of adherent yeasts (microscope enumeration) and absorbance values were obtained for an inoculum concentration >10(6) cells/mL. The proposed technique was easy to perform and reproducible, enabling the determination of adhesion ability of Candida species to an epithelial cell line. PMID:20973406

  7. Fibronectin Expression Modulates Mammary Epithelial Cell Proliferation during Acinar Differentiation

    PubMed Central

    Williams, Courtney M.; Engler, Adam J.; Slone, R. Daniel; Galante, Leontine L.; Schwarzbauer, Jean E.

    2009-01-01

    The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland. PMID:18451144

  8. Influence of the mesenchymal cell source on oral epithelial development.

    PubMed

    Kinikoglu, Beste; Rovere, Marie Rose; Haftek, Marek; Hasirci, Vasif; Damour, Odile

    2012-03-01

    The extent of the influence of mesenchymal tissue on epithelial development is still debated, and elucidation of epithelial-mesenchymal interactions should be of relevance for controlling normal as well as pathological growth and development. The aim of the present study was to elucidate the influence of the mesenchymal cell type on oral mucosa epithelial development in vitro, using tissue-engineering principles, by including three different sources for mesenchymal cell type, viz. oral mucosa, skin and cornea, each of them presenting a distinct type of epithelium in situ. We investigated epithelial-mesenchymal interactions, considering both morphological criteria and protein expression (filaggrin, keratin 10, keratin 12, keratin 13 and laminin 5). The results of the histology, immunohistochemistry and transmission electron microscopy of the three types of tissue-engineered constructs composed of mesenchymal cells of different sources (oral, dermal and corneal fibroblasts) and of the same oral epithelial cells showed that the mesenchymal cell source had a significant influence on the thickness and ultrastructure of the epithelium, but not on the differentiation of oral epithelial cells, which might be an intrinsic property of these cells due to their genetic programming. PMID:21548135

  9. Epithelial ER Stress in Crohn's Disease and Ulcerative Colitis.

    PubMed

    Cao, Stewart S

    2016-04-01

    Research in the past decade has greatly expanded our understanding of the pathogenesis of inflammatory bowel disease, which includes Crohn's disease and ulcerative colitis. In addition to the sophisticated network of immune response, the epithelial layer lining the mucosa has emerged as an essential player in the development and persistence of intestinal inflammation. As the frontline of numerous environmental insults in the gut, the intestinal epithelial cells are subject to various cellular stresses. In eukaryotic cells, disturbance of endoplasmic reticulum homeostasis may lead to the accumulation of unfolded and misfolded proteins in the ER lumen, a condition called ER stress. This cellular process activates the unfolded protein response, which functions to enhance the ER protein folding capacity, alleviates the burden of protein synthesis and maturation, and activates ER-associated protein degradation. Paneth and goblet cells, 2 secretory epithelial populations in the gut, are particularly sensitive to ER stress on environmental or genetic disturbances. Recent studies suggested that epithelial ER stress may contribute to the pathogenesis of Crohn's disease and ulcerative colitis by compromising protein secretion, inducing epithelial cell apoptosis and activating proinflammatory response in the gut. Our knowledge of ER stress in intestinal epithelial function may open avenue to new inflammatory bowel disease therapies by targeting the ER protein folding homeostasis in the cells lining the intestinal mucosa.

  10. Analysis of the Epithelial Damage Produced by Entamoeba histolytica Infection

    PubMed Central

    Betanzos, Abigail; Schnoor, Michael; Javier-Reyna, Rosario; García-Rivera, Guillermina; Bañuelos, Cecilia; Pais-Morales, Jonnatan; Orozco, Esther

    2014-01-01

    Entamoeba histolytica is the causative agent of human amoebiasis, a major cause of diarrhea and hepatic abscess in tropical countries. Infection is initiated by interaction of the pathogen with intestinal epithelial cells. This interaction leads to disruption of intercellular structures such as tight junctions (TJ). TJ ensure sealing of the epithelial layer to separate host tissue from gut lumen. Recent studies provide evidence that disruption of TJ by the parasitic protein EhCPADH112 is a prerequisite for E. histolytica invasion that is accompanied by epithelial barrier dysfunction. Thus, the analysis of molecular mechanisms involved in TJ disassembly during E. histolytica invasion is of paramount importance to improve our understanding of amoebiasis pathogenesis. This article presents an easy model that allows the assessment of initial host-pathogen interactions and the parasite invasion potential. Parameters to be analyzed include transepithelial electrical resistance, interaction of EhCPADH112 with epithelial surface receptors, changes in expression and localization of epithelial junctional markers and localization of parasite molecules within epithelial cells. PMID:24962382

  11. A Case of Solitary Nonvascularized Corneal Epithelial Dysplasia

    PubMed Central

    Morii, Tomoya; Sumioka, Takayoshi; Izutani-Kitano, Ai; Takada, Yukihisa; Okada, Yuka; Kao, Winston W.-Y.; Saika, Shizuya

    2016-01-01

    Background. Epithelial dysplasia is categorized as conjunctival/corneal intraepithelial neoplasia which is a precancerous lesion. The lesion is usually developed at the limbal region and grows towards central cornea in association with neovascularization into the lesion. Here, we report a case of isolated nonvascularized corneal epithelial dysplasia surrounded by normal corneal epithelium with immune histochemical finding of ocular surface tissues cytokeratins, for example, keratin 13 and keratin 12. Case Presentation. A 76-year-old man consulted us for visual disturbance with localized opacification of the corneal epithelium in his left eye. His visual acuity was 20/20 and 20/200 in his right and left eye, respectively. Slit lamp examination showed a whitish plaque-like lesion at the center of his left corneal epithelium. No vascular invasion to the lesion was found. The lesion was surgically removed and subjected to histopathological examination and diagnosed as epithelial dysplasia. Amyloidosis was excluded by direct fast scarlet 4BS (DFS) staining. Immunohistochemistry showed that the dysplastic epithelial cells express keratin 13 and vimentin, but not keratin 12, indicating that the neoplastic epithelial cells lacked corneal-type epithelium differentiation. Conclusions. The lesion was diagnosed as nonvascularized epithelial dysplasia of ocular surface. Etiology of the lesion is not known. PMID:27042371

  12. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    PubMed

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  13. Apical constriction and epithelial invagination are regulated by BMP activity

    PubMed Central

    Jidigam, Vijay K.; Srinivasan, Raghuraman C.; Patthey, Cedric; Gunhaga, Lena

    2015-01-01

    ABSTRACT Epithelial invagination is a morphological process in which flat cell sheets transform into three-dimensional structures through bending of the tissue. It is accompanied by apical constriction, in which the apical cell surface is reduced in relation to the basal cell surface. Although much is known about the intra-cellular molecular machinery driving apical constriction and epithelial invagination, information of how extra-cellular signals affect these processes remains insufficient. In this study we have established several in vivo assays of placodal invagination to explore whether the external signal BMP regulates processes connected to epithelial invagination. By inhibiting BMP activity in prospective cranial placodes, we provide evidence that BMP signals are required for RhoA and F-actin rearrangements, apical constriction, cell elongation and epithelial invagination. The failure of placode invagination after BMP inhibition appears to be a direct consequence of disrupted apical accumulation of RhoA and F-actin, rather than changes in cell death or proliferation. In addition, our results show that epithelial invagination and acquisition of placode-specific identities are two distinct and separable developmental processes. In summary, our results provide evidence that BMP signals promote epithelial invagination by acting upstream of the intracellular molecular machinery that drives apical constriction and cell elongation. PMID:26621830

  14. Microfluidic approaches for epithelial cell layer culture and characterisation

    PubMed Central

    Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

    2014-01-01

    In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips, including methods to perform electrical impedance spectroscopy, methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry, techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress, and methods to carry out high-resolution imaging of vesicular trafficking with light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

  15. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    PubMed

    Bath, Chris

    2013-06-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined

  16. In vivo imaging of the retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica Ijams Wolfing

    The retinal pigment epithelial (RPE) cells form an important layer of the retina because they are responsible for providing metabolic support to the photoreceptors. Techniques to image the RPE layer include autofluorescence imaging with a scanning laser ophthalmoscope (SLO). However, previous studies were unable to resolve single RPE cells in vivo. This thesis describes the technique of combining autofluorescence, SLO, adaptive optics (AO), and dual-wavelength simultaneous imaging and registration to visualize the individual cells in the RPE mosaic in human and primate retina for the first time in vivo. After imaging the RPE mosaic non-invasively, the cell layer's structure and regularity were characterized using quantitative metrics of cell density, spacing, and nearest neighbor distances. The RPE mosaic was compared to the cone mosaic, and RPE imaging methods were confirmed using histology. The ability to image the RPE mosaic led to the discovery of a novel retinal change following light exposure; 568 nm exposures caused an immediate reduction in autofluorescence followed by either full recovery or permanent damage in the RPE layer. A safety study was conducted to determine the range of exposure irradiances that caused permanent damage or transient autofluorescence reductions. Additionally, the threshold exposure causing autofluorescence reduction was determined and reciprocity of radiant exposure was confirmed. Light exposures delivered by the AOSLO were not significantly different than those delivered by a uniform source. As all exposures tested were near or below the permissible light levels of safety standards, this thesis provides evidence that the current light safety standards need to be revised. Finally, with the retinal damage and autofluorescence reduction thresholds identified, the methods of RPE imaging were modified to allow successful imaging of the individual cells in the RPE mosaic while still ensuring retinal safety. This thesis has provided a

  17. Gene expression in TGFbeta-induced epithelial cell differentiation in a three-dimensional intestinal epithelial cell differentiation model

    PubMed Central

    Juuti-Uusitalo, Kati M; Kaukinen, Katri; Mäki, Markku; Tuimala, Jarno; Kainulainen, Heikki

    2006-01-01

    Background The TGFβ1-induced signal transduction processes involved in growth and differentiation are only partly known. The three-dimensional epithelial differentiation model, in which T84 epithelial cells are induced to differentiate either with TGFβ1 or IMR-90 mesenchymal cell-secreted soluble factors, is previously shown to model epithelial cell differentiation seen in intestine. That model has not been used for large scale gene expression studies, such as microarray method. Therefore the gene expression changes were studied in undifferentiated and differentiated three-dimensional T84 cultures with cDNA microarray method in order to study the molecular changes and find new players in epithelial cell differentiation. Results The expression of 372 genes out of 5188 arrayed sequences was significantly altered, and 47 of them were altered by both mediators. The data were validated and the altered genes are presented in ontology classes. For the genes tested the expressions in protein level were in accordance with the mRNA results. We also found 194 genes with no known function to be potentially important in epithelial cell differentiation. The mRNA expression changes induced by TGFβ1 were bigger than changes induced by soluble factors secreted by IMR-90 mesenchymal cells. The gene expression data was depicted in already known signaling pathway routes. Conclusion Our results reveal potential new signaling pathways and several new genes affected by TGFβ in epithelial cell differentiation. The differentiation induced by TGFβ1 appears to be more potent than the differentiation induced by mesenchymal cells. This study indicates that our cell culture model is a suitable tool in studying regulatory mechanisms during epithelial cell differentiation in intestine. Furthermore the present results indicate that our model is a good tool for finding new players acting in the differentiation of epithelial cells. PMID:17074098

  18. Vitamin C inhibit the proliferation, migration and epithelial-mesenchymal-transition of lens epithelial cells by destabilizing HIF-1α

    PubMed Central

    Zhao, Lin; Quan, Yanlong; Wang, Jianming; Wang, Feng; Zheng, Yuping; Zhou, Aiyi

    2015-01-01

    Posterior capsular opacification (PCO), the main complication of cataract surgery, is mainly caused by the proliferation, migration, and epithelial-mesenchymal transition (EMT) of the residual lens epithelial cells (LECs).Vitamin C was reported to reduce the risk of forming a cataract. However, there has been no study showing the association between vitamin C and PCO. In this study, we found that vitamin C could inhibit the migration and proliferation of human lens epithelial cells. We also found that vitamin C could increase the proline hydroxylation of HIF-1α and reduce the activity of HIF-1α. Moreover, vitamin C could not inhibit the activity of proline-mutant HIF-1α (402/564). Overexpression of wild-type HIF-1α or proline-mutant HIF-1α was found to increase the proliferation and migration of human lens epithelial cells. Differently, vitamin C could inhibit the proliferation and migration in wild-type HIF-1α-overexpressing lens epithelial cells but not the proline-mutant HIF-1α-overexpressing cells. Additionally, vitamin C was also found to inhibit the expression of EMT transcription factors TWIST. We then found that vitamin C could repress the EMT phenotypes induced by the overexpression of wild-type HIF-1α but not the proline-mutant HIF-1α. These results provide evidence that vitamin C plays a role in the repression of proliferation, migration, and EMT of human lens epithelial cells by destabilizing HIF-1α. PMID:26628999

  19. Hsc70 negatively regulates epithelial sodium channel trafficking at multiple sites in epithelial cells.

    PubMed

    Chanoux, Rebecca A; Shubin, Calla B; Robay, Amal; Suaud, Laurence; Rubenstein, Ronald C

    2013-10-01

    The epithelial sodium channel (ENaC) plays an important role in homeostasis of blood pressure and of the airway surface liquid, and excess function of ENaC results in refractory hypertension (in Liddle's syndrome) and impaired mucociliary clearance (in cystic fibrosis). The regulation of ENaC by molecular chaperones, such as the 70-kDa heat shock protein Hsc70, is not completely understood. Our previously published data suggest that Hsc70 negatively affects ENaC activity and surface expression in Xenopus oocytes; here we investigate the mechanism by which Hsc70 acts on ENaC in epithelial cells. In Madin-Darby canine kidney cells stably expressing epitope-tagged αβγ-ENaC and with tetracycline-inducible overexpression of Hsc70, treatment with 5 μg/ml doxycycline increased total Hsc70 expression 20%. This increase in Hsc70 expression led to a decrease in ENaC activity and surface expression that corresponded to an increased rate of functional ENaC retrieval from the cell surface. In addition, Hsc70 overexpression decreased the association of newly synthesized ENaC subunits. These data support the hypothesis that Hsc70 inhibits ENaC functional expression at the apical surface of epithelia by regulating ENaC biogenesis and ENaC trafficking at the cell surface. PMID:23885065

  20. Claudin immunolocalization in neonatal mouse epithelial tissues.

    PubMed

    Troy, Tammy-Claire; Arabzadeh, Azadeh; Yerlikaya, Seda; Turksen, Kursad

    2007-11-01

    Emerging evidence supports the notion that claudins (Cldns) are dynamically regulated under normal conditions to respond to the selective permeability requirements of various tissues, and that their expression is developmentally controlled. We describe the localization of those Cldns that we have previously demonstrated to be functionally important in epidermal differentiation and the formation of the epidermal permeability barrier, e.g., Cldn1, Cldn6, Cldn11, and Cldn18, and the presence of Cldn3 and Cldn5 in various neonatal mouse epithelia including the epidermis, nail, oral mucosa, tongue, and stomach. Cldn1 is localized in the differentiated and/or undifferentiated compartments of the epidermis and nail and in the dorsal surface of the tongue and glandular compartment of the stomach but is absent from the oral mucosa and the keratinized compartment of the stomach. Cldn3 is present in the basal cells of the nail matrix and both compartments of the murine stomach but not in the epidermis, oral mucosa, or tongue. Cldn5 is found in the glandular compartment of the stomach but not in the epidermis, nail unit, oral mucosa, forestomach, and tongue. Cldn6, Cldn11, and Cldn18 occur in the differentiating suprabasal compartment of the epidermis, nail, and oral mucosa and in the dorsal and ventral surfaces of the tongue and the keratinized squamous epithelium of the stomach. The simple columnar epithelium of the glandular stomach stains for Cldn18 and reveals a non-membranous pattern for Cldn6 and Cldn11 expression. Our results demonstrate differential Cldn protein profiles in various epithelial tissues and their differentiation stages. Although the molecular mechanisms regulating Cldn expression are unknown, elucidation of their differential localization patterns in tissues with diverse permeability requirements should provide a better understanding of the role of tight junctions in tissue function. PMID:17828607

  1. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  2. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis

    PubMed Central

    Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.; Levine, Herbert

    2015-01-01

    Transitions between epithelial and mesenchymal phenotypes – the epithelial to ­mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis. PMID:26258068

  3. The corneal epithelial basement membrane: structure, function, and disease.

    PubMed

    Torricelli, André A M; Singh, Vivek; Santhiago, Marcony R; Wilson, Steven E

    2013-09-01

    The corneal epithelial basement membrane (BM) is positioned between basal epithelial cells and the stroma. This highly specialized extracellular matrix functions not only to anchor epithelial cells to the stroma and provide scaffolding during embryonic development but also during migration, differentiation, and maintenance of the differentiated epithelial phenotype. Basement membranes are composed of a diverse assemblage of extracellular molecules, some of which are likely specific to the tissue where they function; but in general they are composed of four primary components--collagens, laminins, heparan sulfate proteoglycans, and nidogens--in addition to other components such as thrombospondin-1, matrilin-2, and matrilin-4 and even fibronectin in some BM. Many studies have focused on characterizing BM due to their potential roles in normal tissue function and disease, and these structures have been well characterized in many tissues. Comparatively few studies, however, have focused on the function of the epithelial BM in corneal physiology. Since the normal corneal stroma is avascular and has relatively low keratocyte density, it is expected that the corneal BM would be different from the BM in other tissues. One function that appears critical in homeostasis and wound healing is the barrier function to penetration of cytokines from the epithelium to stroma (such as transforming growth factor β-1), and possibly from stroma to epithelium (such as keratinocyte growth factor). The corneal epithelial BM is also involved in many inherited and acquired corneal diseases. This review examines this structure in detail and discusses the importance of corneal epithelial BM in homeostasis, wound healing, and disease.

  4. Biliary epithelial cells proliferate during oxygenated ex situ liver culture

    PubMed Central

    Bian, Congwen; Du, Yiqi; Ding, Rui; Huang, Jun; Dai, Yan; Bao, Sujin; Zhao, Lijuan; Shen, Hefang; Dong, Jing; Xu, Jianjian; Xiong, Qiru; Xu, Lili

    2016-01-01

    Biliary complications remain a major source of morbidity in liver transplant patients. Among these complications, nonanastomotic biliary strictures (NAS) are especially common and they are frequently therapy resistant in part because biliary epithelial cells are more sensitive to warm ischemic injury than hepatocytes. It has been a challenge to maintain the physiological function of biliary epithelial cells during liver transplantation. In this work, we have examined the effect of oxygen on proliferation of biliary epithelial cells in the rat livers obtained from donation after circulatory death (DCD). Twelve rat livers from DCD were divided into two groups. Livers in the control group were isolated following a standard procedure without oxygen supply. Livers in the experimental group were isolated with a constant supply of oxygen. All livers were then connected to an ex situ liver culture system in the presence of bromodeoxyuridine (BrdU), a thymidine analogue and a marker for cell proliferation. After 6 hours of normothermic ex situ liver culture, morphology and DNA replication in hepatocytes and biliary epithelial cells were assessed and compared between the two groups. We found that about 4.5% of the biliary epithelial cells in the experimental group proliferated compared with only 0.4% of cells in the control based on BrdU staining. No significant change in cell morphology was observed in those cells between the two groups. Thus, our results indicate that oxygen supply is required for maintenance of the physiological function of biliary epithelial cells during liver transplant and suggest that a constant oxygen supply during liver isolation along with ex situ liver organ culture can enhance the repair of biliary epithelial cell injury during liver transplantation. PMID:27725875

  5. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  6. Probiotics promote endocytic allergen degradation in gut epithelial cells

    SciTech Connect

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  7. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis

    PubMed Central

    Sartaj, Rachel; Chee, Ru‐ik; Yang, Jing; Wan, Pengxia; Liu, Aihong; Guaiquil, Victor; Fuchs, Elaine

    2016-01-01

    Abstract The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell‐based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound‐healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re‐epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. Stem Cells 2016;34:493–503 PMID:26661907

  8. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  9. Dissecting cellular biomechanics with a laser

    NASA Astrophysics Data System (ADS)

    Hutson, M. Shane

    2011-10-01

    The biological tissues of a developing organism are built and reshaped by the mechanical behavior of individual cells. We probe the relevant cellular mechanics in vivo using laser-microsurgery -- both qualitatively, to assess whether removal of specific cells alters the dynamics of tissue reshaping, and quantitatively, to measure sub-cellular mechanical properties and stresses. I will detail two quantitative microsurgical measurements. The first uses a laser to drill a sub-cellular hole in a sheet of cells. The subsequent retraction of surrounding cells allows one to infer the local mechanical stress. The second uses a laser to isolate a single cell from the rest of a cell sheet. Isolation is accomplished on a microsecond time scale by holographically shaping a single laser pulse. The subsequent retraction (or expansion) of the isolated cell allows one to separate and quantify the effects of internal and external stresses in the determination of cell shape. I will discuss application of these techniques to the time-dependent biomechanics of epithelial tissues during early fruit fly embryogenesis -- specifically during the processes of germband retraction and dorsal closure.

  10. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  11. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  12. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  13. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  14. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis.

    PubMed

    Igietseme, Joseph U; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  15. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis.

    PubMed

    Igietseme, Joseph U; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  16. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis

    PubMed Central

    Igietseme, Joseph U.; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S.; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O.; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M.

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  17. Plexins function in epithelial repair in both Drosophila and zebrafish

    PubMed Central

    Yoo, Sa Kan; Pascoe, Heath G.; Pereira, Telmo; Kondo, Shu; Jacinto, Antonio; Zhang, Xuewu; Hariharan, Iswar K.

    2016-01-01

    In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. PMID:27452696

  18. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.

    PubMed

    Liu, Weicheng; Chen, Yunzi; Golan, Maya Aharoni; Annunziata, Maria L; Du, Jie; Dougherty, Urszula; Kong, Juan; Musch, Mark; Huang, Yong; Pekow, Joel; Zheng, Changqing; Bissonnette, Marc; Hanauer, Stephen B; Li, Yan Chun

    2013-09-01

    The inhibitory effects of vitamin D on colitis have been previously documented. Global vitamin D receptor (VDR) deletion exaggerates colitis, but the relative anticolitic contribution of epithelial and nonepithelial VDR signaling is unknown. Here, we showed that colonic epithelial VDR expression was substantially reduced in patients with Crohn's disease or ulcerative colitis. Moreover, targeted expression of human VDR (hVDR) in intestinal epithelial cells (IECs) protected mice from developing colitis. In experimental colitis models induced by 2,4,6-trinitrobenzenesulfonic acid, dextran sulfate sodium, or CD4(+)CD45RB(hi) T cell transfer, transgenic mice expressing hVDR in IECs were highly resistant to colitis, as manifested by marked reductions in clinical colitis scores, colonic histological damage, and colonic inflammation compared with WT mice. Reconstitution of Vdr-deficient IECs with the hVDR transgene completely rescued Vdr-null mice from severe colitis and death, even though the mice still maintained a hyperresponsive Vdr-deficient immune system. Mechanistically, VDR signaling attenuated PUMA induction in IECs by blocking NF-κB activation, leading to a reduction in IEC apoptosis. Together, these results demonstrate that gut epithelial VDR signaling inhibits colitis by protecting the mucosal epithelial barrier, and this anticolitic activity is independent of nonepithelial immune VDR actions.

  19. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  20. Trans-sialidase Stimulates Eat Me Response from Epithelial Cells

    PubMed Central

    Butler, Claire E; de Carvalho, Tecia M U; Grisard, Edmundo C; Field, Robert A; Tyler, Kevin M

    2013-01-01

    Epithelial cell invasion by the protozoan parasite Trypanosoma cruzi is enhanced by the presence of an enzyme expressed on its cell surface during the trypomastigote life cycle stage. The enzyme, trans-sialidase (TS), is a member of one of the largest gene families expressed by the parasite and the role of its activity in mediating epithelial cell entry has not hitherto been understood. Here we show that the T. cruzi TS generates an eat me signal which is capable of enabling epithelial cell entry. We have utilized purified, recombinant, active (TcTS) and inactive (TcTS2V0) TS coated onto beads to challenge an epithelial cell line. We find that TS activity acts upon G protein coupled receptors present at the epithelial cell synapse with the coated bead, thereby enhancing cell entry. By so doing, we provide evidence that TS proteins bind glycans, mediate the formation of distinct synaptic domains and promote macropinocytotic uptake of microparticles into a perinuclear compartment in a manner which may emulate entosis. PMID:23601193

  1. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function

    PubMed Central

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A.; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M.; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin

    2012-01-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness. PMID:23027535

  2. Non-coding RNAs in epithelial immunity to Cryptosporidium infection

    PubMed Central

    Zhou, Rui; Feng, Yaoyu; Chen, Xian-Ming

    2015-01-01

    SUMMARY Cryptosporidium spp. is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrhoeal disease worldwide. It is one of the most common pathogens responsible for moderate to severe diarrhoea in children younger than 2 years. Because of the ‘minimally invasive’ nature of Cryptosporidium infection, mucosal epithelial cells are critical to the host’s anti-Cryptosporidium immunity. Gastrointestinal epithelial cells not only provide the first and most rapid defence against Cryptosporidium infection, they also mobilize immune effector cells to the infection site to activate adaptive immunity. Recent advances in genomic research have revealed the existence of a large number of non-protein-coding RNA transcripts, so called non-coding RNAs (ncRNAs), in mammalian cells. Some ncRNAs may be key regulators for diverse biological functions, including innate immune responses. Specifically, ncRNAs may modulate epithelial immune responses at every step of the innate immune network following Cryptosporidium infection, including production of antimicrobial molecules, expression of cytokines/chemokines, release of epithelial cell-derived exosomes, and feedback regulation of immune homoeostasis. This review briefly summarizes the current science on ncRNA regulation of innate immunity to Cryptosporidium, with a focus on microRNA-associated epithelial immune responses. PMID:24828969

  3. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    PubMed

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  4. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  5. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  6. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    SciTech Connect

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with {sup 3}H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-{beta} did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 {times} 10{sup 6} sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined.

  7. The assembly and maintenance of epithelial junctions in C. elegans

    PubMed Central

    Lynch, Allison M.; Hardin, Jeff

    2010-01-01

    The epithelial tissues of the C. elegans embryo provide a “minimalist” system for examining phylogenetically conserved proteins that function in epithelial polarity and cell-cell adhesion in a multicellular organism. In this review, we provide an overview of three major molecular complexes at the apical surface of epithelial cells in the C. elegans embryo: the cadherin-catenin complex, the more basal DLG-1/AJM-1 complex, and the apical membrane domain, which shares similarities with the subapical complex in Drosophila and the PAR/aPKC complex in vertebrates. We discuss how the assembly of these complexes contributes to epithelial polarity and adhesion, proteins that act as effectors and/or regulators of each subdomain, and how these complexes functionally interact during embryonic morphogenesis. Although much remains to be clarified, significant progress has been made in recent years to clarify the role of these protein complexes in epithelial morphogenesis, and suggests that C. elegans will continue to be a fruitful system in which to elucidate functional roles for these proteins in a living embryo. PMID:19273138

  8. Valacyclovir for the prevention of recurrent herpes simplex virus eye disease after excimer laser photokeratectomy.

    PubMed Central

    Asbell, P A

    2000-01-01

    PURPOSE: A variety of factors have been reported as inducing the reactivation of latent herpes simplex virus (HSV), among them stress, trauma, and UV radiation. Excimer laser photorefractive keratectomy (PRK) is a surgical procedure utilizing a 193 nm ultraviolet light to alter the curvature of the cornea and hence correct vision. Reactivation of ocular herpes simplex keratitis following such excimer laser PRK has been reported. All published cases of HSV reactivation following excimer laser treatment in humans are reviewed. The present study evaluates whether stress, trauma of the corneal de-epithelialization prior to the laser, or the excimer laser treatment itself to the stromal bed induces this ocular reactivation of the latent HSV, and whether a systemic antiviral agent, valacyclovir, would prevent such laser PRK-induced reactivation of the HSV. METHODS: Forty-three normal 1.5- to 2.5-kg New Zealand white rabbits were infected on the surface of the cornea with HSV-1, strain RE. The animals were monitored until resolution, and then all animals were divided into 5 treatment groups: (1) de-epithelialization only, intraperitoneal (i.p.) saline for 14 days; (2) de-epithelialization plus laser, i.p. saline for 14 days; (3) de-epithelialization plus laser, valacyclovir 50 mg/kg per day i.p. for 14 days; (4) de-epithelialization plus laser, valacyclovir 100 mg/kg per day i.p. for 14 days; (5) de-epithelialization plus laser, valacyclovir 150 mg/kg per day i.p. for 14 days. Animals were evaluated in a masked fashion by clinical examination biweekly and viral cultures biweekly through day 28. RESULTS: The reactivation rates were as follows: group 1, 0%; group 2, 67%; group 3, 50%; group 4, 17%; and group 5, 0%. Viral titers were negative in animals that had no reactivation but persistently positive in those that had reactivation (day 6 through day 28). CONCLUSIONS: Excimer laser (193 nm) treatment can trigger reactivation of ocular herpes disease (67%) and viral

  9. Hypersonic gasdynamic laser system

    SciTech Connect

    Foreman, K.M.; Maciulaitis, A.

    1990-05-22

    This patent describes a visible, or near to mid infra-red, hypersonic gas dynamic laser system. It comprises: a hypersonic vehicle for carrying the hypersonic gas dynamic laser system, and also providing high energy ram air for thermodynamic excitation and supply of the laser gas; a laser cavity defined within the hypersonic vehicle and having a laser cavity inlet for the laser cavity formed by an opening in the hypersonic vehicle, such that ram air directed through the laser cavity opening supports gas dynamic lasing operations at wavelengths less than 10.6{mu} meters in the laser cavity; and an optical train for collecting the laser radiation from the laser cavity and directing it as a substantially collimated laser beam to an output aperture defined by an opening in the hypersonic vehicle to allow the laser beam to be directed against a target.

  10. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  11. Laser therapy (image)

    MedlinePlus

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  12. Epithelial-Mesenchymal Transition (EMT) gene variants and Epithelial Ovarian Cancer (EOC) risk

    PubMed Central

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chen, Zhihua; Chen, Y. Ann; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E.; Berchuck, Andrew; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N.A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Introduction Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to EOC risk have been based on small sample sizes and none have sought replication in an independent population. Methods We screened 1254 SNPs in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (p<0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A p-value <0.05 and a false discovery rate (FDR) <0.2 was considered statistically significant. Results In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (OR=1.16, 95%CI=1.07–1.25, p=0.0003, FDR=0.19), while F8 rs7053448 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), F8 rs7058826 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), and CAPN13 rs1983383 (OR=0.79, 95%CI=0.69–0.90, p=0.0005, FDR=0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. Conclusion These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  13. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration

    PubMed Central

    Kumar, J. Dinesh; Steele, Islay; Moore, Andrew R.; Murugesan, Senthil V.; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D. Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea

    2015-01-01

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling. PMID:25977510

  14. Interleukin-6 induces epithelial-mesenchymal transition in human intrahepatic biliary epithelial cells

    PubMed Central

    JIANG, GUI-XING; CAO, LI-PING; KANG, PENG-CHENG; ZHONG, XIANG-YU; LIN, TIAN-YU; CUI, YUN-FU

    2016-01-01

    The aim of the present study was to determine the role of interleukin-6 (IL-6) in the epithelial-mesenchymal transition (EMT) of human intrahepatic biliary epithelial cell (HIBEC) lines in vitro. HIBECs were stimulated with IL-6 at concentrations of 0, 10, 20, 50 and 100 µg/l for 24 h. A wound healing and Transwell assay were performed to determine the migratory and invasive capacity of HIBECs, respectively. Following 24 h of incubation, IL-6 at 10 and 20 µg/l significantly increased the number of migrated and invaded cells (P<0.05), while stimulation with 50 and 100 µg/l IL-6 resulted in a further increase of the migratory and invasive capacity compared to that in all other groups (P<0.05). Furthermore, reverse-transcription quantitative polymerase chain reaction and western blot analyses were used to detect the mRNA and protein expression of EMT markers E-cadherin and vimentin in HIBECs. Decreased mRNA levels of E-cadherin accompanied by higher mRNA levels of vimentin were observed in the 10, 20, 50, 100 µg/l IL-6 groups compared to those in the 0 µg/l group (all P<0.05). Furthermore, the protein expression of E-cadherin was decreased, while that of vimentin was increased in the 50 and 100 µg/l IL-6 groups compared to those in the 0, 10 and 20 µg/l IL-6 groups (all P<0.05). The present study therefore indicated that IL-6 promoted the process of EMT in HIBECs as characterized by increased migration and invasion of HIBECs and the typical changes in mRNA and protein expression of the EMT markers E-cadherin and vimentin. PMID:26708270

  15. The Laser Marketplace

    NASA Astrophysics Data System (ADS)

    Hitz, C. B.

    1986-11-01

    The total value of all lasers sold during 1986 in the non-Communist world will exceed US $600 million. This paper examines these sales and categorizes them according to application and according to type of laser. The results are presented both in terms of numbers of lasers sold, and in terms of the value of those lasers. The data are based on extensive interviews with laser manufacturers and laser users.

  16. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  17. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  18. Development of human epithelial cell systems for radiation risk assessment.

    PubMed

    Yang, C H; Craise, L M

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells. PMID:11538024

  19. Porphyromonas gingivalis genes isolated by screening for epithelial cell attachment.

    PubMed Central

    Duncan, M J; Emory, S A; Almira, E C

    1996-01-01

    Porphyromonas gingivalis is associated with chronic and severe periodontitis in adults. P. gingivalis and the other periodontal pathogens colonize and interact with gingival epithelial cells, but the genes and molecular mechanisms involved are unknown. To dissect the first steps in these interactions, a P. gingivalis expression library was screened for clones which bound human oral epithelial cells. Insert DNA from the recombinant clones did not contain homology to the P. gingivalis fimA gene, encoding fimbrillin, the subunit protein of fimbriae, but showed various degrees of homology to certain cysteine protease-hemagglutinin genes. The DNA sequence of one insert revealed three putative open reading frames which appeared to be in an operon. The relationship between P. gingivalis attachment to epithelial cells and the activities identified by the screen is discussed. PMID:8751909

  20. Effects of ethanol on an intestinal epithelial cell line

    SciTech Connect

    Nano, J.L.; Cefai, D.; Rampal, P. )

    1990-02-01

    The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

  1. Chronic inflammatory cells with epithelial cell characteristics in teleost fishes.

    PubMed

    Noga, E J; Dykstra, M J; Wright, J F

    1989-09-01

    Certain cells that participate in the chronic inflammatory response of teleost fishes have many features typical of epithelioid cells of mammals. Such features include high metabolic activity, frequent phagolysosomes, and cytoplasmic interdigitations between adjacent cells; however, the epithelioid granulomas formed in response to certain diseases in teleost fishes also have several features associated with epithelial cells. Cases of ulcerative mycosis or acid-fast bacterial infection in Atlantic menhaden (Brevoortia tyrannus), fungal infection in silver perch (Bairdiella chrysoura), and mycobacteriosis in Mozambique tilapia (Oreochromis mossambicus) had epithelioid cells that were joined together by well-formed desmosomes with tonofilaments. "Mature granulomas" of the ulcerative mycosis-infected menhaden stained positively for cytokeratin, a cytoskeletal protein that is considered to be highly specific for epithelial cells. The consistent presence of these heretofore unrecognized epithelial features suggest that they may be characteristic of certain types of cells participating in piscine chronic inflammation. PMID:2686148

  2. Epithelial jaw cysts: analysis of 126 Nigerian cases.

    PubMed

    Ogunlewe, M O; Odukoya, O; Akinwande, J A

    1996-01-01

    One hundred and twenty-six Nigerian cases of epithelial jaw cysts were retrieved from case notes and biopsy records of the Department of Oral and Maxillofacial Surgery and Department of Oral Pathology and Oral Biology of the Lagos University Teaching Hospital. The cases were analysed for age, sex, site and methods of management. Results show that developmental odontogenic cysts (57.14%) were more common than inflammatory odontogenic cysts (26.94%). Dentigerous cyst (22.22%) was the most common epithelial jaw cyst, followed by radicular cyst (21.43%). Developmental non-odontogenic cysts were more than twice as common in females as in males. Sixty-eight per cent of epithelial jaw cysts were treated by enucleation, 10% by marsupialisation, 13% by jaw resection and 9% by surgical excision.

  3. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling

    PubMed Central

    Baum, Buzz

    2011-01-01

    The epithelial cadherin (E-cadherin)–catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell’s apical–basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling. PMID:21422226

  4. Salivary Gland Epithelial- Myoepithelial Carcinoma: behaviour, diagnosis and treatment.

    PubMed

    Senis-Segarra, L; Sahuquillo-Arce, E; Davo, R; Hamad-Arcis, P; Floria-Garcia, L M; Baquero, M C

    2002-01-01

    Across the whole spectrum of the tumoral pathology in the maxillo-facial and cervical areas, we can find those tumours where the aetieology is in the salivary glands. The tumours in the salivary glands are subdivided in benign and malignant tumours whenever this theorical subdivision is possible. The Epithelial-Myoepithelial Carcinoma represents about the 1% of the malignant neoplasms in the salivary glands and also affect other anatomical areas where there are glands: lung, kidney, uterus and so on. We start from a clinical case of a Epithelial-Myoepithelial of salivary minor gland carcinoma doing a bibliographic review of this unusual histological lineage. So we present a case of Epithelial-Myoepithelial Carcinoma of a minor salivary gland in the right cheek. We'll review the clinical and histological features of this uncommon tumour. And we'll discuss about the best way for diagnosis, treatment and the differential diagnosis to similar clinical injuries.

  5. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  6. TGF-β induced epithelial-mesenchymal transition modeling

    NASA Astrophysics Data System (ADS)

    Xenitidis, P.; Seimenis, I.; Kakolyris, S.; Adamopoulos, A.

    2015-09-01

    Epithelial cells may undergo a process called epithelial to mesenchymal transition (EMT). During EMT, cells lose their epithelial characteristics and acquire a migratory ability. Transforming growth factor-beta (TGF-β) signaling is considered to play an important role in EMT by regulating a set of genes through a gene regulatory network (GRN). This work aims at TGF-β induced EMT GRN modeling using publicly available experimental data (gene expression microarray data). The time-series network identification (TSNI) algorithm was used for inferring the EMT GRN. Receiver operating characteristic (ROC) and precision-recall (P-R) curves were constructed and the areas under them were used for evaluating the algorithm performance regarding network inference.

  7. The clinical picture of benign lympho-epithelial lesion.

    PubMed

    Ostberg, Y

    1983-12-01

    The histopathological diagnosis 'benign lympho-epithelial lesion' characterizes the major salivary gland disease in Sjögren's syndrome. It is not known if all cases with microscopically diagnosed benign lympho-epithelial lesion are variants of Sjögren's syndrome. The present clinical investigation showed that in 19 patients with the microscopical diagnosis of lympho-epithelial lesion, 84% fulfilled all criteria of Sjögren's syndrome. The rheumatoid factor and/or antinuclear factor was found in 84% and M-component was present in 16%. Sialography revealed sialectasis in all parotid glands. Salivary gland enlargement was found in 79%, and keratoconjunctivitis sicca in 89% of the patients. Systemic disease was found in 32%. The disease in the 2 patients with M-component took a malignant course, culminating in immunoblastic sarcoma and myelomatosis. The clinical diagnosis 'autoimmune sialadenitis' is proposed for the oral and salivary gland component is Sjögren's syndrome.

  8. Role of autophagy in the regulation of epithelial cell junctions.

    PubMed

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  9. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  10. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells.

    PubMed

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C; Liu, Jinsong

    2016-03-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  11. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  12. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  13. [Laser physics].

    PubMed

    Banús Gassol, J M

    2008-11-01

    The commission of this article plunged me into doubt. First I should confess that I don't find excuse to escape this part if somebody wants to minimally deepen in the knowledge of the biological effects of this energy source. Secondly, when we talk about results, we use terms made and defined by Physics. Often we have polemics about results, and what really happens is that we don't reach agreements because we refer to different terms to explain the same observation; in conclusion we cannot understand each other because we do not know the adequate terms; for example, hypoxemia as oxygen deficit, which is true in an anemic patient as well as in a low oxygen saturation rate. In consequence, a good review of these concepts seems necessary to me. The third reason is the confusion that exists in our environment, I think sometimes of interest, about properties and effects of different types of laser. Only a minimal knowledge of physics will help us to state the scientific basis for understanding. The problems, nevertheless, accumulate due to the fact that the universe to which this article is directed is formed by urologists. What Physics education should we suppose they have? Superficial? Medium? Is it a collective with a uniform knowledge, being it whatever it is? The implication is clear. The article depth will depend on the answers to these questions. Nevertheless, the aim of the authors is to give a base enough to know what the laser is and how it acts. For that, the answer I gave to my questions is that the reader should understand the article and have enough base for, at least, reading critically the articles about laser published in urological journals.

  14. Laser biophotonics

    NASA Astrophysics Data System (ADS)

    Bashkatov, A. N.; Genina, E. A.; Priezzhev, A. V.; Tuchin, V. V.

    2016-06-01

    This issue of Quantum Electronics presents the papers that reflect the state-of-the-art of laser technologies used in biomedical studies and medical practice. Among the new technologies, one can note the methods of correlation and Doppler spectroscopy, as well as THz spectroscopy, in which biologically significant molecules are characterised by specific resonances. The latter topic is considered in the paper by Nazarov et al., where the dielectric function of aqueous solutions of glucose and albumin is studied using pulsed THz spectroscopy.

  15. The laryngeal primordium and epithelial lamina. A new interpretation.

    PubMed Central

    Sañudo, J R; Domenech-Mateu, J M

    1990-01-01

    The laryngeal primordium is present in both the laryngotracheal sulcus (LTS) and the primitive pulmonary sac (PPS). Its early period of development may be subdivided into two phases. The first phase (Stage 11) is represented by what is traditionally referred to as the LTS, located directly beneath the PP4 on the ventral wall of the foregut (primary segment), and by the PPS which is situated at its caudal end. The LTS will represent the primordium of the upper or membranous infraglottic cavity region; whereas the PPS, will give rise not only to the bronchial tree, but also to the primordium of the trachea and the lower or cartilaginous region of the infraglottic cavity. The second phase (Stages 13 and 14) is distinguished by the cranial growth of the LTS above the PP4 and therefore by its absorption into the floor of the primitive pharynx in the mesobranchial area (secondary segment), which will develop into the primordium of the vestibule of the larynx. Similarly, we observed that in the development of the laryngeal cavity there are two temporally and spatially separate epithelial structures: the epithelial septum and the epithelial lamina. In this respect we differ from other authors who are of the opinion that there is a single structure (the epithelial lamina). The epithelial septum is a primary structure responsible for the final configuration of the LTS, as it contributes to the development of the lower end of the primary segment of the LTS and also to the creation of the secondary segment. The epithelial lamina is a secondary structure which appears inside the LTS as a result of pressure exerted by the mesenchyme on its lateral walls, without having any effect on the morphogenesis of the LTS. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:2081706

  16. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    PubMed

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  17. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    PubMed

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties. PMID:26785300

  18. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    PubMed

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.

  19. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis.

    PubMed

    Li, Meirong; Luan, Fuxin; Zhao, Yali; Hao, Haojie; Zhou, Yong; Han, Weidong; Fu, Xiaobing

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis.

  20. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis

    PubMed Central

    Li, Meirong; Luan, Fuxin; Zhao, Yali; Hao, Haojie; Zhou, Yong; Han, Weidong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis. PMID:26361988

  1. Primary human bronchial epithelial cells grown from explants.

    PubMed

    Yaghi, Asma; Zaman, Aisha; Dolovich, Myrna

    2010-01-01

    Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for pathology and provides us with a bronchial portion that is remote from the diseased areas. The tissue is then used as a source of explants that can be used for growing primary bronchial epithelial cells in culture. Bronchial segments about 0.5-1cm long and < or =1cm in diameter are rinsed with cold EBSS and excess parenchymal tissue is removed. Segments are cut open and minced into 2-3mm(3) pieces of tissue. The pieces are used as a source of primary cells. After coating 100mm culture plates for 1-2 hr with a combination of collagen (30 microg/ml), fibronectin (10 microg/ml), and BSA (10 microg/ml), the plates are scratched in 4-5 areas and tissue pieces are placed in the scratched areas, then culture medium (DMEM/Ham F-12 with additives) suitable for epithelial cell growth is added and plates are placed in an incubator at 37 degrees C in 5% CO(2) humidified air. The culture medium is changed every 3-4 days. The epithelial cells grow from the pieces forming about 1.5 cm diameter rings in 3-4 weeks. Explants can be re-used up to 6 times by moving them into new pre-coated plates. Cells are lifted using trypsin/EDTA, pooled, counted, and re-plated in T75 Cell Bind flasks to increase their numbers. T75 flasks seeded with 2-3 million cells grow to 80% confluence in 4 weeks. Expanded primary human epithelial cells can be cultured and allowed to differentiate on air-liquid interface. Methods described here provide an abundant source of human bronchial epithelial cells from freshly

  2. Impaired oxidative phosphorylation regulates necroptosis in human lung epithelial cells.

    PubMed

    Koo, Michael Jakun; Rooney, Kristen T; Choi, Mary E; Ryter, Stefan W; Choi, Augustine M K; Moon, Jong-Seok

    2015-08-28

    Cellular metabolism can impact cell life or death outcomes. While metabolic dysfunction has been linked to cell death, the mechanisms by which metabolic dysfunction regulates the cell death mode called necroptosis remain unclear. Our study demonstrates that mitochondrial oxidative phosphorylation (OXPHOS) activates programmed necrotic cell death (necroptosis) in human lung epithelial cells. Inhibition of mitochondrial respiration and ATP synthesis induced the phosphorylation of mixed lineage kinase domain-like protein (MLKL) and necroptotic cell death. Furthermore, we demonstrate that the activation of AMP-activated protein kinase (AMPK), resulting from impaired mitochondrial OXPHOS, regulates necroptotic cell death. These results suggest that impaired mitochondrial OXPHOS contributes to necroptosis in human lung epithelial cells.

  3. Cell division and the maintenance of epithelial order

    PubMed Central

    Ragkousi, Katerina

    2014-01-01

    Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis. PMID:25349258

  4. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells.

    PubMed

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya; Chareonsudjai, Sorujsiri

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  5. Lipid and protein distribution in epithelial cells assessed with confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peterson, Kajsa H.; Randen, Michael; Hays, Richard M.; Magnusson, Karl-Eric

    1992-06-01

    Confocal laser scanning microscopy, image processing, and volume visualization were used to characterize the 3-D distribution of lectin receptors, lipid probes, and actin cytoskeleton in epithelial cells. Small intestine-like cells were grown on glass or filter supports and apically labelled with different fluorescent lipid and lectin probes. The restriction of the probes by the tight junctions was studied in living cells. Series of confocal x-y sections were transferred to an image processing system for analysis. The fluorescence intensity within a specified area of all x-y sections was plotted as a function of the vertical position of the sections. The curve inclination was used to describe the degree of restriction to the probes. It was found that lectins were more confined to the apical part than the lipids, which showed varying degree of redistribution to the basolateral membrane. Volume rendering, and specifically animated sequences with varying viewpoint and opacity mapping, were used to visualize the structure of actin cytoskeleton and distribution of lipid and lectin probes. In toad bladder epithelial cells, actin was labelled before and after treatment with the antidiuretic hormone vasopressin. The hormone-induced redistribution of actin in the apical and lateral portion of the cells was measured on x-z scanned images. Ratios of apical-to-lateral intensity were calculated. It was found that the decrease in the ratios after vasopressin treatment was around 30%. The decrease was due to loss of actin apically. This is supposed to facilitate apical fusion of vesicles containing the water-channel forming proteins, being important in water homeostasis.

  6. AMP-18 protects barrier function of colonic epithelial cells: role of tight junction proteins

    PubMed Central

    Walsh-Reitz, Margaret M.; Huang, Erick F.; Musch, Mark W.; Chang, Eugene B.; Martin, Terence E.; Kartha, Sreedharan; Toback, F. Gary

    2005-01-01

    AMP-18, a novel gastric antrum mucosal protein, and a synthetic peptide of amino acids 77-97, have mitogenic and motogenic properties for epithelial cells. The possibility that AMP-18 is also protective was evaluated in the colonic mucosa of mice and monolayer cultures of human colonic epithelial Caco2/bbe (C2) cells. Administration of AMP peptide to mice with dextran sulfate sodium (DSS)-induced colonic injury delayed the onset of bloody diarrhea, and reduced weight loss. Treatment of C2 cells with AMP peptide protected monolayers against decreases in transepithelial electrical resistance (TER) induced by the oxidant monochloramine, indomethacin, or DSS. A molecular mechanism for these barrier-protective effects was sought by asking if AMP peptide acted on specific tight junction (TJ) proteins. Immunoblots of detergent-insoluble fractions of C2 cells treated with AMP peptide exhibited increased accumulation of specific TJ proteins. Occludin immunoreactivity was also increased in detergent-insoluble fractions obtained from colonic mucosal cells of mice injected with AMP peptide. Laser scanning confocal microscopy (CF) supported the capacity of AMP peptide to enhance accumulation of occludin and ZO-1 in TJ domains of C2 cell monolayers, and together with immunoblot analysis showed that the peptide protected against loss of these TJ proteins following oxidant injury. AMP peptide also protected against a fall in TER during disruption of actin filaments by cytochalasin D, and stabilized perijunctional actin during oxidant injury when assessed by CF. These findings suggest that AMP-18 could protect the intestinal mucosal barrier by acting on specific TJ proteins and stabilizing perijunctional actin. PMID:15961882

  7. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  8. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture.

    PubMed

    Verkoelen, C F; van der Boom, B G; Houtsmuller, A B; Schröder, F H; Romijn, J C

    1998-05-01

    The retention of crystals in the kidney is considered to be a crucial step in the development of a renal stone. This study demonstrates the time-dependent alterations in the extent of calcium oxalate (CaOx) monohydrate (COM) crystal binding to Madin-Darby canine kidney (MDCK) cells during their growth to confluence and during the healing of wounds made in confluent monolayers. As determined by radiolabeled COM crystal binding studies and confirmed by confocal-scanning laser microscopy, relatively large amounts of crystals (10.4 +/- 0.4 micrograms/cm2) bound to subconfluent cultures that still exhibited a low transepithelial electrical resistance (TER < 400 omega.cm2). The development of junctional integrity, indicated by a high resistance (TER > 1,500 omega.cm2), was followed by a decrease of the crystal binding capacity to almost undetectable low levels (0.13 +/- 0.03 microgram/cm2). Epithelial injury resulted in increased crystal adherence. The highest level of crystal binding was observed 2 days postinjury when the wounds were already morphologically closed but TER was still low. Confocal images showed that during the repair process, crystals selectively adhered to migrating cells at the wound border and to stacked cells at sites were the wounds were closed. After the barrier integrity was restored, crystal binding decreased again to the same low levels as in undamaged controls. These results indicate that, whereas functional MDCK monolayers are largely protected against COM crystal adherence, epithelial injury and the subsequent process of wound healing lead to increased crystal binding.

  9. Lactobacillus plantarum inhibits intestinal epithelial barrier dysfunction induced by unconjugated bilirubin.

    PubMed

    Zhou, Yukun; Qin, Huanlong; Zhang, Ming; Shen, Tongyi; Chen, Hongqi; Ma, Yanlei; Chu, Zhaoxin; Zhang, Peng; Liu, Zhihua

    2010-08-01

    Although a large number of in vitro and in vivo tests have confirmed that taking probiotics can improve the intestinal barrier, few studies have focused on the relationship between probiotics and the intestinal epithelial barrier in hyperbilirubinaemia. To investigate the effects of and mechanisms associated with probiotic bacteria (Lactobacillus plantarum; LP) and unconjugated bilirubin (UCB) on the intestinal epithelial barrier, we measured the viability, apoptotic ratio and protein kinase C (PKC) activity of Caco-2 cells. We also determined the distribution and expression of tight junction proteins such as occludin, zonula occludens (ZO)-1, claudin-1, claudin-4, junctional adhesion molecule (JAM)-1 and F-actin using confocal laser scanning microscopy, immunohistochemistry, Western blotting and real-time quantitative PCR. The present study demonstrated that high concentrations of UCB caused obvious cytotoxicity and decreased the transepithelial electrical resistance (TER) of the Caco-2 cell monolayer. Low concentrations of UCB inhibited the expression of tight junction proteins and PKC but could induce UDP-glucuronosyltransferases 1 family-polypeptide A1 (UGT1A1) expression. UCB alone caused decreased PKC activity, serine phosphorylated occludin and ZO-1 levels. After treatment with LP, the effects of UCB on TER and apoptosis were mitigated; LP also prevented aberrant expression and rearrangement of tight junction proteins. Moreover, PKC activity and serine phosphorylated tight junction protein levels were partially restored after treatment with LP, LP exerted a protective effect against UCB damage to Caco-2 monolayer cells, and it restored the structure and distribution of tight junction proteins by activating the PKC pathway. In addition, UGT1A1 expression induced by UCB in Caco-2 cells could ameliorate the cytotoxicity of UCB. PMID:20412608

  10. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  11. Alix-mediated assembly of the actomyosin–tight junction polarity complex preserves epithelial polarity and epithelial barrier

    PubMed Central

    Campos, Yvan; Qiu, Xiaohui; Gomero, Elida; Wakefield, Randall; Horner, Linda; Brutkowski, Wojciech; Han, Young-Goo; Solecki, David; Frase, Sharon; Bongiovanni, Antonella; d'Azzo, Alessandra

    2016-01-01

    Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin–tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical–basal polarity and in the maintenance of the epithelial barrier. PMID:27336173

  12. Rapid disappearance of the medial epithelial seam during palatal fusion occurs by multifocal breakdown that is preceded by expression of alpha smooth muscle actin in the epithelium.

    PubMed

    Gibbins, J R; Brent, S; Srivastava, M; Garibotto, N; Tazawa, Y M; Cameron, A; Hunter, N

    2000-02-01

    Breakdown of the medial epithelial seam (MES) is essential to allow bridging of the mesenchyme during palatal fusion. Evidence exists for three mechanisms for this breakdown that are incompatible at the level of individual cells in the seam. To determine if breakdown of the seam was regionally restricted, 3-dimensional reconstructions were generated using volume rendering software from 1 micron serial sections in the sagittal plane of rat palates fixed during the process of fusion. The earliest break detected in electron micrographs was cell separation and in reconstructions was a discrete defect, with a rounded outline, nearer to the nasal than to the oral margin of the seam. Further breakdown produced a pattern of rounded defects along the nasal margin of the seam resulting in interconnected columns of cells preferentially attached to the oral epithelium. Computer generated slicing of reconstructed seams showed that groups of cells evident in cross-sections as islands at this stage of breakdown of the MES could be artifacts. Unequivocal islands of epithelial cells formed later in fusion had a rounded outline, an incomplete basal lamina and a halo of cells containing phagocytosed apoptotic debris. The pattern of breakdown indicated that the MES breaks down under tension. Laser confocal microscopy of sections and whole-mounts of palates demonstrated alpha-smooth muscle actin preferentially localized in the epithelial cells of the palatal shelves immediately before and during formation of the seam. Expression in epithelial cells of the isoform of actin normally restricted to smooth muscle cells engaged in tonic contraction supported an interpretation that the epithelial cells of the seam may be capable of generating tension during the palatal fusion event. PMID:10794080

  13. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  14. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  15. Stiffness nanotomography of human epithelial cancer cells

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

    2012-02-01

    The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

  16. KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification.

    PubMed

    Tetreault, Marie-Pier; Weinblatt, Daniel; Shaverdashvili, Khvaramze; Yang, Yizeng; Katz, Jonathan P

    2016-05-17

    Epithelial differentiation and stratification are essential for normal homeostasis, and disruption of these processes leads to both injury and cancer. The zinc-finger transciption factor KLF4 is a key driver of epithelial differentiation, yet the mechanisms and targets by which KLF4 controls differentiation are not well understood. Here, we define WNT5A, a non-canonical Wnt ligand implicated in epithelial differentiation, repair, and cancer, as a direct transcriptional target that is activated by KLF4 in squamous epithelial cells. Further, we demonstrate functionally that WNT5A mediates KLF4 control of epithelial differentiation and stratification, as treatment of keratinocytes with WNT5A rescues defective epithelial stratification resulting from KLF4 loss. Finally, we show that the small GTPase CDC42 is regulated by KLF4 in a WNT5A dependent manner. As such, we delineate a novel pathway for epithelial differentiation and stratification and define potential therapeutic targets for epithelial diseases.

  17. KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification

    PubMed Central

    Tetreault, Marie-Pier; Weinblatt, Daniel; Shaverdashvili, Khvaramze; Yang, Yizeng; Katz, Jonathan P.

    2016-01-01

    Epithelial differentiation and stratification are essential for normal homeostasis, and disruption of these processes leads to both injury and cancer. The zinc-finger transciption factor KLF4 is a key driver of epithelial differentiation, yet the mechanisms and targets by which KLF4 controls differentiation are not well understood. Here, we define WNT5A, a non-canonical Wnt ligand implicated in epithelial differentiation, repair, and cancer, as a direct transcriptional target that is activated by KLF4 in squamous epithelial cells. Further, we demonstrate functionally that WNT5A mediates KLF4 control of epithelial differentiation and stratification, as treatment of keratinocytes with WNT5A rescues defective epithelial stratification resulting from KLF4 loss. Finally, we show that the small GTPase CDC42 is regulated by KLF4 in a WNT5A dependent manner. As such, we delineate a novel pathway for epithelial differentiation and stratification and define potential therapeutic targets for epithelial diseases. PMID:27184424

  18. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  19. Laser physics and laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1990-04-01

    Two essential difficulties must be addressed in any low-power frequency conversion device; boosting the efficiency above that of simple single-pass bulk devices (which are typically less than 1 percent/W) and achieving phase-matching for the desired interaction. Waveguide interactions were used to increase the conversion efficiency, and explored quasi-phase-matching (QPM) as a broadly applicable approach to meeting the phasematching condition. Both oxide forrelectrics like LiNbO3 and quantum-wells in III-V semiconductors have been investigated for these applications. Second harmonic generation (SHG) of near-infrared lasers to produce green and blue radiation, as well as SHG of the 9 to 11 micrometer output of a CO2 laser have been demonstrated in these materials. These media together constitute a significant step towards the goal of generic nonlinear media for the far infrared - ultraviolet, based on readily available materials and fabricated with standard technologies, applicable to essentially any frequency conversion application.

  20. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  1. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury.

    PubMed

    Gomperts, Brigitte N; Belperio, John A; Rao, P Nagesh; Randell, Scott H; Fishbein, Michael C; Burdick, Marie D; Strieter, Robert M

    2006-02-01

    Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases. PMID:16424223

  2. Laser photobiology and photomedicine

    SciTech Connect

    Martellucci, S.; Chester, A.N.

    1985-01-01

    This book presents information on the following topics: the physical and biological basis of photobiology and photomedicine; the biological effects and applications of laser technology; photochemotherapy; photobiology and dermatology; surgical and ophthalmological applications of lasers; laser safety; and diagnostics and technological aspects of recent laser developments.

  3. Longitudinal discharge laser baffles

    DOEpatents

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  4. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  5. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  6. Obstacles to Laser Safety

    SciTech Connect

    Barat, K

    2005-04-25

    The growth of laser development & technology has been remarkable. Unfortunately, a number of traps or obstacles to laser safety have also developed with that growth. The goal of this article is to highlight those traps, in the hope that an aware laser user will avoid them. These traps have been the cause or contributing factor of many a preventable laser accident.

  7. Longitudinal discharge laser baffles

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  8. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations. PMID:19014026

  9. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations.

  10. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  11. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  12. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  13. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  14. Internalization of Aspergillus fumigatus conidia by epithelial and endothelial cells.

    PubMed Central

    Paris, S; Boisvieux-Ulrich, E; Crestani, B; Houcine, O; Taramelli, D; Lombardi, L; Latgé, J P

    1997-01-01

    The internalization of conidia of the opportunistic fungus Aspergillus fumigatus by primary cell cultures of nonprofessional phagocytes was investigated. This study is the first to show that A. fumigatus conidia were able to be engulfed by tracheal epithelial, alveolar type II, and endothelial cells. PMID:9119494

  15. TTC7A mutations disrupt intestinal epithelial apicobasal polarity

    PubMed Central

    Bigorgne, Amélie E.; Farin, Henner F.; Lemoine, Roxane; Mahlaoui, Nizar; Lambert, Nathalie; Gil, Marine; Schulz, Ansgar; Philippet, Pierre; Schlesser, Patrick; Abrahamsen, Tore G.; Oymar, Knut; Davies, E. Graham; Ellingsen, Christian Lycke; Leteurtre, Emmanuelle; Moreau-Massart, Brigitte; Berrebi, Dominique; Bole-Feysot, Christine; Nischke, Patrick; Brousse, Nicole; Fischer, Alain; Clevers, Hans; de Saint Basile, Geneviève

    2013-01-01

    Multiple intestinal atresia (MIA) is a rare cause of bowel obstruction that is sometimes associated with a combined immunodeficiency (CID), leading to increased susceptibility to infections. The factors underlying this rare disease are poorly understood. We characterized the immunological and intestinal features of 6 unrelated MIA-CID patients. All patients displayed a profound, generalized lymphocytopenia, with few lymphocytes present in the lymph nodes. The thymus was hypoplastic and exhibited an abnormal distribution of epithelial cells. Patients also had profound disruption of the epithelial barrier along the entire gastrointestinal tract. Using linkage analysis and whole-exome sequencing, we identified 10 mutations in tetratricopeptide repeat domain–7A (TTC7A), all of which potentially abrogate TTC7A expression. Intestinal organoid cultures from patient biopsies displayed an inversion of apicobasal polarity of the epithelial cells that was normalized by pharmacological inhibition of Rho kinase. Our data indicate that TTC7A deficiency results in increased Rho kinase activity, which disrupts polarity, growth, and differentiation of intestinal epithelial cells, and which impairs immune cell homeostasis, thereby promoting MIA-CID development. PMID:24292712

  16. Epithelial interleukin-8 responses to oral bacterial biofilms.

    PubMed

    Peyyala, R; Kirakodu, S; Novak, K F; Ebersole, J L

    2011-10-01

    An in vitro model of bacterial biofilms on rigid gas-permeable contact lenses (RGPLs) was developed to challenge oral epithelial cells. This novel model provided seminal data on oral biofilm-host cell interactions, and with selected bacteria, the biofilms were more effective than their planktonic counterparts at stimulating host cell responses.

  17. Lung epithelial NOX/DUOX and respiratory virus infections.

    PubMed

    Grandvaux, Nathalie; Mariani, Mélissa; Fink, Karin

    2015-03-01

    Determining the role of NADPH oxidases in the context of virus infection is an emerging area of research and our knowledge is still sparse. The expression of various isoforms of NOX/DUOX (NADPH oxidase/dual oxidase) in the epithelial cells (ECs) lining the respiratory tract renders them primary sites from which to orchestrate the host defence against respiratory viruses. Accumulating evidence reveals distinct facets of the involvement of NOX/DUOX in host antiviral and pro-inflammatory responses and in the control of the epithelial barrier integrity, with individual isoforms mediating co-operative, but surprisingly also opposing, functions. Although in vivo studies in mice are in line with some of these observations, a complete understanding of the specific functions of epithelial NOX/DUOX awaits lung epithelial-specific conditional knockout mice. The goal of the present review is to summarize our current knowledge of the role of individual NOX/DUOX isoforms expressed in the lung epithelium in the context of respiratory virus infections so as to highlight potential opportunities for therapeutic intervention.

  18. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    PubMed Central

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  19. Monoclonal antibodies as probes of epithelial membrane polarization

    PubMed Central

    1985-01-01

    Monoclonal antibodies directed against antigens in the apical plasma membrane of the toad kidney epithelial cell line A6 were produced to probe the phenomena that underlie the genesis and maintenance of epithelial polarity. Two of these antibodies, 17D7 and 18C3, were selected for detailed study here. 17D7 is directed against a 23-kD peptide found on both the apical and basolateral surfaces of the A6 epithelium whereas 18C3 recognizes a lipid localized to the apical membrane only. This novel observation of an apically localized epithelial lipid species indicates the existence of a specific sorting and insertion process for this, and perhaps other, epithelial plasma membrane lipids. The antibody-antigen complexes formed by both these monoclonal antibodies are rapidly internalized by the A6 cells, but only the 18C3-antigen complex is recycled to the plasma membrane. In contrast to the apical localization of the free antigen, however, the 18C3-antigen complex is recycled to both the apical and basolateral surface of the epithelium, which indicates that monoclonal antibody binding interferes in some way with the normal sorting process for this apical lipid antigen. PMID:4066753

  20. Mouse Crumbs3 sustains epithelial tissue morphogenesis in vivo

    PubMed Central

    Charrier, Lucie E.; Loie, Elise; Laprise, Patrick

    2015-01-01

    The human apical protein CRB3 (Crb3 in mouse) organizes epithelial cell polarity. Loss of CRB3 expression increases the tumorogenic potential of cultured epithelial cells and favors metastasis formation in nude mice. These data emphasize the need of in vivo models to study CRB3 functions. Here, we report the phenotypic analysis of a novel Crb3 knockout mouse model. Crb3-deficient newborn mice show improper clearance of airways, suffer from respiratory distress and display perinatal lethality. Crb3 is also essential to maintain apical membrane identity in kidney epithelial cells. Numerous kidney cysts accompany these polarity defects. Impaired differentiation of the apical membrane is also observed in a subset of cells of the intestinal epithelium. This results in improper remodeling of adhesive contacts in the developing intestinal epithelium, thereby leading to villus fusion. We also noted a strong increase in cytoplasmic β-catenin levels in intestinal epithelial cells. β-catenin is a mediator of the Wnt signaling pathway, which is overactivated in the majority of colon cancers. In addition to clarifying the physiologic roles of Crb3, our study highlights that further functional analysis of this protein is likely to provide insights into the etiology of diverse pathologies, including respiratory distress syndrome, polycystic kidney disease and cancer. PMID:26631503

  1. [Methotrexate as inducer of proinflammatory cytokines by epithelial cells].

    PubMed

    Morón-Medina, Alejandra; Viera, Ninoska; de Morales, Thaís Rojas; Alcocer, Sirley; Bohorquez, Dinorath

    2014-03-01

    Methotrexate (MTX), a drug commonly used in childhood cancer, has also been indicated as a cytotoxic agent of the oral mucosa, which can trigger the inflammatory process and increase the vascularity of epithelial tissues during the early stages of oral mucositis. The aim of this study was to determine the production of proinflammatory cytokines IL-1beta, IL-6 y TNF-alpha in epithelial cell cultures treated with MTX. Epithelial cells of human larynx, obtained from the cell line Hep-2, were cultured with different doses of MTX during different incubation times. The drug cytotoxicity was analyzed by means of the colorimetric test, which is based on the metabolic reduction of the bromide of 3-(4, 5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol (MTT); and the proinflammatory cytokines production by the test enzyme-linked immunosorbent assay (ELISA). Cultures of HEp-2 cells showed increased production of proinflammatory cytokines at 72 hours with 0.32 microM of MTX. These results suggest that depending on the dose and exposure time, MTX alters the physiology of human epithelial cells, which may play an important role during the phases of initiation and development of oral mucositis. PMID:24758098

  2. Keratin dressings speed epithelialization of deep partial-thickness wounds.

    PubMed

    Pechter, Patricia M; Gil, Joel; Valdes, Jose; Tomic-Canic, Marjana; Pastar, Irena; Stojadinovic, Olivera; Kirsner, Robert S; Davis, Stephen C

    2012-01-01

    Keratin gene expression is regarded as a hallmark of epidermal biology. It demarcates the three keratinocyte phenotypes: basal (expressing KRT5 and KRT14), differentiating (expressing KRT1 and KRT10), and activated (wound healing), which is characterized by expression of KRT6, KRT16, and KRT17. Activated keratinocytes are among the first signals of epidermal wound healing. In addition, they are found deregulated in nonhealing chronic wounds. To examine keratins as a potential modality for wound-healing disorders, we evaluated two different keratin dressings, liquid or solid, and assessed their effects of epithelialization and closure using porcine partial-thickness wound-healing model in vivo. We found that both forms of keratin dressings accelerated closure and epithelialization, achieving statistically significant differences on day 5. Evidence suggesting early onset of epithelialization was corroborated further by gene expression analyses revealing induction of KRT6A, KRT16, and KRT17 by day 2 postwounding. The data suggest that keratin dressings may stimulate epithelialization by enhancing the activation of keratinocytes. We conclude that keratin-containing dressings can accelerate wound healing and closure. Further studies are needed to determine the molecular mechanisms of this activation.

  3. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  4. CaMKII regulates the strength of the epithelial barrier

    PubMed Central

    Shiomi, Ryo; Shigetomi, Kenta; Inai, Tetsuichiro; Sakai, Masami; Ikenouchi, Junichi

    2015-01-01

    Epithelial cells define the boundary between the outside and the inside of our body by constructing the diffusion barrier. Tight junctions (TJs) of epithelial cells function as barriers against invasion of harmful microorganisms into the human body and free diffusion of water or ions from the body. Therefore, formation of TJs has to be strictly controlled in epithelial cells. However, the molecular mechanisms governing this regulation are largely unknown. In this study, we identified Ca2+/calmodulin-dependent protein kinase II (CaMKII) as a regulator of the barrier function of TJs. CaMKII inhibition led to enlargement of TJ-areas and up-regulation of the barrier function. CaMKII inhibition induced excess TJ formation in part by the activation of AMP-activated protein kinase (AMPK) and subsequent phosphorylation of claudin-1. As up-regulation of epithelial barriers is essential for the prevention of chronic inflammatory diseases, the identification of CaMKII as a modulator of TJ function paves the way for the development of new drugs to treat these diseases. PMID:26281891

  5. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  6. Epithelial junctions and Rho family GTPases: the zonular signalosome

    PubMed Central

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors. PMID:25483301

  7. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line. PMID:20400167

  8. Clonal analysis of the epithelial component of Warthin's tumor.

    PubMed

    Honda, K; Kashima, K; Daa, T; Yokoyama, S; Nakayama, I

    2000-11-01

    The proliferation of the epithelial component of Warthin's tumor is generally considered to represent a neoplastic condition. There has been much controversy about the histogenesis of this tumor, and the clonality of the epithelial component has not been clarified. We examined the clonal status of epithelial cells of Warthin's tumor by using a polymerase chain reaction (PCR) method based on trinucleotide repeat polymorphism of the X chromosome-linked human androgen receptor gene (HUMARA) and on random inactivation of the gene by methylation. Total DNA was isolated from formalin-fixed, paraffin-embedded tissue from 16 women with Warthin's tumor. Of the 16 cases analyzed, 7 were heterozygous for the HUMARA polymorphism and informative. The epithelial components of the tumors from the 7 cases were microdissected under the light microscope, and were subjected to extraction of DNA and HUMARA analysis. Using a permanent aqueous mounting medium during microdissection, we succeeded in reducing the rate of contamination by lymphocytes in the samples to less than 10%. All 7 cases showed patterns of polyclonal proliferation in the HUMARA analysis. Our results showed the nonclonal nature of Warthin's tumor, suggesting that Warthin's tumor is a non-neoplastic tumor-like condition. HUM PATHOL 31:1377-1380. PMID:11112212

  9. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    EPA Science Inventory

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  10. Epithelial Stem Cells and Implications for Wound Repair

    PubMed Central

    Plikus, Maksim V.; Gay, Denise L.; Treffeisen, Elsa; Wang, Anne; Supapannachart, Rarinthip June; Cotsarelis, George

    2012-01-01

    Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis hasa mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new inter-follicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover cellular and signaling basis of this remarkable adult wound regeneration phenomenon. PMID:23085626

  11. Focal epithelial hyperplasia (Heck disease) associated with AIDS.

    PubMed

    Viraben, R; Aquilina, C; Brousset, P; Bazex, J

    1996-01-01

    Focal epithelial hyperplasia (FEH) of the oral mucosa occurring in a HIV-infected man is described. Molecular biology disclosed an HPV-32 type in oral lesions. The association of FEH and AIDS is uncommon although many HPV subtypes may manifest during HIV infection.

  12. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  13. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line.

  14. Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration

    PubMed Central

    Dudakov, Jarrod A.; Jenq, Robert R.; Velardi, Enrico; Young, Lauren F.; Smith, Odette M.; Lawrence, Gillian; Ivanov, Juliet A.; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L.; O'Rourke, Kevin P.; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas; Nieuwenhuis, Edward E.; Shroyer, Noah F.; Liu, Chen; Kolesnick, Richard

    2015-01-01

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch, and epidermal growth factor (EGF) signals supporting Lgr5+ crypt base columnar ISCs for normal epithelial maintenance1,2. However, little is known about the regulation of the ISC compartment after tissue damage. Utilizing ex vivo organoid cultures, we provide evidence that innate lymphoid cells (ILCs), potent producers of Interleukin-22 (IL-22) after intestinal injury3,4, increased the growth of murine small intestine (SI) organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both murine and human intestinal organoids, increasing proliferation, and promoting ISC expansion. IL-22 induced Stat3 phosphorylation in Lgr5+ ISCs, and Stat3 was critical for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after murine allogeneic bone marrow transplantation (BMT) enhanced recovery of ISCs, increased epithelial regeneration, and reduced intestinal pathology and mortality from graft vs. host disease (GVHD). Atoh1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independent of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support intestinal epithelium, activating ISCs to promote regeneration. PMID:26649819

  15. The treatment of herpes simplex virus epithelial keratitis.

    PubMed Central

    Wilhelmus, K R

    2000-01-01

    PURPOSE: Epithelial keratitis is the most common presentation of ocular infection by herpes simplex virus (HSV). Quantitative assessment of available therapy is needed to guide evidence-based ophthalmology. This study aimed to compare the efficacy of various treatments for dendritic or geographic HSV epithelial keratitis and to evaluate the role of various clinical characteristics on epithelial healing. METHODS: Following a systematic review of the literature, information from clinical trials of HSV dendritic or geographic epithelial keratitis was extracted, and the methodological quality of each study was scored. Methods of epithelial cauterization and curettage were grouped as relatively equivalent physicochemical therapy, and solution and ointment formulations of a given topical antiviral agent were combined. The proportion healed with 1 week of therapy, a scheduled follow-up day that approximated the average time of resolution with antiviral therapy, was selected as the primary outcome based on a masked evaluation of maximum treatment differences in published healing curves. The proportion healed at 14 days was recorded as supplemental information. Fixed-effects and random-effects meta-analysis models were used to obtain summary estimates by pooling results from comparative treatment trials. Hypotheses about which prognostic factors might affect epithelial healing during antiviral therapy were developed by multivariate analysis of the Herpetic Eye Disease Study dataset. RESULTS: After excluding 48 duplicate reports, 14 nonrandomized studies, 15 studies with outdated or similar treatments, and 29 trials lacking sufficient data on healing or accessibility, 76 primary reports were identified. These reports involved 4,251 patients allocated to 93 treatment comparisons of dendritic epithelial keratitis in 28 categories and 9 comparisons of geographic epithelial keratitis in 6 categories. For dendritic keratitis, idoxuridine was better than placebo at 7 days

  16. Biliary epithelial senescence and plasticity in acute cellular rejection.

    PubMed

    Brain, J G; Robertson, H; Thompson, E; Humphreys, E H; Gardner, A; Booth, T A; Jones, D E J; Afford, S C; von Zglinicki, T; Burt, A D; Kirby, J A

    2013-07-01

    Biliary epithelial cells (BEC) are important targets in some liver diseases, including acute allograft rejection. Although some injured BEC die, many can survive in function compromised states of senescence or phenotypic de-differentiation. This study was performed to examine changes in the phenotype of BEC during acute liver allograft rejection and the mechanism driving these changes. Liver allograft sections showed a positive correlation (p < 0.0013) between increasing T cell mediated acute rejection and the number of BEC expressing the senescence marker p21(WAF1/Cip) or the mesenchymal marker S100A4. This was modeled in vitro by examination of primary or immortalized BEC after acute oxidative stress. During the first 48 h, the expression of p21(WAF1/Cip) was increased transiently before returning to baseline. After this time BEC showed increased expression of mesenchymal proteins with a decrease in epithelial markers. Analysis of TGF-β expression at mRNA and protein levels also showed a rapid increase in TGF-β2 (p < 0.006) following oxidative stress. The epithelial de-differentiation observed in vitro was abrogated by pharmacological blockade of the ALK-5 component of the TGF-β receptor. These data suggest that stress induced production of TGF-β2 by BEC can modify liver allograft function by enhancing the de-differentiation of local epithelial cells.

  17. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  18. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  19. NITROTYROSINATION OF A TUBULIN INDUCES EPITHELIAL BARRIER DYSFUNCTION

    EPA Science Inventory

    Nitrotyrosination of a-Tubulin Induces Epithelial Transport Dysfunction. Yuh-Chin Huang, Lisa Dailey, Wen-Li Zhang and Ilona Jaspers. ORD, Environmental Protection Agency and CEMLB, University of North Carolina

    a-Tubulin undergoes a cyclic removal and readdition of tyrosin...

  20. Essential ions for maintenance of the corneal epithelial surface.

    PubMed

    Bachman, W G; Wilson, G

    1985-11-01

    It is generally believed that tears are required to furnish only oxygen to the corneal epithelium. However, as tears are a very complicated solution, it is likely that other factors are essential to the cells of the corneal surface. The amount of light scattered from the epithelial surface of the excised rabbit cornea was examined with the in vitro specular microscope while the epithelium was bathed in different solutions. It was shown that the epithelial surface was maintained best with a buffered solution containing potassium, calcium, magnesium, phosphate and bicarbonate, in addition to sodium chloride. The solution was named Basic Tear Solution (BTS). The effect was not due to osmolarity. Potassium was particularly important, as corneas bathed with sodium chloride and potassium chloride were maintained better than corneas bathed with sodium chloride only. The appearance of the epithelial surface was different in these bathing solutions. In sodium chloride the surface scattered more light and more cells were sloughed. Least light was scattered in BTS, and cell-sloughing was at a minimum. Thus, the rate at which cells were sloughed from the epithelial surface and the quality of the surface were dependent on the bathing solution. PMID:2414247

  1. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  2. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction

    PubMed Central

    Gomez, Esther W.; Chen, Qike K.; Gjorevski, Nikolce; Nelson, Celeste M.

    2010-01-01

    Epithelial-mesenchymal transition (EMT) is a phenotypic change in which epithelial cells detach from their neighbors and become motile. Whereas soluble signals such as growth factors and cytokines are responsible for stimulating EMT, here we show that gradients of mechanical stress define the spatial locations at which EMT occurs. When treated with transforming growth factor (TGF)-β, cells at the corners and edges of square mammary epithelial sheets expressed EMT markers, whereas those in the center did not. Changing the shape of the epithelial sheet altered the spatial pattern of EMT. Traction force microscopy and finite element modeling demonstrated that EMT-permissive regions experienced the highest mechanical stress. Myocardin-related transcription factor (MRTF)-A was localized to the nuclei of cells located in high-stress regions, and inhibiting cytoskeletal tension or MRTF-A expression abrogated the spatial patterning of EMT. These data suggest a causal role for tissue geometry and endogenous mechanical stresses in the spatial patterning of EMT. PMID:20336666

  3. Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

    PubMed

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-10-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

  4. Epithelial junctions and Rho family GTPases: the zonular signalosome.

    PubMed

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of "zonular signalosome" is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.

  5. Characterization of discrete equine intestinal epithelial cell lineages

    PubMed Central

    Gonzalez, Liara M.; Kinnin, Leslie A.; Blikslager, Anthony T.

    2015-01-01

    OBJECTIVE To characterize epithelial cells of the small intestine and colon in horses without clinical gastrointestinal abnormalities with an emphasis on the stem cell niche constituents. SAMPLE Mucosal biopsy specimens from small and large intestines obtained from 12 horses euthanized for reasons unrelated to gastrointestinal disease or systemic disease. PROCEDURES Intestinal biopsy specimens were collected by sharp dissection immediately following euthanasia. Specimens were prepared for immunohistochemical, immunofluorescence, and transmission electron microscopic imaging to detect and characterize each epithelial cell type. Antibodies against protein biomarkers for cellular identification were selected on the basis of expression in other mammalian species. RESULTS Intestinal epithelial cell types were identified by means of immunostaining and morphological characterization with transmission electron microscopy. Some differences in biomarker expression and antibody cross-reactivity were identified in equine tissue, compared with other species. However, each known type of mucosal epithelial cell was identified in equine tissue. CONCLUSIONS AND CLINICAL RELEVANCE The methodology used can enhance detection of stem cells and progenitor cells as well as postmitotic cell lineages in equine intestinal tissues. Results may have relevance to regenerative potential of intestinal mucosa and survival in horses with colic. PMID:25815577

  6. MX-INDUCED URINARY BLADDER EPITHELIAL HYPERPLASIA IN EKER RATS

    EPA Science Inventory

    MX-INDUCED URINARY BLADDER EPITHELIAL HYPERPLASIA IN EKER RATS

    Epidemiological studies have shown a positive association between chronic exposure to chlorinated drinking water and human cancer, particularly of the urinary bladder. MX (3- chloro-4-(dichloromethyl)-5-hydrox...

  7. Nipah Virus Entry and Egress from Polarized Epithelial Cells

    PubMed Central

    Lamp, Boris; Dietzel, Erik; Kolesnikova, Larissa; Sauerhering, Lucie; Erbar, Stephanie; Weingartl, Hana

    2013-01-01

    Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both primary and systemic infection phases. NiV entry and spread from polarized epithelial cells therefore determine virus entry and dissemination within a new host and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were detected only after infection with high virus doses, at time points when the integrity of the cell monolayer was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein, M. Studies with stably M-expressing and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal. PMID:23283941

  8. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  9. Rare gas halide lasers

    SciTech Connect

    O'Neill, F.

    1985-01-01

    Contents include: Basic principles of operation of E-beam-pumped KrF lasers--(Spectroscopy, Kinetic processes in E-beam-pumped KrF lasers, Absorbers in the KrF gain medium, Sprite - A 200J, 5ns KrF laser); Current topics in KrF laser research--(Target experiments with the Sprite KrF laser, Pulse compression and power multiplication of KrF lasers, Improved efficiency of E-beam-pumped KrF lasers).

  10. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier

    NASA Astrophysics Data System (ADS)

    George, Isabelle; Naudin, Grégoire; Boland, Sonja; Mornet, Stéphane; Contremoulins, Vincent; Beugnon, Karine; Martinon, Laurent; Lambert, Olivier; Baeza-Squiban, Armelle

    2015-02-01

    Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a tight epithelial barrier when grown on a porous membrane in a two compartment chamber were exposed to fluorescently labelled NPs to quantify the NP translocation. NP translocation and uptake by cells were also studied by confocal and transmission electron microscopy. Translocation was characterized according to NP size (16, 50, or 100 nm), surface charge (negative or positive SiO2), composition (SiO2 or TiO2), presence of proteins or phospholipids and in an inflammatory context. Our results showed that NPs can translocate through the Calu-3 monolayer whatever their composition (SiO2 or TiO2), but this translocation was increased for the smallest and negatively charged NPs. Translocation was not associated with an alteration of the integrity of the epithelial monolayer, suggesting a transcytosis of the internalized NPs. By modifying the NP corona, the ability of NPs to cross the epithelial barrier differed depending on their intrinsic properties, making positively charged NPs more prone to translocate. NP translocation can be amplified by using agents known to open tight junctions and to allow paracellular passage. NP translocation was also modulated when mimicking an inflammatory context frequently found in the lungs, altering the epithelial integrity and inducing transient tight junction opening. This in vitro evaluation of NP translocation could be extended to other inhaled NPs to predict their biodistribution.Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a

  11. Tunable lasers- an overview

    SciTech Connect

    Guenther, B.D.; Buser, R.G.

    1982-08-01

    This overview of tunable lasers describes their applicability to spectroscopy in the ultraviolet and middle infrared ranges; to rapid on-line diagnostics by ultrashort cavity lasers; to exploration, by the free electron laser, for its wide tuning in the far infrared to submillimeter region; to remote detection, in areas such as portable pollution monitors, on-line chemical analyzers, auto exhaust analyzers, and production line controls; to photochemistry; and to other potential areas in diagnostics, communications, and medical and biological sciences. The following lasers are characterized by their tunability: solid state lasers, primarily alexandrite, with a tuning range of ca 1000 Angstroms; color center lasers; semiconductor lasers; dye lasers; gas lasers, where high-pressure CO/sub 2/ discharges are the best known example for a wide tunability range, and research is continuing in systems such as the alkali dimers; and, at wavelengths beyond 10 micrometers, the possibilities beyond Cerenkov and free electron lasers.

  12. What is a Laser?

    NASA Astrophysics Data System (ADS)

    Julien, Lucile; Schwob, Catherine

    2015-10-01

    The first laser was built more than 50 years ago, inMay 1960: it was a pulsed ruby laser. It was a simple laboratory curiosity and nobody knew what its usefulness could be. Other devices were rapidly demonstrated, and the variety and number of lasers in the world increased at a huge rate. Currently, the annual laser world market is worth about 6 billion dollars. Thanks to the remarkable properties of laser light, laser applications increase steadily in the domains of industry, building, medicine, telecommunications, etc. One can find many lasers in research laboratories, and they are used more and more in our everyday life and almost everybody has already seen a laser beam. The goal of the first chapter of this book is to explain simply what a laser is, how it is built and how it operates. Firstly, let us point out the outstanding properties of the laser light.

  13. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  14. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    SciTech Connect

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L. Univ. of Michigan, Ann Arbor )

    1990-02-26

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips ({le}12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 {mu}m thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with ({sup 3}H)arachidonic acid in M199 medium (0.5 {mu}Ci/ml) for 24 hours at 37C. The strips incorporated 36{+-}4% (mean {+-} SEM) of the total radioactivity and released 8.0{+-}1.2% of incorporated radioactivity when stimulated by 5.0 {mu}M calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE{sub 2}, PGF{sub 2}{alpha}, and 12-HETE standards. The greatest activity corresponded to the PGE{sub 2} and PGF{sub 2}{alpha} standards, which is a similar pattern to that reported for cultured human tracheal epithelium.

  15. Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development.

    PubMed

    Klug, D B; Crouch, E; Carter, C; Coghlan, L; Conti, C J; Richie, E R

    2000-02-15

    We previously reported that precursors within the keratin (K) 8+5+ thymic epithelial cell (TEC) subset generate the major cortical K8+5- TEC population in a process dependent on T lineage commitment. This report demonstrates that expression of a cyclin D1 transgene in K8+5+ TECs expands this subset and promotes TEC and thymocyte development. Cyclin D1 transgene expression is not sufficient to induce TEC differentiation in the absence of T lineage-committed thymocytes because TECs from both hCD3epsilon transgenic and hCD3epsilon/cyclin D1 double transgenic mice remain blocked at the K8+5+ maturation stage. However, enforced cyclin D1 expression does expand the developmental window during which K8+5+ cells can differentiate in response to normal hemopoietic precursors. Thus, enhancement of thymic function may be achieved by manipulating the growth and/or survival of TEC precursors within the K8+5+ subset.

  16. Epithelial gap closure governed by forces and geometry

    NASA Astrophysics Data System (ADS)

    Ladoux, Benoit

    The closure of gaps within epithelia is crucial to maintain the integrity and the homeostasis of the tissue during wound healing or cell extrusion processes. Cells mediate gap closure through either the assembly of multicellular actin-based contractile cables (purse-string contraction) or the protrusive activity of border cells into the gap (cell crawling). I will present experimental data and numerical modeling that show how these mechanisms can mutually interact to promote efficient epithelial gap closure and how mechanical constraints can regulate these mechanisms. I will first present how geometrical constraints dictate mechanisms of epithelial gap closure. We determine the importance of tissue shape during closure and the role of curvature of cell boundaries in this process. An essential difference between the two closure mechanisms is that cell crawling always pulls the edge of the tissue forward (i.e. towards the gap) while purse string pulls the edge forward or backwards depending on the local geometry. Our study demonstrates how the interplay between these two mechanisms is crucial for closing gaps and wounds, which naturally come in arbitrary shapes. Then I will focus on epithelial closure mechanism during cell extrusion. Within confluent cell layers, cellular motions coupled between neighbors are tightly regulated by the packing density of the epithelium inducing drastic changes in the dynamics of these tissues. I will show how cell density and tissue mechanics regulate the extrusion of cells within a confluent epithelial cell sheet, simultaneously measuring collective movements and traction forces. Epithelial packing and collective cell dynamics dictate the modes of cellular extrusions from lamellipodia crawling of the neighboring cells at low densities to coordinated actin-based contractile purse-string mechanism at higher density.

  17. Pulmonary epithelial barrier function: some new players and mechanisms

    PubMed Central

    Brune, Kieran; Frank, James; Schwingshackl, Andreas; Finigan, James

    2015-01-01

    The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses. PMID:25637609

  18. Chronic Alcohol Exposure Renders Epithelial Cells Vulnerable to Bacterial Infection

    PubMed Central

    Wood, Stephen; Pithadia, Ravi; Rehman, Tooba; Zhang, Lijuan; Plichta, Jennifer; Radek, Katherine A.; Forsyth, Christopher; Keshavarzian, Ali; Shafikhani, Sasha H.

    2013-01-01

    Despite two centuries of reports linking alcohol consumption with enhanced susceptibility to bacterial infections and in particular gut-derived bacteria, there have been no studies or model systems to assess the impact of long-term alcohol exposure on the ability of the epithelial barrier to withstand bacterial infection. It is well established that acute alcohol exposure leads to reduction in tight and adherens junctions, which in turn leads to increases in epithelial cellular permeability to bacterial products, leading to endotoxemia and a variety of deleterious effects in both rodents and human. We hypothesized that reduced fortification at junctional structures should also reduce the epithelial barrier’s capacity to maintain its integrity in the face of bacterial challenge thus rendering epithelial cells more vulnerable to infection. In this study, we established a cell-culture based model system for long-term alcohol exposure to assess the impact of chronic alcohol exposure on the ability of Caco-2 intestinal epithelial cells to withstand infection when facing pathogenic bacteria under the intact or wounded conditions. We report that daily treatment with 0.2% ethanol for two months rendered Caco-2 cells far more susceptible to wound damage and cytotoxicity caused by most but not all bacterial pathogens tested in our studies. Consistent with acute alcohol exposure, long-term ethanol exposure also adversely impacted tight junction structures, but in contrast, it did not affect the adherens junction. Finally, alcohol-treated cells partially regained their ability to withstand infection when ethanol treatment was ceased for two weeks, indicating that alcohol’s deleterious effects on cells may be reversible. PMID:23358457

  19. Chronic alcohol exposure renders epithelial cells vulnerable to bacterial infection.

    PubMed

    Wood, Stephen; Pithadia, Ravi; Rehman, Tooba; Zhang, Lijuan; Plichta, Jennifer; Radek, Katherine A; Forsyth, Christopher; Keshavarzian, Ali; Shafikhani, Sasha H

    2013-01-01

    Despite two centuries of reports linking alcohol consumption with enhanced susceptibility to bacterial infections and in particular gut-derived bacteria, there have been no studies or model systems to assess the impact of long-term alcohol exposure on the ability of the epithelial barrier to withstand bacterial infection. It is well established that acute alcohol exposure leads to reduction in tight and adherens junctions, which in turn leads to increases in epithelial cellular permeability to bacterial products, leading to endotoxemia and a variety of deleterious effects in both rodents and human. We hypothesized that reduced fortification at junctional structures should also reduce the epithelial barrier's capacity to maintain its integrity in the face of bacterial challenge thus rendering epithelial cells more vulnerable to infection. In this study, we established a cell-culture based model system for long-term alcohol exposure to assess the impact of chronic alcohol exposure on the ability of Caco-2 intestinal epithelial cells to withstand infection when facing pathogenic bacteria under the intact or wounded conditions. We report that daily treatment with 0.2% ethanol for two months rendered Caco-2 cells far more susceptible to wound damage and cytotoxicity caused by most but not all bacterial pathogens tested in our studies. Consistent with acute alcohol exposure, long-term ethanol exposure also adversely impacted tight junction structures, but in contrast, it did not affect the adherens junction. Finally, alcohol-treated cells partially regained their ability to withstand infection when ethanol treatment was ceased for two weeks, indicating that alcohol's deleterious effects on cells may be reversible. PMID:23358457

  20. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    SciTech Connect

    Doupnik, C.A.; Leikauf, G.D. )

    1990-10-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with (3H)arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. (3H)arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein.